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Abstract. Two approaches to prediction of wind-borne plumes from sources
on the ground are compared: (1) an exact solution to the advection-dispersion
equation in steady state, assuming a power-law wind velocity profile; and (2)
a numerical simulation of the coupled air-ground system using a logarithmic
wind velocity profile. The power-law velocity profile produces less vertical
diffusivity and less upward transport compared to the logarithmic velocity
profile.If the goal is to predict concentration in the air, the reverse seepage
from air to ground is small enough to ignore and the air and ground can be
treated as decoupled.

1. Introduction

Predicting the dispersion of air pollutants from sources on the ground
requires modeling of turbulent transport. Although a full description of turbu-
lence is beyond either theory or simulation, approximate results can be derived
from an analytical model that is relatively simple, while still accounting for the
variation with height of wind speed and diffusivity.

Even in the simplified model discussed in this report, few analytical
solutions are known. Many well-established models used for regulatory purposes
use Gaussian plumes, which are computationally simple, but assume that wind
speed and diffusivity are uniform (New Zealand Ministry for the Environment,
2004). As a result, the plume height and decrease of ground-level concentration
are underestimated. If the wind speed and diffusivity profiles are assumed to
follow power laws, there is a more general analytical solution which is just as
easy to compute and potentially more accurate.

This report compares two approaches to modeling leakage of a gas from
an underground reservoir into the surface layer of the atmosphere:

(1) Using a known source distribution at the surface as a boundary condition
on the differential equation describing admixture transport (Barenblatt,
2003b); and

(2) Simulating both air and ground transport together in a finite-volume
code, with a logarithmic wind velocity profile (Oldenburg & Unger,
2004).

The analytical solution applies to a simplified model that assumes an
infinite, uniform, flat plane, no change of wind conditions with time, and wind
velocity profile in the form of a power law. More realistic descriptions would
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require numerical simulation and better modeling of the underlying physics. The
approaches discussed here do not actually model turbulence, but rather assume
a certain mixing due to turbulence. The purpose of comparing the analytical
solution with the coupled simulation is in particular to investigate

• How sensitive is the solution to the velocity profile, and to the exponent
in the power law?

• How is the simulation affected by a closed-top boundary condition im-
posed in the numerical model?

This report first describes the simplest possible model of turbulent dif-
fusion, then compares the two approaches.

2. A simple theoretical picture of turbulent diffusion

Dilute gases, smoke, or dust are usually passive additives to the air: i.e.,
they do not affect the already existing flow field. If the admixture does not have
a density much different from the fluid, settling due to gravity can be neglected.
The concentration of a passive additive is governed by the advection-dispersion
equation,

(2.1) ∂tc + ∇ · (uc) = −∇ · F

where c(r, t) is the concentration field, u(r, t) is wind velocity, and F(r, t) is the
diffusive flux of the additive due to turbulent mixing. Emission of the additive
from a source can be represented by a boundary condition or source term.

All these variables represent averages over rapid turbulent fluctuations.
Theoretically the average should be an ensemble average, based on repeating the
experiment. But since replicating the same weather conditions is not feasible,
ergodicity is assumed so that time averages can be used instead, over intervals
of typically 10 minutes to 1 hour (Monin & Yaglom, 1971, sec. 3).

The following sections will discuss the forms of wind velocity and diffusive
flux that will be used in equation (2.1).

2.1. Velocity profile in the surface layer. For sources on the ground, we
are concerned with the surface layer of the atmosphere, which is defined as the
layer next to the ground where there are strong vertical gradients of velocity,
temperature, and concentration. It is typically 10–100 meters thick. In this
layer the flow is dominated by surface friction and temperature gradient, and
the Coriolis force can be neglected. Wind speed and turbulent mixing vary with
height in this layer. We would like to describe the wind velocity profile, u(z),
and the turbulent mixing with as few measurable parameters as possible, using
similarity theories to group variables into the minimum necessary number of
dimensionless parameters. We will need to assume:

• The ground is flat and homogeneous over an area so large that edge
effects can be ignored, and therefore the flow field does not depend on
the horizontal coordinates, but only on height.
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• The air is incompressible (∇ · u = 0), a good approximation in the
surface layer. Together with the first assumption, this then implies that
the average vertical component of wind is zero.

• In the conventional coordinate system, z is height above ground and the
x axis is chosen along the direction of the average wind. Thus the wind
velocity has only an x component, u(z).

Turbulence generated by surface friction. To describe turbulent flow near a sur-
face when there is no heat flux, von Kármán’s “law of the wall” is widely used
(Arya, 1999, section 4.7.1; Panofsky & Dutton, 1984, section 6.2):

(2.2)
u(z)
u∗

=
1
κ

ln
z

z0

where
• u∗ is called the friction velocity, and is defined from the shear stress at

the surface, τ , and the air density, ρ, by u∗ =
√

τ/ρ. This shear results
from the turbulent fluctuations of velocity:

τ = −ρu′w′; so u∗ =
√
−u′w′

where u′ and w′ are the fluctuating components of horizontal and vertical
velocity. Through this covariance a net downward flux of momentum is
delivered from the wind to the ground. From this definition it can be
seen that u∗ is of the same order of magnitude as the fluctuations of
velocity.

• κ is von Kármán’s constant, which has a value of about 0.4.
• z0 is a constant of integration, defined as the height at which u(z) = 0

when the profile is extrapolated downward (the equation is only valid
for z � z0). It is called the roughness length, and can be interpreted as
the size of eddies at the surface, where momentum is transferred not by
skin drag but by form drag across the small irregularities of the surface.
The length z0 is smaller than the actual height of the irregularities, and
of course depends on their shape and distribution.

The parameters u∗ and z0 can be determined by measuring u(z) at different
heights and fitting a straight line to u vs. ln z.1 The length z0 is a characteristic
of the surface (unless the surface itself changes, as when grass bends in a high
wind), so after z0 is determined at a particular site, u∗ can be found in other
wind conditions from a measurement of u(z) at a single height.

The assumptions behind von Kármán’s law are discussed by Barenblatt
(1996, 2003a), who argues that the assumption of Reynolds-number indepen-
dence in the limit of large Re is not valid, and that the velocity profile is more

1u′w′ can be measured directly with a fast-responding sonic anemometer, but this is much
more expensive than just measuring the mean velocity. Surface stress can be measured directly
with a drag plate, which is also expensive, and it is very difficult to get a reliable result (Kaimal
& Wyngaard, 1990; Kaimal & Finnigan, 1994, section 6.3).
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generally described by a power law:

(2.3)
u(z)
u∗

=

(√
3

2α
+

5
2

)(zu∗
ν

)α
≡ A(α), ν is kinematic viscosity

For flow in a pipe the power α would be equal to 3/(2 lnRe), but for flow across a
flat plane Re is not uniquely defined, and α must be determined by fitting data to
the curve. Barenblatt does not consider surface roughness, which is significant
for any natural terrain besides very smooth ice (Sutton, 1953, sec. 3.8, 7.2;
Panofsky & Dutton, 1984, sec. 6.2).

Turbulence generated by heat flux. There is usually a significant temperature
gradient in the surface layer. During the day, as the sun heats the ground, air
near the ground is warmer and less dense than air above, so it is unstable to ver-
tical displacements. In this case buoyant forces promote turbulence, converting
gravitational potential energy to turbulent kinetic energy. At night, the tem-
perature gradient is reversed, and turbulence is suppressed. Neutral stability is
rare, and is only approached when the sky is heavily overcast, so the ground is
not gaining or losing energy by radiation, and in addition there is moderate or
high wind so the air is well mixed in temperature.

The velocity profile in thermally stratified turbulent flows is observed
to deviate from the logarithmic law. A general description of turbulence with
heat flux is provided by the Monin-Obukhov similarity theory (Monin & Yaglom,
1971, chap. 7), in which all dimensionless quantities depend on one dimensionless
variable,

ζ =
z

L
, L ≡ − u∗

3

κ(g/T0)(q/cpρ0)
,

u∗ : friction velocity
g : gravity

T0 : mean absolute temperature
q : upward heat flux at surface

cp : heat capacity
ρ0 : mean density

The turbulent heat flux is due to covariance of vertical velocity and temperature:
q = cpρ0w′T ′, where T ′ is the fluctuating component of temperature. It can be
shown (Monin & Yaglom, 1971) that ζ represents a ratio of buoyant generation
of turbulence to mechanical shear generation. Thus, at large heights buoyant
forces are relatively more important than at small heights, where the ground
suppresses the larger eddies. The theory also assumes z � z0, and therefore
does not apply within a few meters above large obstacles such as trees and
buildings.

By dimensional analysis, the velocity profile has the form

(2.4)
κz

u∗

∂u

∂z
= ϕm(ζ), ϕm(0) = 1
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The dimensionless function ϕm(ζ) must be determined by experiment. The ob-
servations have been fit to a variety of functions, and the Businger-Dyer formula
is a widely used simple approximation (Arya, 1999, sec. 4.7.2):

ϕm(ζ) = (1 + 15|ζ|)−1/4 , −5 < ζ < 0 (unstable)

ϕm(ζ) = 1 + 5ζ, 0 ≤ ζ < 1 (stable)

As before, the profile u(z) can then be obtained by integrating this function
from z0 to z. Similarly, dimensionless functions can be defined for the gradi-
ents of temperature2 and concentration, and these also have been determined
empirically.

Since a direct measurement of heat flux requires expensive instruments3,
formulas have been worked out to estimate u∗ and L from the mean wind speed
and temperature measured at two heights (Arya, 1999, sec. 4.8.1; Arya, 1988,
sec. 11.5.6).

Power-law profile as approximate description. If the Monin-Obukhov profile is
impractical (for example if it is too complex, if temperature is not available, or
if terrain is not uniform), meteorologists and engineers have long resorted to a
simple equation (Panofsky & Dutton (1984, sec. 6.3); Sutton (1953, sec. 7.2)),

(2.5)
u

u1
=
(

z

z1

)α

,

where u1 and z1 are a reference velocity and reference height, and α is found by
fitting the equation to measurements of u at two or more heights. Although equa-
tion (2.5) lacked theoretical justification until the work of Barenblatt (2003a), it
provided a reasonable fit to wind profiles in the surface layer over a wide range
of surface roughness and stability conditions, and is frequently used in air pol-
lution modeling (Arya, 1999, sec. 4.8.3). Experimentally, the exponent α can
range from nearly 0, representing perfect mixing and a uniform velocity profile,
to nearly 1, representing the Couette linear profile of laminar motion over a
plane surface. Increasing surface roughness and instability promote mixing and
correspond to smaller α.

2.2. Turbulent diffusion.

The gradient transport assumption. The simplest model of turbulent transport
is based on the analogy to molecular diffusion. It is assumed that the mean (that
is, time-averaged) flux is linearly proportional to the gradient of mean density:

for momentum, τ = ρKm
∂u

∂z
(positive downward)(2.6)

for admixture concentration, F = −Kc∇c (positive upward)(2.7)

2Strictly speaking, this is potential temperature, which is the temperature a parcel of air at
height z would have if brought adiabatically to the pressure at the ground. Near the ground,
this is a small correction (Sutton, 1953, sec. 1.3).

3w′T ′ can be measured directly by eddy covariance, or the heat flux could be determined
from the energy budget if the radiation input and heat flux into the soil are measured.
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These K’s are called turbulent exchange coefficients.4 They represent mixing
by turbulent eddies, and are usually several orders of magnitude larger than the
corresponding molecular viscosity or diffusivity.

Unlike their molecular counterparts, turbulent exchange coefficients de-
pend on the particular flow field—rather than molecular properties—and also
vary from one region to another of the same flow (Arya, 1999, sec. 4.6.1). Exper-
iments show that they are definitely not uniform in space: if Kc were spatially
uniform and the wind speed were also independent of height, mass injected at a
steady rate from a point source at the ground would produce a Gaussian plume,
whose height grows with the square root of downstream distance x, and ground-
level concentration decreases as 1/x. However, the plume height is observed to
grow as some larger power of distance, 0.75 to 1 instead of 0.5 (Panofsky & Dut-
ton, 1984, sec. 10.3), and the ground-level concentration also decreases faster
than 1/x (Sutton, 1953, p. 277). Therefore the exchange coefficient cannot be
constant, but increases with height; this is because in the atmosphere, there are
eddies of a wide range of sizes, and at greater heights, larger eddies contribute
to mixing. A constant Kc would imply that there is only one length scale of
mixing, a molecular length scale, which is not true in turbulence.

It is sometimes assumed (e.g., Barenblatt (2003b)) that the ratio of the
K’s for momentum and concentration is independent of height:

Kc(z) = (constant)Km(z).

This assumption implies that the mechanisms of turbulent transfer for the pas-
sive admixture are the same as for momentum. However, observations suggest
that this ratio does depend slightly on z/L in unstable conditions, though not
in stable conditions. The ratio at neutral stability is generally taken to be 1,
although there is disagreement over this value in the literature (Kaimal & Finni-
gan (1994, sec. 1.3.5); Brown et al. (1993, sec. 3c); Panofsky & Dutton (1984,
sec. 6.9)).

Implications of constant flux. Fluxes and concentration gradients are expensive
to measure directly, and so various assumptions are used to estimate K(z). It
is generally believed that the fluxes of momentum, heat, and mass are approx-
imately independent of height within the surface layer. If the assumption of
constant flux is valid, then u∗ =

√
τ/ρ is independent of height. Then (2.6) can

be written as

(2.8) Km(z) =
u∗

2

∂zu

and using equation (2.4) leads to an expression for Km(z) (Kaimal & Finnigan
(1994); Panofsky & Dutton (1984, sec. 6.8)):

(2.9) Km(z) =
ku∗z

φm(ζ)

4They are really tensors, but the only significant components are the xz component of Km

and the zz component of Kc.
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and analogous expressions for the K’s for heat and mass. At neutral stability
where ζ = 0 and φm = 1, (2.9) predicts

(2.10) Km(z) = ku∗z.

If the velocity profile follows the power law (2.5), and if u∗ can be treated as
constant, then (2.8) predicts

(2.11) Km(z) =
u∗

2

∂zu
=

u∗
2z1

u1α

(
z

z1

)1−α

.

Equations (2.5) and (2.11) are known in meteorology as “Schmidt’s conjugate
power laws.” However, the assumption of constant flux is not necessarily con-
sistent with the assumption of power law profiles for velocity and diffusivity, so
the diffusivity is often modeled instead as

(2.12) K(z) = K1

(
z

z1

)m

,

where the parameters could be determined by fitting the power function to (2.9),
and usually m + α > 1 (Arya, 1999, sec. 4.8.5).

Limitations. The gradient-transport equations (2.6, 2.7) assume that the flux at
a point depends only on the local gradient. This assumption fails if the eddies
are large compared to the scale of curvature of the profile. If there are eddies
large enough to carry air between regions of significantly different gradient, the
actual flux can be non-local and even opposite the local gradient (Arya, 1999,
sec. 4.6.1; Panofsky & Dutton, 1984, sec. 4.7.2; Pasquill & Smith, 1983, sec. 3.1).
Such large eddies occur most often in very unstable conditions, such as on a
clear sunny day with light winds, where buoyancy-generated convection is the
dominant source of turbulence. Under these conditions “looping” plumes are
seen, as the large eddies move the plume as a whole back and forth, instead of
the spreading or “coning” plumes predicted by gradient-transport theory (Arya,
1999, sec. 6.8). Thus gradient-transport theory is most valid when mechanical
shear is dominant, with slightly unstable, neutral or stable temperature profiles
and strong winds.

Slender plume approximation. Turbulent diffusion in the x direction may be
neglected when advection dominates dispersion in the far downwind limit, i.e.,
x large compared to K/u. (Typically K is of the order of 1–10 m2/s and u of the
order of 1–10 m/s, so x should be large compared to 1 meter.) It is also possible,
but more cumbersome, to solve the advection-dispersion equation (2.1) including
diffusion in the x direction and then take the limit for x � K/u, which leads
to the same result; see, for example, Sutton (1953, sec. 4.6), or Huang (1979).
Neglecting such diffusion is called the slender plume approximation (Arya, 1999,
sec. 6.3.6). With this approximation, the concentration will be zero everywhere
upwind of the source.
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3. Analytical and numerical solutions of the advection-dispersion
equation

Both solutions of equation (2.1) discussed here make two further simpli-
fying assumptions:

• The flow is stationary and the source remains constant in time for long
enough to establish a steady-state concentration field. For the numerical
simulation, this assumption was not actually necessary, but was used to
provide a simple test case.

• The source is independent of the crosswind direction, y, so the concen-
tration depends only on x and z; that is, the problem is two-dimensional.
This assumption is equivalent to considering only the cross-wind inte-
grated concentration,

c̄y ≡
∫ ∞

−∞
c(x, t) dy.

Meteorologists sometimes use this simplification and then assume a Gauss-
ian distribution in the lateral direction. The lateral diffusivity depends
on distance from the source and atmospheric stability, and is often es-
timated using the empirically derived Pasquill-Gifford diagrams (Arya
(1999, sec. 6.6.4); Pasquill & Smith (1983, sec. 3.2)).

With these assumptions, the advection-dispersion equation (2.1) has
been reduced to

(3.1) u(z)∂xc(x, z) = ∂z (Kc(z)∂zc(x, z)) .

3.1. Analytical solution and interpretation.

Steady Propagation from Line Source. An analytical solution to (3.1) is known
when the velocity and diffusivity are given by power laws, and the additive is
injected at a constant rate from an infinite straight line on the ground perpen-
dicular to the wind. In other words, end effects are neglected; hence the solution
will overestimate the concentration from any finite source. The problem is now

u(z)∂xc(x, z) = ∂z (Kc(z)∂zc(x, z)) , for x > 0 and z > 0, with(3.2)

u(z) = u1

(
z

z1

)α

,

Kc(z) = K1

(
z

z1

)m

.

Solutions are known for boundary conditions specifying concentration at the
ground, flux at the ground, or a linear combination of the two (Philip, 1959). The
flux-type boundary condition will be discussed here. Two boundary conditions
are implied by the physical model. First, no flux crosses the ground for x > 0:

(3.3) Kc(z)∂zc → 0 as z → 0
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(If the admixture is absorbed or interacts with the ground, this is not valid.)
Second, there is a known constant source. Integrating (3.2) from z = 0 to ∞
gives

∂x

∫ ∞

0
u(z)c(x, z)dz = Kc(z)∂zc

∣∣∞
0

= 0, so∫ ∞

0
u(z)c(x, z)dz = Q, a constant independent of x.(3.4)

Q is the rate of injection by the source at the origin. Since there is no absorption,
in the steady state the total flux of admixture across any vertical line at x > 0
is equal to the rate of injection.

Solution and interpretation. Equation (3.2) can be solved by the method of
similarity, which applies when a function of two variables has a symmetry so
that it actually depends only on a single, dimensionless combination of the two
variables.

The solution for the concentration can be presented as the product of a
ground-level concentration cgl(x) and a plume height function cph(x, z):

c(x, z) = cgl(x)cph(x, z), where(3.5)

cgl(x) =
Q

u1z1

r

Γ(β)

(
x

x1

)−β

,

cph(x, z) = exp
{
−(z/z1)r

x/x1

}
,

r = 2−m + α, β =
1 + α

r
, x1 =

u1z1
2

r2K1
.

Equation (3.5) has appeared many times in the literature (Deacon, 1949; Calder,
1949; Sutton, 1953; Monin & Yaglom, 1971; Huang, 1979; Pasquill & Smith,
1983; Panofsky & Dutton, 1984; Arya, 1999). Barenblatt (2003b) explains how
the solution is obtained.

Figure 3.1 shows contours of c(x, z). The first plot has α = 1/7, typical
for neutral stability. The second has α = 0.3149 chosen to fit the logarithmic
velocity profile in the simulation, as seen below in Figure 4.1. The larger α leads
to less mixing and less upward transport.

According to (3.5), the plume height grows as x1/r, and the ground-level
concentration decreases as x−β. The concentration is inversely proportional to
the wind speed u1, as usual for advection. Some important limiting cases are:

• For uniform wind (α = 0) and uniform diffusivity (m = 0), (3.5) reduces
to a Gaussian vertical profile:

c(x, z) =
Q/u1√

πK1x/u1

exp
(
− z2

4K1x/u1

)
However, this equation is not a good fit to observed profiles in field and
wind tunnel experiments (Brown et al. , 1993).
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Figure 3.1: Contours of plume (3.5) for two values of α, representing different amounts
of mixing: larger α means less mixing. The dashed line shows the height where c(x, z)
is 1/e of its value at the ground: zh = z1(x/x1)1/r. The value of u∗ is the one used in
Oldenburg & Unger (2004) for the wind speed of 1 m/s at a height of 10 m.

• If the conjugate power laws (2.5, 2.11) hold, then m = 1−α, r = 1+2α.
For α = 1

7 , a typical value for neutral stability, this gives β = 8
9 ; Sutton

(1953, p. 281) cites observations of the propagation of smoke from a
line source over level downland in neutral conditions, where the ground-
level concentration was observed to decrease as x−0.9, corresponding to
β = 0.9.
This solution is the response of the system to mass injected at the line

(x, z) = (0, 0). If instead the source is spread over the ground with a density of
S(x), the solution is the convolution

(3.6) c(x, z) =
∫ x

−∞
S(x′) cline(x− x′, z) dx′

where cline(x, z) is the solution for a unit line source:

cline(x, z) =
1

u1z1

r

Γ(β)

(
x

x1

)−β

exp
{
−(z/z1)r

x/x1

}
, x > 0;

= 0, x ≤ 0.

3.2. Coupled simulation of air and subsurface transport. Oldenburg &
Unger (2004) used the integral finite difference code TOUGH2 (Pruess et al. ,
1999; Pruess, 2004) to simulate the transport of CO2 leaking from a geologic
sequestration site. The CO2 mixes with soil gas and also dissolves in ground-
water, eventually seeping out of the ground. The authors evaluated whether it
would reach hazardous concentrations above ground. The wind velocity profile
was logarithmic:

(3.7) u =
u∗
k

ln
z

z0
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with u∗ chosen to give a desired value of u at a reference height of z = 10
m, u = 1 m/s or u = 5 m/s representing typical slow and fast wind speeds;
k = 0.4; and z0 = 0.10 m. TOUGH2 cannot specify the wind velocity profile
directly; instead, a horizontal pressure gradient was imposed, and an artificial
height-dependent “permeability” was specified in the cells above ground such
that Darcy’s law would yield the desired horizontal flow speed. The resulting
horizontal wind speed was not quite independent of x, and the vertical wind
speed of gas above ground was not exactly zero, perhaps due to discretization
and round-off errors.

The vertical diffusivity above ground was given using the constant flux
assumption (2.10):

K = ku∗z.

The integral finite difference method produces numerical dispersion in the hor-
izontal direction on the order of one-half the grid spacing multiplied by the
horizontal wind velocity. To prevent the plume from unrealistically spreading
upwind, the vertical diffusivity K was set to zero upwind of the source.

Figure 3.2 shows the computed mass fraction of CO2 in air at a quasi-
steady state (6 months after injection begins in the simulation). Figure 3.3
shows the same data zoomed in on an area above the ground and directly above
the area where CO2 was injected. These figures show selected contour lines
interpolated from the grid.

A very small fraction of CO2 has diffused from the air back into the
ground downwind of the plume, and is slowly diffusing deeper; it also dissolves
in groundwater which is moving downward.
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Figure 3.2: Mass fraction CO2 in gas for slow and fast wind speeds. Similar to
Figure 9ab in Oldenburg & Unger (2004); redrawn from data kindly provided by the
authors. CO2 is driven upward by high pressure at the source, displacing soil gas in
the subsurface plume. In the second figure it can be seen that the concentration in the
subsurface, where the time scale of propagation is slower, has not yet reached equilibrium
with the air downwind of the source: see the 10−5 contour.
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Figure 3.3: Mass fraction CO2 in gas for slow and fast wind speeds. Same data as
previous figure, showing a smaller region with different contour levels. As usual for
advection, the concentration is inversely proportional to wind speed (5 times smaller
for the 5 times faster wind speed). Note that contour lines are perpendicular to the top
surface, which is an artifact of using a closed top boundary condition. Also, the spike
at x = 450 m is caused by the artificial suppression of vertical dispersion upwind of the
source.
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4. Comparison and conclusions

4.1. Comparison of two solutions. To compare this simulation with the an-
alytic solution, the logarithmic profile was approximated by a power law. Fig-
ure 4.1 shows the velocity at the grid points of the simulation, with fits to
u = u1z

α by Matlab’s curve fitting tool; one fit is unweighted and the other is
weighted by the difference between successive values of u. There is no unique
criterion to choose the most appropriate fit.

The unweighted fit was used for the velocity profile. The diffusivity was
derived from the conjugate power law (2.11), resulting in generally smaller K
(Figure 4.2) and reducing the upward transport of the admixture compared to
the simulation.

In the simulation, CO2 passes from the ground to the air over an ex-
tended area. Therefore, it should be compared with the analytical solution
using equation (3.6). Since the flux of CO2 across the ground surface was not

0 1 2 3 4 5 6 7 8 9 10
0
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2

3

4

5

height, m

u,
 m

/s

simulation u (fast wind speed)
successive differences of u
  power law: 2.57z0.3149

  power law, weighted: 2.344z0.3791

Figure 4.1: Horizontal wind speed in the simulation, and power-law fits.
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Figure 4.2: Vertical diffusivity from equation (2.10) for the logarithmic profile and
equation (2.11) for the power-law profile in Figure 4.1.

directly available, the source density was inferred by

S(x) =
d

dx

∫ ∞

0
XCO2(x, z)Fgx(x, z) dz,

XCO2 = mass fraction CO2 in gas, Fgx = horizontal flux of gas

which is shown in Figure 4.3. The reverse seepage flux of CO2 back into the
ground can also be calculated, since the horizontal flux declines very slightly
downwind of its maximum at about x = 600 m; the loss is about 10−5 of the
maximum flux. The source density for the other data set (wind speed 1 m/s)
was indistinguishable, because the seepage of CO2 was driven by a high pressure
at 30 m below the surface, and did not depend on the wind speed above the
ground.

Figure 4.4 shows the result of the convolution and compares it with the
simulation. It is qualitatively similar to the TOUGH2 plume, but does not show
the artifacts of the closed top boundary condition and the suppression of upwind
diffusion. Figure 4.5 compares the concentrations at z = 0.75, near the ground,
and at z = 9.75, the top of the simulation. The simulation reaches a larger
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Figure 4.3: Source density of CO2 from ground to air calculated from simula-
tion result. The circles indicate total horizontal flux at gridpoints xi calculated by
fi =

∑
zj>0 XCO2(xi, zj)Fgx(xi, zj) ∆z. The source density is then calculated from

the successive differences, Si+0.5 = (f(xi+1)− f(xi))/∆x. A linear interpolation of this
source density is used in the convolution (3.6). The horizontal flux declines very slightly
downwind of its maximum, due to reverse seepage of CO2 back into the ground; the
loss is about 10−5 of the maximum flux, too small to see on the graph.

maximum and decays more slowly with downwind distance, likely because of
the boundary conditions.

The aboveground domain has much shorter inherent time scales than the
underground domain. In the simulation, the permeability changes abruptly from
1 darcy just below the ground to 2× 109 darcy just above, and from horizontal
gas speeds of the order of 10−7 m/s below to 1 m/s above. It is difficult for the
code to maintain accurate calculations at such a boundary. Figure 4.6 illustrates
how the smooth distribution of vertical gas velocities under the surface suddenly
becomes irregular and noisy in the air.
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Figure 4.4: Convolution of line-source kernel for fast wind speeds with source distrib-
ution from Figure 4.3 (top). Compare to coupled simulation (bottom). Contours near
the ground are similar, but there is less upward transport with the power-law velocity
and diffusivity functions. The analytical solution does not have the closed top boundary
condition and the artificial barrier to upwind diffusion. The concentration fields for the
slower wind speed are similar but 5 times larger because of the factor of 1/u1.
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Figure 4.5: The two solution methods compared at heights of z = 0.75 m and z = 9.75
m. The simulation reaches a larger maximum and decays more slowly with downwind
distance, possibly because of the closed top boundary condition. Also, a zero-gradient
side boundary condition was imposed on the simulation (i.e., ∂c/∂x = 0 at x = 1000),
which causes the concentration to reach a constant value at relatively small downwind
distances, instead of decaying to zero only asymptotically as x → ∞. Both these
boundary conditions would lead to accumulating CO2 in the simulation, rather than
letting it escape to infinity in the vertical and horizontal.
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and the bottom layer of air.
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4.2. Conclusions. Both approaches described here are limited by the highly
simplified model of turbulent diffusion. The gradient-transport model assumes
that flux of momentum and mass is constant with height, transport is local,
and the exchange coefficients for mass and momentum differ only by a constant
factor, as described in section 2. The model applies only to heights above any
surface obstacles and large compared to z0; it assumes flat ground with short,
homogeneous vegetation. Modeling the roughness sublayer, which is significant
above trees or buildings, would be far more complex.

The TOUGH2 coupled simulation is intended to model barometric pump-
ing and reverse seepage of air contaminants back into the ground under condi-
tions where it could be significant, such as with large soil permeabilities. But
the underground and aboveground domains operate on vastly different time and
space scales, raising a question of whether a single numerical model can handle
both. This question could be avoided by separating the domains whenever they
are not strongly coupled. We expect on physical grounds that the air above
ground is not usually coupled to the subsurface, because the capillary entry
pressure for gas into the ground is high enough that the ground can be treated
as a reflecting boundary. In fact, this was a good approximation in the case
used for the simulation, as shown by getting the same emission rate out of the
ground for both wind speeds. If the main goal is to predict concentrations in
the air, the small reverse seepage (only 10−5 as great as the total flux of CO2

into the air) could be neglected.
Each approach has advantages and disadvantages. Some advantages of

the analytical solution, as opposed to the coupled simulation, are:

• It is computationally simple and needs no programming, while still tak-
ing into account the variation of K with height.

• It does not suffer from the closed-top boundary condition imposed by
TOUGH2 (although TOUGH2 could work around this limitation by
adding a very large grid block above the layer of interest to receive the
upward flux).

• It does not have the artificial horizontal dispersion which accompanies
advection in the numerical solution.

• There is no minimum grid cell size. TOUGH2 cannot make the grid
cell smaller than the roughness length, z0, while using the logarithmic
velocity profile.

• There are no problems of finite precision.

Disadvantages of the analytical solution:

• The solution is known only for power-law profiles. It is questionable how
accurately a logarithmic or Monin-Obukhov profile can be approximated
by a power law. In particular, the diffusivity will always grow more
slowly at large heights for power laws than for the logarithmic profile.
Therefore, the analytic solution predicts less transport of the admixture
upward, as seen in Figure 4.4.
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• It cannot describe a time-dependent source profile, which could easily be
handled in TOUGH2.

• It cannot describe a three-dimensional problem in general.
• The slender plume approximation fails for wind speeds approaching zero,

which is also the worst condition for building up high local concentrations
of contaminants.

These shortcomings could be addressed by using a numerical simulation of the
air; many off-the-shelf products are available (New Zealand Ministry for the
Environment, 2004).
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