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Abstract 

 

High Pressure Scanning Tunneling Microscopy and High Pressure X-ray Photoemission 

Spectroscopy Studies of Adsorbate Structure, Composition and Mobility During Catalytic 

Reactions on a Model Single Crystal. 

by 

Max O. Montano 

Doctor of Philosophy in Chemistry 

University of California, Berkeley 

Professor Gabor A. Somorjai, Chair 

 

 Our research focuses on taking advantage of the ability of scanning tunneling 

microscopy (STM) to operate at high-temperatures and high-pressures while still 

providing real-time atomic resolution images.  We also utilize high-pressure x-ray 

photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus 

giving us chemical information to compare and contrast with the structural and dynamic 

data provided by STM. 

 STM was employed to study the structures formed by cyclic C6 hydrocarbon 

monolayers adsorbed on a platinum (111) crystal surface.  Cyclohexane. cyclohexene, 

1,3-cyclohexadiene, 1,4-cyclohexadiene and benzene were exposed to the platinum 

surface in the 10-6 Torr pressure regime.  Upon adsorption on Pt (111) both cyclohexane 

and cyclohexene produced the same (√7 x √7) R19.1° hexagonal structure, which 

corresponds to the partially dehydrogenated π-allyl (C6H9).  1,3-cyclohexadiene and 
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benzene produced a (2√3 x 2√3) R30.0° structure composed of pure benzene. 1,4-

cyclohexadiene forms a structure very different from the others, which we attributed to a 

(√43 x √43) R7.6° structure composed of molecular 1,4-cyclohexadiene. 

 STM studies on catalytic reactions of cyclohexene and its poisoning with carbon 

monoxide on Pt (111) were also performed in the presence of hydrogen at pressures 

slightly below 1Torr in the 300K - 350K temperature range.  At room temperature in the 

presence of 20 mTorr hydrogen and 20 mTorr cyclohexene, the surface formed the (√7 x 

√7) R19.1° π-allyl structure and no products were detected.  Increasing the hydrogen 

pressure to 200 mTorr caused the catalyst to begin producing cyclohexane and some 

benzene, while also causing the STM images to disorder.  The addition of 5 mTorr of CO 

to the system stopped all catalysis and formed an ordered CO overlayer.  At 353K with 

200 mTorr H2 and 20 mTorr C6H10, the surface was more catalytically active that at lower 

temperatures, and again the addition of CO stopped all catalysis.  STM revealed a mobile 

disordered surface suggesting that, although mobile, the surface was dominated by CO, 

which blocked adsorption of reactants. 

 Catalytic hydrogen/deuterium exchange on a platinum(111) single crystal and its 

poisoning with carbon monoxide was studied using STM, and high-pressure X-ray 

photoelectron spectroscopy (HPXPS).  At 298K, and in the presence of 200 mTorr of 

hydrogen and 20 mTorr of deuterium, the surface is catalytically active and STM images 

appear disordered.  The addition of 5 mTorr of CO stops all reaction and produces an 

ordered surface structure. At 353K in the presence of 200 mTorr of hydrogen and 20 

mTorr of deuterium, again the surface is catalytically active and STM images are 

disordered.  The addition of 5 mTorr of CO slows the reaction considerably, but turnover 
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continues as the H2/D2 activation energy increases from ~5.3 kcal/mol to 17.4 kcal/mol.  

XPS shows us however, that the amount of the CO on the surface is only ~10% less than 

at room temperature, and the surface structure is largely unchanged.  As the temperature 

is increased the surface CO decreases while the activity increases.  At around 370K XPS 

displays an abrupt change in the ratio of atop to bridge bound CO corresponding to a 

surface phase change.  Cooling the sample back to room temperature restores the original 

structure as shown by both STM and XPS.  From these data, a CO dominated, mobile and 

catalytically active surface model has been proposed. 

 STM studies of Pt (111) catalyzed benzene hydrogenation were performed at near 

ambient conditions from 300K �350K. Exposing the platinum surface to 10 Torr of 

benzene resulted in the formation of a mostly disordered overlayer of molecular benzene 

with small patches of order corresponding a c (2√3 x 3) structure.  No catalysis was 

observed.  Addition of 100 Torr of H2 and 600 Torr of Argon induced a largely 

disordered surface and low catalytic activity.  Heating the sample to 350K induced 

complete mobility and the steady production of cyclohexane was observed.  The addition 

of  5 Torr of CO at 350K resulted in a mobile but catalytically poisoned surface.  Cooling 

to room temperature recovered an ordered CO overlayer.  
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Chapter 1 :Introduction 

 

The study of the surfaces of materials has proven especially intriguing due in 

large part to the fact that surface properties often change dramatically from those of the 

bulk.  Many metals for example will reconstruct or rearrange their surface structure in 

order to lower their energy thus producing surfaces that are very far removed from a bulk 

terminated model [1].  Organic molecules will often show preferential direction for 

specific functional groups at the surface that is not observed in the bulk [2].  The driving 

factor for these rearrangements is a reduction in the surface energy of the material, which 

can change dramatically depending on the presence and type of the outside gas/liquid/or 

solid.  

  It is the outermost few layers of atoms of a material that are in contact with a 

substance�s outside environment and subsequently determine many factors including 

solubility, reactivity and catalytic activity.  Immediately upon exposure to gases or 

liquids a clean surface is covered by an adsorbed monolayer of molecular or ionic 

species.  To obtain the surface structures of atoms and adsorbed molecules in equilibrium 

with the gas or liquid at the interface has been the dream of many surface scientists.   

Traditionally surface science studies have been performed at very low pressures 

and temperatures, both of which are far removed real-life catalytic conditions.  This 

makes applying insight gained from these studies to practical systems difficult.  Low 
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energy electron diffraction (LEED) [3,4] or ion scattering [5] experiments carried out to 

obtain surface structures can only be performed at low pressures because of the high 

scattering cross sections of both electrons and ions.  Auger electron spectroscopy (AES) 

and most x-ray photoemission spectroscopy (XPS) experiments performed to investigate 

the chemical nature of surfaces again fail at high pressures due to the scattering of 

electrons.  In fact, the major obstacle that has prevented a more complete understanding 

of surfaces in equilibrium with gases or liquids is the scarcity of high-pressure techniques 

available.  Our research has focused on using high-pressure/high-temperature scanning 

tunneling microscopy to investigate the surface structure of the adsorbed monolayer and 

high pressure X-ray photoemission spectroscopy to investigate the chemical makeup of 

the surface. 

One area of surface chemistry at high pressures that is hugely important to the 

world economy is the study of heterogeneous catalysis.  Briefly, heterogeneous catalysts 

are materials, usually solids, that increase the rate of formation of product molecules in a 

reaction and are made up of a different phase than that of the reactants.  Another major 

purpose of catalysts is to increase the rate of formation of one particular product.  That is 

change the ratio of potential products.  Most industrial catalysts are solids in small 

particle form, and transition metal catalysts in particular are used today in the synthesis of 

ammonia and the refining of hydrocarbons.   

The application of platinum metal as a catalyst started in the early 1800s with the 

first discovery of a surface catalyzed reaction.  The reaction was hydrogen and oxygen 

reacting to form water, and platinum has been an important, if not the most important 

catalyst material, ever since.  Its ability to effectively catalyze reactions stems largely 
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from the fact that platinum has very strongly bound valence electrons which �feel� a 

relatively large effective nuclear charge due to the poor shielding of the d and f shell 

electrons.  These strongly bound electrons prevent the formation of stable surface 

compounds such as oxides, which can severely reduce the activity of the catalyst.  

Despite this, these electrons are still available to interact with adsorbed molecules by 

donating electron density to the anti-bonding orbitals of adsorbates.  In addition, platinum 

also has a partially filled valence shell that can accept electron density from the bonding 

orbitals of adsorbed molecules, further weakening intramolecular bonds.  The breaking of 

these intramolecular bonds is often what is responsible for the energy barrier for reaction. 

 

Figure 1.1 � Schematic of a unit cell of an fcc crystal. 

 

In this work a Pt(111) single crystal is used for all of our experiments.  Platinum 

has a face centered cubic unit cell that consists of a cube with an atom in the center of 

each face as well as at each corner.  A diagram of the unit cell is shown in figure 1.1.  
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Depending on the angle at which the single crystal is cut, the surface structure can be 

very different.  The Miller indices (hkl) determine how a plane is cut.  The crystal 

surfaces (111), (110), and (100) are the three most common crystal planes and are shown 

in figure 1.2.  As can be seen from figure 1.2, surface atoms lying in the plane of each 

type of surface differ in number of surface nearest neighbors as well as in total 

coordination number.  Each of these surfaces presents different binding sites for 

adsorbates.  Four common sites (atop, bridge, three-fold and four-fold) are highlighted in 

figure 1.3.  The presence of a higher ratio, or lack thereof, of a particular site can cause 

the surfaces to have very differing activities for the same reaction.  Of the three crystal 

planes discussed, the (111) is the most energetically stable, and is considered to be the 

most abundant in real catalytic systems. 
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Figure 1.2 � Representations of the three most common fcc crystal faces, (111) (top), 

(100) center, and (110) (bottom). 

 

 

Figure 1.3 � The four most common types of adsorption sites on single crystal terraces. 
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Many of the studies in this dissertation involve investigating the surface structures 

that organic molecules form when adsorbed on a metal single crystal.  On a single crystal 

of (111) orientation, the unit cell is hexagonal and can be designated as (1x1).  The unit 

cell is highlighted in figure 1.4a.  The numbers in the (1x1) nomenclature refer to the 

each side of the unit cell, and are essentially multiples of the basis vectors, or interatomic 

distances of the substrate.  For example, structure that can be considered (2x2) is 

displayed in figure 1.4b.  If the axis of symmetry of the adsorbed overlayer aligns with 

the substrate, then no denotation is given and the overlayer and substrate are aligned.  If 

however, it is rotated with respect to the underlying substrate, then it denoted after the 

cell distances by an R followed by the rotation angle.  For example R 23.4û.  It is also 

important to remember that unless otherwise noted, the unit cell of the adsorbate has the 

same rotation as that of the substrate.  

 

     

Figure 1.4 � Two different types of adsorption structures on the (111) crystal surface, a) 

(1x1) and b) (2x2) 
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  Recently there has been an increase in the number of techniques that have the 

ability to study surfaces under high-pressure conditions.  Sum frequency generation 

vibrational spectroscopy (SFG), is an inherently surface sensitive technique that can be 

used to study virtually any interface including heterogeneous catalyst surfaces and 

biological surfaces.  Grazing angle x-ray diffraction [6] using high intensity tunable x-

rays from a synchrotron shows promise for surface structure determination of atoms and 

molecules in the adsorbed monolayer, monitoring substrate restructuring at high 

pressures.  Thus far, however, it has rarely been employed for these types of studies.  

Included in this new class of surface sensitive high-pressure techniques are STM and 

XPS using a differentially pumped electrostatic lens system.  Of all of these techniques 

however, only STM can give surface structural information    

Due to the development of these different techniques, there has also been an 

increase in the number of studies involving surfaces under high-pressures and especially 

catalysts.  Among these are the investigation of transition metal single crystal catalysts 

under working conditions [7-9], as well as the effects of poison molecules such as CO or 

sulphur on catalytic activity [10-13]  Other surface studies have independently 

investigated the interaction of Pt(111) with CO [14-17], and Pt(111) catalyzed H2/D2 

exchange [18,19].  It has been suggested that in the case of catalytic ethylene 

hydrogenation over Pt(111) and its poisoning with CO, the role of surface mobility is 

crucial in allowing catalysis to proceed.  The unreactive spectator species ethylidyne 

allows continuous catalysis because of its ability to quickly diffuse on the surface, which 

opens reactive sites.  The introduction of CO into the system does not displace ethylidyne 
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but immobilizes it, which poisons  the catalyst.  Our studies hope to shed some light on 

the role of the adsorbed monolayer and surface mobility during the catalytic process. 

This dissertation describes in detail the experiments performed from 2002 to 2006 

using high pressure, high-temperature STM and high-pressure XPS.  Chapter 2 is an 

introduction to the techniques of STM and XPS.  Chapter 3 describes our experimental 

apparatus as well as the complimentary techniques used.  Chapter 4 discusses the results 

obtained from the study of low-pressure C6 hydrocarbons adsorbed to Pt(111) studied by 

STM.  Chapter 5 describes the catalytic hydrogenation/dehydrogenation of cyclohexene 

and its poisoning with CO studied by STM.  Chapter 6 discusses catalytic H2/D2 

exchange on Pt(111) and its poisoning with CO studied by STM and XPS.  Chapter 7 

discusses the catalytic hydrogenation of benzene and its poisoning with CO studied by 

STM.  Finally, conclusions and the future directions of research for my system are 

discussed in chapter 8. 
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Chapter 2: Scanning Tunneling Microscopy / X-ray 

Photoelectron Spectroscopy 

 
 
 

 The two major techniques employed for our studies were high-pressure scanning 

tunneling microscopy (HPSTM) and high-pressure x-ray photoelectron spectroscopy 

(HPXPS).  Each of these techniques provides very different information about gas/metal 

interface at high pressures.  When used together, these techniques complement each other 

and can give one an in depth understanding of surface dynamics, structure, and chemical 

bonding.   

 

2.1 Scanning Tunneling Microscopy 

 STM is a type of scanning probe microscopy that was developed in the early 

1980�s by two scientists named Gerd Binnig and Hendrich Rohrer [1,2].  Their early 

experiments yielded atomically resolved images of silicon single crystal surfaces and 

proved that STM was a unique technique that allowed in situ monitoring of surfaces on 

the atomic level.  Much of the theory behind STM was developed by two American 

scientists Tersoff and Hamann at Bell Laboratories [3].  STM also spurred the 

development of a variety of other types of probe microscopes including, atomic force 

microscopy (AFM), lateral force microscopy (LFM), magnetic force microscopy (MFM), 
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scanning thermal microscopy (SThM), and near-field scanning optical microscopy 

(NSOM) among others.  For their discovery, Binnig and Rohrer were deservedly awarded 

the Nobel Prize in physics in 1986.   

 STM has significant advantages over conventional optical microscopies in that it 

is not limited by the wavelength of light.  This fact causes optical microscopy to fail to 

resolve features less than ~250 nm.  The major fact that limits the spatial resolution of an 

STM is the quality of the tip and the ability of the instrument to accurately control tip 

position.  To date, lateral resolution of 0.1 Å and vertical resolution of 0.01 Å are 

commonly achieved.  STM is also able to provide images of molecular resolution under a 

variety of conditions including, ultra-high vacuum [4-6], high-pressures [7-9] and 

temperatures and in liquids [10] making it one of the most versatile techniques ever 

developed.  Representative images of Pt(111) in vacuum, and under 5 Torr of CO are 

displayed in figure 2.1 [11].  The major limiting factor of STM, however, is the fact that 

it requires a conducting surface to yield images.  Polymers, oxides and organic systems 

cannot be directly imaged.  Organic molecules adsorbed onto conducting surfaces can be 

easily imaged however [12].  Some efforts have been made to coat insulating systems 

with thin layers of conducting materials in order to achieve a conducting surface but the 

practical value of this technique has yet to be proven.  This section discusses in detail the 

theory behind the development of STM and some of the experimental aspects that must 

be considered when employing this powerful technique. 
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a)      b) 

Figure 2.1 � Pt(111) a) in vacuum, atomic periodicity is observed. b) in the presence of 5 

Torr of CO, (√19 x √19) R23.4º CO structure is observed. 

 
 
2.1.1 STM Theory 

 STM achieves its amazing resolution by exploiting a quantum mechanical 

phenomenon called tunneling.  In the process of tunneling a fraction of particles (in this 

case electrons) with energy lower than a potential barrier are able to penetrate into the 

barrier to a depth of the order of 1-10Å.  The probability of finding a particle a given 

distance within the barrier (d) decays away exponentially as distance is increased, and 

can be expressed by equation 2.1.   

Equation 2.1 - h

φ−

∝
md

eP
22

 

d = distance 

m = mass of the particle 
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φ = height of the potential barrier 

ħ = Plank�s constant 

 

The rate of decay is determined by the height of the potential barrier (Φ) and the mass of 

the particle (m).  If the barrier is thin enough, some fraction of the particles can make it 

through and have a probability of exiting on the other side of the barrier (Figure 2.2).  In 

the case of STM, electrons which classically would be confined within an atomically 

sharp metallic tip penetrate out into the barrier of the gas or vacuum surrounding the tip.  

A scanning electron microscopy image of a sample tip is shown in figure 2.3.  If the tip is 

then brought sufficiently close (5-10 Å) to a conducting substrate, some of the electrons 

within the tip can travel to the substrate, and likewise electrons from the substrate can 

travel to the tip.  In the absence of an external voltage electrons will migrate to create an 

interface potential sufficient to shift the Fermi levels of each material until they are equal 

energies. 

 

Figure 2.2 – Illustration of a particle tunneling through a potential barrier. 
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Figure 2.3 � SEM image of an etched tungsten STM tip. 

 

 During STM a potential is applied across the tip and substrate which causes a  

shift of the Fermi level of the tip above or below that of the substrate depending on 

polarity.  Figure 2.4 shows a schematic of the Fermi level shift, as well as, the resulting 

probability of electron tunneling.  The shift of one Fermi level with respect to the other 

causes preferential current flow from the higher Fermi level to the lower.  The magnitude 

of the current (I), as displayed by equation 2.2, is linearly dependent on the applied 

voltage (V), but more importantly it is exponentially dependent on the tip/sample 

distance.   

Equation 2.2 - h

φ−

∝
md

VeI
22

 

V = applied voltage between tip and sample 

d = tip/sample distance 
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m = mass of the particle 

φ = height of the potential barrier 

ħ = Plank�s constant 

 

This means, that an increase in tip sample distance of just 1 Å, results in a decrease in 

tunneling current of more than one order of magnitude.  Thus, by maintaining a constant 

current and rastering the tip across the surface, an electronic map of the surface can be 

generated.  This electronic map often looks very similar to a topographical map of the 

surface. 

 

Figure 2.4 – Schematic showing how the application of an external voltage across the tip 

and sample results in a shift in the Fermi level, and thus the flow of current.  Dashed lines 

represent initial Fermi level energies, and solid lines represent Fermi levels after the 

application of the potential. 

 

 The polarity of the voltage applied dictates weather the tip is probing empty or 

filled orbitals of the surface.  A negative bias causes current to flow into the sample and 



 

 17 

into the empty orbitals of the surface atoms or molecules.  Thus a major factor in the 

appearance of the resulting image is the density of states of these empty orbitals.  

Similarly, sample to tip current probes the filled states of the surface atoms and 

molecules.  For this reason, conducting materials such as metals whose HOMO and 

LUMO orbitals are degenerate generally yield identical images for either polarity, while 

semiconducting materials or insulating molecules adsorbed on a conducting substrate 

may yield drastically different images.   

 

2.1.2 STM Experimental Considerations 

 The extreme accuracy with which an STM must be moved discards the possibility 

that these movements could be achieved using conventional motors and gears.  For this 

reason STM uses piezoelectric materials (piezos) to control the tip movement with 

adequate accuracy.  Piezos are materials that can be permanently electrically polarized 

when heated in the presence of a large electric field.  The unique property of peizos is 

that they then will change their shape when a voltage is applied to them.  As long as the 

piezos are not heated above a certain temperature referred to as their Curie temperature, 

they can reproducibly be manipulated with subangstom precision simply by applying 

voltages.  In practice in most piezos some hysteresis is observed, but it can be largely 

limited by staying well within the linear portion of the hysteresis curve.  Accomplishing 

bending of a piezo is done by forming piezoelectric materials into tubes that are separated 

lengthwise into four quadrants by an insulating gap.  The insides and the outsides of the 

tubes are then coated with conducting materials.  By applying opposite voltages across 

opposite quadrants, an overall bending of the tube is accomplished.  Applying the same 
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voltages to all quadrants results in contraction or expansion of the entire tube.  Figure 2.5 

illustrates the process of bending a piezo by application of  voltages. 

 

Figure 2.5 – Image illustrating how applying voltages of opposite signs to opposite side 

of a piezoelectric tube can result in it bending. 

 

Most STMs may be operated in one of two types of scanning modes, each of 

which has its benefits and drawbacks.  The first type is constant current mode.  In this 

mode, the current between the tip and sample, which is in practice dictated by tip-sample 

separation and the local density of states of the substrate near the Fermi level [13], is held 

constant.  The tip is then rastered across the surface using the piezoelectric tube (Figure 

2.6).  As the tip encounters a feature which is raised or lowered from the surface, or has a 

higher or lower DOS near the Fermi level its height must be adjusted by the piezos to 

maintain a constant tunneling current.  The adjustments in the height of the tip are 

monitored and displayed on a computer screen giving the user an electronic map of the 

surface.  The main advantages of the constant current mode are that it can be performed 
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on relatively rough surfaces and the movements of the tip height are a fairly direct 

method of surface measurement. 

 

Figure 2.6 � Schematic of an STM tip as it is rastered across the surface of a single 

crystal. 

 

The other major type of scanning is constant height mode.  In this case, the tip 

height is held constant as the tip is rastered across the surface and the changes in 

tunneling current are monitored.  For example, as the tip passes over an adsorbate which 

extends away from the surface, the tunneling current will increase as the tip sample 

separation is smaller.  The changes in current are monitored and converted to a surface 

topography map which can be displayed on a computer.  The main advantage of constant 

current mode is that it can be performed much faster than constant current mode, as there 

is no physical adjustment of the tip height by a feedback loop.  However, constant height 

mode does necessitate extremely flat surfaces to operate.  One must therefore consider 

the benefits and drawbacks of each mode before deciding whether a system should be 
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investigated using constant height or constant current mode.  Illustrations of each mode 

are shown in figure 2.7. 

 

Figure 2.7 – Schematic of the movement of the STM tip and the resulting tunneling 

current during scanning in constant height mode (top) and in constant current mode 

(bottom) 

 

The exponential dependence of current on tip-sample separation that is 

responsible for the excellent vertical resolution of STM, and the small scale of the 
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currents measured make STM extremely sensitive to external noise.  It is this noise in fact 

that is commonly the limiting factor in the resolution of images obtained.  Much care 

must thus be taken to limit any noise in the system.  Mechanical vibrations which are 

generated from building noise, system vibrations and acoustic noise, are limited by 

various vibration dampening systems.  Also, a STM scan head and tip with high 

resonance frequencies can limit the ability of external noise to excite the scan head.  In 

addition the small scale of the currents being measured means that the utmost care must 

be taken in electrically insulating the system from external currents which may seriously 

compromise the capabilities of the system. 

 

2.2 X-ray Photoelectron Spectroscopy 

 X-ray photoelectron spectroscopy (XPS), also referred to as electron spectroscopy 

for chemical analysis is a semi quantitative technique for determining chemical 

composition and is based on the photoelectric effect.  This process, first discovered by 

Einstein in the 1920�s, involves the photon-induced ejection of an electron from an atom, 

molecule or solid.  For his efforts, Einstein received the 1921 Nobel Prize in physics [14].  

In the mid 1960�s, a Swedish scientist named Kai Seigbahn used this process to develop 

the technique of XPS [15].  One of the major benefits of XPS, and one that makes it 

especially applicable to our research, is its inherent surface sensitivity due to the low 

mean free path of the ejected electron within a solid.  Thus, XPS provides us with a 

technique that can give chemical information about the surface of a system also studied 

with STM under identical conditions. 

 



 

 22 

2.2.1 XPS Theory 

 XPS is traditionally a high vacuum technique that utilizes the photoelectric effect 

to monitor the chemical composition of the top few layers of the surface of a material.  

During his experiments during the early part of the 20th century, Einstein noticed that 

irradiating the surface of a metal with high energy electromagnetic radiation can cause 

the ejection of electrons from the surface.  Whether or not electrons were ejected did not 

depend on the intensity of the light, only the energy, or wave length of the light.  For each 

material studied, there was a specific energy of light, above which electrons could be 

ejected, and below which had no effect.  These experiments showed clear evidence of the 

particulate nature of light and these �particles� were subsequently called photons.  In the 

process observed by Einstein, called the photoelectric effect, the high-energy photons, in 

our case soft x-rays cause electronic transitions in the surface atoms.  Photons with 

sufficient energy are able to overcome the binding energy of the electrons and eject them 

out of the surface.  This process is illustrated in figure 2.8, and the resulting current 

measurements are displayed in figure 2.9.  Photons with an energy below the work 

function of the material do not result in ionization of the atom.  The energy of the 

absorbed photon goes into the removal of the electron from the atom (binding energy), 

and kinetic energy of the ejected electron.  Once ionized, the atom is left in an unstable 

state, with a core electron vacancy.  The atom can then relax by undergoing the Auger 

process discussed in the subsequent chapter, or by ejecting a photon  
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Figure 2.8 � Image displaying the ejection of a core level electron by an incident x-ray 

(The photoelectric effect) 
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Figure 2.9 – Schematic of the kinetic energy of an ejected electron.  Below a specific 

wavelength (in this case 300nm) corresponding to the work function of the material, no 

current is observed.  

 

Although the penetration depth of the incident photons can be relatively large, on 

the order of a micrometer, the escape depth of the photoelectron is generally 

subnanometer. It does however, vary with electron energy as well.  By using a known 

incident photon energy and monitoring the kinetic energy(KE) of the ejected electrons, 

one can determine the binding energy of the electrons within the atom by using equation 

2.3.   

Equation 2.3 -  KE = hν � BE � ф 

hν = energy of incident photon 

BE = binding energy of the electron 

ф = work function of the detector 

 

Equation 2.3 displays the relationship between the kinetic energy of the photoelectron, 

the incident photon energy and the binding energy.  In practice, the equation must also 

include the quantity ф, the work function of the detector, generally a few electron volts.  

The binding energy of the a particular electron within an orbital is specific to each 

element, so monitoring the kinetic energy, and thus the binding energy, can give the 

chemical composition of the surface.  In addition since most atoms have several electrons 

in several orbitals, many peaks can be cross referenced for further accuracy.  One added 

benefit of XPS is the fact that small changes in the chemical environment of an atom can 
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cause binding energy shifts that are easily detected.  For example a carbon atom in a 

hydrocarbon versus a carbon monoxide molecule is shifted by more than 2 eV, making 

resolving these separate peaks easy.  This can be observed in Figure 2.10.  Also, peak 

shifting due to adsorption site is also possible.  The peak located at ~286 eV in figure 

2.10 is clearly split into two peaks representing the bridge bound and atop bound CO 

molecules.  A third example of the sensitivity of XPS is shown in figure 2.11 in which 

the platinum 4f peak is composed of three individual peaks corresponding to the bulk 

platinum, the free surface platinum, and the CO bound surface platinum atoms.  By 

monitoring the relative intensity of the free surface atom and CO bound surface atom, 

information about surface coverages can be obtained.  In addition two sets of similar 

peaks are shown that are due to spin orbit coupling effects. 

 

Figure 2.10 – Sample XPS spectrum showing splitting of carbon peaks from carbon 

atoms in a hydrocarbon (284 eV) and a carbon monoxide molecule (285.5 eV).  The peak 

located at ~286.5 eV is split into two separate peaks corresponding to both the bridge 

bound and atop CO molecules. 
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Figure 2.11 � Sample XPS spectrum in the platinum 4f region.  The platinum peaks are 

split into bulk platinum, bare surface platinum and surface platinum the is bound to a CO 

molecule. 

 

2.2.2 XPS Experimental Considerations 

 When performing XPS at high pressures, there are several experimental factors 

and complications that arise.  The first of which is the quantitative nature of XPS.  The 

intensity of an XPS peak is directly proportional to the number of species on the surface 

that give rise to that peak if all other parameters are held constant.  A general formula for 

peak intensity is shown in equation 2.4. 

Equation 2.4 – I = NσDJLλAT 
 

N = atoms/cm3σ = photoelectric cross-section, cm2 

D = detector efficiency 
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J = X-ray flux, photon/cm2-sec 

L = orbital symmetry factor 

λ = inelastic electron mean-free path, cm 

A = analysis area, cm2T = analyzer transmission efficiency 

 

 Of all of the parameters, the detector efficiency can cause many difficulties, as it may 

change due to diffraction effects resulting from surface structure changes.  For example 

the transition from a c(4x2) structure of CO on Pt(111) to an incommensurate structure 

may cause changes in peak intensity that have nothing to do with surface populations.  

The nature of these effects is diffraction of the photoelectron, resulting in the area 

monitored by the detector not necessarily corresponding to a representative sample of 

surface composition.  This effect has been studied fairly extensively over recent 

years[16,17].  One other concern when trying to extract relative quantities of different 

surface elements arises from the different sensitivities of different elements.  These 

variations in sensitivities for different elements, are well understood, but much care must 

still be taken during data analysis to ensure accurate results. 

 Overall, however, the major experimental obstacles in high-pressure XPS stem 

from the presence of a significant backpressure of gas within the chamber during 

measurement.  The initial processes included in the photoelectric effect remain largely 

unchanged, since photons can travel through high-pressures of gases fairly easily due to 

their low adsorption cross section.  It is, however, important to begin with a large number 

of photoelectrons.  To accomplish this, a high intensity source is necessary.  In our 

experiments, we have used synchrotron radiation at the Advanced Light Source (ALS) in 
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Berkeley, California to ensure a large x-ray flux at the surface.  Upon the ejection of the 

photoelectron, some problems arise.  The first problem is the absorption or collision of 

the photoelectron with the gas molecules.  The second is analyzing the energy of the 

electrons using a concentric hemispherical analyzer (CHA) that must operate in UHV 

conditions.  To limit the gas phase absorption, an aperture with a diameter of ~1mm, is 

placed very close to the sample.  This distance is variable but is generally about 0.5 mm.  

By providing a very small path length between the sample and the aperture, a significant 

fraction of the electrons can pass through the aperture before undergoing collision.  On 

the other side of the aperture is a small chamber that is continuously pumped with a 

turbomolecular pump to reduce the pressure.  Once they have passed through the 

aperture, the electrons are focused with an electrostatic lens system though another 

aperture at the rear of the chamber.  The second chamber is also pumped by a 

turbomolecular pump.  The process is repeated into a third chamber and finally analyzed 

using the CHA.  Each stage of this differentially pumped electrostatic lens system can 

lower the pressure by three orders of magnitude, and experimental systems involving 

pressures up to 10 Torr correspond to pressures at the detector of ~1 x 10-8 Torr.  
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Chapter 3: Experimental System and Supporting Techniques 

 

 All scanning tunneling microscopy experiments were performed on the two-

chamber system described below and shown in figure 3.1 [1,2].  Briefly, the system is 

composed of a UHV sample preparation chamber equipped with, sputtering, annealing, 

mass spectrometry, and Auger electron spectroscopy capabilities. There is also a high-

pressure reaction cell in which STM experiments were performed.  A load lock, which 

can be pumped independently, is attached to the STM chamber, which allows for transfer 

of the sample, and/or tip to the system without having to vent either chamber.  The entire 

system is bolted to a wooden frame made of 4� x 4� Douglas fir.  Four air legs (Newport 

Laminar Flow Isolators, I-2000 series) support the system and help to dampen vibrations 

from the building coming through the floor. 
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Figure 3.1 � Diagram of the two-chamber STM system. From [3] 

 

All of the high-pressure x-ray photoelectron experiments were performed in a 

two-chamber system at beamline 11.0.2 at the Advanced Light Source in Berkeley.  A 

prototype of the system has been discussed in detail [4].  The system is composed of a 

sample preparation chamber equipped with sputtering, annealing, mass spectrometry and 

LEED capabilities.  The system also contains a high-pressure reaction chamber for XPS 

measurements capable of taking measuring at pressures up to 10 Torr.  This chapter 

describes the STM chamber, the STM design, sample preparation, the UHV chamber and 

the instruments contained therein in detail, as well as the XPS chamber.  
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STM 

3.1: UHV Chamber 

 The UHV chamber is a standard Varian surface analysis chamber equipped with a 

nitrogen cooling line for annealing, sputtering gun, electron beam heater, Auger 

spectroscopy, oxygen and argon gas inlets and mass spectrometry.  The system is 

pumped by a turbomolecular pump (Pheiffer 60 L/sec), a 200 L/sec ion pump, and a 

titanium sublimation pump.  During operation the base pressure of the system is < 2 x 10-

10 Torr. 

 

3.1.1 : Sample Preparation 

 The single crystal we used was platinum (111) cut within 0.3û of accuracy from 

Matek Corporation.  The diameter of the crystal is 10mm and the thickness is 2mm.  If 

need be, the crystal was mounted in Koldmount epoxy, and polished using Metadi 

diamond paste polishing compound on Buehler Microcloth polishing cloths.  Decreasing 

grit size was used beginning at 15 micron down and finishing with 0.25 micron.  Once 

the crystal had been satisfactorily polished it was sonicated in acetone to remove the 

epoxy and finally sonicated in methanol to remove any surface residue.  Once the crystal 

was clean, it was etched in room temperature aqua regia to etch off surface defects caused 

by the polishing process.  After sonicating in deionized water to remove residual aqua 

regia, the crystal was spot-welded to a tantalum disc with a diameter of 11-12 mm.  

Sample mounting was accomplished by tantalum pressure clamps holding the tantalum 

disc around the base of the single crystal.   
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 Once the crystal has been mounted and inserted into the UHV preparation 

chamber, it was cleaned to remove surface contaminants by ion bombardment.  Our ion 

gun is a Varian ion bombardment gun (model# 981-2043).  In the process of ion 

bombardment, inert gas ions, usually neon or argon are created by collisional excitation 

with electrons from a hot filament.  A continually pumped backpressure of inert gas 

allows for a steady supply of gas molecules for ionization as well as the removal of 

contaminant molecules that are sputtered off the surface.  Gas pressures in the range of 1 

x 10-5 Torr are generally used.  Once the positive ions have been generated by the 

filament, they are focused and accelerated by an electrostatic lens system.  The newly 

created beam of ions has energies generally ranging from 0.5 � 3 keV.  In our studies 

1keV was chosen as the ideal sputtering energy.  Upon encountering the surface, these 

highly energetic ions cause the ejection of small clusters or atoms of surface material, 

thus removing the contaminant layer and exposing a clean but definitely not atomically 

flat underlying layer.  Figure 3.2 displays the sputtering process. 

 

Figure 3.2 � Schematic of the ionization of the argon gas and the removal of the surface 

layers of a crystal through sputtering. 
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After ion bombardment, the sample is clean but no longer contains the large 

atomically flat terraces needed for STM and thus it must be annealed to recover the 

surface crystallinity.  To accomplish the specific heating of the crystal, electron 

bombardment was chosen as the best technique for annealing.  In electron bombardment, 

a tungsten wire is doped with thorium to lower the work function.  The wire is then 

heated in vacuum by passing a current (typically ~2A) through the wire.  The heating 

gives the valence electrons in the atoms in the wire enough thermal energy to overcome 

the work function of the metal, which creates an electron cloud around the filament.  The 

filament is then biased negatively with respect to the chamber, which accelerates the 

electrons away from the filament towards the chamber around it.  Typical electron 

energies are ~1.5keV.  In our system the filament is enclosed in a ceramic tube with a 

small (0.5cm) opening at one end.  The tube absorbs the ejected electrons and allows for 

the high-energy electron source to be directionalized.  The opening of the tube is then 

placed directly behind the sample forcing the majority of the electrons to collide with the 

rear of our single crystal sample.  The kinetic energy that is transferred to the sample 

heats it considerably and temperatures up to 1500°C can easily be reached.    Our sample 

wa heated in to ~900ûC for about 5 minutes.  The heating of the sample give the surface 

atoms sufficient thermal energy to diffuse readily around on the surface and reach their 

thermodynamically most stable positions which is that of the bulk crystal lattice.  During 

annealing, the sample holder is held in contact with a liquid nitrogen cooled copper block 

to minimize the temperature of the sample holder.  Depending on the level of sample 

cleanliness prior to our cleaning cycle, several cleaning cycles with varying sputtering 
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and annealing times may be used.  Just prior to introduction to the STM chamber the 

sample is flashed back to annealing temperature for 1 minute to remove any contaminants 

that may have adsorbed during cooling.  Sample STM images showing the resulting 

crystalline surface are shown in figure 3.3. 

 

    

Figure 3.3 � Crystalline surface of Pt(111) after annealing (left) 1500Å x 1500Å STM 

image of Pt(111) at 300K. Atomic steps corresponding to both (a) crystal miscut of ~0.3º 

and (b) [110] dislocation planes, are resolved . (right) 50Å x 50Å image of Pt(111) in 

vacuum at 300K.  Atomic periodicity is resolved 

 
 

3.1.2 Mass Spectrometry 

 The UHV chamber is equipped with a Stanford Research Systems mass 

spectrometer for residual gas analysis.  The system contains a quadrapole analyzer that 

covers a mass range from 2 to 100, and is sensitive down to partial pressures of ~1x10-11 

Torr.  A sample mass spectrum of the background during a typical day is shown in figure 
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3.4.  The major peaks present correspond to hydrogen (mass 2), water (mass 18), and 

carbon monoxide (mass 28).  The mass spectrometer is used for leak checking the system 

with helium, analyzing the purity of the reactant gases, and also for analyzing gas 

samples leaked from the high-pressure STM chamber during reactions.  A two-foot long 

stainless steel flex tube is connected from the STM chamber to the UHV chamber 

through a variable leak valve.  By leaking small amounts (<1 x 10-6 Torr) of gas from the 

STM chamber to the UHV chamber, the gas phase products and reactants in our high-

pressure chamber can be monitored as a function of time.  From this we can obtain 

reaction rates, and by repeating our experiments over a variety of temperatures activation 

energies are calculated.   

 

Figure 3.4 � Sample mass spectrum of UHV background.  Peaks correspond to hydrogen 

(2), water (18), carbon monoxide (28), and carbon dioxide (44) 
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3.1.3 Auger Electron Spectroscopy 

 A Varian Auger electron spectroscopy (AES) system was also used in the UHV 

chamber to monitor the surface cleanliness of our sample.  AES utilizes the Auger 

process to detect the atomic species that are present on a surface.  This is accomplished 

by bombarding the sample surface with a high energy (3keV) electron beam.  These 

incident electrons can cause a core electron from a surface atom to be ejected, thus 

leaving the atom in an energetically unstable state.  The core electron vacancy can then 

be filled by an outer shell electron.  This process lowers the energy of the atom and the 

energy can be released through the ejection of a valence shell electron.  This ejected 

electron, called the Auger electron, has a characteristic kinetic energy (KE) that can be 

calculated from equation 3.1[5]: 

Equation 3.1  KE = Ea � Eb � Ec 

Ea = energy of the core electron that was removed 

Eb = energy of the electron that fills the empty orbital 

Ec = energy of the valence electron ejected 

 

A schematic illustrating the Auger process is displayed in figure 3.5.  Each element can 

undergo a variety of Auger transitions, and yields a characteristic Auger spectrum 

containing peaks for several different transitions.  In total, three electrons have been used 

in the process, and the atom has been left in a doubly ionized state [6].  
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Figure 3.5 – Diagram of the four step Auger process.  Step 1: High energy 

 electrons hit the surface atoms. Step 2: Atomic ionization by the removal of a core 

electron. Step 3: Higher shell electron collapses down to fill core vacancy. Step 4: Energy 

released from collapse results in the emission of an outer shell electron (Auger electron). 

 

  Electron detection is accomplished with a cylindrical mirror analyzer (CMA), 

which is shown schematically in figure 3.6.  In the CMA design, there is a concentric 

inner cylinder that is grounded, and an outer cylinder to which a negative scanning 
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potential is applied.  Electrons emitted from the surface over a reasonable solid angle are 

passed through a fixed slit in the inner cylinder.  As the particles experience the retarding 

field of the outer cylinder, if they have a kinetic energy within a specific narrow range, 

they are reflected back through a second set of slits in the inner cylinder and come to 

focus at the first dynode of an electron multiplier.  Varying the potential on the outer 

cylinder can adjust the electron energy, which is allowed to pass. 

 

 

Figure 3.6 � Diagram of a cylindrical mirror analyzer.  By applying a voltage between 

the inner and outer cylinders, only electrons of a very specific energy are allowed to pass 

between the two slits and reach the detector. 

 

A representative Auger spectrum is displayed in figure 3.7, showing the surface 

before and after the sputtering and annealing cleaning procedure discussed previously.  In 

figure 3.7a, a large peak corresponding to surface carbon, the most common contaminant, 

can be seen at 272 eV.  After the cleaning procedure, this peak has been largely removed, 

and all that remains are the platinum peaks. 
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Figure 3.7 � Sample Auger spectra of platinum(111).  The carbon peak that is clearly 

visible in spectrum a) is mostly removed after one cleaning cycle, as is observed in 

spectrum b). 

 

3.1.4 Sample Manipulator 

 The sample manipulator used in the UHV chamber is a commercial X,Y,Z and θ 

manipulator manufactured by Thermionics Northwest. Inc.  The sample is held on a 

vertical stainless steel fork such that the thermocouple leads point directly to the right and 

rest on thermocouple wires connected to an electrical feed through.  Behind the sample is 

the previously discussed electron beam heater.  The ceramic tube is inserted directly 

behind the sample to ensure the maximum current density at the rear of the sample.  The 

ceramic tube is mounted in the center of a 0.5cm thick copper plate.  The copper plate is 
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moved forward until it is flush with the base of the sample holder.  The block is then 

cooled by nitrogen flowing through a liquid nitrogen dewar and then through copper coils 

within the chamber.  The coils are connected to the copper plate through a copper braid.  

This provides a cold sink during annealing and decreases the amount of time needed for 

cooling back to room temperature after annealing, which reduces the amount of surface 

contamination. 

 

3.2 Transfer System and Sample Holder 

 One of the most important features of any system is the ability to securely mount 

your specimen for analysis, as well the ability to move it from chamber to chamber 

without much inconvenience.  This section discusses the transfer arm mechanism and the 

sample holder used in our system.   

 

3.2.1 Magnetic Transfer Arm 

The transfer system consists of a 36� long magnetic transfer arm with a fork at the 

end for holding the sample and tip exchanger.  The arm has a low and high position 

setting for removal of both the sample and tip exchanger.  At the fully retracted position, 

the fork at the end of the arm rests comfortably in the load lock portion of the system and 

can be isolated from the other chambers.  At the full extended position, the forks rest at 

the sample manipulator in the UHV chamber.  Between these positions, the arm can rest 

in the STM chamber.   
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3.2.2 Sample holder 

 The sample holder consists of two major parts and is made mostly of 

molybdenum.  A schematic of the sample holder is shown in figure 3.8.  The top portion 

of the sample holder consists of an inner ledge on which the sample is placed, and an 

outer ring separated into three identical ramps for coarse approach.  At the base of each 

ramp is a tapped hole to which each of the tantalum pressure clamps is attached.  Also on 

one of the ramps a hole is bored through allowing for a thermocouple to contact the 

sample and monitor its temperature during experiments and annealing.  The lower portion 

of the sample holder has two parallel grooves on the outside that allow the forks on the 

transfer arm and wobble stick to securely hold  the sample holder at one of two heights.  

The inside of the lower portion of the holder is hollow with a diameter of ~ 1.5cm.  This 

allows room for the bulb needed for sample heating to be positioned as close to the 

sample holder as possible.   

 

Figure 3.8 � Diagram of the sample holder. 
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3.2.3 Load Lock 

 The system also contains a small volume load lock (< 1L) for exchange of the 

sample and tip.  During general operation, the tip is replaced as often as weekly or daily.  

The load lock allows for introduction of tips and samples without having to vent the 

entire chamber, which then requires several days of bakeout to reobtain its low base 

pressure.  Once the sample or tip exchanger has been placed in the load lock, it is isolated 

by two gate valves and vented with dry nitrogen.  The load lock can then be opened by 

removing a 2 3/4� flange.  Once the tip and/or sample has been replaced the flanged is 

reattached and the load lock can be independently pumped by a 

mechanical/turbomolecular pump system to obtain a load lock pressure of ~1 x 10-8 Torr 

before introduction into the STM chamber.   

 

3.3 High Pressure STM Chamber 

 The high pressure chamber contains the entire STM unit.  It is pumped by a 60 l/s 

ion pump as well as a turbomolecular pump and has a working base pressure of ~5 x 10-10 

Torr.  Attached to the system are four leak valves which allow the introduction of 

mixtures containing up to four different gases and with a total pressure of about 1 atm.  

Of the four gas inlets, one contains an apparatus for introduction of liquid samples at 

pressures below their vapor pressure.  This system is attached to a mechanical pump for 

freeze-pump-thaw purification of the samples.  A Varian ionization gauge is used to 

monitor pressures up to 5 x 10-5 Torr, and the appropriate gas correction factor is used to 

calculate the pressure of each type of gas.  An MKS Instrument Baratron model 722A is 

used for experiments involving pressures ranging from 0.1mTorr - 10 Torr and model 
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122A for experiments involving pressures from 10 - 1000 Torr.  The chamber is equipped 

with a six inch window directly in front of the STM for easy viewing as well as a wobble 

stick for moving the sample to and from the stage, the sample holder and the magnetic 

transfer arm. 

 

3.3.1 Scan Head 

 The microscope that was used for these studies is a beetle type design 

commercially available from RHK technologies.  The STM head is composed of three 

outer piezoelectric tubes which are used for coarse movement of the tip and an inner 

piezoelectric tube that is used solely for the scanning of the sample.  Figure 3.9 shows a 

picture of the scan head during approach.  All of the piezos are composed of lead 

zirconate titanate (PZT).  Zinc is coated on the inside and outside of each tube to create 

electrodes.  The three outer tubes are significantly smaller than the inner tube ~0.5x the 

diameter.  Each tube is divided lengthwise into four quadrants and the same or opposite 

voltages are applied to the quadrants to accomplish expansion, contraction, and bending 

of the tube.  The scan tube which is larger than the three outer tubes contains a small 

opening at the end where the tip holder can be inserted and magnetically held in place. 

The coarse approach of the tip is performed using solely the outer three piezos.  

Attached to the end of each of the outer piezos are three sapphire spheres.  The entire 

scan head rests on the three piezoelectric legs which make contact with three 

molybdenum ramps of the sample holder through the sapphire balls.  Each leg �walks� 

down the ramp during the approach until the tip is within tunneling range.  The entire 

height of each ramp is 1mm, so the tip must be carefully inserted into the tip holder so the 
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total tip to sample distance is less than 1 mm.  The walking is accomplished by slowly 

bending each tube down the ramp and then quickly bringing back to its equilibrium 

position.  During the fast movement, the sapphire slips on the ramp and the head ends up 

slightly further down the ramp that where it began.  Between each set of steps, the scan 

tube is extended to �look� for current.  If no current is detected, it retracts and another 

step is taken.  Upon reaching tunneling range, the central scan tube is used for local 

movements up to a total range of 5000 nm.  During introduction of high pressures of 

gases, the tip can be brought back out of tunneling range using solely the scan piezo 

allowing for imaging of the same portion of the sample at various pressures, and 

protecting the tip in case the system is bumped while the gas is being added. 

 

 

Figure 3.9 � Photograph of the �Johnny Walker� or �Beetle� type scan head during 

approach. 
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3.3.2 Sample Stage 

 The sample stage provides a stable place for the sample to be rigidly held while 

the experiments are being performed.  It also contains infrastructure for heating of the 

sample for reaction studies as well a cooling system which can create a heat sink for 

reaction studies.  The sample stage is supported on three Viaton rings which form a rigid 

support for the system but also dampen high-frequency vibrations from the rest of the 

system. 

 In order to heat our sample in the presence of high pressures of potentially 

reactive gases, the electron beam heater used in sample preparation cannot be used due to 

the low mean free path of electrons at high pressures.  The electron beam heater has been 

replaced by a 360W, 80V, tungsten filament, halogen filled, quartz projector bulb.  The 

bulb provides radiative heating of the sample without making mechanical contact.  The 

bulb can be raised into position so it is directly below the sample and contained within a 

gold cylinder.  Thus providing the most efficient heating possible, reaching sample 

temperatures up to 500 K.  A variable auto transformer is used to control the power 

supplied to the bulb and thus the sample temperature.  During heating, a water cooled 

copper block connected to the sample stage via a copper braid is used as a heat sink to 

minimize heating of the entire stage.  Due to the expansion of the sample as it is heated, it 

is generally very difficult to remain in the same position on the sample over a range of 

temperatures.  As a result, many portions of the sample must be imaged to gather a 

representative image of the surface structure.  
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3.3.3 Tips 

 One of the most crucial but also the most troublesome aspects of STM is the 

fabrication of reliable, robust tips capable of providing atomically resolved images.  The 

two most common types of tip materials used today are platinum (or a platinum iridium 

alloy) and tungsten, and the two most common fabrication techniques are 

electrochemically etching of the tips and clipping or pulling tips with wire cutters.   

 In this work the choice of tip material was tungsten for a few reasons.  Primarily, 

tungsten is known to provide stable imaging under high pressures of CO, NO, 

hydrocarbons, and hydrogen.  These molecules represent all of the molecules that were 

used in our research, so the fact that some molecules such as oxygen can form insulating 

overlayer and damage tip performance was not of great concern to our research.  

Secondly, tungsten is very hard and is less susceptible to wear and blunting than other 

softer metal used for STM tips.  Thirdly, tungsten is very easily etched providing a 

reliable and reproducible fabrication method.  Finally tungsten was chosen as a tip 

material because it is relatively for the catalytic reactions we have studied.  Platinum, 

which is the other largely used tip material would clearly create problems in our catalytic 

studies of reactions on platinum single crystals. 

 Due to the hardness of tungsten and its ease of etching, electrochemical etching 

was the obvious choice for tip preparation.  The tips are prepared by creating a simple 

electrochemical cell consisting of two electrodes and represented graphically in figure 

3.10.  The working electrode is a piece of 10 mil tungsten wire which will eventually be 

our STM tip.  The counter electrode is a platinum wire loop surrounding the tungsten 

wire.  The platinum loop is dipped into a 2M KOH solution, which forms a film across 
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the loop that is about 1 mm thick.  This film act as the electrolyte for the cell.  Once 

created, the electrodes are connected to an external power supply and a voltage of ~2V is 

applied.  The area of the tungsten that is in contact with the electrolyte is oxidized, and 

the newly created tungsten ions diffuse across the electrolyte and plate out on the 

platinum loop as tungsten metal.  The etching of the wire, however, is not symmetric, and 

the lower portion has a taper much longer than the top portion.  Since the longer the 

taper, the more susceptible a tip is to vibrational excitation, this is not desirable.  To 

circumvent this problem, the tip is very nearly etched all of the way through and then 

flipped for the final stages of etching.  This process was developed by Klein et al[7], and 

has been shown in our group to provide reliable reproducible tips. 

 

 

Figure 3.10 � Electrochemical cell used to etch tungsten tips 
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3.3.4 Tip Exchanger 

 In STM experiments in general, and especially high-pressure and high-

temperature STM, tip lifetimes can be very short.  Thus it is important to have an easy, 

reliable method for exchanging tips that causes as little disruption to the system as 

possible.  The previously discussed load lock allows for exchange without requiring 

venting the entire system. The tip exchange mechanism discussed below necessitates that 

only the tip itself and a small tip holder be removed from the chamber.   

 The tip exchanger is shown in figure 3.11.  When the tip requires changing, the 

sample is removed from the stage and the tip exchanger unit is inserted into the sample 

holder position on the stage.  The STM scan head is then lowered down onto the tip 

exchanger unit.  Three polymer posts identical in height to the STM piezoelectric legs 

extend upward from the tip exchanger.  These legs serve to align the scan head by sliding 

into three depressions located on the scan head.  Not only does this align the scan head 

and tip exchanger, but also prevents the head from being lowered too far, resulting in an 

inadequate amount of pressure being applied to the piezos.  Also upon lowering, the tip 

holder (shown in figure 3.11c) slides into a hole in the tip exchanger.  Once fully 

lowered, a wire in the tip exchanger can be bent to slide into a small notch in the tip 

holder locking the tip holder in place.  Thus the tip holder has gone from that shown in 

3.11a to 3.11b.  Retracting the scan head results in the tip holder and tip remaining in the 

exchanger.   
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Figure 3.11 � Diagram showing tip exchanger in open (A) and locked (B) positions, as 

well as the tip holder (C) 

 

 Upon removing the tip exchanger from the system through the load lock,  the tip 

holder is removed from the exchange unit.  The tip is held in the tip holder simply by 

bending the tungsten wire tip and sliding into the hollow tip holder.  The spring of the 

bent wire being inserted into the straight tube of the tip holder is sufficient to securely 

hold the tip in place.  Once the tip has been adjusted to the correct exposed length, the 

entire process is repeated in reverse and the new tip is ready to be tested. 
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XPS 

 
3.4 UHV Chamber 
  

The UHV chamber of the system is a standard surface analysis chamber equipped 

with mass spectrometry, low energy electron diffraction (LEED), ion sputtering, and 

button heater annealing.  The system is pumped by a turbomolecular pump and an ion 

pump to reach a working base pressure of 1x10-9 Torr.  The chamber is connected to the 

high-pressure XPS cell via a leak valve so samples of gas from the high pressure chamber 

can be monitored during experiments.  It is also connected to an independently pumped 

transfer chamber for moving the sample into and out of the chamber without venting.  

Since mass spectrometry and ion sputtering have been discussed in detail previously, this 

portion of the chapter will focus on LEED. 

  

 3.4.1   Low Energy Electron Diffraction (LEED) 

 Another surface characterization technique commonly used is low energy electron 

diffraction (LEED).  LEED provides a method to study ordered substrate surfaces as well 

as ordered adsorbed monolayers under high vacuum conditions.  It can provide 

information about the adsorbate unit cell, how stepped the surface is, and if substrate 

reforming is induced by adsorbed molecules.  LEED uses the fact that electrons are 

scattered strongly by their interactions with the charges of electrons and nuclei of the 

surface[8].  It also exploits the fact that electrons behave as both particles and waves and 

follow Bragg�s Law.  By using electrons above a specific energy, their wavelengths 

become short enough to undergo diffraction by a periodic array of atoms. In LEED a 
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crystal surface is bombarded with monoenergetic low energy electrons (<500eV).  Many 

of these electrons are elastically backscattered and collide with a phosphorescent screen.  

In order to screen out electrons that are scattered inelastically, a screen with a potential 

just below that of the elastically scattered electrons is placed directly in front of the 

phosphorescent screen.  Thus the only electrons reaching the phosphorescent screen are 

elastically scattered.  Due to the wavelength of the electron beam being of the same order 

as the surface lattice constant, the beam forms a diffraction pattern of the surface.  In 

addition, the fact that the mean free path of an electron in a solid is only about 1 nm, and 

that the electron must not only penetrate into the sample but also escape once scattered.  

This means that LEED is highly surface sensitive.  In practice only the top 2 or 3 layer of 

surface atoms contribute to the diffraction pattern [9].  Figure 3.12 represents Bragg�s 

law pictorially. 
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Figure 3.12 � Bragg�s law.  In LEED the difference in path lengths of two scattered 

particles must be an integer of their wavelength. 

 

 The diffraction pattern formed from LEED is related to the reciprocal space 

structure corresponding to the surface periodicity.  LEED utilizes that fact that the 

electron waves once scattered will interfere both constructively and destructively upon 

reaching the phosphorescent screen.  The diffracted electrons follow the conditions of 

Bragg�s Law in that the difference in distance traveled of an electron reaching the screen 

must be an integer factor of the wavelength for constructive interference.  Thus, by tuning 

the energy/wavelength of the incident electron, different unit cells on the surface will 

yield diffraction patterns.  A sample LEED diffraction pattern corresponding to the 

Pt(111) surface is displayed in figure 3.13. 
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Figure 3.13 � LEED pattern from a Pt(111) surface 

 

3.5 High Pressure Reaction Cell and Detector 

 The high pressure reaction cell is a standard stainless steel chamber pumped by a 

turbomolecular pump and an ion pump to reach a working base pressure of ~1 x 10-9 

Torr.  It is connected to several leak valves which allow for the introduction of any 

mixture of gases up to a total pressure of 10 Torr.  Also connected to the chamber is a 

differentially pumped electrostatic lens system leading to a concentric hemispherical 

analyzer (CHA) and a synchrotron x-ray source.  These three features will be discussed in 

detail below. 
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3.5.1 Differentially Pumped Electrostatic Lens System  

 The differentially pumped electrostatic lens system is designed to transfer 

photoemmitted electrons from the high pressure chamber to the concentric hemispherical 

analyzer (CHA) that is located in UHV.  The system consists of four main parts, an 

exchangeable nozzle with a diameter of 0.1 � 1.0 mm, and three differentially pumped 

sections.  The size of the aperture in the nozzle is of particular importance because it 

determines the fraction of the photoelectrons that are collected.  It also, however, 

determines how much gas from the high pressure chamber escapes into the first of the 

three differentially pumped stages.  A nozzle size of ~0.6 mm has been found to work 

well to balance each of these needs and is pictured in figure 3.14.  The position of the 

nozzle with respect to the sample is also important due to the low mean free path of 

electrons in high pressures of gases.  For example, for a 500 eV electron, the mean free 

path at 4 Torr is ~ 1 mm but at 40 Torr is only ~0.1 mm [10].  In general, during 

operation the gap between the sample and nozzle is on the order of 0.5 mm. 
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Figure 3.14 � Computer representation of the nozzle separating the differential pumping 

system and the high-pressure chamber. [10] 

 

 The differentially pumped electrostatic lens system is shown in figure 3.15.  It is 

composed of three sections that are connected by apertures about 0.3 mm in diameter.  

Each section is designed to lower the pressure about three orders of magnitude from the 

previous section through turbomolecular pumping.  Each section also contains a series of 

potentials designed to focus the stream of electrons entering the chamber through the 

aperture connected to the next chamber.  This allows for very little loss of signal, while 

providing only a small aperture through which the gas can pass. 
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Figure 3.15 � Diagram showing the differential pumping electrostatic lens system. 

 

3.5.2 Concentric Hemispherical Analyzer 

The kinetic energies of the photoelectrons are analyzed using a concentric 

hemispherical analyzer (CHA).  A CHA, also referred to as a Hemispherical Deflection 

Analyzer (HDA), consists of two metal hemispheres.  One of the hemispheres is smaller 

than the other and the two are positioned concentrically.  A schematic illustrating the 

relative position of the two hemispheres is shown in figure 3.16.  Different voltages are 

placed on each hemisphere such that there is an electric field between the two 

hemispheres.  Electrons that have traveled through the 3-stage differentially pumped 

system are injected into the gap between the hemispheres.  Electrons with a kinetic 

energy too high will impinge on the outer hemisphere.  Electrons with a kinetic energy 

that is too low will be attracted to the inner hemisphere.  Only electrons in a narrow 
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energy region (called the pass energy) succeed in getting all the way round the 

hemispheres to the detector without colliding with the wall.  Through changing the 

potentials on the two hemispheres, a range of electron energies can be analyzed. 

 

 

Figure 3.16 – Diagram of concentric hemispherical analyzer (CHA).  Only electrons with 

very specific energies can pass through both the entrance and exit slits. 

 

3.5.3 Synchrotron X-ray Source 

 High pressure x-ray photoelectron spectroscopy necessitates a high intensity 

source to ensure a large initial signal.  A synchrotron radiation source meets this need.  

All XPS experiments in this thesis were performed at beamline 11.0.2 at the advanced 
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light source in Berkeley, California.  X-rays with energies of 95-2000 eV can be used.  

The spot size of the beam is 6 x 11 µm with a photon flux of  1012-1013 photons/s.  The 

monocrometer used is a variable-included-angle PGM.  The resolving power for the 

photons used is our experiment is ~0.1eV.  The ring current of the synchrotron is 

resupplied three times daily with an initial current of 400 mA that decays to around 200 

mA prior to refilling.  A schematic of the ring current over an average day is shown in 

figure 3.17.  All measurements must take into account the relative ring current, as it 

affects the signal intensity. 

 

Figure 3.17 – Graph of the decay of the synchrotron ring current over time for a typical 

day. 
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 Briefly, a synchrotron radiation source uses the fact that radiation is emitted when 

a fast electron is accelerated.  A magnetic field in an area an electron is traveling in will 

cause the electron to change direction by exerting a force on it perpendicular to the 

direction the electron is moving. As a result, the electron will be accelerated, causing it to 

radiate electromagnetic energy. This is called bremsstrahlung or synchrotron radiation 

(after radiation observed from particle accelerators by that name). If the electrons and the 

magnetic field are energetic enough, the emitted radiation can be in the form of x-rays.  A 

schematic of a synchrotron source is shown in figure 3.18. 

 

 

Figure 3.18 – Map of a synchrotron radiation source. 
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Chapter 4: Low Pressure STM Surface Structure Study of 

Cyclic C6 Hydrocarbons adsorbed to Pt(111) 

 

This chapter discusses STM studies of the low pressure (10-6 Torr) adsorption 

structures of cyclic C6 hydrocarbon monolayers on the platinum (111) crystal surface.   

Upon adsorption at 5 x 10-6 Torr on Pt(111) both cyclohexane and cyclohexene produce 

the same structure, which corresponds to the partially dehydrogenated π-allyl (C6H9) as 

studied by spectroscopic methods [1-3].  1,3-cyclohexadiene and benzene appear to yield 

molecular benzene structures.  1,4-cyclohexadiene forms a structure very different from 

the other two and is most likely molecular 1,4-cyclohexadiene.  Increasing the 

backpressure of cyclohexene from 5 x 10-6 Torr up to 10 Torr, results in no surface 

structure change until 10 Torr.  At this point, a structure similar to that observed for 1,4-

cyclohexadiene is observed. 

 

4.1 Introduction 

Catalysis is, and will most likely remain a massive contributor to the world 

economy.  In the production of virtually all industrial chemicals, the refinement of 

petroleum products, the fabrication of polymers, and the production of fertilizers, 

catalysis is necessary.  In fact, the catalytic production of ammonia on iron based 

catalysts was recently named the most important technological achievement of the 20th 

century [4] due to the fact that it allows food for literally billions of people to be 
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produced at a reasonable price.  Despite this huge importance to our economy and our 

society in general, the knowledge of the catalytic process is far from complete. 

One method to further elucidate the catalytic process is to study common or 

model adsorbates at low pressures.  Investigating what types of surface species form from 

a particular gas, and how this may change with the back-pressure level or chemical 

composition can yield information about what types of stable surface intermediates are 

favored on a particular catalyst surface.  This can tell you if the catalyst preferentially 

supports certain reaction pathways, and thus enhances selectivity.  Cyclic C6 

hydrocarbons are of particular industrial importance due to the petroleum industry.  The 

refining of crude oils and the production of high octane fuels both involve catalytic 

hydrocarbon reaction on platinum based catalysts.   Understanding how these organic 

molecules interact with a catalyst surface is crucial to obtaining a complete molecular 

level understanding of catalysis. 

Here we report the low pressure structures formed from cyclohexane, 

cyclohexene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, and benzene on the platinum 

(111) surface.  Also we investigate how the low pressure structure observed from the 

presence of background cyclohexene changes as the pressure is raised from 5 x 10-6 Torr 

up to 10 Torr.   

 

4.2 Experimental 

All experiments were performed in a high pressure, high temperature STM that 

has been described in detail elsewhere [5].  The system combines a UHV surface 

analysis/preparation chamber with a variable temperature ( 298K � 675K) and pressure 
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(10-10 � 103 Torr) scanning tunneling microscope (RHK Technology, Model VT-UHV 

300).  The base pressure of the system was 1 x 10-10 Torr with a background mostly made 

up of H2, CO and H2O.  Using three gate valves, the STM chamber can be isolated from 

the rest of the system and filled with any gas mixture.  Leaking the gas to a mass 

spectrometer located in the UHV chamber monitored the composition of the gas. 

(Stanford Research Systems, RGA 200) 

 All experiments were carried out using a platinum single crystal of (111) 

orientation with a miscut angle of < 0.3û.  The crystal was polished using diamond grit 

down to a grit size of .25 µm.  Before each experiment the sample was sputtered in 5 x 

10-6 Torr O2 for 15 minutes.  The ion energy was 400 eV and the current was ~4 µA.  The 

sample was then heated with an electron beam heater to 1123 K for 5 min and briefly 

flashed back to 1123K for 1 minute just prior to being transferred to the STM chamber.  

Sample cleanliness was monitored using Auger electron spectroscopy and checked with 

STM prior to gas introduction.   

During STM experiments, the STM chamber was isolated from the rest of the 

system while cyclohexane, cyclohexene, 1,4-cyclohexadiene, 1,3-cyclohexadiene or 

benzene was introduced.  The cyclic C6 liquids (99.5%, Fluka) were purified by freeze-

pump-thaw treatment before being introduced.   

All images were taken using electrochemically etched tungsten tips etched with a 

technique developed by Klein et. al. [6].  STM settings during image acquisition were 

I=0.05 - 0.2 nA and V= 50 � 100 mV.  A pressure transducer was used to monitor the 

chamber pressure during experiments.  A Varian ionization gauge model UHV-24 was 

used to monitor pressures up to 5 x 10-5 Torr and the appropriate gas correction factor 
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was used to calculate the pressure of each type of gas.  MKS Instrument Baratron model 

722A was used for experiments involving pressures ranging from .1mTorr � 10 Torr and 

model 122A was used for experiments exceeding 10 Torr.   

 

4.3 Results/Discussion 

Low Pressure Studies 

 The structures formed by exposing Pt(111) to low pressures (2 x 10-6 Torr � 1 x 

10-5 Torr) of cyclohexene and potential intermediates cyclohexane, 1,4-cyclohexadiene, 

1,3-cyclohexadiene and benzene were studied.  Preparing the platinum sample by the 

method discussed above results in a clean stepped surface.  Scanning smaller areas we 

were occasionally able to resolve the periodicity of the (111) platinum surface.  In 

addition to verifying sample cleanliness, this was used for piezo calibration.  Imaging 

large areas can display steps produced by dislocation planes crossing the surface.  These 

steps are aligned along the compact [110] type direction and provide an internal 

calibration of the crystal orientation for comparison with the molecular images.  

Exposing the clean platinum surface to 2 x 10-6 Torr of cyclohexene at 300K reveals the 

stable surface structure seen in figure 4.1a.  The cyclohexene molecules form a surface 

structure with hexagonal symmetry and a periodicity of ~7 Å.  In one of the directions, 

the individual molecules are more difficult to resolve suggesting that the molecules may 

overlap differently in that direction.  The structure is rotated with respect to the platinum 

by ~18-20û, which indicates that it may be a (√7 x √7) R19.1û structure.  SFG, high 

resolution electron energy loss spectroscopy (HREELS), bismuth post dosing thermal 

desorption mass spectroscopy, and theoretical studies performed have determined that the 
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species present at room temperature is the partially dehydrogenated π-allyl C6H9 [1-3].  

Using the 3-fold hollow adsorption site calculated in previous studies by density 

functional theory [7] a surface model of this molecular structure is displayed in figure 

4.1c.  The geometry of the π-allyl molecule when adsorbed to the platinum surface is a 

chair configuration and is displayed in figure 4.1b. 

 

             

a)        b) 
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c) 

Figure 4.1 – a) 60Å x 60Å STM image of Pt(111) in the presence of  2 x 10-6 Torr 

cyclohexene at 300K.  A hexagonal arrangment of spots is observed with a periodicity of 

~6.5Å.  Spectroscopy studies have found the surface species to be π-allyl. Lines represent 

[110]-directions of underlying platinum. A unit cell of the adsorbate structure is drawn. 

b) Schematic of the bonding structure of π-allyl. c) Diagram of the proposed (√7 x √7) 

R19.1º model for the π-allyl structure in figure 4.1a. 

 

To confirm that the cyclohexene had not further dehydrogenated to 1,4 or 1,3-

cyclohexadiene or benzene, or hydrogenated to cyclohexane, the sample was 

independently exposed to all four species in an attempt to characterize their respective 

low pressure surface structures.  Figures 4.2, 4.3a, 4.4 and 4.5a show the Pt(111) exposed 

to 2x10-6 to 1x10-5 Torr of each species at 300K.  Figures 4.3b, and 4.5b show the 
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accepted bonding geometry.  Figures 4.3c, and 4.5c show the proposed bonding 

structures.   

The platinum surface when exposed to cyclohexane forms an ordered structure 

very similar to that formed from exposure to cyclohexene (Figure 4.2).  This is unlikely 

to be molecular cyclohexane, since a quick calculation of the residence time using ∆Hads 

= -58.1 kJ/mol [2] and equation 4.1 [8] 

Equation 4.1 - 





 ∆

ο ⋅τ=τ RT
Hads

e  

τ = residence time, 

το =  10-12 sec, 

∆Hads = heat of adsorption, 

R = gas constant, 

T = temperature (K) 

 

results in a residence time of about .015 sec.  The flux of molecules striking the surface at 

this pressure is around 2 collisions/surface atom/sec.  From this one can easily calculate 

the surface coverage using a Langmuir adsorption isotherm equation 4.2 [18] 

Equation 4.2 � τ+σ
τσ=σ F

F
o

o
 

σ = coverage 

F = Flux 

σο = coverage of a complete layer 

τ = residence time, 
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 gives a coverage of ~0.01 monolayers.  Our STM is able to take an image in slightly less 

than 1 minute, so many molecules have adsorbed diffused and desorbed over the course 

of taking one image.  This very low coverage, rapid adsorption/desorption as well as the 

surface diffusion these vacancies allow make resolving the surface structure of the intact 

cyclohexane molecule difficult.  Higher pressure sum frequency generation studies by 

Yang et. al. [9] have shown that at 1.5 Torr cyclohexane and at 310K the adsorbed 

cyclohexane does indeed partially dehydrogenate on the Pt(111) surface to form the π-

allyl overlayer.  Low coverage studies [10,11] also show that cyclohexane forms the π-

allyl but begins to dehydrogenate to benzene between 270 � 290K.  This small 

temperature discrepancy can be explained by the competition for vacant sites needed for 

hydrogen abstraction that occurs at saturation coverages.  The images show that the π-

allyl again forms the (√7 x √7) R19.1û that it forms from exposure to cyclohexene.   
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Figure 4.2 � 75Å x 75Å STM image of Pt(111) in the presence of 2 x 10-6 Torr 

cyclohexane at 300K. Periodicity of ~ 7Å.  Spectroscopic studies suggest that the surface 

species is π-allyl. 

 

When the clean platinum surface is exposed to 1x10-5 Torr of 1,4-cyclohexadiene 

the platinum surface exhibits a complicated surface structure with six member rings 

forming from individual 1,4-cyclohexadiene molecules.  (Figures 4.3a).    The rows of 

hexagons are rotated ~10û with respect to the underlying platinum.  The intermolecular 

distance is 9.8 + .7 Å while the distance between rings composed of 6 molecules is 18.4 + 

1.1 Å.  DFT calculations by Saeys et. al. [12] show that the bridge site in which the 

molecule forms four sigma bonds and the 3-fold hollow in which the molecule forms two 

sigma and one pi-bond, have essentially equal adsorption energies of 145.6 kJ/mol and 

141.6 kJ/mol respectively.  Using the 3-fold hollow site with the bonding geometry 

shown if figure 4.3b a (√43 x √43) R7.6° surface model is proposed (Figure 4.3c).  This 

model gives intermolecular distances of 9.9 Å and interring distances of 18 Å.  Both of 

these values are well within the experimental error of observed values.  In addition, this 

model helps to explain why we do not observe a center bonded 1,4 �cyclohexadiene 

molecule.  As can be observed from the structure, the center bonding site is different 

from the outer 6 which may provide weaker surface interactions and thus a residence time 

that is too short to image with the STM.  Also, the molecule may adsorb on an identical 

site to the other six that is slightly off center, and as the adsorbed molecules moves easily 

from site to site, its electron density is spread out sufficiently to appear significantly 

lower than its outer six counterparts. 
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a)        b) 

 

c) 
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Figure 4.3 – a) 50Å x 50Å STM image showing the structure formed by 1,4 � 

cyclohexadiene on Pt(111) at 1x 10-5 Torr and 300K. Lines in the [110]-type directions of 

the underlying platinum lattice are drawn. The surface species form hexagonal units in 

domains containing a few unit cells and in antiphase relationship to each other.  The 

periodicity and rotation suggest a (√43 x √43) R7.6º structure b) Model of the bonding 

geometry of adsorbed 1,4- cyclohexadiene. c) Diagram of the proposed (√43 x √43) 

R7.6º 1,4-cyclohexadiene structure. 

 

Exposure to 1 x 10-5 Torr of 1,3-cyclohexadiene shows an ordered structure as 

well, but in this case it has hexagonal symmetry with periodicity of 9.4 Å + .3, 9.9 Å +.3, 

and 10.2 Å + .2 for the 3 axes of symmetry (Figure 4.4).  The rotation with respect to the 

underlying platinum surface was ~30û .  This species is thought to be benzene as is 

discussed below. 
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Figure 4.4 � 100Å x 100Å image of Pt in the presence of 1x 10-5 Torr 1,3 � 

cyclohexadiene at 300K.  The surface structure, (2√3 x 2 √3) R30.0º, is similar to that 

formed by benzene. 

 

Finally when exposed to 1 x 10-5 Torr of benzene a surface structure essentially 

identical to that of 1,3-cyclohexadiene is observed with a periodicity of 8.9 Å + .5, 8.6 Å 

+.6, and 8.9 Å + .5 for three axes of symmetry (Figure 4.5a) and is rotated 30û with 

respect to the underlying platinum.  The structure we propose based on periodicity and 

rotation relative to the underlying platinum is (2√3 x 2√3) R30.0û.  DFT calculations 

[13,14] have shown that the most favored adsorption site is the bridge bonded rotated 30û 

as is displayed if figure 4.5b.  With this a bonding model has been created and is 

displayed in Figure 4.5c.  Since adsorbed benzene remains molecular benzene in our 

experimental conditions, and the periodicities are very similar one can conclude that upon 

adsorption to the platinum substrate at 300K, the 1,3-cyclohexadiene dehydrogenates to 

benzene.  These studies correlate with a thermal desorption mass spectroscopy study 

performed by the Campbell group[15].  This study showed that the dehydrogenation of 

1,3-cyclohexadiene to benzene at low coverages occurs between 20-30K lower 

temperature than for the 1,4-cyclohexadiene.  Bismuth post dosing thermal desorption 

spectroscopy reveals dehydrogenation temperatures of ~230K and 260K respectively 

while thermal desorption spectroscopy shows H2 evolution beginning at ~280K and 

300K.  Our studies indicate temperatures similar to the latter, but are performed at 

saturation coverages, which may lead to competition for the vacant sites needed for 

hydrogen abstraction.  This site blocking effect at saturation coverages leading to higher 
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dehydrogenation temperatures has been observed in the case of cyclohexene 

dehydrogenation as a function of temperature [16].  The 1,3 cyclohexadiene appears 

dehydrogenated to benzene, while the 1,4-cyclohexadiene has either remained entirely 

intact or just begun to dehydrogenate resulting in a coadsorption structure.   

 

  

a)          b) 
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c) 

Figure 4.5 – a) 80Å x 80Å STM image of Pt in the presence of 1.2 x 10-5 Torr benzene 

at 300K.  Species is molecular benzene. Lines in the [110]-type directions of the 

underlying platinum lattice, and a unit cell of the adsorbate structure have been drawn.  b) 

Model of the accepted bonding site and geometry. c) Diagram of proposed (2 √3 x 2 √3) 

R30.0º benzene structure. 

 

 The structures observed from benzene 1,3 and 1,4 �cyclohexadiene are entirely 

different than the one observed when the surface was exposed to purely cyclohexene, 

while the one observed from exposure to cyclohexane is very similar to that detected in 

the presence of cyclohexene.  This leads one to conclude that no further dehydrogenation 
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has occurred and that the structure observed in Figure 4.1a is indeed the π-allyl proposed 

by others.  

 

Cyclohexene Pressure Study 

 The effect on the back pressure of cyclohexene gas on the surface structure of the 

adsorbed molecules on Pt(111) was studied.  Initially the surface was exposed to ~2L of 

cyclohexene and imaged in vacuum.  As can be seen in figure 4.6a, areas of rows very 

similar to those observed under saturation coverage are observed, as well as areas that 

appear to still be the clean platinum surface.  The similarities to the higher pressure 

structure and previous spectroscopic studies indicate that the surface species is the 

partially dehydrogenated π-allyl.  Upon introducing 1 x 10-5 Torr of cyclohexene, the 

surface become fully covered, and the (√7 x √7) R19.1º π-allyl structure observed 

previously is clearly seen.  The back pressure is then increased to 100 mTorr and then 

1.53 Torr.  In each case a surface structure corresponding to the (√7 x √7) R19.1º is 

observed (figures 4.6c and 4.6d).  After increasing the back pressure to 10 Torr some 

surface changes are seen.  Although there are some areas that remain unchanged (figure 

4.6e), some areas have converted to a new surface species as is clearly seen in figure 4.6f.  

This larger ring like structure is very similar to that seen on the surface from the presence 

of 1,4-cyclohexadiene, but with slightly lower resolution.  SFG studies have shown that 

at around 2 Torr there is a surface chemistry change that corresponds to the dominant 

surface species becoming 1,4-cyclohexadiene from the π-allyl.  A sample SFG spectrum 

is shown in figure 4.7. 
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a)      b) 

    

c)      d) 
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e)      f) 

Figure 4.6 � Series of STM images of cyclohexene adsorbed to Pt(111) as the back 

pressure of gas is increased.  The pressure is: a) 2 L (70Å x 70 Å), b) 1 x 10-5 Torr (40 Å 

x 40 Å), c) 100 mTorr (42 Å x 42 Å), d) 1.5 Torr (50 Å x 50 Å), e) (35 Å  x 35 Å )and f) 

10 Torr (65 Å x 65 Å).  The structure observed remains the same up until 10 Torr when it 

starts to change.  Data suggests it is changing from the (√7 x √7) R19.1º π-allyl structure 

to a (√43 x √43) R7.6º 1,4- cyclohexadiene structure. 
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Figure 4.7 – Sample sum frequency generation vibrational spectroscopy spectra of 

Pt(111) in the presence of increasing pressures of cyclohexene.  As can be observed, the 

dominant surface species converts to 1,4-cyclohexadiene from the π-allyl at around 2 

Torr. 

 

4.4 Conclusions 

 At 300K and at low pressures we have identified three stable surface structures 

formed from cyclic C6 hydrocarbons.  Both cyclohexane and cyclohexene partially 

dehydrogenate to form an ordered π-allyl overlayer with a surface structure of (√7 x √7) 

R19.1û.  Benzene and 1,3-cyclohexadiene both form a (2√3 x 2√3) R30.0û structure, 

which consists of molecular benzene.  Finally 1,4-cyclohexadiene forms a structure very 

different from the first two.  This (√43 x √43) R7.6 structure is either pure 1,4-

cyclohexadiene or a coadsorption structure containing other partially dehydrogenated 

species. 
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 The pressure dependent surface structure of cyclohexene on Pt(111) revealed that 

from doses to 1x10-5 Torr up to 1 Torr the surface structure remains the π-allyl (√7 x √7) 

R19.1û structure observed at low pressures.  Further increasing the pressure to 10 Torr, 

however, shows a surface phase change to a structure similar to the (√43 x √43) R7.6° 

structure of 1,4-cyclohexadiene.  Sum frequency generation studies support that this 

phase change occurs at a similar pressure. 
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Chapter 5: Combined STM Surface Structure and Reaction 

Rate Studies of Cyclohexene Hydrogenation/Dehydrogenation 

and Its Poisoning by Carbon Monoxide on the Pt(111) Crystal 

Surface 

 

This chapter details the use of HPSTM to study the hydrogenation/ 

dehydrogenation of cyclohexene on platinum(111).  Catalytic reactions of cyclohexene 

were studied on platinum in the presence of hydrogen at mTorr pressures in the 300K � 

350K temperature range.  The surface structures were monitored by STM during the 

reaction and in the presence of CO that poisons the reactions.  Reactivity was monitored 

by a mass spectrometer.  

When 20 mTorr of H2 and 20 mTorr of cyclohexene are introduced at 300K the 

surface forms the same structure seen at low pressures of pure cyclohexene.  No gaseous 

cyclohexane or benzene is observed.  Heating to 350K disorders the surface but the 

catalyst remains inactive as the surface becomes covered with benzene and other 

dehydrogenated carbonaceous fragments.  When a pressure of H2 of 200 mTorr is used at 

300K with 20 mTorr cyclohexene, the surface is disordered and both cyclohexane and 

benzene gaseous products can be detected as they are formed by continuous catalytic 

reaction.  Adding 5 mTorr of CO stops all catalysis and orders the surface.  Repeating 
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this experiment at 350K yields the same result of poisoning the reaction except the 

surface stays disordered upon addition of CO.  Lowering the temperature to 325K 

recovers the ordered CO structure.  Using higher pressures of gases (1.5 Torr 

cyclohexene, 15 Torr H2 and 1 Torr CO) also yields a disordered surface during catalysis, 

and an ordered surface upon introducing CO at 300K that poisons the reaction.  Again the 

CO structure disorders when heated to 350K. 

 

5.1 Introduction 

 High pressure scanning tunneling microscopy (HPSTM) has proven to provide the 

means of monitoring the structure of the metal surface during catalytic turnover [1,2].  

The technique is able to detect molecular surface structures that are present at high 

pressures.  It can also monitor the mobility of adsorbates and metal atoms if motion 

occurs in the range of the scan rate ~ 100Å/msec.  This ability to detect surface dynamics 

is rather unique in the repertoire of surface techniques that provide molecular information 

under reaction conditions.  Most spectroscopic techniques yield time-averaged 

information of structure and bonding.  In prior studies we utilized the HPSTM (which 

was built for the first time in our laboratory) [3,4] to study ethylene hydrogenation and 

it�s poisoning by carbon monoxide using the (111) crystal faces of platinum and rhodium 

[5,6].  It was found that the surface monolayers of adsorbates, mostly ethylidyne (C2H3) 

and hydrogen in this case are mobile and disordered while the catalytic turnover proceeds 

at a steady and sustainable rate.  Upon the introduction of carbon monoxide the reaction 

stops and ordered domains form that are co-adsorbed ethylidyne and CO on the platinum 

and rhodium.  The conclusion of these studies was that adsorbates on the catalytically 
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active metal surface must be mobile.  This permits active metal sites where reaction 

events occur to become temporarily available as the adsorbates leave the site.  This is 

made possible by the low activation energy for surface diffusion (~0.1 eV) as compared 

to the heat of desorption of strongly bound adsorbates. 

 In this chapter I report combined HPSTM and reaction turnover studies of the 

hydrogenation and dehydrogenation of cyclohexene to cyclohexane and benzene, 

respectively.  This reaction has been studied extensively in the 300K � 450K region on 

the Pt(111) surface using sum frequency generation (SFG) � vibrational spectroscopy in 

the presence of excess hydrogen as well as gas chromatography (GC) [7-9,17].  SFG 

surface spectroscopy was also carried out at low and high reactant pressures (10L to 5 

Torr) as a function of temperature to monitor the surface species [8].  At 300K and 1.5 

Torr cyclohexene, 1,4-cyclohexadiene and some 1,3-cyclohexadiene form on the surface.  

As the temperature is increased these species convert to the π-allyl (C6H9) at about 320K 

as detected by SFG, this species remains on the surface until about 420K where it further 

dehydrogenates to benzene.  At room temperature and cyclohexene pressures below 1 

Torr however it has been shown that the π-allyl is the only significant surface species 

[10].  The presence of hydrogen changes somewhat the reactions that occur. At room 

temperature with 1.5 Torr cyclohexene and 15 Torr hydrogen again 1,4-cyclohexadiene is 

the dominant species.  As before at 320K it converts to the π-allyl. At around 400K, it 

converts to 1,3 cyclohexadiene before fully dehydrogenating to benzene.   

 Our HPSTM studies support the SFG findings of the formation of the π-allyl 

species from cyclohexene at low pressures on the Pt(111) crystal face at 300K.  As the 

pressure of hydrogen is increased the steady state production of both cyclohexane and 
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benzene is detectable and there is an absence of ordered surface structures.  The STM 

images are diffuse indicating surface mobility of the adsorbed species that is faster than 

the scan rate of the STM, just as it was found in previous studies of ethylene 

hydrogenation.   Increasing the temperature in the absence or at low pressures of 

hydrogen (20 mTorr) yields an immobile carbonaceous overlayer as a result of rapid 

dehydrogenation.  At higher hydrogen pressures the surface remains disordered and 

catalytically active.  When carbon monoxide is introduced at 300K, catalytic turnover 

stops, the reaction is poisoned.  Simultaneously an ordered surface structure can be 

detected with STM that proved to be the (√19 x √19)-CO structure that has also been 

identified in previous HPSTM studies [11,12].  Repeating this experiment at 350K yields 

similar results.  When the reaction is poisoned with CO turnover stops, but in this case 

the surface remains disordered.  Reducing the temperature to 330K reestablishes the CO 

order.  

 

5.2 Experimental 

 All experiments were performed in a high pressure, high temperature STM that 

has been described in detail elsewhere [4].  The system combines a UHV surface 

analysis/preparation chamber with a variable temperature ( 298K � 675K) and pressure 

(10-10 � 103 Torr) Scanning Tunneling Microscope (RHK Technology, Model VT-UHV 

300).  The base pressure of the system was 1 x 10-10 Torr with a background mostly made 

up of H2, CO and H2O.  Using three gate valves, the STM chamber can be isolated from 

the rest of the system and filled with any gas mixture.  Leaking the gas to a mass 



 

 87 

spectrometer monitored the composition of the gas. (Stanford Research Systems, RGA 

200) 

 All experiments were carried out using a platinum single crystal of (111) 

orientation.  The crystal was polished using diamond grit down to a grit size of .25 µm.  

Before each experiment the sample was sputtered in 5 x 10-6 Torr O2 for 15 minutes.  The 

ion energy was 400 eV and the current was ~4 µA.  The sample was then heated with an 

electron beam heater to 1123 K for 5 min and briefly flashed back to 1123K for 1 minute 

just prior to being transferred to the STM chamber.  Sample cleanliness was monitored 

using Auger electron spectroscopy and checked with STM prior to gas introduction.   

 During STM experiments, the STM chamber was isolated from the rest of the 

system while various combinations of hydrogen, cyclohexene, and carbon monoxide 

were introduced.  Hydrogen was always introduced first followed by the cyclohexene and 

then CO (if necessary).  The hydrogen and CO were of ultrahigh purity grade, while the 

cyclohexene (99.5%, Fluka) were purified by freeze-pump-thaw treatment before being 

introduced.  If the experiment involved CO it was introduced after the sample had 

reached experimental temperature.  In order to heat our sample in the presence of high 

pressures of potentially reactive gases, a 150 W, tungsten filament, halogen filled, quartz 

projector bulb was used.  The bulb provided radiative heating without making mechanical 

contact and could be raised into position so it was directly below the sample providing 

the most efficient heating possible.  A type K thermocouple spot-welded to the side of the 

crystal monitored sample temperature.  The sample was always allowed to equilibrate at 

least 5 min prior to imaging.  All images were taken using electrochemically etched 

tungsten tips etched with a technique developed by Klein et. al. [13].  STM settings 
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during image acquisition were I=0.05 - 0.2 nA and V= 50 � 100 mV.  A pressure 

transducer was used to monitor the chamber pressure during experiments.  A Varian 

ionization gauge model UHV-24 was used to monitor pressures up to 5 x 10-5 Torr and 

the appropriate gas correction factor was used to calculate the pressure of each type of 

gas.  MKS Instrument Baratron model 722A was used for experiments involving 

pressures ranging from .1mTorr � 10 Torr and model 122A was used for experiments 

exceeding 10 Torr.   

 

5.3 Results/Discussion 

Exposure to 20 mTorr of cyclohexene and 20 mTorr of hydrogen 

 The Pt(111) surface in the presence of cyclohexene and hydrogen was studied 

with STM and mass spectrometry.  The surface structure in the presence of 20 mTorr of 

H2 and 20 mTorr of cyclohexene at 300K is shown in Figure 5.1.  As can be seen, the 

structure formed is (√7 x √7) R19.1û structure identical to that formed by pure 

cyclohexene at lower pressures [14].  Thus the presence of hydrogen at this pressure is 

not sufficient to prevent the formation of the partially dehydrogenated π-allyl.  It also 

does not weaken the Pt-π-allyl surface bond enough to allow for room temperature 

mobility that is faster than our STM is capable of imaging.  An analysis of the bulk gas 

with a mass spectrometer however shows no significant production of either cyclohexane 

or benzene.  When the temperature is increased to 350K there is still no cyclohexane or 

benzene detected but the surface disorders (Figure 5.2).  This is not entirely surprising 

however.  As has been shown previously [7,9], the increase in temperature also leads to 

an increase in benzene production, which is significantly less mobile than cyclohexane 
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and has a very low desorption probability.  The surface may become covered with the 

benzene product potentially leading to self-poisoning.  The higher temperatures also can 

lead to decomposition and dehydrogenation of adsorbed benzene, eventually leading to 

the formation of an immobile carbonaceous overlayer.  In an effort to further understand 

how benzene behaves on the surface, we exposed the (111) platinum surface to 2 x 10-6 

Torr of pure benzene at 298K and then heated the sample to 350K as was done in the 

previous experiment.  As was observed in the reaction studies, an ordered surface at room 

temperature (Figure 5.3a)  disordered at 350K (Figure 5.3b) further leading us to believe 

that the catalyst surface in the previous experiment was poisoned by benzene and other 

dehydrogenated species.   

 

 

Figure 5.1- 100 Å x 100Å image of Pt(111) at 25C in the presence of 20 mTorr of 

hydrogen and 20 mTorr of cyclohexene.  Surface structure formed is the (√7 x √7) R19.1û 

composed of  the π-allyl species. 
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Figure 5.2 - 100Å x 100Å image of Pt(111) at 350K in the presence of 20 mTorr 

hydrogen and 20 mTorr cyclohexne. No surface order can be discerned, but mobile 

adsorbate species are present that give rise to streaks as they are partially imaged by the 

scanning 

 

   
a)      b) 
Figure 5.3 – a)50Å x 50Å STM images of Pt(111) at 300K in the presence of 2 x 10-6 

Torr benzene.  Surface orders at room temp. b) 100Å x 100Å of the same surface heated 

up to 350K.  All surface order is lost. 
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High pressure studies under catalytic reaction conditions (20 mTorr cyclohexene, 200 

mTorr hydrogen.  Effect of CO poisoning. 

a) Room temperature  

 When the Pt(111) sample was exposed to 200 mTorr of hydrogen and 20 mTorr 

of cyclohexene at 298K no surface ordering could be detected by STM (Figure 5.4).  This 

suggests rapid diffusion and low residence time of adsorbed reactant molecules as well as 

the formed products cyclohexane and benzene.   Mass spectrometry data shows that the 

surface is catalytically active producing mostly cyclohexane.  A sample graph from the 

mass spectrometry study is shown in figure 5.5.  This preference for the cyclohexane 

product has been previously found at higher pressures but at the same H2/C6H10 ratio 

[7,9].  When 5 mTorr of CO is introduced, cyclohexene and benzene production is 

stopped as detected by mass spectrometry.  This ceasing of catalytic activity corresponds 

to the formation of an ordered surface overlayer (Figure 5.6).  The structure in figure 5.6 

is the only structure observed and appears similar to the saturated CO (√19 x √19) R23.4° 

structure reported earlier by Besenbacher et. al[11,12] and also observed in our system 

when the crystal was exposed to 5 Torr of pure CO (Figure 5.7).  In our reaction images 

the periodicity observed is from the (√19 x √19) R23.5û unit cell CO structure and 

individual molecules within the unit cell are not resolved. 
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Figure 5.4 - - 75Å x 75Å STM image of Pt(111) at 300K in the presence of 200 mTorr 

H2  plus 20 mTorr cyclohexene.  No discernable order or surface structure is observed. 

 

 

Figure 5.5 - Mass spectrometer study showing the evolution of the reaction products 

(cyclohexane and benzene) at 300K resulting from cyclohexene hydrogenation and 

dehydrogenation 
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Figure 5.6 - 90Å x 90Å STM image of Pt(111) at 300K in the presence of a mixture of 

200 mTorr H2,  20 mTorr of cyclohexene, and 5 mtorr CO.  Periodicity of ~13Å 

corresponds to structure seen for pure CO.  A unit cell has been drawn. 

 

 

Figure 5.7 - 50Å x 50Å STM image of Pt(111) in the presence of 5 Torr CO at 300K. A 

large (√19 x √19) R23.4° unit cell is marked. The Moire structure is due to the 

incommensurability of CO-CO and Pt-Pt distances. 
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b) Temperature increased to 353K 

 The same experiment was repeated at a temperature of 353K.  At this temperature 

and higher pressures the surface is known to favor dehydrogenation.  Our mass 

spectrometer experiments confirm this result.   Again as in the room temperature case, 

STM images show a surface with no discernable surface order in figure 5.8a.  This can 

once again be attributed to the high mobility of surface species as well as low residence 

times.  When 5 mTorr of CO is introduced once again all catalytic activity ceases as is 

evidenced from mass spectrometry.  STM however still shows a disordered surface 

(Figure 5.8b) indicating fairly mobile surface species.  This is not entirely surprising.  

Calculating the residence time of pure CO on Pt(111) using Equation 5.1 [15]  

Equation 5.1- 





 ∆

ο ⋅τ=τ RT
Hads

e  

τ = residence time, 

το =  10-12 sec, 

∆Hads = heat of adsorption,  

R = Gas constant,  

T = temperature 

 

and a saturation binding energy of 80 kJ/mol [16] a residence time of roughly 2 seconds 

is obtained.  The time to acquire an image is roughly 1 minute so the short residence time 

alone would make it difficult to image the CO structure.  In addition, due to the high 

mobility of CO [18,19] neighboring molecules can quickly move to fill these sites before 

a molecule from the gas phase adsorbs resulting in a highly mobile surface as well.  
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Although resolving periodicity should still be possible as CO molecules will spend a 

disproportionate amount of time on preferred adsorption sites resulting in increased 

electron density, the corrigation will be significantly reduced and we were never able to 

resolve the structure.  Increasing the pressure of CO would increase the flux of CO hitting 

the surface and as is shown in equation 5.2 [15] 

Equation 5.2 - τ=σ F  

σ = coverage,  

F = flux and  

τ = residence time. 

 

 also increasing the coverage.  Although the increase in coverage will not increase the 

residence time, and will in fact most likely decrease it,  it will reduce the probability that 

neighboring molecules will fill the vacant site before a gas molecule, thus lowering the 

mobility and potentially making imaging at this temperature possible.  The explanation 

for the lack of catalytic activity can be due to several factors.  First the surface is simply 

dominated by CO resulting in a very low coverage of the π-allyl or other necessary 

intermediates.  Also since vacant sites are needed for hydrogen bond cleavage and 

formation [15], in order for reaction to occur, cyclohexene must not only adsorb when 

CO molecules vacate the necessary number of sites, but also encounter another empty site 

before it desorbs.  This theory of a mobile CO covered surface is supported by the fact 

that if we then cool the sample down to 325K  resulting in a calculated residence time of 

35 seconds, a clearly ordered overlayer corresponding to the (√19 x √19) R23.4° CO 

structure is observed (Figure 5.9). 
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a)       b) 

Figure 5.8 - 100Å  x 100Å STM images of Pt(111) at 80C in the presence of a) 200 

mTorr H2,  20 mTorr of cyclohexene, and b) 200 mTorr H2,  20 mTorr of cyclohexene, 

and 5 mTorr CO.  No order is seen despite the lack of catalytic activity and the 

introduction of CO. 
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Figure 5.9 - 70Å  x 70Å image of Pt(111) in the presence of 200 mTorr H2,  20 mTorr of 

cyclohexene heated to 80ºC, 5 mTorr CO added cooled to 50ºC 

c)Higher pressures (> 10 Torr) of cyclohexene, hydrogen and CO 

 

 The effect of CO poisoning on Pt(111) catalyzed hydrogenation/dehydrogenation  

of cyclohexene at 298K and pressures in the Torr regime was also studied.  The mass 

spectrometer used in this study is unable to detect small amounts of product in large 

excesses of reactants, so data from previous gas chromatography studies was used [20].  

When exposed to 15 Torr H2 and 1.5 Torr of cyclohexene the platinum surface is 

markedly different from the lower pressure experiments.  SFG studies done by Yang et. 

al. [8] have shown that the dominant surface species is no longer the π-allyl but is now 

1,4-cyclohexadiene.  This study also shows that the surface is catalytically active in the 

hydrogenation of cyclohexene.  STM reveals a disordered surface that indicates the 

cyclohexadiene species is also mobile at room temperature with an excess of hydrogen.  

When 1 Torr of CO was introduced the result was similar to the lower pressure study.  An 

ordered CO array could be easily seen everywhere on the surface (Figure 5.10).  This 

formation of an ordered surface overlayer also coincides with the ceasing of all catalytic 

activity observed by Yang at lower CO partial pressures.  As was in the case for our 

lower pressure study as well, the CO ordering disappeared when the sample was heated 

to 350K and reappeared upon cooling back to 300K.  
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Figure 5.10 - 100Å  x 100Å image of Pt(111) at 25ºC in the presence of 15 Torr H2,  1.5 

Torr of cyclohexene and 1 Torr CO 

 

5.4 Conclusions 

 The adsorbed monolayer that is produced during cyclohexene hydrogenation/ 

dehydrogenation on the catalytically active surface is disordered.  These results are the 

same as those found for ethylene hydrogenation in prior studies [6].  Thus, surface 

mobility is an important feature of the catalytically active metal surface.  Poisoning the 

reaction by the introduction of carbon monoxide produces an ordered surface overlayer at 

300K that becomes disordered at 350K but orders again when the temperature is brought 

back below 325K.  Thus the CO induced reduction of mobility in combination with site 

blocking poison the catalytic reaction.  These findings bring into focus the importance of 

adsorbate mobility and site competition on the crowded surface during catalytic turnover. 

 The activation energy for ethylene hydrogenation on the CO poisoned Pt(111) 

surface increased to 20 kcal/mol as compared to the 9.7 kcal/mol for the reaction in the 
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absence of CO [5].  The heat of desorption of CO at high coverages is about 20 kcal/mol 

[16] which indicates that the reaction can only take place on the CO poisoned surface if 

the CO molecules desorb.  Studies by Yang [20] indicate similar changes in the activation 

energy for cyclohexene hydrogenation/dehydrogenation in the presence of carbon 

monoxide.  Apparent activation energies for hydrogenation and dehydrogenation in the 

absence of CO are 8.6 kcal/mol and 17.9 kcal/ mol respectively.  These activation 

energies increase to 16.1 kcal/mol and 24.8 kcal/mol after CO is introduced. 

  SFG studies by Yang on Pt(111) at pressures ranging from 10L � 100 mTorr of 

cyclohexene indicate the presence of a π-allyl (C6H9) species at room temperature.  The 

π-allyl is also observed at 1.5 Torr of cyclohexane at 310K.  The ordered (√7 x √7) 

R19.1û structure we see by STM at 20mTorr of hydrogen and 20 mTorr of cyclohexene 

can be assigned to the π-allyl molecule.   As the temperature is increased we see a 

disordered overlayer that corresponds to the presence of mobile benzene and potentially 

other dehydrogenated products which results in a catalytically inactive surface. Upon the 

addition of excess hydrogen at room temperature, STM images show a disordered 

overlayer and simultaneously we detect the onset of catalytic turnover for both 

hydrogenation and dehydrogenation of cyclohexene.   

 The addition of CO causes all catalytic activity to cease.  The fact that CO also 

forms ordered (√19 x √19) domains at 300K, which remain ordered to 323K, but disorder 

at 353K reflects the higher activation energy for the mobility of adsorbed CO on the 

Pt(111) surface as compared to cyclohexene and other cyclic C6 species in the presence 

of >20mTorr of hydrogen under reaction conditions at 300K. 
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Chapter 6: Hydrogen and Deuterium Exchange on Pt (111) 

and Its Poisoning by Carbon Monoxide Studied by Three 

Surface Sensitive High-Pressure Techniques. 

 

 This chapter discusses catalytic hydrogen/deuterium exchange on a platinum 

(111) single crystal and its poisoning with carbon monoxide studied using scanning 

tunneling microscopy (STM), X-ray photoelectron spectroscopy (HPXPS), sum 

frequency generation vibrational spectroscopy (SFG) and mass spectrometry, under 

reaction conditions at pressures in the mTorr range.  At 298K and in the presence of 200 

mTorr of hydrogen and 20 mTorr of deuterium the surface is catalytically active for HD 

production with activation energy of ~5.3 kcal/mol. Addition of 5 mTorr of CO stops the 

reaction and STM reveals an ordered surface structure of chemisorbed CO.  At 353K 

addition of 5 mTorr of CO to the same system, slows the reaction considerably but HD 

production continues with activation energy of 17.4 kcal/mol.  XPS and SFG indicate that 

the amount of adsorbed CO is only ~10% less than at room temperature.  Changes in the 

adsorption site of CO as the coverage changes during reaction are detected by SFG and 

XPS. From these data, a CO dominated, mobile and catalytically active surface model is 

proposed. 
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6.1 Introduction 

 The nature of the poisoning of catalysts under reaction conditions is a problem 

that, despite huge economic and environmental importance, is still not understood 

completely. Poisoning is a complex phenomenon involving a variety of effects.  The 

simplest one is site blocking, where the strongly bound poison prevents adsorption of the 

reactants.  However site blocking is rarely complete and numerous vacancies are still 

present on the catalyst surface.  These residual vacancies however, may form ensembles 

that are too small to allow adsorption of reactants or the formation of reaction 

intermediates.  In that case, mobility of the poison species at sufficiently high 

temperatures might unblock the catalyst surface by allowing poisons and reactants to 

diffuse and vacancies to aggregate into sufficiently large ensembles.  This is a most 

interesting situation since the poison becomes either a simple passive spectator species or 

it might generate patterns of vacancies with special geometries.  It might also control, 

through its diffusion parameters, the rate and selectivity of the reaction.  To investigate 

these interesting issues a molecular scale investigation of the structure of the surface 

during reaction is required. Until recently most molecular scale surface science studies 

have been performed at low pressures because the techniques used to obtain such 

information cannot operate under the high-pressure conditions required for catalysis. 

This situation has changed dramatically in recent years due to the development of 

microscopy and spectroscopy techniques that can operate under realistic pressure and 

temperature conditions. Here we have employed three such techniques: high-pressure 

scanning tunneling microscopy (HPSTM), high-pressure X-ray photoelectron 

spectroscopy (HPXPS) and sum frequency generation vibrational spectroscopy (SFG) to 
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study a catalytic system near ambient conditions.  HPSTM has been shown to be able to 

provide atomically resolved images at high-pressures and temperatures [1-3] which 

provide information about the dynamics and structure of the adsorbed monolayer.  

HPXPS can yield quantitative chemical information and specific binding sites at 

pressures currently up to 5 Torr [4]. SFG, a non-linear optical technique, provides 

vibrational spectra and reveals chemical environmental changes in adsorbate structure.  

The use of these three powerful surface sensitive techniques while concurrently 

monitoring the activity of the catalyst can give a comprehensive view of the structure of 

active and poisoned catalyst surfaces.  

 

6.2 Experimental 

 High-pressure STM experiments were performed in an instrument that has been 

described in detail elsewhere [5,6].  The system combines a UHV surface 

analysis/preparation chamber with a variable temperature (298K - 675K) and pressure 

(10-10 - 103 Torr) chamber housing an STM head from RHK (model VT-UHV 300).  The 

base pressure of the system was 1 x 10-10 Torr with a background mostly made up of H2, 

CO and H2O.  Using three gate valves, the STM chamber can be isolated from the rest of 

the system and filled with any gas mixture.  A mass spectrometer (Stanford Research 

Systems, RGA 200) connected to the chamber by a leak valve was used to monitor the 

gas composition. 

 The sample was a platinum single crystal of (111) orientation from Matek 

Corporation with a miscut angle of < 0.3û. Before each experiment the sample was 

sputtered with Ar ions for 15 minutes at an energy of 500 eV and current of 4 µA.  After 
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sputtering, the sample was heated with an electron beam to 1073 K for 10 min.  This 

process was repeated a few times before transferring the sample to the reaction chamber.  

The surface composition was monitored by Auger electron spectroscopy and checked 

with STM prior to gas introduction. 

 During experiments the STM chamber was isolated from the rest of the system 

while various combinations of hydrogen, deuterium and carbon monoxide were 

introduced.  Hydrogen was always introduced first followed by CO and deuterium.  To 

heat our sample in the presence of reactive gases, a 150 W projector bulb was used to 

radiatively heat the sample without making mechanical contact.  A type K thermocouple 

spot-welded to the side of the crystal monitored sample temperature.  The sample was 

always allowed to equilibrate at least 5 min prior to imaging.  Blank experiments were 

run under identical conditions (by removing the crystal) in order to check for background 

reactions.  A sample rate study and the blank study are shown in figures 6.1 a and b 

respectively.  STM images were taken with electrochemically etched tungsten tips, 

following the technique described by Klein et. al [7].  STM settings during image 

acquisition were I = 0.05 - 0.2 nA and V = 50 - 100 mV.  An MKS Instrument Baratron 

model 722A was used to monitor chamber pressure.  
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a) 

 

b) 

Figure 6.1 – a) Sample graph of H2/D2 exchange on platinum (111) showing the 

evolution of HD and the consumption of D2.  b)  Crystal has been removed and replaced 

with ceramic disc.  No HD production can be detected. 
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 The high-pressure x-ray photoelectron spectroscopy experiments were performed 

at beamline 11.0.2 at the Advanced Light Source in Berkeley.  The system uses a 

differentially pumped electrostatic lens system that has had a prototype described 

previously [8].  It is also decribed in detail in the beamline manual [9]  The platinum 4f, 

carbon 1s, and oxygen 1s peaks were recorded at incident photon energies of 230eV, 

450eV, and 690eV respectively in order that the photoelectron kinetic energy, and 

therefore their surface sensitivity, is the same.  After normalization the peak areas were 

used to monitor surface coverage of CO.   The hydrogen, deuterium and carbon 

monoxide flows were regulated with three leak valves, which continuously replenished 

the gases lost through the aperture.  Sample heating was accomplished using a button 

heater directly beneath the sample, which was turned off during measurement. 

 The sum frequency generation experiments were performed by Katie Bratlie in a 

system consisting of a UHV chamber with base pressure of 2 × 10-9 Torr and a high-

pressure cell isolated from the UHV chamber by a gate valve.  Two CaF2 windows on the 

HP cell allow transmission of infrared (IR), visible (VIS), and sum frequency radiation 

for SFG experiments.   

 A Nd:YAG laser produced 1064 nm photons in 20 ps pulses and 20 Hz repetition 

rate. This was used to create a tunable IR (1800-4000 cm-1) and a second harmonic VIS 

(532 nm) beam.  The VIS (200 µJ) and the IR (200 µJ) beams were spatially and 

temporally overlapped on the Pt(111) surface with incident angles of 55º and 60º, with 

respect to the surface normal.  All spectra were taken using a ppp polarization 

combination (SFG, VIS, and IR beams were all p-polarized).  The generated SFG beam 

was sent through a monochromator and the signal intensity was detected with a 
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photomultiplier tube and a gated integrator as the IR beam was scanned over the range of 

interest.  The spectra were curve fit using a previously reported procedure [10,11] to a 

form of the equation 6.1 

Equation 6.1 - 
2
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where )2(
NRχ is the nonresonant nonlinear susceptibility, NRie φ is the phase associated with 

the nonresonant background, qA is the strength of the qth vibrational mode, IRω is the 

frequency of the incident infrared laser beam, qω  is the frequency of the qth vibrational 

mode, qΓ is the natural line width of the qth vibrational transition, and qie γ is the phase 

associated with the transition.  Detailed descriptions on the system can be found 

elsewhere.[12-15] 

 

6.3 Results/Discussion 

Scanning Tunneling Microscopy studies 

 The catalytic activity for H2/D2 exchange on the Pt(111) crystal was studied in the 

presence and absence of CO over a temperature range of 298K � 480K.  It was found that 

at room temperature and in the presence of 200 mTorr of H2 and 20 mTorr of D2  the 

surface is catalytically active producing HD at a rate of ~4.3 mol/site/sec.  STM images 

show a surface with no discernable order (Fig. 6.2a) as the adsorbate species are diffusing 

much faster than the scanning rate of our instrument (~10 nm/msec).  Upon introduction 

of 5 mTorr of CO the production of HD dropped below the detection limits of our mass 

spectrometer and no products could be detected over the course of 1.5 days.  STM images 
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of the surface show an ordered surface with hexagonal symmetry (Fig 6.2b).  The 

structure corresponds to an incommensurate CO overlayer similar to the one observed 

previously for pure CO on Pt(111) [3].  It has a coverage of about 0.6 monolayers.  A 

schematic of the structure is shown is figure 4a.   At 345K, the turnover frequency in the 

absence of CO was measured to be 39.1 mole/site/sec. Once again the STM images 

revealed the lack of order characteristic of rapidly mobile adsorbates.  Addition of 5 

mTorr of CO at 353K decreased the reactivity dramatically.  Unlike the room temperature 

case however, catalytic activity was still observed at the rate of 0.03 mol/site/sec.  

Imaging the surface with STM revealed that the CO overlayer is very mobile so that no 

periodic structure could be resolved.  Cooling the sample back to room temperature 

restores the previously observed ordered structure (Fig. 6.3). 

 

  

Figure 6.2- 90Å x 90Å STM images of Pt (111). a) in the presence of 200 mTorr H2 and 

20 mTorr D2. Catalyst is actively producing HD. b) in the presence of 200 mTorr H2, 20 
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mTorr D2 and 5mTorr CO. Catalyst has been deactivated. Structure is high coverage CO 

forming an incommensurate structure.  

 

 

Figure 6.3 - 90Å  x 90Å image of Pt(111) in the presence of 200 mTorr H2,  20 mTorr D2 

heated to 353K, 5 mTorr CO added and cooled to 298K. No products detected 

 

In previous studies of hydrogenation /dehydrogenation of cyclohexene under 

similar conditions [16] we have shown that although the surface disorders, no products 

were observed.  Similarly, higher pressure studies of ethylene hydrogenation showed no 

formation of products until the temperature was near 400K [17,18]. The fact that catalytic 

activity is still observed for H2/D2 exchange, suggests that a smaller size of vacancy 

aggregates are needed for the dissociative adsorption of hydrogen and deuterium than for 

the larger cyclohexene and ethylene reactants. The larger vacancy ensembles are more 

difficult to produce on the CO crowded surface. 
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X-ray Photoelectron Spectroscopy studies 

 HPXPS spectra of the C1s and O1s peaks from adsorbed CO at 298 K in 

equilibrium with gas at a pressure of 200 mTorr H2, 20 mTorr D2, and 5 mTorr CO are 

shown in figure 6.4.  Under these conditions the surface structure is the same 

incommensurate structure observed under identical conditions with STM (figure 6.2b).  

Two peaks in the C1s spectrum can be resolved, at 286.8 eV and 286.1 eV.  Analysis of 

the O1s spectrum also shows clear splitting of the peaks.  Similar values for the C1s 

peaks were obtained in low-pressure studies at 200K [19,20] for the c(4x2) CO on 

Pt(111) structure.  The peaks were assigned to top (286.8 eV) and bridge site adsorption 

(286.1eV).  In the c(4x2) structure however, each CO molecule is bound to a pure atop or 

bridge site, while under our higher pressure conditions, the surface structure is an 

incommensurate as shown in figure 6.5a.  The observation of two clearly resolved XPS 

peaks is surprising.  This suggests that the CO molecules might not be rigidly constrained 

to occupy the exact position shown in the schematics and that small lateral displacements 

are present that bring them closer to the ideal top and bridge sites.  It is also possible that 

the bonding interactions do not change dramatically when small displacements from the 

ideal positions occur. This might result in core level binding energy shifts very similar to 

those of the pure top and bridge positions. 
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Figure 6.4 - Sample XPS spectra of Pt(111) at 298K exposed to 200 mTorr H2, 20 mTorr 

D2 and 5 mTorr CO. a) CO peaks from C1s orbital. b) CO peaks from the O1s 

 



 

 113 

 

Figure 6.5 - � Diagram showing the proposed structure of CO on the Pt(111) surface 

with a CO backpressure of 5 mTorr  a) at 298 K b) at 353K. 

 

The intensity of the XPS peaks, as well as the total for both the C1s and O1s were 

monitored as the surface temperature was increased from 298K to 480K in the presence 

of 200 mTorr H2, 20 mTorr D2 and 5 mTorr CO.  The C1s and O1s peaks were first 

normalized to the known starting coverage of 0.6 of a monolayer of CO, and then 

averaged.  The resulting data are plotted in figure 6.6.  As the temperature is increased, 

the total coverage decreases approximately linearly from a coverage of 0.6 at 298K to 

0.39 at 480K.  The increase in temperature from 298K to 353K, results in only about 11% 

of the surface CO desorbing.  Despite the removal of a relatively small fraction of CO, 

the surface reactivity increases from being below the detection limits, to a sustainable 

0.03 mol/site/sec.  This suggests that the creation of a dynamic mobile surface is one of 

the crucial factors in allowing catalysis.  As should also be noted, after the addition of CO 

to the unpoisoned system, reactivity fell by much more than would be predicted by a 

simple site blocking mechanism.  If one takes the concentration of surface free sites on a 
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clean platinum surface to be 1, and the concentration of free sites for the incommensurate 

CO structure to be 0, then the concentration at 353K is ~0.11.  The activity of the surface, 

however fell by more than three orders of magnitude (from 39.1 to 0.03 mol/site/sec).  

One possible explanation is that multiple free sites must congregate for dissociative 

hydrogen adsorption.  It has been observed at low temperatures for CO on palladium that 

ensembles of three free sites are necessary [21].  If this was the case, the probability of 

ensembles of three vacancies forming on the surface would increase cubically with 

number of free sites.  Another possible explanation is that the coadsorbed CO limits the 

ability of adsorbed H2 and D2 to diffuse across the surface and encounter one another.  

Optical diffraction studies of the independent diffusion of hydrogen atoms and CO 

molecules on Pt(111) give low coverage diffusion constants for hydrogen which are more 

than three orders of magnitude higher than for CO [22,23].  Clearly a hydrogen atom 

adsorbed on a surface of 90% CO will have its ability to diffuse severely hindered.   
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Figure 6.6 - CO coverage on Pt(111) in the presence of 200 mTorr H2, 20 mTorr D2 and 

5 mTorr of CO. Coverage decreases as a function of temperature.  Coverage calculated 

from average XPS peak intensity of O1s and C1s peaks. 

 

The ratio of atop to bridge CO molecules was also studied as the temperature was 

raised, and is plotted in figure 6.7.  The initial ratio at 298K was ~1.7.  The 

incommensurate surface structure that is known to exist has a ratio of unity if all 

molecules are classified as either atop or bridge.  The difference in ratios can be 

explained by photoelectron diffraction effects, which can cause peaks from different 

adsorption sites to appear with different intensities.  This effect has been observed 

previously for CO on Pt(111).[19,20]  At room temperature the diffraction effects were 

observed to be constant over a range of incident photon energies of 410 � 490 eV.  
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Scaling factors were calculated by assuming a 1:1 ratio of adsorption sites for the total 

coverage of 0.6 monolayers.  

 

 

Figure 6.7 - Ratio of on top to bridge bound surface CO molecules as a function of 

temperature.  Ratio abruptly changes from 1.0 to 0.8 around 370K  Dashed orange line 

indicates transition period.  

 

The ratio initially stays relatively constant from 300K up to 360K at a value of ~1.  

Heating the sample to 380K, however, results in the ratio quickly dropping to ~0.8 where 

it remains from 380K to 480K.  The sudden change in adsorption site ratio suggests a 

surface phase change from the incommensurate structure known to initially exist, to a 

new structure.  This structure could very well be the lower coverage c(4x2) that is known 

to exist at coverages near 0.5 monolayers.  This structure has a 1:1 site ratio, but 

diffraction effects may cause this to change.  In fact, in the previous studies investigating 
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this system, the bridge site peak has been observed to have a higher intensity despite 

equal populations of adsorption sites.  The new structure is believed to contain 

coadsorbed hydrogen, deuterium and CO.  Studies by Salmeron et. al.[REF] of CO and 

H2 coadsorption on Pd(111) have shown that the two species segregate on the surface and 

form islands of each adsorbed species.  This appears not to be the case for our studies, as 

large patches of adsorbed H2 and D2 would allow for isotope exchange rates that directly 

corresponded to the fraction of open sites generated by heating the sample.  As can be 

seen from Table 1, exchange rates are well below what would be predicted by this model.  

Also previous studies of cyclohexene hydrogenation/dehydrogenation under identical 

conditions at 353K show no reaction [16].  Large patches of H2 would clearly allow this 

reaction to proceed, albeit at a lower rate.  Cooling the sample back to room temperature 

restores the original peaks indicating that the phase change is reversible. 

 

Sum Frequency Generation Vibrational Spectroscopy 

 Sum frequency generation was also employed to investigate the same system as 

discussed above.  Figure 6.8 shows a series of SFG spectra of the Pt(111) surface 

exposed to 200 mTorr of H2, 20 mTorr of D2, and 5 mTorr of CO.  The resonant 

contribution to the SFG spectrum originating from adsorbed CO can be fit to eqn. 1.  In 

figure 9, the position of the vibrational mode, COω , and the amplitude of the transition, 

COA , are plotted against the metal surface temperature.  The peak located at 2097 cm-1 

corresponds to the atop bound CO molecule [25]. As the temperature is raised from 300K 

to 320K and then 340K there is no discernable shifting of the peak and only a slight 

decrease in intensity is observed.  Upon heating to 360K, the peak red shifts by 1-2 cm-1.  
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Heating above 360K results in a very noticeable shift, as seen in figure 9(a), and 

broadening of the peak, which corresponds to the same temperature at which HPXPS 

indicates a surface phase change.  This has been previously observed on Pt(111) in the 

presence of CO as it is heated at a pressure of 40 Torr [26].  In the higher-pressure case, 

the same phenomenon of red shifting and broadening was observed but did not take place 

until higher temperatures.  This is understandable as the higher backpressure allows for a 

much higher surface coverage at increased temperatures.  UHV studies have revealed a 

similar trend in resonant mode shifting, peak broadening, and amplitude reduction.[27]  

The temperature dependence of the peak width is explained by a dephasing model in 

which a rapid energy exchange between low-frequency modes of the metal surface and 

low-frequency modes of the adsorbate, which are anharmonically coupled to the higher 

frequency mode investigated in this study.  However, comparison of the peak widths 

obtained in this study, ~15 cm-1, to that of CO adsorbed on a well ordered Pt(111) 

surface, ~8 cm-1[28] implies significant inhomogeneous broadening.  This broadening 

can be attributed to the creation of defect sites from sputtering procedures.  Furthermore, 

step-site vibrations have been assigned to 2065 - 2078 cm-1[29].  In both our current 

study and the previous high pressure study, cooling the sample back to room temperature 

returned the initial spectrum indicating, as did STM, that the initial incommensurate CO 

structure is restored. 
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Figure 6.8 - Series of sum frequency generation (SFG) spectra showing Pt(111) in the 

presence of 200 mTorr H2, 20 mTorr D2, and 5 mTorr CO.  CO peak at 2097 cm-1 

remains the same up to 360K at which point it begins to shift.  Markers represent 

experimental data and solid lines represent the curve fits. 
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Figure 6.9 - .  (a) CO vibrational resonance frequency, COω , and (b) amplitude of the 

resonant contribution, COA , plotted against the metal surface temperature.  Solid lines are 

drawn for visual aides 

 

Turnover rates for HD production with and without CO for a variety of 

temperatures from 298K to 480K are shown in table 6.1 and Arrenius plots are displayed 

in figure 6.10.  Activation energy for the H2/D2 exchange reaction in the absence of CO is 

5.3 kcal/mol, slightly above the low pressure values obtained for Pt(111) [30] and on par 

with low-pressure polycrystalline studies [31].  The introduction of CO into the system 

causes the activation energy to more than triple to a value of 17.4 kcal/mol.  A similar 

result was obtained for the poisoning of ethylene hydrogenation on Pt(111).  In this case 

the activation energy increased from an unpoisoned value of 9.6 kcal/mol to 20.2 

kcal/mol for CO poisoned ethylene hydrogenation [32,33]. The increase in activation 

energy for H2/D2 exchange of 12.1 kcal is slightly larger than increase seen for ethylene 

hydrogenation of 10.6 kcal/mol, and can potentially be explained by the fewer number of 

vacancies necessary for H2/D2 exchange.  The reaction rates for the poisoned and 

unpoisoned surface initially differing by more than three orders of magnitude, begin to 

approach each other at the highest temperature studied. 
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Figure 6.10 - Arrenius plot for H2/D2 exchange both with and without CO.  Activation 

energy increases from 5.35 kcal/mol to 17.44 kcal/mol upon the addition of CO. 
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Table 1 - Turnover frequencies for H2/D2 exchange on Pt(111) over a range of 

temperatures a) for the unpoisoned catalyst, b) for the poisoned catalyst 

 

6.4 Conclusions 

 Overall, the poisoning of the H2/D2 exchange with CO increases the activation 

energy for reaction from ~5.3 kcal/mol to 17.4 kcal/mol and drastically reduces the 

reactivity similar to studies with CO poisoned ethylene hydrogenation.  As the 

temperature is raised the reactivity under CO poisoned conditions approaches that of the 

unpoisoned system. 

 The only condition studied in which catalytic H2/D2 exchange was not detected 

was at room temperature in the presence of 200 mTorr of H2, 20 mTorr D2, and 5 mTorr 

of CO.  These conditions also correspond to the only instance in which the adsorbed 

monolayer of molecules was static and immobile as detected by STM.  The immobile 

structure was identified as an incommensurate structure composed of pure CO.  
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Removing only a small fraction (~11%) of the CO layer via heating the sample allowed 

the surface to become mobile and also catalytically active.  The surface structure remains 

the same as that at room temperature but now contains some vacancies, which allow for 

surface mobility of the adsorbed CO and adsorption of gaseous H2 and D2 reactant 

molecules.  Once adsorbed and dissociated, these atoms can diffuse due to the mobility of 

the surface and eventually encounter other hydrogen or deuterium atoms.  The large 

extent of poisoning by CO can be explained by either ensembles of three or more 

vacancies being necessary for dissociative hydrogen and deuterium adsorption, or by a 

reduction in mobility of adsorbed reactant atoms.     

 The surface concentration of CO as detected by HPXPS decreases relatively 

linearly, as the Pt(111) surface was heated from 298K to 480K, from an initial coverage 

of 0.6 monolayers to a final coverage of 0.39 monolayers.  At temperatures above 370K a 

surface phase change was observed from the initial incommensurate structure to an 

unknown phase consisting of CO, hydrogen and deuterium.  This phase change was 

detected by an abrupt change in CO atop to bridge ratio, as well the onset of shifting and 

broadening of the SFG peak corresponding to the atop bound CO molecule.  All 

techniques indicated that the mobility and surface phase changes incurred from heating 

the sample were reversible upon cooling back to room temperature.   
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Chapter 7 : High-Pressure Scanning Tunneling Microscopy 

Studies of Benzene Hydrogenation on Pt(111) and Its 

Poisoning with Carbon Monoxide   

 

 

High-pressure scanning tunneling microscopy (HP-STM) has been used to study 

the high-pressure hydrogenation of benzene on a Pt(111) single crystal catalyst, as well as 

its poisoning with carbon monoxide..  STM has been able to identify surface 

intermediates in-situ during benzene hydrogenation on a Pt(111) single crystal surface at 

Torr pressures.  In a background of 10 Torr of benzene STM is able to image small 

ordered regions corresponding to the c(2√3 x 3)rect structure in which each molecule is 

chemisorbed at a bridge site.  In addition, individual benzene molecules are also observed 

between the ordered regions.  These individual molecules are assumed to be physisorbed 

benzene based on previous sum frequency generation (SFG) results showing both 

chemisorbed and physisorbed molecules.  The surface becomes too mobile to image upon 

addition of hydrogen but is determined to have physisorbed and chemisorbed benzene 

present by SFG.  Poisoning the surface with CO at 353K produces a disordered surface 

composed mostly of CO.  Cooling the sample back to room temperature yields the high-

coverage pure CO structure of (√19 x √19) R23.4û imaged with STM.  
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7.1 Introduction 

High-pressure scanning tunneling microscopy (HP-STM) has been widely used to 

study high-pressure reactions by means of atomically resolved images of surfaces at 

catalytically and industrially relevant conditions [1-4].  Traditionally, benzene, however, 

has been studied at low pressure (<10-6 Torr) and low temperatures (<300K), which are 

far removed from catalytically relevant conditions.  Briefly, benzene has been shown to 

preferentially adsorb to bridge sites at low coverages and to three-fold hollow sites at 

high coverages by STM [5] and density functional theory (DFT) [6].  Electron energy 

loss spectroscopy (EELS)[7-9] studies have shown two distinct vibrational signatures for 

low and high coverages, chemisorbed and physisorbed benzene.  The chemisorbed 

species is thought to be dienyl in nature while the physisorbed benzene is thought to be 

flat lying by EELS[9,10] and near edge X-ray absorption spectroscopy (NEXAFS). [11]  

In this study, high-pressure STM, is used for the first time to investigate and 

identify the surface species present during benzene hydrogenation (10 Torr of benzene) in 

the presence of excess hydrogen (100 Torr) and in a range of temperatures from 300 � 

353K.  This reaction is also studied by poisoning the platinum surface with 5 Torr of CO.  

High-pressure STM has the ability to monitor adsorbates and metal atoms provided their 

mobility occurs at speeds comparable or less than the scan rate of approximately 10 

µm/sec.  The unique ability to detect surface dynamics, structure and bonding 

information can give much insight into the catalytic process. 

Sum frequency generation vibration spectroscopy studies of the same system have 

shown that both physisorbed and chemisorbed benzene are present on the surface in a 

background of 10 Torr of benzene.  Small ordered regions are observed by STM and 
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identified as the c(2√3 x 3)rect structure in which each molecule is chemisorbed at a 

bridge site.  Individual benzene molecules are also observed between the ordered regions 

that likely correspond to the physisorbed benzene identified by SFG.  Adding hydrogen 

to the system mobilizes the surface by STM.  SFG is able to detect physisorbed and 

chemisorbed benzene.  Heating the platinum surface after poisoning with CO displaces 

benzene molecules evidenced by SFG.  STM is able to verify this after imaging the (√19 

x √19) R23.4û structure after cooling to room temperature, corresponding to the high-

coverage pure CO structure. 

 

7.2 Experimental 

Scanning tunneling microscopy experiments were performed in a high-pressure, 

high-temperature STM that has been described in detail elsewhere.[12,13]  The system 

combines a UHV surface analysis/preparation chamber with a variable temperature 

(298K - 675K) and pressure (10-10 - 103 Torr) scanning tunneling microscope from RHK 

(model VT-UHV 300).  The base pressure of the system was 1 x 10-10 Torr with a 

background mostly made up of H2, CO and H2O.  Using three gate valves, the STM 

chamber can be isolated from the rest of the system and filled with any gas mixture up to 

a total pressure of 1 atm. 

The sample was a platinum single crystal of (111) orientation from Matek 

Corporation with a miscut angle of < 0.3û.  Before each experiment the sample was 

sputtered in 5 x 10-6 Torr Ar for 15 minutes at an ion energy of 500 eV and current of 4 

µA.  After sputtering the sample was heated with an electron beam to 1073 K for 10 min.  

The sample was then sputtered again and annealed at 1073 K for 4 min before being 
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transferred to the STM chamber.  Sample composition was monitored using AES and its 

cleanliness / flatness checked with STM prior to gas introduction.   

During experiments, the STM chamber was isolated from the rest of the system 

while combinations of benzene, hydrogen, argon, and carbon monoxide were introduced.  

The hydrogen, argon, and CO were of ultrahigh purity grade, while the benzene (>99.5%, 

Aldrich) was further purified by freeze-pump-thaw cycles prior to use.  If the experiment 

involved CO it was introduced after the sample had reached experimental temperature.  A 

150 W quartz projector bulb positioned just below the sample without making 

mechanical contact accomplished sample heating.  A type K thermocouple spot-welded 

to the side of the crystal monitored sample temperature.  The sample was always allowed 

to equilibrate at least 5 min prior to imaging.  Images were taken with electrochemically 

etched tungsten tips, following the technique described by Klein et al.[14]  STM settings 

during image acquisition were I = 0.05 - 0.2 nA and V = 50 - 100 mV.  An MKS 

Instrument Baratron model 122A was used for 0.1mTorr - 10 Torr and model 722A for 

experiments exceeding 10 Torr.   

 

7.3 Results and Discussion 

In-situ HP- STM of surface species present on Pt(111) at 300 K under 10 Torr of benzene 

Imaging the Pt(111) surface with HP-STM in the presence of 10 Torr of benzene 

reveals a surface covered with immobile adsorbed benzene, as shown in figures 7.1 & 

7.2.  The surface is largely disordered with patches of short-range order composed of 15-

30 adsorbed molecules.  Previous studies of Pt(111) electrodes in a benzene solution by 

Yau et al.[15] yields very similar results with small ordered regions separated by 
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disordered areas.  These small patches appear to be the c(2√3 x 3)rect structure reported 

by Yau et al.[15] in which each molecule is chemisorbed at a bridge site.  Between the 

patches of order, easily resolved individual benzene molecules are also bound, which are 

likely bound to the 3-fold hollow site and are responsible for the physisorbed species 

observed with SFG.  In addition, several six member hexagonal rings (see figure 7.3) 

form where the small ordered regions intersect.  The benzene molecules that form the 

ring most likely are bound to the 3-fold hollow site  These hexagonal rings, however, 

have an apparently hollow center that most likely contains a weakly bound physisorbed 

species that is difficult to image due to its shorter residence time. 

 

 

 

Figure 7.1  300Å × 300Å STM image of Pt(111) in the presence of 10 Torr of benzene at 

298K.  Strongly adsorbed immobile benzene molecule can be imaged and form small 

patches or order. 
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Figure 7.2 - 200Å × 200Å STM image of Pt(111) in the presence of 10 Torr of benzene 

at 298K. 

 

 

Figure 7.3 - 95Å × 95Å STM image of Pt(111) in the presence of 10 Torr of benzene.  

Hexagons represent six benzene molecules forming a hexagonal ring with an apparently 

hollow center, most likely containing a weakly bound physisorbed species 
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Temperature dependence of the major surface species under 10 Torr of benzene and 100 

Torr of H2 as studied by HP-STM 

Upon the addition of 100 Torr of H2 and 630 Torr of Ar the surface changes 

dramatically, as evidenced by STM (see figure 7.4).  The patches of ordered benzene 

disappear and only a few isolated benzene molecules are visible on the largely mobile 

surface.  A few of the benzene molecules that can still be imaged are highlighted in figure 

7.4.  This is not entirely surprising as excess hydrogen is known to weaken the surface 

bonding of adsorbed organic species and increase their mobility.[2] When the surface is 

heated to 353 K, all surface ordering of the resolved adsorbed molecules is lost as the 

adsorbed monolayer becomes far too mobile to be imaged by our STM, as seen in figure 

7.5.  At these conditions, the surface is also known to be catalytically active, readily 

producing cyclohexane. 

 

Figure 7.4 - 200Å × 200Å STM image of Pt(111) in the presence of 10 Torr of benzene, 

100 Torr of H2, and 650 Torr Ar at 298 K. 
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Figure 7.5 - 200Å × 200Å STM image of Pt(111) in the presence of 10 Torr of benzene, 

100 Torr of H2, and 650 Torr Ar heated to 353 K 

 

10 Torr of benzene and 100 Torr of H2 after poisoning with 5 Torr of CO as studied by 

HP- STM 

Previous studies by Ogletree et al.[16] show that adsorbing CO molecules first 

creates a very large work function for the hydrocarbon to overcome in order to adsorb on 

the surface.  For this reason, 5 Torr of CO was introduced after benzene and H2 addition.  

The presence of CO has no effect on the surface structure of the system as observed by 

STM at 353 K.  As can be observed from figure 7.6, no surface order is imaged.  Again, 

this is attributed to the fact that although CO is now present on the surface its high 

mobility makes imaging with STM difficult.  This is also observed previously under 

lower pressure conditions in the case of poisoning H2/D2 exchange as well as 

cyclohexene hydrogenation/ dehydrogenation[5]. Heating the sample to 350K desorbs 
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enough CO that some vacancies are created, which allow for relatively high surface 

diffusion.  Sum frequency generation studies indicate that the surface benzene has been 

displaced by the more strongly bound CO.  When the mobile CO dominated surface is 

cooled to 298K, the increase in CO surface coverage forms an immobile surface structure 

as can be seen in figure 7.7.  This high-coverage pure CO structure was first reported by 

the Besenbacher group[17] and observed in our laboratory as well [18]  The structure 

corresponds to the (√19 x √19) R23.4û structure with a total coverage of ~0.7 monolayers.  

As observed with STM the benzene no longer remains on the surface, as all physisorbed 

and chemisorbed species are displaced by the stronger bound and more densely packed 

CO molecules. 

 

 

Figure 7.6 - 200Å × 200Å STM image of Pt(111) in the presence of 10 Torr of benzene, 

100 Torr of H2, and 650 Torr Ar heated to 353 K and 5 Torr of CO added.  Surface is 

catalytically deactivated.  CO molecules cannot be resolved due to their high mobility. 
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Figure 7.7 -  200Å × 200Å STM image of Pt(111) in the presence of 10 Torr of benzene, 

100 Torr of H2, and 630 Torr Ar heated to 353 K, 5 Torr CO added, and cooled to 298 K.  

The high-coverage pure CO structure corresponds to the (√19 x √19) R23.4û structure.  

All benzene adsorbates have been displaced by the strongly bound and closely packed 

CO molecules. 

 

7.4. Conclusions 

The structure of the Pt(111) surface in the presence of benzene, hydrogen and 

carbon monoxide was studied over a range of temperature from 300-350K with high-

pressure STM.  Small ordered regions corresponding to the c(2√3 x 3)rect structure, in 

which each molecule is chemisorbed at a bridge site, are imaged in a 10 Torr background 

of benzene at room temperature.  Individual physisorbed benzene molecules are observed 

between these ordered regions.  Several six member hexagonal rings with a seemingly 

hollow center are imaged as well.  The hollow center most likely contains a physisorbed 

species.  Upon the addition of hydrogen, the surface becomes very mobile and only a few 
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isolated benzene molecules are imaged.  Raising the temperature to 353K results in a 

completely disordered surface with no molecular resolution since the mobility of the 

adsorbates has now exceeded the capacity of the STM.  The addition of 5 Torr of CO has 

been known to poison the catalytically active system.  The surface is composed of 

exclusively CO molecules, but is still too mobile to image.  Cooling the system back to 

room temperature yields a completely ordered surface composed of the (√19 x √19) 

R23.4û high-pressure pure CO structure. 
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Chapter 8: Concluding Remarks and Future Directions 

  

8.1 Summary 

 In this dissertation a high-pressure high-temperature scanning tunneling 

microscope and a high-pressure x-ray photoelectron spectrometer were used to study the 

surface structures of adsorbates on a platinum single crystal of (111) orientation.  

Systems were monitored under catalytically active and inactive conditions in attempt to 

establish trends corresponding to each type of surface. 

Low pressure (10-6 Torr) adsorption structures of cyclic C6 hydrocarbon 

monolayers on the platinum (111) crystal surface were studied using STM.  It was found, 

that upon adsorption at a back pressure of 5 x 10-6 Torr on Pt(111) both cyclohexane and 

cyclohexene produce the same structure.  This structure is the (√7 x √7) R19.1û structure 

composed of the partially dehydrogenated π-allyl (C6H9) adsorbed to the three fold 

hollow adsorption site.  Previous spectroscopic studies confirm these results.  1,3-

cyclohexadiene and benzene form a (2√3 x 2√3) R30.0û structure composed of molecular 

benzene adsorbed to the bridge site.  1,4-cyclohexadiene forms a structure very different 

from the other two.  It is a (√43 x √43) R7.6º structure most likely composed of 

molecular 1,4-cyclohexadiene.  This structure also contains large vacancies, which 

should be occupied by weakly bound species.  The low residence time of these species 

makes them difficult to image with our STM.  Increasing the backpressure of 
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cyclohexene from 5 x 10-6 Torr incrementally up to 10 Torr, results in no surface 

structure change until 10 Torr.  At this point, a structure similar to that observed for 1,4-

cyclohexadiene is observed as well as the original π-allyl structure.  The presence of the 

1,4-cyclohexadiene at high pressures of cyclohexene has previously been proposed from 

vibrational spectroscopy experiments. 

HPSTM was also employed to study the hydrogenation/ dehydrogenation of 

cyclohexene on platinum(111) and its poisoning with carbon monoxide from 298-353K.  

The surface structures were monitored by STM during the reaction and mass 

spectrometry was used to monitor the catalytic activity of the system.  When 20 mTorr of 

H2 and 20 mTorr of cyclohexene were introduced at 300K the surface formed the same 

structure seen at low pressures of pure cyclohexene, corresponding to the (√7 x √7) 

R19.1û structure.  Under these conditions, no gaseous cyclohexane or benzene is 

observed.  Heating to 350K disorders the surface but the catalyst remains inactive as the 

platinum surface is suspected to become covered with benzene and other dehydrogenated 

carbonaceous fragments.  Increasing the pressure of H2 to 200 mTorr, while remaining at 

20 mTorr of cyclohexene at 300K cause the surface to disorder and both cyclohexane and 

benzene gaseous products can be detected.  Continuous catalytic reaction was detected 

for as long as the system was monitored (1.5 days).  Adding 5 mTorr of  CO stops all 

catalysis and orders the surface with an incommensurate CO structure.  Repeating this 

experiment at 350K yields the same result of poisoning the reaction except the surface 

stays disordered upon addition of CO due to high adsorbate mobility.  Lowering the 

temperature to 325K recovers the ordered CO structure.  Using higher pressures of gases 

(1.5 Torr cyclohexene, 15Torr H2 and 1 Torr CO) also yields a disordered surface during 
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catalysis, and an ordered surface upon introducing CO at 300K that poisons the reaction.  

Again the CO structures disorders when heated to 350K. 

 Three high pressure surface sensitive techniques were used to study the catalytic 

hydrogen/deuterium exchange on a platinum (111) single crystal and its poisoning with 

carbon monoxide, under reaction conditions at pressures in the mTorr to atmospheric 

range..  These techniques were scanning tunneling microscopy (STM), X-ray 

photoelectron spectroscopy (HPXPS), and sum frequency generation vibrational 

spectroscopy (SFG).  Mass spectrometry was used to monitor catalytic activity.  At 298K 

and in the presence of 200 mTorr of H2 and 20 mTorr of deuterium the surface is 

catalytically active producing HD with an activation energy of ~5.3 kcal/mol. 

Introduction of 5 mTorr of CO to the system poisoned the catalyst.  An ordered surface 

structure of chemisorbed CO corresponding to the incommensurate structure previously 

seen, was revealed by STM.  At 353K, the addition of 5 mTorr of CO slowed the reaction 

but sustainable HD production continued with activation energy of 17.4 kcal/mol. The 

spectroscopic studies showed that the amount of adsorbed CO at 353K is only ~10% less 

than at room temperature.  Changes in the adsorption site of CO as the coverage changes 

during reaction are detected by SFG and XPS, and a phase change near 370K was 

detected.. These data suggest a CO dominated, mobile and catalytically active surface.  In 

addition a CO poisoning model of inhibiting adsorption and surface mobility is proposed 

STM was used to study the high-pressure(~100 Torr) hydrogenation of benzene 

on a Pt(111) single crystal catalyst, and its poisoning with carbon monoxide.  In a 

background of 10 Torr of benzene STM imaged small ordered regions of individual 

molecules, corresponding to the c(2√3 x 3)rect structure  In this structure, each molecule 
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is chemisorbed at a bridge site.  Individual benzene molecules are also observed between 

the ordered regions, and some six member rings with hollow centers are imaged as well.  

These individual molecules are physisorbed benzene and the hollow centers most likely 

contain weakly bound physisorbed species as well.  Addition of H2 in a 10:1 ratio creates 

a surface that is too mobile to image but is determined to have physisorbed and 

chemisorbed benzene present by SFG.  A few strongly adsorbed molecules can be 

resolved.  Heating the surface to 353K results in absolutely no surface structure.  

Poisoning the surface with CO at 353K produces a disordered surface composed mostly 

of CO.  Cooling the sample back to room temperature yields the high-coverage pure CO 

structure of (√19 x √19) R23.4û imaged with STM.  

 

  

8.2 Future Directions 

 In the research presented in this dissertation, I have shown the capabilities of 

scanning tunneling microscopy to probe surfaces under conditions far removed from the 

UHV/ cryogenic conditions generally used for surface science.  STM has proven 

especially powerful in the area of heterogeneous catalysis, a vitally important but poorly 

understood area.  The major problem with most STM studies is the difficulty in 

extracting chemical data from images.  The use of the newly developed high-pressure x-

ray photoelectron spectroscopy provides an excellent complement to STM by providing 

chemical data under identical conditions.  Sum frequency generation vibrational 

spectroscopy (SFG) can also provide chemical information and local chemical 

environment at even higher pressures.  The focus of the research in our laboratory over 
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the next 3-5 years should aim to exploit the fact that these three techniques work so well 

together.  At Berkeley, we are in an enviable and unique position of having all three of 

these high pressure surface sensitive techniques at our disposal.  The systems that shall be 

studied are as follows: 

(1)  The constant temperature CO poisoning of H2/D2 exchange on Pt(111) as a 

function of CO coverage studied by HPXPS.  By studying the reactivity vs. coverage at 

constant temperature, we can investigate the number of vacancies necessary for H D 

combination or H2 adsorption. 

(2) HPXPS study of Pt(111) catalyzed ethylene hydrogenation and it poisoning with 

CO.  This study should confirm the existence of various intermediates proposed by other 

methods, and discover whether the poisoning mechanism of CO is inhibiting mobility, or 

simply displacing reactant molecules. 

(3) Benzene hydrogenation on Pt(100).  The goal of this study is to use SFG and 

STM together to investigate benzene hydrogenation on another platinum crystal face to 

find differences relating to the different crystal structure. 

 These studies look to continue the work that has been performed with our 

instrument over the past few years, and in our group over the last four decades, and help 

us in our goal of a complete understanding of surfaces. 
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