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We describe a simple model for electron-molecule collisions that has one nuclear and one electronic
degree of freedom and that can be solved to arbitrarily high precision, without making the Born-
Oppenheimer approximation, by employing a combination of the exterior complex scaling method
and a finite-element implementation of the discrete variable representation. We compare exact cross
sections for vibrational excitation and dissociative attachment with results obtained using the local
complex potential approximation as commonly applied in the “boomerang” model, and suggest
how this two-dimensional model can be used to test the underpinnings of contemporary nonlocal
approximations to resonant collisions.

I. INTRODUCTION

For decades, resonant collisions of electrons with di-
atomic molecules have been studied with theoretical
methods that seek to describe the nuclear dynamics of
vibration or dissociation during the collision. The ba-
sic idea of these approaches is to cast the problem in
terms effective potentials or effective Hamiltonians for
nuclear motion that can be constructed, at least in prin-
ciple, from an adiabatic (fixed-nuclei) description of the
electron scattering resonance and its coupling to the elec-
tronic continuum.

Among the earliest work in this area is that of O’Malley
[1, 2] and O’Malley and Taylor [3] on dissociative attach-
ment based on the idea of Feshbach partitioning of the
electron scattering wave function into resonant and non-
resonant parts. Herzenberg and coworkers [4–6] later ap-
plied these ideas to vibrational excitation and developed
the local complex potential model that is generally known
as the “boomerang model” in this context and that has
been widely applied. More sophisticated approaches in-
volving nonlocal, complex and energy-dependent poten-
tials for nuclear motion have been developed since then
[7, 8], and applied to a number of diatomic systems. The
class of such methods based on projection operators was
reviewed by Domcke in the early 1990s [9].

Judging from the comparison of the calculated cross
sections with experiment, the nonlocal theories have
been used with great success to describe both vibra-
tional excitation and dissociative attachment to diatomic
molecules, as can be seen from just a sampling of such
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studies [6–13]. However, in almost all cases the parame-
ters of these calculations are found either by fitting some
portion of the known experimental results, or in an ap-
proximate way from ab initio calculations, and they gen-
erally involve assumed forms for the coordinate and en-
ergy dependence of those parameters. Since a complete
set of experimental measurements for all processes that
can occur in these collisions is never available, it has been
difficult to make a definitive test of the underlying as-
sumptions of the formulation of the theory.

Our purpose here is to construct a theoretical labora-
tory in which such tests can be made unambiguously, in-
cluding the question of whether non Born-Oppenheimer
effects can be important in these resonant collisions — ei-
ther within the resonant state or in the electronic contin-
uum to which it couples. To that end we have constructed
a two-dimensional model system, with one electronic and
one nuclear degree of freedom. This two-dimensional
problem can be solved to arbitrary precision by using
a combination of two modern numerical methods. One
of them is the exterior complex scaling (ECS) method,
that allows us in this context to construct the full Green’s
function for this two-dimensional problem. The second
is a generalization [14] of the discrete variable represen-
tation (DVR) [15] that combines that idea with the finite
element method (FEM). The combination of these ideas
has been used with great success in a different context to
solve problems that involve two electrons in the contin-
uum [16]. In this work it allows us to solve this model
problem exactly for the processes of vibrational excita-
tion,

e− + AB(vi) → e− + AB(vf) , (1)

and dissociative electron attachment

e− + AB(vi) → A + B− . (2)

Here we show how this two-dimensional model can be
designed to mimic some well-studied electron-molecule
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scattering problems that are dominated by shape res-
onances. The physics of the coupled electron-nuclear
motion are visible in the exact wave functions we cal-
culate for these systems. Moreover, the cross sections
are both qualitatively and quantitatively similar to those
measured for the corresponding real systems.

The principal result we present here is the description
of this model system and the exact behavior of the cross
sections associated with it. Furthermore, we compare the
exact cross sections with those calculated using two vari-
ants of the local complex potential approximation to this
two-dimensional model. The comparison is unambiguous
because we can define the local complex potential from
the exact energy of the resonance pole of the S-matrix for
scattering of the electron for a fixed internuclear distance.

These are the first steps towards comparing various
nonlocal approximations to the dynamics of nuclear mo-
tion with the exact results to test their validity. Within
this model we can construct the parameters of those ap-
proximations unambiguously in precise numerical calcu-
lations. Moreover we will argue that the fact that we
can exactly calculate any aspect of the dynamics of this
model problem will eventually allow us to separate the
nonlocal effects that arise from coupling of electron scat-
tering resonances to the continuum into which they can
decay from effects due to the breakdown of the Born-
Oppenheimer approximation that is generally made in
the nonlocal theories.

In the following section we describe the two-
dimensional model Hamiltonian and the definitions of the
vibrational excitation and dissociative attachment cross
sections in terms of the exact wave functions. In Sec-
tion III we discuss the numerical methods used to solve
this problem to arbitrary accuracy. In Section IV we de-
scribe the local complex potential approximation to the
dynamics of this model system. In section V we will dis-
cuss the choice of parameters with which this model can
mimic the dynamics of electronic collisions with the N2

and NO molecules and demonstrate that the physics of
these collisions can be seen clearly in the resulting wave
functions and cross sections. Finally in Section VI we
will discuss briefly how this model can allow us to probe
the underlying assumptions of the current theories of res-
onant collisions of electrons with molecules.

II. GENERAL DESCRIPTION OF THE

TWO-DIMENSIONAL MODEL

The Hamiltonian of our two-dimensional model with
one nuclear and one electronic degree of freedom is

H = TR + Tr + V (R, r) (3)

where

TR = − 1

2µ

d2

dR2
, Tr = −1

2

d2

dr2
(4)

are molecular and electronic kinetic energy operators, µ
is the reduced mass of a molecule, R is the internuclear
distance and r is the distance of the electron from the
molecule. The potential V (R, r) is chosen to have the
form

V (R, r) = V0(R) +
l(l + 1)

2r2
+ Vint(R, r) , (5)

with

Vint(R, r) = −λ(R) e−α(R)r2

. (6)

In Eq.(5) the potential V0(R) describes the vibrational
motion of the neutral molecule and it is the limit of the
full effective potential V (R, r), when the electron is at
infinity

lim
r→∞

V (R, r) = V0(R). (7)

The interaction of the electron with the molecule,
Eq. (6), is determined by functions λ(R) and α(R).
Roughly speaking, λ(R) controls the depth of the elec-
tronic potential well and α(R) determines the width of
this well. The centrifugal term (l denotes electron angu-
lar momentum) is present to provide resonant behaviour
in our model system for an overall attractive choice of the
interaction potential. By diagonalizing the fixed-nuclei
(electronic) Hamiltonian

Hel = Tr + V (R, r) (8)

we get an adiabatic potential energy curve of the molec-
ular anion (AB)−.

With the Hamiltonian of Eq.(3), the system e− + AB
at a given energy E is described by the solution of the
Schrödinger equation

HΨ+
E(R, r) = EΨ+

E(R, r) (9)

where Ψ+
E(R, r) satisfies appropriate boundary condi-

tions. Here we are especially interested in two inelastic
processes, namely vibrational excitation and dissociative
attachment. The initial state of the model system for
these two processes is the same and reads

Ψ0
vi

(R, r) = χvi
(R) rjl(keir) . (10)

χvi
(R) is a initial vibrational state of the molecule satis-

fying the equation

(TR + V0(R))χv(R) = Evχv(R) (11)

and jl is a spherical Bessel function of the first kind [17]
describing an incoming electron with momentum kei. The
total energy of the system is

E = Evi
+
k2
ei

2
. (12)

To solve Eq. (9), we partition the full wave function, Ψ+
E ,

iinto incident and scattered parts,

Ψ+
E(R, r) = Ψ0

vi
(R, r) + Ψsc(R, r) . (13)
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The unknown scattered part of the wave function,
Ψsc(R, r), then satisfies a driven Schrödinger equation

(E −H)Ψsc(R, r) = Vint(R, r)Ψ
0
vi

(R, r) , (14)

the boundary conditions for which are

Ψsc(R, r) −→
r→∞

∑

vf

fVE
vi→vf

χvf
(R) rh

(1)
l (kefr) , (15)

Ψsc(R, r) −→
R→∞

fDA
vi

φb(r)Rh
(1)
0 (KDAR) (16)

where h
(1)
l is a spherical Hankel function [17]. The scat-

tering amplitude for vibrational excitation, fVE
vi→vf

, and

for dissociative attachment, fDA
vi

, are related to the T -
matrices for these processes which we will define below.

The sum in Eq. (15) runs over all open vibrational ex-
citation channels, for which χvf

(R) is the final vibrational
state of the molecule with energy Evf

and kef denotes the
final momentum of the electron. Eq. (16) is the asymp-
totic condition for the dissociative attachment channel

(if it is open). We suppose here that the model potential
in Eq.(5) supports only one bound state, φb(r), of the
electron as R→ ∞,

(

Tr +
l(l + 1)

2r2
+ lim

R→∞
Vint(R, r)

)

φb(r) = Ebφb(r) ,

(17)
which is appropriate for both the N2-like and NO-like
models we will treat here. The binding energy, Eb, is
related to the electron affinity, Ea, of the atom B by
Ea = −Eb. The relative momentum, KDA, of A and B−

in the dissociative attachment channel is given by

E =
K2

DA

2µ
+ Eb . (18)

Finally, we give the expressions for the cross sections
in terms of the T -matrices defined for the vibrational
excitation and dissociative attachment channels in terms
of matrix elements of the interaction potentials,

TVE
vi→vf

(E) = 〈Ψ0
vf
|VVE|Ψ+

E〉 =

∫ ∞

0

dR

∫ ∞

0

drΨ0
vf

(R, r)VVE(R, r)Ψ+
E(R, r) =

fVE
vi→vf

(E)

2kef
, (19)

TDA
vi

(E) = 〈Ψ0
DA|VDA|Ψ+

E〉 =

∫ ∞

0

dR

∫ ∞

0

drΨ0
DA(R, r)VDA(R, r)Ψ+

E(R, r) =
fDA

vi
(E)

2µkDA
. (20)

The unperturbed final states in the vibrational excitation
and dissociative attachment channels are given by

Ψ0
vf

(R, r) = χvf
(R) rjl(kefr) , (21)

Ψ0
DA(R, r) = Rj0(KDAR)φb(r) , (22)

the interaction potential in the vibrational excitation
channel is the interaction between the electron and
molecule, given in Eq. (6),

VVE(R, r) = Vint(R, r) (23)

and in the dissociative attachment channel we define

VDA(R, r) = V0(R) + Vint(R, r) − lim
R→∞

Vint(R, r) . (24)

The resulting formulae for the cross sections can then be
written as

σVE
vi→vf

(E) =
16πkef

kei

∣

∣TVE
vi→vf

(E)
∣

∣

2
, (25)

σDA
vi

(E) =
16πµkDA

kei

∣

∣TDA
vi

(E)
∣

∣

2
. (26)

III. NUMERICAL SOLUTION AND

EVALUATION OF CROSS SECTIONS

A. Numerical method

To solve Eq. (14) and to find bound states of the elec-
tron and molecule (Eqs. (11) and (17)) we have made
use of the exterior complex scaling (ECS) method im-
plemented using finite-elements with a discrete variable
representation basis (DVR) introduced by Rescigno and
McCurdy [14]. Details of this very efficient numerical
representation, called the FEM-DVR, together with a
description of some of its previous applications, can be
found in a recent review [16]. Here we only mention some
of its main features and how they relate to the present
study.

Employing the ECS method for both electronic, r, and
nuclear, R, coordinates

R′(R) =

{

R, R < R0 ,

R0 + (R−R0)e
iηR R ≥ R0 ,

(27)

r′(r) =

{

r, r < r0 ,

r0 + (r − r0)e
iηr r ≥ r0 ,

(28)

we avoid the need for explicit imposition of asymptotic
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boundary conditions in vibrational excitation (an outgo-
ing electron) and dissociative attachment (an outgoing
atom and anion) channels. In the region where both co-
ordinates are real, as illustrated in Fig. 1, the solution
of the Eq.(14) obtained by the ECS method is equal to
the physical wave function of the system and all inte-
grals defining the scattering amplitudes are evaluated in
this region or on its boundary. Therefore the ECS radii
R0 and r0 must be chosen large enough to contain all
relevant interactions.

R0 Rmax

r0

rmax

R, r real

R, r

complex

R

complex

r complex

interaction

region

VE channel

D
A

ch
an

n
el

~Fvf

~FDA

FIG. 1: Implementation of the ECS method for a system with
one molecular (R) and one electronic (r) degree of freedom.
Fluxes into vibrational excitation and dissociative attachment
channels, which are integrated along the lines r = r0 and
R = R0 in Eqs. (32) and (34) to calculate cross sections, are
shown schematically.

Because of the large difference between the masses of
the electron and molecule we use different grids for the
two coordinates r and R. Moreover, in order to perform
the two-dimensional calculations efficiently we adapted
the R-grids to the molecular and molecular anion poten-
tials of a particular model (the grid is much denser in
the regions of deep potential wells). The nuclear grid
typically consists of about 40–50 elements and the elec-
tron grid of 10–15 elements with 17 DVR basis func-
tions in each element (Lagrange interpolating polyno-
mials with mesh points derived from a Gauss-Lobatto
quadrature). ECS was employed always for the electronic
coordinate with r0 = 100 but the nuclear coordinate has
to be complex-scaled only if the dissociative attachment
channel is open (in the case of the NO-like model we set
R0 = 12).

A great advantage of the FEM-DVR approach is that
any local operator, like the potential energy in Eq.(5),
has a diagonal representation. Although the kinetic en-
ergy is nondiagonal, its matrix elements have simple an-
alytic forms, and because we use the DVR in combina-
tion with the finite-element method the resulting matrix
representation of the full Hamiltonian of Eq.(3) is very

sparse, usually having less than 0.05% nonzero elements.
This sparse matrix is complex symmetric, and efficient
standard numerical methods are available to solve the
resulting matrix representation of Eq. (14).

B. Evaluation of Cross sections

Given the solution of the driven Schrödinger equation
in Eq. (14) we need a procedure for extracting the cross
sections for the collision processes we are interested in.
Here we give two equivalent methods for evaluating the
cross sections from the wave function computed on the
grid, which we have used to test the stability and preci-
sion of the numerical methods employed to solve Eq. (14).

First, the cross section can be given in terms of the
flux projected into a given final channel

~Ff =
1

2i
[(PfΨsc)

∗∇PfΨsc − h.c.] (29)

where the Pf is a projection operator for the final chan-
nel, h.c. denotes hermitian conjugate, and the gradient
operator in this case is

∇ =

(

1
µ

∂
∂R

∂
∂r

)

. (30)

In the vibrational excitation channel, Pf = Pvf
projects

on the final vibrational state

Pvf
Ψsc(R, r) = χvf

(R)

∫ ∞

0

χ∗
vf

(R′)Ψsc(R
′, r) dR . (31)

The cross section in terms of the projected flux reads

σVE
vi→vf

(E) =
4π

kei
lim

r→∞

∫ ∞

0

~Fvf
(R, r) · ~nr dR (32)

where ~nr denotes a unit vector for the electronic coordi-
nate r. Similarly in the dissociative attachment channel
we have the projection operator

PDAΨsc(R, r) = φb(r)

∫ ∞

0

φ∗b(r′)Ψsc(R, r
′) dr , (33)

and the corresponding cross section is

σDA
vi

(E) =
4π

kei
lim

R→∞

∫ ∞

0

~FDA(R, r) · ~nR dr (34)

where φb(r) is defined by Eq. (17).
An alternative way to calculate these cross sections can

be based on direct evaluation of the appropriate T -matrix
elements using Eqs. (19) and (20), and the definition of
the cross section in terms of them in Eqs. (25), and (26).
We can evaluate the necessary integrals directly using the
Gauss-Lobatto quadrature used to define the DVR basis,
or we can transform the volume integrals in Eq. (19) and
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(20) to surface integrals using Green’s theorem. The T-
matrix elements then take the form [16]

T (E) = 〈Ψ0
f |V |Ψ+

E〉
= 〈Ψ0

f |E −H0|Ψsc〉

=
1

2

∫

S

(

Ψ0
f
∗∇Ψsc − Ψsc∇Ψ0

f
∗
)

· dŜ (35)

where ∇ is defined by in Eq.(30). In the case of vibra-
tional excitation we use V = VVE from Eq.(23) so that
H0 = H − VVE and Ψ0

f is given by Eq.(21), while for
dissociative attachment the potential is VDA as defined
in Eq.(24) and Ψ0

f is given by Eq.(22).

IV. LOCAL COMPLEX POTENTIAL

APPROXIMATION

To describe the nuclear dynamics of the negative
molecular anion of a real system like e− +N2, one gener-
ally has to resort to approximate methods that are based
on the Born-Oppenheimer approximation. The simplest
and most frequently used approach is the local complex
potential (LCP) approximation, which for vibrational ex-
citation is also known as the “boomerang” model.

In this approach, we define the resonant molecular
anion potential curve via the poles of the fixed-nuclei
electron-scattering S-matrix, which can be obtained by
finding bound or resonance energies of the electronic
Hamiltonian in Eq.(8)

Hel(R)ϕ(r;R) = Vres(R)ϕ(r;R) (36)

Vres(R) = Eres(R) − i

2
Γ(R) , (37)

with all quantities depending parametrically on the in-
ternuclear distance R. Typically there is one bound elec-
tronic state of the molecular anion for large R, where
Vres(R) is real and less than V0(R). That bound state be-
comes a resonance state at internuclear distances shorter
than some critical distance, Rc, where the molecular an-
ion potential energy curve crosses the potential energy
curve, V0(R), of the neutral molecule. For R < Rc the
anion potential, Vres(R), is complex and the real part
Eres(R) > V0(R).

The dynamics of the temporary molecular anion state
in the LCP approximation is described by the equation [6]

(E − TR − Vres(R)) ξE(R) = ζvi
(R)χvi

(R) , (38)

where ζvi
(R) is the so-called “entry amplitude” for cap-

ture of the electron into the resonant state with the
molecule in the initial vibrational state χvi

(R). The nu-
merical methods described in Sec. III can be used to ob-
tain the adiabatic potential energy curve, Vres(R), de-
fined by Eq. (36) and to solve Eq. (38).

The vibrational excitation and dissociative attachment

cross sections are then given as

σVE
vi→vf

(E) =
4π3

k2
ei

∣

∣

∣

∣

∫ ∞

0

dRχvf
(R)ζvf

(R)ξE(R)

∣

∣

∣

∣

2

(39)

σDA
vi

(E) =
2π2

k2
ei

KDA

µ
lim

R→∞
|ξE(R)|2 (40)

where ζvf
(R) is the so-called “exit amplitude”.

In the standard LCP approximation, the entry and exit
amplitudes are independent of the electron energy and of
the vibrational excitation channel. They are determined
from the resonance width according to

ζv(R) =

√

Γ(R)

2π
. (41)

However, this expression for the entry amplitude pro-
duces an obviously incorrect threshold behavior in the
calculated cross sections, with the cross section in the
elastic channel diverging as kei → 0, for example. There-
fore an ad hoc. “barrier penetration factor” [7, 18] was
introduced to force the correct threshold behavior. The
amplitude ζv(R) is then given by

ζv(R) = γl+1/2
v (R)

√

Γ(R)

2π
(42)

where

γv(R) =

{

kv

k(R) if kv < k(R) ,

1 if kv ≥ k(R) ,
(43)

k2(R)

2
= Eres(R) − V0(R) (44)

and kv is the electron momentum in the vibrational chan-
nel v.

We used both expressions for the entry amplitudes,
Eq.(41) and Eq.(42) to calculate the vibrational excita-
tion and dissociative attachment cross sections for com-
parison with the exact cross sections for the N2-like and
NO-like parameterizations of the 2D model described in
the following section.

V. TWO-DIMENSIONAL MODELS FOR

ELECTRONIC COLLISIONS WITH N2 AND NO

In order to investigate validity of the LCP approxima-
tion we constructed two models, the fixed-nuclei poten-
tials of which are quantitatively similar to adiabatic po-
tential energy curves that have been used in LCP calcula-
tions of resonant electronic collisions with the molecules
N2 and NO. The local complex potential approximation
reproduces the experimental vibrational excitation cross
sections reasonably well in the case of the e− + N2 sys-
tem [7, 8], and so we begin by comparing the exact solu-
tions of our two-dimensional model problem using N2-like
potentials with the corresponding LCP approximation to
the nuclear dynamics.
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Unlike the well-studied N2 system, nuclear motion
during electronic collisions with the NO molecule has
been investigated in theoretical calculations only re-
cently [19, 20]. The lowest energy resonance in NO
(which has 3Σ− symmetry) is fundamentally different
from the 2Πg resonance of N2, because the anion poten-
tial crosses that of the neutral molecule near its equilib-
rium internuclear distance. The threshold for vibrational
excitation is therefore quite low. Additionally, dissocia-
tive attachment proceeds via the same resonance, and
regions where the local width is very large are important
for this process.

Thus, there is ample reason to suspect that either non-
local effects or non Born-Oppenheimer effects might play
an important role in this case. In the existing calculations
on vibrational excitation and dissociative attachment to
this system [19, 20], the LCP approximation was em-
ployed, generalized using the barrier penetration factor
and a nonlocal imaginary part of the molecular anion
potential. It is interesting therefore to explore this case
with our two-dimensional model and to compare its ex-
act solution with the corresponding LCP approximation,
with and without the ad hoc. barrier penetration factor.

A. Parametrization of the models for N2 and NO

We used the same functional forms for both systems for
the functions V0(R), λ(R) and α(R) appearing in Eqs. (5)
and (6),

V0(R) = D0

(

e−2α0(R−R0) − 2 e−α0(R−R0)
)

, (45)

λ(R) = λ∞ +
λ0

1 + eλ1(R−Rλ)
, (46)

λ0 = (λc − λ∞)(1 + eλ1(Rc−Rλ)) , (47)

α(R) = αc (48)

In Eq.(47) λ0 is given by the condition at the crossing
point of potential curves λ(Rc) = λc. In the N2-like
model we adjusted the parameters to approximately re-
produce the ab initio data of reference [21] for the 2Πg

resonance state of N−
2 . In the NO-like model we adjusted

the parameters to approximate the data of reference [20]
for the 3Σ− resonance state of NO−. The numerical val-
ues of all the parameters of the two models are listed in
Table I.

It should be noted here that this simple parametriza-
tion of the N2-like model was optimized for the inter-
nuclear distances where resonant vibrational excitation
takes place, roughly 1.6 ≤ R ≤ 3.0 a0. That parame-
terization produces the incorrect behaviour as R → ∞,
giving a positive electron affinity for the N atom. But
the threshold for dissociative attachment in this model
(∼ 0.6 hartrees) is high above the energy region where
resonant vibrational excitation takes place and thus this
deficiency of the N2-like potentials is not relevant to our
study. On the other hand, in the NO-like model we will

TABLE I: Parameters of the N2- and NO-like models, given
in atomic units, so that the resulting potential V (R, r) is in
hartrees.

Parameter N2 NO

µ 12766.36 13614.16

l 2 (d-wave) 1 (p-wave)

D0 0.75102 0.2363

α0 1.15350 1.5710

R0 2.01943 2.1570

λ∞ 6.21066 6.3670

λ1 1.05708 5.0000

Rλ -27.9833 2.0843

λc 5.38022 6.0500

Rc 2.40500 2.2850

αc 0.40000 1.0000

N2−like model

VE →

← D
A

 1
 2

 3
 4

 5
 6

 7
R (a0) 0  1  2  3  4  5  6  7  8r (a0)

−2

−1

 0

 1

E (hartrees)

NO−like model

VE →

← D
A

 1
 2

 3
 4

 5
 6

 7
R (a0) 0  1  2  3  4  5  6  7  8r (a0)

−2

 0

 2

E (hartrees)

FIG. 2: (Color online) Two-dimensional potential V (R, r)
from Eq. (5) for the N2-like (upper panel) and NO-like (lower
panel) models. Internuclear distances are given in atomic
units, where ao = 5.2917721 × 10−11 m is the Bohr radius.
Energies are in units of hartrees, where one hatree = 4.359748
×10−18 J.

study both vibrational excitation and dissociative attach-
ment, and therefore we adjusted parameters to get the
correct electron affinity for oxygen and simultaneously
the correct position of the crossing point.

The resulting two-dimensional potentials, V (R, r), for
the N2-like and NO-like models shown in Fig. 2. In both
cases, an incoming electron tunnels through the potential
barrier located roughly between r = 2 and 3 a0 and is
captured into the deep potential well parallel to the R
axis for r < 2 a0. A temporary molecular anion then
evolves in this well until the electron is released through
the barrier again or the anion dissociates.
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FIG. 3: (Color online) Adiabatic potential curves used in
LCP approximation calculations for the N2-like model (up-
per panel) and the NO-like model (lower panel) with only
some vibrational states plotted. Shaded areas illustrate the
width, Γ(R), associated with the complex anion potentials.

The corresponding adiabatic potential curves used in
the LCP approximation are shown in Fig. 3. The curves
labeled V0(R) are the potential energies of the neutral
molecules. For clarity, only a few vibrational states (0–
6 for N2 and 0, 5, 10, . . . , 50 for NO) are shown. The
potential of the molecular anion is complex for R < Rc,
and the the width, Γ(R) , is illustrated by shaded area
around the real part Eres(R) of the potential.

B. Wave functions

Before we compare the exact cross sections of vibra-
tional excitation and dissociative attachment with those
calculated within LCP approximation, we will examine
some examples of scattered wave functions Ψsc(R, r) (the
solutions of Eq. (14)). These wave functions demonstrate
the nature of the resonant collision and directly illustrate
the coupling between nuclear and electronic motion.

In Fig. 4 we plot the squared modulus of the scat-
tered wave functions |Ψsc(R, r)|2 calculated in the N2-like
model for the molecule initially in the ground vibrational
state and for incoming electron energies Eei = 0.07, 0.095,
and 0.12 hartrees. In this case those are the same as the
total energies of the colliding system, because we set the
zero of energy to coincide with the ground vibrational
state of the molecule, and they are marked by the hori-
zontal lines in Fig. 3.
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FIG. 4: (Color online) Squared modulus of scattered wave
functions, |Ψsc(R, r)|2, for the N2-like model with initial vi-
brational state vi = 0 at the energies of the incoming electron
Eei = 0.07, 0.095 and 0.12 hartrees. The potential, V (R, r),
in the same region is shown in the bottom panel.

Although these wave functions describe the system in
a time-independent picture, we can see in them the se-
quence of events that constitutes the resonant behavior
of the colliding system. An electron is captured by the
molecule, creating a temporary state of the molecular
anion, as indicated by the peaks in |Ψsc(R, r)|2 close to
the R axis. The temporarily bound electron described
by each of these wave functions can decay back into the
continua of the vibrational excitation channels, and that
process corresponds to the ridges reaching out to large
values of r for R < Rc = 2.405 a0.

The number of peaks in the wave function at a given
energy can be understood by considering nuclear motion
in the effective local potential for the temporary molec-
ular anion. We can see that relationship by compar-
ing the nearest quasi-bound state of the molecular an-
ion potential (Eres in the upper panel of Fig. 3) that
lies below the energy of the colliding system with the
two-dimensional scattered wave function. The number
of peaks in |Ψsc(R, r)|2 in these figures is exactly what
one would expect based on that comparison, i.e., it is
equal to the number of vibrational states supported by
Eres(R) below the collision energy. In the case of the
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wave function for Eel = 0.12 hartrees, for example, the
nearest state of the anion below the collision energy is
ν = 6, and there are six peaks in this region of the wave
function. The same comparison explains the number of
peaks seen in the other panels of Fig. 4. However, it is
important to note that the resulting vibrational excita-
tion cross sections cannot be explained as arising from
only a single quasibound vibrational state of the anion.
If that were the case, the peaks in all the vibrational exci-
tation cross sections would occur at essentially the same
energies, but they depend on the final vibrational state,
as we will see below.

In the case of the NO-like model, the wave functions
at lower energies are very similar to the wave func-
tions of the N2-like model. However, at higher ener-
gies this system can undergo dissociative attachment as
well as vibrational excitation. In Fig. 5 we show exam-
ples of wave functions at total energies just below and
just above the dissociative attachment threshold for two
initial vibrational states of the molecule, vi = 0 (left
panels) and vi = 15 (right panels). The upper panels
show the squared modulus of the scattered wave func-
tions at total energy E = 0.15 hartrees, which is below
the dissociative attachment threshold. The lower pan-
els show |Ψsc(R, r)|2 at a total energy of E = 0.175
hartrees, which is slightly above the dissociative attach-
ment threshold where the cross section is near its max-
imum value. The total energies for these plots are also
marked in the lower panel of Fig. 3. Note that for fixed
total energies, the energy of the incoming electron is dif-
ferent depending on the initial vibrational state, and that
the scattered wave functions for the molecule in the ini-
tial state vi = 0 are magnified by factors of 107 and 109

for R >∼ 2.5 a0.

In the upper panels of Fig. 5 we can clearly see that,
when the total energy of the system is below the dissocia-
tive attachment threshold, the wave function is restricted
in the R direction to the well of the adiabatic molecular
anion potential energy curve Vres(R), because only vibra-
tional excitation channels are open. Once again the num-
ber of peaks in that region of the wave function can be
understood by comparing it with the nearest quasibound
vibrational state of the molecular anion below the scat-
tering energy. In contrast, in the lower panels where the
total energy is above the dissociative attachment thresh-
old, an outgoing wave in R appears which corresponds to
dissociation of the molecular anion.

The magnitude of the wave function in the dissociative
attachment channel at a given total energy of the system
depends strongly on the initial vibrational state, vi, of
the molecule and increases by several orders of magni-
tude with increasing vi. This behavior can be understood
qualitatively with a simple and general classical picture
of nuclear motion. If a molecule is in a higher initial vi-
brational state before the collision with the electron, the
kinetic energy of the nuclei is also higher and the tempo-
rary molecular anion can more probably escape from the
region where electron can be detached (the region where

Γ(R) is not zero). This increase of the magnitude of the
wave function in the dissociative attachment channel is
reflected, as we will see in the following section, in a dra-
matic increase of the dissociative attachment cross sec-
tion for higher initial vibrational states of the molecule.

C. Cross sections

Our goal here is to compare the cross sections ob-
tained in these exact calculations with those computed
in the LCP approximation, both with and without the
barrier penetration factor in its standard form as given
in Eqs. (42)–(44). In Fig. 6 we show the cross sec-
tions for vibrational excitation in the N2-like model from
the ground state, vi = 0, to final vibrational states
vf = 0 (elastic), 1, 2, 8. In in Fig. 7 we plot the same vi-
brational excitation cross sections for the NO-like model.
Each plot shows the exact cross section together with
both versions of the LCP approximation to it.

For the case of the N2-like model, the exact cross sec-
tions are both qualitatively and quantitatively similar to
the physical cross sections for this system. The LCP
approximation gives nearly exact cross sections for the
vibrational excitation of the low lying vibrational states,
vf = 1, 2, but fails badly in describing the first peak for
vf = 8 which is at an energy where the dynamics can
probe the region of the crossing between the anion and
neutral potentials. It is at these energies that one expects
nonlocal, and possibly non-adiabatic, effects become im-
portant.

For elastic scattering we see in the top left panel of
Fig. 6 that the LCP approximation fails at low energies,
where one might expect it to, because of its intrinsically
incorrect threshold energy dependence. Indeed, the bar-
rier penetration factor which was originally designed [18]
to force the correct threshold behavior provides a much
improved description of the first two peaks in the elastic
scattering cross section. At higher incident energies the
LCP approximation with and without the barrier pen-
etration factor gives the same results, because the bar-
rier penetration factor tends to unity as one can see in
Eq. (43)). The disagreement with the exact elastic cross
section in this case is due to the non-resonant (back-
ground) contribution to this cross section which is not
described at all by the LCP approximation.

However the deficiencies of this ad hoc. correction can
easily be seen in the other panels of Fig. 6. Applied to
vibrationally inelastic scattering the barrier penetration
factor uniformly worsens the agreement between the LCP
approximation and the exact cross sections.

One can make qualitatively similar observations about
the vibrational excitation cross sections in the NO-like
model. Once again the exact solution of the two-
dimensional model gives cross sections that are similar
to the physical ones for this system. However, in this
case the fact that the crossing between the neutral and
anion potentials (shown in Fig. 3) occurs near the mini-
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FIG. 5: (Color online) Squared modulus of scattered wave functions, |Ψsc(R, r)|2, for the NO-like model for two initial vibrational
states (vi = 0 and 15) at total energies of E = 0.150 and 0.175 hartrees (also marked in Fig. 3, lower panel). The wave functions
for initial state vi = 0 were magnified by 107 at E = 0.15 hartrees and 109 at E = 0.175 hartrees for R >

∼ 2.5 a0 (beyond the
dark line).

mum of the neutral potential curve leads to much poorer
agreement in general between the LCP approximation
and the exact cross sections. The LCP approximation
fails for the lower peaks of all the vibrational excitation
cross sections, and the barrier penetration factor gener-
ally makes the agreement worse.

The dissociative attachment cross sections for this sys-
tem are shown in Fig. 8. Here we plot the cross section
for dissociative attachment to the molecule in initial vi-
brational states vi = 0, 10, 15, and 20. The magnitude
of the cross section increases rapidly with increasing ini-
tial vibrational state, vi. A simple explanation for that
increase was given in the previous subsection in terms of
the wave functions at these energies.

The agreement of the cross sections computed using
the LCP approximation with the exact 2D model results
depends dramatically on the initial state of the system.
For low initial vibrational states the LCP approximation
gives cross sections that are larger than the exact ones by
several orders of magnitude. In these cases the failure of
the LCP approximation is probably due to the fact that,
at these high incident energies, a vertical transition to
the resonant state is unlikely. For that reason, at least
nonlocal, and possibly nonadiabatic, effects are playing
a dominant role.

For vibrational states in the range of vi = 10 to 15,
the LCP approximation gives quite a good description
of the cross sections for dissociative attachment. In this
region of intermediate energy for the incident electron it
appears that nonlocal or nonadiabatic effects are unim-
portant. For still higher initial vibrational states, in the
range vi >∼ 15, the LCP approximation begins to fail
near threshold, and ultimately becomes less accurate at
higher energies as well, as shown in the lower right panel
of Fig. 8. The standard barrier penetration factor further
worsens the agreement at all in these cases. For these
highly excited initial vibrational states of the molecule
both nonlocal and nonadiabatic effects can be suspected
as the reason for the breakdown of the LCP approxima-
tion — in particular near the threshold for the dissocia-
tive attachment process.

VI. CONCLUSION

In this work we have described a complete two-
dimensional model for electron scattering from a di-
atomic molecule that contains the essential physics of
resonant electronic collisions and the processes that arise
from them. We showed how this model can be used to
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FIG. 6: (Color online) Cross sections for vibrational excitation calculated for the N2-like model. Exact cross sections (solid
curves) for the elastic (vf = 0) and three inelastic (vf = 1, 2, 8) processes are compared with cross sections in the LCP
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mimic specific molecular systems and compared it with
the local complex potential approximation to nuclear dy-
namics in metastable electronic states. These are the nec-
essary first steps to constructing a theoretical laboratory
with which the underlying assumptions of the powerful
class of nonlocal theories for resonant vibrational excita-
tion and dissociative attachment can be tested.

To take the next steps towards doing those tests,
we first observe that by using the FEM-DVR represen-
tation of all the operators we can construct any pro-
jection operator to arbitrary precision. We will need
the Feshbach projection operator corresponding to any
discrete approximation to the resonant state. For ex-
ample if the approximation to the resonant state is,
ψres(r;R) = 〈r|ψres(R)〉, depending on the nuclear co-
ordinate, R, parametrically, the corresponding Feshbach
Q projection operator appearing in the nonlocal theories
[9] would be,

Q(R) = |ψres(R)〉〈ψres(R)| . (49)

In the FEM-DVR representation it would be a matrix

Qri,r′

j
,Rk,Rl

=
√
wiwjψres(ri;Rk)ψres(rj , Rk) δk,l , (50)

that is diagonal in the indices corresponding to the nu-
clear coordinates but nondiagonal in the indices corre-
sponding to the electronic coordinates. The factor of√
wiwj is a product of DVR weights [14, 16] that ap-

pears here because the projection operator is nonlocal.
The representation of P = 1 −Q is obviously similar.

The full Hamiltonian operator in Eq.(3) has a com-
pletely nondiagonal matrix represention, while the elec-
tronic hamiltonian in Eq.(8) has an FEM-DVR matrix

representation that is nondiagonal in electronic coordi-
nates but diagonal in nuclear coordinates. The construc-
tion of the operators PHP , QHQ and PHQ is thereby
reduced to simple matrix multiplications. When the full
Hamiltonian is used, the action of the nuclear kinetic
energy is included and all nonadiabatic terms can be cal-
culated exactly. The Born-Oppenheimer approximation
is made when the electronic Hamiltonian is used in these
projected operators.

Most importantly, all the the Green’s functions ap-
pearing in the nonlocal theories, e.g., (E−PHP + iε)−1,
can be calculated using the ECS approach with which
we constructed the full Green’s function (E −H + iε)−1

here. All the other quantities involved in various versions
of the nonlocal theories can be constructed using similar
ideas.

Therefore, although we have restricted ourselves here
to comparisons with the local complex potential approx-
imation, these tools open the way to comparisons with
any form of the nonlocal theories that have been ap-
plied to physical systems. The two-dimensional model
we described here, together with the associated numeri-
cal methods of the ECS and FEM-DVR approaches, form
a laboratory with which those comparisons can be made.
Such calculations will be reported in a subsequent study.
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