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1. INTRODUCTION 1 
 2 
Bioremediation technology uses microorganisms to reduce, eliminate, contain, or transform to 3 

benign products contaminants present in soils, sediments, water, or air.  Bioremediation is not a 4 

new technology.  Both composting of agricultural material and sewage treatment of household 5 

waste are based on the use of microorganisms to catalyze chemical transformation.  Such 6 

environmental technologies have been practiced by humankind since the beginning of recorded 7 

history.  Evidence of kitchen middens and compost piles dates back to 6000 B.C, and the more 8 

“modern” use of bioremediation began over 100 years ago with the opening of the first 9 

biological sewage treatment plant in Sussex, UK, in 1891.  However, the word “bioremediation” 10 

is fairly new.  Its first appearance in peer-reviewed scientific literature was in 1987 (HAZEN 11 

1997). 12 

 13 

The last 15 years have seen an increase in the types of contaminants to which bioremediation is 14 

being applied, including solvents, explosives, polycyclic aromatic hydrocarbons (PAHs), and 15 

polychlorinated biphenyls (PCBs) (MCCULLOUGH et al. 1999; NABIR 2004).  Now, microbial 16 

processes are beginning to be used in the cleanup of radioactive and metallic contaminants, 17 

though these contaminants present special problems since they cannot be destroyed, only 18 

transformed or contained.  19 

 20 
There are a number of ex situ and in situ bioremediation methods currently available (Figure 1).  21 

Ex situ methods have been around longer and are better understood, and they are easier to 22 

contain, monitor, and control.  However, in situ bioremediation has several advantages over ex 23 

situ techniques.  In situ treatment is useful for contaminants that are widely dispersed in the 24 

environment, present in dilute concentrations, or otherwise inaccessible (e.g., due to the presence 25 

of buildings or structures).  This approach can be less costly and less disruptive than ex situ 26 

treatments because no pumping or excavation is required.  Moreover, exposure of site workers to 27 

hazardous contaminants during in situ treatment is minimal.  Broadly, bioremediation strategies 28 

can be further divided into natural attenuation, biostimulation, and bioaugmentation strategies.  29 

Bioaugmentation being the most aggressive, since organisms are added to the contaminated 30 

environment.  Biostimulation can be aggressive or passive, in that electron donors, electron 31 

acceptors, and trace nutrients can be injected into the environment to stimulate indigenous 32 
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organisms to increase biomass or activity to affect the contaminant.  Passive biostimulation 1 

techniques include simple infiltration galleries or simply spreading fertilizer on surface without 2 

any pumping or mixing.  Natural attenuation relies on the intrinsic bioremediation capabilities of 3 

that environment.  Environments high in organic carbon and energy sources, low contaminant 4 

concentrations, and without significant nutrient deficiencies may be able to degrade or transform 5 

the contaminants of concern without any intervention.  Ideally, the most cost effective and 6 

efficient approach to treat most large contaminant plumes is to use more aggressive approaches, 7 

e.g. bioaugmentation or even excavation and removal, at the source, grading into natural 8 

attenuation at the leading edge, or over time as the contaminant concentration declines.  There 9 

are no bioaugmentation candidates yet for metals and radionuclides that we are aware of.  Rarely 10 

is a single remediation approach completely effective or cost efficient.  Indeed, combining 11 

aggressive physical and chemical treatment techniques like chemical oxidation/reduction, 12 

thermal desorption with bioremediation can provide advantages to some types of contaminants 13 

and allows bioremediation to be an effective polishing or sentinel strategy for the cleanup. 14 

 15 
1.1 BIOREMEDIATION STRATEGIES FOR METALS AND RADIONUCLIDES 16 
 17 
Over the past few years, interest in bioremediation has increased.  It has become clear that many 18 

organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products 19 

like CO2 (the end result of the degradation process).  Wastewater managers and scientists have 20 

also found that microorganisms can interact with metals and convert them from one chemical 21 

form to another.  Laboratory tests and ex situ bioremediation applications have shown that 22 

microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., 23 

chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors.  24 

In some cases, the solubility of the altered species decreases and the contaminant is immobilized 25 

in situ, e.g., precipitated into an insoluble salt in the sediment.  In other cases, the opposite 26 

occurs — the solubility of the altered species increases, increasing the mobility of the 27 

contaminant and allowing it to more easily be flushed from the environment.  Both of these kinds 28 

of transformations present opportunities for bioremediation of metals and radionuclides — either 29 

to lock them in place, or to accelerate their removal.  Microorganisms can do much more than 30 

biotransform contaminants.  They can also influence contaminant behavior by changing the 31 

acidity of the system in the immediate vicinity of the contaminant, or by altering the form of 32 
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organic compounds that influence radionuclide and metal mobility (Figure 2 & 3).  A significant 1 

number of field studies and successful deployments using bioremediation strategies for metals 2 

and radionuclides have occurred recently.  Under the general categories of biotransformation, 3 

bioaccumulation/biosorption, biodegradation of chelators, volatilization, treatment trains & 4 

natural attenuation we will provide some example case studies for a variety of metals and 5 

radionuclides.  Detailed examples of laboratory studies and fundamental research on the nature 6 

of bioremediation of metals and radionuclides can be found in the companion chapter in this 7 

book (Tabak et al., chapter 29) 8 

 9 
1.2 CRITICAL BIOGEOCHEMISTRY 10 
 11 
The state and fate of metals in all environments is highly dependent on the redox or valence state 12 

of the metal.  The redox potential of the environment will control the direction of chemical 13 

equilibria and whether the metal is reduced or oxidized.  This in turn controls the possible 14 

compounds that the metal can form and the relative solubility of these metals in the environment.  15 

To stimulate microbes to produce conditions that are appropriate for remediation of specific 16 

contaminants requires a through knowledge of the geochemistry of that environment.  Since 17 

electron acceptors vary greatly as to the energy that can be derived from their use in respiration, 18 

the most common terminal electron acceptors (TEA) will be utilized in a set order, according to 19 

the energy that can be derived (Figure 4).  Thus, oxygen is the preferred TEA and first TEA to be 20 

utilized, followed by nitrate, iron (III), sulfate, and carbon dioxide.  Since reduction of Cr and U 21 

is not favored until the redox potential is in iron reducing conditions, these two TEAs would 22 

have to be depleted first.  Indeed, for sites that also have PCE/TCE the iron (III) and the sulfate 23 

would have to be depleted before sustained methanogenesis and subsequently halorespiration can 24 

occur.  For field applications, this means that enough electron donor would have to be added to 25 

deplete all the oxygen and nitrate present, at a minimum.  By monitoring the TEA and their 26 

daughter products, it provides an excellent measure of the redox conditions at the site and the 27 

potential for degradation of the contaminants of concern. 28 

 29 

As an example of the importance of pH and Eh, Uranium forms a number of different 30 

compounds in the environment with U(VI) being generally more soluble and thus mobile then 31 

U(IV).  As seen in Figure 5 the U(IV) stability region extends to higher Eh as pH decreases.  32 
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Thus U bioreduction for immobilization of U(IV) is expected to be more sustainable under 1 

slightly acidic conditions.  The trade off is that the U(VI) sorption is weaker and U(IV) is soluble 2 

at pH <4. 3 

 4 
1.3  CHARACTERIZATION AND MONITORING CONSIDERATIONS 5 
 6 
The success of any bioremediation application will be highly dependent on the characterization 7 

and monitoring that is done before and during the field deployment.  For any field remediation, 8 

the first step is to form a conceptual model of the contaminant plume in the environment and 9 

how that environment effects that plume.  The uncertainties in this conceptual model provide the 10 

drivers for the characterization and monitoring needs.  For example, characteristics of the aquifer 11 

will have a profound impact on the remediation strategy (Table 1).  The largest part of the 12 

expense of any remediation project is the characterization and monitoring.  Hydraulic 13 

conductivities can have a severe effect on your ability to deliver nutrients to the subsurface 14 

(Table 2) and can be the most limiting part of the environment.  However, as discussed above if 15 

bioreduction was the strategy for a metal contaminated site and the site had a hydraulic 16 

conductivity of only 10-8 cm/sec with very high nitrate and sulfate levels and high pH it may not 17 

be cost effective to use bioreduction at this site.  These issues also suggest why bioaugmentation 18 

has not lived up to its hope.  Though bioaugmentation promises ‘designer biodegraders’, it has 19 

not proven to be better then biostimulation in repeated field trials over the last 2 decades.  20 

Indeed, there is only one bacterium that has demonstrated that it can perform better then 21 

biostimulation in situ on some occasions, Dehalococcoides ethenogenes for dehalorespiration of 22 

chlorinated solvents.  At least two products are commercially available and have been widely 23 

used in the U.S. that are proprietary strains of this organism (Regenesis and Geosyntec).  We 24 

suspect the reason that this microbe has been successful is that it is a strict anaerobe, chlorinated 25 

solvent dehalorespiration requires established methanogenic redox potentials, and the organism 26 

is very small irregular coccus (0.5 µm) so it can penetrate the subsurface more easily (LOFFLER 27 

et al. 2000).  Patchy distributions of this organism in nature are also common, so 28 

bioaugmentation may provide a couple of advantages.  Fortunately, new advances in geophysics 29 

and hydraulic push technology (Geoprobe) has enabled us to characterize sites in a fraction of 30 

the time and cost.  Once we have established the hydrology and basic geochemistry at the site 31 

and used that data to refine our conceptual model, a base line characterization of the 32 
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microbiology is essential to establish that the right microorganisms are present, that they can be 1 

stimulated, and that no undesirable reactions with the stimulants or daughter products from the 2 

stimulation will occur.  This usually requires some treatability and soil compatibility studies and 3 

monitoring of microbial community structure and function to establish the base conditions prior 4 

to stimulation (PLAZA et al. 2001).  For example, some metals like arsenic actually increase 5 

solubility under the same redox potentials that precipitate Cr and U.  Table 3 provides an 6 

example list of the types of measurements that should be performed from either treatability 7 

slurries, soil columns or in situ sampling (HAZEN 1997).  This data and the refined conceptual 8 

model provide the functional design criteria for the remediation and can be used to develop a 9 

numerical model to predict the remediation rates, stability and legacy management needs, e.g. 10 

monitoring, especially if the remediation is an immobilization strategy. 11 

 12 
2. BIOTRANSFORMATION (BIOREDUCTION AND BIOOXIDATION) 13 
 14 
Unfortunately, metals and radionuclides cannot be biodegraded.  However, microorganisms can 15 

interact with these contaminants and transform them from one chemical form to another by 16 

changing their oxidation state through the adding of (reduction) or removing of (oxidation) 17 

electrons.  In some cases, the solubility of the transformed metal or radionuclide increases, thus 18 

increasing the mobility of the contaminant and allowing it to more easily be flushed from the 19 

environment.  In other cases, the opposite will occur, and the transformed metal or radionuclide 20 

may precipitate out of solution, leading to immobilization.  Both kinds of transformations present 21 

opportunities for bioremediation of metal and radionuclides in the environment — either to 22 

immobilize them in place or to accelerate their removal.  All of the field studies and deployments 23 

to date that we could find have used immobilization.  Mobilization has been traditionally 24 

difficult to justify to regulators and stakeholders at remediation sites because it represents an 25 

inherently greater risk if the capture zone does not adequately capture the mobile and usually 26 

more toxic contaminant.  However, since this strategy removes the contaminant from the 27 

environment it is a better long-term strategy especially where episodic changes in the 28 

environment due to storm surges, etc. occur.  Another critical issue for all biotransformation 29 

studies are how stable the transformation is, i.e. does the bioreduced metal reoxidize with 30 

exposure to oxygen or changes in pH, this especially critical for Uranium which has a fairly 31 

narrow range where it remains insoluble. 32 
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 1 

2.1  CASE 1. AQUIFER CHROMIUM BIOREDUCTION AT HANFORD 100H USING 2 
POLYLACTATE BIOSTIMULATION. 3 

The US Department of Energy produced nuclear materials at the Hanford site for more than 40 4 

years, Chromium was used to prevent corrosion in the cooling towers at the site and as an 5 

oxidizer in the nuclear fuel production process.  Consequently, the site has a large plume of low 6 

concentration Cr(VI) that is impacting the Columbia River.  Previous studies by our group 7 

(TOKUNAGA et al. 2003a; TOKUNAGA et al. 2001a; TOKUNAGA et al. 2001b; TOKUNAGA et al. 8 

2003b) demonstrated that simple organic carbon compounds, like lactate, could stimulate iron 9 

reducers in the soil to reduce enough Fe(III) to Fe(II) that the Fe(II) would reduce Cr(VI) to 10 

Cr(III) and precipitate in the soil.  In August 2004, we injected 40 lbs of 13C-labeled polylactate 11 

into a single well after doing pump tests, tracer tests, treatability studies, and base line 12 

geophysics.  The complete project design, methods, and results are given at 13 

http://esd.lbl.gov/ERT/hanford100h/.  Figure 6 shows the Hanford plume and the injection well 14 

design and geology. 15 

 16 

The polylactate (Hydrogen Release Compound, HRCtm) hydrolyzes to lactate in the aquifer, 17 

which is readily utilized by the indigenous bacteria, the rate of hydrolyzation is controlled by the 18 

degree of esterization of the polylactate.  The HRC was labeled with 13C so we could trace via a 19 

stable isotope if the microorganisms that were utilizing the HRC and to measure rates of 20 

daughter product formation.  Within 2 weeks, the total density of bacteria had increased more 21 

than 2 orders of magnitude from < 105 cells/ml, to more than 107 cells/ml.  As expected, the 22 

oxygen was depleted first, then the nitrate, and then the Fe(III) with a redox potential of -130 mv 23 

(Figure 7).  The sulfate started to go down with production of H2S, but was never depleted.  24 

Methane was never detected.  Within 3-4 weeks of injection, the Cr(VI) came down in the 25 

monitoring wells and stayed well below the levels for drinking water for several months, even 26 

after the nitrate and oxygen returned to their original concentrations (Figure 7).  Microbial 27 

community analyses with 16S rDNA microarrays for the entire known ribosome database 28 

showed that the diversity increased dramatically.  Analysis of the community structure after the 29 

injection showed an increase in denitrifiers, followed by increases in iron reducers and sulfate 30 

reducers.  Even though nitrate was depleted, and iron was reduced, sulfate depletion as a TEA 31 
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was never complete and subsequently methanogens were not observed in any of the samples.  1 

After 2 months, the bacteria densities slowly returned to their original densities prior to 2 

stimulation with HRC.  Drilling and pump tests are being carried out now to determine if the 3 

attenuation seen in the geophysical measurements that coincided with the reduction in Cr(VI) 4 

was caused by Cr(III) precipitates.  Long-term studies at this site will be necessary to determine 5 

if reducing conditions must be maintained to prevent reoxidation of Cr(III) to Cr (VI). 6 

 7 
2.2  CASE STUDY 2:  USING MERCURY RESISTANT BACTERIA TO TREAT 8 
CHLORALKALI WASTEWATER 9 
 10 

Mercury resistant bacteria have been used recently to detoxify Hg(II)-contaminated water at lab 11 

and pilot scale (Figures 8A and B).  Wagner-Dobler and coworkers at the German Research 12 

Centre for Biotechnology in Braunschweig captured reduced elemental Hg in a 20 ml 13 

immobilized cell bioreactor, inoculated with a mercury resistant Pseudomonas putida, and 14 

subsequently colonized with other mercury resistant strains (WAGNER-DOBLER et al. 2000).  A 15 

companion study demonstrated successful removal of Hg2+ from chloralkali electrolysis water at 16 

laboratory scale (VON CANSTEIN et al. 1999), prior to development of a pilot-plant for Hg(II) 17 

removal using this technology (WAGNER-DOBLER et al. 2000).  In the latter study, a 700-liter 18 

reactor was packed with pumice granules of particle size 4-6 mm and inoculated with seven 19 

mercury resistant Pseudomonas species.  Acidic wastewater from a chloralkali factory was 20 

neutralized and amended with sucrose and yeast extract prior to introduction into the bioreactor.  21 

Concentrations of up to 10mg/1 Hg were successfully treated with a removal efficiency of 95%, 22 

although influent spikes above this concentration had a deleterious (if reversible) effect on the 23 

reactor performance.  When operated in combination with an activated carbon filter, which also 24 

became colonized by bacteria, further removal of Hg to below 10 ug/L was reported.  Very high 25 

loadings of Hg were retained in the reactor, conservatively estimated at 31.5 Kg for the 700-liter 26 

vessel. 27 

Long-term performance of the reactors has been studied, with no loss of the entrapped Hg(0) 28 

from the system over 16 months (VON CANSTEIN et al. 2001).  Although the reactors were 29 

sensitive to mechanical and physical stresses (e.g. shear from gas bubbles or increased 30 

temperature over 41°C), the system seems robust and able to adjust to elevated Hg(II) 31 
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concentrations (up to 7.6 mg/L) within several days (VON CANSTEIN et al. 2001).  With a 1 

continuous selection pressure for mercury resistance, a stable and highly active mercury-2 

reducing microbial community is established within the bioreactors; confirmed using PCR-based 3 

techniques targeting the intergenic spacer region of 16S-23S rDNA, and a functional gene target 4 

for Hg(II) reduction, merA (VON CANSTEIN et al. 2001).  The performance of the reactor system 5 

has also been studied in response to the oscillation of the mercury concentration in the bioreactor 6 

inflow (VON CANSTEIN et al. 2002).  At low mercury concentrations, maximum Hg(II) reduction 7 

occurred near the inflow at the bottom of the bioreactor.  At higher concentrations, the zone of 8 

maximum activity migrated to the upper horizons.  Molecular analysis of the microbial 9 

communities showed an increasing microbial diversity along a gradient of decreasing mercury 10 

concentrations (VON CANSTEIN et al. 2002). 11 

 12 
2.3  CASE STUDY 3:  EX SITU BIOREMEDIATION OF METALS USING SULFATE-13 
REDUCING BACTERIA 14 
 15 

The ability of sulfate-reducing bacteria to precipitate metals as insoluble metal sulfides has been 16 

used by Paques BV of the Netherlands (www.paques.nl) in ex situ bioreactors for the treatment 17 

of metal-contaminated water.  The patented reactor configurations, marketed under the registered 18 

trademark “Thiopaq®” can also be adapted to treat other waste streams containing sulfur 19 

compounds including hydrogen sulfide. 20 

Early development work focused on the Budel Zinc B.V. refinery at Budel-Dorplein in the 21 

Netherlands .  Over 200,000 tons of zinc are produced annually at the refinery, which has been 22 

operated since 1973.  However, zinc was refined by various companies at this site for more than 23 

100 years, resulting in contamination of soil and groundwater with heavy metals and sulfate.  In 24 

1992 Paques designed and installed a system to treat water extracted from strategically located 25 

wells around a geohydrological containment system installed to protect local drinking water 26 

supplies (BARNES et al. 1994).  The bioreactor system is shown in Figure 9A, with a flow sheet 27 

of the process shown in Figure 9B.  In the first stage, water is passed to an anaerobic bioreactor 28 

containing sulfate-reducing bacteria that couple the oxidation of ethanol to the reduction of 29 

sulfate to sulfide.  This leads to the precipitation of insoluble metal sulfides. 30 

H2S + ZnSO4  ZnS (precipitate) + H2SO4 31 
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 1 

Excess toxic sulfide is then oxidized to elemental sulfur in an aerobic reactor, and tilted plate 2 

settlers (TPLS) and sand filters are used as final polishing steps to remove solids.  Metal sulfides 3 

and elemental sulfur are returned to the plant for metal recovery and sulfuric acid production 4 

respectively.  Performance of this system is summarized in Table 4. 5 

 6 

Since 1999, this type of technology has also been employed by Budel-Dorplein to treat process 7 

streams containing sulfate and zinc produced by the conventional roast-leach-electrowin process 8 

operated at this site.  These streams were previously treated conventionally by neutralization 9 

with lime, resulting in the production of 18 tons/day gypsum.  However, recent legislation 10 

prohibited further production of solid residues from July 2000.  The high rate Thiopaq® 11 

biological sulfate reduction bioreactor, supplied with hydrogen as the electron donor was, 12 

however, able to convert zinc and sulfate into zinc sulfide (10 tons/day), which is recycled at the 13 

refinery. 14 

 15 

Paques have also used THIOPAQ® to remove metals from an alkaline slag dump leachate at 16 

Kovohute Pribram lead waste recycling facility in the Czech Republic.  An alkaline carbonate 17 

buffered sodium sulfate leachate, containing lead, zinc, tin, and high concentrations of arsenic 18 

and antimony is treated using hydrogen sulfide that is produced in a separate bioreactor from the 19 

reduction of elemental sulfur (WEIJMA et al. 2002).  Ethanol is used as the electron donor for 20 

sulfur reduction.  The hydrogen sulfide is passed into gas-liquid contractors where it reacts with 21 

leachate that has been acidified by waste battery acid, leading to the precipitation of arsenic and 22 

antimony as sulfides.  In a second stage, the remaining metal sulfides are precipitated at neutral 23 

pH.  Paques report that this technology significantly out-performs lime treatment due to the 24 

lower solubility of metal sulfides as opposed to hydroxides. 25 

 26 

2.4  CASE STUDY 4: IN SITU URANIUM BIOREMEDIATION THROUGH 27 

BIOREDUCTION 28 

 29 

Laboratory studies of uranium-contaminated aquifer sediment collected from uranium mill 30 

tailings remedial action (UMTRA) sites in Colorado and New Mexico indicated that acetate 31 
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addition stimulated anaerobic conditions and the loss of soluble U(VI) from solution (FINNERAN 1 

et al. 2002).  Loss of soluble U(VI) occurred in live sediments only, coincident with Fe(II) 2 

production and prior to observed losses of sulfate (FINNERAN et al. 2002).  These results are 3 

consistent with the loss of U(VI) from solution occurring under stimulated Fe(III)-reducing 4 

conditions.  More detailed analyses of the stimulated microbial community using 16S rDNA-5 

based techniques revealed that the stimulated loss of U(VI) from solution occurred as the 6 

microbial community shifted towards organisms known to reduce both Fe(III) and U(VI).  In 7 

these studies Geobacteraceae, known Fe(III)- and U(VI)-reducing, microorganisms were greatly 8 

enriched (up to 40% of the detected bacterial community) in sediments exhibiting a loss of 9 

soluble U(VI) relative to control sediment incubations (HOLMES et al. 2002).  These results 10 

indicated that the addition of acetate to the subsurface of uranium-contaminated aquifers would 11 

result in the removal of soluble U(VI) from groundwater under Fe(III)-reducing conditions 12 

consistent with the know ability of Geobacteraceae to reduce soluble U(VI) to insoluble U(IV) 13 

(Figure 10).  This hypothesis was tested at the field scale at the Old Rifle UMTRA site in Rifle, 14 

Colorado (NABIR 2004). 15 

 16 

Acetate addition to the subsurface of the Old Rifle UMTRA site stimulated the loss of U(VI) 17 

from groundwater.  A test plot consisting of an acetate injection gallery composed of 20 injection 18 

wells in tow offset rows of 10 wells each and a total of 18 monitoring wells were installed within 19 

a 16m x 24m portion of the Old Rifle site (Figure 11) (ANDERSON et al. 2003).  Initial 20 

groundwater sampling indicated U(VI) concentrations of approximately 0.4 to 1.4 µM, well 21 

above the established UMTRA contaminant limit of 18 µM for this site.  A sodium acetate 22 

solution (100 mM) containing a bromide tracer (10 mM KBr) was prepared from site 23 

groundwater, sparged with nitrogen gas and stored anaerobically under nitrogen pressure (0.1 24 

atm) within a stainless steel tank (2081 liters capacity) housed within a storage shed erected on 25 

site.  Acetate solution flowed from the storage tank to a manifold spanning the entire width of the 26 

injection gallery to 60 injection ports within the 20 injection wells (3 ports per well) delivering 27 

acetate to three different depths within the saturated subsurface (ANDERSON et al. 2003).  Each 28 

injection port was fitted with a flow meter set to provide acetate to the subsurface at a rate of 1-3 29 

ml/min, which corresponded to a calculated volume addition to the aquifer of 1-3% per day (in 30 

situ acetate concentration 1-3 mM).  Upon the initiation of acetate injection, soluble uranium 31 
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concentrations decreased rapidly within the monitoring well field resulting in removal 1 

percentage averaging 70% of initial concentrations over a period of approximately 50 days. Loss 2 

of soluble U(VI) occurred coincident with the arrival of acetate, the production of Fe(II) and 3 

prior to any observed loss of sulfate.  Furthermore, 16S rDNA-based analyses of the groundwater 4 

indicated a microbial community greatly enriched in Geobacteraceae, up to 89% of the detected 5 

bacterial community.  Phospholipid fatty acid (PLFA) analyses of groundwater using 6 

“Geobacteraceae-specific” lipids also indicated an increase in Geobacter biomass.  These results 7 

are consistent with the previous laboratory studies indicating a stimulated removal of soluble 8 

U(VI) from groundwater via the in situ stimulation of Fe(III)- and U(VI)-reducing 9 

Geobacteraceae (ANDERSON et al. 2003; FINNERAN et al. 2002; HOLMES et al. 2002). 10 

 11 

Metal-reducing conditions were not sustained within the Old Rifle site over 50 days, and it was 12 

thought that acetate-oxidizing sulfate-reducing bacteria became dominant when Fe(III) was 13 

depleted.  In the vicinity of the injection gallery and the terminal electron accepting process 14 

shifted to sulfate reduction.  Indeed, a complete loss of acetate (limiting under sulfate-reducing 15 

conditions in this aquifer) was accompanied by a nearly stoichiometric loss of sulfate from the 16 

groundwater.  Analyses of the microbial community detected within the groundwater also 17 

indicated a shift from a community dominated by Fe(III)-reducing organisms to a community 18 

dominated by organisms known to reduce sulfate, i.e. Desulfobacteraceae (ANDERSON et al. 19 

2003).  The results stress the importance of maintaining metal reduction within the subsurface or 20 

encouraging the growth and activity of sulfate-reducing bacteria capable of U(VI) reduction; 21 

acetate-oxidizing sulfate-reducing bacteria have not been shown to reduce U(VI), although there 22 

is ample evidence that lactate-oxidizing sulfate-reducing bacteria are able to reduce U(VI) using 23 

lactate or hydrogen as electron donors (LOVLEY and PHILLIPS 1992; LOVLEY et al. 1993).  Thus, 24 

addition of these electron donors to the subsurface may stimulate U(VI) reduction in situ. 25 

 26 
3. BIOACCUMULATION AND BIOSORPTION  27 

Bioaccumulation and biosorption strategies for remediation of metals and radionuclide 28 

contaminated soil are based on the ability of bacteria and plants to concentrate metals within the 29 

cells at concentrations 1000s of times higher then the ambient concentrations.  By forming 30 

phosphate-metal, organo-metal or metal-sulfide complexes, they become insoluble or at least not 31 
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bioavailable to the target risk group, i.e. less toxic.  Biosolids applications and phytoextraction 1 

have proven to be possible applications of this approach. 2 

 3 

3.1  USE OF BIOSOLIDS FOR TREATMENT OF METAL CONTAMINATED SOILS 4 

3.1.1  BIOSOLIDS FOR REMEDIATON OF METAL CONTAMINATED SOILS 5 

The conventional remedial approach to metal contaminated soils within the US EPA Superfund 6 

program involves stabilization and replacement of the soil with clean material or capping the soil 7 

with an impermeable material to reduce potential exposure to the contaminants.  Standardized 8 

tests exist to evaluate the contaminated soils as well as to measure the success of the remedial 9 

action, but the tests are largely engineering based and do not consider ecosystem function.  Tests 10 

commonly used include measures of total metal concentrations and of the potential for metals to 11 

leach into groundwater (i.e. toxicity Characteristic Leaching Procedure, SW-846 Method 1311, 12 

Multiple Extractions with different molar acid solutions).  Human exposure to contaminated 13 

groundwater is the driving factor both in identifying contaminants of concern as well as in 14 

setting appropriate concentration limits (National Research Council, 2003). 15 

 16 

Alternative remedial technologies are currently being developed that involve leaving the 17 

contaminated materials in place and using soil amendments to reduce the bioavailability to 18 

humans (BROWN et al. 2004; RYAN et al. 2004).  The use of municipal biosolids for restoration 19 

of disturbed lands is well documented (SOPPER 1993).  Recent studies show that amending soils 20 

with municipal biosolids and lime to reduce the bioavailability of contaminants, restores 21 

ecological function to soil to enable a vegetative cover for large-scale metal contaminated sites 22 

(BASTA et al. 2001; BROWN et al. 2003a; BROWN et al. 2003b; CONDER et al. 2001; LI et al. 23 

2000).   24 

 25 

3.1.2  BIOAVAILABILITY 26 

While conventional extraction tests have been used to evaluate the success of in situ 27 

technologies, additional assays are necessary to measure restoration of ecosystem function.  In 28 

particular, bioavailability has to be more broadly considered to include a range of ecological 29 

receptors and relevant pathways (NATIONAL_RESEARCH_COUNCIL 2003). 30 

 31 
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Several procedures have been developed to measure the bioavailable, rather than total, fraction 1 

of contaminants in soils and sediments and these are generally based on the exposure pathway 2 

for the most sensitive ecological receptor.  In many cases, toxicity is the defined endpoint.  For 3 

example, soil extracts are routinely used to determine the phytoavailable fraction of total nutrient 4 

concentrations in soils (MCLAUGHLIN et al. 2000; SPARKS et al. 1996).  In cases of contaminated 5 

soils, extracts have been altered to better mimic the behavior of plants in these environments.  6 

Diffusive gradients in thin films have been found to better mimic soluble metal bioavailability 7 

for assessing the potential for phytotoxcity (SAUVE 2002; ZHANG et al. 2001).  Extracts have also 8 

been correlated with reductions in microbial activity, as measure by microbial lux biosensors 9 

(SHAW et al. 2000; VULKAN et al. 2000). 10 

 11 

Direct toxicity tests and animal feeding trails are also used.  Earthworm mortality has been used 12 

as a measure of the effectiveness of soil amendments to reduce bioavailability in mime tailings 13 

(CONDER et al. 2001).  Both in vivo and in vitro extracts have been used to predict the 14 

bioavailability of soil Pb to humans (RUBY et al. 1996).  In each case, the test was developed to 15 

focus on a particular endpoint or receptor.  None of the tests attempts to evaluate the collective 16 

ecosystem function. 17 

 18 

3.1.3  ECOSYSTEM FUNCTIONING 19 

Methods to assess ecosystem function are rare.  Techniques have been developed to assess the 20 

health of the soil microbial population, including measure of soil function through respiration, N 21 

cycling, and ability to utilize added substrates (CELA and SUMNER 2002; CHANG and 22 

BROADBENT 1982; MCGRATH 2002; SAUVE 2002).  One example is the Biolog extraction 23 

(KELLY and TATE 1998), which attempts to evaluate the functionality of the soil microbial 24 

population through its ability to utilize a range of carbon sources.  The procedure has been 25 

criticized for difficulty of interpretation, i.e. organism presence can falsely suggest a robust 26 

microbial community, and the ability of different groups of microbes to utilize the same 27 

substrates (NATIONAL_RESEARCH_COUNCIL 2003).  Other tests assess bioavailability of 28 

contaminants by measuring the reactions of single types of organisms to exposure to remediated 29 

soils (GEEBELEN et al. 2003).   30 

 31 
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For the amended tailings in Leadville, an alternative testing protocol was developed.  In addition 1 

to conventional engineering criteria, standard principles of ecological function were used to 2 

develop a series of tests to assess amendment impacts on ecosystem function.  For example, the 3 

ability of the system to decompose organic matter and recycle nutrients can indicate the stability 4 

of the restored system.  In addition, examining the health of, and contaminants from, the 5 

amended soil through the food chain. 6 

 7 

From the studies on the use of biosolids to treat metal contaminated soil, it is clear that 8 

conventional tests alone will not provide an appropriate assessment of the ability of an in situ 9 

amendment to restore ecosystem function to metal contaminated soils.  These tests need to be 10 

combined with analyses of ecosystem function and measures of the potential for contaminated 11 

transfer through the food chain.  12 

 13 

3.2  CASE STUDY 5: ECOSYSTEM FUNCTION IN ALLUVIAL TAILINGS AFTER 14 

BIOSOLIDS AND LIME ADDITION 15 

 16 

Municipal biosolids and agricultural limestone were incorporated into the surface of alluvial 17 

highly acidic, metal contaminated mine tailings in Leadville, Co in 1998 (BROWN et al. 2005).  18 

Amended sites were seeded, and a plant cover subsequently established.  A range of chemical 19 

and biological parameters were measured over time to determine if treatment was sufficient to 20 

restore ecosystem function.  An uncontaminated upstream control (UUC), a contaminated 21 

vegetated area (CVA), and soils collected from the tailings deposits prior to amendment addition 22 

were used for comparison.  Standard soil extracts showed decreases in extractable Pb, Zn, and 23 

Cd in the amended soils.  Increased CO2 evolution, reduced N2O and elevated NO3
-
 in the 24 

amended tailings, indicated an active microbial community (Table 5).  Levels of CO2 and NO3
-
 25 

were elevated in comparison to the CVA and the UUC.  Rye grass (Lolium perenne) and 26 

earthworm (Eisenia foetida) survival, as well as metal uptake values were similar in amended 27 

tailings to a laboratory control soil.  Rye grass and worms in unamended tailings died.  Field 28 

plant diversity was lower in amended areas than in CVA or UUC, with a higher percentage of the 29 

vegetative cover consisting of grasses.  Small mammal analysis showed a low potential for 30 

elevated body Cd and Pb in the amended tailings.  A re-entrainment study using fathead 31 
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minnows (Pimephales promelas) showed no danger for re-suspended amended tailings, survival 1 

of fish was similar to the laboratory control.  Data suggest (Figure 12) that ecosystem function 2 

has been restored to the amended tailings, but these systems are not yet in equilibrium (BROWN 3 

et al. 2005).  4 

 5 
3.3  CASE STUDY 6: IN SITU SOIL TREATMENTS TO REDUCE THE PHYTO- AND 6 

BIOAVAILABILITY OF LEAD, ZINC, AND CADMIUM 7 

 8 

A study was established near a former Zn and Pb smelter to test the ability of soil amendments to 9 

reduce the availability of Pb, Zn, and Cd in situ.  Soil collected from the field was amended in 10 

the lab with P added as 1% P-H3 PO4, biosolids compost added at 10% (referred to hereafter as 11 

“compost”), and a high-Fe by-product (referred to hereafter as “Fe”) + P-triple superphosphate 12 

(TSP) (2.5% Fe +1% P-TSP) and incubated under laboratory conditions at a constant soil pH.  13 

Changes to Pb bioavailability were measured with an in vitro test and a feeding study with 14 

weanling rats.  Field-amended and incubated soils using these plus addition treatments was 15 

evaluated using the in vitro extraction and tall fescue (Festuca arundinacea Schreb. cv. 16 

Kentucky-31) metal concentration.  Reductions were observed across all parameters but were not 17 

consistent.  In the feeding study, the 1% P- H3 PO4 treatment caused the greatest reduction in 18 

vitro extractable Pb from field samples (pH 2.2) with a measured reduction of 66%, while the 19 

compost treatment has a 39% reduction and the 2.5% Fe + 1% P-TSP treatment a 50% reduction.  20 

The in vitro extraction (pH 1.5) run on field samples showed no reduction in the compost or Fe 21 

treatments.  The 1% P- H3 PO4 treatment was the most effective at reducing plant Pb, Zn, and Cd 22 

(BROWN et al. 2004).  23 

 24 
3.4 CASE STUDY 7: USING MUNICIPAL BIOSOLIDS IN COMBINATION WITH 25 

OTHER RESIDUALS TO RESTORE METAL-CONTAMINATED MINING AREAS 26 

 27 
High metal waste materials from historic mining at the Bunker Hill, Idaho (ID) Superfund site 28 

was amended with a range of materials including municipal biosolids, woody debris, pulp and 29 

paper sludge, and compost (BROWN et al. 2003b).  The existing soil or waste material elevated 30 

metal concentrations with total Zn, Pb and Cd ranging from 6000 to 14700, 2100 to 27000 and 9 31 

to 28 mg kg-1, respectively.  Surface application of certain amendments including biosolids 32 
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mixed with wood ash resulted in significant decreases in subsoil acidity as well as subsoil 1 

extractable metals.  This mixture was sufficient to restore a plant cover to the contaminated 2 

areas.  At the Bunker Hill site, a surface application of high N biosolids (44 or 66 tons ha-1) in 3 

combination with wood ash (220 tons ha-1) was able to restore a vegetative cover to the metal 4 

contaminated of the vegetation indicated that plans were within normal concentrations for the 2 5 

years that data were collected.  Surface application of amendments was also able to reduce Ca 6 

(NO3 )2 extractable Zn in the subsoil from about 50 mg kg-1 in the control to less than 4 mg kg-1 in 7 

two treatments.  Use of conventional amendments including lime alone and microbial stimulants 8 

were not sufficient to support plant growth.  These results indicate that surface application of 9 

biosolids in combination with other residuals is sufficient to restore a vegetative cover to high 10 

metal mine wastes (BROWN et al. 2003b). 11 

 12 

3.5 CASE STUDY 8: IN SITU REMEDIATION AND PHYTOEXTRACTION OF 13 

METALS FROM HAZARDOUS CONTAMINATED SOILS 14 

 15 
Mining and smelting of Pb, Zn, and Cd ores have caused widespread soil contamination in many 16 

countries.  In locations with severe soil contamination, and strongly acidic soil or mine waste, 17 

ecosystems are devastated.  Research has shown that Zn phytotoxicity, Pb-induced phosphate 18 

deficiency, Cd risk through uptake by rice or tobacco, and Pb risk to children, livestock or 19 

wildlife which ingest soil are the common adverse environmental effects at suck contaminated 20 

sites.  Improved understandings of soil metal risks to the environment have been developed 21 

which examine risk to all possible exposed organisms through soil, plants, animals, or water 22 

exposures.   23 

 24 

Soil Cd risk to food-chains only occurs when Cd is present at the usual 0.005-0.02 ratio to Zn in 25 

the contaminated soil, only rice and tobacco allow Cd to be transferred from the soil in amounts 26 

which can harm humans over their lifetime.  Zn inhibits plant uptake of Cd and inhibits intestinal 27 

absorption of Cd, protecting animals from Cd in most situations.  Pb risk to children or other 28 

highly exposed mammals results from ingestion of the contaminated soil, and absorption of Pb 29 

from the soil into the blood where adverse health effects occur at 1.0-to-1.5 µg Pb/L blood.  Soil 30 

Pb has much lower bioavailability than water Pb, and if ingested with food it has even lower 31 
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bioavailability.  Research has shown that if high phosphate levels are added to Pb contaminated 1 

soils, an extremely insoluble Pb compound, chloropyromorphite, is formed in soils from all 2 

known chemical species of Pb which occurs in contaminated soils.  It had earlier been learned 3 

that adding adsorbents such as hydrous Fe oxides and phosphate to Pb contaminated soils 4 

inhibited Pb uptake by crops, and combined with the evidence that these materials could reduce 5 

the bioavailability of soil Pb to children, feeding tests were conducted with rats and pigs in 6 

several laboratories (CHANEY et al. 1999).   7 

 8 

A new approach to remediation of severely disturbed Pb/Zn/Cd contaminated soils has been 9 

developed which uses mixtures of limestone equivalent from industrial byproducts such as wood 10 

ash (to make soil calcareous and prevent Zn phytotoxicity), phosphate and Fe from biosolids and 11 

by-products (to precipitate Pb and with Fe, increase Pb adsorption), organic-N from biosolids 12 

and manures and other beneficial components which correct the infertility of contaminated and 13 

eroded soils.  Composting can stabilize the organic matter and slow N release to allow higher test 14 

locations where this approach was tested (Palmerton in PA; Bunker Hill in ID; Leadville in CO 15 

in US, and Katowice, Poland).  All plants tested were readily grown on the amended soil even 16 

when soils contained over 1% Zn and 1% Pb.  Plant analysis indicates that these plants may be 17 

consumed safely by wildlife and livestock, although soil ingestion should be minimized at such 18 

sites.  Although mining and smelting contamination has caused severe environmental harm in 19 

many locations, this method of soil metal remediation allows effective and persistent remediation 20 

at low cost, and should be applied to prevent further dispersal of the contaminated soil materials 21 

at many locations.  22 

 23 

The potential use of metal hyperaccumulator plants to phytoextract soil metals is a new method 24 

of remediation under development.  Combining improved cultivars of these accumulator plants, 25 

agronomic management practices to maximize yield and metal accumulation, burning the 26 

biomass to generate power, and recovery of metals from the ash appear to offer an economic 27 

technology compared to soil removal and replacement (CHANEY et al. 1999).   28 

 29 
4. BIODEGRADATION OF CHELATORS AND BIOSURFACTANTS 30 

A number of chelators have been used to increase the solubility of metals and radionuclides and 31 
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facilitate desired chemical or microbial reactions.  However, when the chelators are disposed of 1 

with the metals/radionuclides or were disposed of as the chelator-metal complex it makes the 2 

metal more mobile in the environment and potentially more toxic.  The US Department of 3 

Energy used a number of chelators in nuclear production processes some of which are readily 4 

biodegradable and others that are fairly recalcitrant (NABIR 2004).  Citric acid, nitrilo acetic 5 

acid (NTA), and ethylene diamine disuccinate (EDDS) are relatively biodegradable; while 6 

ethylene diamine tetraacetate (EDTA) is much more difficult to biodegrade (MEERS et al. 2005).  7 

Several studies have shown that EDTA is biodegradable, but it does tend to persist longer in the 8 

environment than the others (BOHUSLAVEK et al. 2001; GORBY et al. 1998).  We are unaware of 9 

any applications that promoted chelator degraders for bioremediation of a contaminated site, but 10 

it certainly would be a possibility, especially using a bioaugmentation application ex situ.  11 

Biodegradation of chelators is also of interest for phytoextraction, since the chelator promotes 12 

the uptake of the metal in the plant (MEERS et al. 2005).  Persistence of chelator in the 13 

rhizosphere could lead to groundwater contamination down gradient.  Several compounds that 14 

are naturally produced by microbes in the soil have been found to be chelators.  Thus, it raises 15 

the possibility that stimulation of certain microbial populations could lead to the production of 16 

chelators and increase metal mobility, either a desirable or undesirable outcome, depending on 17 

whether you are trying to mobilize or immobilize the metal/radionuclide.   18 

 19 

Bacteria can also produce biosurfactants, which combine complexation activity with physical 20 

sequestration of the complexed ions.  As a surface-active agent, the biosurfactant can concentrate 21 

metals from the soil into critical aggregates that will form at critical micelle concentrations a 50 22 

nm particle that can escape most filtration processes (MEERS et al. 2005).  Biosurfactants would 23 

only be used as a strategy for mobilization of metals combined with phytoextraction or pump and 24 

treat.   25 

 26 

5.  BIOLOGICALLY-ASSISTED SOIL WASHING AND BIOLEACHING 27 

 28 
Biologically-assisted soil washing for metal remediation can occur when indigenous microbes 29 

are stimulated via the washing process by adding specific electron donors or electron acceptors 30 

that will encourage bacteria that produce acids or surfactants.  Microbial leaching is a process of 31 
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promoting leaching of metals from rock by chemolithotrophs that oxidize iron and sulfides, 1 

generating sulfuric acid and thus releasing the associated metals (BRIERLEY 1982).  Bioleaching 2 

for copper is one of the oldest known biotechnology applications.  One of the earliest records of 3 

the practice of leaching is from the island of Cyprus.  Galen, a naturalist and physician reported 4 

in AD 166 the operation of in situ leaching of copper.  Surface water was allowed to percolate 5 

through the permeable rock, and was collected in amphorae.  In the process of percolation 6 

through the rock, copper minerals dissolved so that the concentration of copper sulfate in 7 

solution was high.  The solution was allowed to evaporate until copper sulfate crystallized.  Pliny 8 

(23-79 AD) reported that a similar practice for the extraction of copper in the form of copper 9 

sulfate was widely practiced in Spain.  This same process also causes acid mine drainage from 10 

mining waste and abandoned mines.  The pH of acid mine waste can get down less than 1.0 and 11 

generate temperatures in excess of 50°C.  Recently the Iron Mountain mine in California acid 12 

mine drainage has been the sight of some ground breaking research in metagenome analysis and 13 

metaproteome analysis (RAM et al. 2005; TYSON et al. 2004).  Because of the extreme nature of 14 

this environment they were able to sequence and sort out the genomes of all of the dominant 15 

microbes present without ever culturing them, even more recently the same group has analyzed 16 

directly all the proteins present to determine the relationship between the bacteria in this 17 

community (RAM et al. 2005).  This promises new insights as to how this community functions 18 

and the interdependencies of metabolic pathways and biogeochemistry of this ecosystem. 19 

 20 

Zn, Au, Co and a variety of other metals are mined using bioleaching usually with an irrigation 21 

leach or a stirred tank biooxidation (Figure 13).  Indeed, over 20% of the world’s copper is 22 

produced in this way.  Bioleaching can also generate a significant waste, e.g. final gold 23 

extraction process uses cyanide.  The cyanide/metal waste liquor that remains is then treated in a 24 

bioreactor to degrade the cyanide (BRIERLEY 1982; BRIERLEY 1990). 25 

 26 

Bioleaching has been used in Germany for removal of metals from dredged sediments (SEIDEL et 27 

al. 2004).  About 62% of the Zn, Cd, Ni, Co, and Mn were removed from the sediment in 120 28 

days if the sediment was oxic and of good permeability.  However, only 9% was removed when 29 

the sediment were freshly dredged and anoxic.  Similar processes have been reported in the 30 

Netherlands and Switzerland (TICHY et al. 1998). 31 



21 

 1 
 2 
6. VOLATILIZATION 3 

Biovolatilization occurs with several metals that undergo methylation when they are taken up by 4 

the plant or microbial cell.  Unfortunately, this makes the metal, e.g. Hg and Se, many times 5 

more toxic than the elemental form.  Thus, the main worry of regulators and stakeholders has 6 

been that the methylated metal would accumulate in the food chain and potentially be spread 7 

over a wider area around the treatment zone unless fugitive air emissions were trapped.  The 8 

central valley of California has a notorious problem with Se buildup in ponds in wetlands in the 9 

area, which have proven to be toxic for local wildlife.  Studies by Terry et al. ((DE SOUZA et al. 10 

2001)) and Frankenberger et al. (FRANKENBERGER and ARSHAD 2001; FRANKENBERGER and 11 

KARLSON 1994; FRANKENBERGER and KARLSON 1995) demonstrated that from 30 to 70% of the 12 

Se coming into the wetlands are volatilized.  Microalgae and bacteria were shown to be 13 

responsible in a number of studies that added fungicides and bacteriocides to the wetlands water.  14 

The fungicides had no effect on dimethylselinite releases, while the bacteriocides greatly reduced 15 

the rate of dimethylselinite production.  While a number of investigators have proposed 16 

volatilization as a bioremediation strategy for these ponds and wetlands because it is as safe as 17 

anything else proposed and lot cheaper, the regulators, and stakeholders have not yet funded a 18 

full-scale treatment facility. 19 

 20 

7. TREATMENT TRAINS AND NATURAL ATTENUATION  21 

Treatment trains or multiple treatment approaches are clearly the best way to keep costs down 22 

and remediate a large plume as quickly as possible.  Unfortunately, there are few documented 23 

field examples of this, especially those that incorporate a physical/chemical treatment followed 24 

by biostimulation, passive bioremediation, and finally natural attenuation.  Our understanding of 25 

reduction/oxidation biogeochemistry in the subsurface is still too primitive to have good 26 

predictive models of how even metals like Cr and U would behave on the long-term.  Thus, a 27 

monitored natural attenuation, while feasible, is practically unheard of.  The following two case 28 

studies show multiple component systems and how they were linked together to solve a problem 29 

and reduce cost, and improve efficiency. 30 

 31 
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7.1 CASE STUDY 9: ALGAL HIGH RATE POND COMBINATIONS FOR REMOVAL 1 

OF SE IN AGRICULTURE DRAINAGE WATER 2 

Monthly Maximum Discharge Limits (MMDL) have been established for selenium in irrigation 3 

drainage by the State of California and the U.S. Environmental Protection Agency following 4 

observations of avian teratogenesis at the Kesterson Reservoir in the San Joaquin Valley of 5 

California (GREEN et al. 2003).  As a result of these and other adverse effects, farmers and 6 

drainage districts on the western side of the San Joaquin Valley must reduce selenium 7 

concentrations in irrigation, drainage discharged to the San Joaquin River (GREEN et al. 2003).  8 

Drainage treatment will be required in the near future to meet existing MMDL and future Total 9 

Maximum Discharge Limits (TMDL) for the San Joaquin River.   10 

 11 

A pilot-scale 0.4-hectare Algal Bacterial Selenium Removal (ABSR) Facility was designed and 12 

constructed at the Panoche Drainage District in 1995 and 1996 using the Advanced Integrated 13 

Wastewater Pond Systems(R) or AIWPS(R) Technology (GREEN et al. 2003).  Each of two 14 

physically identical systems combined a Reduction Pond (RP) with a shallow, peripheral algal 15 

High Rate Pond (HRP).  A Dissolved Air Flotation (DAF) unit and a slow sand filter were used 16 

to remove particulate selenium from the effluent of each system. The two systems were operated 17 

under different modes of operation and the bacterial substrate varied in each system.  Microalgae 18 

were harvested using DAF and used as a carbon-rich substrate for nitrate- and selenate-reducing 19 

bacteria.  Mass removals of total soluble selenium of 77% or greater were achieved over a three-20 

year period.  Nitrate and selenate were removed by assimilatory and dissimiliatory bacterial 21 

reduction, and nitrate was also removed by algal assimilation.  The removal of particulate 22 

selenium increased the overall removal of selenium to over 90% and would allow farmers and 23 

drainage districts to discharge irrigation drainage in compliance with regulatory discharge limits.  24 

A full-scale system is currently under construction at the same site. 25 

 26 

7.2 CASE STUDY 10: IN SITU GROUNDWATER BIOREDUCTION OF U(VI) WITH 27 

UPGRADIENT PRECONDITIONING USING  FLUIDIZED BED BIOREACTOR 28 

At the US Department of Energy Oak Ridge Y-12 Field Research Center, pilot scale test has 29 

been run for the last year to demonstrate the utility of a treatment train, both ex situ and in situ 30 

for treatment of groundwater with low pH (~3.0), high nitrate (11,000 ppm) and high uranium 31 
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(10 µM) (see http://www.stanford.edu/group/evpilot/Reasearch/Oakridge/oakridgepics/ 1 

oakridgeintro.html).  Since U(VI) cannot be reduced when high concentrations of nitrate are still 2 

present and the nitrate would potentially produce enough gas to plug the subsurface if enough 3 

electron donor was added to deplete the nitrate, it was decided to create a recirculation zone and 4 

remove a large part of the nitrate in the groundwater prior to adding enough electron donor to 5 

reduce the U(VI).  The above ground system removes aluminum, calcium, and nitrate and then 6 

the pH is adjusted to ~6.2 to prevent the aluminum from co-precipitating the U and other metals 7 

when the pH is adjusted, the water is then reinjected to establish an inner treatment zone and out 8 

protection loop.  During the first 100 days of in situ biostimulation, the U(VI) concentration went 9 

from 10 µM to less then 3 µM in the groundwater.  Microbial analysis of the groundwater 10 

indicated growth of denitrifiers, sulfate-reducing bacteria, and iron-reducing bacteria.  Control of 11 

pH/carbonate levels is an engineering tool for the management of U(VI) bioavailability, to limit 12 

U(VI) escape from the treatment zone, and to prevent growth of methanogens, which  interfere 13 

with U(VI) reduction (see http://www.lbl.gov/NABIR/generalinfo/annualmtg/ 14 

05_ann_mtg_pstr1.html) . 15 

 16 
8. SUMMARY  17 

 18 
Bioremediation of metals and radionuclides is a fairly new technology for waste site remediation, 19 

though bioleaching for metal recovery has been practiced for nearly 2,000 years.  Since metals 20 

and radionuclides are not destroyed, but only transformed, it makes both in situ and ex situ 21 

strategies more difficult than organic compounds.  This also makes the biogeochemistry 22 

(especially Eh/pH) much more critical for controlling the long-term stability and controlling the 23 

remediation process itself.  Characterization, monitoring and development of a conceptual model 24 

are important to minimize errors and to develop sound functional design criteria for the 25 

remediation effort.  Bioreduction has a field presence and is starting to show real promise, 26 

especially as it relates to immobilization strategies.  Biooxidation and mobilization strategies 27 

could be a better long-term solution since it can be coupled with removal from the environment.  28 

However, our lack of knowledge about critical biogeochemistry is not providing confidence to 29 

the regulators and stakeholders.  Bioaccumulation, biosorption, and biovolatilization have 30 

demonstrated utility especially with biosolids applications and phytoextractions.  Unfortunately, 31 
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all need more research to be widely practical since the exact mechanisms of biosolids 1 

applications are not understood and have not been adequately researched, they may involve 2 

sorption and reduction/oxidation, which could effect long-term stability of these sites.  3 

Phytoextraction suffers from being too slow and representing increase risk.  The greatest 4 

problem with phytoextraction especially with highly toxic heavy metals and radionuclides is not 5 

that it won’t work, but rather the secondary waste issues created by the metal containing 6 

biomass.  Disposal costs and overall life cycle costs can keep this technology from reaching its 7 

full potential.  Chelators and biosurfactants and their controlled biodegradation, will always be 8 

relegated to a small niche market.  Biologically-assisted soil washing and bioleaching of metal-9 

contaminated dredged sediments hold promise but are limited by organic co-contaminants and 10 

will probably require a treatment train, e.g. dredged sediment ripening before bioleaching, like is 11 

being done in several parts of Europe.  Volatilization is unlikely to play a major role of 12 

bioremediation of any metal unless it is combined with fugitive air emission control methods.  13 

Treatment trains and natural attenuation are just getting started but will probably become 14 

dominant strategies over the next decade.  Bioremediation of metals and radionuclides shows 15 

great promise but it will rarely be a stand-alone technology and it needs significant research 16 

investments. 17 

18 
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