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Abstract
 One approach for heating a target to "Warm Dense

Matter" conditions (similar, for example, to the
interiors of giant planets or certain stages in inertial
confinement fusion targets), is to use intense ion beams
as the heating source (see refs.[6] and [7] and
references therein for motivation and accelerator
concepts). By consideration of ion beam phase-space
constraints, both at the injector, and at the final focus,
and consideration of simple equations of state and
relations for ion stopping, approximate conditions at
the target foil may be calculated. Thus, target
temperature and pressure may be calculated as a
function of ion mass, ion energy, pulse duration,
velocity tilt, and other accelerator parameters. We
connect some of these basic parameters to help search
the extensive parameter space (including ion mass, ion
energy, total charge in beam pulse, beam emittance,
target thickness and density.

ION STOPPING
We first examine dE/dX, where E is the ion energy and
X ≡  ∫  ρ  dz is the integrated range of the ion (cf, ref.
[1]).

For heating solid aluminum (at room temperature)
over a range of ion mass from 4 amu (helium) to 126
amu (iodine), the energy loss at the peak of the dE/dX
curve (dE/dXmax) may be parameterized approximately
as:
       (1/Z2)dE/dXmax ≈ 1.09 (MeVcm2/mg) A-0.82          (1)
where Z and A are the ion nuclear charge and atomic
mass, respectively. Expressing dE/dXmax as a function
of A yields
                dE/dXmax ≈ 0.35 (MeVcm2/mg) A1.07.          (2)
Thus, the peak energy loss rate increases (nearly
linearly) with ion atomic mass.

Similarly, the ion energy E at the peak increases
with ion mass nearly quadratically with A according to
               E (at dE/dXmax) ≈ 0.052 MeV A1.803 .           (3)

Target uniformity is another important consideration.
In ref. [2] it was pointed out that target temperature
uniformity can be maximized in simple planar targets if
the particle energy reaches the maximum in the energy
loss rate dE/dX when the particle has reached the
center of the foil (see Figure 1).  For any specified
fractional deviation in target temperature (assuming the
energy is deposited in a time short so that no
hydrodynamic, radiative, or other cooling has

occurred) one can determine the energy at which the
ion must enter and exit the foil. From the dE/dX curves
of ref. [1] we find that for the entrance energy to have
less than a 5% lower energy loss rate relative to the
peak in d E / d X ,  ΔΕ/Ε <≈ 1.0, where Δ E  is the
difference in ion energy between entering  and exiting
the foil, and E  is the energy at which  dE/dX  is
maximum. The spatial width of the foil Z, for a 5%
temperature non-uniformity is then given by:
             Z= ΔE/(ρ dE/dX) ≈ 0.77µ   A0.733(ρal/ρ)         (4)
Here we have used ρal=2.7 g/cm3 to convert the range
into a physical distance. So by using materials of low
density such as metallic foams, for example, the width
of the foil can be relatively large, which allows longer
heating times and accesses interesting densities.

Figure 1. Temperature variations in an ion-beam heated foil
can be minimized by choosing an ion and energy such that
the peak in dE/dX occurs in the center of the foil (ref. [2]).

HYDRODYNAMIC DISASSEMBLY TIME AND
TARGET TEMPERATURE

The sound speed c s is given by cs = (γ P/ρ)1/2=
(γ[γ-1]U/ρ)1/2. For an instantaneously heated target a
rarefaction wave propagates inward at about cs while
matter flows outward at about 2 cs (for a 1D gas) (ref.
[3]). Thus, for measurement of material properties,
heating needs to occur on a time scale such that the
rarefaction wave does not progress so far as to render
the full density region of the foil samller than some
minimum diagnosable spatial scale over the duration of
the pulse.

In order to calculate more accurately the sound speed
and the temperature achieved in the heating, one needs
to understand the relation between energy density and



ionization state Z*. As a first estimate, we use a model
developed by Zeldovich and Raizer and summarized in
ref. [4]. A second model for equation of state uses the
Thomas Fermi model for calculating the distribution of
electrons within an atom (see ref. [5], and reference
therein for a description).

EXAMPLES OF ACCELERATOR
REQUIREMENTS

Using the scaling described in the previous
section for ion beam stopping, the time scale for
hydrodynamic expansion, and the equation of state, we
are able to make estimates of the required beam
parameters for exploring the Warm Dense Matter
regime.  Table 1 gives examples of requirements for
Neon+1 (A=20.17) at foil entrance energy (Emax) of 19
MeV, The energy at the center of the foil (Ecenter) and
the energy at the exit of the foil (Emin) are listed in the
caption to the table.  Three different mass densities of
Aluminum target are given: Solid density (2.7 g/cm3)
and 10% and 1% of solid, which can be produced by
making an aluminum "foam."  In turn for each target
density, three target temperatures are shown. The table
is based on a minimum diagnosable length scale Zmin of
40 µ . It is clear from the table that solid density,
although resulting in the highest energy density,
requires very short pulse durations, because the foil
width is smaller than Z min and so only a small
rarefaction wave propagation distance is allowed. But
for the 1% and 10% cases, the foil is
larger than Zmin, so that the rarefaction wave
propagation distance can be 10's or 100's of microns,
with concomitantly longer pulse duration. In all cases
the plasma temperature is in the few to tens of eV, and
the required number of particles is in the order of 1012

to 1013 particles, for equivalent focal spot radii of 1
mm.

In Table 2 the requirements for various ion species to
produce a 10 eV target temperature in a 10% solid
density aluminum foam are listed.

FINAL FOCUS REQUIREMENTS
In this paper we consider the case where beam plasma
neutralizes both a drift compression region and the
final focus. We may make simple estimates for the
contribution to the spot size from chromatic effects (i.e.
for the effects of a velocity spread) from particular
optical systems. Here we choose a "thick" solenoidal

Table 1. Neon beam: Z=10, A=20.17, E min=7.7 MeV,
Ecenter=12.1 MeV, Emax=20.1 MeV, and Δzmin=40 µ.

lens in which a beam enters a solenoid with zero
convergence angle and focuses to a spot within the
solenoid. The focused beam can be shown to have a
radius from emittance and chromatic effects rspot given
approximately by:
         r2

spot ≈ (π r0 /2)2 (Δvspread/v)2 + (2εx f /πr0)2          (5)
Here f is the focal length, i.e., the distance from the
entrance of the solenoid to the focal spot, and ε is the
beam emittance. Also, rspot and r0 are the beam radii (=
21/2〈r2〉1/2 ) at the focal spot and entrance to the solenoid
respectively, and εx ≡  4(〈x2〉〈x'2〉-〈xx'〉2)1/2) is the
unnormalized emittance.  The quantity rspot is minimum
when r0

2=(2/π)εf /(Δvspread/v) and has the value given by
                             rspot

2 =2εf Δvspread/v.                       (6)
At minimum pulse duration a velocity "tilt" is
converted to a velocity spread, so achieving high beam
intensity will limit the velocity tilt.

It is apparent from equation (6) that a large
velocity spread has deleterious effects in the focusing.
Thus a larger velocity tilt will allow a shorter pulse but
will yield a large overall spot. If the longitudinal
emittance is small a larger velocity tilt is not needed to
achieve the short pulse duration. Thus to obtain a small
spot there are tradeoffs that can be made between
longitudinal and transverse emittance; a different
optimization might be made if one is easier to
minimize than the other. This may be made more
explicit by expressing equation (10) in terms of the
transverse and longitudinal normalized emittances:
                    rspot

2=4εnxxεnz f  / (31/2β3 c Δt).                 (7)
Here εnx is the normalized x emittance (= βεx)  and εnz is
the normalized z (longitudinal) emittance (defined here
as = 3β(〈z2〉〈z'2〉-〈zz'〉2)1/2), f is the final focal length, β is
the final velocity in units of c and Δt  is the final pulse
duration. A prime indicates derivative with respect to

Table 2. Parameters for five different ion beam species such that the central temperature of a 10% solid density Aluminum foil
reaches 10 eV. 



Table 3. Comparison of requirements on a 23 MeV Na beam with final pulse duration of 1 ns, and final focal spot radius of 1 mm,
assuming neutralized drift compression and solenoidal final focus (with a 15 T field corresponding to a 0.7 m focal length), satisfying
equations (5) and (7). The injected beam has energy 1 MeV and pulse duration 171 ns.

the path length s, and non-relativistic velocities are
assumed.

Table 3 lists a number of parameters for possible 23 MeV
Na beams, with final pulse duration Δt of 1 ns, total
charge of 0.1 µC,  and final spot radius of 1 mm. The
table illustrates some of the tradeoffs that can be made
involving pulse duration before drift compression,
velocity tilt and requirements on longitudinal and
transverse emittance.
         We may use the ion stopping equations, together
with injector and final focus equations to examine
theoverall target performance as a function of ion energy,
mass and other parameters. At the injector end, the
normalized emittance may (ideally) be related to the
temperature Ts and radius rb of the source:

εN=2rb(kTs/mc2)1/2

        =0.81 mm-mrad (rb/4 cm) (20.1/A)1/2  (kTs/2 eV)1/2          (8)
Even if the injector emittance is dominated by optical
aberrations  an effective temperature may be used in eq.
(8).  To avoid voltage breakdown, the diode gap distance
d must be sufficiently large:
               d=.01 m (Vd/100 kV)2    if  d > 1 cm                (9)
Since we are considering large currents (d  > 1 cm) is
appropriate. We may combine eqs. (8) and (9) to obtain

εf= 29 mm-mrad (4/Δ) (kTs/2 eV)(Vd/400 kV)2

                                × (20 MeV/qVf)1/2                                                  (10)
The Child Langmuir current

I = (4πε0/9) (2q/m)1/2 (Vd
3/2/Δ2)

            = 0.6 A (20/A/q)1/2 (4/Δ)2 (Vd/400 kV)3/2             (11)
Here Δ = d/rb  which is usually in the range 2.5 - 8 to
minimize non-linearities. Here we choose 4 as a typical
nominal value.
The total charge IΔt may be written
  IΔt =0.12 µC (20/A/q)1/2 (4/Δ)2 (Vd/400 kV)3/2(Δtd/200ns)    (12)
The final pulse energy Epulse may be written as

Epulse=VfIΔt=
=2.4 J (20/A/q)1/2 (4/Δ)2(Vd/400kV)3/2(Δtd/200ns)(Vf/20 MV)

(13)

Equations (8) through (12) describe the phase space and
total charge obtainable from an injector. The final target
energy density U can be calculated from the total pulse
energy, spot radius, foil thickness,
                          U=2VfIΔt/(3πrspot

2 Δz)                         (14)
and the target temperature can be expressed as:

kTtarg ≈  2UAtargmamu/(3(Z*+1)ρ)
=3 eV (Atarg/27)(3/(Z*+1)) (2 eV/kTs)1/2                               

× (0.05/Δv/vtilt)(q/1)0.32(4/Δ)(Δtd/200 ns)
             × (Vd/400 kV)-1/2(Vf/20 MV)0.815 (0.7 m/f)        (15)
As discussed before, the target temperature in eq. (15) can
be achieved if the pulse duration is sufficiently small
compared to the hydro time. The pulse duration at the
target Δtt can be expressed as:

Δtt= 2A mamu c εnz/ (q Vf Δv/vtilt)
= 1 ns (εnz/8 mm-mrad)(20 MeV/Vf)(A/q/20)( 0.05/Δv/vtilt)

(16)
where Δv/vtilt is the head-to-tail tilt imposed on the beam
during final drift compression.
These equations will be useful in evaluating concepts for
accelerator-driven Warm Dense Matter studies.
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