
 1

Performance Modeling and Optimization of a
High Energy Colliding Beam Simulation Code

Hongzhang Shan1, Erich Strohmaier1, Ji Qiang2, David H. Bailey1, and Kathy Yelick1,2

Lawrence Berkeley National Laboratory1, University of California at Berkeley2
{hshan, estrohmaier, jqiang, dhbailey, kayelick @lbl.gov}

Abstract

An accurate modeling of the beam-beam in-
teraction is essential to maximizing the luminosity
in existing and future colliders. BeamBeam3D was
the first parallel code that can be used to study this
interaction fully self-consistently on high-
performance computing platforms. Various all-to-
all personalized communication (AAPC) algo-
rithms dominate its communication patterns, for
which we developed a sequence of performance
models using a series of micro-benchmarks. We
find that for SMP based systems the most impor-
tant performance constraint is node-adapter con-
tention, while for 3D-Torus topologies good per-
formance models are not possible without consid-
ering link contention. The best average model pre-
diction error is very low on SMP based systems
with of 3% to 7%. On torus based systems errors
of 29% are higher but optimized performance can
again be predicted within 8% in some cases. These
excellent results across five different systems indi-
cate that this methodology for performance model-
ing can be applied to a large class of algorithms.1

1 Introduction
Beam-beam interaction from electromagnetic

force of charged particles is a dominant factor lim-
iting luminosity in modern high-energy ring accel-
erators. In these colliders two beams of bunches of

1 Permission to make digital or hard copies of all

or part of this work for personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee. SC2006 November 2006,
Tampa, Florida, USA

U.S. Government Work Not Protected By U.S.
Copyright

electrical charged particles rotate against each
other and collide at interaction regions. High lumi-
nosities are indispensable to achieving a high
probability for particle-particle interaction during
bunch collisions. Accurate modeling of the beam-
beam interaction is essential to maximizing the
luminosity in existing colliders and critical for
building the next generation colliders such as
Large Hadron Collider (LHC); any design errors
will be enormously costly, or even fatal, for this
“big science” project [1]. However, due to the ex-
treme computational cost required to accurately
and self-consistently model the beam-beam inter-
action as the beams circulate for millions of turns,
previous studies are confined to using simplified
models. Examples include the “weak-strong”
model, in which only the “weak” beam is affected
by the higher intensify “strong” beam [2], or soft
Gaussian model [3], where one beam is assumed a
priori to have a Gaussian shape. BeamBeam3D is
the first parallel code that can be used to study this
interaction fully self-consistently for both beams
on high-performance computing platforms, includ-
ing all the physical processes of long range off-
centroid interactions, finite beam bunch length ef-
fects, and crossing angle collisions. The code has
been used to study the beam-beam interactions at
the world’s highest energy hadron accelerator cur-
rently used for experiments, Fermilab’s Tevatron,
at SLAC’s Positron-Electron Project (PEP-II), at
Brookhaven National Laboratory’s Relativistic
Heavy Ion Collider (RHIC), and at Japan High En-
ergy Accelerator Research Organization (KEKB).

BeamBeam3D is a challenging parallel code
due to its high communication requirements and
the need to simulate high number of beam-beam
interactions iteratively. Simulating the beam-beam
collision for millions of turns is extremely time-
consuming and may currently take several weeks
to finish. At present time a typical production run
on the system Bassi at NERSC with 64 processors
for 0.5 million turns takes 8 hours and represents

 2

about 10 seconds in physical time. For sufficient
accuracy such a scenario should be simulated for
10 minutes to several hours of physical time,
which requires between 100 and 1,000 times more
compute cycles.

BeamBeam3D’s dominant communication
phases include a parallel grid reduction, during
which each processor accumulates its local portion
of a global, discretized charge density through a
reduction of all its local grid elements from all
other processors, a broadcast of electro-magnetic
field to all other processors, and a forward-
backward 2D FFT. All these phases represent dif-
ferent types of all-to-all personalized communica-
tion (AAPC). Furthermore, for some of these
phases the communication volume per process
stays constant in a strong scaling scenario, which
results very fast in a communication bound execu-
tion with flat execution times at best. The problem
offers multiple design, implementation, and opti-
mization decisions such as particle or field domain
decomposition based algorithms, different layouts
for the processor grid, different strategies for local-
izing communication, and different algorithms for
AAPC. This code is used on multiple, quite differ-
ent parallel systems, and the tradeoffs between
choices are not obvious and performance impacts
are hard to judge, but multiple implementations of
the code are also prohibitively expensive. For these
reasons BeamBeam3D would benefit greatly from
the development of a sufficiently accurate and
flexible performance model for its different com-
munication phases valid on a variety of modern
parallel supercomputer architectures

BeamBeam3D is currently in use or being
ported to an IBM SP Power3 (16 way SMP, Fat-
tree), IBM SP Power5 (8 way SMP, Fat-tree), Op-
teron Infiniband cluster (2 way SMP, limited Fat-
tree), Cray XT3 (single processor node, 3D Torus),
and IBM BlueGene/L (single processor node, 3D
Torus). This mix of systems represents a large va-
riety of communication hierarchies with various
levels of communication performance and net-
works with different contention points.

The rest of this paper is organized as follows:
The computational methods of BeamBeam3D and
the parallel implementations are described in Sec-
tion 2. In Section 3 the five computational plat-
forms used are described and the initial perform-
ance evaluation of Beambeam3D on them is pre-
sented. Section 4 presents the communication per-

formance model and the process of developing
such a model. In section 5 we provide an overview
of related work and our conclusions and future
work are presented in Section 6.

2 BeamBeam3D
BeamBeam3D models the colliding process of

two counter-rotating charged particle beams mov-
ing at close to the speed of light in a circular accel-
erator. Electrical charged particles move in a beam
in separate bunches, which collide at specific
points. Under the paraxial approximation, for the
relativistic charged beam, the electric forces and
the magnetic forces will cancel each other within
the individual bunches [4]. However, for the col-
liding beams, which move in the opposite direc-
tions, the electric forces and the magnetic forces
add up. The resulting beam-beam force produces a
strongly nonlinear interaction that can significantly
affect the motion of the charged particles. We use a
multiple slice model to calculate the electromag-
netic forces. In this model, each beam bunch is
divided into a number of slices along the longitu-
dinal direction in the moving frame of reference.
Each slice contains nearly the same number of par-
ticles at different longitudinal locations z. The col-
liding process for two beams that have been di-
vided into 2 slices is illustrated in Figure 1. During
each step, only the red slices from opposite beams
collide.

There are two important domains in Beam-
beam3D, particle domain and field domain. The
particle domain is the configuration space contain-
ing the charged particles, and the field domain is
the space where the electric field is generated by
the charged particles. In the field domain decom-
position, the whole computational domain is di-

2 1

1 2

2 1

1 2 1 2

2 1

Step: (1) (2) (3)

Figure 1: The colliding process for two bunches

with two slices is simulated in three steps. Collid-
ing slices are in red, beam1 is on top and beam2 is

at the bottom.

 3

vided into a number of subdomains, and each sub-
domain together with the particles inside it is as-
signed to a processor. Since all particles are local
to a processor, the Poisson equation, which has
been used to compute the electric and magnetic
forces for the field, is solved on the grid and the
particles are advanced using the electromagnetic
fields. However, in the next turn, the particles be-
longing to a subdomain may have moved to other
subdomains. Therefore, the processors of different
subdomains have to exchange particles with each
other. If the particles move slowly, the domain de-
composition approach may work well since most
communication will be neighbor communication.
However, due to the fact that in the accelerator, the
lattice map outside the interaction point may cause
significant particle movement, the effective com-
munication pattern can end up as all-to-all com-
munication and the data volume could be very
large. A dynamic load balancer may potentially
also be needed to balance the number of particles
and the solution time of the Poisson equation
among the processors.

BeamBeam3D adopts a novel particle-field
decomposition approach to combine the advan-
tages of both domain decomposition and particle
decomposition, which has been demonstrated to
deliver better performance than either particle de-
composition or domain decomposition alone [6]. In
this approach, each processor possesses the same

number of particles and the same number of com-
putational grid points, i.e., a spatial subdomain of
the same size. Figure 2 shows a schematic plot of
the particle-field decomposition among eight proc-
essors. The total number of processors is divided
into two groups, with each group responsible for
one beam. We furthermore divide each beam lon-
gitudinally (z-direction) into a specified number of
slices (Nslice=4 in Figure 2). The processors in
each group are arranged logically into a two-
dimensional array Pz*Py to partition the computa-
tional domain, with each column (Py) of the array

Do K=1,number of turns # of turn to simulate
 Do I=1, 2*Nslice-1 # steps during the collision
 Green2d() 2D FFT
 Do I=1, Ncollide # colliding slices
 Guardsum2d Column reduction
 Enddo
 Guardsum2drow Row reduction
 Do I=1, Ncollide/Prow # of colliding slices/Prow
 Fieldsolver2d 2D FFT
 Enddo
 Guardexch2drow Row broadcasts
 Do I=1, Ncollide # colliding slices
 Guardexch2d Column broadcasts
 Enddo
 Enddo
Enddo

Table 1: Dominant loop structure and communica-
tion steps in BeamBeam3D

P(0,0) P(0,1)

P(1,0) P(1,1)

P(0,2) P(0,3)

P(1,2) P(1,3)

Beam 1 Beam 2

Z

X

Y

(0,0) (1, 0) (0,0) (1, 0)

(0,1) (1, 1) (0,1) (1, 1)

(0,2) (1, 2) (0,2) (1, 2)

(0,3) (1, 3) (0,3) (1, 3)

Beam 1 Beam 2

Figure 2: Illustration of the particle-field decomposition for eight processors. Each beam has four slices.
The eight processors are divided into two groups and each group forms a 2x2 processor grid.

 4

containing a number of slices which are assigned
to this column of processors cyclically along the
longitudinal direction. This gives a good load bal-
ance of slices among different column processors.
Within each column, the computational grid asso-
ciated with each slice is decomposed uniformly
among all the column processors. This allows us to
parallelize the solution of the Poisson equation.

BeamBeam3D is implemented in Fortran90
using MPI. Table 1 summarizes the most impor-
tant communication steps and the surrounding loop
structures.

3 Performance Analysis
BeamBeam3D is used on several parallel

computing systems. We selected five major sys-
tems for the development of the performance
model and as target for our code optimization.
Table 2 summarizes the main features of these five
systems. This selection contains system with single
processor and two, eight, and 16 way SMP nodes
as well as interconnects with fat-tree or 3D torus
topology using different technologies. The result-
ing global system architectures are hierarchical
with substantially different locality structures. The
full set represents a large variety of communication
hierarchies with various levels of communication
performance and networks with different conten-
tion points.

Name System Network T. SMP
size

Proc.
Peak
[GF/s]

BW
[MB/s]

Seaborg SP Power3 Colony FT 16 1.5 175
Bassi SP Power5 Federation FT 8 7.6 1112
Jacquard Opteron Infiniband FT 2 4.4 360
Jaguar XT3 SeaStar 3D 1 4.8 1084
BG/L BlueGene/L IBM

custom
3D 1* 2.8 142

Table 2: Main architectural features of the system
used in this study. Topology (T) is Fat-tree (FT) or

3D torus (3D); BW is bi-directional link band-
width; (*On BG/L only one processor per node was used.)

Figure 3 shows the total execution time and
communication time on all five systems across in-
creasing concurrency levels for a fixed, typical
problem size with 5 million particles, a grid size of
2562 x 8 slices, and a process layout with 16 proc-
esses in column (y) direction (for up to 256 proces-
sors total). The limited scalability for this case is
evident. Increasing the number of simulated parti-
cles would improve performance and scalability
but does not represent the usage of this code. The
chosen concurrency levels (32-256 processors) are
ranging from typical levels up to maximum levels
currently reasonably usable. While total execution
time decreases (also asymptotically only little),
communication time actually increases with in-
creasing concurrency for all systems. This reflects
the fact that the volume of communication for each
processor is constant independent of the number of

Total Execution Time and Communication Time

0

100

200

300

400

500

600

700

32 64 128 256 32 64 128 256 32 64 128 256

Total Execution Time Communication Time % Communication

S
e
c
o

n
d

s

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

Seaborg Bassi

Jacquard Jaguar

Bluegene

Figure 3: Total execution time, absolute, and relative communication time of BeamBeam3D. Times are

given in seconds on the left and % of times on the right vertical axis.

 5

processors used. Such behavior imposes a severe
limitation on scaling for any code. In Figure 3 we
also show the percentage of communication time
of the total execution time across concurrency lev-
els. It confirms the initial conclusions and shows
that on some systems for 256 processes communi-
cation time already amounts to up to 60% of total
execution time.

4 Communication Performance Model
The first step in developing a performance

model for the communication of a parallel code is
to identify and to characterize the dominant com-
munication phases. In Table 3 we show the six
dominant communication phases along with their

major characteristics. It is important to notice that
none of the communication pattern follows a sim-
ple nearest neighbor distribution. The transposes
of the 2D FFTs (phases 1 and 3) take place within
processors columns only, which in a typical case
might contain 16 processors each. The parallel
global grid reductions involve only processors
within one beam and are organized in two phases
communicating in column (phase 2a) or row
(phase 2b) direction only. During the parallel
global grid broadcast each processors has to send
its part of the electromagnetic field to all members
of the other beam. This is again organized in two
phases, one in row direction within one beam
(phase 4a) and the second one within column di-
rection between beams (phase 4b). In phases 1, 2a,

Phase Name Pattern Direction Beam Size [Byte] # messages per turn
1: Greenf2D FFT

Transpose
Column Same (Nx/Pcol+1)*

(Ny/Pcol)*16*2
(Pcol-1) * (Nslice*2-1)

2a: Guardsum2D All-to-All
Reduce

Column Same Nx*Ny/Pcol*8 (Pcol-1) * Nslice*Nslice

2b: Guardsum2Drow All-to-All
Reduce

Row Same Nx*Ny/Pcol*8*I
I = 1, Nslice/Prow

(Prow-1) * MIN(2*Prow,
CEILING(Nslice/I, 1)*2-1)

3: Fieldsolver2D FFT
Transpose

Column Same (Nx/Pcol+1)*
(Ny/Pcol)*16

(Pcol-1) * Nslice*
(Nslice+Prow-1)/Prow*2

4a: Guardexch2Drow All-to-All
Broadcast

Row Same Nx*Ny/Pcol*8*I
I = 1, Nslice/Prow

(Prow-1) * MIN(2*Prow,
CEILING(Nslice/I, 1)*2-1)

4b: Guardexch2D All-to-All
Broadcast

Column Other Nx*Ny/Pcol*8 Pcol * Nslice*Nslice

Table 3: Six most important communication phases and their main characteristics. Nx*Ny is the grid field
size. Prow*Pcol is the processor grid as Pz*Py mentioned earlier. Nslice is the number of slices a beam has

been divided into (Prow <= Nslice).

 Benchmark
 PingPong PingPing Parallel PingPing 2D Grid

Used in Model Model 1a Model 1b Model2 Model 3 Model 5
Range Inter SMP Intra SMP 256 proc

L [µs] 50 29 92 18 100 Seaborg
B [MB/s] 162 178 38 141 35
L [µs] 9.4 5.4 6.7 2.3 7.2 Bassi
B [MB/s] 825 1105 296 1660 264
L [µs] 10.84 6.48 10.40 1.16 35.28 Jacquard
B [MB/s] 303 360 185 714 140
L [µs] 12.33 7.15 NA NA 9.72 Jaguar
B [MB/s] 544 1,084 NA NA 346
L [µs] 5.4 4.1 NA NA 3.2 BG/L
B [MB/s] 72.4 142 NA NA 72

Table 4: Latency and bandwidth values of various micro-benchmarks used in the performance models.
The parallel ping-ping benchmark uses a variable number of communication pairs depending on the sys-
tems SMP size. The 2D grid benchmark is run for the same concurrency levels as BeamBeam3D. Model

4 and 6 are missing as they are based on table lookups.

 6

3, and 4b multiple messages might be exchanged
between some pairs of processors, one for each
slice involved in the communication, which ex-
plains message count larger than the number of
involved processors. These messages could poten-
tially be aggregated in single messages.

We chose a simple latency (L) and bandwidth
(B) model for the time needed to exchange a single
message of size s: t = L + s/B and decided to
measure the effective values of latency and band-

width using a synthetic micro-benchmark. We then
estimate the communication time for each phase by
summing up the individual message transfer times
along its critical path, which is determined by the
processor with the maximal volume of data and
number of messages to send. We investigate a se-
ries of six performance models, which differ from
each other by the type of micro-benchmark used to
determine L and B, by separating different levels in
the network hierarchy, and finally by replacing the

Ratio of Measured/Predicted Communication Time

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

M
o
d
e
l1
a

M
o
d
e
l1
b

M
o
d
e
l2

M
o
d
e
l3

M
o
d
e
l4

M
o
d
e
l1
a

M
o
d
e
l1
b

M
o
d
e
l2

M
o
d
e
l3

M
o
d
e
l4

M
o
d
e
l1
a

M
o
d
e
l1
b

M
o
d
e
l2

M
o
d
e
l3

M
o
d
e
l4

Seaborg Bassi Jacquard

R
a
ti

o

32 64 128 256

Figure 4: Ratio of measured to predicted total communication times of a sequence of five successively

refined performance models for three SMP based systems.

Ratio of Measured/Predicted Communication Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Model2 Model4 Model5 Model6 Model2 Model4 Model5 Model6 Model2 Model4 Model5 Model6

BlueGene/L Jaguar Jaguar Optimized

R
a

ti
o

32 64

128 256

Figure 5: Ratio of measured to predicted total communication times of four performance models for the

single-processor torus based systems. (*Jaguar models are shown for the original and for the optimized code.)

 7

linear timing model with table based lookups of the
actual message transfer times.

For our first model we choose latency and
bandwidth values measured with simple MPI mes-
sage exchange benchmarks (ping-pong and ping-
ping) between two processors on different nodes.
Results are shown in Table 4 along with values
from other benchmarks chosen for other perform-
ance models later on.

In Figure 4 we show the ratios of measured
and predicted total communication times based on
five of our models for the three SMP based sys-
tems in our study. The models based on point-to-
point ping-pong or ping-ping benchmarks (model
1a, 1b) clearly under-predict the communication
times by factors of 2 to 4.

For any model based on values measured with
micro-benchmarks it is crucial that its parameters
are chosen and measured in a fashion appropriate
for the communication pattern in question. For all
our communication phases (Table 3) all processors
are communicating in pairs simultaneously. This
implies that we cannot use latency and bandwidth
numbers measured with simple point-to-point
benchmarks, but that we have to use benchmarks,
which replicate this pattern by using a sufficient
number of communicating pairs of processors. For
SMP based systems we typically have all proces-
sors of one SMP communicate with processors in a
second SMP, which represent the largest load on
the network between them possible and actually
generated during the execution of BeamBeam3D.
If we use parameters based on a parallel pair wise
ping-ping benchmark for long-range communica-
tion (inter-SMP), the model prediction in Figure 4
(model 2) improves substantially, but the errors of
the model are still noticeable. On the two IBM sys-

tem, which have 8 and 16-way SMP nodes, com-
munication times are now over-predicted, while for
the 2-way SMP based system Jacquard times are
still under-predicted.

This indicates that the pattern of communica-
tion and the number of processors in the micro-
benchmark also have to be chosen in such a way
that the effects of potential communication bottle-
necks are captured. Ignoring the hierarchical struc-
ture of SMP based system is one major source of
errors in the model. This can be fixed by separating
for each communication phase the messages within
(intra) an SMP and between (inter) SMPs. This
improves the error of the performance prediction
(model 3) for the IBM system to less than 10%.
The models for Jacquard still show errors of about
33%.

Further investigation reveals, that for the Op-
teron based Infiniband system Jacquard the ap-
proximation of message transfer times by a linear
function in message sizes in not accurate enough to
provide acceptable model predictions. Figure 6
shows that the actual transfer times for message
sizes of interest between 4kB and 128kB are sub-
stantially different due to message protocol
changes. If we replace our linear latency-
bandwidth model of transfer times by a table
lookup for actual achieved bandwidth values
(model 4), prediction on Jacquard improves to
within a few percent of measurement for concur-
rencies up to 128 processors and 21% for 256
processors. We believe that this increase in the er-
ror of the model prediction is due to contention in
the network for large number of processors due to
the fact that the second stage of the Infiniband
switches on this system is not fully provisioned.
We found further confirmation of this with the next
micro benchmark described.

The current two-level hierarchy model of
communication performance works well on the
two IBM SP systems and the Opteron cluster, but
the quality of prediction is still lacking for the
other systems, Cray XT3 and IBM’s BlueGene/L.
Due to their single processor nodes, models 1b, 2,
and 3 are identical. They under-predict times by
roughly a factor of 2 to 10, which is improved by
table loop-up (model 4) to a factor of 2 to 3 (Figure
5).

Both systems are different from the previous
group of systems as they are using a 3D torus to-
pology in their network instead of the more expen-

Parallel Ping-Ping Bandwidth on Jacquard

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Message Size (Byte)

B
a

n
d

w
id

th
 (

M
B

/s
)

Measured

Model

Figure 6: Message transfer times for the parallel

ping-ping benchmark on Jacquard

 8

sive fat-tree networks. Networks with torus topol-
ogy are more sensitive to network contention as
long-range messages traverse multiple links and
increase network load over-proportional. Capturing
locality effects in these networks is difficult and
requires more sophisticated models and/or bench-
marks, which are sensitive to the average distance
of processor in the typical communication patterns.
As a first step we simulate these topology effects
by arranging the communicating pairs of proces-
sors in the micro-benchmark in a 2D process grid
similar to the process grid used in BeamBeam3D
and by measuring performance along these differ-
ent dimensions (model 5). As a consequence we
now use latency and bandwidth numbers, which
depend on the level of concurrency. This improves
the model prediction for the XT3 drastically to
within 20% to 35% (Figure 5), while BG/L predic-
tions are still off by 50% to 130%. This model also
produces predictions for the SMP based system of
similar quality, as model 4 (not shown). The raw
data from this benchmark shows a drop in effective
performance on Jacquard for more than 128 proc-
essors, which confirms our previous analysis of our
model accuracy on this system.

The linear latency, bandwidth model for our
micro-benchmarks shows a similar deficiency on
BG/L as on Jacquard, but with even larger devia-
tion. As final model we therefore replace the linear
latency and bandwidth model based on the 2D-grid
benchmark with a table lookup based on
concurrency level and message size (model 6).
Prediction improves on BG/L to an average of 29%
with a range of 20% to 45%. We are currently fur-
ther investigating the reasons for these unusually
large errors. Our current hypothesis is that effects
of link-contention in BG/L are more difficult to
model due to adaptive routing. Experiences during
the optimization of AAPC for the Miranda code
confirm that message injection rates for AAPC
have to be controlled very carefully to achieve
maximum performance [5]. Nevertheless, we be-
lieve that model accuracy even for BG/L has in-
creased to a level to allow for some scalability pre-
dictions on this architecture.

Model 6 did not substantially improve predic-
tion over model 5 for the Cray XT3 (27.9% over
28.4%). However, when we use the same model
for the optimized versions of BeamBeam3D (next
section), we find prediction errors of 7.6% for both

models. This is a strong indication, that our micro-
benchmark does not capture some performance
effects of the somewhat unusual initial process
layout, but it works very well for the much more
regular optimized layout.

5 Performance Optimization Strategies
The dominant communication phases of

BeamBeam3D are the parallel grid reduction and
the parallel grid broadcast. Both phases require
each processor to send out a volume of data pro-
portional to the global grid size. This represents a
lower bound for the necessary communication vol-
ume per process, which cannot be exceeded and is
the major restriction for optimizing communication
performance in BeamBeam3D. Based on our expe-
rience during the development of the performance
models we decided, that localization of communi-
cation was therefore the best available strategy to
optimize communication performance. A second
strategy is the aggregation of multiple messages
between the same source and destination into sin-
gle larger messages. This strategy could be used
for most communication phases as they send mul-
tiple messages between column-processors, one for
each individual slice involved. The maximum
benefit of this strategy is the reduction of latency
overhead. As our message sizes are not strongly
latency bound, we decided to delay this optimiza-
tion for later consideration.

For the FFT based phases with all-to-all
communication along the process-column direc-
tion, this can be achieved by allocating processes
along the column direction first. Initially processes
were allocated randomly for production runs. The
code could alternatively be executed by allocating
groups of four processors along the row dimension
first and we decided to use this alignment as basis
for our study. On SMP based systems column ori-
entation will result in the minimal number of SMPs
being involved in single FFTs. This maximizes
available bandwidth for all processes, as intra-SMP
bandwidth is typically substantially higher than
inter-SMP bandwidth. In Table 5 we show the re-
sulting changes in message counts for phase 3 on
SMPs of various sizes. Message sizes remain un-
changed with this optimization.

 9

The parallel grid reduction and the parallel
grid broadcast (phases 2 and 4) had already been
optimized to some extend during the initial devel-
opment of the code. For comparison purposes we
used a performance model to predict the communi-
cation time for a straight forward implementation
of these phases, in which each processor send p-1
or p messages to all other processors in the same or
other beam. The initial code implementation
breaks these two phases in two parts each by per-
forming the reduction or broadcast operation in
one dimension of the process grid first, reassem-
bling the message and then performing the opera-
tion in the other dimension. Similar mesh algo-
rithms have been studied previously for usage on
mesh interconnect topologies [6], but the same
type of algorithm can be used for parallel systems

with SMP nodes. However the initially chosen
process layout proved to be sub-optimal and we
were able to improve communication locality in
such a way, that the phases with larger overall
data-volume (phase 2a and 4b) again maximize
data movement within SMP nodes. In addition dur-
ing phase 4 at some point all data have to be ex-
changed between the processor groups assigned to
the different beams. This was switched from phase
4b in the original code to phase 4a, as a substan-
tially lower data volume is involved in the transfer
in this phase, which again improves overall data
locality of communication. Again, message sizes
remain unchanged with all these optimizations.

Figure 7 shows the measured communication
time before and after the described optimization
together with the predicted times based on our best

 SMP size
Concurrency 2 8 16
 Intra SMP Inter SMP Intra SMP Inter SMP Intra SMP Inter SMP

Base 128 1792 896 1024 1920 0 32
Opt. 128 1792 896 1024 1920 0
Base 0 1080 216 864 504 576 64
Opt. 72 1008 504 576 1080 0
Base 0 660 44 616 132 528 128
Opt. 44 616 308 352 660 0
Base 0 450 0 450 30 420 256
Opt. 30 420 210 240 450 0

Table 5: Message count of intra and inter SMP messages before and after localization of process alloca-
tion for phase 3.

1513.0

211.0

313.8

172.0

1462.4

1

10

100

1000

Seaborg Bassi Jacquard Jaguar Bluegene

T
o

ta
l
C

o
m

m
u

n
ic

a
ti

o
n

 T
im

e

Naïve Predicted

Orig Measured

Orig Predicted

Opt Measured

Opt Predicted

Hypercube Predicted

Figure 7: Measured and predicted communication times for various levels of optimizations for 256 proc-

essors

 10

performance model. The reduction in communica-
tion times for the SMP based system Bassi (up to
32%) and Seaborg (up to 65%) are substantial and
well captured by our model. Improvements for
Jacquard are only minor with 6% due to its small
2-way SMP size.

The impact of changing the process allocation
policies on systems without SMP structure depends
on the network topology and technology. For suffi-
ciently connected network such as fat-trees there
should in theory be no performance impact at all.
For the torus networks localization of data trans-
fers through process allocation which result in
communicating large message over short distances
and shorter message over longer distances might
be beneficial, as network load and link contention
is potentially reduced. However our current per-
formance models do not incorporate such detailed
network features and therefore predict essentially
unchanged communication performance. On Jag-
uar performance actually improves up to 29%,
while improvements for BG/L are only marginal
with 8% on 256 processors.

An extension to using a two dimensional
communication structure for improving the local-
ization of message transfer is to generalize this
idea to higher dimensions, which in the extreme
leads to a hypercube structure. This results for the
global grid reduction (phase 2) in sending largest

messages of half the global grid volume to nearest
neighbors first and messages of half the previous
size to twice as distant processors in later stages
(linear order). For the global broadcast (phase 4)
smallest messages of the local grid volume are first
sent over the largest distance and subsequent mes-
sages of twice the size half as far. Due to the
amount of work for such extensive recoding and
time constraint we have not implemented this op-
timization yet, but decided to model its potential
performance gains first. Predicted communication
times for this optimization for 256 processors can
also be seen in Figure 7.

To evaluate the overall impact of our present
and potential optimizations, we show in Figure 8
the measured and predicted scaling behavior up to
1024 processors, based on the most accurate mod-
els for the currently considered restricted problem
size. For this we assume that for more than 256
processors the number of slices and row-processors
remains unchanged at 8 and the number of column
processors increases from 16 to 64. Substantially
higher concurrency levels are most likely not real-
istically usable for the current problem size due to
the limitations of the current 2 dimensional paral-
lelization strategy. Introducing a 3 dimensional
parallelization strategy is currently not considered
due to its complexity and uncertain pay-off.

1

10

100

1000

32 12
8

51
2 64 25

6

10
24 32 12

8
51

2 64 25
6

10
24 32 12

8
51

2

Seaborg Bassi Jacquard Jaguar BlueGene/L

C
o

m
m

u
n

ic
a
ti

o
n

 T
im

e
 (

s
)

Measured Original

Predicted Original

Measured Optimized

Predicted for Optimized

Predicted for Hypercube Optimization

Figure 8: Measured and predicted scaling behavior of BeamBeam3D for up to 1024 processors.

 11

Figure 8 clearly shows the improved scalabil-
ity of the currently optimized code as well as the
potential benefit of the hypercube based optimiza-
tion. On Seaborg one process column of 16 proces-
sors fits completely within a single SMP and the
benefit of the hypercube optimization therefore
only appears for larger concurrency levels, where
communication times might be reduced by 62%
compared to the current optimized code. In con-
trast to this systems with smaller SMP nodes will
benefit for any concurrency level as seen for Bassi
(up to 65%) and even the 2-way SMP Jacquard (up
to 28%). Predictions for Jaguar and BG/L improve
only by up to 20%, which is not surprising, as our
current models do not capture the details of the
contention in the interconnects. Predicted im-
provements are completely caused by reduced
message numbers and hence reduced latency over-
head. Only substantially more complex model can
provide better predictions on these systems.

The improved localization of communication
can be visualized by using the performance tool
IPM [7][8]. Based on profiles generated with IPM
we visualize the communication volume between
processors for both operation modes before and
after optimization for 128 processors in Figure 9.

Overall the optimization strategies for Beam-
Beam3D were well guided by our performance
models as well as the experience we gained in de-
veloping these models. A sufficiently accurate per-
formance model can only be generated if the criti-
cal components of the system in question are well
understood. Therefore the process of developing a

performance model naturally leads to a better un-
derstanding of the critical performance issues of a
code on a specific system. In the case of Beam-
Beam3D the localization strategies for the FFTs
and the parallel grid reduce/broadcast phases and
the optimal choice of a beam-to-beam transfer
point were a direct outcome of our performance
models. In addition the models allow us to under-
stand the potential benefits of hypercube based
reduction/broadcast algorithm before considering
its implementation.

6 Related Work
IMPACT [9] is a parallel 3D particle-in-cell

code for modeling high intensity/high brightness
beams in rf linear accelerators. The parallel im-
plementation is based on a domain decomposition
method. The particle movement across processors
results in neighbor communication. The electro-
magnetic fields are calculated using a 3D FFT with
a 2D logical processor array. Global communica-
tion is required at this stage. Therefore, the optimi-
zation strategy developed in this paper can also be
applied to the IMPACT code.

The all-to-all personalized communication
pattern (AAPC) has been studied in various con-
texts [6][10][11]. The algorithms used in the initial
BeamBeam3D implementation for the global grid
reduction and broadcast phases belong into the
general class of SMP-aware shemes. However the
global grid reduction algorithm has to our knowl-
edge not been described in the literature.

Figure 9: IPM heat-maps before and after optimization for 128 processors (2 beams * 4 rows *16
columns). Each grid point is colored according to the volume of data communicated between
processor i on the horizontal axis and j on the vertical axis. The left panel shows the communica-
tion pattern with random placement of processes, the middle column with the initial layout of
blocks of 4 processes cyclic across rows, and the right panel after localizing both all communica-
tion phases. The improved localization of data transfers can clearly be seen as communication
along the diagonal becomes more dominant.

 12

Performance models are often based on archi-
tectural models such as LogP [12], which charac-
terize the behavior of a system with a few parame-
ters. AAPC have been studied in these frameworks
[13]. Our models differentiate from this approach
by ignoring the potential overlap of computation
and communication, as we believe that the poten-
tial for optimizing the communication schedule
itself should be exploited first. Unlike the original
LogP, our models incorporate the effect of hierar-
chical interconnects, as we find them to be essen-
tial for modeling AAPC.

Other groups have developed performance
models based on code inspection for several differ-
ent scientific codes [14][15][16][17][18]. Natu-
rally, as these models are code specific, they do not
translate to other, different codes. Furthermore,
often only the end-result of the model development
is presented, while this study tries to document all
necessary intermediate steps, to facilitate the dis-
semination of modeling techniques. Other empha-
sis, which set this study apart are the development
of models for a larger variety of systems, as well as
the integration of performance modeling into code
optimization.

Other modeling approaches, which are based
on (semi-) automatic code profiling, are also being
developed [19]. Even as these approaches promise
a significant reduction in model development time,
they are still lacking the ability to predict perform-
ance beyond concurrency levels included in the
profiling stage of the model development.

There are a large variety of synthetic micro-
benchmarks available. We evaluate several of them
[20][21][22], but due to the performance complex-
ity of AAPC, none of them could be used to pro-
duce performance models with acceptable accu-
racy.

7 Conclusions and Future Work
In this study we developed performance mod-

els for a communication limited code simulating
beam-beam interaction in high energy ring collid-
ers (BeamBeam3D). The models were developed
to predict communication across five different high
performance computer systems with different ar-
chitectures. We identified the most important
communication phases, which all use all-to-all per-
sonalized communication patterns (AAPC). We
started out with a simple ping-pong benchmark and

refined the benchmark iteratively to reflect the per-
formance effects of the concurrent behavior of the
main communication pattern, of different hierar-
chies in the system architectures, and of contention
due to network topology.

On all systems performance can be modeled
successfully with high accuracy. For SMP based
systems the most important performance constraint
is node-adapter contention. For 3D-torus based
systems good performance models are not possible
without considering the influence of link conten-
tion. Our current models do not incorporate a link-
accurate contention model, which would be sub-
stantially more complicated. The average model
prediction error for our best models is very low on
the SMP based systems with 3% for Bassi, 4% for
Seaborg, and 7% for Jacquard. On the torus based
system they are somewhat higher with 28% for
Jaguar and 29% for BG/L. However for Jaguar
optimized performance is again predicted within
8%. Contention for AAPC on BG/L appears to be
more difficult to model. These excellent results
across five different systems indicate that this
methodology for performance modeling can be
applied to a large class of algorithms.

A 2D mesh based communication pattern for
some of the AAPC shows very good result on SMP
based systems. These algorithms are very similar
to so called SMP-aware algorithms. Models predict
that additional improvements on all systems are
possible by using hypercube communication pat-
terns instead.

Overall not only the performance but espe-
cially the parallel scalability of the code have been
improved considerably. This allows us to increase
concurrency levels for production runs without
decreasing efficiency, which brings absolute code
performance closer to targeted times.

8 Acknowledgments
This work was supported in part by the De-

partment of Energy Office of Science through the
SciDAC award High-End Computer System Per-
formance: Science and Engineering. Computer
time was provided by NERSC, Oak Ridge National
Laboratory, and Argonne National Laboratory. We
also like to thank Shoaib Kamil for his help with
generating IPM plots.

 13

References
[1] J. Berkowitz, “Model Colliders”, DEIXIS

2004-2005 THE DOE Computational Sci-
ence Graduate Fellowship ANNUAL.

[2] K. Hirata, H. Moshammer, F. Ruggiero, “A
symplectic beam-beam interaction with en-
ergy change”, Particle Accel. 40 (1993) 205-
228.

[3] M.A. Furman, “Beam-beam simulations with
the gaussian code TRS”, LBNL-42669, CBP
Note272, 1999.

[4] J. Qiang, M.A. Furman, R.D.Ryne, “A paral-
lel particle-in-cell model for beam-beam in-
teraction in high energy ring colliders”, J.
Comput. Phys. 198 (2004) 278-294.

[5] A. W. Cook, W. H. Cabot, P. L. Williams, B.
J. Miller, B. R. de Supinski, R. K. Yates, M.
L. Welcome: Tera-Scalable Algorithms for
Variable-Density Elliptic Hydrodynamics
with Spectral Accuracy. SC 2005: 60

[6] V. Kumar, A. Grama, A. Gupta, and G.
Karypis. Introduction to Parallel Computing.
The Benjamin/Cummings Publishing Com-
pany, Inc., 1994.

[7] IPM: http://ipm-hpc.sourceforge.net/
[8] L. Oliker, J. Borrill, J. Carter, D. Skinner, R.

Biswas, “Integrated Performance Monitoring
of a Cosmology Application on Leading
HEC Platforms”, International Conference
on Parallel Processing: ICPP 2005, 2005.

[9] J. Qiang, R. Ryne, S. Habib, V. Decyk, “An
Object-Oriented Parallel Particle-In-Cell
Code for Beam Dynamics Simulation in Lin-
ear Accelerators,” J. Comp. Phys. vol. 163,
434, (2000).

[10] D.R. Helman, D.A. Bader, and J. J'aJ'a. Par-
allel Algorithms for Personalized Communi-
cation and Sorting With an Experimental
Study. In Proceedings of the Eighth Annual
ACM Symposium on Parallel Algorithms
and Architectures, pages 211--220, Padua, It-
aly, June 1996.

[11] S. Hinrichs, C. Kosak, D. O'Hallaron, T.
Stricker, and R. Take, "An architecture for
optimal all-to-all personalized communica-
tion," in ACM Symposium on Parallel Algo-
rithms and Architectures, (Cape May, New
Jersey), July 1994.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay,
K. E. Schauser, E. Santos, R. Subramonian,

and T. von Eicken, “LogP: Towards a realis-
tic model of parallel computation”, In Pro-
ceedings 4th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Pro-
gramming, May 1993.

[13] R. M. Karp, A. Sahay, E. E. Santos, and K.
E. Schauser, “Optimal Broadcast and Sum-
mation in the LogP model”, In Proc. Sympo-
sium on Parallel Algorithms and Architec-
tures (SPAA), Velen, Germany, June 1993,
142--153

[14] D. H. Bailey and A. S. Snavely, "Perform-
ance Modeling: Understanding the Present
and Predicting the Future," Proceedings of
Euro-Par 2005, Lisbon, Portugal, Sep 2005;

[15] J. Brehm, P. H. Worley, and M. Madhukar,
“Performance Modeling for SPMD Message-
Passing Programs”, Technical Report TM-
13254, Oak Ridge National Laboratory, June
1996

[16] G. Mahinthakumar, M. Sayeed, J. Blondin, P.
Worley, W. Hix, A. Mezzacappa, “Perform-
ance Evaluation and Modeling of a Parallel
Astrophysics Application”, in Proceedings of
the High Performance Computing Sympo-
sium 2004, p. 27-33

[17] A. Hoisie, O. Lubeck, and H. Wasserman,
“Performance Analysis of Wavefront Algo-
rithms on Very-Large Scale Distributed Sys-
tems”. In Lectures Notes in Control and In-
formation Sciences, 249 171, 1999.

[18] M. M. Mathis, D. J. Kerbyson, A. Hoisie. “A
Performance Model of non-Deterministic
Particle Transport on Large-Scale Systems”.
In Future Generation Computer Systems,
2005. LA-UR 02-7313

[19] A. Snavely, L. Carrington, and N. Wolter,
"Modeling Application Performance by Con-
volving Machine Signatures with Application
Profiles," Proc. IEEE Workshop on Work-
load Characterization, 2001.

[20] J. Dongarra, T. Hey, E. Strohmaier: “Se-
lected Results from the ParkBench Bench-
mark”. Euro-Par 1996, Vol. II 1996: 251-254

[21] E. Strohmaier and H. Shan. “Apex-Map: A
Global Data Access Benchmark to Analyze
HPC Systems and Parallel Programming
Paradigms”, Proceedings of SC|05 (2005).

[22] HPC Challenge Benchmark,
http://icl.cs.utk.edu/hpcc/

