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Abstract

In string theory, massless particles often originate from a symmetry breaking of
a large gauge symmetry G to its subgroup H. The absence of dimension-4 proton
decay in supersymmetric theories suggests that (D̄, L) are different from H̄(5̄) in their
origins. In this article, we consider a possibility that they come from different irreducible
components in g/h. Requiring that all the Yukawa coupling constants of quarks and
leptons be generated from the super Yang–Mills interactions of G, we found in the
context of Georgi–Glashow H = SU(5) unification that the minimal choice of G is E7

and E8 is the only alternative. This idea is systematically implemented in Heterotic
String, M theory and F theory, confirming the absence of dimension 4 proton decay
operators. Not only H = SU(5) but also G constrain operators of effective field theories,
providing non-trivial information.



1 Introduction

String theory is a well-formulated theory of quantum gravity, and it is also known to be

able to (almost) realize the (supersymmetric) standard model of particle physics at low-

energies [1, 2, 3, 4, 5, 6, 7, 8]. Since 1990’s, the understanding of string theory has improved

dramatically, and an enormous variety of string vacua have been discovered. But, too much

variety in string vacua and too much success in describing the standard model with string

theory might also imply that there is no hope to obtain testable predictions from string

theory in a near future.

Although the current string theory has a plethora of vacua, there is one thing in common

among them. One of the most intriguing features of string theory is that it supports higher-

dimensional gauge theories with 16 supersymmetry charges where scalar, fermion and vector

fields are unified. Thus, at least at high energies, the interactions of quarks, leptons and

Higgs fields are under the constraint of the gauge principle. String theory can realize a large

gauge group G and this symmetry can be broken down spontaneously to a subgroup H such

as SU(5), either by vector bundles in Heterotic theory or by resolution of singularities in M

/ F theory. Particles in low-energy spectrum charged under H arise from g/h part of the

high-energy supersymmetric vector multiplet. The old ideas of Higgs multiplets [9] or quarks

and leptons [10] coming out of a coset space g/h or its complexification are realized naturally

in string theory.

In the present work, we focus on the underlying large gauge symmetry G and 16 super-

charges. The usage of the non-linearly realized symmetry G as a constraint of low-energy

interactions is an idea that dates back to 1960’s. When the symmetry G is a gauge symme-

try, and it is combined with the underlying 16-charge supersymmetry, all the interactions of

quarks and leptons are constrained by the non-linearly realized gauge symmetry. We are not

obtaining numerical predictions, as there is a lot of room for corrections and arbitrariness to

come in. Our approach is to use the underlying symmetries as a powerful tool at the level of

knowing whether certain interactions exist or not.

We start from an assumption that the Yukawa couplings originate from supersymmetric

Yang–Mills interactions of a large symmetry G that contains H = SU(5). Theories with low-

energy supersymmetry should not have dimension-4 proton decay operators, which means

that there must be some difference in the origins of 5̄ = (D̄, L) and H̄(5̄) multiplets, al-

though their representations under the unified SU(5)GUT gauge group are the same. Thus,

we introduce another assumption that they have different origins in g/h, so that these two
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multiplets have different interactions. Then we prove in section 2 that G has to be at least

E7. The argument that leads to this statement does not depend on any implementation in

string theory and it is only based on commutation relations and irreducible decomposition

of Lie algebra. String theory supports E7 symmetry in Heterotic, M- and F-theory. G = E8

contains the minimal E7 gauge symmetry and is also supported by string theory. They are

the only possibilities for the underlying gauge symmetry in String Theory. The only way

to get these groups other than in Heterotic theory is to go to the nonperturbative limits of

Type IIA or Type IIB, which are M theory and F theory, respectively. If one works in the

perturbative type IIA or type IIB, the vacua with intersecting D-branes cannot be used for

realising these symmetries. We show that there are overall seven possibilities in the way

low-energy particles are identified in the coset space e7/su(5) or e8/su(5).

The idea presented in section 2 is realized explicitly in Calabi–Yau compactification of

Heterotic theory in section 3, in G2-holonomy compactification of eleven-dimensional super-

gravity in section 4 and finally in elliptic Calabi–Yau compactification of F-theory in section

5. For instance, in Heterotic compactification, we see that the absence of dimension-4 proton

decay is guaranteed (at the perturbative level) when a stable rank-5 vector bundle V5 has a

negative-slope sub-bundle with certain properties. Origins of low-energy multiplets are iden-

tified for each symmetry-breaking pattern, in each section. Discussion in section 2 guarantees

that Yukawa couplings of charged leptons, down-type and up-type quarks are generated from

the super Yang–Mills interactions, and in some cases, Dirac neutrino Yukawa couplings as

well. Many yet-to-be answered questions are raised in this article, and at the same time,

some predictions are also derived, using the constraint of the underlying gauge symmetry

and supersymmetry.

Reading guide: The only prerequisite for section 2 is some knowledge in Lie algebra,

and this section will be readable without details of string theory and it presents the key idea

of this article. The later three sections for Heterotic (section 3) M- (section 4) and F-theory

(section 5) are almost mutually independent, but assume the contents of section 2. For those

who do not want to read all through the three sections, summary of physics is given in section

6.

2 Bottom-up Classification of the Origins of Matters

In this article, we only consider Georgi–Glashow SU(5)GUT unification. A good bottom–tau

Yukawa unification and a similar degree of hierarchy among Yukawa couplings of down-type

2



quarks and charged leptons are consistent with this unification. The disparity between the

large mixing angles in the neutrino oscillations and the small mixing angles in the quark sector

can be attributed to the difference in the nature of SU(5)GUT-10 = (Q, Ū, Ē) representations

containing quark doublets Q and SU(5)GUT-5̄ = (D̄, L) representations containing lepton

doublets L [12, 13]. All these are the motivations for us to consider SU(5)GUT unification.

Since no extra gauge symmetry prevents right-handed neutrinos from having large Majorana

masses, tiny neutrino masses may be explained by the see-saw mechanism [14], and this may

be another good feature of the SU(5)GUT unification. If the gauge group is larger, it has to

be broken in a field-theoretical way. But, the analysis in this article can also be taken just

as an example, and one can freely extend the analysis to other unification groups. Indeed,

the above argument is not as rigorous as it might appear.

2.1 Assumptions

In order for us to be able to understand the Yukawa couplings better, we assume that all

the Yukawa couplings of up-type and down-type quarks and charged leptons are generated

from super Yang–Mills interactions of an underlying symmetry G, and all the low-energy

multiplets are given their origins in the coset space g/su(5).

Another assumption that we introduce in this article is that 5̄ = (D̄, L) and H̄(5̄) have

distinct origins in the coset space g/su(5). This is to come up with models without dimension-

4 proton decay operators. Indeed, we always need Yukawa couplings of down-type quarks

and charged leptons

W ∋ y 5̄ · 10 · H̄(5̄), (1)

while the dimension-4 proton decay operators should be absent1

W ∋ 5̄ · 10 · 5̄ = D̄ · Ū · D̄ + D̄ ·Q · L+ L · Ē · L, (2)

or protons would not remain stable. The operators (1) and (2) differ only by H̄(5̄) in (1) and

5̄ in (2). If they are identified with different parts of the coset space g/h, then the operators

(1) and (2) transform differently under some symmetry in G. Thus, such symmetry can

kill the dangerous operators (2) while allowing the necessary Yukawa couplings (1).2 For

1If the supersymmetry breaking masses of the squark–slepton sector are much higher than the electroweak
scale, the constraints on those operators are weaker. But, even for the supersymmetry breaking masses of
order 1010 GeV, the coefficients of the operators (2) should be much smaller than unity.

2This assumption is to try to solve the dimension-4 proton decay problem by restricting the underlying
symmetry G and its breaking pattern. The other possibility that is not covered here is that those two multi-
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the moment being, we keep an open mind to all kinds of possibility for the choice of such

symmetry. We shall see in this section that there are strong restrictions on the symmetry.

2.2 Up-type Quark Yukawa Couplings from E6 Symmetry

In order to figure out the minimal underlying symmetry G, we proceed by enhancing G a little

by little on necessity basis. The enhanced symmetry provides both massless matters and their

interactions. The 2 phenomenology assumptions constrain the origin of low-energy particles

and the underlying symmetry G. The choice of G and its breaking pattern can be determined

purely in representation theory of Lie algebra, without paying much attention to the explicit

implementation in string theories. The net chirality in the low-energy spectrum depends on

topological aspects of geometry of compactification manifold, and we discuss separately in a

later section. For this reason, we do not distinguish g/h from its complexification.

Let us start off with the 10 representation and its up-type quark Yukawa coupling. The

origin of 10 representation can be in so(10)/su(5). If it is to be realised in Type IIA or Type

IIB string theory, it is (1,0) (and (-1,0)) open string connecting 5 parallel D-branes and their

orientifold mirror images. It is also easy to find this representation in Type I string theory

or Heterotic theory. Thus, the existence of this representation alone does not tell us a lot.

The most intriguing feature of SU(5)GUT-unified theories is that there must be up-type

quark Yukawa couplings

W ∋ 10ij 10kl H(5)mǫijklm. (3)

If the multiplets above were made of open strings in Type IIA or Type IIB string theories,

SU(5)-indices could be contracted only between a pair of superscript and subscript, combining

a σ = 0 boundary and a σ = π boundary of open strings. It is unlikely that those Yukawa

couplings are generated in Type IIA or Type IIB string theories. But, we know that at least

in Heterotic theories, compactification of the E8 × E8 theory can provide such a Yukawa

coupling, and it is also clear from the Heterotic–M-theory duality [15] and Heterotic—F-

theory duality [16, 17, 18, 19, 20] that both M-theory and F-theory can describe such Yukawa

coupling, as well. Although the description will not be available within the Type IIA or IIB

limits, M-theory and F-theory can describe the Yukawa couplings. We cannot expect that

all the low-energy particles are described by simple open strings ending on D-branes, but by

plets have different properties under some symmetry of compactification geometry, although they are exactly
in the same irreducible component in the coset space g/h. This possibility has to restrict the compactification
geometry, instead of g/h and its breaking pattern, in order to solve the problem of dimension-4 proton decay.
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membranes [21] or by (p, q) strings [22], respectively, in M-theory or in F-theory. In both

descriptions, an Er-type (r = 6, 7, 8) singularity has to be involved.

The origin of the H(5) multiplet containing the up-type Higgs doublet Hu can be iden-

tified in a coset space e6/su(5), rather than su(N)/su(5) or so(N)/su(5) with large N . The

irreducible decomposition3 of e6-adj. representation is given by

ResE6

SU(5)GUT×SU(2)2×U(1)6
(e6-adj.) ≃ (adj., 1)0 ⊕ (1, adj.)0 ⊕ (1, 1)0

⊕
[
(∧25, 2)1 ⊕ (∧45,∧22)2

]
⊕ h.c., (4)

where a multiplet (R5, R2)
q6 is in a representation R5 of unbroken SU(5)GUT ⊂ E6, in R2 of

underlying SU(2)2 ⊂ E6 that commutes with SU(5), and q6 denotes the charge under the

U(1)q6 symmetry.4 This irreducible decomposition contains not only a multiplet in SU(5)GUT-

∧25 representation, a candidate for 10 = (Q, Ū , Ē) multiplets, but also one in SU(5)GUT-∧45,

that is, in SU(5)GUT-5 representation. This is a candidate of H(5).

There is no problem in incorporating this coset space in Heterotic E8×E8 theory, since it

contains E6 as a subgroup of E8. The E6 symmetry is broken down to SU(5)GUT by turning

on non-trivial vector bundle with the structure group SU(2)2×U(1)q6 inside the E6. The net

chirality at low energy can be obtained by the topological nature of the zero-modes of the

vector bundle. In M-theory and F-theory descriptions, the E6 vector multiplet does not come

from strings, but from membranes [21] (or (p, q) open strings [22]). Singular ALE fibration

or elliptic fibration can give rise to E6, which can be broken down to SU(5)GUT by deforming

the geometry in the fibre direction over base manifolds. Chiral matters arise at the loci of

enhanced singularity. In any of Heterotic, M-theory and F-theory descriptions, E6 symmetry

is realised, is broken to SU(5)GUT and chiral matters in the representations in the coset space

of e6/su(5) are available in the low-energy effective theories. More details of the descriptions

are explored in later sections. In this section, we further pursue general aspects that do not

depend on the specific implementation in either one of Heterotic, M- or F-theory.

In Heterotic E8×E8 formulation, D = 10 N = 1 super Yang–Mills interaction is described

3Here, ResGH means restriction of group from G to H . This has nothing to do with residue.
4This U(1)q6 symmetry and U(1)q7 that appears later are related to the two U(1) symmetries E6 →

SO(10) × U(1)ψ and SO(10) → SU(5)GUT × U(1)χ in [23] as

(
qχ
qψ

)
≡
( √

24Qχ√
72

5
Qψ

)
=

1

3

(
−5 1
1 1

)(
q6

q7

)
. (5)
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in terms of D=4 superpotential as, e.g., [24]

W =

∫
d6y tr E6

(
Σa(y, x)

[
(∂b − Σb(y, x)),Σc(y, x)

])
ǫabc, (6)

where a = 1, 2, 3 correspond to 3 complex dimensions of the compact Calabi–Yau space. This

comes from the second term of the Heterotic theory superpotential

W ∋
∫

Z

Ω ∧ (dB − ωYM + ωgrav.) , (7)

where Ω is the global holomorphic 3-form of Calabi–Yau 3-fold, and ωYM and ωgrav. are

Chern–Simons 3-forms. Chiral zero-modes live in some irreducible representations, with

certain wave function depending on the internal coordinates y’s. Thus, this superpotential

gives rise to some interactions at low energy, and in particular, we expect that the Yukawa

coupling is obtained in this way. However, since the overall compactification geometry does

not preserve all the 16 SUSY charges, the value of resulting coupling constants will not be

equal to the gauge coupling constant of the unbroken SU(5)GUT. It is easy to see from the

Lie algebra of E6 that the up-type quark Yukawa coupling (3) is contained in (6), when

(∧45,∧22) is identified with H(5):

W ∋ (∧25, 2) · (∧25, 2) · (∧45,∧22) = 10 · 10 ·H(5). (8)

The existence of the up-type quark Yukawa coupling is not specific to the Heterotic theory.

The only essences are the underlying E6 symmetry, and the existence of Yang–Mills interac-

tions that have 16 supersymmetry charges locally. The presence or absence of interactions

among chiral matters is tied to that of vector fields by the supersymmetry and is ultimately

determined by the Lie algebra of E6. Since the geometric engineering of M-theory and singu-

lar elliptic fibre of F-theory give rise to E6 vector multiplet with 16 supersymmetry charges

locally, the same results as in the Heterotic description follow in the M-theory and F-theory

descriptions as well. For instance, the Figure 7 of [22] can be interpreted as the (p, q) string

description of the up-type quark Yukawa coupling (8).

The coset space e6/su(5), however, offers only one type of multiplet SU(5)GUT-5̄+h.c.

representation. Since the minimal supersymmetric extension of the standard model contains

at least two different multiplets in SU(5)GUT-5̄ representation, namely 5̄ and H̄(5̄), the coset

space e6/su(5) has to be extended so that they are incorporated.
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2.3 The Minimal E7 Symmetry

A coset space e7/su(5) contains e6/su(5) and provides more variety in the multiplets. First,

E7 symmetry contains SU(6)1×SU(2)2×U(1)q6 , and the e7-adj. representation has the irre-

ducible decomposition

ResE7

SU(6)1×SU(2)2×U(1)q6
(e7-adj.) ≃ (adj. = 35, 1)0 ⊕ (1, adj.)0 ⊕ (1, 1)0

⊕
[
(∧26, 2)1 ⊕ (∧46,∧22)2 ⊕ (∧66, 2)3

]
⊕ h.c.. (9)

The unification group SU(5)GUT is identified with the subgroup of SU(5)×U(1)q7 ⊂ SU(6)1.

Thus, when the E7 symmetry is broken down to SU(5)GUT, we have the following irreducible

components:

(adj., 1)0 → (adj., 1)(0,0) ⊕
[
(5, 1)(0,6) ⊕ h.c.

]
, (10)

(∧26, 2)1 →
[
(∧25, 2)(1,2) ⊕ (5, 2)(1,−4)

]
+ h.c., (11)

(∧46,∧22)2 →
[
(∧45,∧22)(2,4) ⊕ (∧35,∧22)(2,−2)

]
+ h.c., (12)

where (R5, R2)
(q6,q7) describe the representations under SU(5)GUT×SU(2)2×U(1)q6×U(1)q7 ⊂

E7. In particular, there are three different multiplets in SU(5)-5̄ representation, namely,

(5, 1)(0,6), (5, 2)(1,−4) and (∧45,∧22)(2,4). Thus, the two low energy multiplets in the SU(5)-5̄

representation, namely, 5̄ = (D̄, L) and H(5̄), can be identified with 2 different multiplets.

As long as they are different, there will be no dimension-4 proton decay operators (2).

It is preferable if the 2 multiplets are identified so that the down-type quark Yukawa

coupling is generated from the 16-SUSY Yang–Mills interaction. In order to identify properly,

let us look at the E7 version of the superpotential (6):

W ∋
[
(∧26, 2)1 · (∧26, 2)1 · (∧46,∧22)2 + (∧26, 2)1 · (∧46,∧22)2 · (1, 2)3

]
+ h.c.

+ (∧26, 2)1 · (adj., 1)0 · (∧26, 2)1 + (∧46,∧22)2 · (adj., 1)0 · (∧46,∧22)2 + · · · ,(13)

which is, in terms of SU(5)GUT,

W ∋ (∧25, 2)(1,2)·(∧25, 2)(1,2)·(∧45,∧22)(2,4) + (5, 2)(1,−4)·(∧25, 2)(1,2)·(∧35,∧22)(2,−2)

+ (∧25, 2)(1,2)·(∧35,∧22)(2,−2) ·(1, 2)(3,0) + (5, 2)(1,−4)·(∧45,∧22)(2,4) ·(1, 2)(3,0)

+ (5, 2)(1,−4) ·(5, 1)(0,6) ·(∧25, 2)(1,2) + (∧45,∧22)(2,4) ·(5, 1)(0,6) ·(∧35,∧22)(2,−2)

+h.c. + · · · . (14)

7



Bundles (∧25, 2)(1,2) (5, 2)(1,−4) (∧45,∧22)(2,4) (5, 1)(0,6) (1, 2)(3,0)

Particle ID A (Ū , Q, Ē) 5̄ = (D̄, L) H(5) H̄(5̄) N̄
Particle ID B (Ū , Q, Ē) H̄(5̄) H(5) 5̄ = (D̄, L) S

Table 1: Particle identification in e7/su(5): corresponding
SU(5)GUT×SU(2)1×U(1)q6×U(1)q7 irreducible representations in the e7-adj. is shown.
There are 2 different possible identifications.

Therefore, for instance under the 2 identifications given in Table 1, the first term provides

the up-type quark Yukawa coupling (3), and the fifth term the down-type quark and charged-

lepton Yukawa couplings (1). The fourth term in the hermitian-conjugate representation is

interpreted as the Dirac Yukawa coupling of neutrinos5 under the identification A, and the

same term is interpreted as the trilinear coupling W = SH(5)H̄(5̄) of some extensions of the

minimal supersymmetric standard model [27, 28, 29] under the identification B.

Note that there are no dimension-4 proton decay operators in this superpotential. It is true

that (6) may not be the only interaction in the superpotential; there may be non-perturbative

contribution as well. But it is inconceivable that the dimension-4 proton decay operator is

generated, as we can see as follows. In either of the identification A or B, the operator (2)

is an SU(2)2 doublet, not a singlet. Since SU(2)2 vector bundles in Heterotic terminology

and corresponding objects in other descriptions of string theories can provide only spurions

in SU(2)2-adj. representations, insertion of such spurions do not convert the doublet into a

singlet. Even if we remain agnostic about the origin of corrections to the superpotential, as

long as the corrections respect the underlying E7 symmetry and its breaking is controlled by

the spurions in SU(2)2×U(1)q6×U(1)q7 , the dimension-4 proton decay operators are forbidden

by the E7 symmetry. The absence of dimension-5 proton decay operators

W ∋ 10.10.10.5̄ (15)

also follow from the same argument in the case of the identification B. In the case of iden-

tification A, these operators can be SU(2)2 singlet, and only U(1) charges do not vanish.

5Note that right-handed neutrinos (in the identification A in Table 1) naturally arises in the spectrum,
although we did not necessarily require their presence. Indeed, the existence of right-handed neutrinos does
not necessarily favours SO(10) unification; the spinor representation of SO(10) certainly contains a right-
handed neutrino, but it remains as a part of moduli (vector bundle moduli in Heterotic theory, and complex
structure moduli in F-theory) in string theory terminology when SU(5) unified theory is considered instead
of SO(10) theories. This is almost clear from the discussion in [25, 26]. See also a recent article [8].

8



Since U(1) symmetry may have mixed anomalies, Green–Schwarz fields may effectively sup-

ply the U(1) charges. Thus, it is not absolutely clear that the dimension-5 proton decay

operators are absent in the presence of non-perturbative corrections. But, on the other hand,

it is worthwhile to note that a reasonable exponential suppression in non-perturbative ef-

fects is sufficient to make it consistent with the experimental limits, since the limits on the

dimension-5 operators are not that stringent as those on the dimension-4 operators.

Thus, we have seen that the E7 symmetry (or 2-cycles with E7 intersection form) is

minimal when we require all the Yukawa couplings from the Yang–Mills interaction, and

different origins for 5̄ and H̄(5̄) in order to avoid the dimension-4 proton decay. It is not

difficult to realise the E7 symmetry and its breaking to SU(5)GUT in any branches of string

theories, just as in the case of E6. For instance, the Figure 8 of [22] can be regarded as (p, q)-

string picture of the Dirac Yukawa coupling of neutrinos in the identification A, or the W ∋
SHH̄ interaction in the identification B. Vector bundles (in Heterotic terminology) that break

the E7 symmetry down to SU(5)GUT have to maintain the distinction between (5, 2)(1,−4) and

(5, 1)(0,6). Thus, the bundle is supposed to have the structure group SU(2)2×U(1)q6×U(1)q7 .

2.4 Extension to the E8 Symmetry

The observation that the E7 is the minimal underlying symmetry implies that the E8 sym-

metry of the Heterotic theory is not strictly necessary in order to construct a “realistic”6

model. But all Heterotic, D=11 SUGRA and F-theory admit up to the E8 symmetry, and it

is also interesting as an alternative to think of identification in e8/su(5). This can be done

simply by embedding the identification in the minimal e7/su(5) coset through

E7 × SU(2)1 ⊂ E8, or e7 + su(2)1 ⊂ e8. (16)

ResE8

E7×SU(2)1
(e8-adj.) ≃ (adj., 1) ⊕ (1, adj.) ⊕ (56, 2). (17)

Since we have already seen the irreducible decomposition of e7-adj., we are left with (56, 2),

which decomposes into

Res
E7×SU(2)1
SU(6)1×SU(2)1×SU(2)2×U(1)q6

(56, 2) ≃
[
(6, 2, 2)−1 ⊕ (6, 2, 1)2

]
⊕ h.c.⊕ (∧36, 2, 1)0. (18)

6Note, however, that we have not considered how the SU(5)GUT symmetry is broken down to the standard
model gauge group. See below.
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After further decomposing into SU(5)GUT-irreducible pieces, one can see that the e8-adj.

representation provides three multiplets in SU(5)GUT-∧25 representation

(∧210, 1 ⊕ 21 ⊕ 22) =




(∧25, 1, 1)(−2,2)

(∧25, 2, 1)(0,−3)

10 = (∧25, 1, 2)(1,2)



 , (19)

where (R5, R1, R2)
(q6,q7) on the right-hand side denotes the representation under the SU(5)GUT×

SU(2)1 × SU(2)2 and the charge under U(1)q6 and U(1)q7. There are 5 multiplets in the

SU(5)GUT-5̄ representation

(5̄,∧2(1 ⊕ 21 ⊕ 22)) ≃




(5̄, 2, 1)(−2,−1) 5̄ = (5̄, 1, 2)(−1,4)

H̄(5̄) = (5̄, 1, 1)(0,−6) (5̄, 2, 2)(1,−1)

H(5)† = (5̄, 1, 1)(2,4)


 , (20)

and there are 3 SU(5)GUT-singlets

(1, adj.(1 ⊕ 21 ⊕ 22)) ≃




(1, 2, 1)(−2,5)

N̄ = (1, 1, 2)(3,0) (1, 2, 2)(1,5)


 . (21)

Corresponding low-energy multiplets are also noted above, following the identification A in

Table 1 in e7/su(5) and the embedding (16). The irreducible decompositions (19)–(21) are a

special cases of SU(5)-bundle compactification of the Heterotic E8 × E8 theory; the rank-5

SU(5) vector bundle V5 is now split up into

V5 ≃ 1 ⊕ 21 ⊕ 22 (22)

with the structure group reduced to SU(2)1×SU(2)2×U(1)q6×U(1)q7. The singlets in (21)

are would-be vector bundle moduli if the structure group were SU(5).

Since we only need to maintain the different origins for 5̄ and H̄(5) multiplets, the e8/su(5)

coset does not have to be split up as much as in (19)–(21). In particular, the vector bundles

V5 = 1⊕21⊕22 can be a little more generic. Let us use the particle identification A in Table

1 inside (19)–(21) for concreteness7 in the following discussion. Then, the distinction between

the 2 multiplets in 5̄ representation is not lost when the SU(2)1×U(1)q̃6 bundle8 1 ⊕ 21 is

7The following discussion does not change essentially when the ID B is adopted.
8The U(1) symmetries of q̃6 and q̃7 are different linear combinations of q6 and q7:

(
q̃6

q̃7

)
=

1

3

(
2 −1
−5 −2

)(
q6

q7

)
,

(
q6

q7

)
=

1

3

(
2 −1
−5 −2

)(
q̃6

q̃7

)
. (23)
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replaced by a rank-3 SU(3) bundle 32, so that the rank-5 vector bundle is V5 = 32 ⊕ 22 with

the structure group SU(3)2×SU(2)2×U(1)q̃7 :

(10, 32 ⊕ 22) ≃
(

(10, 32)
10 = (10, 22)

)
, (27)

(5̄,∧2(32 ⊕ 22)) ≃
(
H̄(5̄) = (5̄,∧232) 5̄ = (5̄, 32 ⊗ 22)

H(5)† = (5̄,∧222)

)
. (28)

Likewise, the bundle 21⊕22 can be replaced by a rank-4 vector bundle 4 with the structure

group SU(4)⊃SU(2)1×SU(2)2×U(1)ψ, so that the rank-5 bundle becomes V5 = 1 ⊕ 4 with

the structure group U(1)χ×SU(4). The reduced rank-5 bundles V5 = 32 ⊕22, and V5 = 1⊕4

are much more generic than V5 = 1 ⊕ 21 ⊕ 22, yet the original motivation is not lost—

distinguishing 5̄ and H̄(5̄) in their origins.

The important difference between the two different choice of vector bundles is that H(5)

and H̄(5̄) are in a pair of hermitian-conjugate representation when V5 = 1⊕4, but they are not

when V5 = 32⊕22. Indeed, in e7/su(5), they cannot be identified with a vector-like pair when

all the Yukawa coupling are required to be generated. But under the embedding e7/su(5)

into e8/su(5) through (16), the SU(2)1-singlet H̄(5̄) is regarded as (5̄,∧221, 1) representation

of SU(5)GUT×SU(2)1×SU(2)2; since H(5) is in (5̄, 1,∧222), both H(5) and H̄(5̄) are from

the same (up to conjugation) multiplet (5̄,∧24) when the 2 rank-2 bundles 21 and 22 mix

up into an irreducible SU(4) bundle 4.

If the doublet–triplet splitting problem is to be solved by a Wilson line [30], they have

to be in a Hermitian-conjugate pair. A Wilson line does not make a difference in the Euler

characteristics for triplets and doublets. Thus, the Wilson line as the solution to the problem

motivates to promote e7/su(5)GUT to e8/su(5)GUT for the origin of low energy particles.

Incidentally, E8 is a maximal symmetry or singularity available in string theories. However,

the missing-partner type mass matrix of the Higgs sector [31],9 another potential solution to

In the SU(5) structure group of V5, the U(1) generators are

q6 = diag(−2, 0, 0, 1, 1), q7 = diag(2,−3,−3, 2, 2), (24)

qχ = diag(4,−1,−1,−1,−1), qψ = diag(0,−1,−1, 1, 1), (25)

q̃6 = diag(−2, 1, 1, 0, 0), q̃7 = diag(2, 2, 2,−3,−3). (26)

9There is a variety in the D=4 field-theory realization of the missing partner mechanism, and the matter
contents do not have to be the original one. There will be more variety in implementing the missing partner
mechanism in string theories. Reference [32] is an attempt to embed a field-theory model [33] into Type IIB
string theory, and is one of such variety.
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the doublet–triplet splitting problem, does not necessarily require that they originate from a

pair of conjugate representation.

In the next section, the idea of having reducible vector bundles (in Heterotic terminology)

as a solution to the dimension-4 proton decay problem is implemented in Heterotic theory

description. In later sections, M-theory and F-theory descriptions are given.

3 Heterotic Vacua

The Yukawa couplings have been discussed in the several previous approaches to Heterotic

string compactification [2, 7, 4, 8]. The novelty in our story is that we consider simultaneously

the Yukawa couplings and proton decay terms. In our consideration, we show that the

presence of the former and absence of the latter appears naturally, thus providing a Heterotic

picture of the discussion in the previous section. In the subsequent sections, we will provide

M-theory and F-theory pictures for the same field theory constrains.

In compactification of Heterotic theory, in order to have D = 4 effective field theories with

unbroken SU(5)GUT symmetry, one has only to turn on an SU(5) vector bundle in one of E8

gauge group of E8 × E8. The absence of dimension-4 proton decay operators in our vacuum

suggests, however, that there will be more structure than that. Here we work on a possibility

that the 5̄ = (D̄, L) and H̄(5̄) have different origins in the e8-adj. representation, so that the

down-type quark Yukawa couplings exist whereas the dimension-4 proton decay operators do

not. This idea is implemented when the rank-5 SU(5) vector bundle on a Calabi–Yau 3-fold

Z becomes reducible and is split up into two irreducible vector bundles10

V5 = L⊕ U4, with L⊗ detU4 ≃ OZ , (29)

where U4 and L are rank-4 and rank-1 vector bundles, respectively, with the structure group

U(4) and U(1). An alternative is

V5 = U3 ⊕ U2, with detU3 ⊗ detU2 ≃ OZ , (30)

where U3 and U2 are rank-3 and rank-2 vector bundles with structure group U(3) and U(2),

respectively. This can be regarded as the particular choice of vector-bundle moduli parameter

of SU(5) vector bundles in [34]. The 2+2+1 reducible vector bundle (22) corresponds to a

10We start our discussion with a direct sum splitting of the tank-5 vector bundle. Later we will consider
the case when some neutrino fields acquire expectation values and the rank-5 bundle becomes an extension
of U4 by L.
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bundles U4 U4 ⊗ L ∧2U4 ∧2U4 U4 ⊗ L−1 1 L
low-energy particles (Q, Ū, D̄) (D̄, L) H H̄ N̄ ((adj.)) ((10′))

Table 2: Particle identification in U4⊕L bundle compactification of Heterotic E8×E8 theory.
The last two columns mean that particles from the 2 bundles are not necessary in our low-
energy effective theory.

particular choice of moduli parameter of (29) and also of (30). The choice of the bundle

(29) reduces to [4] when the line bundle L is a flat bundle. The reducible bundle (29) was

originally considered in [35].

Although the different bundles have different physical consequences, the string-theoretical

study for each bundles is qualitatively the same. Thus, we discuss the case of (29) extensively

and only mention the differences in the cases of (30) and (22) bundles later.

3.1 Compactification with 4+1 Vector Bundles

3.1.1 Spectrum and Yukawa Couplings

The low-energy multiplets in SU(5)GUT-10 representation arise from zero-modes (cohomol-

ogy) of the vector bundle V5, which is now split up into 2 irreducible pieces U4 and L.

Those in SU(5)GUT-5̄ (or 5) representation arise from ∧2V5, which now consists of 2 irre-

ducible components ∧2U4 and U4 ⊗L (or bundles in the conjugate representations). Finally,

the SU(5) vector bundle moduli from adj.(V5)—which are SU(5)GUT-singlets—are split up

into 2 pieces, namely the U(4) vector bundle moduli and SU(5)GUT-singlets from the bundle

U4 ⊗ L−1. When the low-energy multiplets are from the bundles specified in Table 2, all

the Yukawa coupling are generated from the E8 Yang–Mills interaction, including the Dirac

Yukawa coupling of neutrinos:

W ∋ (10, U4) ⊗ (10, U4) ⊗ (5̄,∧2U4) −→ 10.10.H(5)

+(5̄, U4 ⊗ L) ⊗ (10, U4) ⊗ (5̄,∧2U4) −→ 5̄ · 10 · H̄(5̄)

+(5̄, U4 ⊗ L) ⊗ (1, U4 ⊗ L−1) ⊗ (5̄,∧2U4) −→ 5̄ · N̄ ·H(5). (31)

On the other hand, the dimension 4 proton decay operator (2) is not generated, because

(U4 ⊗ L) ⊗ U4 ⊗ (U4 ⊗ L) (32)

does not contain a trivial representation in its irreducible decomposition. The operator (2)

is certainly invariant under SU(5)GUT, but not under full E8. The symmetry U(1)χ (or

13



equivalently U(1)B−L) and the bundle structure group SU(4) guarantees the absence of the

dangerous operators.

Note also that all of 10, 5̄ and N̄ would come from the same bundle U4 if the line bundle

L were trivial (or flat). This was the situation discussed in SO(10) models of [4]. The line

bundle L ≃ detU−1
4 is in the direction of U(1)χ.

It is straightforward to obtain the formulae for the net chirality of low-energy multiplets.

Let us take a Calabi–Yau 3-fold Z and a vector bundle V on it. The e8-adj. representation is

split up into irreducible pieces under the the unbroken SU(5)GUT and the structure group of

the vector bundle. The number of chiral multiplets in the (R5, ρ(V )) representation is given

by H1(Z, ρ(V )), and that of multiplets in the conjugate representation by H1(Z, ρ̄(V )). The

net chirality at low energy is given by

χ(R5) ≡ #(R5, ρ(V )) − #(R5, ρ̄(V )),

= h1(Z; ρ(V )) − h1(Z; ρ(V )),

= −χ(Z, ρ(V )) = −
∫

Z

ch(ρ(V ))Td(TZ), (33)

where the last equality is the Hirzebruch–Riemann–Roch theorem [36]. In an application to

the bundle of interest,11

χ(Z,U4) = − 1

12
c2(TZ)c1(L) − 1

6
c1(L)3 +

1

2
c2(U4)c1(L) +

1

2
c3(U4), (34)

χ(Z,L) = +
1

12
c2(TZ)c1(L) +

1

6
c1(L)3, (35)

χ(Z,U4 ⊗ L) = +
1

4
c2(TZ)c1(L) +

1

2
c1(L)3 − 1

2
c2(U4)c1(L) +

1

2
c3(U4), (36)

χ(Z,∧2U4) = − 1

4
c2(TZ)c1(L) − 1

2
c1(L)3 + c2(U4)c1(L) (37)

χ(Z,U4 ⊗ L−1) = − 5

12
c2(TZ)c1(L) − 11

6
c1(L)3 +

3

2
c2(U4)c1(L) +

1

2
c3(U4). (38)

The Calabi–Yau condition c1(TZ) = 0 was also used in the above calculation. Note that the

net chirality for the multiplets in SU(5)GUT-10 representation is the same as that for those

in SU(5)GUT-5̄ representation:

(34) + (35) = (36) + (37) =
1

2

∫

Z

c3(U4) +
1

2

∫

Z

c2(U4)c1(L) =
1

2

∫

Z

c3(V5). (39)

This serves as a good check of the above calculation [35].
11Integration over Z is omitted, just for visual clarity.
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Since we do not want a non-zero net chirality from the Higgs sector, our vacuum should

be based on

χ(Z,∧2U4) = 0. (40)

Since SU(5)GUT-10′ multiplets from the bundle L do not have appropriate Yukawa couplings,

they cannot have mass terms. Since we have not seen exactly massless SU(5)GUT-charged

particles, there should not be non-zero net chirality for this multiplet which tells us that:

χ(10′) = −χ(Z,L) = 0. (41)

Combining these phenomenological inputs (40) and (41) with general chirality formulae (35)

and (37), we see that our vacuum has to satisfy

∫

Z

c2(TZ)c1(L) = −2

∫

Z

c1(L)3, (42)
∫

Z

c2(U4)c1(L) = 0. (43)

Substituting these two relations back into (34), (36) and (38), the number of generations is

given by

Ngen = χ(10) = χ(5̄) = −
∫

Z

1

2
c3(U4), (44)

χ(N̄) = −
∫

Z

1

2
c3(U4) +

∫

Z

c1(L)3. (45)

The “chirality” of right-handed neutrinos (45) is no longer equal to that of other quarks and

leptons, but there is nothing wrong phenomenologically. Since the SO(10) or U(1)χ gauge

symmetry is already broken, there is no reason why exactly 3 copies of right-handed neutrinos

exist. Note also that (45) represents the minimal number of right-handed neutrinos.

The SU(5)GUT symmetry may be broken by introducing a Wilson line. If there is a

discrete symmetry group Γ mapping Z to itself without a fixed point, Z/Γ can be used for

compactification instead of Z. The Wilson line can be introduced on the non-trivial π1(Z/Γ).

In this case, the number of generation of quarks and leptons are given by

N ′
gen = − 1

#Γ

1

2

∫

Z

c3(U4). (46)

This is supposed to be 3 for our vacuum. #Γ should divide −
∫
Z
c1(L)3 =

∫
Z
c1(U4)

3.
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3.1.2 Anomalous U(1)χ Symmetry and Instability

As we saw in (45), the “chirality” of right-handed neutrinos is generically different from that

of quarks and leptons when c1(L) 6= 0, indicating that the U(1)χ symmetry is anomalous.

All the necessary Green–Schwarz couplings are worked out in [35] where a detailed account

of the conventions can be found. One can see there that various triangle anomalies involving

this symmetry are cancelled by the shift of the imaginary part of dilaton and Kähler moduli

chiral multiplets, S and T k, respectively. All of them come from the B field. Certain linear

combination of the imaginary parts are eaten as the longitudinal mode of the anomalous

U(1)χ vector boson. The scalar–vector mixing interactions arise from the Kähler potential

K = −M2
G

(
ln

(
1

3!

∫
J̃ ∧ J̃ ∧ J̃

)
+ ln

(
S + S† −Q0V

))
, (47)

where MG ≃ 2.4 × 1018 GeV, S is the dilaton chiral multiplet whose expectation value is

1/g2
YM of SU(5)GUT in the absence of 1-loop corrections, and

1

2π
(−J + iB) = l2sT

kωk, J̃ = −πl2s(T k + T k† −QkV )ωk, (48)

where J is the Kähler form of the compactification manifold Z, ωk (k = 1, · · · , h1,1(Z))

are integral basis of the second cohomology of Z, ls = 2π
√
α′ and T k are chiral multiplets

containing the ωk-component of the Kähler modulus and the B field. Under the U(1) sym-

metry,the charged chiral multiplets Ψi such as N̄ , 10 and 5̄ and the moduli chiral multiplets

transform as

V → V − iΛ + iΛ†, (49)

Ψi → eiqiΛΨi, (50)

S → S − iQ0Λ, (51)

T k → T k − iQkΛ, (52)

with12

Q0 = −2 tr f (qqL)

32π2

∫

Z

c1(L)

(
c2(V5) −

1

2
c2(TZ)

)
, (53)

Qk = −2 tr f (qqL)

8π2
qkL, (54)

c1(L) ≡ qkLωk. (55)
12The charges adopted below differ from those in [35] by a factor of (2π). Coefficients in this article are

corrected in version 2, following [37].
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The trace is taken in the fundamental representation of the bundle group SU(5). In the case

of the U(1)χ anomalous symmetry, qL = diag(1,−1/4,−1/4,−1/4,−1/4), and we can choose

the normalisation of the charges of U(1)χ symmetry as q = qχ ≡ diag(4,−1,−1,−1,−1) for

convenience.13 With this choice of q = qχ, the 10-representations from U4 bundle have −1

unit charge, and N̄ from U4 ⊗L−1 bundle have −5 units. If h1(Z;U4 ⊗L) 6= 0, so that there

is an anti-generation right-handed neutrino N̄ in the spectrum, its U(1)χ charge is 5 units.

The Fayet–Iliopoulos parameter of such anomalous U(1) symmetries can be obtained by14

L ∋ Dξ = V |θ2θ̄2(∂K/∂V )|V=0, and in the case of U(1)χ,

ξχ =
10M2

G

32π2

[
2πl2s

vol(Z)

∫
c1(L) ∧ J ∧ J − g2

YMe
2φ̃4

2

∫
c1(L)

(
c2(V5) −

1

2
c2(TZ)

)]
. (57)

The first term is the tree level Fayet–Iliopoulos parameter, which comes from the derivative

with respect to T k, and depends on Kähler moduli T k’s through the Kähler form J . The

second term is the 1-loop correction, and depends on the fluctuation of the dilaton eφ̃4 . This

Fayet–Iliopoulos parameter is used as in

L =
1

2g2
YM

2 tr f (q
2
χ)D

2
χ +Dχξχ +Dχqχ,iψ

†
iψi → V =

1

2

g2
YM

2 tr f(q2
χ)

(
ξχ + qχ,iψ

†
iψi

)2

. (58)

The equations of motions of Yang–Mills fields of the vector bundles L and U4 are given

by [38]

2gβ̄α
F

(L,U4)

αβ̄

2π
= λ(L,U4)id.1×1, 4×4, (59)

with some constants λ(L) and λ(U4), which are equivalent to the Hermitian–Einstein condition

for gauge fields

F (L)

2π
∧ J ∧ J = λ(L) id.1×1

(
1

3!
J ∧ J ∧ J

)
, (60)

F (U4)

2π
∧ J ∧ J = −1

4
λ(L) id.4×4

(
1

3!
J ∧ J ∧ J

)
. (61)

13The D-term scalar potential after completing square in (58) does not depend on the choice of the overall
normalisation of qχ and qχ,i. This is just a matter of how charges and coupling constant are separated in
U(1) gauge theories.

14ξ = −(Qk∂K/∂T k + Q0∂K/∂S) = −(Qk∂K/∂T k† + Q0∂K/∂S†) is also the same. The derivative of the
Killing potential

dξ = −Qk(KTkT l†dT l† + KT lTk†dT l) − Q0(KSS†dS† + KSS†dS) (56)

is consistent with the Killing vector −iQk(∂Tk − ∂Tk†) − iQ0(∂S − ∂S†) corresponding to (52) and (51).

17



The solutions to these equations minimize15 the D-term potential from the tree-level Fayet–

Iliopoulos parameter, leaving positive energy (g2
YM/80)|ξχ|2 = (5/256)g2

YM(M2
Gl

2
sλ)2. If one

finds a holomorphic stable vector bundle U4, Donaldson–Uhlenbeck–Yau’s theorem guar-

antees that there exists a Yang–Mills field configuration satisfying (61). There is no such

subtlety for the holomorphic line bundle L because it is stable by definition. Thus, a solution

to the equation of motions exists for the reducible bundle (29), as long as U4 is chosen to be

a holomorphic stable bundle.

This solution, however, is not stable both in mathematical and physical sense. If c1(L)∧
J ∧ J = −c1(U4) ∧ J ∧ J ∝ λ is not zero, the rank-5 reducible holomorphic bundle V5

(29) is unstable in the mathematical definition. In physics language, this “instability” has a

clear meaning. Non-zero λ means a non-vanishing tree-level Fayet–Iliopoulos parameter (57),

which requires (at least at the classical level, ignoring the 1-loop term in (57)) that either

one of U(1)χ-charged objects develop a non-zero expectation value to absorb the non-zero D-

term, further minimizing the entire D-term, ξχ and qχ,iψ
†
iψi combined. The field responsible

for this can be either N̄ or N̄ , the off-diagonal blocks of the bundle group SU(5). The

Fayet–Iliopoulos parameter triggers the U(1)χ symmetry breaking and the U(1)χ-symmetric

vacuum is not stable.

Another way to see the instability is to note that Fαβ̄g
β̄α in the U(1)χ direction gives

rise to the difference between the equation of motions of vector fields and gauge fermions.

Fermions and vector fields have the same property under the SU(3) ⊂ SO(6) of the Lorentz

group of the internal space, but not under the U(1) ⊂ U(3) ⊂ SO(6). When there is a zero

mode of gauge fermion, its would-be supersymmetric partner has either positive or negative

mass-squared in the equations of motions, depending on the U(1)χ charge qχ. This explains

why either one of N̄ or N̄ have negative mass-squared when ξχ does not vanish. The cross

terms of the D-term potential (58) lead to m2
i ∝ ξχqχ,i.

When
∫
c1(L)∧J ∧J is negative, ξχ < 0, and one of the fields with positive U(1)χ charge,

N̄ , 5̄ and H(5), develops an expectation value. Supersymmetry-breaking masses of those

15Just like the equation of motion (59) is implemented as the minimization of the D-term potential in D
= 4 effective field theories, the condition for a bundle to be holomorphic (the absence of (0, 2) and (2, 0)
components of the Yang–Mills field strength) is implemented as the F-term condition. Indeed, when the
background Yang–Mills field configuration has a non-vanishing (0, 2) component, W ∋

∫
Ω ∧ (A 〈dA〉) gives

rise to a term linear in A in the superpotential. The F-term potential requires to minimize the coefficient of
the linear term, the (0,2) component of 〈dA〉. When the minimized (0,2) component of a U(1) bundle does
not vanish, i.e., when the “Fayet–Iliopoulos (or O’Raifeartaigh) F-term” does not vanish, a phase transition of
the spontaneous U(1) symmetry breaking is triggered through the superpotential W ∋

∫
Ω∧(A 〈dA〉−AAA).

The story here is completely in parallel with that of the D-term.
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fields determine which field gets the expectation value.16 Since the only possibility consistent

with the real world is for N̄ to develop an expectation value, we assume this in the following.

This mathematically means that the rank-5 vector bundle V5 is no longer a reducible bundle

(29), but is given by an extension [19] of U4 by L:

0 → L→ V5 → U4 → 0. (62)

If
∫
c1(L) ∧ J ∧ J > 0, then the rank-5 bundle is an extension of L by U4:

0 → U4 → V5 → L→ 0. (63)

We prefer for phenomenological reasons that right-handed neutrinos N̄ do not acquire large

expectation values. Since their expectation values provide large mass terms between Hu and

lepton doublets L, either Hu or L would be left out of the low-energy spectrum. Dimension-4

proton decay operators are also generated in this case, as we shall see later. Thus,
∫
c1(L)∧

J ∧ J should not be positive.17 If it is negative, then h1(Z,U4 ⊗ L) should be non-zero as

well, so that N̄ exists in the spectrum and absorbs the non-zero Fayet–Iliopoulos parameter.

We shall see later that, in some cases, we can then relax the condition that the vector bundle

be reducible without allowing a too rapid proton decay.

Before going directly to the discussion of proton decay operators controlled under the

spontaneously broken anomalous U(1)χ symmetry, let us discuss the 1-loop term of the

Fayet–Iliopoulos parameter (57). As one can see from [35], the 1-loop term in the Heterotic

16In the simplest situation where all these chiral multiplets have equal gravity-mediated supersymmetry

breaking mass-squared, potential minimisation shows that only N̄ develops a non-zero expectation value,

none others. This is because N̄ has the largest positive the U(1)χ charge among them.
17Here, we implicitly assume that (44) and (46) are negative. If they are positive, the definition of the

particles and anti-generation particles are exchanged, and now
∫
Z

c1(L) ∧ J ∧ J should not be negative.
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E8 × E8 theory18 is proportional to the U(1)-SU(5)2
GUT mixed anomaly,

∑

i

qχ,i2TR,i = 3 × (34) − 12 × (35) − 3 × (36) + 2 × (37),

= tr f(qχqL)

∫

Z

c1(L)

(
c2(U4) − c1(L)2 − 1

2
c2(TZ)

)
. (65)

Since we know that this anomaly vanishes for the U(1)χ symmetry in the spectrum of the

minimal supersymmetric standard model (possibly with additional SU(5)GUT-singlets and

vector-like pairs), the net 1-loop contribution is absent; Q0
χ = 0. One can also see this

explicitly by using (42) and (43) with c2(V5) = c2(U4) − c1(L)2. Therefore, no matter how

moduli are stabilised (or even when moduli are not stabilised otherwise), the cancellation

between the tree and 1-loop level contributions [35] cannot happen in realistic vacua satisfying

(42) and (43).

Although we cannot expect cancellation between the two terms, the tree-level term itself

may also vanish. The Kähler moduli can either be stabilised so that λ in (60) vanishes or

some of it remains unstable and the D-term scalar potential of the U(1)χ symmetry may

take the moduli into some region of the Kähler cone so that λ in (60) vanishes. Either way,

the Fayet–Iliopoulos parameter can vanish. In that case, some linear combination of the

imaginary parts of the chiral multiplets T k’s is absorbed as the longitudinal mode [39, 38].

18In the compactification of Heterotic SO(32) theory with the spin connection embedded in the SU(3)
subgroup of SO(6) ⊂ SO(32), the bundle group leaves SO(26) × U(1)3 gauge symmetry unbroken. The
U(1)3 factor is, however, anomalous; Qk

3 = 0, but

Q0

3 =
c3(V3)

8π2
. (64)

The corresponding Fayet–Iliopoulos parameter is given by ξ = −M2

Gg2

YM
trLE.(q3)/192π2, after using a rela-

tion trLE.(q3) = −(26− 2)χ(Z; V3) = −12c3(V3); here, trLE.(q3) is the sum of U(1)3 charge in the low-energy
spectrum. This Fayet–Iliopoulos parameter is proportional to the gravitational anomaly trLE.(q3). In general,
however, the 1-loop Fayet–Iliopoulos parameter is not expected to be proportional to gravitational anomaly;
it is proportional only when the quadratic divergence of loops of all the charged particles are made finite
exactly in the same way. In the SU(3)-bundle compactification of the Heterotic SO(32) theory, it is the
case: all the charged particles originate either from rank-3 bundle V3 or from its Hermitian conjugate. In
the case of our interest, however, various particles originate from totally different vector bundles, and we
cannot expect that all the loops of low-energy particles are rendered finite in the same way. Perturbative
Heterotic compactification can give rise to more than one anomalous U(1) gauge symmetries [35]; it is also
the case in the model in our section 3.3. Their Fayet–Iliopoulos parameters can have both tree and 1-loop
level contributions, either (or both) of them can vanish for certain choice of moduli parameters or matter
contents, just like in Type I or Type II string theories.
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Since the kinetic term of the imaginary parts of T k’s are

L = −Kkl

(
∂(ImT )k −QkA

) (
∂(ImT )l −QlA

)
, (66)

Kkl = M2
G(2πl2s)

23

2

[
−
∫
ωk ∧ ωl ∧ J∫

J3
+

3

2

∫
ωkJ

2
∫
ωlJ

2

(
∫
J3)2

]
, (67)

and the mass-squared of the gauge field is roughly of the order

m2
χ ≈ g2

YMM
2
G

(
ls
R

)4

, (68)

where R is a “typical” radius of compactification manifold, assuming that it is isotropic. The

real-part scalar corresponding to the absorbed combination acquires a mass-squared from the

D-term scalar potential.

If all the Kähler moduli have already been stabilised by other means, such as non-

perturbative potentials, then the tree-level Fayet–Iliopoulos parameter may not vanish. When

ξχ is negative, a chiral multiplet N̄ of positive U(1)χ charge, +5, develops an expectation

value, absorbing negative ξχ. In this case, the gauge boson absorbs some linear combination

of T k’s and N̄ and removes just one flat direction. The non-zero expectation value of U(1)χ-

charged particles,
〈
N̄

†
N̄
〉
≈ M2

G(ls/R)2/(8π), gives rise to another mass term of the U(1)χ

gauge field:

m2
χ ≈ 5g2

YM

32π
M2

G

(
ls
R

)2

=
5π

2

1

R2
. (69)

For compactification manifold with R sufficiently larger than ls, the latter Higgs-mechanism

contribution dominates over (68). The mass scale of the U(1)χ gauge boson is an important

parameter in leptogenesis. From (69), we see that the mass is typically around the Kaluza–

Klein scale. Independent of whether ξ = 0 or ξ < 0, the anomalous U(1)χ gauge boson

tends to have a very large mass, and easily escape the mass bound mχ & 600 GeV [23] from

low-energy experiments.

3.1.3 Effective Superpotential

Let us now turn our attention to the effective superpotential, with or without the expecta-

tion value of the scalar field in N̄ . If both N̄ or N̄ have vanishing expectation value, the

Dirac Yukawa couplings in (31) are the only sources of the masses of neutrinos. The U(1)χ

symmetry remains unbroken as a global symmetry at the perturbative level, and forbids

Majorana masses of right-handed and left-handed neutrinos. The dimension-4 proton decay
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operators are also forbidden. Although the U(1)χ symmetry is broken at non-perturbative

level, the SU(4) structure group of the bundle U4 still controls the effective operators. Any

effective operators should be written by low-energy multiplets and spurions in the su(4)-adj.

representation. The operators have to be symmetric under SU(4) and SU(5)GUT and SU(4)

symmetry is broken only by the Yang–Mills field configuration, whose effects are taken into

account by the spurions.

Under this constraint on the effective operators, one cannot find an operator for Majorana

neutrino masses or dimension-4 proton decay operators. This is a blessing in a sense that

proton does not decay too rapidly. On the other hand, the absence of the Majorana masses of

neutrinos require19 that the Dirac Yukawa couplings of neutrinos be as small as 10−11 or even

less, in order to account for the very tiny neutrino masses observed in neutrino oscillation

experiments. The Dirac Yukawa couplings in (31) originate from E8 Yang–Mills interactions.

It is a challenging problem to find out how they can be so small.

Let us now consider a situation where either the anti-generation right-handed neutrinos N̄

or right-handed neutrinos N̄ obtain non-zero expectation values. These situations correspond

to
∫
Z
c1(L) ∧ J ∧ J < 0 and

∫
Z
c1(L) ∧ J ∧ J > 0, respectively.

Large expectation value in N̄ are not welcomed phenomenologically, partly because we

do not want large mass terms of the form W ∋
〈
N̄
〉
5̄.H(5). Not all the moduli of the rank-5

vector bundle V5 turn on masses to all vector-like pair of SU(5)GUT-5+5̄ representations [34].

Thus, there may be a way out of this problem.

Another serious problem is the dimension-4 proton decay. In the rank-5 vector bundle

V5 given as an extension of L by U4 as in (63), U4 remains a sub-bundle, and L ceases to

be a sub-bundle of V5. This means that the zero-mode wave functions of the SU(5)GUT-10

multiplets from the bundle U4 can still be confined in U4, but those of the SU(5)GUT-10′

multiplets (if exist) are no longer confined in “a sub-bundle L.” Rather they take values in

the entire bundle V5. The same is true for the wave functions of the SU(5)GUT-5̄ multiplets

as they are no longer confined in “a sub-bundle U4 ⊗L” of ∧2V5, but take values in U4 ⊗ V5.

In particular, the 5̄ multiplets have wave functions partially in “∧2U4” part and acquire

properties of the H̄(5̄) multiplet. Thus, the second term of (7) generates the dimension-4

proton decay operators by picking up the wave function of one of 5̄ multiplets from the “∧2U4”

part, just like the down-type quark and charged-lepton Yukawa couplings are generated.

19The origin of baryon asymmetry of our universe is another problem in the pure Dirac scenario of the
neutrino masses. Standard scenario of leptogenesis [40] does not work. Some ideas have been proposed for
the leptogenesis in the scenario with Dirac neutrino masses [41].
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The effective-field theory language can also capture how the dimension-4 operators are

generated. The expectation values in the vector bundle moduli N̄ force the wave functions

of zero-modes to be modified, and for 5̄ multiplets, for instance, their new wave functions

are something like

5̄new ≈ 5̄red +
〈
N̄
〉
5̄red, (70)

treating the deviation from that in the reducible limit as a small perturbation. The second

term takes its value in the “∧2U4” part, like the H̄(5̄) multiplet. Thus, effective operators

W ∋ 5̄red.10red.(
〈
N̄
〉
· 5̄red) (71)

that are invariant under the SU(4)×U(1)χ structure group at the reducible limit give rise to

dimension-4 proton decay operators.

On the contrary, expectation values of N̄ do not create this problem. The sub-bundle L

remains to be well-defined, and the wave functions of the 5̄ multiplets are confined in V5⊗L,

which does not contain a “∧2U4” part that have properties of the H̄(5̄) multiplet. The

effective-field theory analysis using
〈
N̄
〉

insertions leads to the same answer.20 In summary,

in order to avoid dimension-4 proton decay, a rank-5 holomorphic stable vector bundle V5

should have

a rank-1 sub-bundle L with (
∫
Z
c1(L) ∧ J ∧ J < 0) when

∫
Z
c3(V5) < 0

a rank-4 sub-bundle U4 with (
∫
Z
c1(det U4) ∧ J ∧ J < 0) when

∫
Z
c3(V5) > 0.

It is interesting to see how the dimension-4 operators are forbidden in the scenario with

non-vanishing N̄ expectation values. Two major ideas for getting rid of the dimension-4

operators have been the R-parity and Z2-χ (or B−L) symmetry. But, the anti-generation

right-handed neutrinos N̄ have the same R-parity and Z2-χ charges as the right-handed

neutrinos, and are odd. Thus, both symmetries are broken by the expectation value of N̄ ,

and the insertion of the expectation value can supply any R-parity or Z2-χ charges in effective

operators. It is rather the continuous U(1)χ symmetry that is broken only by a positively

charged field that essentially protects protons from decaying rapidly. Since the symmetry

breaking of U(1)χ (and B−L) is triggered not by an F-term, but by the D-term, fields

with opposite charges do not have to develop expectation values even when the symmetry is

spontaneously broken.

20As long as χ(10′) is negative, such chiral matters can form a mass term W ∋ 10 · (
〈
N̄
〉

10′) and

do not necessarily appear in the low-energy spectrum. Thus, (41) does not have to be imposed when the
Fayet–Iliopoulos parameter is non-zero.
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Such terms in effective superpotential

W ∋ κ N̄N̄N̄N̄ (72)

are perfectly consistent with the underlying E8 symmetry, and it is not surprising if such

interactions are generated in some way (e.g. [42]). Once such terms are generated, the

non-vanishing expectation value of N̄ gives rise to the Majorana mass term of right-handed

neutrinos [43]. Since the natural scale of the expectation value of N̄ is very high, the Majorana

mass is also very large unless the coefficient of the operator (72) is extremely suppressed.

Such heavy right-handed Majorana neutrinos naturally explain tiny left-handed neutrino

masses observed in neutrino oscillation experiments through the see-saw mechanism [14]. A

flat direction
〈
|N̄ |2

〉
−
〈
|N̄ |2

〉
= −ξχ/5 is also removed by the operator (72), if it exists,

and
〈
N̄
〉

= 0 and
〈
|N̄ |2

〉
= −ξχ/5 becomes the only solution. Therefore, if the operator

(72) exists, it not only provides the Majorana masses of right-handed neutrinos and also

explains tiny left-handed neutrino masses through the see-saw mechanism, but also prevents

the dimension-4 proton decay operators from being generated.

We have seen that the Yang–Mills interaction W ∋
∫

Ω ∧ (A ∧ A ∧ A) does not generate

dimension-4 proton decay operators when
〈
N̄
〉

= 0 and
〈
N̄
〉

6= 0, or when the rank-5

bundle V5 is given by the extension (62). The effective-field theory arguments are more

powerful and say that no perturbative (tree level in practise) processes can give rise to the

dangerous dimension-4 operators. Non-perturbative processes, however, may generate them.

For example, an operator

W ∋ ǫ 5̄.10.5̄.
〈
N̄
〉3

(73)

is invariant under SU(4) structure group and SU(5)GUT symmetry, and is of U(1)χ charge

20. Since the chiral multiplets of Kähler moduli T k transform as in (52), if the coefficient ǫ

contains a non-perturbative factor such as some linear combinations of T k’s on the exponent,

U(1)χ charges may be supplied and the operator above is consistent with the underlying

SU(4)×U(1)χ×SU(5)GUT ⊂ E8 symmetry. World-sheet instanton [42] amplitudes have such

properties, and in particular, an amplitude from a world-sheet wrapping on a curve C has a

prefactor

ǫ ∝ exp

[
1

2πα′

∫

C

(−J + iB)

]
= exp

[
(2π)2

∫

C

ωkT
k

]
. (74)

Such a prefactor transforms linearly under the U(1)χ gauge transformation with charge

qχ,C = −(2π)2Qk

∫

C

ωk = 5

∫

C

c1(L). (75)
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Bundles U2 U3 U3 ⊗ U2 ∧2U2 ∧2U3 U2 ⊗ U3

Particles ID A (Ū , Q, Ē) ((10′)) 5̄ = (D̄, L) H(5) H̄(5̄) N̄
Particles ID B (Ū , Q, Ē) ((10′)) H̄(5̄) H(5) 5̄ = (D̄, L) S

Table 3: Particle identification in SU(3)2×SU(2)2× U(1)q̃7 bundle compactification. There
are 2 phenomenologically viable identifications. There are no particles in the SU(5)GUT-10′

representation coming from the bundle U3 in the low-energy spectrum of our world.

Thus, for instance, a dimension-7 operator like (73) may be generated from a curve C with∫
C
c1(L) = −4. Such operators tend to be numerically suppressed because the prefactors

are exponentially small exp[−vol(C)/(2πα′)] and it is not immediately clear whether such

operators are excluded by the experimental limits by the data available so far.

3.2 Compactification with 3+2 Vector Bundles

3.2.1 Spectrum

If the reducible rank-5 vector bundle (30) with the structure group SU(3)2×SU(2)2×U(1)q̃7
is introduced instead of SU(4)×U(1)χ bundle (29), the origin of the low-energy particles are

identified with the irreducible bundles shown in Table 3. Discussion in section 2 guarantees

that the trilinear Yukawa couplings of quarks and leptons arise from the E8 Yang–Mills

interactions, while the dimension-4 operators for proton decay remain absent.

Chirality formulae are given by

χ(U2) = − 1

12
c2(TZ)c1(U3) −

1

6
c1(U3)

3 +
1

2
c2(U2)c1(U3), (76)

χ(U3) = +
1

12
c2(TZ)c1(U3) +

1

6
c1(U3)

3 − 1

2
c2(U3)c1(U3) +

1

2
c3(U3), (77)

χ(∧2U2) = +
1

12
c2(TZ)c1(U3) +

1

6
c1(U3)

3, (78)

χ(U3 ⊗ U2) = − 1

12
c2(TZ)c1(U3) −

1

6
c1(U3)

3 +
1

2
c2(U2)c1(U3) + c3(U3), (79)

χ(∧2U3) = +
2

12
c2(TZ)c1(U3) +

2

6
c1(U3)

3 − 1

2
c2(U3)c1(U3) −

1

2
c3(U3), (80)

χ(U2 ⊗ Ū3) = − 5

12
c2(TZ)c1(U3) −

11

6
c1(U3)

3 +
5

2
c2(U3)c1(U3) − c3(U3)

+
4

2
c2(U2)c1(U3). (81)

Here, c1(U2) = −c1(U3) is used.
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The same argument leading to (41) requires

χ(U3) = 0, (82)

and the same net chirality for 10 and 5̄ (or equivalently for H(5) and H̄(5̄)) requires

χ(U2) = χ(U3 ⊗ U2), or equivalently χ(det U−1
2 ) = χ(∧2U3) (83)

under the particle identification A in Table 3. These phenomenological information constrains

the possible choice of topology for our vacuum as

c2(TZ)c1(U3) =
[
6c2(U3) − 2c1(U3)

2
]
c1(U3), (84)

c3(U3) = 0, (85)

where we used c1(U2) = −c1(U3). Under these conditions we have

χ(10) = χ(5̄) =
1

2
[c2(U2) − c2(U3)] c1(U3), (86)

χ(H(5)) = χ(H̄(5̄)) =
1

2
c2(U3)c1(U3), (87)

χ(N̄) = −c1(U3)
3 − 1

2
c2(U3)c1(U3) +

5

2
c2(U2)c1(U3). (88)

Similar analysis can be done for the case of the identification B in Table 3.

3.2.2 Anomalous U(1)q̃7 Symmetry and Effective Superpotential

The U(1)q̃7 gauge field has Green–Schwarz coupling because of non-trivial c1(U3) = −c1(U2),

just like the gauge field of the U(1)χ symmetry does in section 3.1.2. Essentially the same

analysis can be done for the U(1)q̃7 symmetry. The gauge boson acquires a large mass either

from the Green-Schwarz interactions or from the Higgs mechanism, and can be absent from

low-energy spectrum. In this section, we just only refer to the difference from what was

discussed in 3.1.2.

The Fayet–Iliopoulos parameter given in (57) is valid for the U(1)q̃7 symmetry after re-

placing c1(L) by c1(U3); the prefactor 10 happens to be the same. The 1-loop contribution

does not necessarily vanish for the U(1)q̃7 symmetry, and the Fayet–Iliopoulos parameter

vanishes when the tree-level and 1-loop contributions cancel [35]. In that case, the reducible

vector bundle (30) is semi-stable at the 1-loop level.
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When the bundle (30) is at the reducible limit, not only the dimension-4 but also dimension-

5 proton decay operators are forbidden by the underlying symmetry. Indeed, neither

U2 ⊗ U2 ⊗ U2 ⊗ (U3 ⊗ U2) [ID A], nor U2 ⊗ U2 ⊗ U2 ⊗ (∧2U3) [ID B] (89)

contains a trivial bundle. Since these bundles are not even singlet under SU(3)2, these

operators are forbidden even at the non-perturbative level.

The particle identification B in Table 3 may yield chiral multiplets S. Since we have not

made any specific choices of vector bundles, we do not know how many chiral multiplets are

available (or if there is a vacuum without such a multiplet) around the electroweak scale.

But, if there are, then they play some roles in the Higgs-related physics, since they has a

coupling W ∋ SHuHd. Thus, it is interesting to know more about the interactions of the

multiplet S. If there are only multiplets S, without their Hermitian-conjugate S̄, then the

underlying SU(3)2×SU(2)2×U(1)q̃7 symmetry kills any kinds of terms in the superpotential

only in S. At the non-perturbative level, where we ignore the U(1)q̃7-charge conservation,

some terms may be generated:

W ∋ SHuHd + ǫ S6 + ǫ′ S12 + · · · . (90)

The dimension-7 term W ∋ S6 is the leading correction, and the cubic term W ∋ S3 of

the next-to-minimal supersymmetric standard model [27] is not allowed even at the non-

perturbative level.21 Phenomenology of an effective theory without S3 term has been studied

in [28, 29].

If the values of Kähler moduli and dilaton are such that the Fayet–Iliopoulos parame-

ter does not vanish, then the U(1)q̃7 symmetry is spontaneously broken. The absence of

dimension-4 proton decay operators suggests the presence of the Fayet–Iliopoulos parameter.

Under the identification A in Table 3,
〈
N̄
〉

= 0,
〈
N̄
〉
6= 0 and the rank-5 bundle is an

extension

0 → U2 → V5 → U3 → 0. (91)

The bundle U2 has to remain well-defined as a sub-bundle, so that the 5̄-representation is

still distinguished from H̄(5̄). Under the identification B, 〈S〉 = 0,
〈
S̄
〉
6= 0 and the rank-5

bundle is an extension

0 → U3 → V5 → U2 → 0. (92)

21Here, we assume that the underlying E8 symmetry is broken only by the vector bundle, and not directly
by any non-perturbative processes.
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The bundle U3 has to be a well-defined sub-bundle for the same reason as in the case of the

identification A.

If the Fayet–Iliopoulos parameter is of order M2
G(ls/R)2, as indicated from the tree-level

contribution, it is not small as long as 1/R is around the GUT scale. Thus, the expectation

values of N̄ and S̄ are much larger than the electroweak scale. In the former case, 5̄ and

H(5) multiplets decouple from the low-energy physics in pair, by acquiring mass terms from

the Dirac Yukawa coupling with the expectation value of 〈N〉. The expectation value of a

vector bundle moduli N̄ , however, does not necessarily add masses to all the vector-like pair

in the SU(5)GUT-5+5̄ representations [34]. Thus, some of those multiplets may remain in the

low-energy spectrum, and a large expectation value in one of N̄ may not be inconsistent with

the reality. The analysis based on (83) does not take account of this, and the constraints on

topology obtained there have to be modified appropriately.

Neutrinos may have masses through

W ∋ 1

2

(
L, N̄ ′, N̄

)



0 y 〈Hu〉 0
y 〈Hu〉 0 M

0 M κ
〈
N̄2
〉






L
N̄ ′

N̄


 (93)

under the identification A, where a vector-like mass term W ∋ MN̄ ′N̄ and an operator

like (72) exist. N̄ ′ collectively stand for chiral multiplets from the bundle U2 ⊗ U3 except

the one that develops an expectation value to absorb the Fayet–Iliopoulos parameter. This

type of mass matrix explains the tiny neutrino masses through so-called the double-see-saw

mechanism. On the other hand, in the identification B, the origin of neutrino masses is not

understood.

Effective field theory analysis can be carried out for the dimension-5 proton decay oper-

ators by allowing the expectation values of N̄ or S̄ to be inserted in effective operators. It

turns out that the underlying symmetry SU(5)GUT×SU(3)2×SU(2)2× U(1)q̃7 in the identifi-

cation A does not allow such an operator. Hence the dimension-5 proton decay is absent at

the perturbative level. On the other hand, in the identification B, effective operators of the

form

W ∋ 10.10.(10
〈
S̄
〉
).5̄ (94)

are consistent with the symmetry SU(5)GUT×SU(3)2×SU(2)2×U(1)q̃7 , and hence may be

generated at the perturbative level. Since the experimental limit on the dimension-5 proton

decay is not very severe, such operators may be consistent with the reality if the Fayet–

Iliopoulos parameter is not very large.
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3.3 Compactification with 2+2+1 Vector Bundles

In 2+2+1 bundle compactifications, H(5) and H̄(5̄) do not arise from a Hermitian-conjugate

pair of irreducible representations, just like in 3+2 bundle compactifications. Thus, the

Wilson line cannot work as a solution to the doublet–triplet splitting problem. Not only

dimension-4 proton decay operators but also dimension-5 operators are forbidden by the

underlying symmetry, just like in the 3+2 bundle compactifications. Since the 2+2+1 vector

bundles are regarded as particular choice of vector-bundle moduli of 3+2 bundles and 4+1

bundles, they inherit stronger properties of 3+2 and 4+1 bundles.

When the vector-bundle moduli are at the reducible limit, there are two linearly indepen-

dent anomalous U(1) symmetries: q6 and q7, χ and ψ, or q̃6 and q̃7. When the Fayet–Iliopoulos

parameters of those U(1) symmetries are non-zero, some of fields in the off-diagonal blocks in

(21) develop non-zero expectation values so that the D-term potential energy vanishes. De-

pending on which field does, different types of effective operators are potentially generated.

Which field develops an expectation value depends also on supersymmetry breaking masses,

and we are not going into that discussion here.

4 M-theory Vacua

In this section, we will provide M-theory implementations of the general idea for the origin

of low-energy particles and Yukawa couplings developed in terms of field theory in section

2. The E7 or E8 vector multiplet does not exist in the eleven-dimensional supergravity, as

opposed to the case in Heterotic theory where E8 vector multiplet exists from the beginning.

In M theory vacua, the E7 or E8 symmetry has to arise from singularity of G2 holonomy

manifold22 used for the compactification yielding a vacuum with N = 1 supersymmetry.

The geometry of the compactification manifold has to be properly engineered to obtain the

right particle spectrum and the right form of interactions at low energies. In this section we

present the geometric origin of the low-energy particles and of the absence of the very rapid

proton decay.

It is known that the compactification of Heterotic String on T 3 is dual to M-theory

compactification on K3 [15]. This duality is further exploited by fibring T 3 and K3 on a

common base manifold Q. When Q is a 3 dimensional, Heterotic compactification on T 3-

fibred Calabi–Yau 3-fold and M-theory compactification on K3-fibred G2 holonomy manifold

22We abuse the word “manifold” even when a “manifold” has singularity.
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become relevant to the description of the real world (if low-energy supersymmetry is confirmed

in a near future experiment). Neither all the Calabi–Yau 3-fold have T 3-fibred structure, nor

all the G2 holonomy manifold have K3-fibred structure. Thus, some vacua have descriptions

both in terms of Heterotic theory and M-theory, some may have only one in Heterotic theory,

others may be described only in terms of M-theory compactification. Such vacua in different

parts of the moduli space of the entire string theory may have different phenomenological

aspects, especially when it comes to the pattern of Yukawa matrices and this is why we

consider that it is important not only to develop string phenomenology in Heterotic theory

but also in M-theory compactification in order to cover more vacua and more variety in

phenomenology.

4.1 Local Model of Up-type Quark Yukawa Coupling

By comparing with complex geometries as Calabi–Yau 3-folds or 4-folds, little is known about

the classification of G2 holonomy manifold. Thus, it does not seem promising to search for

realistic M-theory vacua in a top down approach. Although M-theory vacua with Heterotic

dual may be studied by using the terminology of complex geometry in the Heterotic side,

this approach does not suit for the purpose of exploring M-theory vacua that may not have

Heterotic dual descriptions. What is more, we do not necessarily have to start in M-theory

with an E8 symmetry, as we saw in section 2 where E7 was the minimal choice for the visible

particle physics sector. Inflation and the supersymmetry breaking sector does not have to be

constructed out of E8 symmetric theory.

We adopt the philosophy of a local construction approach (or bottom-up construction ap-

proach) [44], instead. In M-theory and F-theory vacua, the SU(5)GUT gauge fields propagate

on a subvariety of the compactification geometry and the geometry (and D-brane configura-

tion in Type IIA and Type IIB string theories) that is not in direct contact with the cycles

of the visible sector has little effect on the visible sector. Since virtually no constraint comes

from observational or experimental tests for the invisible sectors, the geometry of that part

is almost arbitrary. In order to study various aspects of particle physics, it is only sufficient

to construct the part of geometries that relates to experiments. One can neglect at this

stage the mechanism of supersymmetry breaking and concentrate on the particle physics of

quarks and leptons. By doing so, one can capture some generic features of phenomenol-

ogy, while avoiding the limitation to a small subclass of geometries and of phenomenology
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models.23 This is the basic philosophy of the local construction. 24 One can start with a

configuration with an appropriate gauge symmetry, and add the matter content one by one.

Matters are added not by hand, but by constructing geometry, and the anomaly cancellation

condition is replaced by consistency conditions of geometry. They are the difference from

conventional model building in effective field theories. References [46] are notable examples

of this approach in the context of M/G2 compactification.

The subject of relating compactifications of M-theory and particle physics has been treated

extensively in the last years, see [50] for a review. The geometric building blocks are used in

this section to implement our ideas of section 2 in M-theory compactification. The goal is

i) to choose the right underlying symmetry and its breaking pattern,

ii) to maintain different origin for 5̄ and H̄(5̄) in order to avoid a too fast dimension-4

proton decay,

iii) to obtain all the necessary Yukawa couplings generated from Yang–Mills interactions.

Let us first construct the local model of the up-type quark Yukawa coupling in M-theory,

as we did in section 2. In M-theory description, the E6 symmetry is realised by compactifying

the M-theory on an ALE space containing six 2-cycles with the E6-type intersection form.

M2-branes wrapped on the 2-cycles correspond to gauge fields in the simple roots assigned

to the nodes of the Dynkin diagram (see Fig. 1). The D = 4 effective theories with N = 1

supersymmetry are obtained by compactifying the M-theory on a G2 holonomy manifold X.

We are interested in a manifold X with an associative 3-cycle Q such that X is locally ALE

fibration over Q with the six 2-cycles in the fibre. Four of them—C3, C4, C5 and C6—are

not resolved anywhere on Q. The locus of the A4 singularity is identified with Q itself. The

SU(5)GUT vector multiplet of N = 1 supersymmetry is localised along this locus [51].

In order to describe the geometry for matter fields explicitly, we use the following de-

scription of ALE spaces [52] (for a brief summary, see appendix B). E6 type ALE space

and its metric are encoded by data ~ζ i = (ζ i1, ζ
i
2, ζ

i
3) ∈ R

3 for i = 0, · · · , 6, which are under a

constraint
~ζ0 + ~ζ1 + 2~ζ2 + 3~ζ3 + 2~ζ4 + ~ζ5 + 2~ζ6 = 0. (95)

Each of ~ζ i describes the “size” of the corresponding 2-cycle Ci, and this is also true for

i = 0, if we consider that α0 ≡ −θ and C0 ≡ C−θ ≡ −(C1 + 2C2 + 3C3 + 2C4 + C5 + 2C6),

where −θ is the negative of the highest root. The ALE space has an A4 singularity when

23Needless to say, constructing explicit geometry is also important, to confirm that one has concrete
examples in order to gain a firm understanding of what is really going on.

24Other approach to using local geometries to get phenomenology models appeared in [45].
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α1, C1 α2, C2 α3, C3 α4, C4 α5, C5

α6, C6

−θ, C−θ

Figure 1: The (extended) Dynkin diagram of E6, which not only describes the Lie algebra
of E6 symmetry but also the intersection form of E6-type singularity. Each node is assigned
a simple root αi and a 2-cycle Ci. The su(2)2 and su(5)GUT subalgebra of su(2)2 + u(1) +
su(5)GUT ⊂ e6 in section 2 are generated by α1 and α3,4,5,6, respectively. The highest root θ
is not linearly independent from other six simple roots: θ = α1 +2α2 +3α3 +2α4 +α5 +2α6.

~ζ3 = ~ζ4 = ~ζ5 = ~ζ6 = ~0, and the 2-cycles C3, C4, C5 and C6 are of zero size.

Let ~y = (y1, y2, y3) be a set of local coordinates of the associative 3-cycle Q. The ALE

fibre is allowed to vary over the base manifold Q, while keeping the E6 intersection form and

A4 singularity for the SU(5)GUT gauge field. Thus, the local geometry of G2 holonomy of our

interest is described by specifying ~ζ1(~y) and ~ζ2(~y) as functions on Q. ~ζ0(~y) is determined by

(95). The base manifold Q is identified with the locus of A4 singularity.

At some points on the base 3-fold Q, ~ζ2(~y) or ~ζ1(~y) + ~ζ2(~y) may become ~0. There, either

C2 or C1 +C2 shrinks. Since the intersection form of C3, C4, C5 and C6 along with an extra

vanishing cycle C2 or C1 +C2 is the negative of the D5 Cartan matrix, the A4 singularity on

Q is enhanced to D5 at such points. The local geometry around the point of enhanced gauge

symmetry has a Type IIA interpretation, after reduction along the S1 fibre; five D6-branes

are on top of one another, and intersect with an O6-plane [81]. One massless chiral multiplet

either in the SU(5)GUT-10 representation or in the SU(5)GUT-10 is localised at the locus of

enhanced gauge symmetry (singularity) [53]. The chirality depends on the sign of Jacobian

|∂~ζ2(~y)/∂~y| or |∂(~ζ1(~y) + ~ζ2(~y))/∂~y| at the loci of enhanced singularity.

The local description of the ALE fibration with local coordinates (y1, y2, y3) and data ~ζ1(~y)

and ~ζ2(~y) is glued together between adjacent patches on Q to give the global description of

the ALE fibration over the entire Q. When two adjacent descriptions are glued, the 2-cycles

on one patch should be matched with those of the other so that the intersection form is

preserved, and further more, C3, C4, C5 and C6 should be matched with those of the other,
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since they have zero size. Furthermore, over the entire Q we need to make sure that C5 and

C6 remain the same everywhere on Q. In principle, one can trace C6 moving over Q and when

one comes back to the original point on Q, C6 may have become C5. The A4 intersection

form is preserved through the entire process. But, in such geometry, not all of the SU(5)GUT

gauge symmetry is maintained, as in the non-split case discussed in [26]. This is not what

we want for the description of our world.

For the cycles C2 and C1, there is a little more degree of freedom in how to glue them

between two adjacent patches. The Weyl reflection associated with the root α1 sends α2 to

α1 +α2, and α1 to −α1, keeping all other simple roots intact. This corresponds to a different

choice of a Weyl chamber, and we could have chosen −α1 instead of α1, and α1 + α2 instead

of α2 as the simple roots. The same is true for the choice of independent homology basis of

the ALE space. The intersection form is preserved under the “Weyl reflection” among the

2-cycles. The data may be matched on a common subset of a patch α and β as
(

~ζ2(~y)
~ζ1(~y) + ~ζ2(~y)

)

α

=

(
1

1

)(
~ζ2(~y)

~ζ1(~y) + ~ζ2(~y)

)

β

(96)

or (
~ζ2(~y)

~ζ1(~y) + ~ζ2(~y)

)

α

=

(
1

1

)(
~ζ2(~y)

~ζ1(~y) + ~ζ2(~y)

)

β

(97)

Thus, the 2-cycle C2 on one patch may be C1 + C2 on another, and vice versa. Thus, in the

case the distinction between C2 and C1 +C2 is lost globally on Q and there is no distinction

at all between the SU(5)GUT-10 representations arising from C2-collapsed singularities and

those from (C1 + C2)-collapsed singularities. The doublet of data (~ζ2(~y), ~ζ1(~y) + ~ζ2(~y))

becomes a 2-fold cover over Q, on which S
(2)
2 , the Weyl group of SU(2)2 acts. The fact

that the 10 representations arise from either C2 or (C1 + C2)-collapsed singularities reflects

that these representation comes from the (10, 2) irreducible component of e6-adj. under the

SU(2)2×U(1)6×SU(5)GUT subgroup. The 2-fold cover describes the degree of freedom of the

geometry for the M-theory compactification, just like did the spectral cover for the description

of vector bundles on elliptic fibred manifolds in Heterotic theory. It is not surprising since the

Heterotic–M-theory duality holds between Heterotic compactifications on T 3-fibred Calabi–

Yau 3-folds and M-theory compactifications on K3-fibred G2 holonomy manifolds. But the

description in terms of the 2-fold cover is general in any M-theory compactifications on G2

holonomy manifolds, not only for those with the K3-fibration structure.

Now let us move on to another matter multiplet, H(5). The 2-cycle C−θ shrinks at points

where ~ζ0(~y) = −(~ζ1(~y) + 2~ζ2(~y)) becomes ~0. We can also say that the 2-cycle (C1 + 2C2)
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shrinks there. The intersection form of the four 2-cycles C3, C4, C5 and C6, along with another

vanishing 2-cycle C−θ is the negative of A5 Cartan matrix. The singularity is enhanced from

A4 to A5. The Type IIA interpretation locally exists: one D6-brane intersects at this point

with a stack of five D6-branes, and one massless chiral multiplet either in the SU(5)GUT-

5 or -5̄ representation is localised there. The chirality depends on the sign of Jacobian

|∂(~ζ1(~y) + 2~ζ2(~y))/∂~y| at the intersection point and, if the chirality comes out right, we

have a candidate for H(5). The irreducible decomposition of the e6-adj. algebra along the

the particle identification in section 2 also says that the H(5) multiplet should come from

the irreducible piece with roots α1 + 2α2 in addition to some linear combinations of α3,··· ,7,

confirming that this is the right geometric origin of H(5) in the M-theory description.

Since the existence of massless chiral multiplets and their chirality depend only on the local

geometry, the D6-brane and O6-plane interpretation that exists only locally can determine

the multiplicity and chirality of massless multiplets, despite the absence of global Type IIA

interpretation in compactification involving Ed-type intersection form.

We have seen that there are candidates for 10 and H(5) multiplets in the M-theory

compactified on an E6-type ALE fibration on a 3-cycle. The up-type quark Yukawa coupling

(8) exists because the sum of 2-cycles −C2, −(C1+C2) and (C1+2C2) is topologically trivial;

M2-branes wrapped on these 2-cycles can merge together to disappear. Thus, the candidates

really have the right properties to be 10’s and H(5).

When the S1 fibre of the ALE space is negligibly small, this is qualitatively similar to

the Type IIA description of the origin of trilinear Yukawa couplings: a worldsheet spanning

3 points of D6–D6 intersections. The Yukawa coupling is exponentially small, if the area

spanned by the worldsheet is large. When the S1 fibre is not necessarily small, the area is

replaced by 3-volume swept by a M2-brane. The Yukawa couplings have non-zero complex

phases when the integration of the Ramond–Ramond 3-form over the 3-volumes
∫
C(3) are

non-zero. Since the relevant 3-volumes are different for different entries of up-type quark

Yukawa matrix, different entries may have different complex phases. Thus, the transformation

matrix that brings 3 families of chiral multiplets Q into the mass eigenstates can have complex

phases, leading to the source of CP violation in the Cabbibo–Kobayashi–Maskawa matrix.

The mechanism of generating Yukawa coupling in Type IIA string / M theory [54] is now

generalized above so that it is valid even when En-type intersection of 2-cycles are involved

in the G2-holonomy manifold.

One thing that one immediately notices is that the diagonal entries of the up-type quark

Yukawa matrix may be suppressed, rather than unsuppressed. This is because the sum of
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−θ α1 α2 α3 α4 α5 α6

α7

Figure 2: The (extended) Dynkin diagram of E7. The su(2)2 is generated by α1, and su(6)1

by α3,4,5,6,7 (su(5)GUT without α7). The highest root θ satisfies −θ+2α1 +3α2 +4α3 +3α4 +
2α5 + α6 + 2α7 = 0.

2-cycles −C2−C2 +(C1 +2C2) is not topologically trivial. Diagonal entries can be generated

only by M2 branes that once sweep a broad region over the base manifold Q so that discrete

holonomy between ~ζ2(~y) and ~ζ1(~y) + ~ζ2(~y) of the 2-fold cover can convert C2 to C1 + C2 or

vice versa. Thus, when diagonal entries are generated, they are suppressed exponentially by

the volume M2 branes swept. Here, we assume that the locus of enhanced gauge symmetry

of (C1 + 2C2) is different from all of those of C2 or C1 + C2. Whether this feature can be

consistent with the hierarchical and mixing pattern of quarks of the real world is left to a

future investigation.

One can also attempt to connect our results to the ones of [55] where the E6 was broken

geometrically to SU(3)2 × SU(2). This will consist of further breaking of the GUT group

SU(5). We leave this for a further work.

4.2 Minimal E7 Model for All the Yukawa Couplings

Let us now proceed to the E7 model, where all the low-energy particles 10, 5̄, H(5) and H̄(5̄)

are obtained along with all the necessary Yukawa couplings. We consider a G2 holonomy

manifold X as an ALE fibration over an associative 3-cycle Q such that each ALE fibre space

contains seven 2-cycles with E7 intersection form. Four of the cycles, namely C3, C4, C5, and

C6, remain intact over the entire Q, forming A4 singularity and yield the SU(5)GUT gauge

fields. There should be no non-trivial holonomy flipping both ends of the A4 Dynkin diagram

of α3,··· ,6, as we discussed in section 4.1.

Over each point on Q, the ALE fibre is described by ~ζ0,1,2,7(~y), which describe the “size”

of the 2-cycles C0,1,2,7. They obey the constraint

~ζ0 + 2~ζ1 + 3~ζ2 + 2~ζ7 = 0. (98)

The two 2-cycles C2 and C1 +C2 are a doublet of the Weyl group S
(2)
2 of su(2)2, generated by

α1 in the sense stated for the E6 case. Chiral matters arise at points where some linear combi-
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particles 10 5̄ H(5) H̄(5̄) N̄
2-cycles −(C2 + C3 + C7), C2, C1 + 2C2 + 2C7 C7 C−θ,

−(C1 + C2 + C3 + C7) (C1 + C2) +3C3 + 2C4 + C5 C−θ + C1

singularity D5 A5 A5 A5 A1 + A4

Table 4: Correspondence between the low-energy particles and the 2-cycles on which M2-
brane are wrapped. The relevant 2-cycles are determined only up to adding some linear
combinations of C3, C4, C5, and C6. For Higgs multiplets that are not doublets of SU(2)2,
only one 2-cycle is shown, but there are four others, which can be read out from the appendix
A. For other multiplets, which are SU(2)2 doublets, two 2-cycles are shown. The last row
shows the enhanced singularity when the relevant 2-cycle shrinks. Note that the particle
identification in this table is based on the particle identification pattern A in Table 1.

nations of those 2-cycles shrink, and singularity is enhanced. For different types of enhanced

singularity and symmetry at different points on Q, we have different chiral multiplets.

The correspondence between the extra vanishing cycles and chiral matters can be under-

stood by carefully following the symmetry breaking ofE7 down to SU(5)GUT×SU(2)2×U(1)q6×
U(1)q7, and the decomposition of the representations. This is carried out in the appendix

A, and the results are shown in Table 4. As long as the loci of enhanced singularity (and

gauge symmetry) are mutually isolated, the enhanced gauge symmetry is either D5 or A5,

and the Type IIA interpretation that holds locally around each locus determines the multi-

plicity (just one) and the chirality depending on the sign of the Jacobian |∂~ζ(~y)/∂~y| around

the intersection point of the relevant D6-branes (and O6-planes).

The trilinear Yukawa couplings appear when three M2 branes merge and disappear, in

other words when the sum of the 2-cycles on which M2 branes are wrapped become topo-

logically trivial. We can see that all the necessary Yukawa couplings are generated in that

way:

u-Yukawa : 10.10.H(5) −(C1 + C2 + C7) − (C2 + C7) + (C1 + 2C2 + C7) ≡ 0, (99)

d, e-Yukawa : 5̄.10.H̄(5̄) C2[+C1] − (C2 + C7[+C1]) + C7 ≡ 0, (100)

ν-Yukawa : N̄ .5̄.H(5) C−θ + (C1 + C2) + (C1 + 2C2 + 2C7) ≡ 0, (101)

where the equalities hold mod +C3,4,5,6; the last line is for the Dirac mass terms for neutrinos.

On the other hand, the dangerous operators leading to proton decay are not generated by
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merging M2-branes, since the sums of relevant 2-cycles are not topologically trivial:

dimension-4 : 5̄.10.5̄ −(C2 + C7[+C1]) + 2(C2[+C1]) /≡0, (102)

dimension-5 : 10.10.10.5̄ −3(C2 + C7[+C1]) + (C2[+C1]) /≡0. (103)

In Heterotic theory, the existence of Yukawa couplings and absence of too rapid proton decay

was controlled by the existences or not the trivial bundles in the tensor products of vector

bundles for relevant particles. In M-theory compactification, the topological triviality of 2-

cycles replaces the bundle terminology. No matter which language is used, physical results

should be the same. Particle physics does not depend so much on whether the vacuum is

described by Heterotic theory or M-theory but by what the underlying symmetry is and how

it is broken—the idea described in section 2. As we saw in section 2, E7 is the minimal

symmetry to accommodate all the low-energy particles, and there, both dimension-4 and

dimension-5 proton decay operators are forbidden, while all the necessary Yukawa couplings

are allowed. In the M-theory language, the SU(2)2 part is taken care by the C2 and C1 +C2

components and the U(1) part by the C7 component, in the argument lead to the absence of

proton decay.

Statements on the hierarchy and CP phases written for the up-type quark Yukawa cou-

plings also hold for all the Yukawa matrices in (99)–(101). For vacua with M-theory (or Type

IIA) description, chiral matters are localised at some points on a real 3-dimensional cycle in

the M-theory (Type IIA) picture, and the Yukawa couplings are generated by spanning M2

branes (world sheets) between three points on the 3-cycle. This picture is certainly more

intuitively tractable25 than calculating zero-mode wavefunctions on a Calabi–Yau complex

3-fold with unknown metric. Since the minimal model presented here has known source of

Yukawa matrices and is guaranteed to be free of dangerous proton decay, it deserves further

investigation.26

4.3 Local Model with E8 Intersection Form

The ALE geometry in the fibre allows chains of 2-cycles with E8 intersection form so we can

also consider M-theory compactification with the E8 symmetry. The geometry of E8 type

25This does not mean that the vacua with M-theory description are phenomenologically better than those
without one.

26It should be kept in mind that the Wilson line on a quotient geometry obtained by freely acting symmetry
cannot immediately solve the doublet–triplet splitting problem in this model, as noted in section 2.
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ALE space is described by a set of data ~ζ−θ,1,2,7,8(~y), satisfying

~ζ−θ + 2~ζ1 + 4~ζ2 + 2~ζ7 + 3~ζ8 = ~0. (104)

The SU(5)GUT gauge field comes from vanishing 2-cycles C3, C4, C5 and C6. Chiral matters

arise where some linear combinations of C1, C2, C7, C8 (and C−θ) shrinks and singularity (and

gauge symmetry) is enhanced. It is a straightforward procedure to determine the vanishing

2-cycles corresponding to the low-energy multiplets. One can just read out the roots in

(199)–(200) for the irreducible pieces identified with the low-energy particles in (19)–(21).

We do not explicitly check whether the necessary Yukawa couplings are generated because

our argument in section 2 guarantees it. The existence or absence of Yukawa couplings is

just determined by E8 algebra. The same is true for the dimension-4 proton decay operators.

Let us take a closer look at the geometry. There are three different choices of vector

bundles in the Heterotic compactifications, namely (29), (30) and (22) and the first two

bundles are extensions of the last one. In the rest of this subsection, we clarify how the

relations of these “bundles” are described in M-theory geometric terminology.

The SU(2)2×SU(2)1×U(1)×U(1)-bundle compactification of Heterotic theory corresponds

to the symmetry breaking pattern of removing the nodes α2, α7 and α8 from the extended

Dynkin diagram in Fig. 3. The SU(2)2 and SU(2)1 are generated by α1 and −θ, respec-

tively. Their SU(2) bundles in Heterotic compactification corresponds to 2-fold covers of

the data (~ζ2(~y), ~ζ1(~y) + ~ζ2(~y))—a doublet of the Weyl group S
(2)
2 of SU(2)2—and (~ζ7(~y),

~ζ7(~y) + ~ζ0(~y))—a doublet of the Weyl group S
(1)
2 of SU(2)1. The remaining ~ζ8 is determined

from the four others through (104) and the cycle C8 is topologically equivalent to a certain

linear combination of C1, C2, C7 and C−θ. We reinterpret the geometry by thinking of an-

other S
(1),(2)
2 -singlet C8 +(2C7+C−θ) = −(2C8 +2C1+4C2) instead of C8 because this choice

of the 2-cycle will shortly turn out to be more convenient. The data are glued between two

adjacent patches through



−(2~ζ8 + 2~ζ1 + 4~ζ2)
~ζ7

~ζ7 + ~ζ0

−(~ζ1 + ~ζ2)

−~ζ2




α

=




1

S
(1)
2

S
(2)
2







−(2~ζ8 + 2~ζ1 + 4~ζ2)
~ζ7

~ζ7 + ~ζ0

−(~ζ1 + ~ζ2)

−~ζ2




β

. (105)

The SU(4)×U(1)χ bundle compactification of Heterotic theory corresponds to the sym-

metry breaking pattern of removing α7 in the extended Dynkin diagram Fig. 4. The SU(4)
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α1 α2 α3 α4 α5 α6 α7 −θ

α8

Figure 3: The extended Dynkin diagram of E8 (I). The subalgebra su(2)2 + su(2)1 + su(6)1

is generated by the simple roots α1, −θ, and α3,4,5,6,7,8, respectively.

α3 α4 α5 α6 α7 −θ α′ α1

α+

Figure 4: The extended Dynkin diagram of E8 (II), and its maximal subalgebra so(10)+su(4).
α+ ≡ L0 − (L3 + L4 + L5).

structure group of the vector bundle is generated by the simple roots −θ, α′ and α1, where a

root α′ is defined in the appendix A. As the two rank-2 vector bundles 21 and 22 are extended

to a rank-4 bundle U4 in Heterotic description, the two 2-fold cover data, or two doublets

of 2-cycles (C7, C7 + C−θ) and (C2, C1 + C2) should be paired up into a quartet in M-theory

description; indeed, the quartet should be (C7, C7 +C−θ, C7 +C−θ+Cα′ , C7 +C−θ+Cα′ +C1)

and since

α7 + (−θ) + α′ ≡ −(α1 + α2) (106)

mod α3,4,5,6, it is the quartet (C7, C7 + C−θ,−(C1 + C2),−C2) that mix together over the

entire base manifold Q. The data (~ζ7, ~ζ7 + ~ζ−θ,−(~ζ1 + ~ζ2),−~ζ2) is a 4-fold cover of Q. Note

that the other 2-cycle −(2C8 + 2C1 + 4C2) is C7 − Cα′′ , where the root α
′′

is defined in the

appendix A. The transition function in (105) is enlarged into 1 × S4.

The SU(3)2×SU(2)2×U(1)q̃7 bundle compactification of Heterotic theory corresponds to

the symmetry breaking pattern of removing the node α2 in the extended Dynkin diagram in

Fig. 5. su(3)2 is generated by the roots α
′′

and −θ, and su(2)2 by α1 (see the appendix A).

The replacing the bundle 1 ⊕ 21 by U3 [(22) by (30)] in the Heterotic side corresponds to

mixing up the 2-cycle −(2C8 + 2C1 + 4C2) ≡ C7 −Cα′′ with the S
(1)
2 doublet (C7, C7 +C−θ)

globally on Q to be a triplet of the Weyl group S3 generated by α
′′

and −θ. The data

(−(2~ζ8+2~ζ1+4~ζ2), ~ζ7, ~ζ7+~ζ−θ) gives a 3-fold cover of Q. The S
(2)
2 -doublet (−(C1+C2),−C2)

remains intact in the process of lifting the “2+2+1 bundles” to “3+2 bundles.” The transition

function in (105) is enlarged into S3 × S
(2)
2 .
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−θ α
′′

α2 α3 α4 α5 α6 α̃

α1

Figure 5: Extended Dynkin diagram of E8 (III), and its maximal subalgebra su(3)2+su(2)2+
su(6)2. α̃ ≡ 2L0 − (L1 + · · · + L6).

The quintet data (−(2~ζ8 +2~ζ1 +4~ζ2), ~ζ7, ~ζ7 +~ζ−θ,−(~ζ1 +~ζ2),−~ζ2) are mutually separated

by

~ζα
′′

≡ 2~ζ1 + 4~ζ2 + ~ζ7 + 2~ζ8, (107)

~ζ−θ, (108)

~ζα
′

≡ ~ζ1 + 3~ζ2 + ~ζ7 + 3~ζ8, (109)

~ζ1, (110)

~ζα
′′′

≡ −(2~ζ1 + 3~ζ2 + 2~ζ8). (111)

Since these separations are defined in a cyclic order, they satisfy a constraint

~ζα
′′

+ ~ζ−θ + ~ζα
′

+ ~ζ1 + ~ζα
′′′

= 0, (112)

which is equivalent to the constraint (104), and is also in the form of the traceless condition

for the A4 type ALE space [80], corresponding to the SU(5) structure group of the Heterotic

description. Irreducible vector bundles with full SU(5) structure group correspond to irre-

ducible 5-fold cover of Q given by the quintet data in the M-theory description. Following

the idea in section 2, we suggest that the absence of dimension 4 proton decay is an indi-

cation that the 5-fold cover is not irreducible at some level of approximation; it is split up

into irreducible components of either (2-fold, 2-fold, single) covers, (4-fold, single) covers or

(3-fold, 2-fold) covers.

We have seen at the end of section 4.1 that the diagonal entries of up-type quark Yukawa

matrix tend to be suppressed. The argument there does not depend specifically on the fact

that (~ζ2, ~ζ1 + ~ζ2) is a 2-fold cover; rather the argument is more general, and is valid also in

the case of 4-fold cover. Thus, the suppressed diagonal entries can be regarded as generic

predictions of M-theory vacua with SU(5)GUT unification.
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5 F-theory Vacua

The Heterotic theory compactified on T 2 has the same moduli space as that of the F-theory

on elliptic K3 [16]. Likewise, the Heterotic theory on elliptic Calabi–Yau 3-fold

πZ : Z → B (113)

has the same moduli space27 as that of the F-theory on elliptic Calabi–Yau 4-fold

πX : X → B′ (114)

whose base manifold B′ is a P
1-fibration on the common B,

π
′′

: B′ → B, (115)

so that

π′ : X → B (116)

is a K3-fibration [17, 18, 19, 20].

For vacua that fall into the category of Heterotic–F-theory dual, some region of the moduli

space is described better by the Heterotic theory but other regions are better described by

F-theory. Furthermore, there will be vacua that do not fall into the shared moduli space,

and in particular, some of F-theory compactification on a non-K3-fibred elliptic Calabi–Yau

4-fold may not have Heterotic descriptions. Therefore, in this section, we take a step toward

translating what has been discussed in earlier sections into F-theory language, so that we get

prepared for exploring vacua that are well-described by the F-theory.

5.1 Trilinear Yukawa Couplings

One way to see the Heterotic–F-theory duality is through the del Pezzo fibration. Vector

bundles on an elliptic Calabi–Yau 3-fold π : Z → B with the structure group in E8 are

described28 by dP8-fibration W → B. One point in dP8 fibre is blown up to be dP9, and

the dP9 fibres for the visible and hidden sectors add up to form the elliptic K3 fibration

π′ : X → B of the F-theory [19].

When we discuss Yukawa couplings in the visible sector, we do not pay attention to the

del Pezzo fibration for the hidden sector. The commutation relation of E8 that determines
27The overlap between Heterotic vacua and F-theory vacua is more than this. See, for example, [18, 56, 57].
28To be more precise, not all the information is encoded in the del Pezzo fibration. Discrete topological

choices that changes the chirality are one example.
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Yang–Mills interaction of the Heterotic theory is now encoded in the intersection form of the

2-cycles of the dP8 (or dP9). Those surfaces contain the chains of 2-cycles that we discussed

in section 4 and the identifications of particles and interactions there can also be valid for

the F-theory. Thus, the E8 version of the discussion around (99)–(103) is also valid in the

F-theory vacua. As is clear from the discussion in section 4, the existence of trilinear Yukawa

couplings and absence of dangerous proton decay operators can be discussed in that way, as

long as the local geometry in X around the holomorphic 4-cycle of the visible sector gauge

group has the fibration of eight (or seven) 2-cycles with the right intersection forms. The

validity of this way of thinking is not limited to F-theory vacua that have Heterotic dual.

5.2 F-theory Dual of Heterotic E8/ SU(5)GUT×〈SU(4) × U(1)χ〉 Model

If one is only interested in knowing whether Yukawa couplings exist or proton decay operators

are absent, there is no essential difference between the Heterotic, M and F-theory. Such as-

pects were determined by the underlying symmetry such asE7 orE8 and how it is broken. The

above argument is fine for F-theory vacua. But when one wants to extract more physical con-

sequences of F-theory vacua, we need more detailed descriptions. For that purpose, we begin

with translating the Heterotic models discussed in section 3 into F-theory language through

the Heterotic–F-theory duality. Section 5.2 is devoted to the translation of E8/ SU(5)GUT ×
〈SU(4) × U(1)χ〉 model, and section 5.3 to E8/ SU(5)GUT × 〈SU(3)2 × SU(2)2 × U(1)q̃7〉 and

E8/ SU(5)GUT ×〈SU(2)1 × SU(2)2 × U(1) × U(1)〉 models. Later in section 5.4, we discussed

how various descriptions obtained through translation can be generalized to F-theory vacua

that may not have Heterotic dual.

5.2.1 Matter Curves at the Reducible Limit

An intriguing aspect of F-theory vacua is that charged matters are localized in complex

curves in the internal space B′ [19, 26]. When one wants to have better understanding of the

pattern of Yukawa matrices, for instance, it is crucial to know the wavefunctions of the chiral

zero modes. Thus the determination of the matter curve is an important issue. Although

the localisation pattern of matters in SU(5)GUT unbroken F-theory vacua is well-known in

the literature, we repeat this separately for the case where the structure group of the bundle

is reduced to SU(4)×U(1)χ subgroup of SU(5). Although the unbroken gauge symmetry is

the same SU(5)GUT, we see the matter curves are not of the generic SU(5) unified theories.

The rank-n vector bundles on an elliptic Calabi–Yau 3-fold π : Z → B for Heterotic
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compactification are constructed out of a set of data (C,N ), where C ⊂ Z is a n-fold

spectral cover πC : C → B and N is a line bundle on C. A bundle for (C,N ) is given by

V = p2∗(p
∗
1(N ) ⊗ PB), (117)

where p1,2 are maps associated with a fibre product

C ×B Z
p1 ւ ց p2

C Z
πC ց ւ π

B

, (118)

q ≡ πC ◦ p1 = π ◦ p2, and PB is the Poincare line bundle OC×BZ(∆− σ1 − σ2 + q∗KB) [19].

The first Chern class of the vector bundle V is given by

c1(V ) = πC∗

(
c1(N ) − 1

2
r

)
(119)

where r ≡ ωC/B ≡ KC − π∗
CKB is the ramification divisor on C of πC : C → B [58], and

c1(V ) is a 2-form on the base 2-fold B. When one thinks of a bundle with the structure group

U(n), rather than SU(n), (119) does not have to be zero [59]. The second Chern character is

ch2(V ) = −σ · η + π∗ω, (120)

where σ is a section σ : B → Z of the elliptic fibration, η is a divisor on B that determines

the n-fold spectral cover C ∼ nσ + η, and ω is some 2-form on B.

When the line bundle L of (29) on an elliptic Calabi–Yau 3-fold is given by spectral data

(C1,N1), the spectral cover C1 is just σ. Indeed, if it had a component of a divisor η1 on B,

then ch2(L) of the line bundle L would have a component σ · η1 that is not strictly on the

base B despite c1(L) strictly on the base [59]. Thus, C1 ∼ σ. The line bundle N1 on σ ∼ B

is identified with the line bundle L itself. We abuse the notation a little bit hereafter, and L

stands for both the line bundle on B and Z.

Let the bundle U4 be given by the data (C4,N4), and C4 ∼ 4σ + η4. Then the data for

43



the bundles in various representations are given by

U4 for 10 (4σ + η4,N4), (121)

L 10′ absent in LE. (σ, L), (122)

∧2U4 for H̄(5̄) and H(5)† (6σ + 2η4,N∧2U4
), (123)

U4 ⊗ L for 5̄ (4σ + η4,N4 ⊗ L), (124)

U4 ⊗ L−1 for N̄ (4σ + η4,N4 ⊗ L−1). (125)

Equation (123) is due to

C∧2Vr
∼ r(r − 1)

2
σ + (r − 2)ηr (126)

for the anti-symmetric representation of a rank-r bundle Vr with a spectral surface Cr ∼
rσ + ηr [34]. Note that the sum of the spectral cover of U4 and L is CV5 ∼ 5σ + η4, and

that of ∧2U4 and U4 ⊗ L is C∧2V5
∼ 10σ+ 3η4. The reducible limit of the vector bundle (29)

corresponds to the case where the spectral surfaces of the SU(5) bundle become reducible,

and C5 ∼ 5KB + η4 splits into irreducible pieces C4 ∼ 4KB + η4 and C1 ∼ σ [60].

In Heterotic theory, the cohomology of the vector bundles, and hence massless modes,

can be calculated by the spectral sequence, evaluating the cohomology in the elliptic fibre

direction first, and in the base manifold later. For a bundle ρ(V ), the cohomology vanishes

only over a curve c̄ρ(V ) ≡ Cρ(V ) · σ on the base B [19, 61].29 Thus, the massless matters are

localised on curves on B given by

c̄10 = c̄5̄ = c̄N̄ = 4KB + η4 ≡ c̄16, (127)

c̄H,H̄ = 6KB + 2η4 + c̄vec., (128)

(c̄10′ = KB, spread out in B) , (129)

where σ · σ ∼ σ ·KB [19] was used.

In equation (129) we see that the fields 5̄ and H have different localisation. Therefore the

argument of the existence of the Yukawa couplings and absence of the proton decay holds

well to F-theory picture.

The matter curves c̄10 = 5KB + η4 for SU(5)GUT-10 representation and c̄5̄ = 10KB + 3η4

for SU(5)GUT-5̄ representation split into irreducible pieces. Although (Q, Ū , Ē), (D̄, L) and

29This localization is is not an artifact in calculation, but is indeed physical, when the volume of the T 2

fibre in the Heterotic compactification is not large. Such region of the Heterotic moduli space is better
described by the F-theory, where matters are expected to localised.
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N̄ originate from different irreducible bundles, their matter curves are the same, as in the

case of SU(4)-bundle compactification with unbroken SO(10) symmetry. This is because L

and detU4 are line bundles only on the base manifold B and the only source of the distinction

among 10, 5̄ and N̄ representations is the twist of those two bundles. Their effects come in

only on the matter curves c̄16 and not at the level of changing the spectral surfaces or matter

curves themselves.

In the F-theory dual of these Heterotic vacua obtained in (114)–(116), and the P
1 fibration

(115) is such that the z = 0 section of (115) Σ0 ⊂ B′ (Σ0 is isomorphic to B) satisfies

[17, 18, 19, 20, 57]:

Σ0 · Σ0 ∼ (6KB + η4). (130)

The divisor Σ0 ofB′ is where the unbroken SU(5)GUT gauge field propagates in F-theory. Over

Σ0 there are loci of enhanced singularity and enhanced gauge symmetry, and this is where

matters are localised, and they are the same as the matter curves obtained in the Heterotic

argument above [19, 26]. The reducible limit of vector bundles in Heterotic theory correspond

to taking some coefficients of the polynomial defining (114) to zero. The coefficients for SU(5)

bundles are given by global holomorphic sections g ∈ H0(B,O(η)), f ∈ H0(B,O(2KB + η)),

q ∈ H0(B,O(3KB + η)), H ∈ H0(B,O(4KB + η)) and h ∈ H0(B,O(5KB + η)) [26], and the

dual of SU(4)×U(1)χ bundle with m = 0 in (143) corresponds to taking h = 0. The loci of

enhanced singularity c̄10 and c̄5̄ rearrange themselves in this limit, so that they are grouped

as c̄16, c̄vec. while the irreducible piece (129) supplements the roots in so(10)/su(5), so that

the locus Σ0 support SO(10) gauge group.

The rearrangement argument of the matter curves still misses one piece: where has the

SU(5)GUT-singlet part of the SO(10)-16 representation come from? This piece is for the

right-handed neutrinos, and hence it should be related to the vector bundle moduli of SU(5)

bundle that are set to zero in the reducible limit—in Heterotic language. Thus, it corresponds

to h ∈ H0(B,O(5KB + η4)) in F-theory language. Those degrees of freedom are essentially

localised on a curve defined by the intersection C4 · C1 ∼ C4 · σ, which is also the definition

of the c̄16. This is because h describes the reconnection of two irreducible pieces C4 and C1.

The other way to see the localisation on c̄16 is to use the exact sequence

0 → OB(C5 − C4) → OB(C5) → Oσ·C4(C5) → 0. (131)

Note that C5 − C4 ∼ σ ∼ KB on B. Since h0(B,O(KB)) = h2(B,OB) and h1(B,O(KB)) =

h1(B,OB) are zero in elliptic fibration (113) that leaves only N = 1 supersymmetry [62] we
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see that

H0(B,O(5KB + η4)) ≃ H0(c̄16,O(5KB + η4)). (132)

Thus, h ∈ H0(B,O(5KB + η4)) is associated with a global holomorphic section of a sheaf on

c̄16.

U(1)χ bundle L is turned on on the discriminant locus Σ0 ≃ B, and the SO(10) gauge

symmetry is broken down to SU(5)GUT. The Fayet–Iliopoulos parameter due to U(1) flux

itself is calculated in [63] in Type IIB string theory orientifold compactification, and although

F-theory is not exactly the same as the Type IIB theory, it may be roughly the same. In

Type IIB calculation [63] it is

ξ ≈ l−4
s

∫
c1(L) ∧ J (133)

after restoring proper dimensionality; numerical factors being ignored. This Fayet–Iliopoulos

parameter may vanish when c1(L) is orthogonal to the Kähler form J on the discriminant

locus Σ0 ≃ B. In this case, the global U(1)χ symmetry is left unbroken, and the U(1)χ

gauge boson is massive, due to the generalized Green-Schwarz interactions. If this Fayet–

Iliopoulos parameter is non-zero, the U(1)χ-symmetry breaking phase transition is triggered

and this symmetry is broken. Because of the same reason as in section 3, either one of the

sign of
∫
Σ0
c1(L)∧J is phenomenologically acceptable, because otherwise 5̄ multiplets are no

longer distinguished from the H̄(5̄) multiplet, and the dimension-4 proton decay operators

are generated.

5.2.2 Chiral Matter

The massless modes H1(Z; ρ(V )) from vector bundles ρ(V ) of Heterotic theory can be ob-

tained by cohomology on matter curves c̄ρ(V ), when we consider elliptic fibred Calabi–Yau

3-fold Z → B [19, 61]:

H1(Z; ρ(V )) ≃ H0(c̄ρ(V );Fρ(V )), (134)

where F is a sheaf on the matter curve c̄ρ(V ) such that R1π∗ρ(V ) = ic̄ρ(V )∗F for ic̄ρ(V )
: c̄ρ(V ) →

B; in particular, it is given in terms of spectral cover data by

F = j∗Nρ(V ) ⊗ i∗KB, (135)

where j : c̄ρ(V ) → Cρ(V ). The net chirality (34)–(38) can be expressed as Euler characteristic

on the matter curves as well [61].

χ(R5) = −χ(Z, ρ(V )) = h1(Z, ρ(V )) − h2(Z, ρ(V )),

= h0(c̄ρ(V ),F) − h1(c̄ρ(V ),F) = χ(c̄ρ(V ),F). (136)
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All above is valid as long as c1(ρ(V )) is trivial in the fibre direction, and hence applicable

to all the irreducible bundles considered in section 3.1. The net chirality of matters can be

calculated on the matter curves. Since they are localised on the matter curves in F-theory

vacua, there should be such expressions formulated on the matter curves; the net chirality

does not depend on the global geometry of the elliptic Calabi–Yau 4-fold X but only on

geometric information along the matter curves.

The net chirality of quarks, leptons and right-handed neutrinos are given by

#N̄ − #N̄ = h0(c̄16;O(Kc̄16
)1/2 ⊗Lγ ⊗ L−1) − h0(c̄16;O(Kc̄16

)1/2 ⊗ L−1
γ ⊗ L)

=

∫

c̄16

j∗γ − c1(L), (137)

#10 − #10 = h0(c̄16;O(Kc̄16
)1/2 ⊗Lγ) − h0(c̄16;O(Kc̄16

)1/2 ⊗L−1
γ )

=

∫

c̄16

j∗γ, (138)

#5̄ − #5̄ = h0(c̄16;O(Kc̄16
)1/2 ⊗Lγ ⊗ L) − h0(c̄16;O(Kc̄16

)1/2 ⊗ L−1
γ ⊗ L−1)

=

∫

c̄16

j∗γ + c1(L), (139)

where a 2-form γ on C4 determines c1(N4) by

c1(N4) =
1

2
r + γ, (140)

and Lγ is a line bundle on c̄16 whose first Chern class is j∗γ. In derivation of (137)–(139),

we have used Hirzebruch–Riemann-Roch theorem [36]30 and

1

2
j∗
(
KCρ(V )

− π∗KB

)
+ i∗KB =

1

2
Kc̄ρ(V )

= −td1(T c̄ρ(V )). (141)

One could also separate the detU4 piece and set j∗γ = j∗γ′ − c1(L)/4; then

χ =

∫

c̄16

(
j∗γ′ +

qχ
4
c1(L)

)
. (142)

γ is translated into the primitive G(2,2) flux in F-theory language [66]. The phenomenological

constraint (42) reduces to31 c1(TB) · c1(L) = −KB · c1(L) = 0, and (43) to η4 · c1(L) = 0 in

elliptic Calabi–Yau compactification with m = 0 in (143). Thus, c1(L) does not contribute

to the net chirality of any of quarks, leptons and right-handed neutrinos.
30One has to pay more attention to whether the theorem is applicable in each explicit example. Here, we

only deal with situations that do not require special treatment.
31Note that c2(TZ) = σ · 12c1(TB)+ · · · , where ellipses stand for the fibre class. c1(L)3 = 0 because c1(L)

is purely on B. Note also that c2(U4) = σ · η4 + · · · .
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5.2.3 Approach from Parabolic (Extension) Construction

The spectral cover construction can only describe vector bundles with the first Chern class

purely on the base manifold. This is reasonable because the n-point fibre of an n-fold spectral

cover describes n Wilson lines in the fibre direction, not a non-trivial field strength.

Purely from the viewpoint of Heterotic compactification, however, there seems to be no

problem in considering a line bundle L whose first Chern class has a fibre component:

c1(L) = mσ + π∗ω1, (143)

where ω1 is a divisor on B and m an integer, and indeed, such compactification was discussed

in [35, 64]. Our discussion in section 3 does not exclude this possibility, either. However, when

we consider a small fibre limit, the tree-level Fayet–Iliopoulos parameter is approximated by

ξχ ≈M2
Gl

2
s

m
∫
B
J ∧ J∫

Z
J ∧ J ∧ J ≈ mM2

G

(
l2s

vol.(T 2)

)
, (144)

and cannot vanish when m 6= 0. Either N̄ or N̄ develops an expectation value, as we saw

in section 3.1.2, and the vector bundle cannot remain reducible. Thus, in the small fibre

limit, we cannot consider the reducible limit in Heterotic compactification if m 6= 0. In the

construction of the moduli space of vector bundles in [19], such a reducible limit with m 6= 0

was cut out from the beginning. The moduli of spectral cover construction provides the

description of vector bundles obtained after the U(1)χ breaking phase transition [19].

The absence of dimension-4 proton decay requires that
∫
Z
c1(L) ∧ J ∧ J < 0, or ξχ < 0,

assuming Ngen > 0. On elliptic-fibred Calabi–Yau 3-folds, this condition simplifies; m < 0

(or m = 0 and ξ < 0 in (133)).

Let us consider the simplest case, m = −1. In particular, when the rank-4 bundle U4

is W4 ⊗M with W4 constructed in [19, 65] and a line bundle M on B, and L ≃ O(−σ +

6KB) ⊗M−4 the U(1)χ breaking phase transition is just the extension of U4 ≃ W4 ⊗M by

W1 ⊗O(6KB) ⊗M−4. In the fibration structure of the vector bundle moduli [19]

0 → H1(B;R0π∗adj.(V5)) → H1(Z; adj.(V5)) → H0(B;R1π∗adj.(V5)) → 0, (145)

we have

H0(B;R1π∗adj.(V5)) ≃ H1(Z;U4 ⊗ L), (146)

H1(B;R0π∗adj.(V5)) ≃ H1(Z;U4 ⊗ L−1). (147)
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Since U4 or W4 does not have a vector bundle moduli, by construction, all the moduli

of spectral cover H0(B;R1π∗adj.(V5)) comes from the off-diagonal block, and they are the

degree of freedom called anti-generation right-handed neutrinos N̄ in section 3.1. They are

a part of complex structure moduli in F-theory description [19]. Fibering upon this moduli

are H1(Z;U4 ⊗L−1), which are now right-handed neutrinos N̄ . They are identified with the

value of Ramond–Ramond 3-form field integrated over (2,1) cycles of an elliptic Calabi–Yau

4-fold of F-theory compactification. Note that the sign of m and hence the constraint from

the dimension-4 proton decay determines which is the base and which is the fibre. Such an

identification of the origin of right-handed neutrinos in F-theory terminology will help us

understand the nature of these particles better.

5.3 F-theory Dual of E8/ SU(5)GUT × 〈SU(3)2 × SU(2)2 × U(1)q̃7
〉 and

E8/ SU(5)GUT × 〈SU(2)1 × SU(2)2 × U(1) × U(1)〉 Models

Let us now turn our attention to F-theory dual description of Heterotic compactification with

a 3+2 bundle (30) or a 2+2+1 bundle (22). The Heterotic configuration at the reducible

limit can be easily mapped to the F-theory description, just as in the case of 4+1 bundle com-

pactification. The reducible limit can be realized only when the first Chern classes of U(1)q̃7
and U(1)q̃6 do not have a fibre component, just like like in the 4+1 bundle compactification

with m = 0 in (143).

The discriminant locus Σ0 for the unified gauge group is ofA5 type since SU(6)2 is the max-

imal group that commutes with the non-Abelian part of the structure group SU(3)2×SU(2)2.

Likewise, the F-theory dual of 2+2+1 bundles (22) has D6 singular locus, since SO(12)

⊂ E8 is the maximal group that commutes with SU(2)1×SU(2)2, the non-Abelian part of the

structure group.

One can also see this by following the irreducible decomposition of spectral surfaces and

matter curves. Let us begin with the 3+2 bundle compactification. Let the spectral data of

vector bundles U3 and U2 be denoted by (C3,N3) and (C2,N2). The spectral surfaces

C3 ∼ 3σ + π∗η3, C2 ∼ 2σ + π∗η2, (148)

are irreducible components of C5 = C3 +C2. The spectral surface for the vector bundle ∧2V5,

C∧2V5
∼ 10σ + 3π∗(η3 + η2) is split into irreducible components

C∧2U3
∼ 3σ + π∗η3, CU3⊗U2 ∼ 6σ + 2π∗η3 + 3π∗η2, C∧2U2

∼ σ. (149)
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Here, the first and last relations are due to (126), and one in the middle is due to32

CV1⊗V2 ∼ r1r2σ + r1η2 + r2η1 (150)

for vector bundles Vi with spectral covers CVi
∼ riσ + π∗ηi.

Chiral matters in the low-energy spectrum should arise from matter curves (assuming the

identification A in Table 3)

c̄10 = 2KB + η2 = c̄∧36, (151)

c̄5̄ = c̄N̄ = 6KB + 2η3 + 3η2 = c̄6, (152)

c̄H̄(5̄)(= c̄10′) = 3KB + η3 = c̄∧26, (153)

c̄H(5) = KB (spread out in B). (154)

Various irreducible pieces of the matter curves are grouped into the matter curves of SU(6)2

multiplets in [26]. The up-type Higgs multiplet H(5) is a part of SU(6)2-adj. representa-

tion and propagates over the entire base manifold B. The chiral 10 representations come

from SU(6)2-∧36 representation, 5̄ and N̄ from SU(6)2-6̄ (and 6) and the down-type Higgs

multiplet H̄(5̄) from SU(6)2-∧26. The Yukawa couplings arise from interactions33

W ∋ ∧36 · adj. · ∧36 + 6̄ · ∧36 · ∧26 + 6̄ · adj. · 6, (155)

[ → 10 ·H · 10 + 5̄ · 10 · H̄ + 5̄ ·H · N̄,
]

(156)

[ → 10 ·H · 10 + H̄ · 10 · 5̄ + H̄ ·H · S.
]

(157)

Since the 10 representations and 5̄ (and N̄) are localised on separate matter curves, there

is no reason to expect that the family structures of those representations are the same [32].

The up-type Higgs multiplet propagates in the bulk of the discriminant locus Σ0. The second

term, the Yukawa couplings for down-type quarks and charged leptons, involves three different

matter curves, but in general, three curves on a complex 2-fold Σ0 do not necessarily meet at

one point. Thus, these Yukawa couplings are generated by a membrane spanning non-locally,

and may be a little small. The masses of bottom quark and tau lepton are way below the

electroweak scale, and their Yukawa couplings may be small, indeed.
32Note that ch(Vi) = ri − σ · π∗ηi + · · · , and ch(V1 ⊗ V2) = ch(V1)ch(V2) = r1r2 − σ · (r1η2 + r2η1) + · · · .

, where Hence (150). An alternative intuitive way to understand (150) is as follows: when a spectral cover
CVi

define ri points {pni
} (ni = 1, · · · , ri) on a fibre Eb ≡ π−1(b) for b ∈ B, the spectral cover of the bundle

V1⊗V2 is given by {pn1
⊞pn2

} (n1 = 1, · · · , r1 and n2 = 1, · · · , r2), where ⊞ means addition under the group
law of the elliptic curve Eb. The surface given by the r1r2 points in each fibre define a spectral surface given
by (150).

33Note that the SU(6)2 symmetry here is a different subgroup from the SU(6)1 in (13).
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We have already seen that the right-handed neutrinos in the identification A in Table 3

(and singlet chiral multiplets in the identification B) are localised on a matter curve 6KB +

2η3 + 3η2. The other way to see this is to remind ourselves that these fields describe the

deformation of the vector bundle from the reducible limit (30). Using an exact sequence

0 → OX1(−X2) → OX → OX2 → 0 (158)

for X = X1 ∪X2 with irreducible components X1 and X2, substituting X1 → C2, X2 → C3,

and tensoring O(C5), we see that

0 → OC2(C2) → OC5(C5) → OC3(C5) → 0 (159)

is also exact. Thus, the deformation of the spectral surface C5, H
0(C5;O(C5)), is related to

the deformation of C2 by

0 → H0(C2;O(C2)) → H0(C5;O(C5)) → H0(C3;O(C5)). (160)

H0(C3;O(C5)) is further related to the deformation of the spectral surface C3 by another

exact sequence

0 → OC3(C5 − C2) → OC3(C5) → OC3·C2(C5). (161)

It follows that

0 → H0(C3;O(C3)) → H0(C3;O(C5)) → H0(C3 · C2;O(C5)) (162)

is also exact. Thus, the deformation of the spectral surface C5 is decomposed into three

pieces. Two of them are the deformation of the spectral surfaces of the bundle U2 and U3,

H0(C2;NC2|Z) and H0(C3;NC3|Z). The other one H0(C2 ·C3;O(C5)) describes the deviation

from the reducible limit and is localised at the intersection of C2 ·C3. Its projection on B is

6KB + 2η3 + 3η2, which is the same as c̄N̄ determined above.

In the 2+2+1 bundle compactification of the Heterotic theory, the spectral surface C3 ∼
3σ+π∗η3 further splits into irreducible pieces σ and 2σ+π∗η3. The matter curves rearrange

themselves accordingly, and become

c̄10 = c̄5̄ = c̄N̄ = 2KB + η2 = c̄32′, (163)

(absent in LE.) 2(2KB + η3 + η2) = c̄vec., (164)

(absent in LE.) 2KB + η3 = c̄32, (165)

c̄H(5) = c̄H̄(5̄) = KB (spread out in B). (166)
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Here, both the H(5) and H̄(5̄) multiplets arise within the SO(12) gauge group, and their

wavefunctions are not confined on a matter curve.

The SU(6) gauge symmetry in the F-theory dual of the 3+2 bundle compactification

or SO(12) gauge symmetry dual to the 2+2+1 bundle compactification are broken by the

U(1) bundles on the discriminant locus Σ0. If the Fayet–Iliopoulos parameters of those U(1)

symmetries are non-zero, some fields charged under the symmetry develop expectation values,

and this correspond to the extension structure of vector bundles in (91) and (92) in Heterotic

theory vacua. The same constraint on the sign of the Fayet–Iliopoulos parameters as in

section 3 has to be imposed here.

A story similar to section 5.2.3 can be told about the F-theory dual of 3+2 bundle and

2+2+1 bundle compactification of Heterotic theory, but we just do not do it here.

5.4 Toward a Description Intrinsic to F-theory

5.4.1 Characterising Matter Curves within F-theory

We have so far provided some examples of F-theory vacua that do not have dimension-4

proton decay operators. All of them are dual to certain Heterotic vacua, since they were

obtained through the Heterotic–F-theory duality. But not all the F-theory vacua are dual

to Heterotic vacua. If we had only handles on vacua that are dual to Heterotic theory, we

would lose a chance to study phenomenology of F-theory vacua that do not have Heterotic

dual. Thus, at the end of this section, we take a little step to try to phrase some aspects of

F-theory vacua in a way intrinsic to F-theory. That will help further explore F-theory vacua

that are phenomenologically viable.

Matter curves, or loci of enhanced singularity, have been discussed, but they were de-

scribed by divisors η on the base manifold B and its definition was associated with the

spectral cover (or the second Chern class) of vector bundles in Heterotic compactification. It

is rather unsatisfactory that the matter curves, which are generic features of F-theory vacua,

are described in language intrinsic to Heterotic theory. It would be nice if the matter curves

are characterized without referring to such objects in Heterotic theory as vector bundles.

In the case of 4+1 model at the reducible limit, the line bundles L and detU4 add twists

only on the matter curves and they do not change the matter curves themselves. The discrim-

inant locus Σ0 ≃ B has D5 singularity, supporting SO(10) gauge symmetry if seen locally.

The matter curves are those of theories with unbroken SO(10) symmetry. We do not question

if this result found in the Heterotic–F-theory dual region holds true in generic F-theory vacua
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without dimension-4 proton decay. But we would like to ask the following question: how we

define η to begin with, and whether there is an extra freedom in choosing matter curves,

when an elliptic fibration πX : X → B′ of an F-theory vacuum is not of a K3-fibration. The

following content is closely related to what was discussed in [67].

Let us consider an F-theory compactification on an elliptic fibred CY4 π : X → B′ given

by

y2 = x3 + f(z1, z2, z3)x+ g(z1, z2, z3), (167)

where (z1, z2, z3) are local coordinates of the base manifold B′, (y, x) are those of the elliptic

fibre, and (x, y, f, g) are sections of O(−2KB′), O(−3KB′), O(−4KB′), and O(−6KB′), re-

spectively. The determinant of this elliptic curve ∆ ≡ 4f 3 + 27g2 is a section of O(−12KB′),

whose zero locus determines the discriminant locus on the base manifold B′. Thus, the

following consistency condition has to be satisfied [17]

div∆ = −12KB′ . (168)

This condition reduces to the Ramond–Ramond charge cancellation condition of 7-branes in

the Type IIB limit.

Now let us assume that one of irreducible components of the discriminant locus is of D5

type singularity, supporting SO(10) unbroken gauge symmetry. Let us denote the irreducible

component by Σ, i.e.,

div∆ = 7Σ + · · · . (169)

At the loci where other irreducible components intersect Σ, singularity and gauge symmetry

are enhanced, and matter is localised. The consistency condition (168) has to be satisfied

in any F-theory compactification, and in particular, when evaluated on any divisors of the

base manifold B′. Assuming that there are only matters34 in the SO(10)-16 and -vec., the

condition (168) becomes

7Σ · Σ + 3c̄16 + c̄vec. = −12KB′ · Σ (170)

when evaluated on Σ. The integer coefficients in front of matter curves are read out from

the behaviour of the determinant around the matter curve found in [26]. Let us now define

34We restrict ourselves to this limited matter contents because we are interested in F-theory geometry
relevant to the real world in this article; there is no strong phenomenology motivation (except in an applica-
tion to some models of Dimopoulos–Wilczek mechanism) to think of geometry that yields multiplets in the
symmetric tensor representation.
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a divisor η on the subvariety Σ. Since Σ ⊂ B′ defines a divisor on Σ itself through the

self-intersection, let us define a divisor η on Σ through [57]

η ≡ Σ · Σ − 6KΣ. (171)

This is a generalization of (130). Using the adjunction formula

KΣ = KB′ |Σ + Σ, (172)

we see that the general solution to (170) is of the form

c̄16 = η + 4KΣ + η′, and c̄vec. = 2η + 6KΣ − 3η′, (173)

where η′ is an arbitrary divisor on Σ.

Another theoretical constraint is the box anomaly cancellation. On an arbitrary curve in

Σ, the budget of the inflow of irreducible box anomalies should balance. It is equivalent to

the Ramond–Ramond charge cancellation in Type IIB string theory, but it seems it is not

equivalent to (168) in F-theory in general. Since the [SO(10)]4 irreducible anomaly comes from

−2 units from hypermultiplets in 16 representation and +1 units from half-hypermultiplets

in vec representation, the arbitrariness η′ in the above general solutions changes the total

amount of the irreducible box anomaly. Thus, the anomaly cancellation condition eliminates

the arbitrariness, and since we know that η′ = 0 is a consistent solution, that should be

the only solution. This implies that the contribution to the irreducible box anomaly from

SO(10)-adj. representation, including both the contribution from the vector multiplet and

hypermultiplets, is given by KΣ so that

2c̄adj. − 2c̄16 + c̄vec. = 2KΣ − 2 (η + 4KΣ) + (2η + 6KΣ) = 0. (174)

Therefore, the matter curves given in (127) and (128) are of general form in F-theory vacua,

valid even when there is not Heterotic dual. The divisor η is now defined only from local

information of the geometry of F-theory through (171), and the matter curves are determined

by this divisor.

Exactly the same argument can be developed for the matter curves on a discriminant locus

Σ with SU(6) or SO(12) gauge symmetry on it. This is a situation relevant to the reducible

limit of the 3+2 and 2+2+1 bundle compactification of Heterotic theory. The divisor η on

Σ is defined by (171). There are three different matter curves to think about, namely c̄∧36,
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c̄6 and c̄∧26 for SU(6), and c̄32′ , c̄vec and c̄32 for SO(12). On the other hand, there are two

independent constraints, (168) and the irreducible box anomaly cancellation:

6Σ · Σ + 3c̄∧36 + c̄6 + 4c̄∧26 = −12KB′ · Σ, (175)

6KΣ − 3c̄∧36 + c̄6 − 2c̄∧26 = 0, (176)

for SU(6) and

8Σ · Σ + 2c̄32′ + c̄vec. + 2c̄32 = −12KB′ · Σ, (177)

4KΣ − 2c̄32′ + c̄vec. − 2c̄32 = 0, (178)

for SO(12). Thus, general solutions have one degree of freedom left in choosing divisors. They

are given by (151)–(154) and (163)–(166), respectively, with the freedom of how to split the

divisor η defined in (171) into η2 and η3. Thus, even in generic F-theory vacua that may not

have Heterotic dual, the matter curves are constrained just as in vacua with Heterotic dual.

5.4.2 Chirality Formula

There is another expression that allows straightforward generalization to F-theory vacua.

Let us look at the expression for the chirality for the 10′ representation in (129), in a way

presented in section 5.2.2. Although it arises from a part of the SO(10) gauge field of the

discriminant locus Σ0 ∼ B, and is not localised on a specific matter curve, σ · C1 ∼ σ ·KB

can be formally used as its matter curve. The line bundle N1 is L itself. Applying (136) and

(135) formally, along with (141), we obtain35

#10′ − #10
′
=

∫

KΣ0

c1(L). (179)

This formula is a generalisation of the corresponding expression in the Type IIB string theory.

Indeed, let us think of a Type IIB configuration where five D7-branes are wrapped on a

holomorphic 4-cycle Σ along with an O7-plane and five D7-branes as the orientifold mirror

image of the original D7-branes. Those branes support SO(10) gauge group. When a U(1)

flux F is turned on on the five D7-branes (and on their images) so that SU(5) gauge group

is left unbroken, we have

#10′ − #10
′
= 2

∫

Σ·Σ=KΣ

(
F

2π
− B

(2π)2α′

)
= −

∫

Σ

c1(TΣ)2

(
F

2π
− B

(2π)2α′

)
. (180)

35The phenomenological constraint (42) becomes KB · c1(L) = 0 in elliptic Calabi–Yau compactification
of the Heterotic theory. Thus (179) becomes zero. This fact itself is nothing more than a straightforward
consequence of the phenomenological requirement (41).
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The difference in the factor 2 is due to the normalisation of U(1) charges: the 10′ represen-

tations in (179) have qL = 1 unit of charge under the line bundle L on the 4-cycle Σ0 ∼ B,

whereas the normalisation of F in (180) is set so that the 10′-representations have 2 units

of charge—one unit from each end of open strings connecting D7-branes on the both sides

of an O7-plane. We have ignored the B-field. Thus, (179) suggests that the expression in

Type IIB string theory (180) is generalized straightforwardly in the F-theory as in (179). It

should be kept in mind that we should use KΣ, rather than Σ · Σ, in the F-theory version.

They are not the same in the F-theory, since the half of Calabi–Yau 3-folds for the Type IIB

orientifold compactifications are projected out to be B′, which is not a Calabi–Yau manifold.

The chirality formula (179) has an immediate application. One can ask a following ques-

tion: certainly it is a generic feature of F-theory vacua that matter multiplets are localised

on codimension-1 subspace, matter curves, in a discriminant locus; but is it possible to have

a vacuum where all chiral matters are not localised but propagate over the entire “bulk” Σ?

In other words, is it possible to think of a vacuum where all matters arise from a stack of

parallel 7-branes with E7 or E8 gauge group on it, rather than from a system of intersect-

ing 7-branes? Reference [68] contains examples of F-theory geometry of parallel 7-branes

supporting E7 and E8. When a vector bundle is turned on as in the discussion in section 2

and 3, various low-energy particles are obtained with the right Yukawa couplings. Thus, one

can think of such a vacuum theoretically. But we see by using the chirality formula above,

that parallel 7-branes with E8 gauge symmetry cannot yield a net chirality in the low-energy

spectrum.

It is important in (179) that a) only the first Chern class matters and b) only the first

Chern classes on one curve KΣ in S are relevant. In all the three symmetry breaking patterns

in section 2 with the underlying E8 symmetry, multiplets in the SU(5)GUT-10 representation

arise from a rank-5 bundle with the structure group in SU(5). Thus, the overall net chirality

is given by the sum of
∫
KΣ

c1 of each irreducible bundle, which vanishes because detV5 ≃ OΣ.

Thus, we cannot think of a vacuum where all the matter curves of SU(5)GUT-10 representation

are KΣ in order to have a net chirality in the low-energy spectrum. Some multiplets in the

SU(5)GUT-10 representation have to be localized on Σ. This also means that the isolated

discriminant locus with E8 gauge symmetry does not lead to a realistic vacuum.

The matter curves and the gauge symmetries on the discriminant locus Σ are relevant to

particle physics, primarily through the determination of Yukawa couplings. Although they are

important, we have little chance to see them directly, as long as the compactification radius

remains very small compared with the length scale of the electroweak scale. But there is a
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situation where the gauge symmetry in the bulk is of more importance: the gauge mediation

of supersymmetry breaking. The gravitino problem of supersymmetric theories suggests

that either the gravitino mass is very heavy or very light (m3/2
<∼ 10 eV). Supersymmetry

breaking should be mediated through gauge interactions in the latter scenario, and there is a

phenomenology model that naturally realizes gauge mediation with very low gravitino mass

[69]. It may be realized in Type IIB string / F-theory with a resolved conifold geometry with

warped factor [73] where D7-branes for the SU(5)GUT gauge group are wrapped on S3. In

such models, low-lying Kaluza–Klein states of the bulk vector multiplets are observable in

LHC experiments.

Thus, the gauge symmetry, SO(10), SU(6), SO(12) or just SU(5), makes an observable

difference. The above argument suggests, however, that it is unlikely to see the entire E8

gauge group. There are also lots of phenomenological model buildings on the origin of fermion

mass hierarchies on AdS background, and the determination of the matter curves provides

restrictions on the degree of freedom available in such effective-field theory model buildings.

6 Summary and Discussion

Gauge theories are often accompanied with 16 supersymmetry charges at the microscopic

level, and when a large gauge symmetry G is spontaneously broken down to a smaller group

H , charged matter multiplets arise from the coset space of g/h. This is a salient feature of

string theory, and this is a framework where we can expect to unify interactions of quark,

lepton, neutrino and Higgs fields with gauge bosons.

Physics Summary

Requiring that the tri-linear Yukawa interactions be generated from the super Yang–Mills

interactions, while the dimension-4 proton decay operators be not generated, we saw that

G = E7 is the minimal choice and G = E8 is the only alternative, when we impose Georgi–

Glashow SU(5) unification of quarks and leptons. There are four different patterns of how

to break these symmetries to SU(5)GUT, namely,

E8/ SU(5)GUT × 〈SU(4) × U(1)χ〉 A,
E8/ SU(5)GUT × 〈SU(3)2 × SU(2)2 × U(1)q̃7〉 A, B,
E8/ SU(5)GUT × 〈SU(2)1 × SU(2)2 × U(1) × U(1)〉 A, B,
E7/ SU(5)GUT × 〈SU(2)2 × U(1) × U(1)〉 A, B.

We might call them, 41A-, 32A(B)-, 221A(B)- and 21A(B)-scenarios, for brevity. The ori-

gins of all the low-energy multiplets are identified in the coset spaces, and labels A and B
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correspond to different particle identifications. A is when moduli multiplets are identified

with right-handed neutrinos, and in case B, they are identified with a singlet chiral field

that has W ∋ SHH̄ coupling. In all these possibilities, all the Yukawa couplings for the

quarks and charged leptons are generated from the super Yang–Mills interactions, and in

possibilities A, Dirac Yukawa couplings of neutrinos also exist. We have not discussed how

to break SU(5)GUT symmetry in this article. All U(1) vector fields that appear above have

Green–Schwarz couplings, and are massive (68). Thus, they are not likely to be within the

range of terrestrial experiments.

The dimension-4 proton decay operators are forbidden by U(1) global symmetries that

correspond to the anomalous U(1) gauge symmetries. When the Fayet–Iliopoulos parame-

ters does not vanish, the U(1) symmetries can be spontaneously broken by fields of the same

sign charges. When the sign of the Fayet–Iliopoulos parameter and the charges are appro-

priate, dimension-4 operators are not generated in any perturbative processes. In all four

A-scenarios, either right-handed neutrinos or their anti-generation particles develop expec-

tation values to absorb the Fayet–Iliopoulos parameters, and hence Z2 B − L parity is not

preserved anymore, yet the absence of dimension-4 proton decay is guaranteed.

All possible terms in superpotential can be worked out, imposing all the underlying sym-

metry, and allowing to insert spurions that spontaneously break them. Using this approach,

effective operators of some of the scenarios were studied in this article. See (72), (73), (90),

(93) and (94) and discussion around these equations. All the discussion so far are very ro-

bust, and does not depend on whether a vacuum is realized in Heterotic theory, M-theory or

F-theory.

We also argued, in the context of M-theory compactification, that diagonal entries of

up-type quark Yukawa matrix tend to be suppressed in some part of the moduli space.

In F-theory vacua, SU(5)GUT gauge field propagates on an internal 4-cycle, and the zero-

mode wave functions are localized on internal 2-cycles, in general. When the Fayet–Iliopoulos

parameters vanish, we determined how the low-energy particles are localized, and found that

the up-type Higgs multiplet propagates on the whole 4-cycle and gauge symmetry is locally

SU(6) in 32A,B scenarios, both up-type and down-type Higgs multiplets propagate on the

4-cycle and the gauge symmetry is locally SO(12) in the 221A scenario. If the 4-cycle of

the SU(5)GUT is extended to a warped extra dimension explaining the hierarchy between the

Planck scale and the electroweak scale, we can see at LHC the Kaluza–Klein vector fields of

such an enhanced gauge symmetry.

String Theory Discussion
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The number of consistent vacua in String Theory continues to grow, while there is

no prospect in near future that some non-perturbative dynamics is found and the over-

degeneracy of vacua is lifted (see [74] for a full list of references). At least we may have to

live with the multitude of vacua for a while, and there have been some attempts at finding

constraints or predictions that hold for wide class of string vacua [75, 76]. There is another

kind approach, where people try to find out dynamics that takes place over the landscape of

vacua [77] and to find out unknown “structure” the true landscape has [78].

We found that the supersymmetric SU(5) landscape contains seven islands. Islands may

be connected by continuous deformation of moduli parameters, but proton decays too fast in

vacua between the islands, and “lives” may not exist in such vacua. The minimal underlying

symmetry of SU(5) unified theory is E7, and D-brane Yang–Mills interactions in Type I, IIA

or IIB string theory cannot provide the form of the up-type quark Yukawa couplings of SU(5)

unified theories.

The framework presented in this article does not have a massless U(1)B-L gauge boson,

and yet, it is now clear when dimension-4 proton decay operators are absent. In Heterotic

language, a rank-5 holomorphic stable vector bundle V5 has to have a certain sub-bundle,

in order to prevent the dimension-4 proton decay. The condition will be easily taken into

account in search for a geometry describing our world. This condition has also been translated

into M-theory and F-theory compactification, partially but not completely yet.

The Yukawa couplings of quarks and leptons come from super Yang–Mills interactions.

The origin of low-energy particles has been identified in Heterotic, M and F-theory language.

Thus, one can exploit various techniques in string theory to extract more information.

A Note on Lie Algebra

A.1 e6 Lie algebra

The e6 Lie algebra contains su(5) + su(2)2 + u(1) subalgebra. After removing the nodes for

α2 and −θ from the extended Dynkin diagram of E6 (see Fig. 1), one node α1 for su(2)2 and

four α3,4,5,6 for su(5) are left. The irreducible decomposition of the e6-adj. representation

under the su(5) + su(2)2 + u(1) subalgebra (4) is known in the literature. We need to know,

however, which roots of e6 correspond to which irreducible components in order to provide

full geometric description in M-theory, the equation (4) is not enough. We first follow an

intuitively tractable way manipulating the extended Dynkin diagram to roughly determine
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the roots of the irreducible components and later provide the full results of explicit calculation.

When only the node of α2 is removed from the extended Dynkin diagram of E6, the

e6-adj. representation is decomposed into

ResE6

SU(6)×SU(2)2
(e6-adj.) ≃ (adj., 1) ⊕ (1, adj.) ⊕ (∧36, 2). (181)

Thus the roots in the (∧36, 2) representation contain α2. Since this representation is a doublet

of SU(2)2 generated by α1, half of roots in the representation contain the image of α2 under

the Weyl reflection associated with α1, i.e., α1 + α2.

When the node of −θ is further removed from the A5 Dynkin diagram made of α3,4,5,6

and −θ, breaking the SU(6) symmetry down to SU(5)×U(1), the (∧36, 2) representation

splits up into (10, 2)1+h.c. under the SU(5)×SU(2)2×U(1), and SU(6)-adj. representation

into SU(5)-adj., -5−2+h.c.. and a singlet. Thus, we have the irreducible decomposition (4).

Roots in the SU(5)-5 representation (and its Hermitian conjugate) contain −θ.
One can also carry out an explicit calculation, using a basis in the dual space of Cartan

subalgebra. We adopt the basis in [79] for ed (d = 6, 7, 8) algebras, which can treat all three

exceptional Lie algebra systematically and has also clear interpretation in del Pezzo surfaces.

When the simple roots are chosen as

αi = Li − Li+1 for i = 1, · · · , (d− 1), and

αd = L0 − (L1 + L2 + L3) (182)

with d = 6, all of positive roots are

Li − Lj (i < j), (183)

L0 − (Li + Lj + Lk) (i < j < k) and (184)

θ ≡ 2L0 − (L1 + · · · + L6) = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6, (185)

where θ is the highest root. Under this convention, each irreducible component consists of

roots shown as follows:

• (1,adj.): ±α1 = ±(L1 − L2).

• (adj.,1): ±(Li − Lj) (3 ≤ i < j ≤ 6) and ±(L0 − (L1 + L2 + Lk)) (k = 3, · · · , 6).

• (∧25, 2):

L0 − (L1 + L2 + Li + Lj) + La (a = 1, 2 and 3 ≤ i < j ≤ 6) and

La − Lk (a = 1, 2 and k = 3, · · · , 6).

The lowest weights are a doublet (α1 + α2, α2) = (La − L3)a=1,2.
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• (∧45̄, 1) ≃ (5, 1):

L0 − (Li + Lj + Lk) (3 ≤ i < j < k ≤ 6) and

θ = 2L0 − (L1 + · · ·+ L6).

The highest weight is θ = (α1 + 2α2) + (3α3 + 2α4 + α5 + 2α6).

The roots of (∧25,2) and (5̄, 1) representations of SU(5)×SU(2)2 are obtained by just multi-

plying (−1) to those of their Hermitian conjugate representations. In M-theory description,

M2-branes wrapped on {−C−θ,−(C−θ+C6),−(C−θ+C6+C3),−(C−θ+C6+C3+C4),−(C−θ+

C6 +C3 +C4 +C5)} provide the quintet H(5) particles, where Ci’s are 2-cycles corresponding

to the simple roots αi’s.

A.2 e7 Lie algebra

The e7 Lie algebra contains an su(6)1 + su2 + u(1) subalgebra, and its subalgebra su(5) +

su2 + u(1) + u(1). They are obtained by removing the nodes of α2, and −θ (and α7).
36 The

su(2)2 is generated by α1, su(6)1 by α7,3,4,5,6, and su(5) by α3,4,5,6 (see Fig. 2).

When only the node of α2 is removed from the extended Dynkin diagram Fig. 2, E7 is

reduced to SU(3)×SU(6)1, and

ResE7

SU(6)1×SU(3)1
(e-adj.) ≃ (adj., 1) ⊕ (1, adj.) ⊕ (∧26, 3̄) ⊕ h.c.. (186)

All the roots in the (∧26, 3̄)+h.c. representation (and its Hermitian conjugate) should contain

α2, and form a triplet ±(−θ + α1 + α2, α1 + α2, α2) under the SU(3)1 symmetry; linear

combinations of α3,··· ,7 are just omitted here. Upon further removing the node of −θ, the

SU(3)1 symmetry is reduced to SU(2)2×U(1)q6, and each component splits into irreducible

pieces;

(∧26, 3̄) → (∧26, 2)1 ⊕ (∧26, 1)−2, (187)

(1, adj.) → (1, adj.)0 ⊕ (1, 1)0 ⊕ (1, 2)3 ⊕ h.c.. (188)

Thus, the irreducible decomposition (9) is obtained. Roots in the representation (1, 2)3+h.c.

should be a doublet ±(−θ,−θ + α1). The roots in (∧26, 1)−2+h.c. are ±(−θ + α1 + α2),

and those in (∧26, 2)1+h.c. are a doublet ±(α1 + α2, α2), up to some linear combinations of

α3,··· ,7.

36It is also fine to remove α1 instead of −θ. The node for α1 is identified with the root of su(2)2 subalgebra
only because we want to use the same su(2)2 in the e8 algebra in section A.3.
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When the node of α7 is further removed, the symmetry is reduced from SU(6)1 to SU(5),

and SU(6)-charged representations split into smaller irreducible pieces. In order to determine

whether the roots of SU(5)×SU(2)2 irreducible representations contain α7 or not, let us

consider another route of the irreducible decomposition. We could have remove α7 first, and

α2 next, and −θ at the end; the symmetry is broken through E7, SU(8), SU(5)×SU(3)1×U(1),

and finally to SU(5)×SU(2)2×U(1)×U(1). In the first step in the new route,

ResE7

SU(8)(e7-adj.) ≃ adj.⊕ ∧48, (189)

and ∧48 representation further reduces to
[
(1, 5) ⊕ (3, 10)

]
⊕h.c. when SU(8) is reduced to

SU(5)×SU(3)1×U(1). Thus, among the irreducible components (10, 3̄) ⊕ (5, 3̄) = (∧26, 3̄),

the former comes from SU(8)-∧48 representation, whereas the latter from SU(8)-adj.. We

see that the roots in the former contain ±α7, and those in the latter do not.

All the above argument on the roots of irreducible components can be confirmed explicitly,

by adopting a basis of the space of root lattice. Simple roots are given by (182) with d = 7.

Positive roots are

Li − Lj (i < j), (190)

L0 − (Li + Lj + Lk) (i < j < k) and (191)

2L0 + Lk − (L1 + · · ·+ L7). (192)

The highest root is θ ≡ 2L0 − (L2 + · · · + L7) = 2α1 + 3α2 + 4α3 + 3α4 + 2α5 + α6 + 2α7.

Each irreducible components of e7 under the subalgebra su(5) + su(2)2 + u(1)+ u(1) consists

of the following roots:

• (1,adj.): ±α1 = ±(L1 − L2).

• (adj.⊕ 5 ⊕ 5̄,1):

⋄ ±(Li − Lj) (3 ≤ i < j ≤ 7)

⋄ +(L0 − (L1 + L2) − Lk) (k = 3, · · · , 7),

The lowest weight is α7 (k = 3), [for H̄(5̄) in ID A].

⋄ −(L0 − (L1 + L2) − Lk) (k = 3, · · · , 7), [for nothing].

• (∧25 ⊕ 5, 2):

⋄ L0 − (La + Li + Lj) (a = 1, 2 and 3 ≤ i < j ≤ 7).

The lowest weights are a doublet (α7 + α1 + α2 + α3, α7 + α2 + α3),

[for Hermitian conjugate of 10 = (Q, Ū , Ē)].
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⋄ La − Lk for k = 3, ..., 7, [for 5̄ = (D̄, L) in ID A].

The lowest weights are a doublet (α1 + α2, α2).

• (∧35 ⊕ ∧45, 1):

⋄ L0 − (Li + Lj + Lk) (3 ≤ i < j < k ≤ 7), [for nothing],

including θ − (α7 + α1 + α2 + α3) = (α1 + 2α2 + α7) + (3α3 + 3α4 + 2α5 + α6).

⋄ 2L0 − (L1 + · · ·+ L7) + Lk (k = 3, · · · , 7), [for H(5)].

The highest weight is θ − α1 − α2 = (α1 + 2α2 + 2α7) + (4α3 + 3α4 + 2α5 + α6),

The lowest weight is (α1 + 2α2 + 2α7) + (3α3 + 2α4 + α5) = 2L0 − (L1 + · · ·+ L6).

• (∧66, 2): [for Hermitian conjugate of N̄ in ID A]

2L0 − (L1 + · · · + L7) + L1 = (2α1 + 3α2) + (4α3 + 3α4 + 2α5 + α6 + 2α7) = θ,

2L0 − (L1 + · · · + L7) + L2 = (α1 + 3α2) + (4α3 + 3α4 + 2α5 + α6 + 2α7) = θ − α1.

A.3 e8 Lie algebra

The simple roots of e8 Lie algebra is given by (182) with d = 8. Positive roots are

Li − Lj (i < j), (193)

L0 − (Li + Lj + Lk) (i < j < k), (194)

2L0 + (Li + Lj) − (L1 + · · · + L8) (i < j) and (195)

3L0 − Lk − (L1 + · · · + L8), (196)

and the maximal root θ satisfies

θ = 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7 + 3α8 = 3L0 − (L1 + · · ·+ L8) − L8. (197)

The su(6)1 + su(2)1 + su(2)2 + u(1) subalgebra of e8 is obtained by removing the odes of

α2 and α7 from the extended Dynkin diagram of E8. su(2)1 is generated by the maximal root

θ, and its commutant e7 by α1,··· ,6 and α8. e7 contains the su(6)1 + su(2)2 + u(1) subalgebra.

Brute force calculation shows that the irreducible components of e8 under the subalgebra

su(5)GUT + su(2)1 + su(2)2 are:
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• su(5)GUT-singlets:

(1 ⊕ 21 ⊕ 22) ⊗ (1 ⊕ 21 ⊕ 22)
∗ = (198)




α
′′

−α′′ −θ
L0 − (L1 + L2 + L8) θ α′ α′ + α1

α
′′′

+ α1 L1 − L8 −α′ α1

α
′′′

L2 − L8 −α′ − α1 −α1



,

α
′′ ≡ 2L0 − (L3 + · · ·+ L8) = 2α1 + 4α2 + α7 + 2α8 + (5α3 + 4α4 + 3α3 + 2α6),

α′ ≡ 3L0 − (2L1 + L2 + · · ·+ L8) = α1 + 3α2 + α7 + 3α8 + (5α3 + 4α4 + 3α3 + 2α6),

α
′′′ ≡ −2L0 + (L2 + · · ·+ L7) = −(2α1 + 3α2 + 2α8) + · · · ,

• su(5)GUT-10 representations:

(
∧210, (1 ⊕ 21 ⊕ 22)

)
=






Li + Lj +




L0 − (L3 + · · · + L7)
−L0 + L8

2L0 − (L1 + · · ·+ L8)
−L0 + L1

−L0 + L2








3≤i<j≤7

, (199)

• su(5)GUT-5̄ representations:

(
5̄,∧2(1 ⊕ 21 ⊕ 22)

)
= (200)





−Lk +




L8 L0 − (L1 + L2)
L8 + θ

L1 L8 − α′ L0 − (L8 + L2) α
′′′

+ L1

L2 L8 − α′ − α1 L0 − (L8 + L1)







k=3,··· ,7

.

Two different SU(6) subgroups, SU(6)1 and SU(6)2, appear in the main text. They are

both subgroups of SO(12) in E8 ⊃SO(12)×SU(2)1×SU(2)2. The irreducible components in

ResE8

SO(12)×SU(2)1×SU(2)2
(e8-adj.) ≃ (adj., 1, 1) ⊕ (1, adj., 1) ⊕ (1, 1, adj.)

⊕(12, 2, 2) ⊕ (32′, 1, 2) ⊕ (32, 2, 1) (201)

reduces under SU(6)1×U(1)q6 ⊂SO(12) to

Res
SO(12)
SU(6)1×U(1)q6

32′ ≃
[
13 ⊕ ∧26 1

]
⊕ h.c., (202)

Res
SO(12)
SU(6)1×U(1)q6

32 ≃ 62 ⊕∧36 0 ⊕ 6̄−2, (203)
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and under SU(6)2×U(1)q̃6 ⊂SO(12) to

Res
SO(12)
SU(6)2×U(1)q̃6

32′ ≃ 62 ⊕ ∧36 0 ⊕ 6̄−2, (204)

Res
SO(12)
SU(6)2×U(1)q̃6

32 ≃
[
13 ⊕∧26 1

]
⊕ h.c.. (205)

Two SU(3) subgroups, SU(3)1 and SU(3)2, contain SU(2)2×U(1)q6 and SU(2)1×U(1)q̃6 , re-

spectively, and

SU(6)1 × SU(3)1 × SU(2)1 ⊂ E8, (206)

SU(6)2 × SU(3)2 × SU(2)2 ⊂ E8. (207)

B ALE spaces

This section of the appendix is a quick summary of useful results.

The ALE spaces of Ar, Dr and Er types are constructed by hyper-Kähler quotient [52, 80]

as vacuum moduli of quiver gauge theories associated with the extended Dynkin diagrams of

the simply laced Lie algebras. Their moduli parameters are the Fayet–Iliopoulos parameters

of the sigma model in physics terminology or the values of the moment maps in mathematical

terminology. The Fayet–Iliopoulos parameters ~ζ i = (ζ i1, ζ
i
2, ζ

i
3) for i = 0, · · · , r have to satisfy

a “traceless condition”

ni~ζ
i = 0, (208)

where integers ni (sometimes denoted as ai) are the labels of the extended Dynkin diagrams;

for the simple roots αi (i = 1, · · · , r),

niαi = 0 (209)

where α0 ≡ −θ is the negative of the highest root and n0 ≡ 1.

The metric is known for the An−1-type and Dn type. The ALE spaces are described as

S1 fibration (coordinate τ) over a three dimensional space (coordinates ~x = (x1, x2, x3)) and

the metric of An−1 type and Dn type is specified by ~ri = (r1, r2, r3)i for i = 1, · · · , n. The

S1 fibre shrinks at ~x = ~ri in An−1 type, and at ~x = ~ri and ~x = −~ri in Dn type. Between two

such points, there is a topological 2-cycle, given by S1 fibration over the interval between

the two points. The Fayet–Iliopoulos parameters ~ζ i describing the ALE spaces are given in

terms of ~ri by
~ζ i = ~ri − ~ri+1 (i = 0, · · · , n− 1), (210)
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for An−1 case, where i = 0 = n is understood, and

~ζ0 = −~r1 − ~r2, ~ζ i = ~ri − ~ri+1
~ζn = ~rn−1 + ~rn,

~ζ1 = ~r1 − ~r2, (for i = 2, · · · , n− 2), ~ζn−1 = ~rn−1 − ~rn, (211)

for Dn case. It is easy to see that the constraint (208) is satisfied for the An−1 and Dn cases;

note that ni = 1 for ∀i in An−1, and ni = 2 in Dn except n0 = n1 = nn−1 = nn = 1. The data

~ri (i = 1, · · · , n) correspond to the location of n D6-branes in their transverse directions in

the Type IIA interpretation, if the ALE space of An−1 or Dn type is used as the background

geometry of the M-theory [81].

When the 2-cycle associated with the root −θ shrinks, the first D6-brane comes on top

the n-th D6-brane in the An−1 case, and an SU(2) symmetry is enhanced. In the case of

Dn type ALE space, the first D6-brane moves across an O6-plane and comes on top of the

orientifold image of the second D6-brane, and an SU(2) symmetry is enhanced [81]. Thus,

2-cycles involving the 2-cycle for −θ can be treated at the equal footing as other 2-cycles.

In section 4, we see that massless matters arising from vanishing C−θ cycle are identified

with the H(5) multiplet in the model with E6 underlying symmetry, and with right-handed

neutrinos N̄ [or SU(5)GUT-singlet S in W ∋ SHH̄] in the model with E7.
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