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ABSTRACT 

We develop a sampling-based Bayesian model to jointly invert seismic amplitude 

versus angles (AVA) and marine controlled-source electromagnetic (CSEM) data for 

layered reservoir models. The porosity and fluid saturation in each layer of the reservoir, 

the seismic P- and S-wave velocity and density in the layers below and above the 

reservoir, and the electrical conductivity of the overburden are considered as random 

variables. Pre-stack seismic AVA data in a selected time window and real and quadrature 

components of the recorded electrical field are considered as data. We use Markov chain 

Monte Carlo (MCMC) sampling methods to obtain a large number of samples from the 

joint posterior distribution function. Using those samples, we obtain not only estimates of 

each unknown variable, but also its uncertainty information. The developed method is 

applied to both synthetic and field data to explore the combined use of seismic AVA and 

EM data for gas saturation estimation. Results show that the developed method is 

effective for joint inversion, and the incorporation of CSEM data reduces uncertainty in 

fluid saturation estimation, when compared to results from inversion of AVA data only. 
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INTRODUCTION 

Deepwater gas exploration is challenging and subject to a large degree of 

uncertainty. Seismic imaging techniques, such as seismic amplitude versus angles 

(AVA), can provide good information about the physical location and porosity of 

potential gas-bearing sands, but cannot discriminate between economic and non-

economic gas concentrations because seismic velocity and density have low sensitivity to 

gas saturation (Castagna and Backus, 1993; Debski and Tarantola, 1995; Plessex and 

Bork, 2000). Marine controlled-source electromagnetic (CSEM) methods have the ability 

to discriminate between non-economic and economic gas saturation because electrical 

resistivity of reservoir materials is highly sensitive to gas saturation through the link to 

water saturation. However, estimating gas saturation using marine CSEM data alone is 

impractical because EM data has low spatial resolution.  

In addition to applications in gas exploration, the addition of EM data can facilitate 

the use of time-lapse seismic data in predicting changes in pressure and fluid saturation 

by providing a third, independent source of data. Predictions of changes in pore pressure 

and water saturation (Tura and Lumley, 1999; Landro, 2001; Lumley et al., 2003) can be 

done when there is only oil and water saturation to consider, since there are only two 

independent variables, pressure and water or oil saturation, to be derived from two types 

of data (acoustic impedance and shear impedance). The presence of gas complicates the 

problem by introducing a third independent variable (gas saturation) which causes, for 

example, the change in oil saturation as a function of the change in shear and acoustic 

impedance to become non-unique.  
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Seismic AVA and EM methods are sensitive to different physical properties of 

reservoir materials. Seismic AVA data are functions of the seismic P- and S-wave 

velocity and density of reservoir materials (Shuey, 1985). EM data are functions of the 

electrical resistivity of reservoir materials and the overburden. Since both elastic and 

electrical properties of oil and gas reservoirs are physically related to fluid saturation and 

porosity through rock physics models (Archie, 1942; Gassmann, 1951; Mavko et al., 

1998), joint inversion of seismic AVA and EM data has the potential of providing better 

estimates of gas saturation and porosity than inversion of individual data sets. However, 

joint inversion of seismic AVA and EM data for a three-dimensional reservoir is very 

difficult because forward simulations of seismic AVA and CSEM data are 

computationally intensive. 

In this study, we develop a sampling-based Bayesian model based on layered 

reservoir models, where the response can be calculated quickly. We apply the developed 

approach to explore the combined use of seismic AVA and EM data for fluid saturation 

and porosity estimation. This is a simplified representation of gas exploration in the 

deepwater of the Gulf of Mexico, where the spatial variability of fluid saturation and 

porosity changes only along the vertical direction. In addition, we assume that rock-

physics models for linking elastic and electrical properties to fluid saturation and porosity 

are obtainable from nearby borehole logs.  

METHODOLOGY 

Bayesian Model 

The Bayesian model is developed according to an exploration scenario in 

deepwater, such as the Gulf of Mexico (GOM) and the North Sea. As shown in Figure 1, 
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we consider a layered reservoir model that includes gas, oil, and water. Seismic data are 

pre-stack common midpoint gathers containing several incident angles over a predefined 

time window that covers the reservoir. The time window can be determined from check 

shots or sonic log calculations of time-depth pairs. We invert for water and gas saturation 

and porosity within the reservoir, but invert for seismic P- and S-wave velocity and 

density in the zones outside the reservoir. Inversion for seismic parameters outside of the 

reservoir is done because well logs necessary for deriving rock-physics models to link 

water and gas saturation and porosity to seismic AVA data are typically only recorded 

within the reservoir. 

Marine CSEM data are the real (in-phase) and quadrature (out-of-phase) 

components of the recorded electrical field from many receivers located on the seafloor. 

Those data are the response to the electrical conductivity of the entire half space, which 

includes the seawater, the overburden above the reservoir, the reservoir, and the 

sediments below the reservoir. Since the electrical conductivity in seawater and 

overburden often affects estimates of fluid saturation in the reservoir, we also consider 

them as unknown parameters in this model.  

Let vectors wS , gS , and φ be water saturation, gas saturation, and porosity in a 

reservoir, respectively. Let vector σ be the electrical conductivity at the overburden. Let 

vectors pV , sV , and ρ be the seismic P- and S-wave velocity and density above and 

below the gas reservoir. Let matrices R and E represent seismic AVA and CSEM data 

accordingly. We assume that R and E are independent of each other. Based on the 

Bayes' theorem (Bernardo and Smith, 1994), the Bayesian model is given by: 
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Equation 1 defines a joint posterior probability distribution function of all unknown 

parameters, which is known up to a normalizing constant. The first term on the right side 

of the equation is referred to as the likelihood function of seismic AVA data, the second 

term on the right side is referred to as the likelihood function of EM data, and the last 

term on the right side is referred to as the prior distribution of unknown parameters.   

Likelihood Models 

We determine the likelihood functions of seismic AVA and EM data using 

different methods according to their error structures in data acquisition and processing. 

Seismic AVA reflectivity is a direct function of seismic P- and S-wave velocity and 

density in the reservoir and in the zones outside the reservoir. In our application, we use 

the Zoeppritz equations to model the reflectivity. Seismic P- and S-wave velocity and 

density can be related to water and gas saturation and porosity in the reservoir using rock-

physics models. Let seismic AVA data { }ijr=R , where 1,2, , ai m= L , and am is the 

number of incident angles, and 1, 2, , dj m= L , and dm is the number of time samples. 

Thus, 

 ( , , , , , ) ,a a
ij ij ijr M ε= +w g p sS S φ V V ρ (2) 

where a
ijM is the ij th− component of the seismic AVA forward model and a

ijε represents 

its corresponding measurement error. We follow here the common assumption that the 

measurement errors have a Gaussian distribution with zero mean and are uncorrelated to 
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each other (Mosegaard and Tarantola, 1995; Malinverno, 2002; Buland and Omre, 2003), 

and thus we obtain the likelihood function of seismic data as follows: 

a dm m
1/ 2 2

i=1 j=1

1( | , , , , , ) exp ( ( , , , , , ))
22

ai
i ij ijf r Mττ

π
 = − − 
 

∏∏w g p s w g p sR S S φ V V ρ S S φ V V ρ , (3) 

where iτ is the inverse variance of measurement errors along the i th− incident angle. 

The above assumptions can be changed to allow seismic reflectivity for a given incident 

angle to be spatially correlated in time. In this case, the multivariate Gaussian distribution 

function may be used for obtaining the likelihood function. If the error structure is other 

than Gaussian and can be modeled, then a more sophisticated likelihood function may be 

used. 

We determine the likelihood function of the EM data using relative errors instead 

of absolute errors, because the amplitudes of the recorded electrical field span several 

orders of magnitude. The EM data used in this study include in-phase and out-of-phase 

components of the recorded electrical fields at several offsets using different frequencies. 

Let EM data matrix { }ijke=E , where 1,2, , fi n= L , represent different frequencies of 

EM sources, 1, 2, ,j n= L , represent different offsets, and 1,2k = represent in-phase and 

out-of-phase components, respectively. Thus, 

 ( , , )(1 )e e
ijk ijk ijke M ε= +wS φ σ , (4) 

where e
ijkM is the ijk th− component of the results of the EM forward model, and e

ijkε is 

its corresponding relative error. Similar to seismic AVA data, we assume that the relative 

errors of EM data have a Gaussian distribution with zero mean, and the data collected 

from different frequencies and offsets are independent of each other. Therefore, we can 

obtain the following likelihood function: 
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where ijkτ represents the inverse variance of EM data. As for seismic AVA data, we can 

develop a more sophisticated likelihood function according to the error structure of EM 

data. 

Prior Model 

The prior distribution is determined using prior knowledge and other information 

about the unknown parameters, such as data from nearby boreholes, which may be 

subjective and site specific. In this study, we assume that the unknown parameters in the 

reservoir (i.e. , ,w gS S φ ) are independent of the ones outside the reservoir (i.e. , , ,p sσ V V ρ )

and water and gas saturation ( ,w gS S ) are independent of porosity (φ ). We also assume 

that the electrical conductivity ( σ ) in the thick overburden is independent of seismic 

velocity and density ( , ,p sV V ρ ) in the thin layers above and below the reservoir and 

seismic velocity and density ( , ,p sV V ρ ) are independent of each other. Consequently, we 

can write the prior distribution function as follows:  

( , , , , , , ) ( , ) ( ) ( ) ( ) ( ) ( )f f f f f f f=w g p s w g p sS S φ σ V V ρ S S φ σ V V ρ . (6) 

The prior distribution functions of water and gas saturation are determined jointly 

because they are dependent of each other. Let 1 1( , )a b , 2 2( , )a b , and 3 3( , )a b be the prior 

bounds of water, gas, and oil saturation. As shown in Figure 2, the inversion domain of 

water and gas saturation is a joint set given by  

1 1 2 2 3 3{( , ):  ( , ), ( , ), ( , ), 1}.w g w g o w g oD S S S a b S a b S a b S S S= ∈ ∈ ∈ + + =
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We assume that the prior distribution of water and gas saturation is uniform in the 

domain D. For all other parameters, we assume that their prior distributions are uniform 

within  their corresponding ranges.  

SAMPLING-BASED METHODS 

We use Markov chain Monte Carlo (MCMC) sampling methods to obtain estimates 

of unknown parameters from the Bayesian model defined in Equation 1. Unlike 

optimization-based methods seeking single optimal solutions of unknown parameters, 

MCMC sampling-based methods draw many samples from the joint posterior 

distribution. Using those samples, we can make inferences about the marginal 

distributions of each parameter, such as its mean, variance, and predictive intervals.  

MCMC sampling methods have been found recently to be useful for inverting 

complex geophysical data set by numbers of authors, such as Bosch (1999), Malinverno 

(2002), and Buland et al. (2003). The main steps for using MCMC methods entail: (1) 

deriving conditional probability functions given all the data and other unknown variables, 

which are referred to as full conditional distribution functions; (2) generating samples 

using suitable algorithms; (3) making inferences about each unknown. In the following, 

we first show the full conditional distribution functions of unknown vectors given in 

Equation 1 and then describe the sampling algorithms used in this study, which include 

the Metropolis-Hasting methods (Hasting, 1970) and the slice sampling methods (Neil, 

2003).  

Full Conditional Distributions 
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A full conditional distribution function is proportional to the joint posterior 

distribution function shown in the left side of Equation 1. By retaining only those terms 

related to the variable of interest, we can obtain the full conditional distribution function 

of the variable. For example, the full conditional probability distribution function of 

porosity is given by 

 ( | ) ( | , , , , , ) ( | , , ) ( )f f f f∝ w g p s wφ R S S φ V V ρ E S φ σ φ� . (7) 

The dot in ( )f φ |� of Equation 7 represents all the data and other unknown variables. 

Similarly, we can obtain full conditional distribution functions of other unknown 

variables, which are given below: 
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(8) 

Each conditional distribution function shown in Equation 8 can only be evaluated 

numerically for given samples of unknown parameters. 

Metropolis-Hasting Sampling Methods 

We use different methods to draw samples of fluid saturation, porosity, overburden 

conductivity, seismic velocity, and density from the joint posterior distribution function 

shown in Equation 1. For water and gas saturation, to take account of dependence 

between water and gas saturation, we use the multivariate Metropolis-Hasting method. 

Suppose we start from an initial value (0) (0)( )w gS ,S , which can be any vector in domain D 
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shown in Figure 2. We want to obtain a new sample of water and gas saturation 

(1) (1)( , )w gS S . The steps of the procedure are: 

(1) Generate a random vector * *( , )w gS S uniformly from domain D shown in Figure 2. 

(2) Calculate the following ratio: 

 
* * (0) (0) (0) (0) * (0) (0)

(0) (0) (0) (0) (0) (0) (0) (0) (0)

( | , , , , , ) ( | , , )min 1,
( | , , , , , ) ( | , , )

w g p s w

w g p s w

f f
f f

ϕ ϕα
ϕ ϕ

 
=   

 

R S S V V ρ E S σ
R S S V V ρ E S σ

� (9) 

(3) Generate a random value u uniformly from interval (0,1) 

(4) If uα < , let (1) *
w w=S S and (1) *

g g=S S ; otherwise, let (1) (0)
w w=S S and (1) (0)

g g=S S .

Repeating steps from (1) to (4) by replacing index (0) with index (1), we can obtain many 

samples of water and gas saturation as follows: { }( ) ( )( , ) : 0,1, ,k k
w gS S k n= L . From the 

procedure, we can see that the value ( 1) ( 1)( , )k k
w gS S+ +  depends solely on the value 

( ) ( )( , )k k
w gS S , not on the value { }( 1) ( 1)( , ) : 1, 2, ,k k

w gS S k n− − = L . Therefore, these samples form 

a Markov chain. This chain has been shown to be converged to the joint true posterior 

distribution of random vector ( , )w gS S under weak conditions when the sample size is 

large (Gilks et al., 1996).  

For porosity, overburden conductivity, seismic velocities, and density, we use 

mixing methods, which include single-variable Metropolis-Hasting methods, multivariate 

Metropolis-Hasting methods, single-variable slice sampling methods, and multivariate 

slice sampling methods. Since the Metropolis-Hasting methods are very similar to the 

one just given above, in the following we describe only the single-variable slice sampling 

methods for generating samples of porosity from the joint distribution function. Similar 

methods can be used to obtain samples of other variables.  
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Slice Sampling Methods 

Slice sampling methods are described in details by Neil (2003). To use single-

variable slice sampling methods to obtain samples of porosity in a given layer (say, layer-

i ), we first transform porosity iϕ from a given finite interval ( , )c d to an infinite domain 

( , )−∞ +∞ , where c and d are the lower and upper bounds of porosity, using the 

following formula: 

log i

i

cx
d
ϕ

ϕ
 −

=  − 
,

where variable x is the transformation of porosity iϕ defined on ( , )−∞ +∞ . To simplify 

description, we let  

 ( ) ( | , , , , , ) ( | , , ) ( )f x f f f= w g p s wR S S φ V V ρ E S φ σ φ (10) 

Notice that all variables on the right side of Equation 10 are vectors, and vector φ

includes component iϕ and therefore is a function of x . Function ( )f x is the marginal 

posterior probability density function (pdf) of x . Our goal is to make inferences about  

this pdf using sampling methods. 

Figure 3 shows a three-step procedure given by Neil (2003) to obtain a new value 

1x from the current value 0x .

(1) Draw a value y , which is uniformly distributed on 0(0, ( ))f x . The value 

y defines a horizontal “slice”: { : ( )}S x y f x= < , shown as thick lines in 

Figure 3(a). Note that 0x is always within S .
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(2) Find an interval, ( , )I L R= around the value 0x that contains all or much 

of the slice, where L and R represent the lower and upper bounds of the 

interval. 

(3) Draw the new point 1x from the part of the slice within the interval. 

Steps (2) and (3) can be implemented in several ways. In this study, we use 

“stepping out” methods to find the interval I and “shrinkage” methods to draw a new 

value from the interval. Figure 3(b) shows the main idea of “stepping out” methods. We 

step out in both directions from the value 0x with a given interval width w for a given 

maximum number of iteration m until both ends are outside the slice. We then uniformly 

pick a new value from the interval. If the point picked is inside the slice, we consider it as 

the new value 1x ; otherwise we use the point to shrink the interval. Neil (2003) shows 

how this procedure guarantees that the obtained chains are converged to pdf ( )f x . The 

parameters w and m are specified beforehand. They do not affect sampling results, but 

do affect speed of convergence of the chains. 

Strategies for Speeding Convergence 

The success of MCMC methods depends on the efficiency of the sampling methods used. 

If a sampling method is inefficient, we may need to run a very long chain, and thus 

computational efforts are very large. Typically, the raw sampling methods (for both 

Metropolis-Hasting and slice sampling) are not very efficient. We need to tune those  

parameters that control chain movements. Unfortunately, the efficiency of a sampling 

method is often problem-specific. In this study, we use a mixing method to obtain 

samples. At each sampling step, we randomly pick one of the following four methods, 
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single-variable Metropolis-Hasting methods, multivariate Metropolis-Hasting methods, 

single-variable slice sampling methods, and multivariate slice sampling methods. This 

strategy has been shown to be very efficient for solving our joint inversion problems.  

SYNTHETIC EXAMPLE 

The following synthetic case study is designed to show the capability and 

flexibility of our joint inversion approach for integrating different types of information, 

and to demonstrate the benefits resulting from joint inversion of seismic AVA and CSEM 

data for gas saturation estimation.  

Synthetic True Model 

The synthetic reservoir includes five layers with a thickness of 25 m and zero oil 

saturation. From the upper to the bottom layers, the gas saturation of the reservoir is 0.05, 

0.95, 0.4, 0.9, and 0.1, and porosity is 0.15, 0.25, 0.15, 0.1, and 0.05. Above the gas 

reservoir is an overburden with a thickness of 2,000 m and electrical conductivity of 1.0 

S/m, above the overburden is 1,000 m of seawater with conductivity of 3.2 S/m. To 

account for uncertainty in selecting suitable time windows for seismic AVA data, we add 

two 25 m thick layers above the reservoir and one 25 m thick layer below the reservoir, 

which have Vp, Vs and density that are also considered as inversion parameters.   

Synthetic Data 

The seismic AVA data are NMO-corrected angle gathers generated by convolving 

a wavelet with the angle-dependent reflectivity for each layer interface. The seismic 

velocities and density in the reservoir are calculated from porosity and fluid saturation 

using the rock-physics models given in Table 1 and described in Hoversten et al. (2006). 
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A 28 Hz Ricker wavelet is use for incident angles of 5, 10, 15, 20, 25, and 30 degrees. 

Zoeppritz equations (Shuey, 1985) are used to calculate the angle-dependent reflectivity. 

We assume that the synthetic seismic data include Gaussian random noises. The 

variances of the Gaussian noises are angle dependent, which are determined by the 

assigned signal-to-noise ratios (SNRs). For example, we can assign the signal-to-noise 

ratio of the six incident angles as 6, 5, 4, 3, 2, and 1 from the near to far offsets. 

The synthetic EM data mimic commercial EM field data collected using controlled-

source electromagnetic (CSEM) techniques. The marine CSEM system consists of a ship-

towed electric dipole source and a number of seafloor-deployed recording instruments 

capable of recording orthogonal electric (and optionally magnetic) fields. A common 

configuration consists of an electric dipole transmitter, 100–300 m in length, towed in a 

neutrally buoyant configuration approximately 50 m off the seafloor to avoid collision 

with stationary receiver systems (Ellingsrud et al., 2001). A square wave of electric 

current is sent into the transmitter at a variable fundamental frequency between 0.01 and 

10 Hz. The earth response, along with the primary field from the transmitter, is measured 

at the array of receivers. In this study, we use EM sources with five different frequencies 

(0.1, 0.25, 0.5, 0.75, and 1 Hz) and six different offsets (4, 5, 6, 7, 8, and 10 km). The 

relation between electrical resistivity and water saturation and porosity is given by 

Archie's law using coefficients given in Table 2. We added 5–15% relative Gaussian 

random noises to the synthetic EM data from the near to far offsets. 

Inversion Results 

Inversion using seismic AVA data: 
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We first demonstrate the capability of the developed stochastic model for 

distinguishing high gas saturation layers from low gas saturation layers, using seismic 

AVA data only for the five-layer reservoir model. We consider two levels of noise, which 

correspond to signal-to-noise ratios from 6 to 1 and from 12 to 2 from near to far offsets. 

We assume that oil saturation is zero in each layer, and thus the unknown parameters in 

Equation 1 are porosity and gas saturation in the five layers. We assume no prior 

information about gas saturation, and thus the prior distribution of gas saturation is 

uniform on [0, 1]. The prior distribution of porosity is uniform on [0, 0.35]. 

Figure 4 shows the estimated gas saturation and porosity using seismic AVA data 

with the two levels of noise. The back and red curves are the estimated marginal pdfs of 

gas saturation and porosity in the five layers using seismic AVA data with SNRs from 6 

to 1 and from 12 to 2, respectively. The blue straight lines are the true values. From the 

figure, we notice that seismic data provide (1) good estimates of porosity in each layer, 

(2) good estimates of gas saturation in layers 1 and 2, and (3) poor estimates of gas 

saturation in layers 3, 4, and 5. With the decrease of seismic noise, uncertainty in gas 

saturation and porosity decrease, but in each case both gas-rich layer 4 and gas-poor layer 

5 are poorly resolved by seismic data. Table 3 shows the root-mean-squares (RMS) of the 

differences between the true values and the estimated values using seismic data with 

SNRs from 6 to 1 and from 12 to 2. Based on comparison between the true values and the 

estimated means, medians, and modes, the improvement in accuracy for both gas 

saturation and porosity is small when the SNRs of seismic data are increased by a factor 

of two. 

Inversion using seismic AVA and CSEM data: 
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To demonstrate the benefits of adding CSEM data for gas saturation estimation, we 

jointly invert seismic AVA data given in the proceeding section and CSEM data with 

relative noise between 5% and 15% from the near to far offsets. Figure 5 shows the 

estimated marginal pdfs of gas saturation and porosity in the two situations. Compared to 

Figure 4, we see that joint inversion of seismic AVA and CSEM data reduces uncertainty 

in gas saturation estimation, especially for layers 4 and 5. Most importantly, both high 

gas concentrations (layers 2 and 4) and low gas concentrations (layers 1 and 5) are clearly 

identified by the major modes of their corresponding pdfs. Table 4 shows the RMS of the 

differences between the true values and the estimated values using both seismic and EM 

data. Compared to Table 3, the incorporation of EM data improves the estimates of gas 

saturation and porosity, and the improvement in gas saturation estimation is significant.  

Inversion with unknown oil concentration: 
In the preceding inversion, we assume that oil saturation in the reservoir is zero or 

given. However, in reality, oil saturation in each layer may be another parameter that 

needs to be estimated. To explore the effects of our prior knowledge about oil saturation 

on the joint inversion, we assume that oil saturation may lie in the ranges of [0, 0.1], [0, 

0.3], and [0, 0.5], respectively. The true oil saturation remains zero in all layers, but we 

allow oil saturation to take values between the above ranges when we invert seismic 

AVA and EM data. 

Figure 6 compares the estimated water and gas saturation using both seismic AVA 

and EM data when the allowed ranges of oil saturation are [0, 0.1], [0, 0.3], and [0, 0.5]. 

The black, red, and blue curves represent the estimated pdfs of water and gas saturation 

using the prior bounds of oil saturation [0, 0.1], [0, 0.3], and [0, 0.5], and the solid blue 

lines represent the true values. Overall, uncertainty in water and gas saturation estimation 
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increases as the prior bounds of oil saturation increases, especially for Layer 4. In terms 

of the modes of the estimated pdfs, the joint inversion provides fair estimates of water 

saturation for layers 2–5. For Layer 1, when the prior bound of oil saturation is [0, 0.5], 

two modes exist and the second one is close to the true value. For gas saturation 

estimation, the joint inversion provides good estimates of gas saturation in each layer 

when the prior bound of oil saturation is [0, 0.1]. As the prior bounds of oil saturation 

increase, the joint inversion cannot identify the second gas-rich layer. 

Table 5 shows the RMS of the differences between the true values and the 

estimated values obtained from the join inversion. It is evident that with the increasing of 

the prior bounds of oil saturation, the misfits between the true and estimated values 

increase for both water and gas saturation estimation. We also notice that the modes of 

the estimated pdfs provide much better estimates of the corresponding true values than 

other statistics. 

FIELD EXAMPLE 

We apply the developed Bayesian model to field data obtained from the Troll site 

in the North Sea. We compare estimates of gas saturation with the measurements at a 

nearby borehole to evaluate the benefits of joint inversion of seismic AVA and CSEM 

data for gas and oil saturation estimation under field conditions. In the following, we first 

briefly describe seismic and EM data used in this study and then focus on the inversion 

results and their comparisons with the borehole logs. Detailed information on this site 

was given in Hoversten et al. (2006). 

Seismic AVA data 
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Many types of geophysical surveys have been carried out over the past 30 years. 

For this study, we choose seismic AVA and marine CSEM data near a well referred to as 

31/2-1. Seismic AVA data were collected from CDP locations within 50 m of EM 

receivers sit on the seafloor. At each CMP location, there are six incident angles (7.2, 

13.5, 19.8, 25.6, 31.1, and 36.3 degrees). Figure 7 shows the pre-stack NMO corrected 

data at CMP 1147, which is near the marine EM receiver Rx16. From the figure, we can 

see a strong reflector near 1,500 ms, which may correspond to the top of the gas 

reservoir. Similarly, we can approximately determine the bottom of the reservoir, which 

is around 1,800 ms. Consequently, we chose the pre-stacked data between 1,418 ms and 

1,816 ms for seismic AVA inversion. Angle-dependent wavelets were also derived by 

matching seismic data at a well 1.5 km from this site.  

Marine CSEM Data 

Marine EM surveys measure the electromagnetic responses of electrical resistivity 

in the entire half-space under the surface of ocean, which includes seawater, overburden, 

gas reservoir, and bedrock. The recorded EM data are the in-phase and out-of-phase 

electrical fields at several different frequencies. In this study, we use data collected at 

three frequencies (0.25 Hz, 0.75 Hz, and 1.25 Hz). To be consistent with the seismic 

AVA data, we use the EM data obtained from receiver Rx16 for eight different 

transmitters, whose source-receiver distances are 775, 1,700, 2,500, 3,300, 4,100, 4,900, 

5,700, and 6,500 m, respectively. The relative errors of those EM data are estimated to be 

10%. 

Rock-Physics Models 
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The rock-physics models used for this application include petrophysical models 

that link fluid saturation and porosity to seismic velocities and density, and the empirical 

relationship that links fluid saturation and porosity to electrical resistivity. The models for 

tying seismic elastic properties to reservoir parameters for North Sea sandstones are 

described by Dvorkin and Nur (1996). The fitted results for joint inversion of seismic 

AVA and CSEM data using data collected from borehole 31/2-1 are given in Hoversten 

et al. (2006) and shown in Table 1. Archie's law is used to model the link between 

electrical resistivity and porosity and water saturation with the constants given in Table 2.  

Prior Distribution 

We use different methods to determine prior distributions of unknown parameters 

in the potential reservoir and in the zones outside the reservoir. For the unknown 

parameters in the zones outside the reservoir, including seismic P- and S-wave velocities, 

density, and overburden electrical resistivity, we assume that those variables are 

uniformly distributed between 70% and 130% of their corresponding borehole logs 

collected from 31/2-1. For the unknown parameters in the reservoir, we assume that those 

variables are also uniformly distributed with given bounds. We first determine reference 

values for water and gas saturation. The values for water saturation range from zero to 

one; values for gas saturation range from one to zero from the top to the base of the 

reservoir. The bounds for water and gas saturation are the reference values plus or minus 

0.3. The lower bounds of oil saturation are zero for all the layers, and the upper bound is 

0.1 for depths less than 1,544.5 m, below 1,544.5 m, the upper bounds of oil saturation 

linearly decrease from 0.7 to 0.1 at the base of the reservoir to allow oil where it was 

originally present.  
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Inversion of Seismic AVA Data 

For inversion of seismic data, we divide the potential reservoir into 16 layers with a 

thickness of 20 m and consider porosity, water saturation, and gas saturation in each layer 

to be unknown parameters. To account for uncertainty in the time-depth function that 

provides the time window for the seismic AVA data, we also include five 20 m thick 

layers above the reservoir and one 20 m thick layer below the reservoir. We jointly invert 

seismic P- and S-wave velocity and density in those layers.  

Figure 8 shows the comparison between the inversion results using seismic AVA 

data and borehole logs collected from Well 31/2-1. The thin black lines show borehole 

logs, the solid red lines show the modes of the inverted parameters, and the red dotted 

lines show the 95% predictive intervals. We notice that the seismic AVA data provide 

good estimates of water saturation for layers 1–6, where water saturation is low. Since we 

only allow oil saturation to change within 0.0 and 0.1, we obtain good estimates of gas 

saturation. However, for layers 7–13, inversion of seismic AVA data only provides poor 

estimates of water saturation. This is because seismic data have low sensitivity when 

water saturation in the range of 0.3–0.8, as found by Hoversten et al. (2006). 

Joint Inversion of Seismic AVA and CSEM Data 

To jointly invert seismic AVA and EM data, we need to take account the effects of 

electrical overburden above the reservoir. In this study, we divide the overburden 

(including seawater) above the reservoir into 13 layers according to the resistivity logs 

collected from borehole 31/2-1, and consider electrical conductivity in each of those 

layers as unknown parameters. Figure 9 shows the prior bounds (dashed lines) and initial 

values (solid lines) of overburden conductivity derived from borehole 31/2-1. We assume 
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that the unknown overburden conductivity parameters are uniformly distributed in the 

given ranges.  

Figure 10 shows the inversion results using both seismic AVA and CSEM data. 

Similar to Figure 7, the thin back lines show borehole logs, the solid red lines show the 

modes of the inverted parameters, and the red dotted lines show the 95% predictive 

intervals. For layers 1–6, the joint inversion provides similar estimates of water and gas 

saturation, both of which are close to borehole logs. For layers 7–13, the joint inversion 

generally provides slightly better estimates of water saturation than those obtained from 

the inversion of seismic data only, but uncertainty in both estimations is large. Figure 11 

from the top to the bottom compares the pdfs of estimated water and gas saturation for 

layers 7–12 using seismic data only (black lines) and using both seismic and EM data 

(red lines). The blue lines show the results from the nearby borehole. Based on the 

comparison between the estimated modes and the borehole logs, we can see that the joint 

inversion is better. Table 6 shows the RMS of the differences between the averaged well-

log values and the estimates values (modes) from the Troll data sets. Again, in terms of 

the misfits, the joint inversion is also slightly better. 

Data Misfits 

To show how the estimated model (modes) of inversion fits the data, we compare 

the seismic AVA and CSEM responses of the estimated model with their corresponding 

seismic AVA and EM data. Figure 12 compares the in-phase and out-of-phase electrical 

fields of the estimated model with the EM data at three frequencies over eight different 

offsets. We found that the estimated model fits the electrical field at frequency 0.25 Hz 

well. However, for high frequencies (0.75 Hz and 1.25 Hz), the fitting is not good when 
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the offsets are larger than 3,500 m. The misfits for large offsets at high frequencies could 

have many different causes. One possible reason for misfits is the assumption of the 

layered reservoir model. The higher-frequency EM data typically have higher resolution 

and therefore make the three-dimensional localized features of the gas reservoir easier to 

detect. Figure 13 compares the misfits of seismic AVA data for the models obtained from 

the joint inversion of seismic and EM data. We can see that joint inversion fits the 

seismic data well. 

DISCUSSION AND CONCLUSIONS 

In this paper we describe a sampling-based Bayesian model that we have developed 

to estimate gas saturation using seismic AVA and marine CSEM. We also demonstrate 

the capability of this model for solving nonlinear and non-unique inverse problems using 

synthetic five-layer reservoir models. Compared to deterministic inverse methods, which 

typically provide single-valued estimations and have difficulty finding global solutions, 

the stochastic methods provide us marginal pdfs for unknown parameters, which may 

include multiple modes. The derived pdfs allow us to evaluate the mean, variance, mode, 

and predictive intervals, all of which are useful in quantifying the uncertainty associated 

with inversion.   

We also use a five-layer synthetic model to show the benefits of joint inversion of 

seismic AVA and CSEM data for gas saturation estimation under several conditions. 

Using seismic AVA data only, even with very high resolution, it is still difficult to 

distinguish high or low gas concentrations in deep layers, because seismic properties are 

insensitive to gas concentrations. With the inclusion of CSEM data, uncertainty in gas 

saturation estimation is decreased, and the ability to identify high gas concentrations in 
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deep layers is enhanced. The improvement becomes less prominent when the errors of 

CSEM data and uncertainty in overburden conductivity are large, and when the reservoirs 

include unknown concentrations of oil. In addition, the effects of rock-physics models 

and approximations of one-dimensional reservoir models should be considered.  

Finally, we applied the developed Bayesian model to real-life data sets collected 

from the Troll site. Although seismic waveforms and rock-physics models are estimated 

from borehole logs with uncertainty, and both seismic AVA and CSEM data are three-

dimensional data, a comparison between the estimated results using seismic AVA data 

only and the estimated results using both seismic AVA and CSEM data shows that joint 

inversion of seismic and EM data provides better estimation of gas saturation.  

We notice that the benefits of combining seismic AVA and CSEM data are more 

striking in synthetic tests than in the field-data example presented here. Part of the 

difference is almost certainly a result of the large number of unknown noise sources 

inherent in the field data. These may include noise in the estimated angle-dependent 

wavelets and the possible presence of correlated (non-Gaussian) noise in both seismic 

AVA and CSEM data sets. The saturation and porosity logs themselves, assumed to be 

ground truth, can also be in error. In addition, the one-dimensional model may not 

accurately represent the actual earth. This is more likely to be a problem for the CSEM 

data, which has a larger spatial footprint, than it is for the seismic AVA modeling, 

although the assumption that all multiples have been removed and that true relative 

amplitudes have been recovered in the seismic data may also not be strictly valid. In any 

case, we believe that our synthetic examples provide sufficient evidence of the possible 
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improvements when seismic AVA and CSEM data are combined so as to induce others to 

improve on our efforts with field data. 
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TABLES 

TABLE 1. Rock-physics models derived using data collected from borehole 31/2-1 

Parameters Values 
 

Critical porosity 
Number of grain contacts 
Grain shear modulus (Gpa) 
Grain Poisson ratio 
Grain density (kg/m3)
Oil API gravity 
Brine salinity 
Gas G ratio to air 
Sg factor 

0.38 
9.0 
22.5 
0.349 
2567.3 
28.5 
0.007 
0.59 
1.0 

TABLE 2. Archie's law coefficients obtained using data collected from borehole 31/2-1 

Parameters Fitted Values 
 

Archie’s Law constant 
Water saturation exponent 
Porosity exponent 

0.788 
-1.3091 
-0.14429 

TABLE 3. Root-mean-squares of the differences between the true values and the 

estimated values using seismic AVA data with signal-to-noise ratios from 6 to 1 and from 

12 to 2  

 SNRs Estimated 
Means 

Estimated 
Medians 

Estimated 
Modes 

6 to 1 0.2351 0.2128      0.1717 
Gas saturation 12 to 2 0.2149 0.1908      0.1613 

6 to 1 0.0026          0.0031  0.0033 
Porosity 12 to 2 0.0021          0.0024  0.0028 
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TABLE 4. Root-mean-squares of the differences between the true values and the 

estimated values using both seismic AVA and EM data  

 SNRs Estimated 
Means 

Estimated 
Medians 

Estimated 
Modes 

6 to 1 0.1314 0.1097      0.0272 Gas saturation 
12 to 2 0.0342 0.0306      0.0510 
6 to 1 0.0017        0.0018  0.0061 Porosity 
12 to 2 0.0006          0.0008  0.0011 

TABLE 5. Root-mean-squares of the differences between the true values and the 

estimated modes when the prior bounds of oil saturation are [0, 0.1], [0,0.3], and  [0, 0.5] 

 Oil bounds Estimated 
Means 

Estimated 
Medians 

Estimated 
Modes 

[0,0.1] 0.1095         0.0797   0.0421 
[0,0.3] 0.1766 0.1570 0.0787 

Water 
saturation 

[0,0.5] 0.1898 0.1690 0.1020 
[0,0.1] 0.1088 0.0799 0.0313 
[0,0.3] 0.1805 0.1672 0.0957 

Gas saturation 

[0,0.5] 0.1963 0.1938 0.1873 

TABLE 6. Root-mean-squares of the differences between the averaged well-log values 

and the estimated modes for Troll data sets 

 Water Saturation Gas Saturation Oil Saturation  Porosity 
Seismic AVA Data 
only 

 
0.1877 

 
0.1760 

 
0.0965 

 
0.0431 

Seismic AVA and 
marine CSEM Data 

 
0.1398 

 
0.1650 

 
0.1112 

 
0.0442 


