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Abstract

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants

by

Christophe Sylvain Debonnel

Doctor of Philosophy in Engineering—Nuclear Engineering

University of California, Berkeley

Professor Per F. Peterson and Doctor Simon S. Yu, Co-Chairs

Among the numerous potential routes to a commercial fusion power plant, the inertial path

with thick-liquid protection is explored in this doctoral dissertation. Gas dynamics phenom-

ena in such fusion target chambers have been investigated since the early 1990s with the help

of a series of simulation codes known as TSUNAMI. For this doctoral work, the code was

redesigned and rewritten entirely to enable the use of modern programming techniques, lan-

guages and software; improve its user-friendliness; and refine its ability to model thick-liquid

protected chambers. The new ablation and gas dynamics code is named “Visual Tsunami” to

emphasize its graphics-based pre- and post-processors. It is aimed at providing a versatile and

user-friendly design tool for complex systems for which transient gas dynamics phenomena

play a key role. Simultaneously, some of these improvements were implemented in a previous

version of the code; the resulting code constitutes the version 2.8 of the TSUNAMI series.

Visual Tsunami was used to design and model the novel Condensation Debris Experiment

(CDE), which presents many aspects of a typical Inertial Fusion Energy (IFE) system and

has therefore been used to exercise the code. Numerical and experimental results are in good
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agreement.

In a heavy-ion IFE target chamber, proper beam and target propagation set stringent re-

quirements for the control of ablation debris transport in the target chamber and beam tubes.

When the neutralized ballistic transport mode is employed, the background gas density should

be adequately low and the beam tube metallic surfaces upstream of the neutralizing region

should be free of contaminants. TSUNAMI 2.8 was used for the first simulation of gas trans-

port through the complex geometry of the liquid blanket of a hybrid target chamber and beam

lines. Concurrently, the feasibility of controlling the gas density was addressed with a novel

beam tube design, which introduces magnetic shutters and a long low-temperature liquid vor-

tex; this beam tube configuration was included in the first thick-liquid heavy-ion fusion point

design, the so-called Robust Point Design 2002. Additionally, novel, alternative thick-liquid

chambers that can accommodate the assisted-pinch, the solenoidal final-focusing, or a Z-pinch

driver are discussed.

Prof. P.F. Peterson
Dissertation Committee Co-Chair

Dr. S.S. Yu
Dissertation Committee Co-Chair
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Chapter 1

Thick-Liquid Protection and Inertial

Fusion Power Plants

1.1 Introduction to Fusion Power

1.1.1 Fusion Basics

Fusion bears the promise of a clean and sustainable source of energy. The fusion reaction

that is envisaged for the first generation of fusion power plants is:

D + T→ α + n + 17.6 MeV (1.1)

where a deuteron (D or2H+) and a triton (T or3H+) fuse to create a helium nucleus (α or

He2+) and a neutron (n), while releasing 2.82×10−12 J or 17.6 MeV. The above D-T reaction

is preferred to other fusion reactions because it has the highest probability (or cross-section) in

the range of temperatures that allow fusion reactions to take place and that can be most easily

obtained in a human-made device. In particular, the D-T reaction is preferred to p-B and other
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neutron-free reactions, even if the high-energy neutrons produced by the D-T reaction are a

potential threat to the chamber solid structures.

Deuterium can be found in water, but tritium is a short-lived radioactive isotope of hy-

drogen and has to be produced, usually from lithium, through one of the two following (n,α)

reactions:

6Li + n (thermal)→ α + T + 4.78 MeV (1.2a)

7Li + n (fast)→ α + T + n - 2.47 MeV (1.2b)

A 1-GWe fusion power plant will consume around 0.6 kg of D-T fuel a day, to be compared

with the typical 3.3 kg needed per day in a fission plant of the same power and the 7,300,000 kg

of fuel consumed a day in a coal-fired power plant. Fossil fuel power plants release nitrogen,

sulfur, and carbon oxides. Current nuclear plants generates short- and long-lived fission and

activation products, with almost no release to the atmosphere. D-T reactions do not produce

any long-lived elements and future fusion power plants will have essentially no long-lived

by-products if adequate liquid protection is provided to prevent any significant activation of a

low- to medium-Z vessel.

1.1.2 Possible Routes to Fusion Power

The Coulomb force repels protons apart from each other. To fuse, nuclei therefore need to

achieve kinetic energies high enough to overcome this Coulomb barrier. This can be done us-

ing accelerators to impart high kinetic energy to fuel ions. For instance, in the Rotating Target

Neutron Source (RTNS) at the University of California at Berkeley, deuterons are accelerated

by a potential difference of 500,000 V to reach 4% of the speed of light and hit a tritiated

target. Fusion does occur, but this approach consumes far more driving power than the fusion
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reactions release. Similarly, net fusion power would not be produced with two colliding beams

of fuel, because of the inherently low density of the beams.

Instead of accelerating ions in an organized manner, ions can be heated up, gaining random

kinetic energy, as is done in the sun. Fusion is indeed the source of energy of the stars, in

which the high pressure required for fusion to happen is counterbalanced by the gravitational

force. The total quantity of fuel is so extraordinarily large and the average time the fuel spent

confined by gravitation is so extraordinarily long that substantial fusion energy is generated,

even though the chain of reactions that cause four protons to fuse ultimately into one alpha

particle

4 p + 2 e− → α + 2 ν (1.3)

has a very low cross-section. An earth-bound engineering device based on gravitational con-

finement is out-of-reach, for obvious reasons. A human-made device has to deal with smaller

masses and much shorter confinement times, necessitated by relatively larger heat losses.

Magnetic confinement fusion aims at containing high-temperature, low-density plasmas

using strong electromagnetic fields to keep the fuel together and prevent it from cooling

through contact with the plasma vessel. Plasma instabilities and heat losses provide the main

challenges to overcome for net fusion power generation. Inertial Confinement Fusion (ICF)

relies upon the ability to compress a D-T pellet using energy provided by a laser, a Z-pinch or

an ion accelerator [4, 37].

1.1.3 Inertial Confinement Fusion

Inertial fusion targets can be driven directly or indirectly. In direct-drive, laser beams strike

a D-T pellet, heating the outer layer that sublimates and expands outwards. As a reaction,
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the inner fuel layer is driven inwards. The fuel is then compressed to high temperature and

density—about a thousand times liquid density. A “hot spot” appears, where fusion takes

place. The neutrons stream away, but the alpha particles are stopped in the layer of fuel next

to the hot spot; this layer is heated up by the alphas and start to fuse, generating alpha particles

that will stop in the next layer. Hence, a “fusion burn wave” propagates from the initial hot spot

towards the outside surface of the pellet. “Inertial confinement” fusion is actually somewhat

of a misnomer. The scheme relies on the inertia of the target to maintain the integrity of the

fusing pellet for a significant fraction of the fuel to undergo fusion. In practice, there is hardly

any confinement at all; the target disassembles within a few picoseconds—nonetheless enough

time for a third of the fuel of a properly designed target to fuse.

In indirect drive, the pellet is held in a small container, which is usually called a hohlraum,

after the German name for a cavity. The laser or heavy ion beams stop and deposit the driving

energy onto the inside surface of the hohlraum, heating the walls to a few million kelvins. The

walls emit x-rays, which are mainly absorbed in the outer layer of the D-T pellet. The outer

layer is ablated and expands outwards. The remaining phenomena are similar to those in the

direct-drive case. Descriptions of heavy-ion hohlraums can be found in References [69, 9, 10].

Direct-drive can, in principle, achieve higher energy conversion (from driver to implosion)

than indirect-drive but the imploding capsule is subject to instabilities due to the lack of uni-

formities of the irradiation induced by a finite number of discrete laser beams. A better, more

symmetric irradiation and implosion are expected via the indirect drive approach. Two laser

facilities currently under construction—Laser Mega-Joule in the suburb of Bordeaux, France,

and National Ignition Facility at the Lawrence Livermore National Laboratory—are designed

to achieve breakeven and ignition. An inertial fusion power plant would be pulsed: D-T targets
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would be repetitively ignited at a frequency high enough to release enough energy to produce

significant power.

1.2 Inertial Fusion Energy

1.2.1 Target Chamber Design

Designing a fusion power plant demands facing several multi-decade scientific and engi-

neering challenges. The scientific challenges require identifying and understanding the phe-

nomena that will control the capability to ignite targets. The engineering challenges call for

developing innovative methods and tools to build compact and inexpensive power plants that

can achieve high repetition rates, while maintaining safety and reliability. The target cham-

ber needs to extract the fusion energy for electricity production; breed enough tritium to be

self sufficient; clear itself for the next shot to take place by restoring the chamber condition

imposed by proper beam propagation or Z-pinch operation; and survive the hostile fusion

environment, ideally for the full life of the plant.

The fusion energy is split between high-energy neutrons, x-rays, and debris. Simple kine-

matic considerations indicate that the D-T reaction gives 80% of the released energy to the

neutron and the remaining 20% to theα particle. Detailed numerical simulations show that in

direct-drive targets, the energy is indeed roughly split according to this simple estimate, with

a small fraction of the yield given to highly energetic x-rays. Indirect-drive targets present a

more complex energy partitioning. This comes from the interaction of the target debris with

the hohlraum, which causes a significant fraction of the debris to slow down and convert part

of its energy to x-rays. This is also true for neutrons, but to a lesser extent. Typically, for
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indirect-drive targets, neutrons carry 68% of the yield, x-rays 25%, and target and hohlraum

debris 7%.

Over the last thirty years or so, several target chamber concepts have been envisioned. Dry

wall chambers rely on the standoff distance between the target and the metallic or ceramic

first wall to attenuate the x-ray and neutron fluences. A buffer gas stops most debris and a

significant fraction of the x-rays. A fireball is then formed and radiates its energy over time

scales potentially long enough for the heat to be accommodated by the first wall through heat

conduction. Thin liquid wall chambers interpose a liquid layer between the target and the

structural first wall. The thin liquid layer is meant to shield the structural first wall from x-rays

and ions. Thick liquid wall chambers, to be discussed at length in this study, make use of thick

liquid jets and vortexes to protect the first wall.

1.2.2 Thick-Liquid Protection

Thick-liquid protection offers several advantages over those offered by thin-liquid walls.

The liquid structures are “neutronically-thick” and will therefore protect the solid walls by

absorbing and slowing down target neutrons, reducing the neutron fluence. An efficient thick-

liquid protection scheme will reduce neutron energy to a fast fission-like spectrum: Materials

developed for fission power plants can then be used, eliminating the need for a costly material

development program. Ideally, the first structural walls would be fabricated from relatively

inexpensive nuclear-grade material such as stainless steel and would last the typical lifetime

of a reactor. The vessel activation would be very low, permitting disposal as low-level waste.

The liquid structures will play the role of the coolant fluid in a fission power plant, absorb-

ing most of the fusion energy, which will then be easily extracted from the target chamber,
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so that it can be used to produce electricity. The binary molten salt flibe (LiF-BeF2) and the

ternary mixture flinabe (LiF-NaF-BeF2) are primary candidates. The choice of flibe or flinabe

for the liquid pocket was motivated by the possibility of breeding tritium via the (n,α) reaction

undergone by lithium and by the properties of beryllium, which compensates for the neutron

absorption of the fluorine, so that tritium breeding ratios greater than one can still be achieved.

These salts are good neutron multipliers and have good slowing-down properties, which favor

the exothermic tritium breeding reaction over the endothermic one.

The liquid structures help restore chamber conditions required for either Z-pinch operation

or proper target injection and heavy-ion beam propagation. In particular, in some heavy-ion

fusion plants, jets can sweep the target chamber free of droplets that may otherwise prevent

correct target and beam propagation. Thick-liquid protection would help reduce the size of

the target chamber, maximizing power density. In the case of a neutralized ballistic heavy-ion

fusion plant, the beams travel inside the target chamber without being refocused by magnets.

Thick-liquid protection contributes to reducing this focusing distance.

1.3 Goals and Scope of Dissertation

1.3.1 Simulation Code Development

The exploding target emits x-rays that will deposit their energy in thin layers of the target-

facing surfaces of the liquid structures, causing a rise in temperature that will oftenly cause

parts of the layers to evaporate and then expand away from the liquid surfaces. This evap-

oration phenomenon is usually referred to as ablation. The ablated layers interact with the

expanding target and ultimately vent through the liquid structures inside the target chamber.
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The modeling of the gas dynamics inside a fusion chamber is complex and presents unique

challenges [47, 58] that prompted in the early 1990s the development of an academic com-

puter code tailored to simulate these phenomena. (Existing codes that might have been used

as a starting point were not widely available.) A brief history of the code, TSUNAMI, is given

in Chapter 2. TSUNAMI numerically solves the time-dependent, compressible Euler equation

for ideal or real gas. Efforts have been focused on the ability to model shock waves in complex

geometries. A comparison between several inertial fusion codes can be found in Ref. [58].

As described in Chapter 2, various versions of TSUNAMI are available, with different

capabilities. A major—and somewhat quixotic—goal of this doctoral work is to provide a

user-friendly, object-oriented “backbone” for TSUNAMI in order to stop, ultimately, the pro-

liferation of TSUNAMI codes that has taken place since the early 1990s. (Typically, rewriting

the code was quicker than modifying an existing version.) Chapter 2 outlines how the new

modular architecture of the code developed over the course of this PhD can be used to add

new capabilities. This modular nature is meant to be used to test new numerical schemes,

as expected from an academic code. A somewhat related goal is the development of a set of

benchmarking tools that can be used to compare various algorithms and validate the code.

Chapter 3 details the physical, mathematical and numerical gas dynamics models imple-

mented in the code, named “Visual Tsunami.” The choice of these models stems from the

expected robustness of the algorithms; they are meant to provide the basic tools that can be

used to implement higher-order and/or more approximate and faster schemes, and compare

them to their robust first order counterparts. Emphasis has been put on developing an exact

yet fast real gas Riemann solver. Radiation transport is touched upon in Chapter 4 where a

multidimensional two-temperature flux-limited model is presented. Chapter 5 deals with a
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novel gas/liquid interface. Chapter 6 provides a review of ablation models and an improved

TSUNAMI model for the interaction of target x-rays with liquid structures.

1.3.2 Design and Modeling of the Condensation Debris Experiment

Concurrently to the development of Visual Tsunami, the code TSUNAMI, version 2.6 [12],

was modified to ameliorate the code performance and incorporate a few of the improve-

ments implemented in Visual Tsunami. The resulting code constitutes the version 2.8 of the

TSUNAMI series and was employed to design and model a variety of heavy-ion fusion tar-

get chambers along with the Lawrence Livermore National Laboratory’s novel Condensation

Debris Experiment. TSUNAMI had not been exercised against an actual integral experiment

in recent years. An important goal of this doctoral work was to employ TSUNAMI 2.8 and

Visual Tsunami to help design and model the Condensation Debris Experiments. TSUNAMI

2.8 was more particularly used to help design the various experimental campaigns. Chap-

ter 7 reports on the latest numerical modeling done with Visual Tsunami. As a first cut to the

problem, a qualitative agreement with experimental results is sought after.

1.3.3 Gas Transport and Control in Thick-Liquid Target Chambers

In a heavy-ion inertial fusion chamber protected by an array of liquid jets, modeling the

venting of the target and ablation debris through the venting paths of the thick-liquid pocket

is of primary importance to determine the impulse load transmitted to the liquid and metallic

structures and the amount of debris that escapes up the heavy-ion beam lines. Chapter 8

illustrates the state of the art in gas dynamics modeling in a thick-liquid chamber compatible

with the main heavy-ion transport mode, the so-called neutralized ballistic scheme. Besides
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the extension of the modeling capability of gas venting phenomena in IFE chambers, a goal of

this doctoral work was to coordinate the design of a beam line that can accommodate the debris

jetting out of the target chamber. The resulting design is presented in Chapter 8 together with

the supporting simulations performed with TSUNAMI 2.8. Chapter 8 also presents two target

chamber configurations compatible with alternate heavy ion beam propagation schemes and

deals with the Z-IFE thick-liquid protected target chamber and its modeling with the Visual

Tsunami code. Overall conclusions are drawn in Chapter 9.
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Part I

Visual Tsunami Numerical Models
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Chapter 2

The Code “Visual Tsunami”

2.1 Introduction to Visual Tsunami

“TSUNAMI” refers to a series of radiation hydrodynamics codes developed and main-

tained since the early 1990s at the University of California at Berkeley (UCB) in collaboration

with the Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory

and the University of California at Los Angeles. The different versions of the code offered

various capabilities and were employed to model a variety of inertial fusion energy (IFE) and

inertial confinement fusion (ICF) systems; the history of the code is summarized in the second

section of this chapter.

TSUNAMI stands for TranSient Upwind Numerical Analysis Method for Inertial confine-

ment fusion; early versions of the code were in FORTRAN 77. “Visual Tsunami” 1.0 and

2.0, the latest versions of TSUNAMI, makes use of the conveniences offered by modern com-

puting languages and software. Visual Tsunami 1.0 was first presented by Debonnelet al.

in Ref. [25]. Visual Tsunami 2.0 is presented shortly in the third and fourth sections of this
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chapter. Algorithms are presented in detail in Chapters 3 to 6.

The core of Visual Tsunami 1.0 was written in Fortran 95. FORTRAN used to stand for

(mathematical) FORmula TRANslation. The names of its most recent versions, starting from

Fortran 90, are not portmanteaux anymore; even if Fortran remains a language of choice for

scientific computing, its name does not officially reflect it anymore through an acronym that

would otherwise reduce the actual breadth of possibilities offered by a rich, modern language.

Similarly, Tsunami should be read and written as a name, with only the first letter capitalized.

The applicability of the code goes beyond the traditional ICF/IFE use of TSUNAMI. The

adjective “Visual” stems from the input and output graphical user interfaces (GUIs) that have

been developed recently and improved the user-friendliness of the code significantly.

2.2 Code History and Use

version characteristics references
TSUNAMI RG 1-D radiation gas dynamics Chen’s thesis [11]

real gas EOS (Chen’s EOS for flibe) and references therein

TSUNAMI 1.0 2-D gas dynamics Liu’s thesis [38]
ideal gas EOS and references therein

TSUNAMI 2.6 2-D multi-species hydrodynamics Scott’s thesis [63]
real gas EOS (SESAME [42]) and references therein

coupling to ABLATOR code [2]
TSUNAMI 2.7 2-D gas dynamics Jantzen’s thesis [34]

radiation and references therein
real gas EOS (Jantzen’s EOS)

TSUNAMI 2.8 user-friendly version of version 2.6
real gas EOS (Chen’s EOS for flibe)

FORTRAN 77/95 and MATLAB

Visual Tsunami 1.0 new code in Fortran 95 and MATLAB [25]
Visual Tsunami 2.0 new code in MATLAB this doctoral dissertation

Table 2.1: TSUNAMI code history.



14

Table 2.1 presents an outline of the history of the TSUNAMI code. The first two versions

of TSUNAMI were developed to model the gas dynamics inside the inertial fusion target

chamber HYLIFE-II [45]. Chen [11, 18, 16] developed the first one-dimensional (1-D) version

to assess x-ray ablation and radiation hydrodynamics expansion of target and ablated debris

in the interior of a thick-liquid pocket. Real gas effects were taken into account through

an approximate model. Concurrently, Liu [40, 38, 39] wrote the first two-dimensional (2-D)

version of TSUNAMI to model ideal gas dynamics venting through the array of slab jets of the

HYLIFE-II chamber. In addition, Liu developed a 1-D version that included a condensation

model [38].

TSUNAMI was later employed to model ablation and gas dynamics phenomena in the

National Ignition Facility (NIF) target chamber [13]. Scott [63] added multi-species capabil-

ity and coupled TSUNAMI with the ABLATOR code [2, 3] and the SESAME database [42].

He employed his two-dimensional version of TSUNAMI to model gas dynamics in the NIF

chamber [65] and mini-chamber [54, 64]. Scott’s version was then expanded to include some

radiation transport and a new real gas equation of state for flibe [34]. Simulations encom-

passing both the inside of the target chamber and the array of jets were first presented by

Jantzen [32]. TSUNAMI was also used by Jantzen to design and model UCB’s jet disruption

experiment [33, 49]. Two groups used TSUNAMI to model gas dynamics phenomena inside

dry-wall chambers [70, 36].

The author upgraded Scott’s version, mainly with a real gas equation of state for flibe and

a user-friendly input file builder and output file processor. The new code, TSUNAMI 2.8,

was then used to predict the mass and energy fluxes at the beam ports of a HYLIFE-II-like

chamber [24] and model the gas dynamics inside a beam tube for the first time [26]. In the
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framework of the neutralized-ballistic Robust Point Design study [79, 77], the author [27]

presented the first “integrated” simulation of a HYLIFE-II-like chamber, encompassing the

whole domain of early-time gas dynamics, namely from the target implosion location to the

site of the magnetic shutters introduced in Ref. [26]. Calderoni used and modified an early

version of TSUNAMI 2.8 to model the UCLA flibe condensation experiment [8]. Recently, as

part of the effort towards a heavy-ion fusion Modular Point Design [77, 78], the author [28]

employed TSUNAMI 2.8 to model a variant of the Robust Point Design chamber suitable for

the assisted-pinch transport scheme.

As already mentioned, Visual Tsunami 1.0 was first presented in Ref. [25]. The latest

version, Visual Tsunami 2.0, is introduced in the next two sections. Fig. 2.1 shows an overview

of the code.

Figure 2.1: Architecture of Visual Tsunami 2.0: pre-processor tools (left), MATLAB core
(center), and MATLAB post-processor. The implementation of radiation and aerosol transport
models is left for future work.
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2.3 Pre- and Post-Processors

2.3.1 Input File Builder

TSUNAMI has typically been used to model gas dynamics phenomena in complex geome-

tries. In order to ease the setting up of the initial and boundary conditions, the author devel-

oped, in 2001, a modular 2-D mesher and template input file program in Fortran 95 [6]. The

mesher was conveniently reusable from one simulation to the other and the formatting of the

input files was taken care of by the builder entirely and automatically. Such a builder lim-

ited the amount of time and programming required to set up a new simulation, reduced the

likelihood of making an input error, and represented a significant advance in user-friendliness.

Visual Tsunami makes use of current CAD software. Autodesk’s AutoCAD was chosen

for its wide use and its ability to be tailored. A set of graphical user interfaces (GUIs) was

written for Visual Tsunami 1.0 in AutoLISP, AutoCAD’s historical programming language,

and is used to define most material properties, initial and boundary conditions in two dimen-

sions. The AutoLISP GUIs could easily be expanded to incorporate more parameters. All the

information is exported as a DXF file, the de-facto CAD file interchange standard. Fig. 2.2

shows one of the AutoLISP GUIs along with an AutoCAD 2004 window. Additionally, a GUI

was developed in MATLAB for the mesher, the core of the input file builder.

The core of Visual Tsunami 2.0 is designed to handle 1-D, 2-D, and 3-D gas dynamics

simulations, but only 2-D geometries can be specified through the pre-processor straightfor-

wardly. The 3-D DXF file format is proprietary and has not been used. The object-oriented

nature of the parser and mesher translates into “building blocks” that will allow an easy ex-

pansion to a different 3-D CAD format, similar to DXF but open source. Identifying the best
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Figure 2.2: The AutoLISP GUI used to define material properties.

format, writing a new parser, and fine-tuning the GUI is left for future work. Alternatively,

two-dimensional cutaway views can be expanded to 3-D through a set of MATLAB GUIs

recently developed, but not yet fully tested.

X-rays interact with liquid or solid surfaces over time scales that are normally very short

compared to the resulting gas dynamics phenomena. Ablation may therefore be considered

instantaneous and treated as an initial condition to the gas dynamics simulations. Visual

Tsunami can call an ablation program to define such initial conditions, whenever relevant.

Visual Tsunami 1.0 was meant to make use of a Fortran 95 code written by the author; Visual

Tsunami 2.0 could use this program, but was more particularly designed to make use of a

MATLAB program based on the algorithm described in Chapter 6. Other ablation programs

could be coupled in, such as the already mentioned ABLATOR code [2]. The user does not
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have to flag the ablation surfaces. The ablation code performs ray-tracing automatically, a first

in the history of the code.

2.3.2 Output File Processor

In Spring 2001, the author developed an extensive set of MATLAB output processing

tools for two-dimensional TSUNAMI simulations. These consisted of a movie maker, contour

and sensor data plotters. The output processor was recently revised for inclusion into Visual

Tsunami, and, for instance, the speed of the movie maker was improved by more than an order

of magnitude [6]. A set of MATLAB GUIs has been developed to streamline data reduction,

make the code more versatile, and reduce the user’s programming effort and likelihood of error

input. Visual Tsunami 2.0 makes use of a variant of this fast and user-friendly post-processor.

2.4 Physical and Numerical Models

Visual Tsunami 1.0 and 2.0 solve the Euler equations for compressible flow in one, two or

three dimensions in Cartesian coordinates. Visual Tsunami 2.0 can solve the Euler equations

in two-dimensional axisymmetric cylindrical coordinates as well. The equations are solved

using Godunov’s approach: The flow field is determined by a succession of calls to a Rie-

mann solver, at each time step and at each cell interface. Godunov’s second method was

implemented along with an exact solver to the exact Riemann problem. Visual Tsunami 1.0

solves the ideal gas Riemann problem while Visual Tsunami 2.0 can solve both ideal and real

gas exact Riemann problems exactly. The ideal gas Riemann problem is reduced to a single

equation in one unknown, the pressure in the middle region between the left and right waves.

This equation is solved iteratively through the Newton-Raphson method. An elaborated initial
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guess for the unknown pressure allows for a quick convergence in just a few iterations. The

real gas case is treated in a similar manner. Details are presented in Chapter 3. Open outflow as

well as immobile reflective and gas/liquid boundaries can be specified. Reflective boundaries

are used on symmetry axes and at immobile gas/solid interfaces—the solid is then assumed

to be perfectly rigid. Exact solutions to the Riemann problem are used for reflective and open

boundaries. Gas/liquid boundaries can be modeled with a reflective boundary or through a

novel condensation/evaporation model based on kinetics theory. This model is presented in

Chapter 5 and still needs to be tested against more accurate models. As mentioned, ablation

is treated along the lines described in Chapter 6. The ablation model takes into account a

time-dependent x-ray pulse, hot opacities, reradiation, and heat diffusion.

The first two versions of Visual Tsunami are meant to be the basis on which future ex-

pansions of the code will be implemented easily. (Previous major upgrades to the code re-

quired a complete rewriting of the core.) For instance, implementation of high-order Godunov

schemes would be fairly straight-forward, thanks to the modular and object-oriented nature

of the code. Other boundary conditions could be implemented as well, such as Liu’s con-

densation model [38]. Radiation transport could be added, for instance, through the method

of fractional steps [68] and a flux-limited diffusion model, as described in Chapter 4. Visual

Tsunami 1.0, being in Fortran 95, was meant to be fast and portable to supercomputers. Visual

Tsunami 2.0, being in MATLAB, is meant to be a tool to explore new algorithms. A future

version of Visual Tsunami could combine the MATLAB architecture of Visual Tsunami 2.0

and the Fortran performance of some of Visual Tsunami 1.0 subroutines for optimal perfor-

mance, user-friendliness and portability. The core is highly vectorized and was designed to be

easily parallelizable.
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2.5 Conclusion

Visual Tsunami constitutes the latest version of the UCB code TSUNAMI. The gas dy-

namics core model—Euler’s equations for compressible flows—has been retained from pre-

vious versions of TSUNAMI, as well as Godunov’s approach. (However the implementations

are significantly different.) Efficient schemes for ideal and real gas-dynamics have been re-

searched, developed and implemented. A set of graphical user interfaces makes pre- and post-

processing fast, intuitive, and straightforward. In particular, the input file builder is nowadays

graphics-based. The geometry, the initial and boundary conditions can be specified in 2-D

through AutoCAD, tailored with a set of AutoLISP GUIs. Details of the models and bench-

marking of the code are presented in the following chapters.
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Chapter 3

Compressible Gas Dynamics

3.1 Introduction to Eulerian Gas Dynamics

As previously stated, the gas dynamics models constitute a substantial part of the core

of the simulation code Visual Tsunami. In this chapter, the equations of motion for a com-

pressible non-diffusive (non-conducting and inviscid) multi-species gas are explored in the so-

called “Eulerian” frame, which is fixed in the laboratory. Alternative formulations, such as the

“Lagrangian” and “arbitrary Lagrangian Eulerian” frames, are deemed not practical for multi-

dimensional gas dynamics. The Lagrangian formulation, in a reference frame that moves at

the flow velocity, usually leads to highly distorted multi-dimensional meshes and is essen-

tially only practical for our one-dimensional simulations for which its natural enforcement of

mass conservation can lead to particularly attractive implementations. Arbitrary Lagrangian

Eulerian frames move at velocities between zero and the fluid element velocity. Various mul-

tidimensional techniques that remap distorted meshes unto undistorted ones do exist, but they

are not always satisfactory from a practical point of view since they may introduce numerical
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diffusion [63].

3.1.1 The Euler Equations in Conservative Eulerian Form

When viscous and diffusive effects can be neglected, the dynamics of a compressible gas

(or a liquid for that matter) is prescribed by a set of equations attributed to Euler. By “con-

servative,” it is meant that these equations reflect how conserved quantities (mass, linear mo-

mentum, energy) change with respect to time. The equations of gas dynamics in Eulerian

conservative form can be expressed as:1

∂

∂ t

∫∫∫
V

U(r , t)dV =−
∫∫

δV
F(U)(r , t) ·dS (3.1)

whereV is the control volume,δV its surface.dS(r) is the elementary surface vector pointing

along the outward normal toδV at the positionr . U is the vector of conserved quantities:

U =



ρ

ρωk

ρu

ρv

ρw

ρet



(3.2)

1No derivation of these equations is given here.
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andF(U) is the flux of conserved quantities:

F(U) =
(

Fx(U) Fy(U) Fz(U)

)
=



ρu ρv ρw

ρωku ρωkv ρωkw

ρu2 + p ρuv ρuw

ρuv ρv2 + p ρvw

ρuw ρvw ρw2 + p

ρuet +up ρvet +vp ρwet +wp



(3.3)

whereρ is the gas density,u, v, andw are the three components of the velocity vector,ωk is

the mass fraction of the kth species, andet is the gas specific total energy, which is the sum of

the specific kinetic and internal energies:

et =
1
2
(u2 +v2 +w2)+e (3.4)

Eq. 3.1 states that the values of the conserved quantities can change in the control volumeV if

and only if a non-zero net flux of these conserved quantities exists on the boundaryδV of the

control volumeV. This assumes that there is no nuclear nor chemical reaction and that body

forces such as gravity and electromagnetic forces can be neglected.

It is further assumed that the fluid is in Local Chemical Equilibrium (LCE) and in Local

Thermodynamics Equilibrium (LTE). The former means that chemical phenomena happen on

time scales much smaller than those of the gas dynamics phenomena of interest; the latter

implies that the different species have the same temperature. Closure is then obtained through

an equation of state relating the pressurep to the mass fractions and the canonical variables,

the densityρ and the specific internal energye.

Assuming that the flow is smooth, the divergence theorem can be applied to the integral
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form of Euler’s equations, Eq. 3.1, to obtain the following system of differential equations:

∂U
∂ t

+∇ ·F = 0 (3.5)

3.1.2 A Flavor of the Method of Characteristics

The canonical hyperbolic equation is given by a special form of the wave equation:

∂c
∂ t

+c
∂c
∂x

= 0 (3.6)

wherec is a function ofx andt. The initial conditions are given most generally by

c = c(x, t0) (3.7)

and the boundary conditions are

lim
x→±∞

c(x, t) = lim
x→±∞

c(x, t0) (3.8)

The partial differential equation can be reduced to an ordinary differential equation by

making use of the total derivative ofc with respect tot:

dc
dt

=
∂c
∂ t

+
∂c
∂x

dx
dt

(3.9)

and identifying terms. Along the so-called “characteristic” path given by

dx
dt

= c (3.10)

Eq. 3.6 simplifies to

0 =
∂c
∂ t

+c
∂c
∂x

=
∂c
∂ t

+
dx
dt

∂c
∂x

=
dc
dt

(3.11)

Hence, the value ofc(x, t) remains the same along the characteristic tracing through(x, t).

Sincec is a constant along the characteristic given by Eq. 3.10, the same equation shows that
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all the characteristics are straight lines. Mathematically, the implicit solution to Eq. 3.6 with

initial conditions given by Eq. 3.7 and boundary conditions by Eq. 3.8 is therefore:

c(x, t) = c(x0, t0) alongx−x0 = c(x0, t0)(t− t0) (3.12)

(By definition of x0, the characteristic passing through(x, t) crosses the axist = t0 at x =

x0.) The value ofc(x, t) can be determined by choosing iteratively a value ofx0 until the

characteristic equationx−x0 = c(x0, t0)(t− t0) is satisfied.

The following seemingly simple discontinuous initial conditions are now considered:

c(x,0) =


cl if x < 0

cr if x > 0

(3.13)

wherecl 6= cr . If cr is greater thancl , a given point in the plane (x,t) can be crossed by zero

or one characteristic. The solution to Eq 3.6 given by Eq. 3.12 is valid in the two regions of

the plane where any point lies on one and only one characteristic. In the middle region where

there is no characteristic, one can build a continuous solution that matches the solutions in the

two regions uniquely defined by the characteristics. The complete solution then reads:

c(x, t) =



cl if x
t ≤ cl

x
t if cl < x

t < cr

cr if cr ≤ x
t

(3.14)

If cl is greater thancr , a given point in the plane (x,t) can be crossed by one or two char-

acteristics. Where there are two characteristics, the solution is multivalued and the equation

fails to describe the physical phenomenon of interest (except, possibly, in a few rare cases

for which a multivalued solution is not physically impossible.) One has to resort to a better
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modeling of the phenomenon or to modifying the solution and resigning oneself to obtaining

a weak solution to the wave equation.

In the former case, a diffusive term would typically be added to the canonical hyperbolic

equation given by Eq. 3.6 to yield the so-called Burgers equation:

∂c
∂ t

+c
∂c
∂x

= α
∂ 2c
∂ t2 (3.15)

Further discussion requires a knowledge of the physics of the system originally modeled with

Eq. 3.6. (For gas dynamics applications, adding an appropriate viscous term to Euler’s equa-

tions would yield the Navier-Stokes equations.)

Alternatively Eq 3.6 can be retained for the sake of simplicity and its solution modified

in order to connect the left and right domains where the characteristic solution is valid. The

left domain is prolonged to the right while the right domain is prolonged to the left. The two

domains are patched by allowing for a discontinuity of the solution, which is called a shock.

The location of the shock is not uniquely defined by the differential equation and the integral

form of Eq. 3.6 needs to be evoked:

∫ (
∂c
∂ t

+
∂ (1

2c2)
∂x

)
dx= 0 (3.16)

The shock location is determined by the necessity of conserving the flux ofc through the

shock. This discussion was meant to introduce characteristics and their relationships to rar-

efaction and shock waves in a simple framework. These topics will be tackled in much further

detail in the following sections, which focus on the resolution of the compressible Euler equa-

tions.
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3.1.3 The Euler Equations in Characteristic Eulerian Form

Only the one-dimensional Euler equations resulting from a “split” three-dimensional for-

mulation will be considered in this section for reasons that will become clear in Section 3.6,

which deals with finite volume numerical schemes. The split formulation only considers the

3-D flux along one dimension. Equations 3.2 and 3.3 now read:

U =



ρ

ρωk

ρu

ρv

ρw

ρet



(3.17)

and

F(U) = Fx(U) =



ρu

ρωku

ρu2 + p

ρuv

ρuw

ρuet +up



(3.18)

The following analysis is simpler if the energy conservation equation is replaced by the
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entropy equation:

∂

∂ t



ρ

ρωk

ρu

ρv

ρw

S



+



∂ (ρu)
∂x

∂ (ρωku)
∂x

∂ (ρu2)
∂x + ∂ p

∂x

∂ (ρuv)
∂x

∂ (ρuw)
∂x

u∂S
∂x



= 0 (3.19)

whereS (J K−1 m−3) is the entropy of the fluid per unit volume. (Entropy is conserved since

there are neither viscous nor conductive nor radiative effects.) Hence,

∂ρ

∂ t

ρ
∂ωk
∂ t +ωk

∂ρ

∂ t

ρ
∂u
∂ t +u∂ρ

∂ t

ρ
∂v
∂ t +v∂ρ

∂ t

ρ
∂w
∂ t +w∂ρ

∂ t

∂S
∂ t



+



ρ
∂u
∂x +u∂ρ

∂x

ωk
∂ (ρu)

∂x +ρu∂ωk
∂x

u∂ (ρu)
∂x +ρu∂u

∂x + ∂ p
∂x

v∂ (ρu)
∂x +ρu∂v

∂x

w∂ (ρu)
∂x +ρu∂w

∂x

u∂S
∂x



= 0 (3.20)

which can be simplified using the mass conservation equation:

∂ρ

∂ t

∂ωk
∂ t

ρ
∂u
∂ t

∂v
∂ t

∂w
∂ t

∂S
∂ t



+



ρ
∂u
∂x +u∂ρ

∂x

u∂ωk
∂x

ρu∂u
∂x + ∂ p

∂x

u∂v
∂x

u∂w
∂x

u∂S
∂x



= 0 (3.21)

Methods to write systems of partial differential equations into characteristics form do exist.

Here a less generic but more concise way is presented. By definition, the isentropic sound
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speeda is given by:

a =

√
∂ p
∂ρ

∣∣∣∣
S

(3.22)

Multiplying part of the mass continuity equation by1
a2

∂ p
∂ρ

∣∣∣
S
= 1 and adding the entropy equa-

tion multiplied by 1
a2

∂ p
∂S

∣∣∣
ρ

yield:

1
a2

∂ p
∂ρ

∣∣∣∣
S

(
∂ρ

∂ t
+u

∂ρ

∂x

)
+ρ

∂u
∂x

+
1
a2

∂ p
∂S

∣∣∣∣
ρ

(
∂S
∂ t

+u
∂S
∂x

)
= 0 (3.23)

or

1
a2

(
∂ p
∂ρ

∣∣∣∣
S

∂ρ

∂ t
+

∂ p
∂S

∣∣∣∣
ρ

∂S
∂ t

)
+

u
a2

(
∂ p
∂ρ

∣∣∣∣
S

∂ρ

∂x
+

∂ p
∂S

∣∣∣∣
ρ

∂S
∂x

)
+ρ

∂u
∂x

= 0 (3.24)

which can be written as:

∂ p
∂ t

+u
∂ p
∂x

+ρa2∂u
∂x

= 0 (3.25)

Multiplying the x-momentum equation by the sound speed trivially gives:

a
∂ p
∂x

+aρ
∂u
∂ t

+aρu
∂u
∂x

= 0 (3.26)

Subtracting Eq. 3.26 from Eq. 3.25 yields:(
∂

∂ t
+(u−a)

∂

∂x

)
p−aρ

(
∂

∂ t
+(u−a)

∂

∂x

)
u = 0 (3.27)

Adding Eq. 3.26 to Eq. 3.25 gives:(
∂

∂ t
+(u+a)

∂

∂x

)
p+aρ

(
∂

∂ t
+(u+a)

∂

∂x

)
u = 0 (3.28)

The entropy equation was already in characteristic form:(
∂

∂ t
+u

∂

∂x

)
S= 0 (3.29)

as well as the transverse momentum equations:(
∂

∂ t
+u

∂

∂x

)
v = 0 (3.30)
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∂

∂ t
+u

∂

∂x

)
w = 0 (3.31)

and the mass fraction equations:(
∂

∂ t
+u

∂

∂x

)
ωk = 0 (3.32)

Hence,

dp
dt
−aρ

du
dt

= 0 along
dx
dt

= u−a (3.33)

dS
dt

=
dv
dt

=
dw
dt

=
dωk

dt
= 0 along

dx
dt

= u (3.34)

dp
dt

+aρ
du
dt

= 0 along
dx
dt

= u+a (3.35)

Velocity and pressure are coupled together and move along characteristics at speeds equal to

u plus or minus the sound speeda. The entropy, transverse components of linear momentum,

and the mass fractions move along characteristics at the gas velocity. The quantitiesdp∓aρdu

are known as Riemann invariants. In integral forms, the Riemann invariants read:

u+
∫

1
aρ

dp= C1 along
dx
dt

= u−a (3.36)

S= C2 v = C3 w = C4 ωk = Ck+5 along
dx
dt

= u (3.37)

u−
∫

1
aρ

dp= C5 along
dx
dt

= u+a (3.38)

where the variousCs are constant.

3.2 Gas Dynamics Equations of State

3.2.1 Definitions and Relations

As mentioned, the isentropic sound speeda (m s−1) is defined by:

a =

√
∂ p
∂ρ

∣∣∣∣
S

(3.39)
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This definition can be cumbersome to use and a handy expression as a function of readily

available quantities is desired. The expansion rule gives:

a2 =
∂ p
∂ρ

∣∣∣∣
e
+

∂e
∂ρ

∣∣∣∣
S

∂ p
∂e

∣∣∣∣
ρ

(3.40)

The well-known relation from thermodynamics

dE = TdS+
p

ρ2dρ (3.41)

can be used to simplify the expression fora to:

a2 =
(

∂ p
∂ρ

)
e
+

p
ρ2

(
∂ p
∂e

)
ρ

(3.42)

The dimensionless “isentropic” (adiabatic) exponent,γi , is by definition:

γi =
∂ ln(p)
∂ ln(ρ)

∣∣∣∣
S
=

ρ

p
∂ p
∂ρ

∣∣∣∣
S

(3.43)

Hence, by definition of the isentropic exponent and sound speed,

a =
√

γi p
ρ

(3.44)

Equivalently,

γi =
ρa2

p
(3.45)

An “isothermal”γ is sometimes defined by:

γt =
a2

∂ p
∂ρ

∣∣∣
T

(3.46)

γi andγt are obviously related by:

γi = γt
ρ

p

(
∂ p
∂ρ

)
T

(3.47)

A dimensionless “volumetric”γ can be defined as the ratio of enthalpy to internal energy:

γv(ρ,e) =
ρe+ p

ρe
= 1+

p
ρe

(3.48)
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Equivalently:

p = (γv(ρ,e)−1)ρe (3.49)

3.2.2 Ideal Gas Equations of State

The simplest equation of state is the ideal gas law according to which:

γ = γt = γv = γi =
cp

cv
(3.50)

wherecp (J K−1 kg−1) andcv (J K−1 kg−1) are the heat capacities at constant pressure and

volume, respectively. The volumetric equation of state is then:

p = (γ−1)ρe (3.51)

The well-known caloric equation of state is:

T =
p

ρr
(3.52)

where the gas constantr is given by

r =
R
M

(3.53)

R is the universal gas constant2 andM (kg mol−1) is the molar mass of the gas. Trivially, the

sound speed is then given by:

a =
√

γ p
ρ

=
√

γrT (3.54)

An ideal gas with a constantγ is said to be polytropic.

3.2.3 Real Gas Equations of State

Countless equations of state for real gases are available in the scientific literature. A de-

tailed accounting of the various physical models used to derive these equations of state is

2R=8.31 J mol−1 K−1
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outside of the scope of this doctoral dissertation; a quick overview of those equations of state

that are relevant to the modeling of gaseous flibe is given in Appendix A.2. Information on

the EOS of high temperature flinabe can be found in Ref. [83].

3.3 The Exact Riemann Problem: Exact Ideal Gas Case

3.3.1 Introduction and Physical Assumptions

The Riemann problem refers to an infinite one-dimensional multi-species gas tube with

the following initial conditions:

U(x,0) =


Ul if x < 0

Ur if x > 0

(3.55)

where, as usual,U is the vector of conserved physical quantities given by Eq. 3.2. The Rie-

mann problem is an extension of the typical experimental shock tube apparatus, in which two

still gases fill in two compartments and are separated by a diaphragm [74]. Att = 0, the

diaphragm is burst and the gases are free to interact.

Neglecting viscosity and heat conduction, a solution to the Riemann problem is sought

using the compressible Euler equations for a polytropic ideal gas. The Riemann problem

is purely one-dimensional, but a “split” Riemann problem is considered in this section in

anticipation of the finite volume numerical schemes to be developed in Section 3.6. The

vector of conserved quantities therefore does include the term with the transverse momenta.
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3.3.2 Mathematical Considerations: Simple and Shock Waves

WhenUl 6= Ur , the solution to the Riemann problem is made of a combination of simple

and shock waves. (The simple waves can either be contact discontinuities or rarefaction fans.)

In this section, some properties of these simple and shock waves are explored and employed

for the “standard” Riemann problem without initial nor generated vacuum. (The vacuum cases

will be treated in Section 3.5.) Only those properties that are particularly useful to determine

the analytical solution to the Riemann problem are discussed in depth.

Contact Discontinuity Waves

In the standard case, the middle wave is always a contact discontinuity. Across such a

contact wave, velocity and pressure do not change:

u∗l = u∗r = u∗ (3.56)

p∗l = p∗r = p∗ (3.57)

(The “left” and “right” subscripts will be omitted hereafter for convenience.) Note that there is

a change in density, sound speed, and specific energy across the contact. (It is adiscontinuity

wave after all!) The assumption of constant velocity and discontinuous density may sound

like conservation of mass is not satisfied. Since the wave travels at the speedu∗, the gases

ahead and behind the wave are immobile in the reference frame attached to the wave; in other

words, there is no mass flux across the wave and mass conservation is indeed enforced.

Rarefaction Fan

A rarefaction fan appears whenp∗ < pl ,r . (pl ,r refers topl or pr , as appropriate.) It is

assumed that rarefaction fans exhibit three major properties:



35

1. TheRiemann invariant dp= ±aρdu (defined in Section 3.1.3) holds across the finite

width of a rarefaction. (The upper plus sign will be used throughout for a left rarefaction

fan, the lower minus sign for a right rarefaction fan.)

2. The followingcharacteristic equationholds inside a centered rarefaction fan:

u =
x−x0

t
±a =

x
t
±a (3.58)

3. Entropy is a constant throughout a rarefaction fan.

The flow being isentropic, the definition of the sounds speeds yieldsdp= a2dρ and the Rie-

mann invariants now read:

du=±a
ρ

dρ (3.59)

The adiabatic law applies andp
ργ is a constant in the rarefaction fan. This relation can be used

to express the sound speed as a function of density. Starting from Eq. 3.54, the expression for

the sound speed reads:

a =
√

γ p
ρ

=
√

γα1ργ−1 = α2ρ
γ−1

2 (3.60)

whereα1 andα2 are two constants. The integral in the Riemann invariant becomes:

∫
a
ρ

dρ = α2

∫
ρ

γ−3
2 dρ =

2α2

γ−1
ρ

γ−1
2 =

2a
γ−1

(3.61)

Hence, for an ideal gas, the Riemann invariantu± 2a
γ−1 is constant across the width of a rar-

efaction fan:

u± 2a
γl ,r −1

= ul ,r ±
2al ,r

γl ,r −1
(3.62)

whereu and a are the speed and sound speed inside the fan at a locationx and a timet.

Substitutingu from Eq. 3.58 into Eq. 3.62 yields:

±a

(
1+

2
γl ,r −1

)
= ul ,r −

x
t
±

2al ,r

γl ,r −1
(3.63)
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or (
γl ,r +1
γl ,r −1

)
a =±

(
ul ,r −

x
t

)
+

2al ,r

γl ,r −1
(3.64)

Equivalently,

a(x, t) =
2

γl ,r +1
al ,r ±

γl ,r −1
γl ,r +1

(
ul ,r −

x
t

)
(3.65)

u is then given by the characteristic equation:

u(x, t) =
x
t
±a =

2
γl ,r +1

(
x
t
+

γl ,r −1
2

ul ,r ±al ,r

)
(3.66)

Using Eq. 3.44 yields:

a
al ,r

=
(

p
ρ

ρl ,r

pl ,r

) 1
2

(3.67)

The adiabatic law applies inside the rarefaction fan:

pl ,r

ρ
γl ,r
l ,r

=
p

ργl ,r
(3.68)

or

ρ = ρl ,r

(
p

pl ,r

) 1
γl ,r

(3.69)

Combining Eq. 3.67 and the previous equation yields,

a
al ,r

=
(

p
pl ,r

) γl ,r−1
2γl ,r

(3.70)

which leads to the following pressure and density formulae:

p(x, t) = pl ,r

(
a

al ,r

) 2γl ,r
γl ,r−1

(3.71)

and

ρ(x, t) = ρl ,r

(
p

pl ,r

) 1
γl ,r

= ρl ,r

(
a

al ,r

) 2
γl ,r−1

(3.72)

Eq. 3.62 can be used at the two edges of the fan—its so-called “tail” and “head”—to give:

u∗±
2a∗l ,r

γl ,r −1
= ul ,r ±

2al ,r

γl ,r −1
(3.73)
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Thus,u∗ is given by:

u∗ = ul ,r ±
2

γl ,r −1

(
al ,r −a∗l ,r

)
= ul ,r ±

2al ,r

γl ,r −1

(
1−

a∗l ,r
al ,r

)
(3.74)

The sound speed in the middle region is given by Eq. 3.70:

a∗l ,r = al ,r

(
p∗

pl ,r

) γl ,r−1
2γl ,r

(3.75)

and the density in the middle region follows from Eq. 3.72:

ρ
∗
l ,r = ρl ,r

(
p∗

pl ,r

) 1
γl ,r

= ρl ,r

(
a∗l ,r
al ,r

) 2
γl ,r−1

(3.76)

Using Eq. 3.74 and Eq. 3.75, the velocity in the middle region can be expressed as a function

of the pressure in the same zone and the state of the gas on the other side of the left or right

wave:

u∗ = ul ,r ±
2al ,r

γl ,r −1

1−
(

p∗

pl ,r

) γl ,r−1
2γl ,r

 (3.77)

Eulerian Rankine-Hugoniot Shock Relations

Let’s consider a left shock wave (p∗ > pl ). In the reference frame of the shock, conserva-

tion of mass, linear momentum, and total energy can be intuitively formulated as:

ρl ûl = ρ
∗
l û∗ (3.78)

ρl (ûl )2 + pl = ρ
∗
l (û∗)2 + p∗ (3.79)

ûl

(
1
2

ρl (ûl )2 +ρl el + pl

)
= û∗

(
1
2

ρ
∗
l (û∗)2 +ρ

∗
l e∗l + p∗

)
(3.80)

The relative speeds on the left and right of the shock are given by:

ûl = ul −s (3.81)

û∗ = u∗−s (3.82)
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wheres is the shock speed. These Rankine-Hugoniot jump relations can be formerly derived

from the integral form of the Euler equations.

Hugoniot Relation The momentum jump relation, Eq. 3.79, can be rewritten as:

ρ
∗
l (û∗)2− (ρl ûl )

ρl ûl

ρl
= pl − p∗ (3.83)

Using the mass jump relation, Eq. 3.78, yields:

ρ
∗
l (û∗)2

(
1−

ρ∗l
ρl

)
= pl − p∗ (3.84)

Hence,

(û∗)2 =
ρl

ρ∗l

pl − p∗

ρl −ρ∗l
=

ρl

ρ∗l

p∗− pl

ρ∗l −ρl
(3.85)

Similarly, one obtains by permuting the role of the left and right sides of the shock wave:

(ûl )2 =
ρ∗l
ρl

p∗− pl

ρ∗l −ρl
(3.86)

The total energy jump relation, Eq. 3.80, can be written as:

ρl ûl

(
1
2
(ûl )2 +el +

pl

ρl

)
= ρ

∗
l û∗
(

1
2
(û∗)2 +e∗l +

p∗

ρ∗l

)
(3.87)

Simplifying with the mass jump relation and rearranging give:

e∗l −el =
1
2

(
(ûl )2− (û∗)2)+ pl

ρl
− p∗

ρ∗l
(3.88)
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(û∗)2 and(ûl )2 are given by Eq. 3.85 and Eq. 3.86:

e∗l −el =
1
2

p∗− pl

ρ∗l −ρl

(
ρ∗l
ρl
− ρl

ρ∗l

)
+

pl

ρl
− p∗

ρ∗l
(3.89)

=
1
2

p∗− pl

ρ∗l −ρl

(ρ∗l )2− (ρl )2

ρl ρ
∗
l

+
ρ∗l pl −ρl p∗

ρl ρ
∗
l

(3.90)

=
1

ρl ρ
∗
l

(
1
2
(p∗− pl )(ρ∗l +ρl )+ρ

∗
l pl −ρl p

∗
)

(3.91)

=
1

ρl ρ
∗
l

(
1
2

(ρ∗l p∗+ρl p
∗−ρ

∗
l pl −ρl pl )+ρ

∗
l pl −ρl p

∗
)

(3.92)

=
1

ρl ρ
∗
l

(
1
2

p∗(ρ∗l −ρl )+
1
2

pl (ρ∗l −ρl )
)

(3.93)

=
ρ∗l −ρl

ρl ρ
∗
l

pl + p∗

2
(3.94)

Finally, the Hugoniot relation is obtained:

e∗l −el =
pl + p∗

2

(
1
ρl
− 1

ρ∗l

)
(3.95)

A Few Other Useful Relations Introducing the ideal gas volumetric equation of statep =

(γ−1)ρe into Eq. 3.95 yields:

p∗

(γl −1)ρ∗l
− pl

(γl −1)ρl
=

pl + p∗

2

(
1
ρl
− 1

ρ∗l

)
(3.96)

Multiplying by ρ∗l gives:

p∗

γl −1
− pl

(γl −1)
ρ∗l
ρl

=
pl + p∗

2

(
ρ∗l
ρl
−1

)
(3.97)

or

ρ∗l
ρl

(
1
2
(pl + p∗)+

pl

γl −1

)
=

p∗

γl −1
+

1
2
(pl + p∗) (3.98)

Dividing by pl and manipulating the equation yield:

ρ∗l
ρl

(
1
2

p∗

pl
+

1
2

+
1

γl −1

)
=

p∗

pl

(
1

γl −1
+

1
2

)
+

1
2

(3.99)
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Multiplying by two and rearranging give:

ρ∗l
ρl

(
p∗

pl
+

γl +1
γl −1

)
=
(

γl +1
γl −1

)
p∗

pl
+1 (3.100)

Finally, the formula forρ∗l as a function ofp∗ and the known left state is:

ρ
∗
l = ρl

p∗

pl
+ γl−1

γl +1
γl−1
γl +1

p∗
pl

+1
(3.101)

The same formula can be derived for right shock waves:

ρ
∗
r = ρr

p∗

pr
+ γr−1

γr+1
γr−1
γr+1

p∗
pr

+1
(3.102)

The momentum jump relation can be rewritten as:

(ρl ûl )ûl + pl = (ρ∗l û∗)û∗+ p∗ (3.103)

Using the mass jump relation yields:

ûl − û∗ =
p∗− pl

ρl ûl
(3.104)

Using the definition of the relative speeds (Equations 3.81 and 3.82) gives:

ul −u∗ =
p∗− pl

ρl ûl
(3.105)

Equivalently,

ρl ûl =
p∗− pl

ul −u∗
=

p∗− pl

ûl − û∗
=

p∗− pl
ρl ûl
ρl
− ρ∗l û∗

ρ∗l

(3.106)

Using the mass flux jump relation yields,

(ρl ûl )2 =
p∗− pl
1
ρl
− 1

ρ∗l

= ρl
p∗− pl

1− ρl
ρ∗l

(3.107)

The ratio of densities across the shock follows from Eq. 3.101. Hence,

(ρl ûl )2 = ρl
p∗− pl

1−
γl−1
γl +1

p∗
pl

+1

p∗
pl

+ γl−1
γl +1

(3.108)
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This relates the mass flux to the left state andp∗ and can be simplified somewhat:

(ρl ûl )2 = ρl (p∗− pl )
γl−1
γl +1 + p∗

pl

p∗
pl

+ γl−1
γl +1−

γl−1
γl +1

p∗
pl
−1

(3.109)

= ρl (p∗− pl )
γl−1
γl +1 + p∗

pl

γl−1
γl +1

(
1− p∗

pl

)
+ p∗

pl
−1

(3.110)

= ρl (p∗− pl )
γl−1
γl +1 pl + p∗

γl−1
γl +1(pl − p∗)+(p∗− pl )

(3.111)

= ρl

γl−1
γl +1 pl + p∗

1− γl−1
γl +1

(3.112)

Hence,

(ρl ûl )2 =
γl−1
γl +1 pl + p∗

2
(γl +1)ρl

(3.113)

and

(ρl ûl )2 =
γl −1

2
ρl pl +

γl +1
2

ρl p
∗ (3.114)

Using Eq. 3.105 and Eq. 3.113 givesu∗ as a function ofp∗ and the left state:

u∗ = ul − (p∗− pl )

( 2
(γl +1)ρl

γl−1
γl +1 pl + p∗

) 1
2

(3.115)

The formula for a right shock wave is:

u∗ = ur +(p∗− pr)

( 2
(γr+1)ρr

γr−1
γr+1 pr + p∗

) 1
2

(3.116)

The left shock speed is then given by Equations 3.81 and 3.114:

sl = ul − ûl = ul −
1
ρl

(
γl −1

2
ρl pl +

γl +1
2

ρl p
∗
) 1

2

(3.117)

= ul −
(

γl pl

ρl

) 1
2
(

γl −1
2γl

+
γl +1
2γl

p∗

pl

) 1
2

(3.118)

Hence,

sl = ul −al

(
γl +1
2γl

p∗

pl
+

γl −1
2γl

) 1
2

(3.119)
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Similarly, the right shock speed is given by:

sr = ur +ar

(
γr +1
2γr

p∗

pr
+

γr −1
2γr

) 1
2

(3.120)

3.3.3 Implicit Analytical Solution to the Ideal Gas Riemann Problem

According to the theory of characteristics for hyperbolic equations, the solution to the

Riemann problem is made of two, three or four waves. In the three-wave case, the middle

wave is always a contact discontinuity; the left and right waves can be any combination of

rarefaction and shock waves: a left shock and a right rarefaction, a left rarefaction and a right

shock, left and right shock waves, or left and right rarefaction fans. The two-wave cases arise

when the initial conditions include a vacuum side and are discussed in Section 3.5 along the

four-wave case, which arises for an ideal gas when

2al

γl −1
+

2ar

γr −1
≤ ur −ul (3.121)

The remainder of this section is devoted to the standard case, with the typical three-wave

pattern, which will be illustrated in Section 3.7.

Determination of p∗ and u∗

Let’s define:

f (p∗,ρ,ω,u,v,w, p) =


(p∗− p)

(
2

(γ+1)ρ

p∗+ γ−1
γ+1 p

) 1
2

if p∗ > p

2a
γ−1

((
p∗

p

) γ−1
2γ −1

)
if 0 < p∗ < p

(3.122)

wherea=
√

γ p
ρ

. Eq. 3.77 and Eq. 3.115 show that forp∗ ∈]0,∞[\{p}, u∗ is given as a function

of p∗ and the original left state by:

u∗ = ul − f (p∗,ρl ,ωl ,ul ,vl ,wl , pl ) (3.123)
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The casep∗ = 0 leads to a vacuum solution and is excluded in this section.p∗ = p only

happens whenUl = Ur . Similarly, u∗ can be expressed as a function ofp∗ and the right state:

u∗ = ur + f (p∗,ρr ,ωr ,ur ,vr ,wr , pr) (3.124)

p∗ is then the solution to the following equation, obtained by subtracting Eq. 3.123 from

Eq. 3.124:

f (p∗,ρl ,ωl ,ul ,vl ,wl , pl )+ f (p∗,ρr ,ωr ,ur ,vr ,wr , pr)+ur −ul = 0 (3.125)

Oncep∗ is known, it is trivial to obtainu∗. Adding Eq. 3.123 to Eq. 3.124 gives:

u∗ =
ur +ul + f (p∗,ρr ,ωr ,ur ,vr ,wr , pr)− f (p∗,ρl ,ωl ,ul ,vl ,wl , pl )

2
(3.126)

Solution sampler

The state of the gas at any locationx and at any timet can then readily be obtained by

determining the wave pattern and in what region of the plan the point (x, t) lies. If the point

is left of the contact, one checks first if the left wave is a shock or a rarefaction fan. If the

left wave is a shock, the point (x, t) can be on the left side of the shock (where the gas is still

at the initial left state) or on the right of the shock in the left star region. If the left wave is

a rarefaction, three cases need to be considered: if the point is on the left of the rarefaction

“head,” inside the rarefaction fan, or in the left star region on the right of the rarefaction “tail.”

A point on the right of the contact can be treated in a similar manner.



44

Mathematically, ifxt ≤ u∗ (left-hand side of the contact wave)

[
ω v w

]
=
[

ωl vl wl

]
(3.127)

[
ρ u p

]
=



if p∗ > pl



[
ρl ul pl

]
if x

t < sl[
(3.101) u∗ p∗

]
if sl < x

t < u∗

if p∗ < pl



[
ρl ul pl

]
if x

t ≤ ul −al[
(3.72) (3.66) (3.71)

]
if ul −al ≤ x

t ≤ u∗−a∗l[
(3.76) u∗ p∗

]
if u∗−a∗l ≤

x
t < u∗

(3.128)

and if x
t ≥ u∗ (right-hand side of the contact wave)

[
ω v w

]
=
[

ωr vr wr

]
(3.129)

[
ρ u p

]
=



if p∗ > pr



[
(3.102) u∗ p∗

]
if u∗ < x

t < sr[
ρr ur pr

]
if x

t > sr

if p∗ < pr



[
(3.76) u∗ p∗

]
if u∗ < x

t ≤ u∗+a∗r[
(3.72) (3.66) (3.71)

]
if u∗+a∗r ≤ x

t ≤ ur +ar[
ρr ur pr

]
if x

t ≥ ur +ar

(3.130)

wheresl , a∗l ,r , andsr are given by Equations 3.119, 3.75, and 3.120, respectively.
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3.3.4 Numerical Model and Choice of Root Solver

The state of the gas is undefined at the location of the contact and, if applicable, at the

position of any shock. In practice, one can arbitrarily define the state of the gas at these

discontinuities by making all the inequalities onx
t non strict in Equations 3.128 and 3.130.

Let’s define a functiong(p∗,ρl ,ωl ,ul ,vl ,wl , pl ,ρr ,ωr ,ur ,vr ,wr , pr) by:

g = f (p∗,ρl ,ωl ,ul ,vl ,wl , pl )+ f (p∗,ρr ,ωr ,ur ,vr ,wr , pr)+ur −ul (3.131)

where f is given by Eq. 3.122. Solving Eq. 3.125 comes down to finding the value ofp∗ that

satisfies:

g(p∗,ρl ,ωl ,ul ,vl ,wl , pl ,ρr ,ωr ,ur ,vr ,wr , pr) = 0 (3.132)

While g is a function of thirteen variables, twelve of its arguments are known parameters.

Hence, Eq. 3.132 can be solved using a variety of root solvers for functions ofonevariable.

The root solver could iterate to a value ofp∗ such asp∗ = pl or p∗ = pr . The casep = pl ,r

can be handled by extending the definition off using, say, the rarefaction branch:

f (p∗,ρ,ω,u,v,w, p) =


(p∗− p)

(
2

(γ+1)ρ

p∗+ γ−1
γ+1 p

) 1
2

if p∗ > p

2a
γ−1

((
p∗

p

) γ−1
2γ −1

)
if 0 < p∗ ≤ p

(3.133)

When the root is close to zero and the initial guess is poor, the root solvers may iterate to

negative value ofp∗ for which g is undefined. The root solvers can be modified to resetp∗ to

some small positive numberε whenever needed. Equivalently, the definition ofg and all its

derivatives can be modified so that:

(∀p∗ < ε) g(p∗) = g(ε) g′(p∗) = g′(ε) (3.134)

and similarly for the higher derivatives. (The known parameters of the functiong are not

shown hereafter.) The latter method is numerically equivalent and slightly easier to implement.
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The secant and Newton-Raphson schemes are among the most frequently used root solvers.

The secant iteration is given by:

p∗n+1 = p∗n−
(p∗n− p∗n−1)g(p∗n)
g(p∗n)−g(p∗n−1)

(3.135)

for n∈N∗. The two most natural guesses forp∗ are the initial values of pressure; for instance,

the iteration can be started with:

(p∗0, p∗1) = (pl , pr) (3.136)

(Obviously, the initial guesses need to be adjusted whenpl = pr .) The secant method is robust

and each of its iterations requires relatively few operations. However, the convergence of the

modified secant method is rather slow, being only supralinear. Since the Riemann solver is the

core of the reconstruction-evolution methods described in Section 3.6, implementing a method

with at least a quadratic convergence may save a substantial amount of computing time. The

Newton-Raphson iteration is based on:

p∗n+1 = p∗n−
g(p∗n)
g′(p∗n)

(3.137)

for n ∈ N. Actually, the secant method is the Newton-Raphson scheme with the following

additional approximation:

g
′
(p∗n)≈

g(p∗n)−g(p∗n−1)
p∗n− p∗n−1

(3.138)

The Newton-Raphson scheme is robust and converges quadratically. Compared to the secant

method, its iteration step is more computationally intensive due to the evaluation of the deriv-

ative, but its higher convergence rate means fewer iterations for a sufficiently small tolerance.

Experience shows that a properly implemented Newton-Raphson scheme is indeed faster than

the secant method. The Visual Tsunami secant and Newton-Raphson schemes turned out to

be faster than MATLAB’s root solver, which implements Brent’s algorithm [46].
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Higher-order methods can be used as well, but, because of their increase in computing time

per iteration, they are only worth it for very small tolerances. A Householder cubic method

p∗n+1 = p∗n−
g(p∗n)
g′(p∗n)

(
1+

g(p∗n)g
′′
(p∗n)

2(g′(p∗n))2

)
(3.139)

and a Householder quartic scheme

p∗n+1 = p∗n−
g(p∗n)
g′(p∗n)

(
1+

g(p∗n)g
′′
(p∗n)

2(g′(p∗n))2
+

(g(p∗n))
2(3(g

′′
(p∗n))

2−g
′
(p∗n)g

′′′
(p∗n))

6(g′(p∗n))4

)
(3.140)

were implemented in Visual Tsunami. The high-order schemes can be started with the simple

guess:

p∗0 =
pl + pr

2
(3.141)

Experience indicates that one of the best initial guesses is given by the analytic solution to the

Riemann problem assuming thatγ = γl +γr
2 and that two rarefaction waves are present. From

Eq. 3.125,p∗0 is then given by:

2al

γ−1

((
p∗0
pl

) γ−1
2γ

−1

)
+

2ar

γ−1

((
p∗0
pr

) γ−1
2γ

−1

)
+ur −ul = 0 (3.142)

Hence,

(p∗0)
γ−1
2γ

 al

p
γ−1
2γ

l

+
ar

p
γ−1
2γ

r

= al +ar −
1
2
(γ−1)(ur −ul ) (3.143)

Finally,

p∗0 =


al +ar − 1

2(γ−1)(ur −ul ) al

p
γ−1
2γ

l

+ ar

p
γ−1
2γ

r





2γ

γ−1

(3.144)

This guess is obviously the exact answer ifγl = γr and the solution consists of two rarefaction

waves. Numerical experiments show that this approximation is still good in the case of weak

shocks and hence provides an excellent first guess to initiate the iteration.
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3.4 The Exact Riemann Problem: Exact Real Gas Case

The ideal gas Riemann solver essentially follows Godunov’s original approach as refined

by several decades of CFD practices [72, 30]. A solution to the Riemann problem described

in the previous section is now developed for a gas obeying a real gas equation of state. No

satisfying scheme was found in the literature and an exact, yet simple approach was developed

for this doctoral dissertation. (Colella and Glaz’s solver [19] was used in previous versions of

TSUNAMI. Other solvers were proposed by Saurel and co-workers [60].)

3.4.1 Mathematical Tools: Simple and Shock Waves

Contact Discontinuity Wave

As for the ideal gas case, the velocity and pressure do not change across the contact:

u∗l = u∗r = u∗ (3.145)

p∗l = p∗r = p∗ (3.146)

while density, sound speed, specific energy, and volumetric exponent will change.

Shock Wave

The Rankine-Hugoniot shock relations—Equations 3.78, 3.79, and 3.80—are the same

and lead to the same Eq. 3.95; hence the same Hugoniot formula relates the jump in specific

internal energy to the pressures and densities on both sides of the shock:

e∗l ,r −el ,r =
pl ,r + p∗

2

(
1

ρl ,r
− 1

ρ∗l ,r

)
(3.147)

Making use of the definition of the volumetric exponent given in Eq. 3.48 and following

the same mathematical steps performed in the ideal gas case leads from the Hugoniot relation
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to the formula for the densities on both sides of a shock wave:

ρ
∗
l ,r = ρl ,r

γ∗l ,r+1
γ∗l ,r−1

p∗

pl ,r
+1

p∗
pl ,r

+ γl ,r+1
γl ,r−1

(3.148)

As for the ideal gas case, the jump in speed can be related to the ratio of pressure difference

to mass flux:

u∗ = ul ,r ∓
p∗− pl ,r

ρl ,r ûl ,r
(3.149)

where

(ρl ,r ûl ,r)2 =
p∗− pl ,r
1

ρl ,r
− 1

ρ∗l ,r

(3.150)

(The minus is for a left shock; the plus sign for a right shock.) Hence,

u∗ = ul ,r ∓

√√√√(p∗− pl ,r)

(
1

ρl ,r
− 1

ρ∗l ,r

)
(3.151)

Using Eq. 3.148 yields:

u∗ = ul ,r −

√√√√√√ p∗− pl ,r

ρl ,r

1−
p∗
pl ,r

+ γl ,r+1
γl ,r−1

γ∗l ,r+1
γ∗l ,r−1

p∗
pl ,r

+1

 (3.152)

No significant further simplification is readily possible for the real gas case. As usual, the

shock speed is given by:

sl ,r = ul ,r ∓ ûl ,r (3.153)

sl ,r = ul ,r ∓

√
p∗−pl ,r
1

ρl ,r
− 1

ρ∗l ,r

ρl ,r
(3.154)

Rarefaction Fan

Rarefaction waves are significantly more complicated in the real gas case than in its ideal

counterpart. The integral form of the Riemann invariant still reads:

u∗ = ul −
∫

ρ∗l

ρl

a
ρ

dρ (3.155)
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In the ideal gas case, the integranda
ρ

can be expressed as a function ofρ and the constant

exponentγ. The integration is then straight-forward. In the real gas rarefaction fan, no simple

relationship between the gas state in the middle region and the known state on the other side of

the rarefaction can be derived, except for a few sufficiently simple analytical real gas equations

of state [71, 57].

3.4.2 New and State-Of-The-Art Analytical and Numerical Models

Closely following the ideal gas case, the exact solution to the real gas Riemann problem is

obtained by enforcing the continuity ofu∗ through the contact:

f (p∗,ρl ,ωl ,ul ,vl ,wl , pl )+ f (p∗,ρr ,ωr ,ur ,vr ,wr , pr)+ur −ul = 0 (3.156)

The real gas functionf is given by:

f (p∗,ρ,ω,u,v,w, p) =



√
p∗−p

ρ

(
1−

p∗
p + γ+1

γ−1
γ∗+1
γ∗−1

p∗
p +1

)
if p∗ > p

∫
ρ∗
ρ

a
ρ

dρ if 0 < p∗ ≤ p

(3.157)

whereγ = 1+ p
ρe is known andγ∗ is the solution to the following trivial equation:

p∗− (γ∗−1)ρ∗e∗ = 0 (3.158)

ρ∗ is given by Eq. 3.148,e∗ by the Hugoniot relation, andp∗(ρ∗,e∗) by the volumetric equa-

tion of state. The equation forγ∗ hence reads:

p∗− (γ∗−1)ρ
γ∗+1
γ∗−1

p∗

p +1
p∗
p + γ+1

γ−1

(
e+

p+ p∗

2ρ

(
1−

p∗

p + γ+1
γ−1

γ∗+1
γ∗−1

p∗
p +1

))
= 0 (3.159)

Both Equations 3.156 and 3.159 can be solved through the secant method, or alternatively,

Brent’s algorithm [46]. This algorithm trivially reduces to its ideal gas law counterpart ifγ is

a constant.
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For the rarefaction branch, the integral of the Riemann invariant can be evaluated numeri-

cally: ∫
ρ∗

ρ

a
ρ

dρ =−∑
i

a(ρi ,ei)
ρi

∆ρ (3.160)

whereρi andei are defined recursively fori ∈ N∗ by

ρi = ρi−1−∆ρ (3.161)

and

ei = ei−1−∆ei = ei−1−
pi−1(ρi−1,ei−1)

ρ2
i−1

∆ρ (3.162)

The first values are given by

(ρ0,e0) = (ρl ,el ) (3.163)

The specific energy increment comes from the already encountered thermodynamics relation-

ship:

de= Tds+
p

ρ2dρ (3.164)

which simplifies to

de=
p

ρ2dρ (3.165)

for an isentropic flow. The discrete integration is performed untilρi satisfies

|p(ρi ,ei)− p∗|< relative tolerance×max(p∗,1) (3.166)

The density increment can be defined as:

∆ρ = relative tolerance×max(ρl ,1) (3.167)

The sampling procedure is similar to the ideal gas case. All the formulae needed have been

discussed, except for those giving the state of the gas inside a rarefaction fan. For a left
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rarefaction,

u = ul −
∫

ρ

ρl

a
ρ

dρ = ul +∑
i

a(ρi ,ei)
ρi

∆ρ (3.168)

where the sum is performed as before along the isentrope, this time until the characteristic

equation is satisfied:

u =
x
t
+a (3.169)

Eq. 3.168 returnsρ(x, t), u(x, t), e(x, t), anda(x, t). The remaining physical quantities are

easily obtained through the equations of state.

Finally, the sampling procedure can be explicitly given by the following. On the left-hand

side of the contact, namely ifxt ≤ u∗[
ω v w

]
=
[

ωl vl wl

]
(3.170)

[
ρ u p e

]
=



if p∗ > pl



[
ρl ul pl el

]
if x

t < sl[
ρ∗l u∗ p∗ e∗l

]
if sl < x

t < u∗

if p∗ < pl



[
ρl ul pl el

]
if x

t ≤ ul −al[
(3.168) and EOS

]
if ul −al ≤ x

t ≤ u∗−a∗l[
ρ∗l u∗ p∗ e∗l

]
if u∗−a∗l ≤

x
t < u∗

(3.171)

wheresl is given by Eq. 3.154.ρ∗l ande∗l were obtained through the root solver, as well as

a∗l , if the left wave is a rarefaction. Physically, bothp ande cannot be chosen as independent

variables; both are specified here in the sampling procedure since both will be used by the

reconstruction-evolution methods of Section 3.6.

The right-hand side of the contact is treated in a similar manner. If the integral form of

the Riemann invariant is tabulated as a function ofρ, e, andp∗ for use in Eq. 3.157 and as a
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function ofρ, e, u, andx
t for use in the sampling procedure, a significant gain in run time can

be achieved. If both the shock and rarefaction branches of Eq. 3.157 are tabulated, the real gas

scheme approaches that of the ideal gas one, for a minor, if not trivial, loss of accuracy.

3.5 Exotic Riemann Cases

3.5.1 Uniform Initial Conditions

The caseUl = Ur is trivial.

3.5.2 Left Vacuum

Whenρl = pl = 0, an explicit solution is available for an ideal gas:

[ρ,ω,u,v,w, p,e] =



[0,0,0,0,0,0,0] if x
t ≤ ur − 2ar

γr−1

right fan solution ifur − 2ar
γr−1 ≤

x
t ≤ ur +ar

[ρr ,ωr ,ur ,vr ,wr , pr ,er ] if x
t ≥ ur +ar

(3.172)

For a real gas, the solution is assumed to read:

[ρ,ω,u,v,w, p,e] =



[0,0,0,0,0,0,0] if x
t ≤ ur +

∫ 0
ρr

a
ρ

dρ

right fan solution ifur +
∫ 0

ρr
a
ρ

dρ ≤ x
t ≤ ur +ar

[ρr ,ωr ,ur ,vr ,wr , pr ,er ] if x
t ≥ ur +ar

(3.173)

where the integration of the Riemann invariant is done as usual along the isentrope. The issue

of the actual value and physical meaning of the vacuum speed is not addressed since it does

not play any role when it comes to evaluating the flux vector required by the reconstruction-

evolution methods to be tackled in Section 3.6.
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3.5.3 Right Vacuum

Whenρr = pr = 0, an explicit solution is also available for an ideal gas:

[ρ,ω,u,v,w, p,e] =



[ρl ,ωl ,ul ,vl ,wl , pl ,el ] if x
t ≤ ul −al

left fan solution iful −al ≤ x
t ≤ ul +

2al
γl−1

[0,0,0,0,0,0,0] if x
t ≥ ul +

2al
γl−1

(3.174)

For a real gas, the ideal gas solution is extended to:

[ρ,ω,u,v,w, p,e] =



[ρl ,ωl ,ul ,vl ,wl , pl ,el ] if x
t ≤ ul −al

left fan solution iful −al ≤ x
t ≤ ul −

∫ 0
ρl

a
ρ

dρ

[0,0,0,0,0,0,0] if x
t ≥ ul −

∫ 0
ρl

a
ρ

dρ

(3.175)

As for the left vacuum case, the question of the actual value and physical meaning of the

vacuum speed is not addressed.

3.5.4 Center Vacuum

Non-vacuum initial conditions can lead to appearance of vacuum. This arises when the

inequality 3.121 holds true for an ideal gas:

2al

γl −1
+

2ar

γr −1
≤ ur −ul (3.176)
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The explicit solution to the center vacuum can been seen as a combination of the previous left

and right vacuum solutions:

[ρ,ω,u,v,w, p,e] =



[ρl ,ωl ,ul ,vl ,wl , pl ,el ] if x
t ≤ ul −al

left fan solution iful −al ≤ x
t ≤ ul +

2al
γl−1

[0,0,0,0,0,0,0] if ul +
2al

γl−1 ≤
x
t ≤ ur − 2ar

γr−1

right fan solution ifur − 2ar
γr−1 ≤

x
t ≤ ur +ar

[ρr ,ωr ,ur ,vr ,wr , pr ,er ] if x
t ≥ ur +ar

(3.177)

For a real gas, the escape velocities need to be evaluated with the appropriate form of the

Riemann invariants:

−
∫ 0

ρl

a
ρ

dρ−
∫ 0

ρr

a
ρ

dρ ≤ ur −ul (3.178)

The solution reads:

[ρ,ω,u,v,w, p,e] =



[ρl ,ωl ,ul ,vl ,wl , pl ,el ] if x
t ≤ ul −al

left fan solution iful −al ≤ x
t ≤ ul −

∫ 0
ρl

a
ρ

dρ

[0,0,0,0,0,0,0] if ul −
∫ 0

ρl

a
ρ

dρ ≤ x
t ≤ ur +

∫ 0
ρr

a
ρ

dρ

right fan solution ifur +
∫ 0

ρr
a
ρ

dρ ≤ x
t ≤ ur +ar

[ρr ,ωr ,ur ,vr ,wr , pr ,er ] if x
t ≥ ur +ar

(3.179)

The three vacuum cases are treated for completeness and robustness. Problems that rely on

those are not best treated by reconstruction-evolution methods, or any algorithm based on the

Euler equations for that matter—vacuum cases violate the continuum assumption, an essential

hypothesis used to derive the Euler equations.



56

3.6 Reconstruction-Evolution Methods

Reconstuction-evolution methods constitute a large class of numerical schemes that can be

applied to solve a variety of equations. They tend to be particularly powerful to solve hyper-

bolic equations. In most of this section, the physical domain is assumed to be discretized as a

Cartesian grid. For the sake of generality, a non-uniform grid is described. In practice, non-

uniform grids may be cumbersome to use and nested uniform grids or unstructured meshes

are preferred.

By definition,

∆Vi, j,k = ∆xi∆y j∆zk (3.180)

is the volume of the cell centered atx = xi , y = y j , andz= zk. Trivially, Ūn
i, j,k, the average at

time t = tn of the vector of conserved quantities over the volume of the cell(i, j,k) is given

by:

Ūn
i, j,k =

1
∆Vi, j,k

∫∫∫
∆Vi, j,k

U(x,y,z, tn)dxdydz (3.181)

The integral form of the Euler equations applied to the cell (i, j,k) and integrated betweentn

andtn+1 reads: ∫∫∫
∆Vi, j,k

(
U(x,y,z, tn+1)−U(x,y,z, tn)

)
dxdydz=

+
∫ tn+1

tn
dt

∫∫
S

i− 1
2 , j,k

Fx(xi− 1
2
,y,z, t)dydz−

∫∫
S

i+ 1
2 , j,k

Fx(xi+ 1
2
,y,z, t)dydz


+
∫ tn+1

tn
dt

∫∫
S

i, j− 1
2 ,k

Fy(x,y j− 1
2
,z, t)dxdz−

∫∫
S

i, j+ 1
2 ,k

Fy(x,y j+ 1
2
,z, t)dxdz


+
∫ tn+1

tn
dt

∫∫
S

i, j,k− 1
2

Fz(x,y,zk− 1
2
, t)dxdy−

∫∫
S

i, j,k+ 1
2

Fz(x,y,zk+ 1
2
, t)dxdy



(3.182)
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The left-hand side of Eq. 3.182 can be trivially expressed as:

∫∫∫
∆Vi, j,k

(
U(x,y,z, tn+1)−U(x,y,z, tn)

)
dxdydz= ∆Vi, j,k

(
Ūn+1

i, j,k− Ūn
i, j,k

)
(3.183)

An approximation toŪn
i, j,k is supposed to be known to the required order in space and

time. An approximation tōUn+1
i, j,k is then sought to the same order. (Somewhat abusivally, the

exact solution and its approximation to first order in space and time will be denoted with the

same symbol, as will the exact and approximate averaged quantities.)

3.6.1 First-Order Reconstruction: Piecewise Constant Interpolation

To first order in space, the approximated solution is assumed to be constant over the volume

of the cell:

U(x,y,z, tn) = Ūn
i, j,kfor (x,y,z) ∈ [xi− 1

2
,xi+ 1

2
]× [yi− 1

2
,yi+ 1

2
]× [zi− 1

2
,zi+ 1

2
] (3.184)

A midpoint integration may be invoked to simplify the right-hand side of Eq. 3.182 to second

order in space, yielding:

∆Vi, j,k

(
Ūn+1

i, j,k− Ūn
i, j,k

)
=

+
∫ tn+1

tn
∆y j∆zk

(
Fx(U(xi− 1

2
,y j ,zk, t))−Fx(U(xi+ 1

2
,y j ,zk, t))

)
dt

+
∫ tn+1

tn
∆xi∆zk

(
Fy(U(xi ,y j− 1

2
,zk, t))−Fy(U(xi ,y j+ 1

2
,zk, t))

)
dt

+
∫ tn+1

tn
∆xi∆y j

(
Fz(U(xi ,y j ,zk− 1

2
, t))−Fz(U(xi ,y j ,zk+ 1

2
, t))
)

dt

(3.185)

The piecewise constant reconstruction leads to four split fluxes that are piecewise constant

over their respective surfaces; the integration over the surface of the edges is therefore exact

in the case of a piecewise constant reconstruction.
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3.6.2 Evolution in the Case of a Piecewise Constant Reconstruction

The four fluxes at the cell edges can beevaluated by using the solutions to the four 1-D

split Riemann problems between the two sides of the relevant cell edge. The integral Euler

equations then read:

∆Vi, j,k

(
Ūn+1

i, j,k− Ūn
i, j,k

)
=

+
∫ tn+1

tn
∆y j∆zk

(
Fx(URP

i− 1
2 , j,k

(0, t− tn))−Fx(URP
i+ 1

2 , j,k
(0, t− tn))

)
dt

+
∫ tn+1

tn
∆xi∆zk

(
Fy(URP

i, j− 1
2 ,k

(0, t− tn))−Fy(URP
i, j+ 1

2 ,k
(0, t− tn))

)
dt

+
∫ tn+1

tn
∆xi∆y j

(
Fz(URP

i, j,k− 1
2
(0, t− tn))−Fz(URP

i, j,k+ 1
2
(0, t− tn))

)
dt

(3.186)

where, for instance,URP
i− 1

2 , j,k
(0, t− tn) is the solution to the 1-D split Riemann problem given

by:

U(x−xi− 1
2
,y j ,zk, t

n) =


U(x−

i− 1
2
,y j ,zk, tn) if x < xi− 1

2

U(x+
i− 1

2
,y j ,zk, tn) if x > xi− 1

2

(3.187)

when evaluated atx = xi− 1
2
. The solution to the Riemann problem is detailed in the last three

Sections 3.3, 3.4 and 3.5. It is self-similar and only depends on the variablex
t . The time-

integration in Eq. 3.186 can then be performed exactly and leads to:

∆Vi, j,k

(
Ūn+1

i, j,k− Ūn
i, j,k

)
=

+∆tn∆y j∆zk

(
Fx(URP

i− 1
2 , j,k

(0))−Fx(URP
i+ 1

2 , j,k
(0))

)
+∆tn∆xi∆zk

(
Fy(URP

i, j− 1
2 ,k

(0))−Fy(URP
i, j+ 1

2 ,k
(0))

)
+∆tn∆xi∆y j

(
Fz(URP

i, j,k− 1
2
(0))−Fz(URP

i, j,k+ 1
2
(0))

)
(3.188)
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Hence,

Ūn+1
i, j,k = Ūn

i, j,k

+
∆tn

∆xi

(
Fx(URP

i− 1
2 , j,k

(0))−Fx(URP
i+ 1

2 , j,k
(0))

)
+

∆tn

∆y j

(
Fy(URP

i, j− 1
2 ,k

(0))−Fy(URP
i, j+ 1

2 ,k
(0))

)
+

∆tn

∆zk

(
Fz(URP

i, j,k− 1
2
(0))−Fz(URP

i, j,k+ 1
2
(0))

)
(3.189)

This solution is exact as long as∆tn is sufficiently small enough that the waves generated

by the Riemann problems attn cannot travel more than half a cell during∆tn. This is known

as the Courant-Friedrichs-Levy (CFL) condition:

∆tn <
min(∆xi ,∆y j ,∆zk)
max(wave speeds)

(3.190)

where the minimum and maximum are taken over the whole computational domain so that

the whole solution is advanced to the same time step. The reconstruction method based on

a piecewise constant reconstruction and the exact evolution of a piecewise constant flow is

known as the Godunov scheme. The scheme is considered first order accurate when waves are

allowed to travel more than half the cell width and less than the full width. The scheme may

fail if a wave travels more than a cell width during∆tn.

3.6.3 Axially-Symmetric Cylindrical Coordinates

In cylindrical coordinates, with axial symmetry, the Euler equations read:

∂U
∂ t

+∇ ·F+G = 0 (3.191)
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whereU, F andG are given by:

U =



ρ

ρωk

ρu

ρw

ρet


(3.192)

F(U) =
(

Fr(U) Fz(U)

)
=



ρu ρw

ρωku ρωkw

ρu2 + p ρuw

ρuw ρw2 + p

ρuet +up ρwet +wp


(3.193)

G =



ρu
r

ρωku
r

ρu2

r

ρuw
r

ρuet+up
r


(3.194)

This system of equations can be solved through the method of fractional steps. The first

step solves the advective part, whose equations can be solved via the method already derived

for Cartesian coordinates. The second step takes into account the terms that appear in cylin-
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drical coordinates. The numerical model for this step is to first order:

Ūn+1
i, j = Ūn

i, j −∆tn



ρ̄i, j ūi, j
r i, j

ρ̄i, j ω̄k,i, j ūi, j
r i, j

ρ̄i, j (ūi, j )2

r i, j

ρ̄i, j ūi, j w̄i, j
r i, j

ūi, j (ρ̄i, j ēt,i, j+p̄i, j )
r i, j


(3.195)

where the quantities on the right-hand side comes from the advection step. If necessary, time-

stepping can be used to control the accuracy of the solution. Alternatively, a MATLAB ordi-

nary differential equation solver could be employed.3

3.6.4 Boundary Conditions

Gas/gas boundaries are treated through an outflow or reflective model. The outflow model

assumes that the flow is free to exit and there is no inflow. For instance, if the outflow boundary

is located at(xi+ 1
2
,y j ,zk), the flux is the solution to the trivial Riemann problem given by:

U(x−xi+ 1
2
,y j ,zk, t

n) =


U(x−

i+ 1
2
,y j ,zk, tn) if x < xi+ 1

2

U(x−
i+ 1

2
,y j ,zk, tn) if x > xi+ 1

2

(3.196)

The reflective model assumes that the flow cannot exit. This model is used for symmet-

ric boundary conditions, as well as gas/solid and gas/liquid boundaries, when mass and heat

transfer phenomena are neglected and the condensed phase is assumed to be perfectly rigid.

If the reflective boundary is located at(xi+ 1
2
,y j ,zk), the flux at the boundary is the solution of

3A body force such as gravity can be treated to first order in a similar manner, in axially-symmetric cylindrical
or Cartesian coordinates.
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Test ρl (kg m−3) ul (m s−1) pl (Pa) ρr (kg m−3) ur (m s−1) pr (Pa)
1 [67] 1.0 0.0 1.0 0.125 0.0 0.1
2 [29] 1.0 -2.0 0.4 1.0 2.0 0.4
3 [75] 1.0 0.0 1000.0 1.0 0.0 0.01
4 [75] 1.0 0.0 0.01 1.0 0.0 100.0
5 [75] 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950

Table 3.1: A few of the Riemann problems used as test cases.

the following Riemann problem:

U(x−xi+ 1
2
,y j ,zk, t

n) =



U(x−
i+ 1

2
,y j ,zk, tn) if x < xi+ 1

2

ρ(x−
i+ 1

2
,y j ,zk, tn)

ρ(x−
i+ 1

2
,y j ,zk, tn)ωk(x−i+ 1

2
,y j ,zk, tn)

−ρ(x−
i+ 1

2
,y j ,zk, tn)u(x−

i+ 1
2
,y j ,zk, tn)

ρ(x−
i+ 1

2
,y j ,zk, tn)v(x−

i+ 1
2
,y j ,zk, tn)

ρ(x−
i+ 1

2
,y j ,zk, tn)w(x−

i+ 1
2
,y j ,zk, tn)

ρ(x−
i+ 1

2
,y j ,zk, tn)et(x−i+ 1

2
,y j ,zk, tn)



if x > xi+ 1
2

(3.197)

Gas/liquid boundaries may be treated as reflective or through the model developed in

Chapter 5.

3.7 Benchmarking

3.7.1 Riemann Solvers

A variety of Riemann problems were used to benchmark the ideal gas and real gas Riemann

solvers. (Only the most significant cases are listed in Table 3.1.γ = 1.4 was used for these



63

test cases.)

1. Test case 1 is known as Sod’s problem [67]. Its solution is made of a left rarefaction, a

contact, and a right shock.

2. Test case 2 is an example of the symmetric two-rarefaction wave pattern that occurs,

for instance, at reflective boundaries when the velocity is away from the boundary. Test

case 2 is intended to illustrate the robustness of the exact Riemann solver when used to

model a highly kinetic flow. (By highly kinetic it is meant that the ratio of kinetic to

total energy is close to unity.) Einfeldt and co-workers [29] showed that some linearised

Riemann solvers yield negative densities when applied to sufficiently kinetic flows. This

is one of the primary reasons why an exact Riemann solver was implemented.

3. Test cases 3 and 4 are the left and right halves of Woodward and Colella’s blast wave

problem [75].

4. Test case 5 is the resulting wave from Woodward and Colella’s blast wave problem [75],

as reported by Toro [72].

Plots for test cases 1 through 5 are shown in Figures 3.1 through 3.5. The solutions from

the Riemann solver are displayed with continuous lines.

3.7.2 Evolution-Reconstruction Schemes

One-Dimensional Test Cases

The Riemann problems used to benchmark the Riemann solvers are employed again to test

the evolution-reconstruction schemes. Plots for test cases 1 through 5 are shown in Figures 3.1
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Figure 3.1: One-dimensional test case 1: density, velocity, pressure, specific energy.

Figure 3.2: One-dimensional test case 2: density, velocity, pressure, specific energy.
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Figure 3.3: One-dimensional test case 3: density, velocity, pressure, specific energy.

Figure 3.4: One-dimensional test case 4: density, velocity, pressure, specific energy.



66

Figure 3.5: One-dimensional test case 5: density, velocity, pressure, specific energy.

through 3.5. The Godunov scheme solutions are displayed with discontinuous lines. A mesh

of 300 cells, scaled from the coarsest Z-IFE simulation (to be described in Section 8.5), was

employed. The error can be reduced by refining the mesh size, but is already sufficiently

small for our purposes. The unphysical spike in the specific energy in Test case 2 is typical of

reconstruction-evolution schemes in the low-density, highly kinetic regime.

Two-Dimensional Test Cases

As an illustration of the two-dimensional capability of the code, a set of two-dimensional,

four-compartment Riemann problems were implemented. The particular example shown in

Fig. 3.6 is our 2-D version of the 1-D test case 5. The mesh size is the one used for the 1-D

problem, scaled from the coarsest Z-IFE simulation. Far from the center of the contour plot,

one-dimensional Riemann problems are apparent along the horizontal and vertical axes, as
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expected. In the center, a more complex 2-D pattern arises from the 2-D initial conditions.

Figure 3.6: Two-dimensional test case 5: density.

Three-Dimensional Test Cases

The three-dimensional capability of Visual Tsunami was demonstrated with a set of three-

dimensional Riemann problems. As an example, Fig. 3.7 shows a 3-D version of test case 1.

In the planes shown in the figure, two-dimensional Riemann problems are apparent.

3.8 Conclusions and Perspectives

Exact Riemann solvers to the exact Riemann problems for ideal and real gases were im-

plemented for the first time in a TSUNAMI code. A finite volume scheme was retained from
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Figure 3.7: Three-dimensional test case 1: density.

previous versions in its most robust form. Future improvements could include higher-order

reconstruction methods and unstructured meshes. The mesh size in Visual Tsunami simula-

tions will likely be set by the necessity to resolve complex geometrical boundary conditions,

not by the requirement for fine meshes imposed by first-order schemes. Numerical exper-

iments reported in this section do indicate that the coarsest Z-IFE mesh can capture shock

wave dynamics reasonably well and we therefore recommend implementing 2-D triangular

and 3-D tetrahedral meshes prior to upgrading the code to a higher-order numerical scheme

such as [73, 20]. (Unstructured meshes are particularly suited for simulations of complex

geometries.) The gas dynamics code was designed and implemented to be easily ported to a

distributed computing platform and finishing the implementation is encouraged. Substantial

run time improvements are expected.
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Chapter 4

Radiation Modeling

4.1 Introduction to Radiation Modeling

Detailed modeling of radiation interaction with matter is a daunting task, which is beyond

current computing capability when performed in a multi-dimensional hydrodynamics design

code. As a remedy, various approximate models can be used. However there is noa priori

rigorous means of choosing the appropriate model for a given physical system. Choosing the

best model for a given application is usually done empirically by implementing various models

one at a time, from the simplest to the most elaborate. A typical case is run using each model

and the error made with one model is assessed using the next, more accurate model. When

the error seems to converge to zero, the last but one model can be used with some confidence.

(Here a typical case would be a simulation of the target chamber and beam tubes. Examples

of such simulations are presented in Chapter 8.)

Time-independent models represent the simplest class of approximate treatments of ra-

diation transport. They include the most well-known cases, black and grey bodies for non-
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participating media, as well as ray models for participating media. Black and grey bodies

are inappropriate for gas dynamics calculations and cannot be applied for more than mere

scoping analyses. Ray models are mono-directional and become invalid when the medium

length is larger than several optical thicknesses. Jantzen [34] used such a model to estimate

radiative heat losses from the target and ablated molten salt. Her approach was essentially

one-dimensional. Each time step, heat losses by the spherical target, and independently, by

the expanding ablated slabs of molten salt would be estimated. Geometry-wise, Jantzen’s

model may be justified for no more than the first few microseconds; at any rate, her approach

lacks the generality expected for a versatile multi-dimensional radiation hydrodynamics code.

The simplest widely-used time-dependent model, the one-temperature diffusion model,

also known as the conduction model, has been discarded since it is inadequate in optically

“thin” regions where the density is low and the temperature high, resulting in large mean

free paths. The next most commonly used model, two-temperature diffusion, is believed to

yield the sought-after accuracy and has been retained. Radiation effects are expected to be

secondary in a thick-liquid protected chamber, and, for time’s sake, no attempt was made at

benchmarking the approach against more elaborate models. (The average temperature of the

ablated layers in the target chamber will be less than 100,000 K, a temperature too low for the

radiation pressure to dominate its gas counterpart. Radiation may, however, play some role

in a chamber in which the background vapor is dense enough to absorb some of the target

x-rays.)

Chen [11] implemented such a two-temperature diffusion model into his 1-D version of

TSUNAMI. The physical and mathematical models described here are close to Chen’s, but the

numerical scheme is expected to be significantly more accurate.
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4.2 Physical Modeling: Flux-Limited Diffusion

The approach chosen in this section is purely intuitive. No formal derivation of the main

differential equations will be given.

4.2.1 Differential Equations

The gas energy can be converted into radiation energy or can be transported away. The

latter piece of physics is taken care of by the hydrodynamics model and thus only the former

appears in the following gas energy balance equation:

∂ρe
∂ t

=
c

λP
(Er −aT4) (4.1)

whereρ is the gas density (kg m−3), e the gas specific energy (J kg−1), Er the radiation energy

density (J m−3), andT the gas temperature (K).λP is the so-called Planck transport mean free

path (m).c the speed of light in vacuum,1 anda is given by:

a =
4σ

c
(4.2)

σ is the Stefan-Boltzmann constant.2 Intuitively, Eq. 4.1 means that if the radiation field

temperature,Tr = (Er
a )

1
4 , is greater than the gas temperature,T, then the gas will warm up and

its energy per unit volume will increase.

The gas energy conservation equation can be simplified further through simple physical

considerations. The effect of a volumetric energy change on the gas volume is not directly

accounted for by the radiation scheme, but through the hydrodynamics model, according to

which an increase in energy per unit volume will increase the gas pressure, which will in turn

1c = 3.00×108 m s−1

2σ = 5.67×10−8 W m−2 K−4; a = 7.56×10−16J m−3 K−4.
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cause the gas to expand and its density to change. Here, radiation diffusion and exchange with

the gas will not change the density of the gas:

ρ
∂e
∂ t

=
c

λP
(Er −aT4) (4.3)

and gas-radiation interactions are isochoric:

∂V
∂ t

= 0 (4.4)

A little bit of thermodynamics is needed to relate a change in specific energy to a change in

temperature:

∆e=
∂e
∂T

∣∣∣∣
V

∆T +
∂e
∂V

∣∣∣∣
T

∆V = cv∆T +
∂e
∂V

∣∣∣∣
T

∆V = cv∆T (4.5)

wherecv is the specific heat at constant volume (J K−1 kg−1). The gas energy equation finally

reads:

ρ
∂cvT

∂ t
=

c
λP

(Er −aT4) (4.6)

Note that the numerical scheme makes use of Eq. 4.3 sinceT = f (ρ,e) is more frequently

available thancv = g(ρ,T).

The radiation energy can be diffused away or converted into gas energy. Mathematically,

without any proof, this translates into:

∂Er

∂ t
= ∇ · (D∇Er)−

c
λP

(Er −aT4) (4.7)

where the only new variable isD, the radiation diffusion coefficient (m2 s−1).

In “thick” regions, where the radiation diffusion mean free path is much smaller than the

typical length of the media, the diffusion coefficient,Dthick, is given by diffusion theory as:

Dthick =
cλR

3
(4.8)
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whereλR is the so-called Rosseland diffusion mean free path (m).

In “thin” regions, the Rosseland diffusion mean free paths goes to infinity and Eq. 4.8

yields an unphysical diffusion coefficient. The effective diffusion coefficient,Dthin, should be

in thin media:

Dthin =
cEr

4∇Er
(4.9)

in order to recover the correct flux (F = D∇Er ) in non-participating media:

Fthin = σT4
r =

ca
4

T4
r =

c
4

Er (4.10)

The so-called flux-limited diffusion coefficient,D, blends both thin and thick coefficients in

an attempt at covering the full range of mean free paths:

D = f (Dthick,Dthin) (4.11)

where f is a functionbelievedto be appropriate. Among the wealth of possibilities available

in the literature, a geometric mean was retained:

D =
1

1
Dthin

+ 1
Dthick

=
1

1
cλR

3

+ 1
cEr

4∇Er

(4.12)

If the medium is optically thick, the Rosseland mean free path,λR, goes to 0 and Eq. 4.8 is

recovered. Similarly, if the medium is optically thin,λR goes to∞ andD is given by Eq. 4.9.

Therefore the correct value ofD will be used in the two limiting cases of optically thick

and thin media. For finite mean free paths, on order of the typical length of the medium, it is

common practice tohopethat Eq. 4.12 yields a reasonably good effective diffusion coefficient.

Exploring the sensitivity of the model to the choice off could be valuable and is left for future

work.
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4.2.2 Initial and Boundary Conditions

The initial gas temperature distribution can usually be reasonably estimated in most cases,

either through simple analytical or complex numerical models. For lack of a better model,

local thermodynamics equilibrium may be assumed to prescribe the initial radiation energy

density in Visual Tsunami simulations:

Er = aT4
r = aT4 (4.13)

Cauchy boundary conditions are considered. The solid and liquid structures are assumed

to be in local thermodynamics equilibrium and will radiate at their respective temperaturesT,

yielding the following Dirichlet boundary:

Er = aT4 (4.14)

Neumann boundary conditions, with the energy density gradient set to zero, are used at sym-

metric and outflow gas boundaries. Implementation of more accurate boundary conditions is

left for future work.

4.3 Numerical Model

4.3.1 Three-Dimensional Cartesian Coordinates

The gas and radiation transport equations, Eq. 4.3 and Eq. 4.7, now read:

∂e
∂ t

=
c

ρλP
(Er −aT4) (4.15)

and

∂Er

∂ t
=

∂

∂x

(
D

∂Er

∂x

)
+

∂

∂y

(
D

∂Er

∂y

)
+

∂

∂z

(
D

∂Er

∂z

)
− c

λP
(Er −aT4) (4.16)



75

This system is solved through the Adams-Bashforth-Moulton predictor-corrector scheme, as

implemented in the MATLAB libraries. (This approach allows for an easy extension of the

model to phenomena such as gas thermal heat conduction and viscous effects.) Time-stepping

controls the accuracy of the time-integration. Details of the time integration are unnecessary

for the present discussion and are omitted. Eq. 4.15 is trivially discretized in space as:3

∂ei, j,k

∂ t
=

c
(

Ei, j,k−a
(
Ti, j,k

)4)
ρi, j,kλi, j,k

(4.17)

whereTi, j,k = f (ρi, j,k,ei, j,k) and λi, j,k = g(ρi, j,k,Ti, j,k). Eq. 4.16 is discretized in space as

follows:

∂Ei, j,k

∂ t
=

Di+ 1
2 , j,k

Ei+1, j,k−Ei, j,k
∆xi+∆xi+1

2

−Di− 1
2 , j,k

Ei, j,k−Ei−1, j,k
∆xi−1+∆xi

2

∆xi

+
Di, j+ 1

2 ,k
Ei, j+1,k−Ei, j,k

∆yj+∆yj+1
2

−Di, j− 1
2 ,k

Ei, j,k−Ei, j−1,k
∆yj−1+∆yj

2

∆y j

+
Di, j,k+ 1

2

Ei, j,k+1−Ei, j,k
∆zk+∆zk+1

2

−Di, j,k− 1
2

Ei, j,k−Ei, j,k−1
∆zk−1+∆zk

2

∆zk

− c
λi, j,k

(
Ei, j,k−a

(
Ti, j,k

)4)
(4.18)

Note that the non-linear dependence on the temperature is retained. (Most other diffusion

schemes linearize the term with the fourth power ofT.) In the flux-limited diffusion approxi-

mation used in this model, the diffusion coefficientD is computed as follows:

Di+ 1
2 , j,k =

(
3

cλR,i+ 1
2 , j,k

+
∆Ei+ 1

2 , j,k

Fi+ 1
2 , j,k

)−1

(4.19)

where

∆Ei+ 1
2 , j,k =

Ei+1, j,k−Ei, j,k
∆xi+∆xi+1

2

(4.20)

and

Fi+ 1
2 , j,k =

c
4

Ei, j,k +Ei+1, j,k

2
=

c
8
(Ei, j,k +Ei+1, j,k) (4.21)

3The subscripts r (radiation) and P (Planck) are dropped in all the discretized equations for clarity’s sake.



76

boundary location material properties
Neumann (1

2, j,k) E0, j,k = E1, j,k andρ0, j,k = ρ1, j,k ande0, j,k = e1, j,k

Neumann (I + 1
2, j,k) EI+1, j,k = EI , j,k andρI+1, j,k = ρI , j,k andeI+1, j,k = eI , j,k

Neumann (i, 1
2,k) Ei,0,k = Ei,1,k andρi,0,k = ρi,1,k andei,1,k = ei,1,k

Neumann (i,J+ 1
2,k) Ei,J+1,k = Ei,J,k andρi,J+1,k = ρi,J,k andei,J+1,k = ei,J,k

Neumann (i, j, 1
2) Ei, j,0 = Ei, j,1 andρi, j,0 = ρi, j,1 andei, j,0 = ei, j,1

Neumann (i, j,K + 1
2) Ei, j,K+1 = Ei, j,K andρi, j,K+1 = ρi, j,K andei, j,K+1 = ei, j,K

Table 4.1: Radiation cells.

λR,i+ 1
2 , j,k is evaluated using:

λR,i+ 1
2 , j,k =

λR,i, j,k +λR,i+1, j,k

2
(4.22)

Additional equations are needed at reflective boundaries. All cases are presented in Ta-

ble 4.1. For the radiation model, interior liquid and solid cells obey the following trivial

equations:

∂e
∂ t

= 0 (4.23)

and

∂Er

∂ t
= 0 (4.24)

(Changes in temperature are taken into account in Chapter 5.) The Rosseland and Planck

mean free paths are computed using the Los Alamos National Laboratory code TOPS [35].

Reducing the numerical scheme to 1-D or 2-D is trivial.

4.3.2 Axially-Symmetric Cylindrical Coordinates

Only minor modifications are necessary to adapt the scheme to axially-symmetric cylin-

drical coordinates. Equations 4.3 and 4.17 remain unchanged, while the radiation diffusion
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equation, Eq. 4.7, now reads:

∂Er

∂ t
=

1
r

∂

∂ r

(
rD

∂Er

∂ r

)
+

∂

∂z

(
D

∂Er

∂z

)
− c

λP
(Er −aT4) (4.25)

which leads to the following discretization in space:

∂Ei, j

∂ t
=

1
r i, j

r i+ 1
2 , jDi+ 1

2 , j
Ei+1, j−Ei, j

∆ri+∆ri+1
2

− r i− 1
2 , jDi− 1

2 , j
Ei, j−Ei−1, j

∆ri−1+∆ri
2

∆r i

+
Di, j+ 1

2

Ei, j+1−Ei, j
∆zj+∆zj+1

2

−Di, j− 1
2

Ei, j−Ei, j−1
∆zj−1+∆ j

2

∆zj

− c
λi, j

(
Ei, j −a

(
Ti, j
)4)

(4.26)

with the usual notations.

4.4 Conclusions and Perspectives

The two-temperature model coupled to the method of fractional steps was deemed suitable

for the purposes of efficient computing and accurate modeling of thick-liquid protected target

chambers. The radiation module still needs to be validated. In the near-term, various formulae

for the diffusion coefficient and the boundary conditions could be explored and a numerical

model compatible with unstructured meshes could be developed. As the level of sought-after

accuracy is raised and other Visual Tsunami models are refined, the radiation model may have

to be revised as well. A multi-group diffusion model or an unsplit radiation hydrodynamics

model could be developed and implemented. (The current split implementation neglects the

radiation pressure and energy compared to their gas dynamics counterparts.) As mentioned,

the numerical model discussed in this chapter was chosen because it can easily be extended to

include viscous and conductive effects, if necessary.
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Chapter 5

Gas-Liquid Interface

5.1 Introduction

Ablation and target debris cause a rise in density and pressure in the fusion chamber. For

the next target to be ignited, the initial background gas density needs to be restored. Thick-

liquid protected chambers rely on condensation as their main clearing mechanism and mod-

eling condensation phenomena is essential for high-fidelity simulations. Condensation will

happen over tens of milliseconds; the model presented in this chapter is only meant to capture

“early-time” condensation phenomena, which happen over the gas dynamics time scale.

The temperature of the surface of the liquid structures is a key parameter that needs to

be known accurately to predict condensation and evaporation fluxes, for the mass and energy

transfers are driven by the temperature difference at the gas-liquid interface. For early-time

(sub-millisecond) simulations, the temperature distribution inside the liquid is necessary to as-

sess secondary ablation—ablation caused by the hot gas in the target chamber, after the initial

ablation induced by the burst of target x-rays. An accurate assessment of the mass and energy
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fluxes up heavy-ion beam tubes requires some modeling of condensation and evaporation as

well.

Two different conduction models were coded in three distinct versions of TSUNAMI.

Liu [38] modeled condensation/evaporation phenomena and needed the temperature at the

interface to determine the mass, momentum and energy fluxes. Jantzen [34] required the

temperature field to model secondary ablation. Calderoni [8] implemented Liu’s model into

an early version of TSUNAMI 2.8. The heat transfer model presented in the following section

captures the physics relevant to treat condensation and radiation simultaneously. The third

section of this chapter focuses on a novel condensation/evaporation model that can be used at

the gas/liquid interface.

5.2 Submillisecond Heat Transfer in Liquid Jets

5.2.1 Physical and Mathematical Models

Over the typical gas dynamics time scale, conduction is assumed to be the only mechanism

by which heat is transported away from the surface into the liquid structures. (Typical time

scales for internal convection and turbulent effects are substantially greater than simulation

run times.) Consistently with the gas dynamics modeling, the liquid bulk velocity is assumed

to be negligible compared to that of the gas, and the liquid structures are stationary. Moreover,

secondary ablation will ablate thin layers of molten salt [11] and the gas/liquid interface will

be treated as immobile. For the liquid structures, the equation of thermal energy then reads:1

ρ
∂e
∂ t

= ∇ · (k∇T)+q(x,y,z, t) (5.1)

1No derivation of this equation is provided.
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A local change in specific energy can be due to a volumetric heat source,q (W m−3), or a heat

flux, k∇T. ρ is the liquid density (kg m−3) andk the liquid thermal conductivity (W m−1 K−1).

The characteristic diffusion length is given by the product of the thermal diffusivityα =

k
ρcp

times the simulation run time to the one-half power. For liquid flibe or flinabe and a

simulation time of 1 ms, the diffusion length is
√

αt ≈
√

2×10−7×10−3 ≈ 10−5 m. In the

target chamber, typical lengths are the height of the liquid jets (a few meters), the radius

of curvature of the slab jets (≈ ∞) and the radius of curvature of the cylindrical jets (a few

centimeters). In the beam tubes, the length of the vortex is a couple of meters and its radius of

curvature a couple of centimeters. As x-ray deposition is essentially a one-dimensional process

and the characteristic diffusion length is smaller than any of the typical physical lengths in the

target chamber and the beam tubes, the heat conduction equation reduces to the following

one-dimensional form in Cartesian coordinates:

ρ
∂e
∂ t

=
∂

∂x

(
k

∂T
∂x

)
+q(x, t) (5.2)

wherex (m) is defined inward, from the surface location. (Note that the physics is one-

dimensional in the local coordinate attached to the jet; the initial and boundary conditions

do depend on the location in the target chamber.)

As presented in Chapter 6, radiation deposition is essentially a one-dimensional process

assumed to follow an exponential law. The average gas temperature after the initial ablation

will be of order of one eV. Since the average mean free path of a 1-eV photon in molten salts

such as flibe and flinabe is practically null2, the volumetric source term will be approximated

2A 100-eVphoton has a mean free path of order of a few microns in liquid flibe.
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as a surface source term and Eq. 5.2 reads:3

ρ
∂e
∂ t

=
∂

∂x

(
k

∂T
∂x

)
(5.3)

At x = 0, the heat flux is then determined by the condensation and radiation models:

− k
∂T
∂x

∣∣∣∣
x=0

= Je+Jradiation (5.4)

where the radiation heat fluxJradiation (W m−2) was derived in the previous chapter and is

given byD∇Er at the boundary. The hydrodynamics heat flux,Je (W m−2), is obtained in

Section 5.4.

As mentioned, secondary radiation happens over very small distances. The amount of heat

conducted at a depthx can be neglected, ifx� δconduction≈ 10−5 m. Accordingly, at, say,

x = L = 10−3 m, the specific energy is set constant and keeps its initial value:

T(L, t) = T(L,0) (5.5)

The initial temperature distributionT(x,0) is given by the initial heating caused by target

neutrons and x-rays.

5.2.2 Numerical Model

In the framework of his condensation/evaporation model, Liu [38] dealt with a heat con-

duction equation with constant physical properties; he chose an explicit scheme to discretize

it. This imposed a very constraining stability condition. Jantzen [34] used an implicit Crank-

Nicolson finite difference scheme. A common approximation underlying their numerical

schemes replacese by cpT in Eq. 5.3;cp is the heat capacity at constant pressure and is then

3Jantzen [34] used a volumetric source term, without any justification.



82

assumed to be constant for convenience. This approximation is usually fairly good but does

not apply here since the “liquid” structure is actually a two-phase mixture near the interface.

(The mixture is creature by the initial ablation described in Chapter 6.)

Here, Eq. 5.3 is directly solved with an Adams-Bashforth-Moulton predictor-corrector

method. The details of the time evolution are implemented in the MATLAB library, and only

the space discretization is presented here:

ρ
∂e(xi , tn)

∂ t
=

∂

∂x

(
k(Tn

i )
∂Tn

i

∂x

)
(5.6)

A centered scheme is used for the interior nodes:

∂

∂x

(
k(Tn

i )
∂Tn

i

∂x

)
=

kn
i− 1

2
Tn

i−1−
(

kn
i− 1

2
+kn

i+ 1
2

)
Tn

i +kn
i+ 1

2
Tn

i+1

(∆x)2 (5.7)

where

kn
i+ 1

2
=

kn
i +kn

i+1

2
(5.8)

At the boundaries, it is assumed that:

∂

∂x

(
k(Tn

I )
∂Tn

I

∂x

)
= 0 (5.9)

and

∂

∂x

(
k(Tn

1 )
∂Tn

1

∂x

)
=

kn
3
2
(Tn

2−Tn
1 )

∆x −
(
Jn

e +Jn
radiation

)
∆x

(5.10)

whereJn
e andJn

radiationare the energy and radiation fluxes att = tn. As usual,Tn
i = f (ρn

i ,en
i )

is provided by the caloric equation of state.

5.3 Benchmarking

The code can be tested with a well-known analytical solution to a simplified form of Eq. 5.3

with e= cpT whereT is the temperature andcp is the heat capacity at constant pressure, which
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is assumed to be constant. For a semi-infinite slab with initial conditions

T(x,0) = 0 (5.11)

and left boundary condition

f =−k
∂T
∂x

= f0 = constant (5.12)

the solution reads:

T(x, t) =
2 f0
k

(√
αt
π

exp

(
− x2

4αt

)
− x

2
erfc

(
x

2
√

αt

))
(5.13)

5.4 A Novel Gas-Liquid Interface Model

Mass transfer at the interface between a gas and a liquid has been widely studied. The most

famous contribution may be found in Schrage’s doctoral dissertation, subsequently published

in [61]. His assumptions have been progressively challenged and more refined results have

been obtained through Monte-Carlo simulations. A Monte-Carlo model could be incorporated

into Visual Tsunami; however, Visual Tsunami is meant to be a design code, and, as such, the

typical run time should remain reasonable. A fancy Monte-Carlo model is deemed too CPU-

intensive. Analytical models, albeit more approximate, are preferred. Transfers of momentum

and energy have not been studied as thoroughly and no simple, explicit analytical formula is

known to the author. A new model has therefore been developed for this doctoral work, based

on Schrage’s well-understood assumptions.

Schrage’s approach relies on two major assumptions, bold and unjustified, but very prac-

tical and convenient:

1. Condensation and evaporation partial fluxes can be computed separately and added al-

gebraically to give the net transfer fluxes;
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2. Gas molecules obey a Maxwellian distribution at the gas/liquid interface.

The following analysis is presented for a planar interface located atx = 0, with the gas phase

occupying the half-spacex > 0.

5.4.1 Interface Mass Transfer

The impacting, condensing, rebounding and evaporating fluxes are respectively notedJi ,

Jc, Jr , andJe (kg s−1 m−2).

Evaporating flux

According to Schrage’s second assumption, evaporating molecules follow the canonical

Maxwellian distribution. It is further assumed that the bulk of the fluid is assumed to be at

rest:

f (u,v,w) = nf
β 3

f

π
3
2

exp
(
−β

2
f

(
u2 +v2 +w2)) (5.14)

wherenf is the density (m−3) of liquid molecules.u, v, andw are the velocity components (m

s−1) andβ f is given by:

β f =

√
M

2RT
(5.15)

whereM is the molar mass (kg mol−1), R the universal gas constant4, andT is the temperature

(K). The evaporating mass flux,Je, is given by:

Je =
∞∫

0

du

∞∫
−∞

dv

∞∫
−∞

mu f(u,v,w) dw (5.16)

Substituting for f using Eq. 5.14 and noticing thatρ = nmyield:

Je = ρ f
β 3

f

π
3
2

∞∫
0

du

∞∫
−∞

dv

∞∫
−∞

uexp
(
−β

2
f

(
u2 +v2 +w2)) dw (5.17)

4R=8.31 J mol−1 K−1
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By Fumini’s theorem,

Je = ρ f
β 3

f

π
3
2

 ∞∫
0

uexp
(
−β

2
f u2) du

 ∞∫
−∞

exp
(
−β

2
f v2) dv

 ∞∫
−∞

exp
(
−β

2
f w2) dw

 (5.18)

Evaluating the three integrals gives:

Je = ρ f
β 3

f

π
3
2

(
1

2β 2
f

)(
π

1
2

β f

)(
π

1
2

β f

)
(5.19)

Collecting,

Je =
ρ f

2π
1
2 β f

(5.20)

Using Eq. 5.15 yields:

Je = ρ f

√
RTf

2πM
(5.21)

Inserting the ideal gas law, the following well-known formula is obtained:

Je = pf

√
M

2πRTf
(5.22)

Impacting flux

For the gas, Schrage assumed a skewed Maxwellian distribution. The fluid moves perpen-

diculary to the surface at a bulk speedug:

f (u,v,w) = ng
β 3

g

π
3
2

exp
(
−β

2
g

(
(u−ug)

2 +v2 +w2
))

(5.23)

The impacting mass flux,Ji , is given by

Ji =
0∫

−∞

du

∞∫
−∞

dv

∞∫
−∞

mu f(u−ug,v,w) dw (5.24)

= ρg
β 3

g

π
3
2

0∫
−∞

du

∞∫
−∞

dv

∞∫
−∞

uexp
(
−β

2
g

(
(u−ug)

2 +v2 +w2
))

dw (5.25)

= ρg
β 3

g

π
3
2

(
π

1
2ug

2βg
(1−erf(βgug))−

1
2β 2

g
exp
(
−β

2
g u2

g

))(π
1
2

βg

)(
π

1
2

βg

)
(5.26)

=
ρg

2π
1
2 βg

(
π

1
2ugβg(1−erf(βgug))−exp

(
−β

2
g u2

g

))
(5.27)
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If the particular case thatug = 0, Eq. 5.27 reduces to:

Ji =−
ρg

2π
1
2 βg

(5.28)

as expected from Eq. 5.20.

Net Mass Flux

Following Schrage’s first assumption, the net mass flux,Jkinetics
mass , is given by

Jkinetics
mass = Je−Jc (5.29)

Equivalently, the net mass flux can be obtained through

Jkinetics
mass = Je−σcJi (5.30)

where the accommodation coefficient,σc, is by definition the ratio of the condensing flux

to the impacting flux. The evaporating and impacting fluxes are given by Equations 5.21

and 5.27, respectively. No satisfying theory has been found to evaluateσc accurately and ef-

fectively. The accomodation coefficient is assumed to be unity in the remainder of the chapter.

Schrage’s first approximation fails for very intense condensation and evaporation: a fraction

of the evaporating molecules may collide and re-condense. Schrage focused on mass trans-

fer; the next two subsections present the first application of his methodology to momentum or

energy transfer known to the author.

5.4.2 Interface Momentum Transfer

For the momentum transfer, Schrage’s two main assumptions are retained. The evaporating

and impacting/condensing fluxes are computed separately and Maxwellian distributions are

assumed.
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Evaporating Flux

The evaporating momentum flux is given by:

Je =
∞∫

0

du

∞∫
−∞

dv

∞∫
−∞

mu2 f (u,v,w) dw (5.31)

= ρ f
β 3

f

π
3
2

∞∫
0

du

∞∫
−∞

dv

∞∫
−∞

u2exp
(
−β

2
f

(
u2 +v2 +w2)) dw (5.32)

= ρ f
β 3

f

π
3
2

∞∫
0

u2 exp
(
−β

2
f u2) du

∞∫
−∞

exp
(
−β

2
f v2) dv

∞∫
−∞

exp
(
−β

2
f w2) dw (5.33)

= ρ f
β 3

f

π
3
2

(
π

1
2

4β 3
f

)(
π

1
2

β f

)(
π

1
2

β f

)
(5.34)

=
ρ f

4β 2
f

(5.35)

Impacting Flux

The impacting momentum flux follows from:

Ji =
0∫

−∞

du

∞∫
−∞

dv

∞∫
−∞

mu2 f (u−ug,v,w) dw (5.36)

= ρg
β 3

g

π
3
2

0∫
−∞

du

∞∫
−∞

dv

∞∫
−∞

u2exp
(
−β

2
g

(
(u−ug)

2 +v2 +w2
))

dw (5.37)

= ρg
β 3

g

π
3
2

(
π

1
2
(
1+2β 2

g u2
g

)
(1−erf(βgug))

4β 3
g

−
ugexp

(
−β 2

g u2
g

)
2β 2

g

)(
π

1
2

β f

)(
π

1
2

β f

)
(5.38)

=
ρg

4π
1
2 β 2

g

(
π

1
2
(
1+2β

2
g u2

g

)
(1−erf(βgug))−2βgugexp

(
−β

2
g u2

g

))
(5.39)

If ug = 0, Eq. 5.39 reduces to

Ji =
ρg

4β 2
g

(5.40)

as expected from Eq. 5.35.
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Net Momentum Flux

The net momentum flux is then:

Jkinetics
momentum= Je−Ji (5.41)

whereJe andJi are given by Equations 5.35 and 5.39, respectively.

5.4.3 Interface Heat Transfer

The energy evaporating and impacting fluxes are computed separately and Maxwellian

distributions are used.

Evaporating Flux

The evaporating energy flux is given by:

Je =
∞∫

0

du

∞∫
−∞

dv

∞∫
−∞

1
2

mu(u2 +v2 +w2) f (u,v,w)dw (5.42)

= ρ f
β 3

f

π
3
2

∞∫
0

du

∞∫
−∞

dv

∞∫
−∞

1
2

u(u2 +v2 +w2)exp(−β
2
f (u

2 +v2 +w2))dw (5.43)

= ρ f
β 3

f

π
3
2

π

2β 6
f

(5.44)

=
ρ f

2π
1
2 β 3

f

(5.45)
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Impacting Flux

The impacting energy flux comes from:

Ji =
0∫

−∞

du

∞∫
−∞

dv

∞∫
−∞

mu
1
2
(u2 +v2 +w2) f (u−ug,v,w)dw (5.46)

= ρg
β 3

g

π
3
2

0∫
−∞

du

∞∫
−∞

dv

∞∫
−∞

u
1
2

(
u2 +v2 +w2)exp

(
−β

2
g

(
(u−ug)

2 +v2 +w2
))

dw (5.47)

=
ρg

8π
1
2 β 3

g

(
π

1
2 βgug

(
5+2u2

gβ
2
g − (5+2β

2
g u2

g)erf(βgug)
)
− (4+2β

2
g u2

g)exp(−β
2u2

g)
)

(5.48)

which reduces to

Ji =−
ρg

2π
1
2 β 3

g

(5.49)

if ug = 0, as expected from Eq. 5.45.

Net Energy Flux

The net heat flux is then:

Jkinetics
energy = Je−Ji (5.50)

whereJe andJi are given by Equations 5.45 and 5.48, respectively.

5.4.4 Choking Considerations

Schrage’s simple treatment predicts unbounded mass fluxes. For high pressures and low

temperatures,Jt goes to infinity. As pointed out by Schrock and co-workers [62], a phenom-

enon similar to nozzle flow choking can occur during intensive condensation and the kinetic

mass flux should be limited by the maximum flux allowed by gas dynamics. The equations

are not repeated here.
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5.5 Conclusions and Perspectives

The liquid heat conduction model allows for an accurate representation of heat transfer

through the two-phase and liquid regions of the jets. Future models could take into account the

actual dynamics of this two-phase region and the formation of liquid droplets. The gas/liquid

interface model presented here follows Schrage’s mass transfer assumptions. It still needs to

be tested against more elaborate models in order to assess the error. This is left for future

work.

The difference of volatibility between the different flibe and flinabe molecules is believed

to be of very little importance during the early phase of gas dynamics and condensation. Non-

condensibles are pumped out, and very little should be present in the target chamber and beam

tubes at any time. Hence, neither non-condensibles nor the difference of volatibility between

the various molecules were modeled. However, in order to model gas dynamics phenomena

over longer time scales, multi-species effects will have to be appropriately modeled.
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Chapter 6

Target and Ablation Modeling

6.1 Introduction

Neutrons and photons constitute the two major threats to the target chamber. Most of

the neutrons and x-rays emitted by the target and hohlraum debris will be absorbed in the

surrounding liquid and solid structures. The typical mean free path for a fusion neutron, about

7 cm in the molten salt flibe, is somewhat larger than the typical dimension of the jets, which

is a few centimeters or so. Neutron deposition in the jets will therefore result in a somewhat

flat energy profile and a rather uniform increase in the temperature of each jet. The typical

x-ray mean free path in flibe and flinabe, on the order of tens of microns, is small compared

to the dimensions of the liquid jets and most of the x-ray energy will be deposited in a small

layer near the surface of the jets. The energy deposited in the jets is substantial and sufficient

to induce partial vaporization of the layers in which x-rays are absorbed. This phenomenon—

vaporization due to radiation emitted by target debris—is known as “ablation.” Some more

vaporization will be induced by the energy radiated by the hot gas expanding in the target
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chamber and beam tubes. This is sometimes called “secondary radiation and ablation” and

was treated in Chapters 4 and 5. Target and hohlraum debris will carry a small fraction of

the target yield and most of its energy will be deposited in the ablated layer. Helium ions are

mostly stopped inside the target and the hohlraum and are usually included in the target and

hohlraum debris bookkeeping.

6.2 Target Modeling

A detailed modeling of target and ablation related phenomena is outside of the scope of

this doctoral dissertation; the target threat modeling discussed is this section is only meant to

provide the initial conditions for the radiation hydrodynamics schemes described in Chapters 3

and 4. Gas dynamics phenomena typically happen over tens to hundreds of microseconds

and are rather insensitive to the details of the target and holhraum disassembly and x-ray

interaction with matter, which happen over hundreds of nanoseconds.

6.2.1 Neutrons

Neutron energy deposition in liquid and solid structures is not directly modeled by Visual

Tsunami but can be taken into account reasonably well through an appropriate initial temper-

ature field. Neutron energy deposition over small time scales causes isochoric heating of the

liquid and solid structures. Their mechanical response is not modeled by Visual Tsunami, but

could be included.
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6.2.2 Target and Hohlraum Remnants

Target and hohlraum debris tend to be loosely described as slow and fast ions. Slow ions

travel as a continuum and are modeled with the equations and schemes described in Chapters 4

and 5. Fast ions travel ballistically. For indirect drive targets, fast ions carry about 2% of the

target yield; a simple model is expected to be sufficient for our purposes. Fast ions are assumed

to stop in the ablated layers, where they deposit their energies. Their mass and energy are

simply added to the mass and energy of the ablated layers, as determined in this chapter.

6.2.3 X-Rays

A direct-drive target emits a couple of percents of its energy as x-rays while indirect-drive

target debris hits the hohlraum and radiates significantly—about 25% of the target yield. The

fluence,Φ (J m−2), impinging on a surface is by definition:

Φ = target yield× fraction of target yield carried by x-rays× cos(θ)
4πr2 (6.1)

where r is the distance (m) between the liquid surface and the target andθ (rad) is the angle

between the normal to the irradiated surface and the line-of-sight to the target. Fusion target

spectral emissivities (J m−2 sr−1) have usually been approximated as a blackbody:

Jtarget(ν) = B(ν) =
2hν3

c2

e
hν

kT −1
(6.2)

or a sum of three blackbodies:

Jtarget(ν) = ω1

2hν3

c2

e
hν

kT1 −1
+ω2

2hν3

c2

e
hν

kT2 −1
+ω3

2hν3

c2

e
hν

kT3 −1
(6.3)

B is the spectral emittance of a blackbody and has units of J m−2 sr−1. ν is the photon

frequency (Hz);c is the speed of light in vacuum1; h is Planck’s constant2; k is Boltzmann’s
1c = 3.00×108 m s−1

2h = 6.63×10−34 J s



94

constant3. Eq. 6.2 is known as the Planck law. Note that the weights are dimensionless and

can be functions of time.

6.3 Initial Ablation Modeling

6.3.1 Energy Deposition: An Improved TSUNAMI Model

Over the short time scales of the target x-ray pulse, the mechanical response of the material

(its motion) is deemed unimportant and the energy of the irradiated material can only vary due

to photon energy absorption, and, posssibly, re-radiation and electronic heat conduction. The

heat conduction and exchange terms are given by Equations 4.7 and 4.8:

∇ · (D∇Er)−
c

λP

(
Er −aT4)= ∇ ·

(
cλR

3
∇Er

)
− c

λP

(
Er −aT4) (6.4)

As usual,λR is the Rosseland mean free path (m). It is further assumed that thermal equilib-

rium enforcesEr = aT4. Hence,

∇ · (D∇Er)−
c

λP

(
Er −aT4)= ∇ ·

(
cλR

3
∇aT4

)
= ∇ ·

(
4acλR

3
T3∇T

)
(6.5)

which can be simplified somewhat using the definition ofa = 4σ

c

∇ · (D∇Er)−
c

λP

(
Er −aT4)=

16σ

3
∇ ·
(
λRT3∇T

)
(6.6)

Taking into account photon energy absorption, re-radiation, and electronic heat conduc-

tion, conservation of the total energy per unit volume (J m−3) E = Er +ρe translates into:

∂E
∂ t

= ∇ · (keff(T)∇T)+
∫ ∞

0
4πµ0(ν ,T)I(ν , t)dν (6.7)

3k = 1.38×10−23 J K−1
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whereµ0 is the linear attenuation coefficient (m−1) andkeff (W m−1 K−1) is the “effective”

conductivity, which is the sum of the electronic and radiative conductivities:

keff(T) = kelectronic+
16
3

σλR(T)T3 (6.8)

Following the discussion in Chapter 5, the energy balance equation is solved in one dimension:

∂E
∂ t

=
∂

∂x

(
keff(T)

∂T
∂x

)
+
∫ ∞

0
4πµ0(ν ,T)I(ν , t)dν (6.9)

The total energy densityE, the material specific energye, and the material temperatureT are

assumed to be related by the following equation of state:

E = ρe+aT4(ρ,e) (6.10)

whereT is given as a function ofρ andeby the caloric equation of state. Along the mean path

of the photons, the spectral intensity equation reads in the quasi-equilibrium approximation:

∂ I(ν)
∂s

=−µ0(ν)I(ν) (6.11)

or, in the local coordinate system perpendicular to the ablated surface:

∂ I(ν)
∂x

=−µ0(ν)I(ν)
cos(θ)

(6.12)

This is known as the Beer-Lambert law. The cos(θ) term has the practical effect to reduce the

“apparent” mean free path of the photons, the inverse of the linear attenuation coefficient. The

boundary condition at the surface is assumed to be given by:

I(ν , t) =
Jtarget(ν , t)∫ ∞

0 Jtarget(ν , t)dν

φ(t)
4π

(6.13)

whereφ is the energy flux at the surface and is related to the fluence by:

Φ =
∫

∆t
φ(t)dt (6.14)
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(∆t is the total duration of the x-ray pulse.)I is therefore given by:

I(ν , t) =
φ(t)
4π

Jtarget(ν , t)∫ ∞
0 Jtarget(ν , t)dν

exp

(
− µ0x

cos(θ)

)
(6.15)

For a mono-energetic x-ray and an instantaneous energy deposition, the previous equation

reads

I =
φ

4π
exp

(
− µ0x

cos(θ)

)
(6.16)

The energy conservation equation then reads:

∂E
∂ t

= 4πµ0I = µ0φ exp

(
− µ0x

cos(θ)

)
(6.17)

The instantaneous model is appropriate for relatively small increases in temperature (and short

pulse duration.) Hence,

ρ
∂e
∂ t

= µ0φ exp

(
− µ0x

cos(θ)

)
(6.18)

Finally, the increase in specific energy is given by

∆e(x) =
µ0

ρ
Φexp

(
− µ0x

cos(θ)

)
= µΦexp

(
− µ0x

cos(θ)

)
(6.19)

whereµ = µ0
ρ

is the mass attenuation coefficient.

The mass attenuation coefficients mainly depend on the photon energy, the composition

of the medium, and its temperature. The temperature dependence of the mass attenuation

coefficients mainly comes into play through the photoelectric effect, which is the primary

interaction mechanism at the range of x-ray energies of interest. “Cold” opacities (as function

of photon energy and medium composition) can be looked up in various references available in

the literature or evaluated using one of several computer codes. Visual Tsunami makes use of

tabulated absorption coefficients extracted from the Lawrence Livermore National Laboratory
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(LLNL) cross-section library known as EPDL97 [22]. The LLNL code EPICSHOW [21] can

be used to format and plot the data from EPDL97.4

“Cold” opacities are valid for low fluences, when the temperature of the ablated layer does

not increase significantly. If the fluence is high enough, the temperature of the ablated medium

can be such that significant ionization occurs, to the point that fewer photoelectric interactions

are possible; the medium becomes transparent to the target photons. (This is called bleaching.)

Chen [11] assumed arbitrarily in his instantaneous energy deposition model that the “hot”

mean free path of the photons was on average twice as long as the “cold” one. Visual Tsunami

makes use of hot opacities provided by the Los Alamos National Laboratory code TOPS [35].

The opacities are computed as a function of composition, density, temperature and photon

energy.

6.3.2 Numerical Model

Eq. 6.9 is solved using the Adams-Bashforth-Moulton predictor-corrector method, as im-

plemented in the MATLAB libraries. Accuracy of the time-integration is ensured via adaptive

time-step control. Details of the time evolution are omitted here; suffice it to mention the

space discretization:

∂E(xi , tn)
∂ t

= f (xi , t
n) (6.20)

where

f (xi , t
n) =

∂

∂x

(
keff(Tn

i )
∂Tn

i

∂x

)
+
∫ ∞

0
4πµ0(ν ,Tn

i )I(ν , tn)dν (6.21)

The diffusion term is discretized in space with a centered scheme:

∂

∂x

(
keff(Tn

i )
∂Tn

i

∂x

)
≈

kn
i− 1

2
Tn

i−1−
(

kn
i− 1

2
+kn

i+ 1
2

)
Tn

i +kn
i+ 1

2
Tn

i+1

(∆x)2 (6.22)

4A corollary of this work was to help debug the EPICSHOW code.
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with

kn
i+ 1

2
=

kn
i +kn

i+1

2
=

kn
e,i +kn

e,i+1

2
+

8σ

3

(
λ

n
R,i(T

n
i )3 +λ

n
R,i+1(T

n
i+1)

3) (6.23)

It is assumed that:

∂

∂x

(
keff(Tn

1 )
∂Tn

1

∂x

)
≈ ∂

∂x

(
keff(Tn

2 )
∂Tn

2

∂x

)
(6.24)

and

∂

∂x

(
keff(Tn

I )
∂Tn

I

∂x

)
≈ 0 (6.25)

The source term is discretized as follows:

∫ ∞

0
4πµ0(ν ,Tn

i )I(ν , tn)dν ≈ 4πρ

G

∑
νg

µ
n
i (νg,T

n
i )In

i (νg, t
n)∆νg (6.26)

where the continuous photon frequency interval has been discretized intoG groups. For a

monoenergetic pulse, this reads:

∫ ∞

0
4πµ0(ν ,Tn

i )I(ν , tn)dν = 4πρµ
n
i (ν ,Tn

i )In
i (ν , tn) (6.27)

The temperature is obtained by solving the following discrete equation:

En
i = ρen

i +a(Tn
i (ρ,en

i ))
4 (6.28)

via Brent’s method, as implemented in the MATLAB libraries.

6.3.3 Energy Profiles and Ablation Depths: A Review

In this section, several ablation models are reviewed. Most formulae are given for a mono-

energetic x-ray pulse, but the approach is generic and can be easily applied to more complex

spectra. (Visual Tsunami can handle any spectrum.) Even though there is no direct line of

sight between the target and the solid first-wall in a thick-liquid protected chamber, the for-

mulae will be developed for liquid and solid materials, since the latter case arises frequently



99

in ablation experiments and will be needed for the modeling of the condensation debris exper-

iment, described in Chapter 7.

Upper-Bound Estimate

An upper bound estimate of the ablated mass can easily be estimated by assuming all the

x-ray energy is distributed uniformly and used for heating and phase change:

m≈ x-ray and ion energy
specific cohesive energy

(6.29)

The specific cohesive energy is the energy required to heat and sublimate or vaporize the solid

or liquid material, respectively. The cohesive energy is therefore given by:

ec ≈ cv(T−T0)+h (6.30)

wherecv is the solid or liquid heat capacity at constant volume,T is the melting or boiling

temperature,T0 is the initial temperature, andh is the sublimation or vaporization enthalpy.

For a typical heavy-ion driven target, with a yield of 400 MJ and a fraction of yield going

to x-rays and ions of 30%:

m≈ x-ray and ion energy
specific cohesive energy

≈ 0.3×300×106

8×106 = 15 kg (6.31)

This upper-bound is useful to check more refined models and for safety analyses.

Cohesive Energy Model

To first order, ablation is assumed to occur down to the depth where the specific energy

equals the cohesive energy. Mathematically, the ablation depthδ , is given most generally by:

e(δ ) = e(xvap) = ec (6.32)
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For a monochromatic x-ray pulse, Eq. 6.19 applies and Eq. 6.32 reduces to

δ = xvap = λ cos(θ) ln

(
Φ

ρλec

)
(6.33)

whereλ (m) is the mean free path of the photons. IfΦ is less than the threshold ablation

fluenceρλec, no ablation occurs andδ = 0.

Explosive Boiling

Down to the depth where the material temperature is greater than 90% of the critical tem-

perature, classical nucleation theory predicts than the rate of nucleation will be extremely

high, creating a region of bubbles, suddenly decreasing the pressure and launching rarefac-

tion waves into the two-phase region below. This well-known result from the laser ablation

community has recently been employed by Zaghloul and Raffray [84]. This approach can be

summarized as:

e(δ ) = eeb = cv(0.9Tc−T0) (6.34)

δ = λ cos(θ) ln

(
Φ

ρλeeb

)
(6.35)

This simple model consitutes a significant conceptual improvement over the cohesive energy

approach.

Multi-Phase Region

Below the explosive boiling threshold, the energy deposition is sufficient to partially sub-

limate the solid layer or partially boil the liquid. Therefore, between the vapor phase and the

solid (liquid) phase, there will be a multi-phase (two-phase) layer and it is reasonable to as-

sume that some of the gas will escape off the surface ultimately. Thus, the ablation depth is
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bounded by the sublimation (vaporization) depth and the saturation depth:

xvap≤ δ ≤ xsat (6.36)

wherexvap is given by Eq. 6.33 andxsat is defined by:

xsat= λ cos(θ) ln

(
Φ

ρλesat

)
(6.37)

whereesat= cv(Tv−T0).

Chen [11] chose to define the ablation depthδ where the vapor quality is one-half. His

(arbitrary) choice stemmed from the fact that where vapor quality is high, the vapor would

be likely to vent out of the two-phase region. It was also believed that the rarefaction wave

launched into the liquid by the expanding ablated layer would liquefy the vapor trapped in the

(low quality) two-phase region. Chen’s approach can be summarized by:

δ = λ cos(θ) ln

(
Φ

ρλ (esat+ h
2)

)
(6.38)

Another arbitrary approach has been retained in the IFE design study HIBALL and is cur-

rently used in the University of Wisconsin computer code BUCKY [55]. The energy contained

in the two-phase layer is entirely used to ablate some more material. (This is sometimes re-

ferred to as “unexplosive explosive boiling,” in opposition to the explosive boiling mechanism

previously described.) The ablation depthδ is then defined implicitly as:

∫
δ

xvap

ec−e(x)dx=
∫ xsat

δ

e(x)−esatdx (6.39)

Hence, ∫
δ

xvap

hdx=
∫ xsat

xvap

e(x)−esatdx (6.40)

and the ablation depth is given by:

δ = xvap+
1
h

∫ xsat

xvap

e(x)−esatdx (6.41)
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Thus,

δ = xvap+
1
h

(
esat(xvap−xsat)+

∫ xsat

xvap

e(x)dx

)
(6.42)

Substituting 6.19 and usingµ0 = λ−1 yield:

δ = xvap =
1
h

(
esat(xvap−xsat)+

∫ xsat

xvap

Φ
ρλ

exp

(
− x

λ cos(θ)

)
dx

)
(6.43)

Integrating,

δ = xvap+
1
h

(
esat(xvap−xsat)+

Φcos(θ)
ρ

(
exp

(
−

xvap

λ cos(θ)

)
−exp

(
− xsat

λ cos(θ)

)))
(6.44)

Making use of the definitions ofxsat andxvap gives:

δ = xvap+
esat(xvap−xsat)+λ cos(θ)(evap−esat)

h
(6.45)

If the cohesive energy threshold is replaced by its explosive boiling counterpart, the previ-

ous equation becomes:

δ = xeb+
esat(xeb−xsat)+λ cos(θ)(eeb−esat)

h
(6.46)

6.3.4 Discussion

TSUNAMI models typically neglected bleaching. Chen’s fudge factor [11] is the only doc-

umented attempt at taking into account the fact that the ablated material becomes transparent

to x-rays when heated to sufficiently high temperatures. Reradiation has never been mod-

eled as part of the ablation module. (Jantzen [34] made some attempt at modeling reradiation

from the ablated layer during the early phase of her gas dynamics simulations.) Back-of-the-

envelope calculations indicate that for the typical fluences of interest, bleaching matters while

re-radiation and heat conduction do not play a significant role, at least over short periods of
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time. Fig. 6.1 and Fig. 6.2 display the energy deposition and resulting temperature profiles

without bleaching nor re-radiation, and with bleaching and re-radiation. (Target parameters

are those of the Z-IFE simulation described in Section 8.5; the standoff distance is 1.5 m and

the incidence x-ray pulse is normal to the liquid surface.) The results with bleaching and

Figure 6.1: Comparison of energy deposition models for a typical Z-IFE case.

reradiation and those with bleaching but no reradiation (not shown) are actually almost the

same. As expected, re-radiation does not play a role over the short period of times and at the

relatively low temperatures of interest.

6.4 Conclusions and Perspectives

The new time-dependent ablation model with detailed equation of state and radiative prop-

erties helps predict reasonable temperature profiles. For the typical case presented here, the
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Figure 6.2: Comparison of temperature profiles.

acoustic penetration depth is on order of a tenth of the ablation length, which justifiesa pos-

teriori the assumption according to which the motion of the ablated material has been ne-

glected. Accurate prediction of small ablation depths can sometimes be essential, for instance

in dry-wall chambers. For such systems, the ablation model should be refined to include the

mechanical response of the ablated material. The molten salts of interest for fusion systems

have high heat capacities and might be slightly retrograde. Retrograde liquid-vapor mixtures

may evaporate when expanded adiabatically—a phenomenon that a regular mixture cannot

exhibit. Hence a tensile wave could vaporize a significant portion of the two-phase region that

lies between the saturation and explosive boiling depths. Exploring this effect is expected to

be interesting but is not essential for our purposes and is left for future work.
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Part II

Applications
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Chapter 7

The Condensation Debris Experiments

7.1 Overview of the Condensation Debris Experiments

In September 2003, a team led by the Lawrence Livermore National Laboratory started a

new series of experiments to investigate in-flight condensation in complex geometries. Ob-

serving in-flight condensation of a multi-fluid gas and quantifying the resulting aerosol size

distribution are the primary scientific goals of the series of Condensation Debris Experiments

(CDEs). In-flight condensation may occur in a thick-liquid protected chamber; developing

a predictive capability therefore is of interest. In dry-wall chambers, in-flight condensation

may create a fog of droplets that might degrade target and beam propagation. HYLIFE-II and

its variants are less prone to this aerosol issue. The oscillating jets are designed to clear the

center of the pocket dynamically and the use of cold droplet sprays should cause most of the

remaining hot areosols to evaporate.

Fig. 7.1 shows a generic representation of the experimental setup. (The particular device

depicted in Fig. 7.1 was fielded on the Z-Beamlet facility at Sandia National Laboratory, New
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Mexico, USA, in April 2004 and is about 30-cm high and 15-cm wide. A similar setup was

used for all the experimental campaigns.)

Figure 7.1: Schematic of the Condensation Debris Experiment.

A laser beam is used to illuminate a target (or “halfraum”) and generate a superheated

vapor. Most of the halfraum debris will then jet outside of the canister through the large

vertical shaft, while some will vent through the narrow horizontal laser entrance cone. Simple

arguments based on the ratio of the canister shaft to laser entrance hole areas indicate that

the leakage through the laser hole can be neglected to first order. (TSUNAMI simulations,

not reported here, confirmed this assertion.) The halfraum debris expands in the canister

shaft and into the condensation volume on top of the halfraum canister. The hot halfraum

interacts with the cavity and the shaft walls: A thin layer of the inner surfaces of the canister is

expected to be ablated. Ultimately, the debris from the halfraum and the canister will mainly
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condense on-flight or onto the surfaces of the upper chamber. A background gas was present

in the condensation chamber to favor in-flight condensation over surface condensation. (A thin

membrane was used to hold the background gas in the condensation chamber; it was designed

to rupture when hit by the halfraum debris.)

The gas jet exiting the canister was recorded by a CCD camera in order to check that the

halfraum was actually hit by the laser. A pressure gauge (not shown in Fig. 7.1) can be inserted

through a port at the top of the condensation chamber. Collection surfaces are analyzed for

particle composition and size distribution. The experimental results concerning halfraum x-

ray output and debris condensation were not modeled in detail with TSUNAMI and are not

presented. Only a reference experiment, made with a near-vacuum background, is reported

and compared to Visual Tsunami predictions.

7.2 Dimensioning of the Condensation Chamber

Obviously, the condensation chamber needs to be long enough for the gas plume to con-

dense in-flight before reaching the top lid. Assuming that the gas follows the ideal gas law and

expands isentropically in the condensation chamber from an original volumeV0 and tempera-

tureT0 to a volumeV and a temperatureT of order a couple of times the boiling temperature,

the adiabatic equation reads:

T
T0

=
(

V0

V

)γ−1

(7.1)

or

V = V0

(
T0

T

) 1
γ−1

(7.2)
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We assume that the original volume is that of the exit shaft and that the plume only expand

axially, and not radially:

πR2
shaftLchamber= πR2

shaftLshaft length

(
T0

T

) 1
γ−1

(7.3)

Hence,

Lchamber= Lshaft length

(
T0

T

) 1
γ−1

(7.4)

Visual Tsunami predicts that the gas temperature at the shaft exit is of order of 5× 104 K;

as already mentioned, in-flight condensation for gold is estimated to begin to occur when the

plume temperature is a couple of times the gold boiling temperatureTb' 3×103 K. This leads

to:

Lchamber

Lshaft length
≈
(

5×104

5×103

) 1
5
3−1

≈ 30 (7.5)

For a 1-cm shaft length,

L≈ 10−2
(

5×104

5×103

) 1
5
3−1

≈ 0.3 m (7.6)

On the one hand, this approach is somewhat conservative. First, the actual plume expands

in a cone whose half-angle is a function of time and is bigger than the assumed cylinder.

Secondly, the plume is likely to be hot enough to radiate while expanding, especially near

the shaft exit, causing the temperature to drop over distances shorter than those predicted by

the adiabatic model. (In the case of the CDE vacuum shots performed in November 2003,

the gas jet was observed to be hot enough to radiate.) Finally, there is some mixing between

the plume and the background gas, if the density of the latter is high enough. On the other

hand, the estimated initial temperature at the exit of the shaft may be too low for high laser

energies and small shaft lengths. (The value of 5× 105 K was inferred from the particular

Visual Tsunami simulation presented in Section 7.3.)
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Eq.7.6 indicates that the condensing chamber fielded on the Z-Beamlet facility at San-

dia might have been too small for in-flight condensation to be dominant, at least for the low

background gas density shots with the pressure gauge. (A high-density low-temperature back-

ground gas causes the debris jet to cool down faster and favors in-flight condensation.) Plans

exist to field the experiment on the National Ignition Facility, which would allow for a bigger

condensation volume. (The size of the CDE setup is limited by that of the experimentation

chamber of the facility in which CDE is fielded.)

7.3 Visual Tsunami Simulations of CDE

The detailed use of TSUNAMI 2.8 as a design code to assist successfully in the dimension-

ing of the experimental apparatus is not reported here; only the Visual Tsunami 2.0 modeling

of one experiment of the first campaign is presented. (Visual Tsunami was not ready in Fall

2003 when most of the design work was performed and TSUNAMI 2.8 was therefore em-

ployed at the time.)

As a first attempt at modeling CDE with Visual Tsunami, an ideal gas law is used and

multi-species effects are neglected. Compared to the actual geometry, the orientation of the

halfraum is shifted and its axis of symmetry aligned with the canister shaft. Initial con-

ditions are obtained using simple ICF scaling laws developed to model similar cylindrical

hohlraums [2]. Fig. 7.2 shows four Visual Tsunami 2.0 density contour plots at various times.



111

Figure 7.2: Visual Tsunami density contour plots. The density of the solid structures is arbi-
trarily low.

7.4 Experimental and Numerical Results

A CCD image was recorded and is compared to a Visual Tsunami 2.8 time-integrated

contour plot in Fig. 7.3. (The pictures are to the same vertical scale.)

Both the Visual Tsunami snapshot (left) and CCD image (right) show the same three

phases of early gas dynamics in the condensation chamber, along the vertical axis. First,

near the exit of the canister shaft (bottom of picture), the gas is still dense and radiating. The

gas then expands, its density decreases, and its thermal energy is converted into kinetic energy.

Finally, the gas hits the gauge surface and stagnates. Its density increases and its kinetic energy

is converted back into thermal energy. The expansion around the gauge takes a remarkably

similar “whisker” shape on the CCD picture and Visual Tsunami time-integrated contour. A

better qualitative agreement could be obtained by space integrating the Visual Tsunami snap-



112

Figure 7.3: Visual Tsunami 2.0 time-integrated contour plot and CCD image.

shots along the line of sight. Since the CCD picture was meant to be a mere visual check

that a debris plume was formed and was not intended to be used for comparison with Visual

Tsunami, no further analysis was performed.

7.5 Conclusions and Perspectives

Agreement between Visual Tsunami simulations and experimental results is satisfactory

and constitutes a first validation of Visual Tsunami as a design tool for gas dynamics systems.

Three directions could be explored for more accurate simulations. First, a detailed radia-

tion hydrodynamics simulation would be helpful to provide the initial conditions to Visual

Tsunami. Second, a few physical models could be improved: for instance, real gas effects,

radiation diffusion, detailed gas/solid interaction, and in-flight condensation could be taken
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into account. Finally, a three-dimensional simulation would better take into account some of

the geometrical effects.
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Chapter 8

Gas Venting in Thick-Liquid Protected

Fusion Chambers

8.1 Introduction

Four thick-liquid protected chambers are described in this chapter. First, the Robust Point

Design [79] chamber is considered. The Robust Point Design uses a variant of the HYLIFE-

II chamber [43, 44, 31, 45] compatible with the neutralized ballistic transport mode. (The

heavy-ion beams are charge-neutralized before entering the target chamber and then travel to

the target on their own, ballistically.) The second chamber is another variant [28] of HYLIFE-

II tailored for the assisted-pinch transport scheme. (The heavy-ion beams travel through a

channel that a laser creates in the target chamber background gas.) The third chamber is the

vortex chamber [28], which is compatible with final-focusing performed by a set of solenoidal

magnets. The physics of the different heavy-ion beam propagation schemes was reviewed by

Olson [48], Roseet al. [59], and Davidsonet al. [23]. The fourth chamber is compatible with
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a Z-pinch driver.

8.2 Neutralized Ballistic Final-Focusing

8.2.1 Gas Density Control

Target Chamber Gas Density Control

The RPD-2002 target chamber is based upon the HYLIFE-II design [45]. Fig. 8.1 shows

the thick-liquid jet configuration in RPD-2002. The pocket around the target has been docu-

Figure 8.1: Scaled cross-section of the RPD chamber and beam-lines [26, 27]. Lengths are in
mm.

mented by Pemberton and coworkers [51] and is derived from the “hybrid” pocket presented

by Peterson [52, 53]. The hybrid pocket uses oscillating slab jets [56, 66] with finely dis-

persed voids to mitigate the response of neutron heating and ablation shock waves. Other

improvements concern the liquid configuration close to the beams: cylindrical jets replace the
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HYLIFE-II slabs. All the major components of the pocket, such as the cylindrical and voided

slab jets, have been demonstrated in scaled fluid mechanics experiments using water [1, 51].

Flinabe has been chosen as the target chamber coolant in lieu of flibe, for reasons first

advanced in References [24, 26]. Flinabe and flibe have similar neutronics and heat transfer

characteristics. Flinabe has a lower melting point (less than 630 K), which allows its use

at lower temperatures (≈673 K) in the beam tubes, where its equilibrium vapor pressure is

very low. Flibe could be used in the target chamber, which operates at 873 K, but mixing

of x-ray ablation debris from each region would require periodic purification of each molten-

salt stream. Using flinabe for the main pocket therefore simplifies the design of the RPD-

2002 power plant. The need for modeling of ablation and venting phenomena partially stems

from the stringent requirements set for the propagation of heavy-ion beams. Ablation and

gas venting phenomena must be modeled to predict how much mass is ablated and where

it vents, so that appropriate condensing surfaces can be provided and the requirements for

controlling debris propagation up the beam lines can be met. X-rays deposit onto thin layers

of target facing thick-liquid structures and cause vaporization of a fraction of these layers.

The ablation debris then expands off the jets. The pressure exerted on the surfaces results in

an impulse load, equal to the time integral of the pressure history, which must be quantified

to determine the mechanical response of the pocket. Ablation debris then fills the pocket

interior and pressurizes it, adding to the impulse load to the pocket. The pocket has been

designed to limit the venting up the beam tubes into the final-focus magnet region, where

very little contamination of the metallic surfaces can be tolerated. Thus ablation and venting

calculations can estimate the impulse delivered to inside surfaces of the pocket and how much

debris reaches the beam ports.
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Beam Line Gas Density Control

In the beam tubes, protection of target-facing beam tube metallic surfaces is improved

by adding renewable liquid structures. Cold flinabe vortexes have been proposed to coat the

first half of the beam tubes [24] and have been studied experimentally with scaled water ex-

periments [50, 51]. The vortexes offer condensing surfaces for target chamber debris and

background gas. In the beam tubes, flinabe can be used at a low temperature, around 673 K, at

which the vapor pressure is expected to be less than 0.1 mPa [24]. This vapor pressure is too

low to equilibrate with the vapor in the target chamber. The target chamber will blow gas in

the beam tubes continuously to impose the vapor pressure at 873 K. Assuming that the flinabe

vortex is a perfect absorber, the gas blown from the target chamber will expand isotropically.

The density at any locationz from the beam port is obtained by equating the number of gas

molecules that enters the beam tube to the one of those that streams through a half sphere of

radiusz, and is therefore given by [26]:

n(z) =
n(0)

2

(
R
z

)2

(8.1)

wheren is the gas density (m−3) andR the beam port radius (m). For a 4-cm radius beam

port, a two-meter long, perfectly condensing flinabe vortex reduces the density by a factor of

2×10−4, and suppresses the needs for mechanical shutters to stop steady state vapor blow-

ing into the final-focus magnet region. At the vortex end next to the final-focus region, the

equilibrium density (2× 1015 m−3) will be dictated by the vapor pressure of flinabe at the

vortex temperature, 673 K. The density decreases along the vortex asz−2 until it reaches the

equilibrium value at the vortex temperature. Additionally, the vortexes protect the walls from

target x-rays, ions, and neutrons while offering condensing surfaces for target chamber debris

as well. Magnetic shutters have been proposed to divert the small fraction of debris that vents
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past the vortex and must be diverted before reaching the final-focus magnet region [26]. As

shown in Fig. 8.1, RPD-2002 includes equipment for injection of a neutralizing plasma and a

magnetic shutter located between the last final focus magnet and the vortex. A second neu-

tralizing plasma injection location is also provided between the exit of the vortex tube and the

main chamber. The magnetic shutters use an ionizing plasma, a magnetic dipole to stop and

sweep the debris, and a debris condenser. The same plasma and injection system are used to

neutralize the beam and subsequently ionize the fraction of the debris that is gaseous. Before

the debris arrives, the plasma density must be ramped up substantially from its low value used

for space charge neutralization. The typical strength of the magnetic field and the length of

the dipole have been investigated [26] and are reasonable: typically 0.1 T over 15 cm. The

dipole will also help prevent emittance growth through neutralizing electron streaming up the

beams. A magnetic field of 0.2 T applied over 5 cm is enough to mitigate this effect [26]. A

more detailed description of the magnetic shutter system is provided in Ref. [26]. Integrated

simulations encompassing the beam tubes and the target chamber provide estimates for the

amount of and the ionization state of the debris that must be diverted by the magnetic shutters,

allowing the design of the shutters.

8.2.2 TSUNAMI Ablation and Venting Simulations

Recent TSUNAMI simulations of the HYLIFE-II-like hybrid target chambers were pre-

sented by the author in References [24, 26, 27]. The geometry of the liquid structures modeled

here is closely related and assumptions are similar. Visual Tsunami was not available at the

time of these studies, and an improved variant of TSUNAMI 2.6 [12] was employed. The

code TSUNAMI 2.8 solves the one-dimensional Euler equations for compressible flows using
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a Godunov scheme. Operator splitting is used for these two-dimensional axially-symmetric

simulations. Viscous and magnetic effects are neglected compared to convection. X-ray abla-

tion from the hot target is assumed to be instantaneous and adiabatic. Rapid condensation is

expected to occur onto droplet sprays [5, 41] injected in the main chamber and onto the vor-

texes [6, 7], so these regions are treated as open boundaries in the calculation. The thick-liquid

jets are modeled as perfectly reflective: convective effects are assumed to be preponderant in

this region. Liquid jet motion is neglected over the sub-millisecond time scales of the venting

process. Typically, in one millisecond, the jets move by a millimeter, a fraction of the length

of a TSUNAMI computational cell. Isochoric heating launches rarefaction waves into the jets

and disrupts them, which will at longer times block the direct line of sight that exists from

the beam tubes to the target. As far as the geometrical assumptions are concerned, the mass

flux at the beam ports is expected to be overestimated. Fig. 8.2 shows a cutaway view of

the simulation geometry. The two trapezoids and the block in between simulate the voided

slab jets, while the dots represent the cylindrical jets. Only one beam tube is simulated in the

top left-hand corner, on the axis of symmetry. (In the actual chamber, the centerline tube is

reserved for the target injection system.)

This TSUNAMI model simulates gas dynamics phenomena from the end of the target

and hohlraum disassembly to the time when only a small gaseous fraction of the initial mass

and energy remains in the target chamber near the main pocket. Spatially, they are the first

to cover all the thick-liquid structures and a beam tube, up to the magnetic shutters, in an

integrated manner. Fig. 8.2 shows four TSUNAMI 2.8 density contour plots. The expansion

of the ablated debris off the liquid surfaces from which they were vaporized can be seen on the

first plot. The other three plots show the venting of the target and ablation debris through the
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thick-liquid structures, as well as the expansion of vortex ablation debris up the beam tube and

down into the target chamber. Figures 8.3 and 8.4 show the peak pressure on the target-facing

Figure 8.2: TSUNAMI density contour plots at various times. The density of the liquid and
solid structures is arbitrarily low.

side of the oscillating liquid slab and the impulse load on the same slab, respectively. The

first part of the impulse load is due to the rocket effect when the ablated layers expand off

the slab surface; the second part of the impulse is due to the pocket pressurization while the

target and ablation debris vent through the pocket. Minimizing this venting time by offering

large venting openings is a note-worthy feature of the RPD jet configuration. As discussed in

Section 8.2.3, the predicted impulse has been shown to be manageable in scaled partial pocket

experiments [51].

Thick-liquid pocket were originally designed to minimize the debris flux up the beamlines.

TSUNAMI helped confirm that the mass output at the entrance of the beamlines would be too



121

Figure 8.3: Peak gas pressure onto the liquid pocket in the RPD chamber.

Figure 8.4: Impulse load to the liquid pocket in the RPD chamber.
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high, all the more with the recent recognition that neutralized ballistic transport requires no

debris contamination in the final-focus magnet region. Figures 8.5 and 8.6 show the density at

the entrance of the centerline tube and the integrated mass flux at the same location. Ablation

Figure 8.5: Density at the entrance of the RPD centerline tube.

debris expanding off the vortex into the target chamber causes the initial negative mass flux.

The use of a vortex partly stems from the need to accommodate this mass output [24].

Figures 8.7 and 8.8 display the density and integrated mass flux at the entrance of the

magnetic shutters, past the liquid vortex. The last two plots can be compared to Figures 8.5

and 8.6. The cold vortex remarkably reduces the mass output up the beamlines, but, even when

assumed a perfect condenser, the vortex is not long enough to suppress any debris ingression

in the final-focus magnet region. Accommodation on debris up the beamlines has never been

tackled in detail in any heavy-ion power plant study. Usually mechanical shutters would be

envoked, but these TSUNAMI simulations show debris will arrive before the closing of fast
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Figure 8.6: Integrated mass flux at the entrance of the RPD centerline tube.

Figure 8.7: Density at the entrance of the magnetic shutters in the RPD centerline tube.



124

Figure 8.8: Integrated mass flux at the entrance of the magnetic shutters in the RPD centerline
tube.

mechanical shutters. Magnetic shutters were proposed instead [26]. At the entrance of the

magnetic shutters, TSUNAMI predicts that the time-integrated mass and energy fluxes are

1× 10−4 kg m−2 and 1× 103 J m−2, respectively. The average plasma molecular density,

temperature, and axial speed are 3×1020 m−3, 2×104 K, and 3×104 m s−1, respectively.

(The radial speed is negligible.) PIC simulations performed with the LSP code indicate that

such plasma can be stopped by a reasonable magnetic field—0.1 T applied over 5 cm [26].

The relatively low temperature implies that the gas is not (fully) ionized, hence the need for

the ionizing plasma. (All the more that the temperature is likely to be overestimated in this

simulation, performed without radiation.)
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8.2.3 Possible Optimization

Hohlraum

Obviously, the target and hohlraum must be designed so that a substantial yield is ob-

tained, but other considerations are also important, such as fabrication feasibility, cost, and

recoverability from the chamber coolant. Several parameters are relevant to our gas dynamics

modeling, such as total mass, yield, energy partitioning, and the temperature of target and

hohlraum after disassembly. The yield is determined by target physics and power plant eco-

nomics. The mass of casing material around the hohlraum can be increased and its shape can

be modified to control the x-ray temperature, the partitioning of the energy between x-rays and

target debris, as well as the anisotropy of the expansion of the target debris. Investigation of

multi-dimensional effects and optimization of the target output have not been performed yet.

Here the expansion of the target debris is assumed to be spherically symmetric and the x-rays

radiated from the target are assumed to have a spectrum characteristic of a 500 eV blackbody.

Liquid Geometry

The inner-radius of the pocket is chosen to avoid excessive bulk boiling due to the heat

deposited by the neutrons and to avoid excessive impulse loading due to target and ablation

debris, before venting has occurred. TSUNAMI 2.8 predicts an impulse load of 3 kPa s.

Distributed uniformly into a layer of flinabe 60-cm thick, this impulse momentum results in

an outward velocity of 2 m s−1—20% of the injection velocity. Partial pockets have been

created, disrupted under slightly higher scaled impulse loads, and subsequently reformed in a

timely manner in scaled water experiments [51]. The volume of the inner pocket and the open

area through the oscillating slab jets determine how rapidly the pocket vents and how pressure
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builds up. Increasing the venting area would reduce the impulse load, if necessary.

8.3 Assisted-Pinch Final-Focusing

8.3.1 A variant of the RPD Chamber with Assisted-Pinch Focusing

As discussed, the Robust Point Design includes a detailed description of a thick-liquid

protected chamber, based on the HYLIFE-II design [45]. Experiments and simulations led to

a few changes to the baseline HYLIFE-II: for instance, the RPD oscillating sweeping jets have

approximately a 50% porous void fraction and are generated using flinabe (LiNaBeF4) molten

salt rather than flibe (Li2BeF4). Flinabe liquid vortexes and stationary cylindrical jets are used

to protect the beam ports. A heavy-ion inertial fusion power plant including assisted-pinch

final focusing and thick-liquid walls based on the HYLIFE-II design was presented by Yu and

co-workers in 1998 [76]. Recently, the author proposed to modify Yu’s design and introduced

the same improvements to the HYLIFE-II design that were made to finalize the RPD [28].

Fig. 8.9 shows a schematic of the modified chamber, yet to be optimized.

The assisted-pinch requires a background gas density equivalent to 5 Torr of Xe at 873 K;

this high-density heavy-element background gas is required to establish and maintain the in-

tegrity of the plasma channels that guide the heavy-ion beams. (Using the non-condensable

Xe may reduce the condensation rate and might require an increase of the condensing spray

flow rate, but this is not expected to be an issue.)
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Figure 8.9: Geometry of the assisted-pinch chamber.

8.3.2 TSUNAMI Ablation and Venting Simulations

Numerical models and assumptions are similar to those used for the RPD modeling and

other related thick-liquid chambers recently modeled with TSUNAMI. As usual, the moti-

vation for these simulations stems from the need to determine the pocket response and the

cleanliness and background gas requirements set by proper beam and target propagation. Tar-

get x-rays deposit most of their energy in thin liquid layers that are then vaporized. Fig. 8.10

shows four density contour plots at different times, showing the expansion and venting of the

target debris and ablated layers. The impulse load to the thick-liquid structures in the assisted-

pinch chamber is shown on Fig. 8.11. As usual, the first part of the impulse load comes from

the rocket effect as the ablated layers expand against the liquid structures. The second part of

the loading comes from the pocket pressurization. Since the assisted-pinch thick-liquid pocket
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Figure 8.10: TSUNAMI simulations of the assisted-pinch chamber. The density of the liquid
and solid structures is arbitrarily low.

Figure 8.11: Impulse load to the liquid pocket in the assisted-pinch chamber.



129

derives closely from the RPD chamber and the target yield and output are assumed to be those

of the RPD, the assisted-pinch impulse load is similar to that obtained for the RPD. Mass fluxes

up the beam lines are similar to the neutralized ballistic case and are not reported here since

the cleanliness requirements are less stringent in the assisted-pinch case. (Here, the heavy-ion

beams are charge-neutralized before entering the beam tubes.) If necessary, magnetic shutters

similar to those described for the neutralized ballistic mode could be employed.

8.4 Solenoidal Final-Focusing

8.4.1 A Novel “Vortex Chamber” for Solenoidal Focusing

A novel chamber geometry was recently proposed to accommodate the solenoids that may

be employed to final-focus the ion beams [28]. Fig. 8.12 illustrates this concept. The dark

layer in Fig. 8.12 represents the swirling vortex flow. The vortex will expand past the ends

of the target chamber, in order to protect the beam lines and offer additional condensation

surfaces for background vapor, target debris and ablated salt.

The vortex is a variation of the device presented by Pemberton and co-workers [50] and

integrated into the RPD to generate a liquid layer inside the beam tubes. Pemberton used

one injection and two extraction sections. For the large aspect ratio vortex envisioned for

the solenoid chamber, fluid is injected and extracted continuously along the wall, as shown

conceptually on Fig. 8.13.

Proper beam propagation for solenoid focusing requires a high background electron den-

sity for space charge neutralization and a low background ion density to minimize scattering.

A low-Z gas such as He or H2 is being considered for the drift lines, while a compromise be-
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Figure 8.12: Schematic of the vortex chamber [28]. The first wall is not depicted.

Figure 8.13: A combination of liquid blowing and sucking generates the vortex flow. The
centrifugal force maintains the flow attached to the wall [28].
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tween the electron and ion density requirements could be achieved in the vortex chamber using

the flinabe vapor in equilibrium with the liquid jets at 873 K. Higher densities, if desirable,

could be achieved using a molten salt more volatile than flinabe or flibe. A mixture of LiF,

BeF2, and ZrF4 could be a reasonable candidate to obtain high vapor pressure and a sufficient

tritium breeding ratio. (Obtaining high vapor pressure with flinabe or flibe would require an

operating temperature that would raise chamber material issues.) There is some concern over

the activation of Zr, but limiting the residence time in the chamber may avoid the generation

of long-lived elements.

8.4.2 Vortex Response to Target Output

The target neutrons will deposit a significant fraction of their energy in the liquid layer

over very short time scales, heating the liquid isochorically. Isochoric heating will generate

rarefaction waves and, after reflection off the first wall, tensile waves; the standoff distance to

the target (at least two meters) is expected to be sufficient to avoid spallation off the vortex

surface and excessive loading to the first wall. However, x-rays will deposit their energy

over small distances in the target-facing surface of the liquid vortex and will vaporize small

layers, possibly launching waves into the bulk of the vortex and causing spallation and droplet

ejection. Increasing the mass of the hohlraum could shift down the x-ray spectrum and cause

a substantial fraction of the x-ray energy to be radiated at lower energies over time scales

that could possibly be long enough for the heat to be accommodated by the vortex through

heat conduction and surface renewal. If the target casing is designed optimally, a significant

fraction of the target yield could then be accommodated without inducing much x-ray ablation

off the surface of the vortex. The effect of the solenoidal magnetic field on target and ablation
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debris expansion has not been investigated, but back-of-the-envelope estimates tend to indicate

that the debris will first expand hydrodynamically and then be deflected into the vortex by the

solenoidal magnetic field. A small fraction, yet to be quantified, will jet up the centerline.

Significant work remains to be done and is outside of the scope of this dissertation, which is

centered around the target chamber and beam tube interface in the Robust Point Design. A

detailed Visual Tsunami model would require including a magneto-gasdynamics algorithm.

8.5 Z-Pinch Inertial Fusion Energy

8.5.1 Z-Pinch Target Chamber

A “Z-pinch” is an x-ray source made of an array of tiny wires. An intense current is pulsed

through the wires and causes them to collapse inwardly. When the wires stagnates, x-rays are

produced. A recyclable transmission line (RTL) brings the current to the Z-pinch. Parts of the

RTL will be destroyed by the exploding target and the RTL will be replaced after each shot.

The Z-pinch and RTL are surrounded by a neutronically-thick array of vertical jets. As usual,

the thick liquid structures are interposed between the target and the solid first wall. X-rays

and ions are stopped in the jets and neutrons deposit a significant fraction of the target yield in

the jets, so that the neutron fluence seen by the first wall can be accommodated by fast-fission

nuclear-grade materials.

8.5.2 Visual Tsunami Ablation and Venting Modeling

In 2004, Lawrence Livermore proposed two different jet configurations. Fig. 8.14, a CAD

drawing, shows the so-called “closed” geometry, with a symmetric array of jets regularly
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spaced. Fig. 8.15 displays the Visual Tsunami model of the same chamber, once the CAD

Figure 8.14: Two-dimensional cutaway view of LLNL’s 2004 “closed” configuration.

drawing has been processed by the Visual Tsunami mesher and before ray-tracing is performed

and ablation profiles are computed. It is assumed that there is no non-condensable background

gas and that the recyclable transmission line is made of frozen flibe. The simulation was

performed in Cartesian coordinates with an ideal gas law, no radiation transport, and reflective

boundaries at gas/liquid interfaces. Snapshots of density and pressure contour plots are shown

in Figures 8.16 and 8.17, respectively.

Figure 8.18 illustrates LLNL’s 2004 “somewhat open” geometry, which is based on the

“closed” geometry, with a few jets removed. Fig. 8.19 shows the open configuration, as

modeled by Visual Tsunami. Snapshots of density and pressure contour plots are shown in

Figures 8.20 and 8.21, respectively.

Visual Tsunami predicts (peak) impulse loads close to 106 Pa s for both the close and open
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Figure 8.15: Visual Tsunami geometrical model of LLNL’s 2004 “closed” configuration.

Figure 8.16: Density contour plots for the “closed” case.
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Figure 8.17: Pressure contour plots for the “closed” case.

Figure 8.18: Two-dimensional cutaway view of LLNL’s 2004 “open” configuration.
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Figure 8.19: Visual Tsunami geometrical model of LLNL’s 2004 “open” configuration.

Figure 8.20: Density contour plots for the “open” case.
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Figure 8.21: Pressure contour plots for the “open” case.

configurations, as can be seen in Fig. 8.22. While these simulations do not take into account

three-dimensional effects and are expected to be conservative, more design work is required

to bring down the impulse load to a reasonable value.

8.5.3 On-Going Optimization

The closed and somewhat open configurations are reminiscent of the original HYLIFE

chamber, which had limited success in terms of gas density and pressure control. Fig. 8.23

shows the jet configuration proposed by Livermore in 2005. This geometry might be slightly

more attractive from a fast debris venting and pressure build-up mitigation point of view.

Turning the jets on and off so that when the fusion pellet explodes there will be a large venting

opening at the bottom of the chamber may constitute a promising approach to controling the
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Figure 8.22: Impulse load to the liquid curtain in the “closed” and “open” Z-IFE chambers.

Figure 8.23: Two-dimensional cutaway view of LLNL’s 2005 configuration (courtesy of R.P.
Abbott, LLNL).
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gas pressure inside the liquid curtain and prevent too high an impulse loading.

8.6 Conclusions and Perspectives

TSUNAMI was modified to model gas dynamics phenomena in two HYLIFE-II-like thick-

liquid chambers, one tailored for neutralized ballistic tranport, and the other compatible with

the assisted-pinch scheme. The TSUNAMI simulations were the first to include the whole

target chamber and beam lines. They indicated that liquid structures would not be sufficient to

prevent any debris ingression up the beam lines and showed the need for the magnetic shutters

in the case of neutralized ballistic transport. TSUNAMI and LSP simulations do indicate

that liquid structures and magnetic shutters can be successfully combined to prevent debris

ingression up the beam lines. Additionally, for both the neutralized ballistic and assisted-

pinch chamber, TSUNAMI predicts impulse loads to liquid pockets that can be managed.

Future work could include revisiting these simulations employing Visual Tsunami. In

particular, higher-fidelity simulations of the assisted-pinch chamber may need to take into

account the x-ray and ion energy deposition in the background gas. Additional Z-IFE simu-

lations should be performed and design changes made until a thick-liquid chamber that does

not generate excessive impulse load is finalized. Modeling the impulse load to the top struc-

tures that hold the retransmission line would be valuable as well. This could be done with

a 2-D simulation (in cylindrical coordinates) or with a 3-D model. Simulations for any IFE

concept would benefit from multi-dimensional radiation hydrodynamics models of target and

hohlraum disassembly.



140

Chapter 9

Conclusion

9.1 Simulation Code Development

The TSUNAMI series of gas dynamics codes has been well known in the fusion com-

munity for the last fifteen years or so. This doctoral work produced two simulation codes.

The first one, TSUNAMI 2.8, is an improved version of TSUNAMI 2.6. The second code,

Visual Tsunami, was written from scratch, building on the experience accumulated using

TSUNAMI 2.8. The two versions of Visual Tsunami were developed using a host of modern

programming techniques and improved algorithms. Emphasis was put on reaching those two

always elusive goals of reusability and user-friendliness. Visual Tsunami is object-oriented,

vectorized, and ready to be parallelized. The preprocessor and postprocessor provide a user-

friendliness unheard of in the history of the code. They can help set up new simulations in a

short amount of time and with a reduced likelihood of errors.

The gas dynamics scheme is still based on a Godunov scheme, with an exact solver to the

exact Riemann problem, for both ideal and real gas equations of state—this is a first in the his-
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tory of the code. Second-order accurate schemes are particularly useful with coarse meshes,

which can rarely be employed with complex geometries; a first order Godunov scheme was

deemed sufficient. The two-temperature radiation diffusion mathematical model is similar

to that used by Chen in his 1-D version of TSUNAMI. The discrete scheme, however, is

significantly more accurate. (Its detailed multi-dimensional implementation was left for fu-

ture work.) The novel gas/liquid interface model is conceptually simpler than the traditional

TSUNAMI model, first derived by Liu. Detailed comparison between the two models is left

for future work. The new ablation model with radiation conduction and hot opacities surpasses

the traditional instantaneous cohesive energy model. Future modifications could include an in-

flight condensation model and a shift to unstructured meshes.

The improved TSUNAMI code was employed in support of the heavy-ion fusion Robust

and Modular Point Designs and the conception of the first Condensation Debris Experiments.

Additionally, Visual Tsunami was recently used for CDE and the novel thick-liquid protected

Z-IFE target chamber.

9.2 Design and Modeling of the Condensation Debris Ex-

periments

As described, the Condensation Debris Experiments investigate in-flight condensation of

superheated gaseous mixtures. Back-of-the-envelope estimates, simple models, and simula-

tions assisted in the design of the series of Condensation Debris Experiments, guided the di-

mensioning of the chamber, hinted at the scientific feasibility of the experiments, and helped

in interpreting the results. For the sake of brevity, only a few highlights were reported in this
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doctoral dissertation.

Due to the novelty of the experiment and the uncertitude in gas dynamics initial conditions

resulting from the interaction of the laser beam with the halfraum, a qualitative agreement

was sought after. Comparison between simulation and experimental results do show good

qualitative agreement.

Future work should include implementing a detailed in-flight condensation model and the

simulation of the proposed experimental campaign on the National Ignition Facility at the

Lawrence Livermore National Laboratory. Since the energy density will be higher, inclusion

of radiation and accurate gas/solid interaction models will then be essential.

9.3 Gas Transport and Control in Thick-Liquid Inertial Fu-

sion Target Chambers

Due to the arrangement of numerous liquid jets, shock propagation through HYLIFE-

II-type chambers is far more complex than in dry-wall or thin-liquid IFE chambers. In a

thick-liquid chamber, indirect-drive target x-rays ablate a thin layer off the surface of the inner

pocket; fast ions quickly deposit their energy in the ablated gas; and slow target debris interacts

with the expanding ablated layer. A complex pattern of reflected and transmitted waves is then

generated, in which waves can be transmitted through the jet structures, or reflected off the

inner liquid pocket or other waves. The gas ultimately vents through the various thick-liquid

jets, filling the volume of the target chamber.

During the course of the HYLIFE study, it was realized that a closed pocket (besides

leaving no room for target or driver propagation!) would result in an excessive pressurization
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of the inside pocket and the liquid curtain being slammed into the structural first wall. Both

HYLIFE-II and the RPD rely on oscillating slab jets with venting openings to avoid pocket

over-pressurization. Another crucial issue is the propagation of target and ablated gas up the

beam lines where it could deposit and cause arcing between the still un-neutralized beam

and the tube wall. Although pockets can be designed to maximize gas venting in directions

opposite to the beam line, this doctoral work helped recognize that this approach would not

be effective enough. As mechanical shutters are too slow to close off the beam lines quickly

enough, a cold flinabe liquid vortex layer was suggested to coat and protect the beam line near

the target chamber. TSUNAMI showed that it could not be long enough for all the debris and

ablated molten salt to condense. The combination of an ionizing plasma and a weak magnetic

dipole was proposed to effectively stop the debris and prevent its ingression past the vortex.

The dipole will prevent the neutralizing electrons from streaming up the beam line as well,

hence limiting beam emittance growth. Additionally, this work helped recognize that the cold

vortex acts as an excellent getter and prevents blowing-up of target chamber background gas

up the beamlines. This work was incorporated into the Robust Point Design, the first heavy-

ion fusion conceptual design, with a driver, a target, and a chamber, that are self-consistent

with one another.

This doctoral work supported preliminary work towards a modular point design, a poten-

tially cheaper alternative to the Robust Point Design. The first multidimensional modeling of

the assisted-pinch chamber was performed, but a detailed model may need to include the de-

position of target x-rays in the background gas of the target chamber. (The gas density is much

higher than in the RPD resulting in a photon mean free path of order of the standoff distance

of the pocket.) Design questions raised by the novel vortex chamber were explored as well.
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The first multidimensional simulation of a Z-IFE target chamber was performed. Future work

should investigate improved liquid blanket configurations that would increase the venting rate

and minimize the impulse load transmitted to the jets.
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Appendix A

Flibe Properties

The molten salt flibe has been studied to some extent for various fission and fusion ap-

plications. A few of the thermal-physical properties that are among the most relevant for gas

dynamics simulations are compiled here. In particular, a review of equations of state for real

gas flibe is provided.

A.1 Miscellaneous Properties

Properties useful for gas dynamics simulations have been compiled and are presented in

Table A.1. The molecular mass of liquid and gas flibe follows from the composition. The gas

phase is assumed to be in thermodynamics and chemical equilibrium with its liquid counter-

part.



158

property value comment reference
Be molecular mass 9.012 g mol−1

F molecular mass 18.998 g mol−1

Li molecular mass 6.941 g mol−1

composition 2/3 LiF 1/3 BeF2 liquid [45]
molecular mass 40 g mol−1 liquid estimate

density (kg m−3) 2415.6 - 0.49072 T T ≥ 732.2 K [85]
T ≤ 4498.8 K

cohesive energyec 7.8×106 J kg−1 at 873 K estimate
thermal diffusivityα 2×10−7 m2 s−1 liquid estimate

heat capacity cp ≈ cv ≈ 2.3×103 J kg−1 K−1 liquid estimate
critical temperature 4498.8 K liquid [15]

composition > 99% BeF2 gas estimate
molecular mass ≈ 47.2 g mol−1 gas

Table A.1: Various flibe properties.

A.2 Hydrodynamics Equations of State

Background information on hydrodynamics equations of state can be found in Section 3.2.

The hydrodynamics equations of state in this section assume that the gas has the composition

of liquid flibe.

A.2.1 Chen’s Equations of State

Chen and co-workers [11, 14, 17] derived the first real gas equation of state for flibe. Their

assumptions and methodology can be found elsewhere; here only the analytical formulae are

presented. First, a non-dimensional energyy is defined:

y = ln(
e
ec

) (A.1)

wheree is the specific internal energy (J kg−1) andec is the specific cohesive energy of flibe

(J kg−1). For this particular analytical fit,ec = 7.906×106 J kg−1. The pressurep (Pa) is then
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given by:

p = (γideal−1)ρ (e−ec)g(y(e))+ρ0(Γ0(e−ev)− (γideal−1)(e−ec)g(y(e)))
(

ρ

ρ0

)2.3

(A.2)

whereγideal = 5
3, ev = 8.508×105 J kg−1, Γ = 1.0, ρ0 ≈ 2000 kg m−3 and the factorg(y) is

given by:

g(y) =1−0.79exp
(
−0.32(y−1.27)2)−0.35exp

(
−1.29(y−3.2)2)

−0.6exp
(
−0.39(y−5.02)2)−0.24exp

(
−2.5(y−6.41)2) (A.3)

The sound speed is evaluated using Eq. 3.42:

a2 =
(

∂ p
∂ρ

)
e
+

p
ρ2

(
∂ p
∂e

)
ρ

(A.4)

The gas temperature (K) is given by:

T =
pM
ρR

(A.5)

whereR is the universal gas constant1. The molar massM (kg mol−1) is given as a function

of specific internal energy by:

M =


1.60036−0.170118ln(e)+0.00454296(ln(e))2 if e≤ 108 J kg−1

0.109337−0.0088785ln(e)+0.000377312(ln(e))2 if e≥ 108 J kg−1

(A.6)

The second equation has a typographical error as pointed out independently by Debonnel

(personal communication to G. Fukuda, UCB) and Zaghloul. The equation has been corrected

by Zaghloul [80] and now reads:

M =


1.60036−0.170118ln(e)+0.00454296(ln(e))2 if e≤ 108 J kg−1

0.109337−0.0088785ln(e)+0.000183843126(ln(e))2 if e≥ 108 J kg−1

(A.7)

1R=8.31 J mol−1 K−1
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For e of order 1011 J kg−1, Eq. A.6 overestimatesM and subsequentlyT by two orders of

magnitude. (In other words, the ideal gas law predicts a more accurate peak temperature than

the uncorrected Chen’s real gas caloric equation of state!)

A.2.2 Jantzen’s Equations of State

Jantzen [34] adapted Zel’dovich and Raizer’s thermodynamics treatment of ionization phe-

nomena. An outline of her work can be found in her thesis [34]. For her simulations of gas

dynamics phenomena in inertial fusion energy systems, she kept Chen’s EOS in the dissocia-

tion regime and used hers at higher temperatures, at which the gas is ionized.

A.2.3 Zaghloul’s Equations of State

Zaghloul derived an equation of state for flibe in the ionization regime [80, 81, 82] (at tem-

peratures greater than 1 eV.) Chen made a few oversimplifying assumptions and Zaghloul’s

approach is substantially more generic and accurate, as discussed in Ref. [80]. Fig. A.1 dis-

plays flibe temperature as a function of density and specific energy. (Zaghloul provided the

specific energy as a function of density and temperature. Inverse interpolation was performed

to generate Fig. A.1.) Fig. A.2 and Fig. A.3 show pressure and sound speed as functions of

density and temperature. In addition, Zaghloul provided the adiabatic exponent, heat capacity

at constant pressure, and average ionization state, which are displayed on Fig. A.4, Fig. A.5,

and Fig. A.6, respectively.
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Figure A.1: Flibe pressure as a function of density and specific energy.

Figure A.2: Flibe pressure as a function of density and temperature.
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Figure A.3: Flibe sound speed as a function of density and temperature.

Figure A.4: Flibe adiabatic exponent as a function of density and temperature.
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Figure A.5: Flibe specific heat at constant pressure as a function of density and temperature.

Figure A.6: Flibe ionization state as a function of density and temperature.
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A.2.4 The Chen-Zaghloul Equations of State

Chen’s equations of state restricted to the dissociation regime supplemented by Zaghloul’s

equations in the ionization regime (T > 1 eV) is referred to as the Chen-Zaghloul equations

of state for flibe gas and is believed to constitute the most accurate flibe equations of state.

A.3 Opacities

A.3.1 Cold Opacities

Cold opacities were extracted from the EPDL97 library [22] through the Lawrence Liver-

more National Laboratory code EPICSHOW [21].

A.3.2 Hot Opacities

Hot opacities were obtained through the code TOPS [35], which was developed at Los

Alamos National Laboratory.


