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 ABSTRACT:  

To understand how non-malignant human mammary epithelial cells (HMEC) 

transit from a disorganized proliferating to an organized growth arrested state, and to 

relate this process to the changes that occur in breast cancer, we studied gene expression 

changes in non-malignant HMEC grown in three-dimensional cultures, and in a 

previously published panel of microarray data for 295 breast cancer samples. We 

hypothesized that the gene expression pattern of organized and growth arrested mammary 

acini would share similarities with breast tumors with good prognoses. Using Affymetrix 

HG-U133A microarrays, we analyzed the expression of 22,283 gene transcripts in two 

HMEC cell lines, 184 (finite life span) and HMT3522 S1 (immortal non-malignant), on 

successive days post-seeding in a laminin-rich extracellular matrix assay. Both HMECs 

underwent growth arrest in G0/G1 and differentiated into polarized acini between days 5 

and 7. We identified gene expression changes with the same temporal pattern in both 

lines. We show that genes that are significantly lower in the organized, growth arrested 

HMEC than in their proliferating counterparts can be used to classify breast cancer 

patients into poor and good prognosis groups with high accuracy. This study represents a 

novel unsupervised approach to identifying breast cancer markers that may be of use 

clinically.  
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INTRODUCTION: 

Loss of growth control and disruption of tissue architecture are among the earliest 

hallmarks of cancer. We hypothesized that the gene expression changes that occur during 

the organization and growth arrest of cultured mammary acini would share similarities 

with breast tumors that had a good prognosis. To test this hypothesis, we examined 

temporal changes in gene expression in two non-malignant human mammary epithelial 

cells (HMEC) grown in a three-dimensional laminin-rich extracellular matrix (3D 

lrECM) assay (1). In this model, single non-malignant breast epithelial cells form 

polarized growth arrested multicellular structures that resemble acini over a period of 

several days. This transition from the unpolarized actively dividing state to a polarized 

non-dividing state is the reverse of what happens in the early stages of tumorigenesis. 

We used two non-malignant HMEC, a non-immortalized HMEC strain,184 (2, 3), 

and spontaneously immortalized cell line, HMT3522-S1 (4), and monitored the changes 

in gene and protein expression as the cells formed acinar structures in 3D lrECM 

cultures. During the process of self-organization and withdrawal from the cell cycle, we 

noted a progressive hypophosphorylation of the retinoblastoma gene product (Rb) and an 

induction of the cyclin-dependent kinase (cdk) inhibitor p27
kip1

. Analysis of the changes 

in gene expression in both cell lines allowed the identification of sets of commonly 

regulated genes. 

While established breast cancer prognostic markers such as tumor size, grade, 

lymph node and hormone receptor status are useful in predicting survival in large 

populations (5-7), there is a pressing need to develop better prognostic signatures to 

predict recurrence and overall survival. A particular benefit would be the identification of 
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patients with good prognoses whose tumors are highly unlikely to recur and who 

nevertheless are being treated with cytotoxic chemotherapies (8). The advent of gene 

expression technologies has greatly aided the identification of molecular signatures with 

value for tumor classification and prognosis prediction (9-14) . Van de Vijver et al. have 

developed a 70-gene signature that effectively stratifies patients into good and poor 

prognosis groups (15, 16). Paik et al. have proposed a 21-gene signature with which to 

calculate a “recurrence score” that predicts the likelihood of recurrence in estrogen 

receptor (ER)-positive lymph node-negative patients (17). In each of these studies, the 

predictive signatures have been derived by using a training set of patients of known 

outcome, followed by testing these signatures in a validation set of patients. In contrast, 

our approach has been to identify directly the genes whose expression changes as 

cultured mammary epithelial cells transition from a disorganized to an organized state, 

and to then test as proof of principle the possible utility of these genes as prognostic 

markers in a validation set of patients.  

 

MATERIALS AND METHODS: 

Cell Culture. 

Finite-lifespan 184 HMEC were obtained from reduction mammoplasty tissue and 

grown in a serum-free MCDB 170 medium (MEGM; Clonetics Division of 

BioWhittaker, Walkersville, MD, USA), as described previously (2, 18). HMT-3522 S1 

mammary epithelial cells were cultured in H14 medium (DMEM/F12 containing 250 

ng/ml insulin, 10 µg/ml transferrin, 2.6 ng/ml sodium selenite, 10
-10

 M estradiol, 1.4 x 10
-

6
 M hydrocortisone, 10 ng/ml EGF and 5 µg /ml prolactin).  The cells were cultured in a 
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3D laminin-rich extracellular matrix (Matrigel, BD Biosciences), as described (19). The 

colonies were isolated from the Matrigel in ice-cold PBS/5 mM EDTA after 3, 5, 7, and 

10 days. For western blot analysis, the colonies were lysed in 150 mM NaCl, 1 % NP-40, 

50 mM Tris, pH 8.0. RNA was isolated using the RNeasy kit (Qiagen), according to the 

manufacturer’s instructions. 

Indirect immunofluorescence and image acquisition. 

Acinar structures were fixed on glass slides in methanol-acetone (1:1) at -20°C 

for 10 minutes and air dried. A primary block was performed in an IF Buffer (130 mM 

NaCl, 7 mM Na2HPO4, 3.5 mM NaH2PO4, 7.7 mM NaN3, 0.1% bovine serum albumin, 

0.2% Triton X-100, 0.05% Tween-20) + 10% goat serum for 1 hour at room temperature. 

A secondary block was performed in IF Buffer + 10% goat serum + 20µg/ml goat anti-

mouse F(ab’)2 fragment for 30 minutes. The primary antibody, rat anti-alpha-6 integrin 

(Chemicon International), was diluted 1:50 in the latter blocking buffer and incubated 

overnight (15-18 hours) at 4°C. Secondary antibodies conjugated with fluorescent dye 

FITC or Texas Red were diluted 1:100 in blocking buffer and incubated 1 hour at room 

temperature. Immunofluorescent images were acquired using an inverted microscope 

equipped with a digital camera and SPOT software. Confocal analysis was performed 

using a Zeiss 410 confocal microscopy system. The images presented are representative 

of two or more independent experiments. All the images were converted to TIFF format 

and arranged using Adobe Photoshop 5.0. 

Flow cytometry. 

To analyze the DNA content, acini were suspended in 300 µl 0.25% trypsin and 

incubated at 37°C for exactly 10 minutes. The dispersed cells were washed three times in 
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PBS and fixed in 40% ethanol at 4°C overnight. They were then incubated with 500 µg 

/ml RNaseA in PBS at 37°C for 30 minutes and stained with 69µM propidium iodide 

solution in PBS at room temperature for 30 minutes. The DNA content was determined 

by flow cytometry using a FACScan (Becton Dickinson, Hialeah, FL), and the data were 

analyzed with Cell Quest software (Becton Dickinson). 

Immunoblotting.  

Whole-cell lysates (20–100 µg protein) were separated by SDS-PAGE and 

transferred electrophoretically to PVDF membranes (Millipore, Billerica, MA). After 

blocking in 10% nonfat dry milk for 90 minutes at room temperature, they were 

incubated with the following antibodies at 1:500 to1:1000 dilution in 2% nonfat dry milk 

for 2 hours at room temperature or overnight at 4°C: rabbit anti-phosphorylated Rb at 

S807/811 and S795 (Cell Signaling Technology, Beverly, MA), rabbit anti-

phosphorylated Rb at S612 and T821 (Biosource, Camarillo, CA), and mouse anti-p27 

kip1 
(BD Transduction Laboratories). The blots were then incubated with HRP-conjugated 

sheep anti-mouse IgG or anti-rabbit IgG at 1:2000 in 2% nonfat dry milk for 90 minutes 

at room temperature. The blots were developed using Super Signal West Pico 

Chemilumiscent Substrate (Pierce, Rockford, IL).  

Survival analysis. 

A database consisting of the microarray profiles of 295 human breast tumors with 

the associated clinical data (15) was obtained from Rosetta Inpharmatics 

(http://www.rii.com/publications/2002/nejm.html). For survival analysis of the 19 

individual marker genes, the patients were stratified into quartiles for expression of each 

marker, and the survival curves were computed using the method of Kaplan and Meier. 
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Statistical significance was determined using the log-rank test. Statistical analyses were 

performed using Graphpad Prism. For survival analysis of the set of 249 marker genes, 

the patients were stratified into two groups using GeneSpring software by hierarchical 

cluster analysis with a distance metric of the expression pattern of all 249 genes. Kaplan-

Meier survival curves, log-rank statistics, and the estimated hazard ratio for these two 

groups were computed using the Excel add-in EcStat. 

Microarray hybridization and analysis.  

Cell samples were harvested in duplicate at three time points, 3, 5, and 7 days, 

after seeding in lrECM. Purified total cellular RNA was biotin-labeled and hybridized to 

human oligonucleotide microarrays (Affymetrix HG-U133A), as previously described 

(20). Experiments with Affymetrix-present P-call rates of >30% were included in the 

analysis. Signal values from each of the 22,283 probe sets were calculated by means of 

robust multi-array analysis (RMA) (21) using Bioconductor 

(http://www.bioconductor.org) in the R computing environment. The signal values were 

inverse log2 transformed and then imported into GeneSpring software (SiliconGenetics); 

and each array was normalized to its median signal intensity. The genes were normalized 

to the mean of the 3-day time point for each cell type independently. For Method 1 of 

selecting significantly differential temporally co-regulated genes (Figure 2): Significantly 

up-regulated genes in each cell specimen were identified by first selecting the genes 

induced at least 1.5 fold in at least one of the six conditions and then performing an 

ANOVA analysis as a function of time. Variances were calculated using the cross-gene 

error model (GeneSpring), p-value cutoff 0.05, multiple testing correction: Benjamini and 

Hochberg False Discovery Rate. About 5% of the identified genes in each set would be 
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expected to pass this restriction by chance. Significantly down-regulated genes were 

identified in the same manner after normalizing to the 7-day time point. Genes that were 

up- or down-regulated early in each cell line were selected from the significantly up- or 

down-regulated gene lists. The early genes were defined as those with a mean expression 

at 5 days of at least 50% of their mean expression at 7 days. For Method 2 of selecting 

significantly differential, temporally co-regulated genes (Figure 6A): We first selected all 

genes that were at least 1.5 fold differential (up or down) in at least one of the four 

samples from the two later time points (days 5 and 7) for either cell specimen. We then 

performed an ANOVA as a function of time. Variances were not assumed equal (Welch 

ANOVA), p-value cutoff 0.05, multiple testing correction: Benjamini and Hochberg 

False Discovery Rate. From this list of genes that were significantly differential in either 

cell line, we then identified genes that were up- or down-regulated early (mean 

expression at 5 days of at least 50% of their mean expression at 7 days) or late in each 

cell line. We then identified those genes that were coordinately regulated in both cell 

lines. 

 

RESULTS: 

Temporal analysis of gene expression in two non-malignant human breast epithelial cells 

grown in 3D lrECM cultures. 

To identify consistent changes in gene and regulatory protein expression levels, 

we characterized two independently derived non-malignant HMECs: one finite life-span 

strain (184) (2) and one spontaneously immortalized line (HMT3522 S1) (4). Both cells 

formed acinus-like structures with similar morphology and basal polarity when cultured 
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from single cells in lrECM (Figure 1A and 1B). We performed temporal studies to 

determine when, and in what order, changes in critical cell cycle regulatory molecules 

occurred in non-malignant HMECs in 3D lrECM cultures. Flow cytometric analyses 

indicated that, after undergoing a limited number of cell divisions, the majority of non-

malignant S1 cells accumulated in the G0/G1 phase of the cell cycle by day 7 (Figure 

1C). The product of the retinoblastoma susceptibility gene (Rb), a central player in the 

G1/S transition, is inactivated by phosphorylation, allowing cell cycle progression. Rb 

inactivation occurs through the sequential actions of cyclin D/cdks 4 and 6, and of cyclin 

E-cdk2 complexes (22). We analyzed cell cycle regulators known to affect G1 

checkpoints in a time-dependent manner in S1 cells in 3D cultures. Phosphorylation of 

several sites on Rb was found to gradually decrease between days 5 and 10 in these non-

malignant cells, consistent with the growth-suppressive role of the hypophosphorylated 

form (Figure 1D).  Cyclins D1, E, and A, as well as their binding partners—cdks 4, 6, 

and 2—also decreased during this period (data not shown). In contrast, the cdk inhibitor 

p27
kip1

 increased between days 5 and 10 (Figure 1D). The pronounced down-modulation 

of Rb phosphorylation and the elevation of p27
kip1

 protein levels were changes observed 

in both the S1 and 184 cells (data not shown). Although other studies have used different 

HMEC (MCF10A) to determine how cells can escape normal growth control (23-26), the 

mechanisms by which mammary cells actually initiate and maintain growth arrest during 

the process of acini formation in the context of 3D-lrECM remain to be determined. 

Global gene expression analysis of the time course of HMECs in 3D. 

To probe systematically the molecular changes that accompany acinus formation, 

we analyzed the expression profiles of 22,283 transcripts using Affymetrix HG-U133A 
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microarrays. Microarray experiments were performed with biological duplicates using 

RNA samples harvested from S1 and 184 cells, after 3, 5, and 7 days’ culture in lrECM. 

Since growth arrest and polarization occurred with similar kinetics in both cell types 

(Figure 3A), we reasoned that the gene expression changes important for these processes 

would follow a common temporal pattern in both cell lines, and that changes that were 

cell type-specific could be disregarded. 

We first identified genes that showed at least 1.5-fold changes during the time 

course in the individual cell specimens (ANOVA, p < 0.05) (within this window, 363 

genes were up-regulated and 117 genes down-regulated in 184 cells; 234 genes were up-

regulated and 351 genes down-regulated in S1 cells). We then divided these lists into 

genes whose expression changed ‘early’ by our definition (between days 3 and 5) or 

‘late’ (between days 5 and 7) in S1 and 184. Finally, we identified the genes from each 

temporal group that were common to both cell types (Figure 2). A total of 60 genes with 

common temporal patterns were identified, including 21 genes that were up-regulated 

early, 11 genes that were up-regulated late, 6 genes that were down-regulated early, and 

22 genes that were down-regulated late (Figure 3B and 3C and supplementary material). 

 

Correlation of the differentially expressed genes with survival of breast cancer patients. 

To relate the process of acinar development in 3D lrECM cell cultures to the 

changes that occur in breast cancer, we examined the expression levels of the 

differentially regulated genes identified using our model using previously published 

microarray data for a panel of 295 breast cancer samples from the fresh-frozen-tissue 

bank of the Netherlands Cancer Institute, including 151 lymph node-negative and 144 
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lymph node-positive patient samples (15). Fifty five of the 60 genes selected in our 3D 

culture analysis were included on these microarrays.  We looked at 5- and 10-year 

survival data and applied Student’s t-test to determine how many of the genes modulated 

in 3D cultures showed survival-associated expression changes. T-tests were performed to 

determine whether the difference in the expression level of a given gene in two groups 

(e.g., patients who survived five years versus patients who did not) was large enough that 

it was not likely to be due to chance. The numbers and percentages of genes exhibiting 

significantly different expression in the tumors of patients with differential survival (p < 

0.05) were tabulated for a) all the genes represented on the microarrays, b) genes selected 

on the basis of differential expression during the 3D lrECM timecourse, or c) randomly 

generated gene lists (Table 1). The percentage of genes with survival-associated 

expression changes was highest for those genes down-regulated late (between days 5 and 

7) in the time course. The percentage for this gene list exceeded those of the unfiltered 

list of all 25,773 genes represented on the arrays, 5 random gene lists, and all other 3D 

lrECM gene lists. The list of genes that were down-modulated late in the lrECM 

timecourse showed a marked enrichment in genes whose expression level correlated to 5 

(68%) and 10 years survival (53%). The levels of the majority of the late down-regulated 

genes were higher in patients who died within 5 or 10 years (ACTB, VRK1, ODC1, 

CKS2, FLJ10036, FLJ10540, FOXM1, RRM2, TRIP13, CDKN3, STK6, FLJ10517, 

TUBG1, ACTN1, TNFRSF6B and EPH2), while the levels of three genes (DUSP4, 

HBP17 and EIF4A1) were lower in these patients. 

We identified 22 genes in all that were down-regulated in both HMECs between 

days 5 and 7 of lrECM culture. Of these, 19 genes were represented in the published data 
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set for the 295 patient tumor samples. We stratified the 295 tumors into quartiles based 

on the relative expression level of each of the genes in the selected set, and further 

analyzed the relationship of the expression level of each individual gene to survival 

(Figure 4). The resulting Kaplan-Meier curves showed that gene expression levels 

correlated significantly with outcome for 14 of the 19 selected markers. For 13 of the 14 

markers, gene expression was lower in tumors from patients with better outcomes, while 

in one case (DUSP4) gene expression was lower in tumors from patients with poorer 

outcomes. 

Collective gene signatures have the potential to discriminate among clinical 

endpoints more accurately than markers used individually. Hence, we tested the ability of 

our set of 19 genes to classify breast cancer patients into prognostic groups. We used 

hierarchical cluster analysis to separate the patients into groups and then determined the 

overall 10-year survival rates for these groups (Figure 5). The cluster analysis separated 

the patients into five groups, three of which had tumors that expressed comparatively 

lower levels of most of the 19 genes, and two of which expressed higher levels. The 10-

year survival rates for these 5 groups were 95, 84, 67, 61, and 54% respectively. 

To test whether other sets of genes down-regulated late in the lrECM timecourse 

identified by using other selection strategies would also include useful breast cancer 

markers, we applied a second selection strategy (Figure 6A) and tested the ability of the 

resulting gene set to predict breast cancer prognosis. This second method was less 

restrictive than the first, and resulted in the identification of 287 genes that were 

significantly down-regulated late in the 3D time course of both HMEC specimens (for 

complete gene list and gene expression information, see supplemental information). 
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Seventeen of the 22 genes selected using Method 1 were also included in the 287 genes 

selected using Method 2. We tested the ability of these genes to predict breast cancer 

prognosis by using hierarchical cluster analysis in the same set of previously published 

microarray data from 295 breast cancers (15). A large majority, 249 of the 287 genes 

were included on these microarrays. Of the 17 overlapping (methods 1 and 2) genes on 

the Affymetrix chips, 15 were present on the Rossetta chips: ACTB, ACTN1, CDK3, 

CKS2, DUSP4, EPHA2, HBP17, FOXM1, ODC1, RRM2, STK6, TNFRSF6B, TRIP13, 

TUBG1, VRK1. 

Hierarchical cluster analysis using the 249 gene signature classified the samples 

into two groups of approximately equal numbers of tumors (Figure 6B). Overall 10 year 

survival rates were 90% (138 of 154) for the good prognosis group and 59% (83 of 141) 

for the poor prognosis group. To assess the significance of these predictions and take into 

account patients that could not be followed the entire length of the study, we performed a 

Kaplan-Meier analysis. The results show that the 249 gene profile was highly informative 

in identifying patients with poor outcome (log rank p = 2.7x10
-10

) (Figure 6C). The 

estimated hazard ratio for poor outcome (failure to survive) in the group with the poor 

prognosis signature as compared with the good prognosis signature was 4.7 [95% 

confidence interval 2.8 – 7.9].  

 

 

DISCUSSION: 

Three-dimensional (3D) laminin-rich (lrECM) cultures permit non-malignant 

cells to exhibit self-organizing properties. Such cultures provide models that allow the 
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study of processes that are aberrant in breast cancer (1, 19, 27, 28). To understand how 

breast epithelial cells transition from a proliferating, unorganized state to a resting, 

organized state, and to relate this process to the opposing changes that occur in clinical 

breast cancer, we performed genome-wide gene expression profiling for two non-

malignant HMECs in 3D cultures, and utilized published data from a panel of 295 breast 

cancer samples. We show that genes that are down-regulated as HMEC transition from a 

proliferative to an acinar phenotype can be used collectively as signatures to predict 

clinical breast cancer prognosis.  

Our approach represents a new way to identify genome-wide cancer prognostic 

markers. We based all the marker selection steps on HMEC cultured in 3D lrECM. The 

3D model system provided a means to focus on epithelial cells themselves, and a defined, 

highly relevant biological process - the formation of breast acini. Whereas the stroma is 

absent, the 3D lrECM assays appears to substitute for myoepithelial cells and other 

signals that are needed to form an organized acini (29). Differentially expressed genes 

identified using this model system are likely to be functionally linked to the 

transformation-relevant process.  Further, we have applied an unsupervised method 

(hierarchical cluster analysis) to classify the patient samples using selected markers. 

Hence, neither our method of marker selection nor our sample classification method 

relies on any clinical information.  

 Gene-expression profiling of tumors using DNA microarrays is a promising 

method for predicting prognosis and treatment response in cancer patients (17, 30-32). 

Two studies have recently employed genome-wide microarray analysis to identify gene 

signatures that predict prognosis in breast cancer. The profiles studied by both groups of 
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researchers were reported to be more powerful predictors of the outcome of disease than 

standard systems based on clinical and histological criteria. The study by van’t Veer et al. 

(16) used the supervised classification of a primary data set of 78 tumor samples to 

identify a 70-gene signature that divided the samples into classes of poor and good 

prognosis. Validation of the classifier by a second overlapping set of 295 tumors showed 

that it accurately predicted 10-year survival in breast cancer patients (15). Overall, the 

10-year survival rates were 54.6% ±4.4% and 94.5% ±2.6% for the poor and good 

prognosis groups, respectively. Their estimated hazard ratio for poor outcome (distant 

metastases) in the group with a poor-prognosis signature, as compared with the group 

with the good-prognosis signature, was 5.1 (95 % confidence interval, 2.9 to 9.0; 

P<0.001). In a similar study, Wang and collaborators (33) also used supervised 

classification in a training set of 115 breast tumor samples. They identified a 76-gene 

signature, which was verified in an independent set of 171 breast tumors. Their estimated 

hazard ratio for poor outcome (distant metastases within 5 years) in the group with the 

poor prognosis signature as compared with the group with the good prognosis signature 

was 5.7 (95% confidence interval, 2.6 to 12.4). Our 249-gene signature predicted 10-year 

survival rates of 59% and 90% for poor and good prognosis groups, respectively. The 

estimated hazard ratio for poor outcome (failure to survive) in the group with the poor 

prognosis signature as compared with the good prognosis signature was 4.7 (95% 

confidence interval 2.8 – 7.9).  

Our 249 gene signature overlapped by 11 genes with the 70 gene signature of 

van’t Veer et al. (16) (including NUSAP1, UCHL5, RAMP, DC13, PRC1, COL4A2, 

PITRM1, CENPA, MELK, KNTC2, and MCM6) and by 7 genes with the 76 gene 
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signature of Wang et al (33) (including MTB, POLQ, SUPT16H, FEN1, DUSP4, PLK1, 

and SMC4L1). The van’t Veer and Wang signatures overlapped by a single gene (cyclin 

E2). Our 19 gene signature had no genes in common with either of the previously 

published signatures. 

Our 19-gene signature included several genes encoding proteins with roles in the 

cell cycle and in cell division. . Cell-cycle genes were previously identified as important 

markers of prognosis in ER-positive younger patients (34). In this earlier study, 50 cell-

cycle-related genes divided 83 ER-positive younger patients into two groups of good 

versus poor prognosis. The overall 10-year survival rates were 46% and 96% for the poor 

and good prognosis groups, respectively. Similarly, we found that a core group of 

predominantly cell cycle and mitotic organizing center genes (CDKN3, RRM3, 

FLJ10540, FOXM1, STK6, TRIP13, EIF4A1, FLJ10036, VRK1, TUBG1, CKS2, 

FLJ10517) made a strong contribution to stratifying tumors into good versus poor 

prognostic groups. One gene from our 19-gene signature, STK6, which encodes Aurora-

A (35, 36) was also included in the 50-gene signature of Dai et al. (34), while 15 genes 

from our 249-gene signature were included in the Dai et al. signature (including BM039, 

DKFZp762E1312, LOC51203, LOC51659, ID-GAP, KNSL6, PRC1, STK6, CDC45L, 

SNRPA1, H2AFZ, CENPA, CDC6, BIRC5, and BLM). In addition to cell-cycle genes, 

our prognostic genes also encoded products with other functions, including genes 

involved in cytoskeletal regulation (ACTB, ACTN1) (37), cell survival (TNFRSF6B) 

(38, 39), polyamine biosynthesis (ODC1) (40), and cell-cell interactions (EPHA2) (41). 

The genes in these additional functional groups were important in subdividing the 

patients into subgroups with differing survival rates. 
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In conclusion, we report that the gene expression changes that commonly occur in 

non-malignant HMEC grown in 3D lrECM cultures provide gene expression signatures 

that effectively stratify patients into prognostic groups according to overall survival rates. 

Our 249 gene signature achieved a hazard ratio of 4.7, which is comparable to hazard 

ratios achieved by large scale supervised breast cancer microarray studies. Our results 

underscore the relevance of 3D lrECM cultures for studies of malignant transformation, 

and suggest potentially valuable new biomarkers for further clinical evaluation. 
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Tables 

 

Table 1. Number of potential prognostic markers for breast cancer among 
the genes that were differential in the 3D time course (Method 1). 
 

 
*Student’s t-test, p<0.05.  
#Total number reflects genes included on the Rosetta microarrays; hence values 
in some cases are less than the total number included on the Affymetrix 
microarrays.  
Bold: > 50%. 
 
 
 
 
 

 

Total 

no. of 

genes
Survival     

(5 yrs)

Survival   

(10 yrs)

All genes 25773 2418 (9.4%) 67 (0.26%)

Early up 20 7 (35%) 5 (25%)

Early down 5 1 (20%) 1 (20%)

Late up 11 3 (27%) 1  (9%)

Late down 19 13 (68%) 10 (53%)

Random list 1 20 0 1 (5%)

Random list 2 20 5 (25%) 3 (15%)

Random list 3 20 4 (20%) 0

Random list 4 20 0 0

Random list 5 20 0 0

Number of 

significantly* 

differential genes when 
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FIGURE LEGENDS 

Figure 1. HMEC cultured in lrECM form polarized structures and arrest growth in 

G0/G1. A. Phase-contrast image of typical acinar structures formed by 184 cells at day 7 

in lrECM. Structures reach dimensions of 20-40 µm diameter. Bars equal 25 µm. B. 

Indirect immunofluorescent image showing basal polarity of alpha-6 integrin (green) in 

184 cells at day 7 in lrECM. Cell nuclei were stained with DAPI (red). C. Flow 

cytometric analyses of propidium iodide stained S1 cells indicated that the majority of the 

cells accumulated in the G0/G1 phase of the cell cycle by day 7 in lrECM. D. Western 

blot analyses of cell-cycle regulatory molecules in S1 cells at days 5, 7, 10, and 15 after 

suspension in lrECM indicated that total as well as specific phosphorylated forms (serines 

807/811, serine795, serine 612, threonine 821) of Rb  decreased , while p27 increased, 

over the time course. Ponceau staining indicated that equivalent amounts of total protein 

were loaded in each lane. 

 

Figure 2. A scheme is provided outlining Method 1 used to select sets of temporally co-

regulated genes. 

 

Figure 3. Sixty genes were determined by Method 1 to show significant changes in  

expression in both HMEC specimens during the time course of culture in lrECM. A. 

Temporal pattern of growth arrest in S1 and HMEC184 cells. The percentage of cells in 

S-phase decreased significantly between days 3 and 7. B. Expression levels of the 60 

genes that were coordinately expressed in both cell types. The genes were grouped into 

categories based on whether they showed coordinate up-regulation early, up-regulation 
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late, down-regulation early, or down-regulation late during the time course (see text for 

details). Note that the scale is logarithmic. C. Changes in the expression levels of the 60 

individual genes are plotted and organized by hierarchical cluster analysis. Red = up-

regulated, blue = down-regulated genes. Complete gene names and GenBank IDs are 

available (see supplementary material). 

 

Figure 4. Fourteen of the nineteen genes down-regulated late during acinar 

morphogenesis showed significant correlations with patient survival. 295 patients were 

grouped into quartiles based on the relative expression of each selected gene in their 

corresponding tumors.  Survival of each quartile was plotted according to the method of 

Kaplan and Meier. P-values represent the outcomes of the log-rank tests between the 

upper and lower quartiles. 

 

Figure 5. The set of 19 genes down-regulated late during acinar morphogenesis can be 

used to accurately cluster 295 breast cancer samples into prognostic groups. The rows 

represent the relative expression levels of the genes listed on the right. The columns 

represent individual patients. The scale of relative expression levels is the same as that 

shown in Figure 3C. Genes and tumor samples were arranged by a hierarchical cluster 

analysis using a Pearson metric. Dendrograms at the top and left reflect the degree of 

relatedness of the samples and genes, respectively. Dendrogram branch colors at the top 

indicate  different prognostic groups. Genes in bold were significantly associated with 

survival (Kaplan-Meier analysis, p < 0.05, Figure 4). The panel below the cluster diagram 

indicates clinical parameters for the 295 patient samples. The black regions represent the 
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the percentages of patients surviving 10 years in each of the five prognostic groups are 

shown below. 

Figure 6. A second set of 249 genes down-regulated late in the time course of HMECs in 

3D lrECM cultures classifies good versus poor prognosis in breast cancer patients.  A. A 

scheme is provided outlining Method 2 used to select sets of temporally co-regulated 

genes. B. The set of 249 down-regulated genes identified by Method 2 clustered the 295 

breast cancer samples into two prognostic groups. Genes are arranged by a hierarchical 

cluster analysis using a Pearson metric and samples are arranged using a distance metric. 

Clinical parameters are indicated below the diagram.  C. Overall survival in the two 

groups was plotted by the method of Kaplan and Meier. P-value represents the outcome 

of the log-rank tests between the good and poor prognosis groups. 
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*Genes at least 1.5-fold differential in at least 1 of the later time points, 5 and 7 days.
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