
Performance Characteristics of an Adaptive Mesh
Refinement Calculation on Scalar and Vector Platforms

Michael Welcome, Charles Rendleman, Leonid Oliker
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

{mlwelcome,carendleman,loliker}@lbl.gov

Rupak Biswas
NASA Advanced Supercomputing Division

NASA Ames Research Center
Moffett Field, CA 94035

rbiswas@mail.arc.nasa.gov

ABSTRACT
Adaptive mesh refinement (AMR) is a powerful technique
that reduces the resources necessary to solve otherwise in-
tractable problems in computational science. The AMR
strategy solves the problem on a relatively coarse grid, and
dynamically refines it in regions requiring higher resolution.
However, AMR codes tend to be far more complicated than
their uniform grid counterparts due to the software infras-
tructure necessary to dynamically manage the hierarchical
grid framework. Despite this complexity, it is generally be-
lieved that future multi-scale applications will increasingly
rely on adaptive methods to study problems at unprece-
dented scale and resolution. Recently, a new generation
of parallel-vector architectures have become available that
promise to achieve extremely high sustained performance
for a wide range of applications, and are the foundation of
many leadership-class computing systems worldwide. It is
therefore imperative to understand the tradeoffs between
conventional scalar and parallel-vector platforms for solv-
ing AMR-based calculations. In this paper, we examine the
HyperCLaw AMR framework to compare and contrast per-
formance on the Cray X1E, IBM Power3 and Power5, and
SGI Altix. To the best of our knowledge, this is the first
work that investigates and characterizes the performance of
an AMR calculation on modern parallel-vector systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance Attributes;
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; D.1.3 [Programming Techniques]:
Concurrent Programming—parallel programming

General Terms
Performance, Experimentation, Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’06, May 3–5, 2006, Ischia, Italy.
Copyright 2006 ACM 1-59593-302-6/06/0005 ...$5.00.

Keywords
HyperCLaw framework, high end computing, Cray X1E,
SGI Altix, IBM Power3 and Power4, integrated performance
monitoring

1. INTRODUCTION
Adaptive mesh refinement (AMR) is a powerful technique

that reduces the computational and memory resources re-
quired to solve otherwise intractable problems in computa-
tional science. Typically, AMR has been applied to physical
systems that are modeled by a governing set of partial dif-
ferential equations (PDEs). The AMR strategy solves the
system of PDEs on a relatively coarse grid, and dynami-
cally refines it in regions of scientific interest or where the
coarse grid error is too high for proper numerical resolution.
Without some form of adaptivity, naively increasing the grid
resolution uniformly across the entire computational domain
can become prohibitively expensive for realistic cases. For
example, in computational fluid dynamics (CFD), the size
of a stable timestep is limited by the Courant-Friedrichs-
Levy (CFL) condition (i.e. if the grid spacing decreases by
a factor of 2, the timestep must also be decremented by a
factor of 2). For a 3D problem, halving the mesh spacing
in each direction increases memory requirements by 8x and
the computational work required to advance the solution to
the same point in time by 16x. Adaptive methods operate
by restricting this refinement to a relatively small portion of
the computational domain.

However, the price paid for this additional power is com-
plexity. Adaptive codes tend to be far more complicated
than their uniform grid counterparts. Significant software
infrastructure must be developed for the dynamic manage-
ment of refined regions and sophisticated numerical tech-
niques must be used to ensure that the PDEs are satisfied
at the interface between coarse and refined grids. This in-
cludes mechanisms to accurately interpolate and coarsen
data between refined and unrefined regions. Because of
this additional overhead, AMR codes tend to be built over
frameworks or libraries that provide the desired functional-
ity. They are also usually written in a flexible and modular
manner to maximize re-use and/or simplify inclusion of al-
ternate physics. This, in turn, may result in lower compar-
ative performance than uniform mesh codes, even when run
with adaptivity turned off.

Despite this complexity and the growth of modern high
end computing (HEC) systems to 10,000’s of processors, it is

generally believed that the use of adaptive methods will con-
tinue to grow as calculations involving multi-scale physics
become more feasible and prevalent. Scientists will continue
to increase problem sizes and resolutions that will remain
computationally intractable without adaptive methods. Ex-
amples of AMR frameworks include BoxLib/AmrLib [4, 15]
developed by the Center for Computational Sciences and
Engineering (CCSE) at Lawrence Berkeley National Lab-
oratory (LBNL), Chombo [5] developed by ANAG also at
LBNL, FLASH [9] from the University of Chicago, SAM-
RAI [16] from Lawrence Livermore National Laboratory,
and Grace/DAGH [14] developed at Rutgers University.

Recently, a new generation of parallel-vector architectures
have become available to the supercomputing community.
These systems promise to achieve extremely high sustained
performance for a wide range of applications, and are the
foundation of many leadership-class computing systems world-
wide. It is therefore imperative to understand the tradeoffs
between conventional scalar and parallel-vector platforms
for solving AMR-based calculations. In this paper, we ex-
amine the HyperCLaw AMR framework developed at LBNL
to critically compare and contrast performance on the Cray
X1E, the IBM Power3 and Power5, and the SGI Altix. To
the best of our knowledge, this is the first work that inves-
tigates and characterizes the performance of an AMR cal-
culation on modern parallel-vector systems and compares it
against that obtained on state-of-the-art scalar platforms.

2. ADAPTIVE MESH REFINEMENT
CALCULATION

In this section, we present some basic concepts of adap-
tive mesh refinement (AMR), describe the HyperCLaw AMR
library, discuss the key AMR components of our calculation,
and highlight the major parallelization and vectorization is-
sues.

2.1 Methodology
AMR is a popular and powerful technology for solving

partial differential equations (PDEs) using a hierarchy of
grids of differing resolution ranging from the coarsest to the
finest. Each refinement level is represented as a union of
rectangular grid patches of a specific resolution contained
within the computational domain. In this work, the level 0
grid is a single rectangular 3D parallelopiped constituting
the problem domain. The refinement factor, r, is the ratio
in resolution between consecutive levels, and is uniform in
all spatial directions. The grids are properly nested, i.e. the
union of grids at level l + 1 is contained in the union of
grids at level l. The containment is strict in the sense that,
except at physical boundaries, the level l grids are large
enough to ensure that there is a border at least one level l
cell surrounding each level l + 1 grid.

Both the initial creation of the grid hierarchy and the
subsequent regridding operations use the same set of proce-
dures to create new grids. Regridding is the process of dy-
namically changing the grid hierarchy to adequately capture
physical phenonema of interest. Cells requiring enhanced
resolution are identified and tagged using a user-supplied
error indicator, and the tagged cells are grouped into rect-
angular patches. The new patches generally contain some
cells that were not tagged for refinement. These rectangular
patches are subdivided to form the grids at the next level.

The process is repeated until either the error tolerance crite-
ria is satisfied or a specified maximum level of refinement is
reached. When new grids are created at level l+1, the data
on these grids are copied from previous grids at the same
level (where possible) using an efficient point-to-point pro-
tocol; otherwise the data is interpolated from the underlying
level l grids.

The PDEs at a given level in the grid hierarchy are solved
using Dirichlet data obtained from coarser levels. This re-
sults in flux errors at the boundary with the coarse grid,
which are then corrected in a synchronization step when the
coarse and fine grid solutions reach the same time. Bound-
ary data is provided by filling ghost cells in a band around
the fine grid data. The width of the band is determined by
the stencil of the finite difference scheme. The time-stepping
algorithm recursively advances grids at different levels using
timesteps appropriate to that level based on CFL consider-
ations, while the flux corrections are typically imposed in a
time-averaged sense.

When the coarse and fine grid solutions reach the same
time and are synchronized, two corrections need to be made.
First, for all coarse grid cells covered by finer cells, the coarse
data is replaced by the volume-weighted average of the fine
grid data. Second, because coarse cells adjacent to the fine
cells were advanced using different fluxes than those used for
the fine cells, the coarse cell values are corrected by adding
the difference between the coarse and fine grid fluxes.

2.2 HyperCLaw Library
HyperCLaw is a hybrid C++/Fortran AMR code devel-

oped and maintained by CCSE at LBNL [4, 15] where it
is frequently used to solve systems of hyperbolic conserva-
tion laws. The PDEs are solved using a higher-order Go-
dunov method that has evolved from and is based on the
original method of Colella [6]. The base library, known as
Boxlib, provides C++ classes and data containers for rep-
resenting block-structured data and software for distribut-
ing/exchanging data on parallel computers using MPI. A
second library, AmrLib, implemented in BoxLib, supports
AMR methods on block-structured data. The algorithms
contained in AmrLib are much the same as those described
in the original AMR papers [2, 3]. Techniques to parallelize
AMR methods within the BoxLib framework are described
in [15]. These libraries, in addition to the tasks of con-
trolling the details of a calculation (number of levels of re-
finement, number of timesteps between adaptations, paral-
lel I/O, etc.), implement the main functionality of an AMR
method.

The remainder of the HyperCLaw code consists of an appli-
cations layer containing the physics classes defined in terms
of virtual functions within the AmrLib class hierarchy. The
basic idea is that data blocks are managed in C++ in which
ghost cells are filled and temporary storage is dynamically
allocated so that when the calls to the physics algorithms
(usually finite difference methods implemented in Fortran)
are made, the same stencil can be used for all points and no
special treatments are required. By structuring the software
in this manner, the high level objects that encapsulate the
functionality for AMR and its parallelization are indepen-
dent of the details of the physics algorithms and the problem
being solved. This simplifies the process of adding/replacing
physics modules as long as they adhere to the AmrLib inter-
face requirements.

Recursive Procedure Advance (level l)
if Regrid needed at level l + 1

Estimate errors at level l + 1
Generate new grids for levels l + 1 to MRL
Generate parallel data distributions

using Knapsack
Fill new grid data using interpolation

endif
Execute TimeStep by:

if (l == 0) obtain boundary data from
physical boundary conditions

else Obtain boundary data from coarser grids
Integrate level l in time using Godunov
if (l < MRL)

repeat r times: Advance (level l + 1)
endif
Synchronize data between levels l and l + 1

End Recursive Procedure Advance

Figure 1: Pseudo-code of the basic AMR algorithm.

2.3 Major AMR Modules
For the purposes of this discussion, the AMR algorithm

can be described by the pseudo-code shown in Figure 1. Ba-
sically, the Advance procedure recursively advances refine-
ment level l, 0 ≤ l ≤ MRL (maximum refinement level),
with r invocations at each level (r is the refinement ra-
tio). The repetition is required to comply with the CFL
constraint: because the resolution at level l + 1 is r times
that of level l, the timestep must be cycled with stepsize
r times smaller.

We now briefly describe each of the major modules of the
HyperCLaw framework.

Godunov:

This is the phase where the majority of the computational
work is performed by advancing the solution on uniform
grids at level l. It involves conservatively converting state
variables to primitive form, computing 4th-order slopes in
all directions, characteristic tracing of all variables, solving
the Riemann problem to compute edge fluxes, and finally
updating and converting back to state variables [6]. It is
a computationally intensive phase, requiring approximately
1000 flops per cell. The Fortran routines operate on 3D ar-
rays containing the discretized state of the physical system.
There is no inter-processor communication.

TimeStep:

This phase prepares the grids at level l for the Godunov
solver. This includes allocation of temporary storage, filling
the ghost zones surrounding each grid patch, initializing and
updating edge-based flux registers for the follow-on synchro-
nization step, and computing a global CFL number. Com-
munication is required to obtain initial data for the ghost
cells either by copying from other grids at the same level
(but possibly on other processors) or by spatial and tempo-
ral interpolation from coarse levels.

Regrid:

The function of this module is to replace an existing grid hi-
erarchy with a new hierarchy in order to maintain numerical
accuracy as important solution features develop and move

through the computational domain. This includes tagging
coarse cells for refinement, and buffering them to ensure that
neighboring cells are also refined. The list of tagged cells are
collected by a master processor and then re-broadcast. Each
processor then constructs grid boxes to cover the tagged cells
and maps the patches to processors to balance the computa-
tional workload. The algorithm is deterministic so that each
processor generates the same grids and mappings without
any communication. Each processor then allocates memory
and initializes data for the grids that it owns. The procedure
works down from finest level to ensure that grids at level l
properly contain the projection of the level l +1 grids. This
is primarily a serial algorithm performing integer operations
on arrays of tagged cells and grid boxes.

Knapsack:

A new data distribution is performed during this phase.
Data for the newly-generated fine grids is obtained by ei-
ther copying from locations where there is existing fine grid
data, or by interpolating in space from locations overlaid by
data at coarser levels. This algorithm scales poorly with the
number of grids as it is inherently sequential.

2.4 Parallelization and Vectorization
HyperCLaw required only minor effort to vectorize and

multi-stream the Fortran loops on the X1E. Performance
could have been improved had we restructured the Godunov
solver to be more cache friendly; however, the original code
was designed for flexibility and modularity that we did not
want to compromise. The organization is logical and pro-
ceeds in phases: first compute 4th-order slopes, then char-
acteristic tracing, then Riemann solves, and finally compute
fluxes and update state variables. The net effect on perfor-
mance is to load values into cache, perform a few floating-
point operations, and then write back to memory. But many
of the same values are reloaded into cache during a later
phase of the algorithm. Rewriting the code by merging
distinct phases would require substantial effort to enhance
cache reuse, and make the code more monolithic and less
flexible. Furthermore, our goal was less focused on trying to
optimize the AMR calculation for a particular machine than
understanding its performance properties on parallel-vector
and scalar architectures.

HyperCLaw is based on a coarse-grained message-passing
model using MPI as the parallelization strategy. In this
paradigm, the grids or data blocks at a given level are dis-
tributed across processors so as to balance computational
workload and minimize inter-processor communication. For
typical AMR calculations, it is extremely difficult to achieve
perfect load balance because of the wide range of block sizes.
(The block size is the total number of cells in the block.) Our
current implementation, based on a dynamic programming
approach due to Crutchfield [8,15], is very general in terms
of the range of block sizes that can be handled. Generality
however leads to additional overhead. On each processor,
we duplicate the mapping between processors and the array
of grids it contains. This provides excellent optimization
for pre-computing the communications required for filling
boundary data. The cost of this method increases quickly
with the number of blocks, but is usually negligible for up
to 1000 blocks.

3. TARGET ARCHITECTURES

P/ Clock Peak Stream BW Ratio MPI Lat MPI BW Network
Name Platform

Node (MHz) (GF/s/P) (GB/s/P) (Byte/Flop) (µsec) (GB/s/P) Topology

Seaborg Power3 16 375 1.5 0.4 0.26 16.3 0.13 Fat-tree
Bassi Power5 8 1900 7.6 6.8 0.85 4.7 1.1 Fat-tree

Columbia Altix 2 1500 6.0 2.0 0.33 2.8 1.0 Fat-tree
Phoenix X1E 4 1130 18.01 9.7 0.54 5.0 2.9 4D-Hcube

Table 1: Architectural highlights of Seaborg, Columbia, and Phoenix HEC platforms.

We briefly describe the salient features of the four diverse
HEC architectures examined in our study. Table 1 presents
an architectural overview of the Seaborg, Bassi, Columbia,
and Phoenix systems, including: STREAM benchmark re-
sults [17] showing the measured EP-STREAM [11] triad
bandwidth when all processors within a node simultaneously
compete for main memory; the ratio of STREAM band-
width to the peak computational rate; the measured intern-
ode MPI latency [13]; and the measured bidirectional MPI
bandwidth per processor pair when each processor simulta-
neously exchanges data with a distinct processor in another
node.

3.1 Seaborg (IBM Power3)
The Power3 was first introduced in 1998 as part of IBM’s

RS/6000 series. Each 375 MHz processor contains two float-
ing-point units (FPUs) that can issue a multiply-add (MADD)
per cycle for a peak performance of 1.5 Gflop/s. The Power3
has a pipeline of only three cycles, thus using the registers
very efficiently and diminishing the penalty for mispredicted
branches. The out-of-order architecture uses prefetching to
reduce pipeline stalls due to cache misses. The CPU has a
32KB instruction cache, a 128KB 128-way set associative L1
data cache, and an 8MB four-way set associative L2 cache
with its own private bus. Each SMP node consists of 16 pro-
cessors connected to main memory via a crossbar. Multi-
node configurations are networked via the Colony switch
using an omega-type topology. The Power3 experiments re-
ported here were conducted on Seaborg, the 380-node sys-
tem running AIX 5.1 and operated by LBNL.

3.2 Bassi (IBM Power5)
The latest processor in the IBM Power line, the Power5

processor uses a RISC instruction set with SIMD extensions.
The 1.9 GHz CPU contains a 64KB instruction cache, a
1.9MB on-chip 10-way set associative L2 cache as well as
a massive 36MB on-chip 12-way set associative L3 cache
(that is not part of the core). The IBM custom System
Interface Chip (SMI) allows memory bandwidth to be ag-
gregated across four DDR 233 MHz channels. Each Power5
chip has two SMI interfaces allowing an impressive measured
STREAM performance (with respect to conventional DDR
memory subsystems) of 6.8GB/s per processor. The peak
floating-point performance of the evaluated Power5 system
is 7.6 GFlop/s (two MADDs per cycle). The Power5 in-
cludes an integrated memory controller, previously an off-
chip component, and integrates the distributed switch fabric
between the memory controller and the core/caches. Each
SMP node consists of eight processors, and is interconnected
via a two-link network adaptor to the IBM Federation HPS
switch. The Power5 experiments reported here were con-
ducted on Bassi, the 122-node system running AIX 5.2 and

operated by LBNL.

3.3 Columbia (SGI Altix)
Introduced in early 2003, the SGI Altix systems are an

adaptation of the Origin 3000, which use SGI’s NUMAflex
global shared-memory architecture. This design enables the
major subsystems to be packaged into modular components,
called “bricks.” On the Altix, the computational brick con-
sists of four Intel Itanium2 processors (in two nodes), lo-
cal memory, and a two-controller ASIC called the Scalable
Hub (SHUB). Each SHUB interfaces to two CPUs in one
node, along with memory, I/O devices, and other SHUBs.
The Altix cache-coherency protocol is also implemented in
the SHUB. The 64-bit Itanium2 architecture operates at
1.5 GHz and is capable of issuing two MADDs per cycle for
a peak performance of 6.0 Gflop/s. The memory hierarchy
consists of 128 FP registers and three on-chip data caches
(32KB L1, 256KB L2, and 6MB L3). The Itanium2 cannot
store FP data in L1, making register loads and spills a po-
tential source of bottlenecks; however, a relatively large reg-
ister set helps mitigate this issue. The superscalar processor
implements the Explicitly Parallel Instruction set Comput-
ing (EPIC) technology where instructions are organized into
128-bit VLIW bundles. All Altix experiments reported here
were performed on the 10,240-processor Columbia system
running 64-bit Linux version 2.4.21, located at NASA Ames
Research Center.

3.4 Phoenix (Cray X1E)
The Cray X1E is the recently-released follow-on to the X1

vector platform. Vector processors use a dramatically dif-
ferent architectural approach than conventional superscalar
systems to expedite uniform operations on independent data
sets by exploiting regularities in the computational struc-
ture of scientific applications. The X1E computational core,
called the single-streaming processor (SSP), contains two
32-stage vector pipes running at 1.13 GHz. Each SSP con-
tains 32 vector registers holding 64 double-precision words,
and operates at 4.5 Gflop/s. The SSP also contains a two-
way out-of-order superscalar processor (564 MHz) with two
16KB caches (instruction and data). Four SSPs can be
combined into a logical computational unit called the multi-
streaming processor (MSP), and share a 2-way set associa-
tive 2MB data Ecache, a unique feature that allows high
bandwidth (25–51 GB/s) for computations with temporal
data locality. Note that the scalar unit operates at 1/4th the
peak of SSP vector performance, but offers effectively 1/16
MSP performance if a loop can neither be multistreamed nor
vectorized. This is because in a serialized segment of a mul-
tistreamed code, only one of the four SSP scalar processors
within an MSP can do useful work, thus degrading the rela-

1Peak performance shown for X1 MSP vector units. The
scalar processsor in each SSP has a peak of 1.1 Gflop/s.

tive performance ratio to 32/1. Consequently, a high vector
operation ratio is especially critical for effectively utilizing
the underlying hardware.

The basic building block of the X1E is the compute mod-
ule, containing four multi-chip modules (MCM), memory,
routing logic, and external connectors. Two MSPs are im-
plemented in a single MCM, for a total of eight MSPs per
module that are organized as two SMP nodes. These nodes
each use half the module’s memory and share the network
ports. The interconnect is hierarchical, with subsets of 16
SMP nodes connected via a crossbar. For up to 1024 MSPs,
these subsets are connected in a 4D-hypercube topology;
thereafter, the interconnect is a 2D torus. All reported X1E
experiments were performed on a 768-MSP system running
UNICOS/mp 3.0.23 and operated by Oak Ridge National
Laboratory.

4. EXPERIMENTAL SETUP
In this section, we describe the computational problem

that we solved, how we conducted a weak scaling study,
and a portable infrastructure we used gather a per-process
profile of computation and communication.

4.1 Problem Specification
Initially, we were interested in profiling a more complex

adaptive application modeling the propagation of a nuclear
flame in a Type Ia supernova [1]. The application was de-
rived from a low Mach-number combustion code also devel-
oped by CCSE at LBNL. The supernova code required the
solution of multi-level parabolic and elliptic PDEs for the
reaction-diffusion part and the enforcement of the low-Mach
number constraint, in addition to the hyperbolic PDEs that
describe the evolution of the fluid. Also, an adaptive ordi-
nary differential equation (ODE) solver was used to model
the stiff chemistry and the code utilized a nonlinear, table-
driven equation-of-state.

Our efforts to optimize the supernova code for the X1E
platform mainly centered around rewriting the scalar mod-
ules so that it would vectorize better. In particular, we
observed that most of the time was spent in the equation-
of-state, which would vectorize but was called in a pointwise
fashion. The effort to re-organize the code so that long vec-
tors were passed rather than single data values took almost
a man-month. Thereafter, we noticed that the ODE solver
was taking a significant fraction of the time, but it would
require substantial effort to vectorize it. The next major is-
sue would be to optimize the multigrid solver for the elliptic
and parabolic PDEs. The task looked particularly daunting
when the code achieved a mere 80 Mflop/s on a 12 Gflop/s
X1 MSP after the equation-of-state optimization.

At that point, we decided to profile a much simpler hy-
perbolic shock-tube problem since all the numerics easily
vectorized. Furthermore, if we are unable to get good per-
formance on the X1E with this simpler AMR gas dynam-
ics application, we have little hope for problems with more
complex physics. We modeled the interaction of a Mach 1.25
shock in air hitting a spherical bubble of helium, illustrated
in Figure 2. This case is analogous to one of the experi-
ments described by Haas and Sturtevant [10]. The helium is
a factor of 0.139 less dense than the surrounding air which
causes the shock to accelerate as it enters the bubble and
subsequently generates vorticity that dramatically deforms
the bubble.

Figure 2: Volume rendering of the helium mass frac-
tion at the end of the simulation with boxes used by
the refinement scheme superimposed on the image.
The grids capture the shock bubble (left) and shock
front (right) as they pass out of the domain.

We use a γ-law equation-of-state for each gas with γa =
1.4 for air and γf = 1.667 for the helium. Mixtures of the

two gases are modeled using effective γ’s: Γc =
“

f
γf

+ 1−f
γa

”−1

for the speed of sound, and Γe = 1 +
“

f
γf−1

+ 1−f
γa−1

”−1

for

internal energy. The harmonic average used to compute Γc

expresses the net change in volume of a mixture of the gases
in terms of their individual compressibilities. The speed of
sound, c =

p
Γcp/ρ, is used in the integration routine for

defining characteristic speeds and for approximate solution
of the Riemann problem to calculate fluxes. We assume
that the two components of a mixed fluid cell are both at
the same pressure p, which is computed from density ρ and
internal energy e using Γe as p = (Γe − 1)ρe. The formula
used to compute Γe ensures that mixing of the two fluids at
the same pressure does not change the pressure and internal
energy of the composite fluid.

4.2 Weak Scaling
We decided to conduct a weak scaling study in order to

best examine the parallel performance properties of the Hy-
perCLaw AMR code when the workload per processor re-
mained fixed. Perfect weak scaling is achieved if the num-
ber of grids and the number of refined cells at each level
are proportional to the number of processors. To achieve
this goal, we ran the 16-processor job a specified number of
timesteps, and recorded the locations and sizes of the re-
fined grids after each regridding phase in a log file. We used
a perl script to read the log file and produce appropriate
patched grids for each regridding step for the other runs.
For example, each file for the 32-processor run contained
twice the number of grids and twice the number of refined
cells as the 16-processor case; however, the refined grids cov-
ered exactly the same regions of the physical domain in the
two cases. This was achieved by halving the cell spacing
in the X dimension for every grid, and then splitting each
grid into two. The process was repeated in the Y dimen-

Mem (MB) Avg Avg Cells/P Avg X-dim Godunov Overall FP CI
MRL

P=128 Grids/P (1000s) Grid Size FP CI P=32 P=64 P=128 P=256

0 438 4 1049 64 0.78 0.62 0.59 0.54 0.53
1 485 29 823 23 0.77 0.60 0.57 0.53 0.47
2 459 61 802 22 0.77 0.59 0.53 0.49 0.24

Table 2: Characteristics of AMR calculation for varying maximum refinement levels (MRL). Note that the
floating-point computational intensity (FP CI) is measured on the Seaborg system.

sion when generating grids for the 64-processor run, in the
Z direction for the 128-processor run, and so on. In our
experiments, we did not include the time required to read
the log file.

We note that there are certain drawbacks to this process
but emphasize that it was done primarily to conduct a weak
scaling study. Halving the cell spacing in only one direction
at a time generates stretched grids that are unacceptable for
problems requiring multilevel elliptic solves without modify-
ing the existing algorithms in the BoxLib/AmrLib code suite.
In addition, a priori prescribing the locations of the patched
grids based on a 16-processor run may not work for large
production cases because the non-linearity of the method
will cause important flow features to drift off the refined
regions.

4.3 Integrated Performance Monitoring
Integrated Performance Monitoring (IPM) is a portable

performance profiling infrastructure that binds together com-
munication, computation, and memory information from the
tasks in a parallel application into a single application-level
profile [12]. IPM provides a light-weight portable mecha-
nism for workload-wide parallel profiling that does not re-
quire user intervention and scales to 1000’s of processors.
As the application executes on the parallel platform, IPM
records a per-process profile of computation and communi-
cation using a small fixed memory footprint and very low
CPU overhead. When the application terminates, a report
of the aggregate profile is generated. In this work, IPM was
used on all the target architectures as a probe of the amount
of communication.

The principal benefit of using IPM is that it provides
sufficient contextual clarity to separately analyze the com-
munication in each of the distinct AMR steps within Hy-
perCLaw. Since each functional component has a specific
algorithmic or data movement role in the overall calcula-
tion, having region-specific timings allows one to compare
measurements with estimates derived analytically or from
microbenchmarks. Analyses of parallel performance that
treats the application as a whole does not provide this level
of detail.

5. PERFORMANCE RESULTS
This section describes the performance results and anal-

ysis of the HyperCLaw adaptive framework modeling our
shock helium bubble experiment for the three evaluated ar-
chitectures.

5.1 Calculation Characteristics
An overview of the AMR calculation characteristics are

presented in Table 2. Observe that for our studied problem,
the average number of grids per processor increases as the
maximum refinement level (MRL) grows from 0 to 2. Since

each processor holds the meta-data for all grids in the prob-
lem (not just its local grids) and must search this global list
to determine its required communication, the program will
suffer increased overheads for managing larger numbers of
grids. This will also be the case with higher concurrency
experiments for a fixed MRL, since for this weak scaling
configuration the aggregate number of grids increases with
larger processor counts. Additionally, for our experimental
setup, the average number of cells per processors decreases
for an increasing MRL. This results in the advancement of
fewer cells per grid, which combined with increasing grid
count, increases overhead and thus reduces the calculation
efficiency.

Observe that for our studied calculation the average grid’s
X-dimension length decreases with larger MRL. We there-
fore expect a decrease in vector length on the X1E associated
with these small grids, as the compiler generally vectorizes
across the inner-most loop of the X dimension. However, it
is often the case that superscalar platforms show an increase
in performance for small grids, due to increase cache reuse.
Table 2 also shows the floating-point computational inten-
sity (FP CI) of both the Godunov solver and overall cal-
culation as measured by Seaborg hardware counters, where
FP CI is defined as the total number of floating-point op-
erations divided by the total loads and stores. Note that
although the Godunov solver is computationally intensive,
it is written in a modular fashion which focuses on program
flexibility and extensibility. As a result it experiences a large
number of cache misses and register spills, thus causing its
surprisingly low FP CI of approximately 0.77. The solver al-
gorithm could in principle be restructured to improve cache
behavior at the cost of reduced flexibility, but would require
extensive software reengineering.

Finally, notice that FP CI of the overall calculation is
lower than just the Godunov phase. This is expected as most
of the floating-point work occurs in the Godunov solver.
The overall FP CI degrades for increasing MRL and con-
currencies, since the associated increase in overheads causes
a smaller fraction of the runtime to be spent on the numer-
ically intensive Godunov phase.

5.2 Architectural Performance Comparison
We now examine the performance behavior of our AMR

experiment on the four architectures evaluated in our study.
Table 3 presents a performance breakdown for varying MRLs
and concurrency levels (the Phoenix experiment unexpect-
edly crashes at P=256, Cray engineers are investigating the
problem). Figure 3 shows a graphical view of the main com-
ponent runtimes for the MRL=2 experiment. In terms of
absolute runtime, Columbia generally attains the highest
performance for MRL≥1 followed by Bassi, Phoenix, and
Seaborg. This is somewhat surprising as the peak perfor-
mance of the Phoenix vector architecture is three times that

Seaborg (Power3) Bassi (Power5) Columbia (Altix) Phoenix (X1E)
MRL

P=32 P=64 P=128 P=256 P=32 P=64 P=128 P=256 P=32 P=64 P=128 P=256 P=32 P=64 P=128

0 856 869 893 906 127 128 133 139 129 134 159 159 51 52 58
Total

1 1440 1470 1513 1625 240 248 256 269 222 234 245 297 211 271 320
(secs)

2 2207 2322 2428 3720 399 420 445 517 346 398 394 520 525 930 1433
0 4.1% 4.0% 3.9% 3.8% 5.4% 5.3% 5.1% 4.9% 6.7% 6.5% 5.8% 5.5% 5.6% 5.5% 4.9%

% of
1 4.9% 4.8% 4.7% 4.4% 5.8% 5.6% 5.5% 5.2% 8.0% 7.6% 7.2% 5.9% 2.8% 2.2% 1.8%

Peak
2 5.3% 5.0% 4.8% 3.1% 5.8% 5.5% 5.2% 4.5% 8.5% 7.4% 7.4% 5.6% 1.9% 1.0% 0.7%

0 666 662 662 663 102 101 101 101 101 101 103 101 38 38 40
Godnv

1 1041 1034 1032 1035 172 172 172 171 142 144 141 143 96 96 96
(secs)

2 1523 1521 1521 1527 283 283 282 282 210 217 205 210 196 196 202
0 78% 76% 74% 73% 80% 79% 76% 73% 78% 75% 69% 63% 75% 74% 69%

Godnv
1 72% 70% 68% 64% 72% 69% 67% 64% 64% 62% 58% 48% 46% 35% 30%

(PTT)
2 69% 66% 63% 41% 71% 67% 63% 55% 61% 54% 52% 40% 37% 21% 14%

Godnv 0 4.8% 4.8% 4.8% 4.8% 6.2% 6.2% 6.2% 6.2% 7.9% 7.8% 7.7% 7.9% 6.9% 6.9% 6.6%
% of 1 5.7% 5.7% 5.8% 5.7% 6.8% 6.8% 6.8% 6.8% 10.4% 10.3% 10.5% 10.4% 5.1% 5.2% 5.2%
Peak 2 6.7% 6.7% 6.7% 6.7% 7.1% 7.1% 7.1% 7.1% 12.1% 11.7% 12.4% 12.1% 4.3% 4.3% 4.2%

0 5% 7% 9% 10% 7% 8% 11% 15% 7% 10% 18% 24% 13% 13% 17%
MPI

1 6% 8% 10% 15% 7% 9% 11% 13% 8% 13% 18% 30% 23% 30% 28%
(PTT)

2 6% 8% 10% 35% 6% 8% 9% 11% 8% 12% 17% 28% 13% 22% 22%

Table 3: Summary of AMR performance for varying concurrencies and MRL, showing the runtime, percent
of theoretical peak, and percent of total time (PTT). MRL=2 results are shown in bold.

of Columbia—this discrepancy can be seen in the attained
theoretical percentage of peak, where at 128 processors and
a MRL=2, Phoenix achieves only 0.7% compared with 7.4%
on Columbia, 5.2% on Bassi, and 4.8% on Seaborg. This
extremely low fraction of peak indicates that the class of
AMR computations studied in this work map poorly to the
X1E vector platform. Significant code reengineering may be
able to address these limitations.

We also note that the newly released Power5 Bassi system
consistently achieves a higher fraction of peak than the older
Power3-based Seaborg, even though the peak performance
of Bassi is more than 5x that of Seaborg. This relatively
impressive performance is due to improvements in the mi-
croarchitectures and component integration, including: fast
memory interface relative to peak ALU speed (see Table 1),
huge 36MB L3 victim cache, large number of rename regis-
ters, on chip memory controller and fabric interface, as well
as improved prefetching facilities.

Observe that on all architectures, the percentage of peak
decreases with increasing concurrency (for a fixed MRL)
due to increased costs associated with grid management and
MPI communication. However, for increasing MRLs, we see
opposite performance trends on the superscalar and vector
platforms. Since increasing MRLs correspond to decreasing
average grid sizes (see Section 5.1), the superscalar systems
benefit from increased cache reuse, while the vector platform
suffers from a reduction in the vector length.

Table 3 also shows that the Godunov solver achieves a
rather low fraction of peak across all of our studied archi-
tectures, achieving only 12.4%, 7.1%, 6.7%, and 4.2% on
Columbia, Bassi, Phoenix, and Seaborg, respectively, for
P=128, MRL=2. As discussed in Sections 2.4 and 5.1,
this computationally-intensive algorithm suffers from regis-
ter spilling and poor cache reuse on the superscalar systems
and short vector lengths on the vector platform. Recall that
since AMR calculations inherently focus on localized regions

of the domain, we expect the grid size dimensions—and the
corresponding vector length—to decrease with higher MRL.
As a result, the solver performance on vector platforms can
be severely inhibited, as in our example where the vector
length is limited to only 22 when MRL=2 (see Table 2).

Since the Godunov solver is the primary phase of floating-
point operations (although other regions such as TimeStep
also perform some numerics), it represents the high water
mark for the achievable percentage of peak. The additional
AMR components necessary to maintain and regrid the hi-
erarchical meshes, as well as the required communication,
result in non-vectorizable overheads (such as pointer chas-
ing) that decrease the codes overall efficiency. The relative
effects of the AMR overheads can be seen by measuring the
percent of total time (PTT) spent in the Godunov phase.
As shown in Table 3, this value falls to 63% on Seaborg
and Bassi, 52% on Columbia, and only 14% on Phoenix
for P=128, MRL=2, thereby indicating that the incurred
AMR overheads are significantly more expensive on the vec-
tor platform.

Finally, Table 3 shows that a relatively small fraction of
overhead is required for communication across our studied
platforms. The message-passing algorithm in this frame-
work aggregates all message between any two sets of pro-
cessors before performing the actual data transfer. This
incurs the overhead of copying to (from) large MPI buffers
from (to) the data structures of the individual grids, but
amortizes communication latency by transmitting large mes-
sages. In terms of performance, Bassi’s communication gen-
erally consumes the smallest PTT, followed by Seaborg,
Columbia, and Phoenix (this is especially true of P=256,
MRL=2, where all architectures other than Bassi see a pre-
cipitous increase in communication PTT overhead). The
relatively high PTT of Phoenix, is a result of several fac-
tors. First, its high peak computational rate puts more
pressure on the communication infrastructure. Addition-

Figure 3: Breakdown of absolute MRL=2 AMR performance, showing the runtime (in seconds) con-
tributed by the major code modules (Seaborg not shown).

Figure 4: Breakdown of relative MRL=1 (top) and MRL=2 (bottom) AMR performance, showing the
percentage of total time (PTT) contributed by the major code modules.

Seaborg (Power3) Bassi (Power5) Columbia (Altix) Phoenix (X1E)
P=32 P=64 P=128 P=256 P=32 P=64 P=128 P=256 P=32 P=64 P=128 P=256 P=32 P=64 P=128

Speedup 5.27 5.08 4.98 3.30 4.33 4.14 4.05 3.63 5.07 4.57 5.12 4.10 1.28 1.30 0.52

Table 4: Benefit of AMR: Speedup of AMR calculation at MRL=2 relative to non-adaptive (MRL=0)
computation using a uniform grid at the finest resolution of interest.

ally, MPI is not the most efficient communication protocol
on tightly connected, global-address space machines such as
the X1E. Rewriting the communication layer using SHMEM
or vector loads/stores may potentially increase performance
by reducing the overhead of explicit message passing, but
would inhibit code portability.

5.3 Effects of Increased Refinement Level
Figure 4 examines the PTT of the main AMR components

as the maximum refinement level (MRL) increases from 1
to 2. Namely, we examine Godunov, TimeStep, Knapsack,
and Regrid, where TimeStep is further subdivided into its
computational and communication components (since this
phase incurs most of the communication within the AMR
calculation). Results clearly show that, as previously noted,
increasing the MRL and/or concurrency causes a smaller
portion of the computation to be spent in the numerically
intensive Godunov solver. This is particularly true for the
Phoenix and Seaborg systems at P=256.

Examining the individual AMR components, we see that
that the overhead associated with the TimeStep computa-
tional phase shows almost no increase with a growing MRL.
This is also true of Timestep’s communication component.
Since the studied code is not communication intensive, other
components of the computation consume relatively larger
fractions of the runtime as the maximum refinement in-
creases.

The Knapsack overhead is due to its asymptotic O(Nκ)
cost with 2 < κ < 3, where N is the total number of grids in
the computation. Observe, however, that on the superscalar
systems this cost is relatively minor even at the highest con-
currency and MRL of two—the Columbia system in par-
ticular achieves extremely impressive performance for this
integer-intensive calculation, consuming less than 2% of the
overhead. The Knapsack algorithm heavily relies on the
C++ Standard Template Library for list insertions, dele-
tions, traversals, etc. Clearly, the Columbia system has
an advantage in compiling and running this class of codes.
However, the Phoenix platform suffers greatly with increas-
ing processor count and MRL, due to the large fraction of
non-vectorizable code portions of this integer- and pointer-
based algorithm. For example at P=128, the overhead of
the Knapsack routine grows from 18% to 32% of the overall
runtime.

Similarly, the Regrid phase accounts for a modest portion
of the superscalar overhead (less than 6% PTT for P=128,
MRL=2), but is responsible for a significant fraction of over-
head on Phoenix. The Regrid algorithm is not well suited
for vector systems as it consists of numerous list traversals,
non-vectorizing integer operations, and short vector length
interpolations. This is particularly true as more, smaller
grids are generated with increasing MRL. Thus on the vector
platform, we see the Regrid PTT increases from 9% to 28%
of the overhead for 128 processors for an MRL=2. There-
fore, the combined Knapsack and Regrid phases are respon-
sible for over 60% of the overhead on Phoenix (for P=128),

compared with less than 8% on the superscalar platforms.
Extensive code reengineering may address these deficiencies,
but would require an AMR framework developed specifically
from the ground up with vector optimizations in mind. Fur-
thermore, if additional levels of refinement continue to in-
crease the number of grids, while reducing the average grid
size (as in these experiments), we would expect these over-
head trends to continue with increasing MRL.

6. CONCLUSIONS
In this work, we described a detailed performance analy-

sis of the HyperCLaw AMR framework on leading scalar and
vector platforms: the IBM Power3 and Power5, SGI Al-
tix, and Cray X1E. Table 4 presents a performance com-
parison of the target architectures for our AMR calcula-
tion based one of its most important metrics: the time-to-
solution speedup of using the AMR framework versus the
time it would have taken to perform the calculation using a
uniform (non-adaptive) mesh at the finest resolution of inter-
est. Observe that on the superscalar platforms, a speedup of
5.1x, 5.0x, and 4.1x are achieved on Columbia, Seaborg, and
Bassi respectively (at P=128) for our weak-scaling MRL=2
experiment. The X1E vector system, on the other hand,
attains a slight AMR advantage of 1.3x for small numbers
of processors, and losses the AMR computational benefit all
together for P=128 as the speedup ratio falls to only 0.5.

This very low performance indicates that the studied AMR
implementation maps poorly to the Phoenix vector system
even though much of the code was originally developed on
the Cray YMP/C90 architecture of the early 1990s2. Since
that time, the infrastructure has grown in sophistication
and complexity in order to accommodate algorithms for low
Mach number and chemically reacting flows. A reengineer-
ing of the algorithms to take advantage of the vector hard-
ware could improve performance in some areas, but at the
expense of readability and performance portability. Such
an activity would be a substantial undertaking given that
the underlying infrastructure of this code base now contains
over 100,000 lines of C++. Finally, it is unclear how much
of a performance improvement would ultimately be possible,
given that some scalar computations would be required even
in a vector-optimized code implementation.

In general, it is difficult to make statements on the per-
formance of an AMR application primarily because there is
such a wide diversity of cases that can arise. For example,
it is not always true that one can extrapolate the perfor-
mance characteristics of a MRL calculation to a MRL + 1
calculation; such predictions would depend on the physical
problem being studied, among other factors. A turbulent
flame calculation might well increase in the number of grids
and work done with additional AMR levels being added to

2The Cray C90/YMP shared-memory systems were more
balanced in their scalar and vector performance compared
to the X1E and multiprocessor performance was obtained
using Cray threads rather than message passing [7].

the calculation, but some astrophysical applications actu-
ally have fewer grids as the number of AMR levels increase.
However, for the specific problem examined in this paper, we
would indeed expect the overheads costs to continue grow-
ing with increasing MRL, thus causing the Godunov solver
to account for diminishing portions of the overall runtime.

Furthermore, recall that our original goal was to study a
much more complex adaptive algorithm that examined the
propagation of a nuclear flame in a Type Ia supernova. This
supernova calculation requires the use of multi-grid solvers
to advance the solution of multi-level parabolic and elliptic
PDEs. Unfortunately, these advanced physics and chem-
istry calculations would further reduce the vector length,
since they require the solution of progressively coarser grids,
as well as interpolation within and between the multi-grid
hierarchies.

Essentially, changes would be required in two types of soft-
ware modules: the multigrid iterative solvers, and with the
method used to integrate the ordinary differential equations
(ODEs) used in the combustion of nuclear fuel. The perfor-
mance of the AMR multigrid solvers on vector machines is
hampered by the increasingly shorter vector lengths that oc-
cur in the prolongation, restriction, and smoothing phases.
To some extent, this problem can be addressed by arranging
the sub-grids on a processor into a pseudo-subgrid and ap-
plying the operation over the larger grid via a vector mask.
Replacing the ODE solvers, which operate in a pointwise
fashion, with a version that operates on vectors of points is
also possible, but due to the variability in the convergence
properties of the ODE solver with nuclear fuel composition,
high efficiency might be difficult to attain. We thus conclude
that it would be extremely challenging to achieve high vector
performance on our full-scale AMR application of interest.

The studies described in this work are being used to guide
new research activities in improving the performance of AMR
applications on modern HEC systems. One path aims to
lower the computational cost and storage requirement of the
meta-data; primarily in the message-passing overhead and in
the Knapsack load balance scheme. This will also improve
the performance of the supernova and low-Mach number
combustion codes. Another research direction will attempt
to reorganize the Godunov solver to improve memory-access
patterns and cache reuse. As the issues relating to perfor-
mance of HyperCLaw are resolved, these more sophisticated
applications will be the target of our research in understand-
ing and optimizing performance characteristics of AMR be-
havior on HEC systems.

Acknowledgments
The authors sincerely thank ORNL for providing access to
the X1E. All authors from LBNL were supported by OASCR
in the DOE Office of Science under contract DE-AC03-76SF-
00098.

7. REFERENCES
[1] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley,

and M. A. Zingale. Adaptive low mach number
simulations of nuclear flame microphysics. Journal of
Computational Physics, 195(2):677–694, 2004.

[2] M. J. Berger and P. Colella. Local adaptive mesh
refinement for shock hydrodynamics. Journal of
Computational Physics, 82(1):64–84, 1989.

[3] M. J. Berger and J. Oliger. Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
Computational Physics, 53:484–512, 1984.

[4] Center for Computational Sciences and Engineering,
Lawrence Berkeley National Laboratory.
http://seesar.lbl.gov/CCSE.

[5] Chombo software package for AMR applications
design document, September 2003. http://seesar.
lbl.gov/anag/chombo/ChomboDesign-1.4.pdf.

[6] P. Colella. A direct Eulerian MUSCL scheme for gas
dynamics. SIAM Journal on Scientific and Statistical
Computing, 6:104–117, 1985.

[7] P. Colella and W. Y. Crutchfield. A parallel adaptive
mesh refinement algorithm on the C-90. In
Proceedings of the Energy Research Power Users
Symposium, July 1994.

[8] W. Y. Crutchfield. Load balancing irregular
algorithms. Technical Report UCRL-JC-107679,
Lawrence Livermore National Laboratory, July 1991.

[9] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. A.
Zingale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W.
Truran, and H. Tufo. FLASH: An adaptive mesh
hydrodynamics code for modeling astrophysical
thermonuclear flashes. The Astrophysical Journal
Supplement Series, 131:273–334, 2000.

[10] J.-F. Haas and B. Sturtevant. Interaction of weak
shock waves with cylindrical and spherical gas
inhomogeneities. Journal of Fluid Mechanics,
181:41–76, 1987.

[11] HPC Challenge benchmark.
http://icl.cs.utk.edu/hpcc/index.html.

[12] IPM Homepage.
http://www.nersc.gov/projects/ipm.

[13] ORNL Cray X1 evaluation.
http://www.csm.ornl.gov/~dunigan/cray.

[14] M. Parashar and J. C. Browne.
http://www.caip.rutgers.edu/~parashar/DAGH.

[15] C. A. Rendleman, V. E. Beckner, M. J. Lijewski,
W. Y. Crutchfield, and J. B. Bell. Parallelization of
structured, hierarchical adaptive mesh refinement
algorithms. Computing and Visualization in Science,
3(3):147–157, 2000.

[16] SAMRAI home page.
http://www.llnl.gov/CASC/SAMRAI.

[17] STREAM home page.
http://www.cs.virginia.edu/stream.

