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1. Introdu
tionA 
ouple of years ago, the present author and Charles Thorn initiated aprogram of studying �eld theory in the planar limit by reformulating it as alo
al theory on the world sheet [1℄. This new formulation provided a freshapproa
h for ta
kling some of the old standing problems. The �eld theorymost intensively studied so far is massless �3 theory [2-6℄, although Thornand 
ollaborators later extended the world sheet approa
h to more realisti
models [7-9℄. Apart from providing a new insight into �eld theory, the worldsheet formulation enables one to do dynami
al 
al
ulations, using the mean�eld approximation. The most interesting result so far to 
ome out of themean �eld method was the emergen
e of a string pi
ture from the sum ofthe planar graphs in the �3 theory. Of 
ourse, there are various 
aveats: Themodel is unphysi
al and in fa
t unstable, and the reliability of the mean �eldapproximation is open to question. There are also various te
hni
al problemswhi
h were only partially over
ome in [6℄. In spite of all the drawba
ks, wefeel that an important step forward has been taken.In this arti
le, instead of summing �eld theory diagrams, we 
onsider thesum of planar bosoni
 open string diagrams, and we show that the mean �eldmethod is also appli
able to this 
ase. We list below the main motivationsfor this generalization:1) Some of the te
hni
al problems en
ountered in summing �eld theory dia-grams are absent in the 
ase of the string diagrams. In fa
t, summing stringsturns out to be simpler than summing �3 graphs.2) Assuming that the zero slope limit of the string theory is some �eld theory,one 
an indire
tly re
over the �eld theory sum from the string sum by takingthe zero slope limit.3) The string sum is of interest in itself; it may enable one to investigateproblems su
h as ta
hyon 
ondensation [10℄.The main results to emerge from this investigation are the following:After the summation, a new string emerges, whose slope is greater than theoriginal slope. The dynami
al me
hanism for this 
hange is what we 
all the
ondensation of the string boundaries. What happens is that the boundariesbe
ome dense on the world sheet, 
hanging its texture. This phenomenonwas already observed in the 
ontext of the �3 theory [2-6℄; in fa
t, in thisrespe
t, the string and �eld theory 
al
ulations are remarkably similar. The
ru
ial point is that even after the initial slope is set equal to zero, the �nalslope after the summation remains �nite. Sin
e the zero slope limit of string1



theory is generally believed to be a �eld theory, this result supports the ideaof string formation in �eld theory.All of this, of 
ourse, depends 
ru
ially on the validity of the mean �eldapproximation. In addition, there are some questions on the meaning of thezero slope limit. Usually, in taking the zero slope limit, the ve
tor mesonis kept at zero mass, and the heavy parti
les de
ouple. The resulting �eldtheory is therefore a ve
tor (gauge) theory. The existen
e of the ta
hyon,however, throws some doubt on this pi
ture; in this limit, the ta
hyon be-
omes in�nitely heavy and therefore in�nitely destabilizing. Clearly, it isdesirable to generalize the approa
h developed in this paper to the ta
hyonfree superstring theory, where this problem is absent. The present arti
le 
anbe thought of as a warmup exer
ise for this future proje
t.In se
tion 2, we brie
y review the Feynman graphs in the mixed light
onevariables [11℄ and the and the lo
al �eld theory on the world sheet whi
hgenerates these graphs [1-3℄. We also dis
uss the transformation propertiesof various �elds under a spe
ial Lorentz boost, whi
h manifests itself as as
ale transformation on the world sheet.The te
hnology introdu
ed in se
tion 2 for summing over �eld theorygraphs will turn out to be exa
tly what is needed later on for summing overplanar strings in se
tion 3. As it turns out, the a
tion on the world sheetthat reprodu
es the string sum 
an be 
ast in a form very similar to the
orresponding a
tion for �eld theory by means of a duality transformation.This a
tion is then the starting point of the mean �eld method developedin se
tion 4 from the point of view of the large D limit, where D is thedimension of the transverse spa
e. Part of this se
tion is in the nature of areview, sin
e there is a lot in 
ommon here with referen
es [2-6℄, where themean �eld method was applied to the �3 �eld theory. The se
tion ends witha dis
ussion of how to de�ne 
uto� independent parameters from the 
uto�dependent ones.In se
tion 5, the mean �eld method is applied to the 
al
ulation of theground state of the model. The equations determining the ground state havetwo possible solutions, whi
h we 
all the (+) and (�) phases. The (+) phasedes
ribes the original perturbative sum of the strings. The (�) phase, whi
hhas lower energy and therefore is the true ground state, is the phase wherethe string boundaries have formed a 
ondensate on the world sheet. We showthat, as a result of this 
ondensation, a new string is formed, with a slopegreater than the slope of the original string. This new slope remains nonzero even when the initial slope is set equal to zero. Identifying the zero2
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Figure 1: The propagatorslope limit of the string with �eld theory, we 
onsider this result as a strongindi
ation of string formation in �eld theory.Finally, we dis
uss our results in se
tion 6, and summarize our 
on
lusionsand point out some future dire
tions of resear
h in se
tion 7.2. A Brief ReviewIn this se
tion, we present a brief review of the results obtained in refer-en
es [1-6℄. In this work, starting with the world sheet representation of thesum of the planar graphs of the massless �3 �eld theory [1-3℄, the groundstate energy of the system was 
al
ulated in the mean �eld approximation.It was found that, subje
t to this approximation, the dynami
s favors stringformation.The starting point of the mean �eld 
al
ulation is the light 
one repre-sentation of the s
alar propagator [11℄�(p) = �(�)2p+ exp �i� p2 +m22p+ ! ; (1)where p+ = (p0+ p1)=p2 and � = x+ = (x0+ x1)=p2. Here the supers
ripts0 and 1 label the timelike and the longitudinal dire
tions, and the transversemomentum p lives in the remaining D dimensions. The propagator is rep-resented by a horizontal strip of width p+ and length � on the world sheet(Fig.1). The solid lines that form its boundary 
arry transverse momenta q13
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τFigure 2: A typi
al graphand q2 
owing in opposite dire
tions so thatp = q1 � q2:More 
ompli
ated graphs 
onsist of several horizontal line segments (Fig.2).The �3 intera
tion takes pla
e at the beginning and at the end of ea
h seg-ment, where a fa
tor of g (the 
oupling 
onstant) is inserted. One has thento integrate over the position of the verti
es and over the momenta 
arriedby the solid lines.It was shown in [2,3℄ that the light 
one Feynman rules sket
hed above
an be reprodu
ed by a lo
al world sheet �eld theory. The world sheet isparametrized by the 
oordinate � along the p+ dire
tion and � along the x+dire
tion, and the transverse momentum q is promoted to a bosoni
 �eldq(�; �) on the world sheet. In addition, two fermioni
 �elds b and 
, ea
hwith the D=2 
omponents (assuming that D is even), are needed. The a
tionon the world sheet for the massless theory is given byS0 = Z p+0 d� Z d� �b0 � 
0 � 12q02� ; (2)where the derivative with respe
t to � is represented by a dot and the deriva-tive with respe
t to � by a prime. Also, one has to impose the boundary
onditions _q = 0; b = 
 = 0; (3)on the solid lines. These boundary 
onditions 
an be implemented by in-trodu
ing Lagrange multipliers y, �b and �
 and adding suitable terms to the4



a
tion. Sin
e ghosts will not be needed in what follows, from now on, we willdrop them. The a
tion with the boundary 
onditions in
luded, but withoutthe ghosts, reads S = Z p+0 d� Z d� ��12q02 + �y � _q� : (4)Here the �eld � is a delta fun
tion on the boundaries and it vanishes in thebulk: it is inserted to ensure that the boundary 
ondition is imposed only onthe boundaries. However, with this insertion, the part of the integral overy that has support in the bulk diverges, sin
e the integrand over this regionis independent of y. To avoid this problem, we add a Gaussian term to thea
tion whi
h 
uts o� the divergen
e:S ! S + Sg:f ;Sg:f = Z p+0 d� Z d� ��12�2��y2� ; (5)where � is a 
onstant and �� is 
omplimentary to �: it vanishes on the bound-aries and it is equal to one everywhere else. It was pointed out in [5,6℄ thatthis 
an be thought of as a gauge �xing term. In its absen
e, the a
tion isinvariant under the gauge transformationy! y + �� z;where z is an arbitrary fun
tion of the 
oordinates. It may seem that wehave introdu
ed a new parameter � into the model, but we will see in se
tion6 that this new parameter 
an be absorbed into the de�nition of the 
uto�parameters that will be needed shortly.It is possible to give an expli
it 
onstru
tion for the �elds � and �� in termsof a fermioni
 �eld on the world sheet. To see how this works, it is best todis
retize the � 
oordinate into segments of length a. This dis
retizationis pi
tured in Fig.3 as a 
olle
tion of parallel line segments, some solid andsome dotted, spa
ed distan
e a apart. The boundaries are marked by thesolid lines, and the bulk is �lled with the dotted lines. Asso
iated with theselines, there are a two 
omponent fermion �eld  i(�n; �) and also its adjoint� i, where, �n = na, is the dis
retized � 
oordinate. The �eld � 1 
reates adotted line and � 2 a solid line out of va
uum, and  1;2 annihilate these lines.� and �� 
an now be written as� = 12 � (1� �3) ; �� = 12 � (1 + �3) ; (6)5



Figure 3: Solid and dotted linesand the fermioni
 a
tion is given bySf = Xn Z d� �i � _ � g � �1 ��=na! Z p+0 d� Z d� �i � _ � g � �1 � : (7)Here, the �rst line represents the a
tion in terms of the dis
retized fermionsand the se
ond line the 
orresponding 
ontinuum limit. The �rst term in thea
tion 
orresponds to free fermion propagation along the � dire
tion, andthe se
ond term to intera
tion taking pla
e when there is transition from adotted line to a solid line or vi
e versa. We will work with both the dis
reteand the 
ontinuum pi
tures; the dis
rete version will be parti
ularly usefulin regulating the model. Thus the parameter a will serve as one of our two
uto�s. It is important to noti
e that there is a 
hange in the normalizationof the fermion �eld in passing from the dis
rete to the 
ontinuum pi
ture.This is be
ause there is a fa
tor of a involved in 
onverting a sum into anintegral: aXn ! Z d�;whi
h means that the fermion �elds should be s
aled as ! 1pa ; � ! 1pa � ; (8)in going over to the 
ontinuum normalization.As we mentioned earlier, to reprodu
e all Feynman graphs, one has to sum(integrate) over all possible positions of the solid lines (boundaries). It 
an6



readily been seen that summing over the two 
omponents of the fermion �eldat ea
h point on the world sheet is equivalent to summing over all possiblepositions of the boundaries. Therefore, the introdu
tion of the fermioni
 �eldenables one, at least formally, to sum over all planar Feynman graphs of themassless �3 theory, and the following world sheet a
tion , gotten by addingthe eqs.(4),(5) and(7), provides a 
ompa
t expression for this sum:S = Z p+0 d� Z d� ��12q02 + �y � _q� 12�2��y2 + i � _ � g � �1 � ; (9)where � and �� are given by eq.(6).There is, however, a problem with the above a
tion: It fails to reprodu
ethe prefa
tor 1=(2 p+) in eq.(1) for the propagator, unless, g, instead of beinga 
onstant, is allowed to depend on �. In [6℄, it was shown how to take thisdependen
e into a

ount within the mean�eld approximation. We will ignorethis problem, sin
e we will see later that this 
ompli
ation does not arise insumming over strings.Finally, we would like to dis
uss the behaviour of various �elds under thes
aling of 
oordinates, whi
h is intimately 
onne
ted with Lorentz invarian
e.In the light 
one setup we have, the only Lorentz transformation that is stillmanifest is generated by the boost along the singled out dire
tion labeled by1. Under this boost, x+ and p+ s
ale asx+ ! u x+; p+ ! u p+;where u parametrizes the boost. If under this s
aling, the �elds transform asq(�; �)! q(u�; u�); y(�; �)! y(u�; u�); (�; �)! pu (u�; u�); � (�; �)! pu � (u�; u�); (10)then the a
tion given by eq.(9) is invariant ex
ept for the intera
tion andthe gauge �xing terms. These two terms be
ome invariant, at least formally,only if we also require that g ! u g; �2 ! u�2: (11)It is somewhat unusual to require 
onstants in an a
tion to transform, andone may worry that Lorentz invarian
e is in danger. We will see later on howthis problem is resolved. 7



This �nishes the review of the massless �3 theory on the world sheet. Wewill not review the 
al
ulation of the ground state of this model in the mean�eld approximation given in referen
e [6℄, sin
e in any 
ase, the mean �eldmethod will be developed in the 
ontext summation of planar string graphsin the next se
tions.3. String SummationWe start with the open bosoni
 string in the light 
one pi
ture, withU(N) Chan-Paton fa
tors. Taking the large N limit pi
ks the planar graphs.For simpli
ity, the length of the world sheet in the � dire
tion is taken tobe in�nite, and periodi
 boundary 
onditions at � = 0 and � = p+ areimposed, where p+ is the total + 
omponent of the momentum 
owing intothe world sheet. We will also use p+ freely to denote the + momentum
owing into individual strings; it will be 
lear from the 
ontext whi
h p+ ismeant. The above setup has the advantage of being traslation invariant alongboth the � and � dire
tions, whi
h simpli�es the subsequent 
al
ulations
onsiderably. Fig.2, whi
h pi
tured a �3 �eld theory graph, applies equallywell a general planar open string graph, with the boundaries of individualpropagating strings again marked by the solid lines (see, for example, [12℄).Therefore, the fermioni
 a
tion introdu
ed in the last se
tion for summingover the graphs of the �3 theory, works just as well for summing over planaropen string graphs. Of 
ourse, there are some di�eren
es between �eld theoryand string theory pi
tures. For example, the a
tion S0 for the free stringpropagator is now given byS0 = Z p+0 d� Z d�  12 _x2 � 12�2x02! : (12)Comparing with eq.(2), we see that the transverse momentum q is repla
ed bythe transverse position x, and there an additional term involving a derivativewith respe
t to time. We have also introdu
ed an adjustable slope �=�sin
e we are ultimately interested in the zero slope, or the �eld theory limit.Furthermore, the boundary 
ondition on the solid lines is now di�erent: TheDiri
hlet 
ondition (eq.(3)) is repla
ed by the Neumann 
onditionx0 = 0: (13)The fermioni
 part of the a
tion is un
hanged. The total a
tion is therefore8



given byS = Z p+0 d� Z d�  12 _x2 � 12�2x02 + �y � x0 � 12�2��y2 + i � _ � g � �1 ! :(14)Here, just as in eq.(9), the Lagrange multiplier y enfor
es the boundary 
on-ditions, and the term proportional to �2 is inserted to 
ut o� the divergentintegral over y in the bulk. This world sheet a
tion then provides a 
ompa
texpression for the sum of planar open string graphs. We note that, unlikein the 
ase of �3 �eld theory, where a prefa
tor in the propagator was miss-ing , the string propagator of eq.(12) is exa
t. Therefore, the 
ompli
ationdis
ussed following eq.(9) does not arise, and g 
an simply be taken to bea 
onstant. An additional simpli�
ation is the absen
e of the ghost �elds band 
 (see eq.(2)). From this point of view, the sum over string graphs looks
onsiderably simpler than the sum over �eld theory graphs.In order to fa
ilitate the 
omparison with �eld theory, we would like to
onvert (14) into a form as 
lose to eq.(9) as possible. This will involve aduality transformation whi
h makes the following inter
hanges:x$ q; x0 = 0$ _q = 0: (15)The �rst step of the duality transformation is to integrate over x in eq.(14):S ! Sf + Sg:f + 12 iD Tr ln ��2�2� � �2��+ �22 Z p+0 d� Z d� Z p+0 d�0 Z d� 0G(��; �0� 0) ��(�y)�� ��0(�y)�0� 0 ;(16)where Sf and Sg:f are given by eqs.(7) and (5), and the Green's fun
tion Gsatis�es (�2�2� � �2�)G(��; �0� 0) = Æ(� � �0)Æ(� � � 0): (17)We note that, be
ause of the translation invarian
e on the world sheet, theGreen's fun
tion depends only on the 
oordinate di�eren
es ���0 and ��� 0.Next, we integrate the � derivatives by parts, and use the translationinvarian
e of the Green's fun
tion and the de�ning equation (17) to arrive atS = Sf + Sg:f + 12 iD Tr ln ��2�2� � �2��+ �22 Z p+0 d� Z d��2 y29



+ �42 Z p+0 d� Z d� Z p+0 d�0 Z d� 0G(��; �0� 0) �� (�y)�� �� 0(�y)�0� 0:(18)In order to have a sensible � ! 0 limit in this equation, we �rst s
ale y byy! y=�2;and rewrite it by introdu
ing an auxiliary variable q:S = Sf + Sg:f + 12�2 Z p+0 d� Z d��2 y2+ Z p+0 d� Z d� �12�2 _q2 � 12q02 + �y � _q� : (19)This a
tion is quite similar to the world sheet a
tion for �3 (eq.(9)) andin fa
t 
oin
ides with it in the zero slope limit � ! 0, ex
ept for the termS 0 = 12�2 Z p+0 d� Z d� �2 y2;whi
h blows up in this limit. We will now argue that this term should beabsent. In fa
t, our starting point, eq.(14), was not quite 
orre
t; in thea
tion S, the term S 0 should have been dropped. This point is perhaps made
learer by 
onsidering an ele
trostati
 analogy. The Lagrange multiplier ywhi
h enfor
es x0 = 0 on the boundaries 
an be thought of as a line 
hargeindu
ed by the boundary 
ondition. It is easy to see that S 0 is the (diver-gent) ele
trostati
 self energy of the line 
harge in question. On the otherhand, the Lagrange multiplier y was introdu
ed solely to enfor
e the Neu-mann boundary 
onditions; the indu
ed ele
trostati
 energy is an additionalboundary term whi
h is absent in the usual treatment of the open string. Itshould therefore be dropped. As a further 
he
k, 
onsider the 
on�gurationwith two eternal boundaries at � = 0 and � = p+: For this simple 
ase,� = Æ(�) + Æ(� � p+) and, after s
aling y by 1=�2, the last term in eq.(18)redu
es toS ! 12 Z p+0 d� Z d� Z p+0 d�0 Z d� 0G(��; �0� 0) �� (y)�� �� 0(y)�0� 0: (20)The fun
tional integral over y 
an be done, and after a simple 
al
ulationwhi
h we will not present here, the 
orre
t free propagator for the open stringis reprodu
ed. This justi�es the dropping of S 0 from the world sheet a
tion.10



4. The Mean�eld Cal
ulationThe mean�eld 
al
ulation we are going to present here is very similar tothe treatment for the �3 theory given in [2-6℄. There are, however, someimportant di�eren
es, whi
h we will point out as we go along. The startingpoint is the world sheet a
tion, derived at the end of the last se
tion, whi
hwe write in full:S = Z p+0 d� Z d� �12�2 _q2 � 12q02 + �y � _q� 12�2��y2 + i � _ � g � �1 � :(21)Ultimately we will be interested in the � ! 0 (zero slope) limit, whi
h willget us ba
k to �eld theory, but we will study this limit only within theframework of the mean�eld method. The reason for this indire
t approa
his that if one naively sets � = 0 in the above expression for S, one does notquite get the 
orre
t �eld theory result. For example, the ghost �elds b and
 are missing and also there is the problem of the missing prefa
tor in thepropagator dis
ussed following eq.(9). Later on, we will argue that the naive� ! 0 limit 
an be quite singular, but that a smooth limit 
an be de�nedwithin the framework of the mean �eld method.It is 
onvenient to view the mean �eld approximation as the large Dlimit of the �eld theory de�ned on the world sheet, where D is the numberof transverse dimensions. We hasten to add that this is merely a 
onvenientway of doing the 
orre
t bookkeeping; one 
an set D to any desired valueat the end of the 
al
ulation. The idea is to 
ast the a
tion into a formproportional to D and take the large D limit by the saddle point method.This is the standard way of solving for the anologous large N limit of so
alled ve
tor models [13℄. Following [5,6℄, we introdu
e the extra term �Sin the a
tion:S ! S +�S;�S = Z p+0 d� Z d� ��1(D�1 � y � _q) + 12�2(D�2 � y2)� : (22)Integrating over �1;2, all we have done is to rename the 
omposite �elds y � _qand y2 as D�1 and D�2. The fa
tors of D are natural sin
e ea
h 
omposite�eld is the sum of D terms. The Gaussian integral over y is easily done, withthe result,S + �S ! S1 + S2 + S3; 11



S1 = Z p+0 d� Z d� �12(�2 + �21=�2) _q2 � 12q02� ;S2 = D Z p+0 d� Z d� ��1�1 + 12�2�2� ;S3 = Z p+0 d� Z d� �i � _ � g � �1 + D2 (�� �  � �+ � �3 )� ; (23)where, we have de�ned, �� = ��1 + 12�2�2:Some of the terms in this equation 
an be further simpli�ed. We ob-serve that the operator �  represents the lo
al fermion density. Sin
e thereis always one fermion on ea
h horizontal line, independent of whether it isdotted or solid, one 
an set this operator equal to unity in the pi
ture wherethe � 
oordinate is dis
retized. On the other hand, in the 
ontinuum nor-malization, taking into a

ount the s
aling given by eq.(8), one 
an insteadset �  = 1=a: (24)After this substitution, �� be
omes a Lagrange multiplier, enfor
ing the
onstraint �2 = �2(�1 + 1=a): (25)With these simpli�
ations (eqs.(24) and (25)), the world sheet a
tion be-
omes, S = Z p+0 d� Z d��12A2 _q2 � 12q02 + �(�+ 1=(2a))+ i � _ �Dg � �1 � D2 � � �3 �; (26)where, A2 = �2 + �2�2(�+ 1=a) ; (27)and we have s
aled the 
oupling 
onstant by D,g ! D g; (28)in order to have an a
tion that is proportional to D in the large D limit.Also, to simplify writing, we have set�1 = �; �+ = �:12



It is important to note that after summing over strings, the slope parameter
hanged from � for the free string to the dynami
al variable A. We will later
ompute the ground state expextation value of A, and show that it 
an di�erfrom �.Before 
losing this se
tion, we would like to stress that the parametersso far introdu
ed that de�ne the model are in general 
uto� dependent bareparameters. We already have one 
uto� a, the spa
ing of the grid along the� dire
tion, and a0, another grid spa
ing along the � = x+ dire
tion will soonbe needed in order to regulate the integral over q. How are the renormalizedparameters, whi
h should stay �nite as the 
uto�s are removed by lettinga! 0; a0 ! 0;to be de�ned? We will not address the problem of renormalization in anydetail here3, but one obvious 
ondition is to demand that the renormalizedparameters be invariant under the s
aling transformation dis
ussed at theend of the se
tion 2. Sin
e the s
ale transformation is the same as a spe
ialLorentz transformation, this is 
learly ne
essary for Lorentz invarian
e. Theidea is then to de�ne new s
ale invariant parameters by multiplying themwith appropriate powers of a and a0. The slope �, whi
h has the dimensionof inverse mass squared, is already s
ale invariant. We also note that a anda0 have the s
aling properties (eq.(10)) and the dimensions of p+ and x+respe
tively, so that the ratio a=a0 = m2; (29)is s
ale invariant and has the dimension of mass squared. We will hold thisratio �nite and �xed in the limit of a and a0 going to zero. Therefore, there isonly one 
uto�, say a, and a mass parameter m in the problem. Eventually,we will 
onsider the limit � ! 0 limit, and m will then be the only mass leftin the model to set the mass s
ale.In addition to �, a and a0, there are two more 
onstants in the problem:The 
oupling 
onstant g and the gauge �xing parameter �. We trade themfor s
ale invariant 
onstants �g and �� by de�ning��2 = �2a02a ; �g = ga0� ; (30)3See [14℄ for an investigation of renormalization and Lorentz invarian
e in the light
one formulation. 13



where the fa
tor of � is introdu
ed for later 
onvenien
e. There was a
tu-ally an ambiguity in the de�nition of the barred 
onstants be
ause of theavailability of the s
ale invariant parameter m; we �xed this ambiguity byrequiring �g and �� to be dimensionless. We shall see in the next se
tion thatthe slope of the intera
ting string is expressible in terms of these new 
on-stants, without any expli
it dependen
e on the 
uto�. This will provide somejusti�
ation for 
alling them renormalized 
onstants.5. The Ground State Of The ModelIn this se
tion, the ground state of the model will be determined byminimizing the energy of the system. So far, everything has been exa
t: Noapproximations were made, for example, in deriving eq.(23). Of 
ourse, weare unable to do an exa
t 
al
ulation, so to make progress, we have to appealto the large D limit. In this limit, the �elds � and � are treated as 
lassi
alquantities, to be 
al
ulated by the saddle point method. On the other hand,q,  and � are still full quantum �elds, to be integrated over fun
tionally.In other words, in the leading large D limit, � and � are to be repla
ed bytheir ground state expe
tation values�0 = h�i; �0 = h�i:In order to avoid ex
essive notation, from now on, we will drop the subs
riptzero, so that � and � will stand for the expe
tation values of these �elds.At this point, translation invarian
e along both the � and � dire
tions
omes in handy. It allows us set � and � equal to 
onstants independentof the 
oordinates � and � . This means that A is also independent of the
oordinates, and therefore the integrals over q,  and � in the a
tion Sof eq.(26) 
an be done expli
itly. Instead of evaluating a given a
tion Sdire
tly, we �nd it more 
onvenient to 
ompute the 
orresponding energy Eand express S in terms of E by means ofS = �i(�f � �i)E;where (�f � �i) is the (in�nite) time interval. For example, the result of
arrying out the integral over q in eq.(26) 
an be expressed asS1 = iD2 Tr ln �A2�2� � �2�� = �i(�f � �i)E(0); (31)where E(0) is the zero point energy of the free string. Similarly, the result ofdoing the  and � integrations 
an be expressed in terms of the fermioni
14



energy Ef . Adding up, the total energy 
orresponding to S in eq.(26) isgiven by E = E(0) + Ef � p+� (�+ 1=(2a)): (32)One point should be 
lari�ed here. What we have 
alled the energy E is reallythe light 
one energy p�. Be
ause of the periodi
 boundary 
onditions, thetotal transverse momentum is zero, and the invariant mass squared M2 ofthe system is given by M2 = p+E:The next step is to evaluate E(0) and Ef . Sin
e E(0) is well known fromthe standard 
al
ulation of the Casimir e�e
t, we only remind the reader ofthe steps involved. The regulated zero point energy is given byE(0) = D 1X0 Ek exp(�Ek=�); (33)where Ek is the zero point energy of the k'th SHO mode,Ek = 2�kp+ ; (34)and we have introdu
ed an exponential regulator with the parameter �. Theleading two terms in the limit �!1 are given byE(0) ! D A�2 p+2� � �3Ap+! : (35)Of 
ourse, any other smooth regulator that depends only on En gives thesame result.The regulator � a
ts as a 
uto� in energy; it is related to a0, the spa
ingof the grid in the 
onjugate variable � , bya0 = 2�� ;and repla
ing � by a0 in eq.(35) givesE(0) = 2�D p+A=(a0)2; (36)where we have kept the 
uto� dependent term and dropped the �nite one. In
al
ulating the Casimir e�e
t, one does the opposite: The 
uto� dependent15



term is subtra
ted and the �nite term is kept. Here, this term, through A,depends on the dynami
al variable � (eq.(27)), and there is no way to 
an
elit by introdu
ing a 
onstant 
ounter term, independent of the dynami
alvariables. In fa
t, sin
e the 
uto� dependent term dominates over the �niteterm, we have dropped the latter.The fermioni
 energy Ef is evaluated by diagonalizing the 
orrespondingHamiltonian Hf = Xn H(n);H(n) = D �12� � �3 + g � �1 ��=na ; (37)whi
h has been regulated by dis
retizing �. We have already remarked that �(and of 
ourse, also g) is a 
onstant, and therefore, H(n) redu
es to a 
onstanttwo by two matrix in the two dimensional spa
e spanned by � i:H(n) !  �=2 gg ��=2 ! : (38)The two eigenvalues of this matrix ,E� = �12q�2 + 4g2;have to be multiplied by the number of points forming the � grid, p+=a, inorder to obtain the total fermioni
 energy:Ef;� = p+2aq�2 + 4g2: (39)Noti
e that the fermioni
 energy has two possible values. Clearly, the 
hoi
e(�) 
orresponds to the ground state, but we will also be interested in theother possibility.Putting together eqs.(32),(35) and (39), we have the following expressionfor the total energy:E� = Dp+ 2�a02vuut�2 + �2�2(� + 1=a) � 12aq�2 + 4g2� 12�(2�+ 1=a)!: (40)16



As explained earlier, we are looking for the saddle point of this expression inthe variables � and �. The saddle point satis�es,�E��� = 0; �E��� = 0:The �rst equation determines �:� = �g 1 + 2a�p�a�� a2�2 ;and using this result, the � dependen
e of the energy 
an be eliminated,leaving it as a fun
tion of only �. Before writing down the result, it is 
on-venient to repla
e � by a 
uto� independent and dimensionless new variablex through x = �a�; (41)and the 
onstants � and g by their 
uto� independent 
ounterparts �� and �gthrough eq.(30). After these substitutions, the expression for the energy isgiven by E� = 2�D p+aa0 �q�2m4 + x2=(1� x)� �gpx� x2� : (42)We pause brie
y to dis
uss the physi
al signi�
an
e of x. By 
omputingthe eigenve
tors of the matrix (38), it is easy to show that [6℄,12h � (1� �3) i = h�i = x; 12h � (1 + �3) = h��i = 1� x; (43)where hi represents the ground state expe
tation value. This is in the dis-
retized version of the world sheet; in the 
ontinuum version, x and 1 � xshould be repla
ed by x=a and (1�x)=a. Therefore, in the dis
rete version, xis the average probability of �nding a spin down fermion on the world sheet.By the de�nition, this is the same as the average probability of �nding asolid line. Conversely, 1 � x is the average probability of �nding a dottedline. From this probability interpretation, it is 
lear that0 � x � 1: (44)We should emphasize that, for the probability to be well de�ned, it wasimportant to have a dis
retized world sheet, with the grid spa
ing a kept�xed. 17



The next step is to �nd the minima of E� as a fun
tion of x. This is easyin the 
ase of E+: It has a minimum at x = 0, with the valueE+ = 2�D p+�m2aa0 : (45)The true minimum is, of 
ourse, the minimum of E�. The value of xm thatminimizes E� 
annot be found analyti
ally, but one 
an get approximateanswers in the two interesting limits: �g � 1 (weak 
oupling), and �g � 1(strong 
oupling). We have also to distinguish between two 
ases, dependingon whether the initial slope is non-zero (�m2 6= 0), or it is zero (�m2 = 0).Taking �m2 6= 0 and �g � 1, to leading order in �g, the minimum is given by,xm �  �m2�g2 !2=3 ;E�;m � 2�D p+aa0 ��m2 � (2)�1=3(�g)4=3(�m2)1=3� : (46)We see that, in the weak 
oupling limit, xm is small and the minimum ofE� is less then the minimum of E+, as expe
ted. On the other hand, in thestrong 
oupling limit, �g � 1, xm approa
hes 1=2:xm � 1=2� 34�g ��2m4 + 1=2��1=2 ;E�;m � ��D p+aa0 �g: (47)Now let us 
onsider the 
ase of zero slope for the free string, �m2 = 0. inthe weak 
oupling limit, the minimum is given byxm � �g2=4; E�;m � ��D p+2aa0 �g2; (48)and in the strong 
oupling limit byxm � 1=2� 32p2�g ; E�;m � ��D p+2aa0 �g2: (49)From the above results, it is 
lear that the 
ases of non-zero and zeroinitial slope are qualitatively similar. In both 
ases, xm ranges from zero to1=2 as the 
oupling 
onstant �g varies from zero to in�nity. The fun
tion,f(x) = aa02�D p+ E� = q�2m4 + x2=(1� x)� �gpx� x2;18
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Figure 4: The plot of f(x) against x for �m2 = 10 and �g = 1is plotted against x for �m2 = 10, �g = 1 and for �m2 = 0, �g = 1, in Figs.4and 5 respe
tively.6. Dis
ussion Of The ResultsIn the last se
tion, we have seen that:1) There are two saddle points of the model, with ground state energies E+and E�. The true ground state of the model 
orresponds to E�, whi
h isalways less than E+. We will 
all the �rst solution the (+) phase and these
ond one the (�) phase.2) The minimum of E+ is realized at xm = 0, whereas the minimum of E�is at some value of xm that satis�es0 < xm < 1=2:3) These statements are true for both �nite initial slope �, and also in thelimit � ! 0.We argued in the last se
tion, following eq.(43), that x represents the av-erage probability of �nding a solid line on the dis
retized world sheet. Sin
ethe solid lines represent the boundaries, in e�e
t, x measures the averagedensity of the string boundaries. For the perturbative sum over strings thatwe started with, we expe
t xm to be zero, sin
e at ea
h order of perturbation,the boundaries form a set of measure zero. It is then natural to identify thesolution 
orresponding to the (+) phase, whose minimum is at xm = 0, with19
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Figure 5: The plot of f(x) against x for �m2 = 0 and �g = 1the perturbative string sum. In 
ontrast, in the (�) phase, where xm 6= 0,the boundaries form a dense set on the world sheet. We will 
all this phe-nomenon, whi
h 
annot be realized in any �nite order of perturbation, the
ondensation of string boundaries. The order parameter that distinguishesbetween these two phases is x, the expe
tation value of the 
omposite oper-ator � (eq.(43)). The statements made above are quite general, independentof any approximation s
heme. Without a dynami
al 
al
ulation, however, wedo not know whi
h of the phases has the lower energy. We have seen abovethat, at least in the mean �eld approximation, the (�) phase, in whi
h theboundaries have 
ondensed, has the lower ground state energy.At the end of the last se
tion, we studied the dependen
e of xm in the (�)phase on the 
oupling 
onstant �g, and found that xm 6= 0 for all non-zero �g.It is at �rst surprising that 
ondensation of boundaries takes pla
e even atsmall �g, but we have to remember that the original 
oupling 
onstant g hasalready been s
aled by a fa
tor of D (eq.(28)). The mean �eld approximationis based on the limit D ! 1, and in this limit, even small values of �g maygive rise to large values of g. On the other hand, it is easy to understand whathappens for large �g. In this limit, the fermioni
 energy Ef (se
ond term ineq.(42)), whi
h is proportional to �g, dominates, and the minimum of this termis at xm = 1=2. The limiting value of xm = 1=2 is also easy to understand:The large 
oupling 
onstant limit energeti
ally favors a maximum density ofstring verti
es. Sin
e verti
es 
onvert a solid line into a dotted line and vi
e20



versa, it is advantageous to 
ip between solid and dotted lines as often aspossible. It is easy to see that this 
orresponds to an equal density for thesolid and dotted lines, namely, x = 1=2.It was pointed out earlier that, after the summation over free stringsis 
arried out, the free string slope �=� is repla
ed by the A=� . This isa 
u
tuationg dynami
al variable, but we 
ould de�ne an average slope interms of the ground state expe
tation value of A. Repla
ing � and � ineq.(27) by �� and x through (30) and (41) giveshA2i = 1m4  �2m4 + x2m��2(1� xm)! : (50)For the (+) solution with xm = 0, the average slope after the summation isthe same as the free string slope, whi
h is 
onsistent with the perturbativepi
ture. On the other hand, the (�) solution, with xm 6= 0, gives a slopelarger than the free slope. So what emerges is a new string with a largerslope, and also, of 
ourse, with a more 
ompli
ated stru
ture. We 
an alsosee from the above equation that �� is a redundant parameter; one 
an absorbit into the de�nition of m by rede�ning one of the 
uto� parameters a or a0.To show that A be
omes a genuine dynami
al variable, one has to go tonext to leading order in the large D limit. We will not go into the detailshere, sin
e the 
al
ulation is almost identi
al to the analogous one in the
ase of �eld theory, given in referen
es [5,6℄. The end result is that, a kineti
energy term in the a
tion,S(2) = D ln(2�p+=a0)8� (hA2i)3=2 Z p+0 d� Z d� �hA2i (��A)2 � (��A)2� ; (51)for A is generated, and so this variable be
omes truly dynami
al. What hap-pens here is quite similar to what happens in some other two dimensionalmodels: An auxiliary 
lassi
al variable a
quires kineti
 energy term and be-
omes truly dynami
al when one loop 
ontributions are taken into a

ount[16,17℄.Let us now 
onsider the limit � ! 0. As noted earlier, this limit is ratherdeli
ate in the (+) phase; for example, naively letting � ! 0 dire
tly ineq.(21) is not 
orre
t. It is easy to spot the problem: In this phase, as � andxm go to zero, so does A, and at A = 0, the mean �eld method is no longerappli
able. What happens is that the non-leading terms tend to be
omesingular. For example, the se
ond term in eq.(35) for the zero point energy,21



whi
h was negle
ted 
ompared to the �rst term, blows up at A = 0. Also,non-leading order terms in the large D expansion of S1 (eq.(31)) be
omesingular in the same limit, invalidating the expansion. This 
an perhaps beguessed by setting A = 0 dire
tly in S1; the resulting expression loses its� dependenden
e and be
omes ill de�ned. In 
ontrast, in the (�) phase, Astays �nite as � ! 0, and the non-leading terms in the mean�eld (large D)expansion remain well-de�ned.Summarizing the foregoing dis
ussion, we 
on
lude that, in the limit ofthe initial slope tending to zero:1) The indu
ed slope A also goes to zero in the (+) phase, whi
h 
auses thebreakdown of the mean �eld method.2) In 
ontrast, A remains non-zero in the (�) phase, and there are no obviousproblems with the mean �eld method. Sin
e (�) is the energeti
ally favoredphase, we believe that this is a
tually what happens.3) The string slope be
omes a 
u
tuating dynami
al variable (eq.(51)).The zero slope limit is 
ommonly thought of as the �eld theory limit. As� ! 0, the massive parti
les de
ouple, and one is left with a �eld theorybuilt out of the massless parti
les. If we a

ept this pi
ture, it follows thatthe summation of the �eld theory graphs has led to string formation. Thesequen
e of the steps in the reasoning is the following: Start with the sumof planar open strings, and then take the zero slope limit. Order by orderin the perturbation expansion, we expe
t the string graphs to tend to the�eld theory graphs. However, this is a limit rather diÆ
ult to de�ne 
leanlyin mathemati
al terms be
ause of the existen
e of the ta
hyon, whose masssquared goes to �1 in this limit, if the ve
tor meson mass is �xed at zero. If,however, instead of �rst taking the zero slope limit, one reverses the order ofthe steps by �rst summing over strings and then taking the zero slope limit,the mean �eld 
al
ulation goes through smoothly, and the �nal indu
ed slopeis non-zero, signaling the formation of a new string.7. Con
lusions And Future Dire
tionsIn this arti
le, we have applied the mean �eld method to the sum ofplanar open bosoni
 string diagrams on the world sheet. After a dualitytransformation, the problem was 
ast in a form very similar to the problemof summing planar �3 graphs [2-6℄, and the te
hniques developed earlier 
ouldbe applied here. The results were also similar: The ground state of the systemturned out to be a 
ondensate of the open string boundaries. As a result, a22



new string was formed, with a slope greater than the initial slope. Even inthe limit of vanishing initial slope, the �nal slope remained non-zero.We end by listing some remaining open problems. We would like to iden-tify the zero slope limit of the initial string with the �eld theory of the zeromass ve
tor parti
le, but the existen
e of the ta
hyon makes this identi�
a-tion problemati
. A future proje
t is to apply the methods developed hereto the ta
hyon free superstrings. Another problem is the 
uto� dependen
eof the ground state energy given by eq.(42). In referen
e [6℄, a similar 
uto�dependen
e was 
an
elled by introdu
ing a bare mass term for the � �eld.Sin
e here our starting point is already a string theory, we do not have thisfreedom initially. We 
ould, nevertheless, introdu
e a 
ounter term at theend. This then brings up the question of the �nite part of the ground stateenergy left over after the 
an
ellation of the 
uto� dependen
e. We remindthe reader that in the usual treatment of the bosoni
 string, this �nite part isrelated to the inter
ept and it is not arbitrary. In the light
one formulation,it is determined by requiring Lorentz invarian
e [15℄. This brings up anotherimportant open problem; namely, the Lorentz invarian
e of the string thatemerges after the 
ondensation of the boundaries. If the inter
ept of thisnew string is determined by Lorentz invarian
e, this would shed light on thequestion of ta
hyon 
ondensation in the open string [10℄. We hope to addressat least some of these problems in the future.Note Added:After �nishing this paper, referen
e [18℄ was brought to my attention.There is 
onsiderable overlap between this referen
e and the present arti
le.Both pie
es of work ta
kle the problem of summing planar strings on theworld sheet using the mean �eld approximation, and both �nd 
ondensationof boundaries and a new string with in
reased slope. There are, however,several important di�eren
es in the treatment of the problem. For example,in this arti
le, unlike in [18℄, the string boundary 
onditions are imposed bymeans of Lagrange multipliers, and before applying the mean �eld approxi-mation, Neumann 
onditions are repla
ed by Diri
hlet 
onditions by meansof a duality transformation. Also, some of our 
on
lusions di�er: Referen
e[12℄ �nds a free string at the end of the summation, whereas we �nd a more
ompli
ated string with a 
u
tuating dynami
al slope. Furthermore, in 
on-trast to [12℄, starting with zero slope (�eld theory), we �nd string formation.These di�eren
es in the �nal result are probably due to the di�eren
es in the23



treatment of the problem mentioned above.A
knowledgementsI would like to thank Peter Orland for bringing referen
e [18℄ to my at-tention. This work is supported by the Dire
tor, OÆ
e of S
ien
e, OÆ
e ofHigh Energy and Nu
lear Physi
s, of the US Department of Energy underContra
t DE-AC02-05CH11231.Referen
es1. K.Bardak
i and C.B.Thorn, Nu
l.Phys. B 626 (2002) 287, hep-th/0110301.2. K.Bardak
i and C.B.Thorn, Nu
l.Phys. B 652 (2003) 196, hep-th/0206205.3. K.Bardak
i and C.B.Thorn, Nu
l.Phys. B 661 (2003) 235, hep-th/0212254.4. K.Bardak
i, Nu
l.Phys. B 667 (2004) 354, hep-th/0308197.5. K.Bardak
i, Nu
l.Phys. B 698 (2004) 202, hep-th/0404076.6. K.Bardak
i, Nu
l.Phys. B 715 (2005) 141, hep-th/0501107.7. C.B.Thorn, Nu
l.Phys. B 637 (2002) 272, hep-th/0203167.8. S.Gudmundsson, C.B.Thorn, T.A.Tran, Nu
l.Phys.B 649 (2003) 3,hep-th/0209102.9. C.B.Thorn, T.A.Tran, Nu
l.Phys. B 677 (2004) 289, hep-th/0307203.10. For a review, see W.Taylor and B.Zwieba
h, D-Branes, Ta
hyons andString Field Theory, hep-th/0311017.11. G.'t Hooft, Nu
l.Phys. B 72 (1974) 461.12. M.B.Green, J.H.S
hwarz, E.Witten, \Superstring Theory, Vol.2", Cam-bridge University Press (1987).13. For a review of the large N method, see M.Moshe, J.Zinn-Justin, Phys.Rep.385 (2003) 69, hep-th/0306133.14. C.B.Thorn, Nu
l.Phys.B 699 (2004) 427, hep-th/0405018, D.Chakrabarti,J.Qiu, C.B.Thorn, hep-th/0602026.24



15. P.Goddard, J.Goldstone, C.Rebbi, C.B.Thorn, Nu
l.Phys. B 56 (1973)109.16. D.Gross, A.Neveu, Phys.Rev. D 10 (1974) 3235.17. A.D'Adda, M.Lus
her, P.Di Ve

hia, Nu
l.Phys. bf B 146 (1978) 63.18. P.Orland, Nu
l.Phys. B 278 (1986) 790.

25


