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Abstract

GINGER [1] is an axisymmetric, polychromatic(r−z−t)
FEL simulation code originally developed in the mid-
1980’s to model the performance of single-pass ampli-
fiers. Over the past 15 yearsGINGER ’s capabilities have
been extended to include more complicated configurations
such as undulators with drift spaces, dispersive sections,
and vacuum chamber wakefield effects; multi-pass oscilla-
tors; and multi-stage harmonic cascades. Its coding base
has been tuned to permit running effectively on platforms
ranging from desktop PC’s to massively parallel processors
such as the IBM-SP. Recently, we have made significant
changes to GINGER by replacing the original predictor-
corrector field solver with a new direct implicit algorithm,
adding harmonic emission capability, and switching to the
HDF5 IO library [2] for output diagnostics. In this pa-
per, we discuss some details regarding these changes and
also present simulation results for LCLS SASE emission at
λ =0.15 nm and higher harmonics.

INTRODUCTION

Over the past 25 years, there has been a steady advance
in the use of numerical simulation codes to explore FEL
physics, analyze experimental results, and to help design
elaborate and expensive projects such as the LCLS. As
the underlying computer hardware has grown both faster
and often more complex (i.e., massively parallel environ-
ments), FEL codes have similarly become more complex
both in terms of the underlying physical phenomena they
model (e.g.,wakefield losses) and the more realistic forms
of simulation they attempt (e.g.,importation of massive
macroparticle files for start-to-end tracking runs). More-
over, the amount of information the codes utilize and pro-
duce has increased by several orders of magnitude with
multi-GB output and/or particle restart files becoming nec-
essary for full time-dependent simulations of x-ray FEL’s
and multi-stage harmonic cascades.

This paper present recent changes to theGINGER simu-
lation code[1] which originally was designed in the mid-
1980’s to study sideband growth in single-pass FEL ampli-
fiers and which has steadily evolved since to study more
and more elaborate configurations such as SASE devices,
harmonic cascades and oscillators. The Fortran90 base cur-
rently underlyingGINGER has proven very useful both in
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terms of modularization and in the number of useful lan-
guage features (e.g.,array syntax and built-in operators,
type definitions, memory management). The code struc-
ture has proven very amenable to efficient multiprocessing
in which the different longitudinal slices are assigned to
different processors with MPI [3] handling the necessary
interprocessor communication. In the past year, we have
replaced the original predictor-corrector field solver by a
new implicit solver and also have extended the code to cal-
culate radiation emission at multiple harmonics; the next
section gives details on these changes. We then present
results from aGINGER calculation for predicted harmonic
emission from the LCLS.

With the addition of calculations of harmonic emission,
typical GINGER output file sizes doubled or more. Based
upon file compactness, IO speed, and flexibility in data lay-
out, the output file format was changed from simple ASCII
to HDF5[2]. In part because we believe that the FEL sim-
ulation community should become aware of the usefulness
of HDF5 IO, the last section of this paper gives details con-
cerning its implementation intoGINGER .

THE NEW FIELD SOLVER AND
IMPLEMENTATION OF HARMONICS

Adopting the slowly-varying envelope approximation
(SVEA) with E(r, z, t) ≡ Ẽ(r, z, t) × exp i(koz − ωot),
the field equation becomes
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⊥Ẽ −
(ω0

c2
− k2

o

)
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where∂/∂Z is the Lagrangian derivative in the forward
(i.e., positive z) direction, andJ⊥ is the microbunched
transverse current at angular frequencyω0. The origi-
nal GINGER field solver used a Gear predictor-corrector
scheme [4] which automatically controlled step size to
maximize computational speed for a given error allowance,
but had negative aspects regarding algorithmic complexity
and non-trivial coding difficulties with regards to adding
additional dimensions such as harmonics and (eventually)
non-axisymmetric modes. Consequently, we developed a
completely new field solver based upon a backward-biased,
implicit solution of the heat flow equation (“Case 5” in ta-
ble 8.1 of [5]). This solution is always stable for arbitrary
step size∆Z and the chosen default bias factor makes the
scheme equivalent to the Crank and Nicholson algorithm
with errors scaling as∆r2 and∆Z2. Tests of simple vac-
uum Gaussian mode propagation over multiple Rayleigh
ranges show normalized energy conservation to better than
10−3 for ∆r/R0 ≤ 0.1 whereR0 is the mode waist size.



Sec. 8.5 of Ref. [5] gives an elegant (and simple to
code) solution method based upon a Gaussian elimination
procedure where one first sweeps outward inr and then
back to the axis Extension of the field solver to include
higher harmonics is simple with (ko, ω0) being replaced
by (hko, hωo) and use of the appropriate current source
term. For the latter,GINGER uses wiggler-period aver-
aging and follows the standard formulation (see,e.g.,[6])
for odd harmonic emission that depends only upon the lo-
cal harmonic microbunching amplitude (and ignores even
harmonic emission arising from transverse gradients in
the electron beam density). Tests by Z. Huang compar-
ing the predicted 3rd harmonic power from nonlinear mi-
crobunching with that computed byGINGER for a simple
λ0 = 0.15 nm, steady-state amplifier with LCLS param-
eters show excellent agreement (e.g.,10% or better) for
sufficient macroparticle number (e.g.,≥ 65K per slice).
Use of smaller macroparticle number tends to lead to an
overestimation of the harmonic power, perhaps because the
longer Rayleigh length (and thus less radial smoothing in
Z) at 0.05 nm makes the effective source term “grid noise”
(i.e., in higher radial modes) much worse than that corre-
sponding to the fundamental (for which 8K macroparticles
appear more to be than sufficient).

The original macroparticle longitudinal mover also used
a Gear-scheme (which was extreme computational overkill
given the slow evolution of particle phase and energy)
and was replaced by a simple second-order Runge-Kutta
solver in which only the fundamental radiation field acts
back upon the particles. Within this limitation one can
study nonlinear harmonic generation (the dominant emis-
sion term for most SASE and harmonic cascade devices)
but not linear amplification. As shown in Ref. [7], ignoring
the harmonic emission feedback is an extremely good ap-
proximation for SASE x-ray FELs and essentially all FELs
in which gain at the fundamental wavelength is much larger
than that at the harmonics, as is the usual case.

In fall 2006 we expect to add the harmonic field feed-
back terms to the mover and also a fourth-order Runge-
Kutta scheme as an option. Lastly, we note that Eq. (1) is
separable by azimuthal mode and thus the new field solver
can be easily extended (as is hopefully planned for 2007)
to solve forẼ(r, ϕ, z, t).

AN EXAMPLE LCLS HARMONIC
EMISSION CALCULATION

Nonlinear harmonic emission from the LCLS is poten-
tially extremely useful, both for experimentalists and as a
diagnostic of FEL performance. Adopting design param-
eters (3.4 kA,γ = 26693, 1.2 mm-mrad,Bw = 1.25 T,
σγ/γ = 10−4), and a quad FODO focusing lattice that
produces an average Twissβ-function of 28 m, we simu-
lated a LCLS 9.2-fs segment at 6-attosecond temporal res-
olution with 32768 macroparticles per slice. The calcula-
tion was run on 128-POWER 5 (1.9 GHZ) processors of the
“BASSI” IBM p575 system at NERSC and required≈ 40
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Figure 1: Time-averaged SASE power (left) and mi-
crobunching fraction (right) vs.z for an LCLS pulse at
the 0.15-nm fundamental (blue curve) and also the 3rd,
5th, and 7th harmonics (bunching only) (red, green, black
curves).
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Figure 2: RMS transverse size vs.z for SASE emission
from an LCLS pulse at the 0.15-nm fundamental wave-
length (blue curve) and also the 3rd and 5th harmonics (red
and green curves).

minutes of wall-clock time. Figure 1 plots the power at the
fundamental wavelength of 0.15 nm and also the 3rd and
5th harmonics as functions ofz. One sees that the plateau
region (on this semi-log plot) for smallz where sponta-
neous emission dominates the coherent FEL component
lasts much longer for the harmonics than the fundamental;
in reality the plateau region would extend even further be-
cause these calculation do not include non-axisymmetric
spontaneous emission. While the third harmonic grows
more rapidly withz than the fundamental in the region
60 ≤ z ≤ 85 m, it saturates at a low (∼ 1%) relative power
level.

Comparing the behavior of the on-axis far-field power
(not displayed) with the total near-field power (Fig. 1) re-
veals that the plateau region is much smaller for the funda-
mental but there is essentially no change for the harmonics.
This is likely related both to the short gain length for the
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Figure 3: Plots ofC1/2(τ ) for the on-axis far field emission
(left) and microbunching (right) for the fundamental and
harmonics (same color scheme as Fig. 1).
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Figure 4: Plots of RMS spectral width for on-axis far field
emission at the fundamental and harmonics (left) and the
3rd harmonic output (near-field) spectrum (smoothed with
a 5-bin average) (right).

harmonicsLg,h ≈ Lg,1/h and the smaller mode size (see
Fig. 2) for the coherent harmonic emission which reduces
some of the far-field contrastvis-a-visthe spontaneous har-
monic emission. Near power saturation, the RMS trans-
verse sizes of the 3rd and 5th harmonic emission are∼20%
smaller than that of the fundamental (Fig. 2). However,
after saturation, they also grow withz despite a greater
Rayleigh range, indicating perhaps that optical guiding ef-
fects are far more important for the fundamental.

Figure 5: Histogram of the probability distribution of
P (t)/ < P > at the fundamental and 3rd harmonic at the
undulator exit.

Standard SASE theory (e.g.,Ref. [8]) predicts that the
inverse spectral bandwidthω/∆ω and autocorrelation time
C1/2(τ ) (the point at which the temporal autocorrelation
function drops to 0.5) for FEL radiation increase asz1/2.
Such behavior is demonstrated by radiation at the funda-
mental (blue curves in Fig. 3. For the harmonics, the co-
herent component ofC1/2(τ ) suddenly dominates over the
spontaneous emission (for the radiation) and shot noise (for
the microbunching) at two-thirds of a saturation length,
reaches a maximum within a gain length, and then be-
gins declining withz, in contrast to the fundamental which
reaches a maximum somewhat later inz (right plot in
Fig. 1) and only drops in the last 20-m or so. Presum-
ably, debunching due to the development of a large energy
spread is responsible for the greater sensitivity of the har-
monics.

An autocorrelation function and power spectrum can
be similarly calculated for microbunching by using the
complex average computed over the macroparticles corre-
sponding toeach longitudinal electron beam slice. In con-
trast to the radiation quantities, the microbunchingC1/2(τ )
(right plot in Fig. 3) has a slow but steady linear decay
from its maximum which is perhaps associated with the
temporal variation ofΩsyn over the individual microspikes.
Ideally, in a near time-steady situation with essentially no
variation in radiation eikonal phase,C1/2(τ ) would be con-
stant with harmonic. However, in the SASE regime, Saldin
et al. [7] have predicted from 1-D numerical studies that
Ch=3

1/2 (τ )/Cfund.
1/2 (τ ) ≈ 0.65; the GINGER LCLS results

show a ratio' 0.5, a reduction attributable perhaps to non-
zero emittance effects not included in the 1-D study.

Figure 4 plots the inverse spectra width versusz to-
gether with the output spectrum at the third harmonic.
Another diagnostic of radiation field correlation, the ratio
[ω/∆ω]/[1.18ωC1/2(τ )] (≡ 1 for a Gaussian power spec-
trum), is 0.76 for the fundamental and drops to to 0.69 and
0.65 for the third and fifth harmonics at the position of max-
imum inverse bandwidth.

Another apparent difference with the Saldinet al. 1-D
results concerns the probability distribution forP (t). In
Fig. 5 we plot the normalized histogram for the fundamen-
tal and third harmonic ofthe output (near-field) radiation.
One sees that in accord with the earlier study, the third
harmonic emission is more peaked towardP = 0. How-
ever, the peak is more extreme and the first order moment is
much smaller, evidently because of large temporal regions
of relatively low harmonic power. The probability distribu-
tion for the fundamental is also more peaked towardP = 0
whereas Ref. [7] found a peak nearP =< P >. Because
our data is taken somewhat deeper in saturation than thez
point chosen by Saldinet al., it is possible (albeit unlikely)
that the distribution function reverts back to a negative ex-
ponential corresponding to the exponential gain regime. or-
that this particular SASE run does not have sufficient statis-
tics in terms of slice number to clearly resolve the distribu-
tion shape. However, it may also be possible that inclu-
sion of true transverse effects actually change the nature of



the distribution function in the saturation regime. Conse-
quently, this topic may warrant some additional study.

IMPLEMENTATION OF HDF5 IO

As is true for most large-scale simulation tools, an FEL
code must have numerous IO capabilities. On the input
side, the user must be able to specify a number of beam
and run parameters. Depending upon the run complex-
ity, additional input might be required,e.g.,6D macropar-
ticle phase space information from a tracking particle out-
put file or a “restart” file from a previous FEL code run (as
might be true for a harmonic cascade); a time-dependent in-
put radiation field; an undulator “lattice” includingaw(z),
possible pole error field and dipole corrector information,
and possible vacuum chamber longitudinal wake field in-
put. Output information can be very extensive: spatially-
and temporally-resolved radiation field information includ-
ing harmonics; 5D macroparticle phase space snapshots at
differentz− andt− locations for later use in scatterplots;
z− andt− resolved “scalar” information such as total radi-
ation power and macroparticle microbunching (at multiple
harmonics), energy spread, on-axis far field complex am-
plitude; and possible full 6D macroparticle and/or 2D(r, t)
radiation field information for a subsequent downstream
undulator run. As the raw binary size of this information
can exceed 100 MB for fields and 1 GB for particles, sim-
ple ASCII formats are unattractive both due to their size
(∼3X larger than pure binary) and slow IO transfer speed.
Moreover, unless one designs a very clever and robust self-
describing data structure and/or divides the heterogeneous
output into many separate files per run, it is difficult to have
an output file system that is reasonably easy to analyze (and
which maintains good backward compatibility as the sim-
ulation code inevitably evolves in complexity).

In answer to the above requirements and problems,
the HDF5[2] IO system offers a strong set of attractive
features: (1) self-describing data format, including op-
tional dataset attributes (2) Unix-like directory trees in-
cluding soft links (3) compact data storage with little ad-
ditional overhead relative to binary (4) multiplatform data
file portability (e.g., little- to big-endian, 32- to 64-bit na-
tive) (5) a rich class of native data types range from simple
strings to 1-D integer arrays to many dimensional real ar-
rays (6) user-definable data types (7) MPI-based parallel
IO on platforms such as the IBM-SP. The HDF5 develop-
ment group also provides a set of useful tools for HDF5
file data visualization and data dumping of individual struc-
tures. Many projects in the high performance computing
community have embraced HDF5 as well as a number of
3rd party visualization tools venders (e.g.,IDL). I note that
the GENESIS code [9] also has a growing HDF5 IO capa-
bility and would suggest that other FEL and tracking code
developers consider this option.

Currently, theGINGER HDF5 output file has 5 main
top directories: /baseparam to pass simulation run vari-
ables such as the central wavelength, number of slices, etc.;

/grids which have the r- and z- locations of grid points; /in-
put which has the complete ASCII input and template files
for the run; /radiation which contains all scalar and vec-
tor radiation field information; and /particles which has all
particle-derived information including scatterplot dumps,
if any. Separately, particle restart files can also be writ-
ten in HDF5 format and the extension to radiation restart
files (as is needed for multistage harmonic cascades) will
be done in the near future. Knowledge of the exact “path”
of a given data set (e.g.,/radiation/scalardata/...) is com-
pletely sufficient for a HDF5 utility (andGINGER post-
processor) to access the data set; the exact disk address
within the HDF5 file is not needed by external programs
but is provided by a low-level look-up table in the HDF5
file. This massively simplifies data access With the mi-
gration to HDF5 format, we believe it will be relatively
straight-forward and painless to extend theGINGER out-
put file to handle fully “3D” field information (i.e., [r, z, t]
→ [r, ϕ, z, t] ) and variable spatial resolution (e.g.,relative
finely z-resolved scalar quantities such a radiation power
and microbunching but coarser resolution of vector quanti-
ties such asE(r, z, t)) as needed by future code upgrades.
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