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ABSTRACT 
 

Structural Investigations of Surfaces and Orientation-Specific 
 Phenomena in Nanocrystals and Their Assemblies 

 
by 
 

Deborah Michiko Aruguete 
 

Doctor of Philosophy in Chemistry 
 

University of California, Berkeley 
 

Professor A. Paul Alivisatos, Chair 
 

 Studies of colloidal nanocrystals and their assemblies are presented.  Two of these 

studies concern the atomic-level structural characterization of the surfaces, interfaces, and 

interiors present in II-VI semiconductor nanorods.  The third study investigates the 

crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. 

 Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined 

with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different 

directions in the nanorod.  This orientation-specific probe is used, because it is expected that 

the presence of specific surfaces in a nanorod might cause bond relaxations specific to 

different crystallographic directions.   Se-Se distances are found to be contracted along the 

long axis of the nanorod, while Cd-Se distances display no angular dependence, which is 

different from the bulk.  Ab-initio density functional theory calculations upon CdSe 

nanowires indicate that relaxations on the rod surfaces cause these changes. 

 ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray 

absorption spectroscopy (XAS).  It is hypothesized that there are two major factors 

influencing the core and shell structures of the nanorods: the large surface area-to-volume 
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ratio, and epitaxial strain.   The presence of the surface may induce bond rearrangements or 

relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices 

to contract or expand to minimize strain energy.  A marked contraction of Zn-S bonds is 

observed in the core-shell nanorods, indicating that surface relaxations may dominate the 

structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the 

larger CdS or CdSe lattices via bond expansion).   EXAFS and X-ray diffraction (XRD) 

indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a 

rod-shaped nanocrystal. 

  Ordered self-assembled aggregates of cobalt nanocrystals are examined with 

transmission electron microscopy (TEM) and selected-area electron diffraction (SAED).   

SAED patterns from multilayered assemblies show that the nanocrystals have preferred 

crystallographic orientations.  It is proposed that the nanocrystals are organized in a vortex-

like or “loop-closing” arrangement, possibly due to magnetism.  SAED and dark-field 

imaging used to investigate this hypothesis are presented, along with the data analysis.  The 

effects of magnetism and nanocrystal faceting are discussed. 

 

_______________________________ 

Professor A. Paul Alivisatos 

Dissertation Committee Chair 
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CHAPTER 1.  INTRODUCTION TO COLLOIDAL NANOCRYSTALS 

AND THEIR ASSEMBLIES 
 

1.1.  Nanoscience and colloidal nanocrystals 

  

Nanoscience loosely refers to the study of materials with dimensions between 1 and 

100 nm.  In this size regime many materials display novel size-dependent properties 

somewhere between that of bulk solids and molecules [1].   One type of nanometer-scale 

material under study is the colloidal nanocrystal.  Colloidal nanocrystals are soluble 

nanometer-scale crystals which can be synthesized in a highly-controlled fashion, allowing 

for the precise tuning and systematic study of desired shape- or size-dependent properties [2].   

In addition to being of interest for fundamental study, their solution processability and the 

ease of chemical surface modification makes nanocrystals attractive candidates for 

applications such as solar cells [3, 4], magnetic resonance imaging contrast agents [5], 

fluorescent biolabels [6], and gas sensors [7].  The studies described in this dissertation 

concern the physical properties of nanocrystals, in particular II-VI semiconductor 

nanocrystals and magnetic metallic nanocrystals. 

 

1.2. Higher-dimensional colloidal nanocrystals and their surfaces 

 One of the major differences between nanocrystals and their bulk counterparts is 

that they often are largely composed of surface atoms.  For example, in a 3 nm diameter 

spherical nanocrystal, close to half of the atoms are on the surface.  The surface area-to-

volume ratio of a nanocrystal scales with size, approximately as 1/r, where r describes a 
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nanocrystal dimension, e.g. the radius of a spherical nanocrystal.  Many properties of 

nanocrystals have been shown to depend upon the presence of the surface, or to vary with 

chemical modifications to their surfaces; these include optical properties [8], phase 

transitions [9], and catalytic reactivity [10]. 

 A deeper understanding of nanocrystal physical properties necessitates good 

characterizations of their surface structures.   For colloidal nanocrystals, surface 

characterizations have been limited mostly to studies of spherical nanocrystals [11-13].  

Nevertheless, advances in synthetic chemistry have delivered many new higher-dimensional 

shapes of colloidal nanocrystals displaying interesting, potentially useful shape-dependent 

properties [14-16].  Very little is known about the basic chemical bonding or structure of the 

surfaces of these higher-dimensional nanocrystals [17]. 

 Structural characterizations of both the surfaces and interiors of higher-dimensional 

nanocrystals, specifically colloidal II-VI semiconductor nanorods, are reported in chapters 3 

and 4 of this dissertation.   These studies were initial attempts to address how atomic 

bonding in nanocrystals might vary with shape.   Extended X-ray absorption fine structure 

(EXAFS) spectroscopy was used to characterize the local environment around the atoms in 

the nanorods; the presence of the nanorods’ surfactant coating makes the use of other 

surface probes difficult.   A brief general introduction to X-ray absorption spectroscopy 

(XAS) and EXAFS is presented in chapter 2. 

 It is expected that the presence of specific surfaces in a nanorod would influence the 

geometry of the surface bonding, possibly causing bond relaxations specific to different 

crystallographic directions in the rod.   In order to probe structure along different directions 
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in the nanorods, polarized EXAFS was measured from samples of crystallographically-

aligned assemblies of CdSe nanorods; these experiments are detailed in chapter 3.    

 In chapter 4, studies of the surface, interface, and interior structures of ZnS/CdS-

CdSe core-shell nanorods are discussed.   It is hypothesized that there are two major factors 

influencing the core and shell structures of the nanorods.  First is the presence of the 

surface; as the surface area-to-volume ratios of the nanorods are large, bond relaxations 

minimizing surface energy might dominate the structure of the rods.  Second is the epitaxial 

growth; the lattice mismatch between the CdSe core and the ZnS/CdS shell could cause 

bond relaxations that would reduce epitaxial strain.   These scenarios were explored with 

EXAFS measurements on the nanorods, which are presented.   It is also expected that the 

shape might play a role in any relaxations, possibly causing phenomena specific to 

crystallographic directions in the rods.   The possible effect of shape is discussed in light of 

both EXAFS and XRD measurements upon the core-shell nanorods. 

 Understanding the surface structures/compositions of these higher-dimensional 

nanocrystals offers two major benefits.  First, just as with spherical nanocrystals, one can 

gain better insight regarding the origins of their physical properties.  Second, surfaces are 

believed to be key to shape control in nanosynthesis, because they vary in their chemical 

reactivity and stability [18, 19]; by inhibiting the growth of certain faces, different crystal 

morphologies can be produced.  While currently many theories abound regarding 

nanocrystal growth, there is minimal direct physical evidence to substantiate any of them.  

Thus, careful characterization of higher-dimensional colloidal nanocrystal surfaces may 

improve the understanding and subsequent control of nanocrystal synthesis, as well as 

epitaxial growth in colloidal nanocrystal systems. 
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1.3. Colloidal nanocrystals and their assemblies 

 

 Solely examining the individual properties of nanocrystals does not suffice when 

considering their future applications; their integration into practical devices must also be 

contemplated.  One potential use for nanocrystals is as storage or signaling elements in 

computer circuitry, which may help to meet the demand for increasing miniaturization in 

computer devices [20-22].  Of particular interest for such systems is the so-called “bottom-

up” approach [23, 24], in which device components are directly constructed of molecules or 

nanometer-scale parts (as opposed to the “top-down” approach, in which lithography is used 

to etch a circuit pattern). 

 Given the possibility of such an approach, it is important to study how 

nanomaterials such as colloidal nanocrystals may be assembled into ordered architectures. 

Earlier studies have shown that nanocrystals with good size and shape distributions in 

solution can spontaneously assemble into ordered structures under drying [25-27].  This 

drying-mediated assembly is controlled according to particle-particle forces, particle-

substrate forces, and particle-solvent-forces [28-30].  As many are interested in the use of 

nanocrystals for data storage [22], there has been a particular focus upon the assembly of 

magnetic nanocrystals. 

 Chapter 6 features studies of assemblies formed by magnetic cobalt nanocrystals.  

Particle-particle forces may be particularly interesting for nanocrystals in this size regime (9 

nm diameter); both magnetic forces and Van der Waals forces are believed to play an 

important role in influencing assembly.  Transmission-electron microscopy (TEM) and 

selected area electron diffraction (SAED) were used to characterize the structures formed by 
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the cobalt nanocrystals.   Both TEM and SAED are reviewed in chapter 5 of this dissertation.  

SAED showed that for multilayered assemblies, the nanocrystals had preferred 

crystallographic orientations. 

 It is hypothesized that the cobalt nanocrystals are arranged in a vortex or loop-

closing configuration.  SAED patterns and dark field images are used to characterize the 

crystallographic arrangement of the nanocrystals in the assemblies.  This data is presented, as 

well as the current state of data analysis, which is still ongoing.  The potential effects of 

magnetism and nanocrystal faceting upon the nanocrystal assemblies are discussed. 
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CHAPTER 2.  INTRODUCTION TO X-RAY ABSORPTION 

SPECTROSCOPY (XAS) 
 

2.1. Motivation 

 

 The structural characterization of materials is a fundamental component of materials 

science.  Structure is key to the identification of many materials.  It is also critical for 

understanding the origins of a material’s physical behavior. 

 Colloidal nanocrystals, due to their often poorly understood novel physical 

properties, necessitate detailed structural investigations.  Generally, colloidal nanocrystals 

have a very high surface area-to-volume ratio.  Thus it behooves us to not only study their 

interior structures, but their surfaces.  Indeed, for colloidal nanocrystals, there are multiple 

examples in which chemical surface modifications have influenced their electronic behavior. 

 Unfortunately, a detailed characterization of nanocrystal surfaces, especially with 

respect to their atomic geometry, is far from simple.  The standard “workhorse” methods of 

X-ray/electron diffraction and high resolution electron microscopy primarily offer 

information about the periodic part of the nanocrystals, namely, their interiors.  Surface 

science techniques such as low energy electron diffraction or scanning tunneling microscopy 

are foiled by the presence of capping surfactants, as well as the fact that nanocrystals are not 

atomically flat (for a large enough area). 

 Luckily, there is a structural probe that has allowed us to examine colloidal 

nanocrystal surfaces: X-ray absorption spectroscopy (XAS).  XAS can determine structural 

features such as the extent of atomic coordination on surfaces, bond distances, and 
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structural disorder [31].  This chapter has a basic background of X-ray absorption 

spectroscopy, as well as a review of the extensive data analysis involved. 

 

2.2. The interaction of X-rays with atoms 

 

2.2.1. Absorption of an X-ray photon by a single atom 

 Before discussing actual X-ray absorption (and fluorescence) spectroscopy, a basic 

understanding of X-ray-atom interactions is necessary.  Consider a single isolated atom 

absorbing an X-ray, which is simply light of an energy ranging from 1-500 keV .  What 

happens is the well-known photoelectric effect [32], depicted in figure 2.1.  The energy from 

the X-ray is transferred to a core-level electron.  Thus, the energetically excited state, or final 

state of this system consists of an atom with a core hole, or an empty electronic state, and an 

electron that has been excited out of the atom into the continuum [33].  

 

Figure 2.1. Energy-level diagram of photoelectric effect for a single atom, showing the initial state 

of the atom before excitation and the final state of the atom. 
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Traditionally when using X-ray techniques, the core levels are not referred to as 1s, 

2p, 3d, etc. but rather as K, L, and M.  K corresponds to the 1s level, L corresponds to the 

2s and 2p levels, and M the 3s, 3p, and 3d levels. 

 

2.2.2. X-ray fluorescence and the Auger effect 

 A consideration of the matter-X-ray interaction does not end with the absorption 

event.  The energetically excited atom cannot remain in that state indefinitely and has to 

energetically relax.  There are two means by which this can occur [33], illustrated in figure 2.2.  

First, an electron from a higher energy state can fill the core hole, and release an X-ray 

photon with the excess energy.  This process is known as X-ray fluorescence.  Second, the 

atom can relax via a non-radiative process known as the Auger process.  In this process, a 

higher-energy electron fills the core hole, and the remaining energy from this electron excites 

another electron to the continuum. 

 

 

Figure 2.2.  Energy-level diagram depicting relaxation processes for photoexcited atoms. 

 



 
 
 

9 
 

2.2.3. X-ray absorption in solids or molecules  

 X-ray absorption by a compound can be described according to the Beer-Lambert 

Law [34, 35], which is as follows: 

tEeII )(
0

μ−= ,     (2.1) 

where I0 is the incident X-ray intensity upon a sample, I is the transmitted X-ray intensity, t is 

the thickness of the sample, and μ  is the linear absorption coefficient.  X-ray absorption is 

simply the modulation in μ  with respect to X-ray energy. 

 Modulations in μ  occur when an atom in a compound, and not in a vacuum, 

interacts with an X-ray.  The absorption coefficient μ  is proportional to the probability of 

an electron being excited from a core-level state to a continuum state.  This probability can 

be expressed according to Fermi’s Golden Rule [36, 37], in which  

)(2 2

ffi EHP ρψψπμ
h

=∝ ,   (2.2) 

where iψ and fψ are the initial and final states of the photoelectron, respectively, H is the 

Hamiltonian describing the interaction of the X-ray with the atom, and )( fEρ  is the density 

of states at the final energy of the photoelectron. 

 Let us consider what the final state of the emitted photoelectron will be when the 

emitting atom is surrounded by neighboring atoms.  Given particle-wave duality, we can 

envision (as well as mathematically express) the photoelectron as an outgoing spherical wave.  

This spherical wave encounters the potentials of the surrounding atoms.  A scattering 

process is established, leading to a general pattern of constructive and destructive 

interference.  The final state of this photoelectron wave depends upon the geometric 
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arrangement and composition (atoms of different elements have different sizes and masses) 

of its surroundings.  Per equation 2.2., a change in fψ will change ).(Eμ   Herein lies the use 

of X-ray absorption as a structural probe. 

 

2.4. Extended X-ray absorption fine structure 

 

 X-ray absorption is measured by measuring the X-rays transmitted through the 

sample.  What we ultimately measure is );(Eμ a typical example of a selenium XAS 

spectrum is shown in figure 2.3.  This spectrum has several features to be noted.  First, we 

note the sharp jump in absorbance, 0μΔ , also known as an “edge”, which corresponds to 

the core shell electron binding energy (the minimum energy necessary to excite an electron 

to the continuum).  This spectrum is broken down into two regimes [31].  X-ray absorption 

near edge spectroscopy (XANES) concerns the spectrum ~50-100 eV above the edge jump 

(hence, “near edge”).  Extended X-ray absorption fine structure (EXAFS) spectroscopy 

concerns the energy range above that of XANES. 
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Figure 2.3.  Illustration of the different energy regimes in X-ray absorption 

spectroscopy. 

 

 The EXAFS energy regime was primarily used for the XAS studies described in this 

dissertation.  Photoelectrons in the EXAFS energy regime are mostly subjected to single 

scattering events.  The information that can be derived from EXAFS is thus primarily 

geometrical and easily extracted from spectra [31].   EXAFS has been extensively used to 

obtain detailed information regarding local atomic structure.  The EXAFS signal is 

specifically the oscillatory part of the spectrum (remember, for an isolated atom there are no 

surrounding atoms, which would result in a featureless spectrum), and is expressed as 

0

0 )()(
)(

μ
μμ

χ
Δ
−

=
EE

E ,    (2.3) 

in which )(0 Eμ is the featureless atomic absorption background, approximated by a spline 

function, and 0μΔ  is the edge jump (see Fig 2.3).  As we are dealing with an interference-
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based phenomenon, it is convenient to express the EXAFS signal in terms of the 

photoelectron momentum k, which is  

h

)(2m 0EE
k

−
= ,     (2.4) 

where E0 is the energy at which the edge jump occurs and m is the mass of the electron. 

 The full EXAFS equation, which is a summation of contributions from all atoms 

surrounding the central emitting atom is 

)](2sin[
)(

)( 2

)(
2

2 22

kkR
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j

δχ
λσ

+= ∑

−
−

  (2.5) 

where Rj is the distance to a neighboring atom j, Nj  is the coordination number of the 

neighboring atom j, σj
2 is the mean-square disorder of neighbor distance, and λ is the mean 

free path of the photoelectron.  fj(k) and δj(k) are photoelectron scattering properties of a 

given atom j, generally referred to as the amplitude and phase terms, respectively.  The terms 

in this equation that limit EXAFS to being a local probe are the 1/Rj
2 term and the wave-

dampening term )(
2
k
R j

e λ
−

 ( 25)( <kλ Å for the EXAFS range of energies). 

 The expression for the EXAFS signal illustrates one of the primary caveats of the 

EXAFS technique—namely, that the signal is an averaged signal.  Thus, while EXAFS is 

arguably the best tool for examining bonding distances and atomic coordination on colloidal 

nanocrystal surfaces (as described in section 2.1 of this chapter), it is not perfect, because the 

surface signal is convolved with that from atoms in the nanocrystal interior.   Even electron 

yield detectors cannot circumvent this problem, because the nanocrystals being probed are 

on the length scale of the electron escape depths.  The only way to confront this problem of 
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the signal convolution is to compare the EXAFS results with those from a model.  The use 

of models is discussed further in chapter 3. 

 

 

Figure 2.4.  Schematic of basic procedure for data processing. 
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2.5. EXAFS data processing 

 

2.5.1. Fundamentals of filtering and fitting 

 Obtaining the function )(kχ requires processing the raw data to a substantial degree, 

as illustrated in figure 2.4.  First, the featureless atomic absorption background is subtracted 

from the raw energy-space data (shown in figure 2.4, part 1) to isolate the oscillatory 

component, and the data is converted to k-space (fig. 2.4, part 2).  This raw )(kχ  function 

is multiplied by kn (for the analyses in this dissertation, n = 2 was used) to help emphasize 

the high-k parts of the signal.  

As is clear from equation 2.4, this raw EXAFS signal contains contributions from 

first, second, and even third nearest neighbors (a.k.a. shells).  To avoid dealing with all 

neighboring atoms simultaneously, )(kχ is filtered to isolate components of the oscillation 

corresponding to a particular set of neighbors.  The EXAFS data is Fourier transformed 

from k-space to a real space function with both imaginary and real components.  The real 

component (amplitude) for a sample of CdSe is displayed in part 3 of figure 2.4, with peaks 

corresponding to significant frequency components of the signal, namely, interatomic 

distances.  By multiplying the EXAFS signal by a window function, these components can 

be selected out of the EXAFS signal.  For example, in part 3 of figure 2.4, the first shell (first 

nearest-neighbor scattering) signal is being isolated.  This real-space filtered function is then 

back-transformed to a filtered k-space function (figure 2.4, part 4).   Thus, when equation 

2.4 is fit to this filtered data, we need only to account for the first shell contributions to the 
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signal.  Another part of the data processing can also include truncating )(kχ at high  k-values 

to remove completely obscured by noise. 

 In order to extract the physical parameters of interest (interatomic distances, 

coordination environments, degree of disorder) from )(kχ data, the specific photoelectron 

scattering functions fj(k) (amplitude) and δj(k) (phase) corresponding to the surrounding 

scattering atoms are required.  They can be obtained either via calculations, most commonly 

performed using the software package FEFF [38], or by measuring the EXAFS on known 

standards.  For most of the work in this dissertation, scattering functions were derived from 

empirical data on well-characterized standards. 

 All data processing and fitting were performed with Labview-based software written 

by Dr. Matthew Marcus of beamline 10.3.2.  (See http://xraysweb.lbl.gov/uxas/Index.htm 

for further information about the software.)   

 

2.5.2. Some peculiarities of EXAFS fitting 

2.5.2.1. The perils of non-linear multivariable fitting 

One of the primary problems with non-linear multivariable data fitting is that there is 

not one unique solution, or minimum in error space.  When fitting, it is possible to fall into a 

false solution, rather than finding the solution that universally has the lowest possible fitting 

error.  There are two major ways to avoid this, which were used for the data in this 

dissertation.  First, one can start by fitting using reference data (fj(k) and δj(k)) that are very 

similar to the sample.  Second, one can try to fit by inputting different starting values for 

parameters and checking to see if the program still converges onto the same solution.  In 
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essence, one should only use EXAFS when one already has a fairly good idea of what sorts 

of structures will be present. 

 

2.5.2.2. Selection of E0

 E0 is the energy at which the edge jump occurs.  The determination of its value has 

been a matter of discussion [34], as the actual value is ill-defined due to the finite lifetime of 

the photoelectron and core hole.  In other words, when one selects E0, one is choosing the 

location of the Fermi level for a system, which may not be well-defined. 

 The values of E0 selected for various analyses were based upon those selected for the 

known standards against which the data was fit.  The Manceau method was utilized for 

selecting E0 [39].  Care was taken to be consistent in the selection of a value for E0. 

 

2.6. Experimental data collection 

 

 As EXAFS requires a source of X-rays with a continuous and tunable spectrum, 

generally all of it is measured at synchrotron sources.  Synchrotron sources also have the 

high intensity and energy resolution necessary for such experiments.  All XAS discussed in 

this dissertation was conducted at the Advanced Light Source, Lawrence Berkeley National 

Laboratory, Berkeley, CA, at beamline 10.3.2 in close collaboration with Dr. Matthew 

Marcus, chief beamline scientist [40].  Absorption spectra were measured using ion chamber 

detectors for both the transmitted intensity I and the incident intensity I0.  Fluorescence 

spectra were measured using a solid-state germanium detector which detects energy for a 

specified emission energy range, depending on the edge being probed.  The basic beamline 
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set-up is illustrated in figure 2.5.  Further details will be addressed in the following chapters 

detailing the experiments performed. 

 

 

 

 

Figure 2.5.  Schematic of EXAFS experimental setup. 
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CHAPTER 3.  POLARIZED EXTENDED X-RAY ABSORPTION FINE 

STRUCTURE (EXAFS) SPECTROSCOPY OF ORIENTED CDSE 

NANORODS 
 

3.1  Background and motivation 

 

3.1.1.  Anisotropically-shaped colloidal nanocrystals 

 Many studies of colloidal nanocrystals have focused upon spherical nanocrystals, 

often (especially for semiconductors) referred to as quantum dots.  Recently, synthetic 

chemistry has advanced far beyond the simple sphere; colloidal nanocrystals are available as 

rods [18, 41], disks [42], triangles [43], tetrapods [15], hollow spheres [44], and stars [45], to 

name a few shapes.  Shaped nanocrystals often have novel physical properties different from 

those of their spherical counterparts which are of interest for both fundamental study and 

practical applications.  For example, Au and CdSe nanorods, which respectively scatter and 

emit linearly polarized light, can be used as biolabels that provide information regarding the 

orientation of biomolecules [46][47].  CdSe nanorods have been used in a light-emitting 

diode that produces linearly polarized light [48].  CdTe tetrapods have been tested for use in 

solar power cells [3]; their geometry is considered advantageous for the better conduction of 

electrons and holes in the cells.  Shape can also influence the behavior of magnetic 

nanomaterials, which may be used for data storage and signaling applications; indeed, 

different shapes can help to enhance or alter the magnetic anisotropy [49, 50].   
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3.1.2. Surfaces of shaped colloidal nanocrystals 

 Despite the surge in synthetic and physical research on shaped nanocrystals, their 

surfaces have not been well-examined.  Nevertheless, surfaces are key to answering two 

major questions about shaped nanocrystals.  First, what is the origin of their physical 

properties?  As a large fraction of atoms for a shaped nanocrystal can be on the surface, a 

better understanding of the surface structure can benefit our physical knowledge.  Second, 

why do shaped nanocrystals grow they way they do?  It is generally agreed that surfaces play 

a large role in the control of nanocrystal morphology.  Different crystal faces are believed to 

vary with regards to chemical reactivity and energetic stability; therefore, certain faces grow 

more quickly, resulting in anisotropic shapes[18, 51, 52].  The literature on nanocrystal 

synthesis is vast, but there exist few physical studies to confirm various theories regarding 

growth mechanisms.  While organic chemistry has a framework for synthetic mechanisms 

(namely the so-called “electron-pushing” mechanisms), much of nanochemistry is still highly 

empirical.     

 This chapter describes efforts to learn about the surface structure and composition 

of a model anisotropic nanocrystal system—CdSe nanorods.  It was expected that in 

nanorods, due to the presence of certain crystal faces, there might be bonding changes 

specific to crystallographic direction.  Therefore, polarized extended X-ray absorption fine 

structure (EXAFS) spectroscopy was used to probe structure along different directions in 

the nanorods.  
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3.2. Bulk and nanorod cadmium selenide (CdSe): basic properties 

 

3.2.1. Bulk cadmium selenide 

 Bulk cadmium selenide is a semiconductor with a 1.74 eV bandgap (direct) [53].  It 

can assume the wurtzite crystal structure, shown in figure 3.1.  Its bonding is almost 

perfectly tetrahedral; the bonds along the c-axis are elongated by 0.005 Å compared to the 

bonds along the a-/b-axes [54].  The average bond distance (Cd-Se) in cadmium selenide is 

2.63 Å; the Se-Se distance is 4.3 Å [54]. 

 

3.2.2. Cadmium selenide nanorods 

The cadmium selenide nanorods have been confirmed via XRD to have the 

hexagonally-symmetric wurtzite crystal structure [18].  They are grown such that the long 

axis is coincident with the [001] crystallographic direction, or the c-axis (figure 3.1).  High-

resolution transmission electron microscopy (HRTEM) has shown that the nanorods have 

only a few stacking faults per rod and are highly crystalline [18].  The optical absorption and 

emission of the CdSe nanorods have been shown to be highly dependent upon their width 

and length [14, 55].  As with quantum dots, due to the spatial confinement of electrons and 

holes, their bandgaps are greater than 1.74 eV.  Furthermore, the emission from the 

nanorods is polarized along the long axis [14]. 
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Figure 3.1.  Left: Basic wurtzite structure, with unit cell outlined with gray dotted lines.  Right: 

Schematic image of a CdSe nanorod.  Note the alignment of the various crystallographic axes 

with the rod axes.  Wurtzite image from http://www.metafysica.nl/ontology/wurtzite_1.jpg. 

 

3.3.  Synthesis and assembly of CdSe nanorods 

 

3.3.1. Nanorod synthesis 

The particular CdSe nanorod synthesis used for this study has been described in a 

previous paper [41] and Alivisatos group dissertation [56], and will only be briefly discussed 

here.  The nanorods used for these studies were synthesized by Dr. Liang-shi Li, a former 

graduate student in the Alivisatos group.  The basic synthesis involves the thermal 

decomposition of organometallic precursors (dimethyl cadmium, selenium-

tributylphosphine) in hot, liquefied surfactants (trioctylphosphine oxide, alkylphosphonic 

acids) under air-free and water-free conditions.  The precursors, upon decomposition, 

saturate the solution with molecular monomers, which leads to the nucleation and growth of 

nanocrystals.  The surfactants in the reaction control the growth rates and morphology, as 
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well as serving as capping or passivating agents for the finished nanocrystals.  The size of the 

nanocrystals was measured using both TEM and UV-visible spectroscopy.    

 

3.3.2. Formation of CdSe nanorod liquid crystalline assemblies 

A fascinating property of CdSe nanorods is their ability to form crystallographically-

aligned assemblies [41, 57]; indeed, it is this property that has enabled the structural 

characterizations detailed in this chapter.  At high concentrations, solutions of monodisperse, 

high aspect ratio nanorods spontaneously form liquid crystalline assemblies in which the 

rods are aligned such that their c-axes (long axes) are parallel to each other.  The liquid 

crystalline phases are nematic, meaning that while the c-axes of the rods are aligned parallel 

to each other, the rods do not form rows (their centers of gravity are not aligned with each 

other).  The alignment of the nanorods has been confirmed via optical microscopy, X-ray 

diffraction, and small angle X-ray scattering. 

 

3.4. Polarized extended X-ray absorption fine structure (EXAFS) spectroscopy: 

background 

 

3.4.1 Basic theory and utility of polarized EXAFS 

 While the utility of EXAFS for nanocrystal surfaces was established earlier, the 

specifics of measuring EXAFS from anisotropic nanocrystals, especially nanorods, were not 

discussed.  With an anisotropic system such as a nanorod, there are many questions 

concerning the effect of the overall shape upon the atomic-level structure.  For example, 

how does confinement in a single dimension influence nanorod surface reconstructions?  
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Are they different along the confined direction (short axis of the rods) as opposed to the 

unconfined direction (long axis of the rods)?  What do the ends of the rods look like versus 

the sides?  From the surface composition or coordination, can we infer anything regarding 

the growth mechanism?  

   Luckily EXAFS, when applied to a crystallographically-oriented sample, can offer 

orientation-specific information.  This is because the X-rays produced by synchrotron 

sources are linearly polarized in the plane of the ring.  If we recall equation 2.2, substituting 

in an expression for the Hamiltonian operator, we obtain the expression: 

)(ˆ2 2

ffi ErP ρψεψπμ v

h
⋅=∝     (3.1)  

where ε̂ is the polarization vector for the electric field and rv corresponds to the vector from 

the emitting atom to the scattering atom.  For a sample with oriented bonds, such as 

crystallographically-aligned nanorods, the signal should depend upon the angle between the 

polarization and the interatomic vector rv .  Indeed, re-formulated, the angle-dependent 

expression of the EXAFS signal is [58, 59] 

  )()(cos3)(cos3),(
1

22 kkk j
iso

j
i

j

N

i

j
iso

j

j

χθχθθχ ∑∑∑
=

==   (3.2) 

 



 
 
 

24 
 

where j is the number of the coordination shell (e.g. 1st, 2nd, etc.), i is the index for all Nj 

atoms of the jth shell, is the angle between the X-ray polarization and the interatomic 

vector 

j
iθ

rv (pointing from the emitting atom to the ith atom of the jth shell), and which 

is the isotropic contribution for an atom of the jth shell (this is the signal produced from a 

 

)(kj
isoχ

randomly-oriented powder). 

igure 3.2.  Diagram depicting preferential probing along different directions in a nanorod by 
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polarized EXAFS.  Left: When the rod c-axis is parallel to the beam polarization, denoted by th

vector εv , interatomic pairs aligned more along the c-axis will be probed.  Right: When the rod c-

axis is p rpendicular to e εv , signal from the interatomic pairs perfectly parallel to the c-axis (e.g., 

Cd-Se pairs along the c- xis) is omitted. 

  

a

ollowing equation 3.2, given a crystallographically-aligned sample, different 

bonds i

od.  

Hence, f

n the crystal should be probed depending upon the angle j
iθ .  An example of this 

orientation-dependent measurement is shown schematically in figure 3.2 for a CdSe nanor

When the nanorod is oriented with its c-axis perpendicular to the beam polarization, the 
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, 

.4.2. Angular dependencies in structural parameters of interest 

wn as dichroism.  As 

is evide

bonds (or interatomic pairs) aligned along the c-axis are not a part of the signal—only the

other bonds are detected.  On the other hand, when the c-axis is parallel to the polarization

the signal is dominated by bonds (or interatomic pairs) aligned along the c-axis. 

 

3

The change in the EXAFS spectra with respect to angle is kno

nt from equation 3.2, )(kχ is linearly related to θ2cos .  This angular relationship 

can be used to derive the angular dependence for physi meters of interest, such as th

interatomic distance r.  The average EXAFS distance measured for a given shell and angle θ 

can be expressed as 
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where N is the number of atoms in the shell, i is the index atoms in the shell, c is cos2θ, wi(c) 

ed 

is the signal weighting (a linear function of cos2θ, per equation 3.2), and ri is the interatomic 

distance between the atom being probed and its neighbor.  For the CdSe wurtzite structure, 

which has nearly ideal tetrahedral bonding, the denominator of eqn. 3.3 remains nearly 

constant, no matter what the value of θ  is.  This means that, approximately, the measur

value r is linearly proportional to θ2cos .  Note that this is not necessarily the case for 

other geometries (for example, an atom in a square planar complex with one bond 

perpendicular to the plane). 
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For an oriented CdSe nanorod, the angular dependence of the measured value of r is 

expressed as 

rrrr +−≅ ⊥ θθ 2cos)()( .     (3.4)  

Parallel and perpendicular orientations are defined with respect to the X-ray 

polarization and the crystallographic c-axis.  Note that r and refer to the averaged signal 

measured when the c-axis of the rod is parallel and perpendicular to the beam polarization.  

This expression is defined as an approximation because the bonding in wurtzite CdSe varies 

(very slightly) from being ideally tetrahedral.  The quantity

⊥r

⊥− rr , which is the difference in 

the measured value of r when the nanorod is parallel to the beam polarization and 

perpendicular, is defined as the dichroism.  This dichroism is the actual physical quantity of 

interest gained from polarized EXAFS.  While 3.4 is an expression for r , this linear 

relationship applies as well to coordination numbers and Debye-Waller factors (mean 

squared interatomic distance distributions—a measure of disorder). 

 

3.5. Experimental 

 

3.5.1. Crystallographically-aligned CdSe nanorod assemblies 

 The liquid crystal samples used for these studies were prepared by Dr. Liang-shi Li, a 

former graduate student in the Alivisatos group.  All samples used were very highly 

concentrated solutions of 3 ×60 nm CdSe nanorods in cyclohexane.  The nanorods had 

been previously washed three times to remove excess surfactant.  These solutions, due to 

their high viscosity, were centrifuged under argon into 0.3 mm ID glass X-ray capillaries, 
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which were flame-sealed.  Initial attempts to measure EXAFS from nanorods smeared onto 

glass and mylar were unsuccessful, as the nanorods experienced chemical changes under the 

X-ray beam, evidenced in the EXAFS spectra.  (Probably these changes were due to 

oxidation; it was difficult to effectively seal out air from these samples.)  The capillary 

samples were very homogeneous and provided a strong signal without overabsorption.  (For 

a review of overabsorption and other EXAFS artifacts, please see reference [60].) 

 

3.5.2. Bulk standards for EXAFS 

 EXAFS from bulk standards of CdSe, as well as other species most likely to be 

present [61, 62] (CdSeO3, SeO2, and Se-tributylphosphine (Se-TBP)) was measured.  The 

oxides, which are possible surface oxidation species [61, 62], were simply very finely ground 

powders on Kapton tape.  The CdSe standard used was a nanorod solution that had been 

sintered at 700° C on graphite under argon.  XRD did not show any signs of oxidation or 

nanoscale structures after sintering.  (Other bulk CdSe standards had proved problematic 

due to overabsorption.)  The Se-TBP, which is the Se precursor used in nanorod synthesis, 

was centrifuged into a glass X-ray capillary under argon and flame-sealed. 

 

3.5.3. Spectroscopy: data collection 

A schematic of the experiment, performed at ALS beamline 10.3.2, is shown in 

figure 3.3, and the sample holder for the capillary is shown in figure 3.4.  This setup has 

special features that make it ideal for studying individual domains in the nanorod liquid 

crystals.    First, the beamline has a microbeam, with a maximum spot size of 16 μm × 7 μm, 

which allows for measurements on single aligned domains of the liquid crystal. 
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X-rays XRD 

Se-EXAFS

(002) 

Capillary (tilts 
in/out of page) 

Single 
domain of 
nanorods 

 

Figure 3.3.  Schematic drawing of the experimental setup, from which both XRD and EXAFS data 

were collected from a single domain of oriented nanorods.  To alter the angular alignment of the 

rods, the capillary was tilted into or out of the plane of this page. 

 

Furthermore, the beamline is equipped with a CCD for powder XRD, which was used to 

measure the orientation of the nanorods before and after each set of scans.  Finally, the 

beamline has a cryo-stream cooler, which was necessary to keep the liquid crystal from 

flowing and hence disrupting the orientation.  (Originally, the experiments were performed 

at room temperature, but XRD measurements showed that the nanorods changed 

orientation during data acquisition.)  The liquid crystals were cooled to -50° C.    Due to the 

setup geometry, fluorescence could not be measured (the sample holder geometry 

obstructed the path from the sample to the fluorescence detector, which was fixed in place).  

Nevertheless, it is unlikely that there were measurement artifacts such as overabsorption, 

which would have been easily detected in the transmission data or “hole effects” (absorption 
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amplitude artifacts from a sample of uneven thickness), due to the uniformity of the sample.  

(More information about experimental artifacts can be found in [60].) 

 

 

Figure 3.4.  Sample holder for capillary (shown with capillary).  The inner metal ring could be 

rotated to change the angular orientation of the capillary.  The X-ray beam was approximately 

centered in the hole of the inner metal ring.  Photograph courtesy of Dr. Matthew Marcus. 

 

 The number of orientations measured (15) was limited due to time.  Each scan took 

~40 minutes, and to ensure excellent signal/noise, ~7 scans per position were collected.  As 

a control experiment, EXAFS was measured at multiple angles (11) from isotropic samples 

of 3×60 nm CdSe rods, prepared in the same fashion as the liquid crystalline rods.  This 

control was necessary to rule out any angle-dependent artifacts. 

 Due to the energy range available at the ALS, Cd K-edge EXAFS was not possible.  

Cd L-edge EXAFS measurements proved to have extremely poor signal. 
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3.6. Analysis 

 

3.6.1. Data reduction/Fourier filtering 

 Spectra for each angular orientation were averaged, and background subtraction and 

Fourier filtering performed as described in chapter 2.  To obtain second and third shell data, 

the residuals from the first shell filtering (that is, what was left of the signal after the first 

shell components were subtracted) were filtered together in one window.  Note that for each 

angle, special care was taken to reproduce the same data processing procedure (e.g., 

background subtraction, E0 positioning, etc.). 

 

3.6.2. Additional data fitting procedures 

 First shell fj(k) and δj(k) were obtained using experimental data from bulk CdSe.  The 

second and third shell fj(k) and δj(k) functions were obtained using a mixture of bulk 

elemental Se data and FEFF 8 [38].   The second and third shell data was convolved (the 

shells could not be filtered out separately).  Thus, this convolved data was fit simultaneously 

with second and third-shell phases and amplitudes obtained both experimentally and via 

FEFF calculations. (Dr. Matthew Marcus measured the elemental Se EXAFS and performed 

the necessary FEFF calculations). 

 Fitting was used to derive two major pieces of information: first, the physical 

parameters (interatomic distances, coordination) of the nanorods, and second, the dichroism 

(angular dependence) of any of these parameters.  Two fitting methods were used.  First, 

spectra taken at each angle were individually fit to equation 2.5 to extract structural 
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parameters.  Then these parameters were entered into a linear fit as functions of θ2cos , 

per equation 3.4.  The slope obtained from each fit is the dichroism for a given parameter. 

The second type of fitting used was slightly different from that described in chapter 

2.  The main difference was that instead of only fitting one averaged spectrum at a time, 

spectra from all different angles were fit simultaneously.  This offered the major benefit of 

increasing the degrees of freedom relative to the parameters being fit.  For the fit, the 

residuals being minimized were 

( )[ ]{ }∑ Δ+Δ−− ⊥⊥⊥⊥
ki

fitfiti kEbrkEbrk
,

2

,0
22

,0
22 ),,,,(cos),,,,(cos1)( σχθσχθχ , (3.5) 

where χi(k) is the EXAFS spectrum taken at a given angle θ, σ2 is a Debye-Waller factor (the 

mean squared distance distributions, a measure of disorder), b is the ratio of the  sample 

coordination number to that of the bulk, and ΔE0 is a shift in the value for E0.  The code 

used to do this fitting was written in Labview 6.0 by Dr. Matthew Marcus.  Assuming 

Gaussian distributions for the derived parameters, 1σ  uncertainties were calculated 

according to previously reported methods [63]. 

In addition to assuming a Gaussian distribution of interatomic distances for the data 

fitting, an asymmetric distribution of bond distances (Gaussian-broadened exponential tail 

function) was also used for fitting.  Including this asymmetry did not yield a consistent 

improvement of the fit.  This may stem from the use of room temperature reference data for 

bulk CdSe, which has already been shown to contain anharmonicity effects (with respect to 

18 K data) [54]. 
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3.7. Results 

 

3.7.1. General orientation-averaged structural parameters 

 General structural parameters for the nanorods listed in table 3.1 were derived using 

the consensus fit on the aforementioned isotropic nanorod samples.  While the orientation-

averaged nanorod interatomic distances are not significantly different from those in the bulk, 

the coordination numbers are reduced.  Bulk distances listed were adjusted for the 

experimental temperature [64]. 

  Absolute values for σ2 are not included due to the fact that the bulk CdSe standard 

and the nanorods were at different temperatures.  In the absence of an extremely good 

model for the heat capacity of CdSe nanorods, it is impossible to deduce anything regarding 

the relative bond disorder (or vibrational properties) in the nanorods with respect to bulk. 

 Cd-Se (1NN) and Se-Se (2NN) were the only atomic pairs observed; no signal was 

found for other likely chemical species (see Fig. 3.5).  Cd L-edge XANES on unaligned 

nanorods (prepared in a different fashion outlined in chapter 4, figure 4.3) indicated the 

presence of a Cd-O species from species either like CdSeO3 or Cd3(PO4)2 (a surrogate 

standard for Cd-phosphonic acid complexes). 
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Table 3.1.  General structural parameters for bulk and nano CdSe (orientation-
averaged) 

 

 1st shell bulk 2nd shell 
bulk 

1st shell 
nanorod 

2nd shell  
nanorod 

R (Å) 2.630 4.295 2.625(+0.002, 
-0.003) 

 

4.297 
(±0.005) 

Coordination 
number 

4 12 3.60(±0.05) 9.98 
(+0.96, -
0.72) 
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Figure 3.5.  Experimental pair distribution functions of bulk and nanorod CdSe, as well as likely 

surface oxides and selenium-tributylphosphine (Se-TBP), a synthetic precursor.  Imaginary 

components of the Fourier transformed data are displayed along with the magnitudes for bulk and 

nanorod CdSe. 
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3.7.2. Dichroisms for structural parameters 

 The dichroism values are listed in tables 3.2 and 3.3.  Note that for the bulk values, 

the term “aligned sample” refers to the averaged signal that EXAFS would measure (or 

“see”) from an oriented crystal; it does not refer to the individual values of the axial or 

equatorial interatomic distances.   

The only parameter displaying a significant dichroism was that of the 2nd shell 

distances; the distances along the c-axis (axial) were smaller than those along the a-/b-axes 

(equatorial).  The 2NN dichroism is larger than that of the bulk.  As for the 1NN, the 

aligned sample does not display the same dichroism present in the bulk.  Results from the 

individual fit method were consistent with those from the consensus fit.  No significant 

dichroism was observed for the coordination number or the Debye-Waller factors. 

 

Table 3.2. 1st shell dichroisms 

 

 rr −⊥ (Å), 
bulk 

rr −⊥ (Å), nano CNCN −⊥  22 σσ −⊥ (10-4 
Å2) 

Aligned 
sample 

0.004  0.000(+0.001,-
0.002) 

0.044(+0.076,-
0.080) 

0.55(+1.45,-
1.55) 

Isotropic 0 0.000(+0.001, -
0.001) 

-0.332(+0.368,-
0.4322) 

-0.41(-6.41,-
6.59) 
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Table 3.3. 2nd shell dichroisms 

 

 rr −⊥ (Å), 
bulk 

rr −⊥ (Å) CNCN −⊥  22 σσ −⊥ (10-4 
Å2) 

Aligned 
sample 

-0.002 -0.014(+0.008,-
0.006) 

0.044(+0.076,-
0.080) 

0.55(+1.45,-
1.55) 

Isotropic 0 -0.001(+0.006, -
0.008) 

-0.332(+0.368,          
-0.432) 

-0.41(-6.41,-
6.59) 

 

3.8. Discussion 

 

3.8.1. Dichroism in second-shell (Se-Se) distances 

To understand the structural origin of the measured differences between the 1NN 

and 2NN dichroisms of bulk and nanorod CdSe a collaboration was initiated with Professor 

Giulia Galli (University of California, Davis), Professor François Gygi (UC Davis), and Dr. 

Andrew Williamson (staff scientist, Lawrence Livermore National Laboratory, Livermore, 

CA), who performed a series of first principles, density functional theory (DFT) electronic 

structure calculations on approximate models of CdSe nanorods.  A complete 3× 60 nm 

CdSe nanorod contains approximately 16,000 atoms, which was a prohibitively expensive 

number of atoms to simulate from first principles.  Instead, the nanorods were modeled as 

infinitely long nanowires which are periodically repeated along the [0001] direction (long 

axis).  The structural model was a 2.4 nm diameter nanowire, with (1000) and (1-100) side 

facets; the top view is shown in figure 3.6 A.  (A 3 nm diameter nanowire had too many 

atoms for such a calculation.)  The electronic structure of the nanowire and a reference bulk 

structure were calculated using the Qbox [65] and ABINIT [66] ab-initio molecular dynamics 
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and pseudopotential DFT codes, respectively.  The wavefunctions were expanded in a plane 

wave basis, with a 35 Ry energy cutoff with 4 k-points along the [0001] direction in the 

nanowire.  Norm conserving, Troullier-Martins pseudopotentials, with 4d105s2 and 4s24p4 

valence electrons were used to represent the Cd and Se cores, respectively.  For both the 

bulk and nanowire systems the atomic coordinates were relaxed to their closest, lowest 

energy atomic positions.  The dimensions of the simulation supercells were also relaxed to 

their lowest energy configurations to allow for changes in the structural parameters c, u and a. 

 

 

 

FIG. 3.6.  Top views of unrelaxed (A) and relaxed (B) 2.4 nm diameter CdSe nanowire from DFT 

calculations.  Green atoms are Cd, white atoms are Se.  The core atomic positions are mostly 

unchanged, while the outer atoms shift. 

 

The ideal and relaxed nanowire structures are shown in Fig. 3.6 A and B.  The core 

of the nanowire showed relatively minor structural relaxations from the ideal bulk wurtzite 

structure, while the surface of the nanowire spontaneously reconstructed to lower its energy.  

In particular, surface atoms with a coordination number of 2 experienced the most dramatic 

structural relaxations, wherein Se-Cd U-shaped structures rotate into the surface of the wire 

to increase their coordination.  Similar surface reconstructions have also been predicted for 

CdSe quantum dots [67].  After reconstruction, the nanowire exhibited a broad distribution 
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of bond lengths.  The Cd-Se bonds in the core of the nanowire deviated from their bulk 

values by <1%, while those on the surface were altered by up to 5%.   

 To compare the DFT-predicted relaxed structures with the structures measured by 

EXAFS, in Fig. 3.7 D and E the 1NN and 2NN dichroism of the DFT relaxed structures is 

plotted.  The qualitative changes in the dichroism of both the 1NN and 2NN bonds are 

similar to those measured by EXAFS (Fig. 3.7 A and B).  For the 1NN, the relaxed bulk 

structure (dotted line) exhibits a positive dichroism (elongation) along the c-axis, while the 

relaxed nanowire (solid black line) exhibits almost no dichroism, as was observed with 

EXAFS.  For the 2NN the bulk structure exhibits a small elongation along the c-axis, while 

the nanowire exhibits a strong negative dichroism, with smaller 2NN bond lengths along the 

c-axis, again in agreement with EXAFS measurements. 

In addition to predicting the total change in dichroism when moving from a bulk to 

nanowire geometry, the atomistic simulations can investigate the structural origin of the 

dichroism.  In figures 3.7 D and E, the contributions to 1NN and 2NN dichroism from 

atoms in the core (dashed line) and on the surface (dotted and dashed line) of the nanowires 

are separated.  This analysis shows that the core 1NN bonds expand by ~1% compared to 

the bulk and show a small positive dichroism, while the surface bonds contract by ~0.5% 

and do not show any dichroism.  In contrast, both the core and surface 2NN Se-Se bonds 

show a strong negative dichroism, arising from an expansion of 2NN distances 

perpendicular to the c-axis. 

While the calculated and measured trends in bond lengths show good agreement, the DFT 

predicted bond lengths are approximately 1% shorter than the measured ones.  This 
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underestimate of the CdSe bulk bond length has been observed in previous calculations [68] 

and results from known “over-binding” in semiconductors and insulators when described 

within the local density approximation of DFT.  It is notable that the measured and 

predicted structural dichroisms qualitatively agree, even though no surfactant molecules were 

included in the DFT simulations.  This result supports previous theoretical predictions [67], 

indicating that the interaction between surfaces of small CdSe dots and organic surfactants is 

weak enough not to significantly perturb surface reconstructions obtained for bare dots.  

Previous calculations on bulk CdSe surfaces indicated that surfactants will reduce surface 

reconstructions [19], which may explain why the DFT calculations presented here predict a 

larger 2NN dichroism than measured. 

 The observed compression of CdSe nanorods along their c-axes appears to depend 

not only on their size, but their shape.  II-VI quantum dots of comparable size have 

displayed decreased bond distances with respect to the bulk [69].  A study on CdSe nanodots 

showed that both the c- and a-axes were compressed [70], rather than just the c-axis.  Bulk 

CdSe mechanical properties do not explain the anisotropic compression in the nanorods, as 

the elastic modulus along the c-axis (87.1 GPa) is larger than that along the a-axis (74.6 GPa) 

[71].  As neither size nor bulk properties explain the preferential c-axis compression, the 

origin of this compression must lie in the rod shape.  This is consistent with structural 

studies on other anisotropic nanomaterials, such as colloidal core-shell CdSe-ZnS nanorods.  

As the ZnS shell thickness was increased, XRD revealed an overall compression which was 

maximal along the c-axis [72].  Wurtzite GaN and ZnO nanowires [73, 74] also displayed
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FIG. 3.7. Cd-Se distances (first shell) versus θ2cos .  Inset: schematic drawing of SeCd4 

tetrahedron in nanorods and bulk showing loss of distortion in nanorods.  B. Se-Se distances 

(second shell) versus θ2cos .  For both A and B, the dashed curves denote the 95% 

confidence bands, while the dotted lines are calculated for an oriented ideal bulk crystal of CdSe.  

The error bars displayed in each of these plots are representative of the systematic error in each 

distance measurement.  C. Schematic of nanorod orientation with respect to the X-ray 

polarization, denoted by the double-headed arrow.  D. Plot of -weighted Cd-Se distances 

from DFT calculation of a relaxed nanorod versus .  E.  Plot of -weighted Se-Se 

θ2cos

θ2cos θ2cos
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distances from DFT calculation of a relaxed nanorod versus .    The dots-and-dash line 

denotes the surface nanorod distances, the dashed lines are the core nanorod distances, and the 

solid line the average of all distances.  The dotted lines are bulk CdSe distances derived from the 

DFT calculation.  In A and E the oriented bulk model data are shifted downwards by 0.007 Å and 

upwards by 0.04 Å, respectively, for a better visual comparison. 

θ2cos
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 asymmetric changes in atomic distances, although their dichroism was of the opposite sign 

of the one observed here (their long axes stretched, while their short axes shrank).   Bulk 

ZnO deviates more from perfect tetrahedral bonding than nanowire ZnO [74], similar to 

what occurs in CdSe.  When comparing the behavior of ZnO and GaN nanowires with that 

of CdSe rods, it is important to note that both of these nanowire materials were grown 

differently than the CdSe nanorods with no surfactants.  

 

3.8.2. Significance of nanorod coordination numbers 

The CN of the Se atoms in the nanorods was also investigated to probe the Cd 

content on the nanorod surfaces.  The 1NN and 2NN CNs measured for the nanorods are 

3.6 (±0.05) and 9.98 (+0.96, -0.72), respectively.  These CNs fall in between those expected 

for a completely Cd-terminated wire (4, 9.94) and those expected for a stoichiometric wire 

(3.4, 10.1), indicating, as expected, a slightly Cd-rich surface.  These results are consistent 

with Rutherford backscattering spectroscopy performed on CdSe dots synthesized in a 

similar manner [75].  Additionally, no angular dependence of the 1NN and 2NN CNs in the 

nanorods is observed.  This is consistent with nanorod models based on the ideal wurtzite 

lattice structure, which predict that the angular dependence averages to zero when the 

contributions from all surface facets of a cylindrical rod are included. 

As the surface is not entirely Cd-coated, the possibility of having other atoms bound 

to Se was explored.  Data fits did not improve when including the shells from reference 

compounds of likely surface species, indicating that the only atom bound to Se is Cd [6].  

Thus, there is probably unpassivated Se on the nanorod surfaces, which agrees with previous 
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theoretical and experimental work on quantum dots [19, 76].  The only other way to produce 

a reduced Se CN would be the presence of Cd vacancies.  This seems unlikely as 2.5 % of 

the Cd in the particles would have to be removed, a rather high percentage. 

 

3.9.  Potential caveat: Presence of two first-shell and second-shell distances in bulk 

standard 

 The analysis relied upon fitting to amplitude and phase functions derived from 

empirical measurements of bulk CdSe.  A potential problem with this analysis is that for bulk 

CdSe, a single average distance was assumed, rather than the two different distances that are 

actually present.  The bonds along the c-axis are 0.005 Å longer than the rest of the bonds.  

There are two different Se-Se distances as well; those along the c-axis are shorter.  Here, it is  

shown that the effect of having two different distances present (for first and second shell 

distances) is insignificant and hence the assumption of a single distance is valid. 

 There are two distances present for both the first shell and second shell in CdSe.  

The distribution of these distances can be described as the following: 

)()1()()( 21 rrxrrxrP −−+−= δδ .    (3.6) 

For 1NN distances, x = 0.75, and for 2NN distances, x = 0.5. 

With a standard cumulant expansion [77, 78], the EXAFS signal can be expressed as 
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Hence, a distribution of bonds in the standard will affect the anharmonicity term C3.  

As )( 3
3 rrC −= , using the distribution P(r) given in equation 3.6, we find 

3
213 ))(21)(1( rrxxxC −−−= ,    (3.8) 

which, for x = 3/4 and a bond distance difference of 0.005 Å, is -1.17 ×10-8 Å.  The 

contribution of the bond distance distribution to anharmonicity is much smaller than 

previously measured values for bulk cadmium selenide; C3 was measured at 250 K (with 18 

K data as a reference) to be ~8 ×10-5 Å3 [54].  For the 2NN distances, x = 1/2, which makes 

C3 = 0.  It can therefore be concluded that the assumption of an averaged bond value for the 

CdSe standard is valid. 

 

3.10. Conclusions and outlook 

   

In conclusion, a combination of EXAFS measurements and DFT calculations was 

used to characterize the structure and surfaces of CdSe nanorods.  In the rods, 1NN and 

2NN distances are reduced along the c-axis with respect to bulk CdSe, while distances along 

the a/b-axes are mostly unchanged.  Density functional theory predictions for the relaxed 

structures qualitatively agree with these measurements.  In addition, the calculations indicate 

that the most significant structural changes accounting for the measured dichroism occur on 

the surface of the nanowires.  Further comparisons between nanowire models and the 

measurements show that the nanorod surfaces are Cd-rich, with some unpassivated Se atoms. 
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This investigation shows that EXAFS measurements, combined with ab-initio calculations, 

represent a powerful tool to investigate surface reconstructions at the nanoscale. 

 Future investigations of semiconductor nanocrystal surfaces, including CdSe 

nanoparticles, could hopefully include Cd K-edge EXAFS, as well as some soft X-ray 

spectroscopy on phosphorous or oxygen to better probe the attachment geometry of the 

surfactants.  Ultimately, if shorter nanorods could also be aligned, with a higher fraction of 

rod tips versus sides, perhaps more information could be derived regarding the structure and 

composition of the tips versus the sides, in conjunction with other methods such as X-ray 

photoelectron spectroscopy.  Hopefully, this basic process of using crystallographically- 

aligned assemblies for orientation-specific measurements could be applied to other shapes of 

nanocrystals. 
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CHAPTER 4.  X-RAY ABSORPTION SPECTROSCOPY OF CDSE/ZNS 

CORE-SHELL NANORODS 

 

4.1. Motivation and background 

 

 As previously mentioned, the size- and shape-tunable optical properties of cadmium 

selenide nanorods have spurred interest in their use for various applications such as light-

emitting diodes or orientation-specific fluorescence bioprobes [48][79].  Unfortunately, CdSe 

nanorods are at a disadvantage due to their weak fluorescence, with a quantum yield < 1% 

[72].  When a CdSe nanorod absorbs a photon of adequate energy, an electron is excited up 

to the conduction band, and a hole is created in the valence band.  This electron-hole pair is 

called an exciton.  Fluorescence will only occur if the electron relaxes back down into the 

valence band; in other words, the electron and hole must recombine.  If intraband energy 

states, commonly formed due to the presence of surface defects or unpassivated bonds, are 

present, electrons or holes may be “trapped” in these states, thus preventing exciton 

recombination [11].    

 Given the detrimental effect of the surface upon nanorod fluorescence yield, 

previous members of the Alivisatos group developed a protocol for surface modification 

[72].  Specficially, they epitaxially grew shells of higher band-gap materials (ZnS/CdS) onto 

the surfaces of CdSe nanorods.  This type of surface modification had already been 

demonstrated to work for zero-dimensional CdSe nanocrystals (spherical “quantum dots”) 

[80].  Growing epitaxial shells increases fluorescence yield in two ways.  First, as the shell is a 
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higher band-gap material than the core, the excitons are energetically more confined to the 

core, thus increasing their probability of recombination (and hence the probability of 

fluorescence).  Second, by passivating unbonded atoms on the core, surface states are 

eliminated that would otherwise “trap” charge carriers.   

In developing the synthesis protocol for epitaxial shell growth on nanorods, two 

primary discoveries were made.  First, it was found that epitaxy in the higher-dimensional 

(pseudo 1D) nanorods was not the same as it was for the 0D quantum dots.  In the dot 

synthesis, a ZnS shell is directly grown onto the CdSe dot.  For nanorods, this was not 

possible; the shell stock solution not only had Zn and S precursors, but a Cd precursor as 

well.  It is thought that the epitaxial strain of growing ZnS directly onto CdSe is too 

energetically unfavorable for the nanorod geometry.  Second, it was found that exposing 

core-shell nanorods to intense visible light effected a significant and irreversible increase in 

quantum yield.  It was posited that this phenomenon arose from structural rearrangements at 

the core-shell interface or on the surface; hence the process was dubbed “photoannealing”. 

 Such observations naturally inspire curiosity regarding the atomic structure of the 

surfaces and interfaces present in core-shell nanorods, both to elucidate the mechanics of 

epitaxy in higher-dimensional nanostructures, as well as the origins of interesting optical 

behavior.  This chapter concerns initial studies upon surface and interface structure in 

higher-dimensional core-shell nanocrystals, specifically CdSe-ZnS core-shell nanorods.  It is 

hypothesized that there are two major factors influencing the core and shell structures of the 

nanorods: the large surface area-to-volume ratio, and epitaxial strain.   The presence of the 

surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial 
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strain might cause the core and shell lattices to contract or expand to minimize strain energy.   

Shape-induced effects, such as anisotropic bond contractions, are anticipated as well. 

 Core and core-shell nanorod structures were examined with X-ray diffraction (XRD) 

and extended X-ray absorption fine structure (EXAFS) spectroscopy.   EXAFS was 

particularly beneficial for this experiment due to its elemental specificity, which allowed the 

core to be probed separately from the shell.  As with the plain CdSe nanorods, EXAFS was 

also useful due to being a local probe (and hence sensitive to surface or interfacial bonding). 

 

4.2. Experimental 

 

4.2.1. Preparation of the nanorods 

 

4.2.1.1. Synthesis 

 Synthesis of the CdSe/ZnS core-shell nanorods has been described previously [72] 

and is only briefly discussed here.  Nanorods were synthesized by the late Dr. Benjamin 

Boussert.  They were characterized with TEM, XRD, and UV-visible absorption/emission 

spectroscopy by both Dr. Boussert and D. Aruguete.  CdSe nanorods were synthesized as 

described in chapter 3, except that the prolonged growth steps via slow injection were 

eliminated, resulting in shorter CdSe nanorods (3.5 (±0.3) nm × 16.8 (±2.0) nm).  After 

washing with methanol to remove excess surfactant, the nanorods were dissolved in 

chloroform, which was mixed with heated, de-gassed TOPO.  The chloroform was removed 

with pumping.  A mixed stock solution of dimethyl cadmium, diethyl zinc, and 
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hexamethyldisilathiane was added in slowly to epitaxially grow a graded shell of CdS/ZnS on 

the CdSe rods (figure 4.1). 

1. CdSe 2. CdS on 
CdSe

3. ZnS on CdS 
on CdSe

1. CdSe 2. CdS on 
CdSe

3. ZnS on CdS 
on CdSe  

 

Figure 4.1.  Schematic of the growth of a graded CdS/ZnS shell on a CdSe nanorod. 

  

Previous attempts to grow a pure ZnS shell, rather than a graded shell, onto nanorods 

proved unsuccessful.  An intermediate layer of CdS between the CdSe and ZnS is believed to 

relieve epitaxial strain, as the lattice parameters of CdS are between those of CdSe and ZnS.  

The presence of this intermediate layer has been indirectly substantiated by energy dispersive 

X-ray (EDX) analyses, as well as UV-visible absorption spectroscopy.  (Cation or anion 

exchange along the core-shell interface had not been ruled out previous to the work 

presented in this chapter.)  As per previous results, XRD showed that the core-shell 

nanorods retain the wurtzite crystal structure of the cores. 

Nanorods with shells of three different thicknesses were prepared, referred to in this 

chapter as thin-, medium-, and thick-shell nanorods.  Different shell thicknesses were 

achieved by varying the amount of shell stock solution for growth.  Thin-shell rods had 

dimensions of 3.9 (±0.5) nm × 16.4 (±2.4) nm, medium-shell rods had dimensions of 4.1 

(±0.4) nm × 17.0 (± 2.0) nm, and thick-shell rods had dimensions of 5.1 (± 0.5) nm × 18.8 (± 
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2.3) nm.  Size distributions were measured from TEM images using samples of at least 100 

nanorods.  While the sample sizes may appear to have significant overlap, the UV-visible 

absorption spectra (figure 4.2) confirmed that their shells were definitely of different 

thicknesses.  A notable red-shifting of the first exciton absorption feature can be observed, 

caused by the increase in the size of the nanocrystals [72]. 

 

 

 

Figure 4.2. UV-visible absorption spectra from core and core-shell nanorods.  The first exciton 

absorption feature, positioned at ~590 nm for the cores, progressively red-shifts with increasing 

shell thickness.   
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4.2.1.2. Photoannealing of core-shell nanorod samples 

 Core-shell nanorods, upon exposure to visible or UV light (under air-free conditions) 

experience a dramatic irreversible increase in their visible photoluminescence intensity [72].  

It has been posited that this increase is due to a process known as “photoannealing”, in 

which light induces structural rearrangements of the crystal lattice, eliminating surface or 

interfacial defects.  Such defects can create energy states which trap charge carriers, 

preventing exciton recombination and hence fluorescence.  Therefore, removing such 

defects should allow more recombination events to occur, increasing fluorescence intensity. 

 While both photoannealed and unannealed samples (these were kept in the dark until 

measurement) were both examined with X-ray absorption spectroscopy, the data presented 

here are only for photoannealed samples.  This is because initial experiments performed by 

Dr. Matthew Marcus could not clearly establish whether X-ray beam was annealing the 

unannealed samples; considerations of the power input by the X-ray beam could not rule out 

this possibility.  

 

4.2.2. Preparation of nanorods for XAS 

 All preparation, including cleaning, was conducted in an argon drybox.  Cleaned 

nanorods were highly concentrated in toluene.  The solutions were pipetted, by capillary 

action, into open-ended 0.3 mm ID X-ray capillaries of glass, borosilicate, or quartz 

(produced by breaking the ends of commercially-available capillaries).  The ends were sealed 

with Torrseal epoxy and allowed to set for three days.   

 While capillary samples could be used for Se and Zn K-edge EXAFS, the capillary 

walls were too thick for Cd L3-edge or S K-edge XAS.  Not only are these edges at lower X-
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ray energies (~3540 eV and ~2470 eV, respectively), but the X-ray flux at the beamline used 

(ALS, 10.3.2) is reduced at low X-ray energies.  Therefore, the samples were prepared on 

thin Si3N4 X-ray substrates manufactured by Silson Ltd. (UK) per the procedure in figure 4.3. 
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Figure 4.3.  Sample preparation procedure for Cd and S XAS. 

 

 2 μL of nanocrystal solution were deposited with a pipettor onto the flat side of a 100-200 

nm thick Si3N4 square X-ray window (1-5 mm edge length) and allowed to dry.  The X-ray 

window was held with a pair of anticapillary electron microscopy (EM) tweezers and tilted 

during drying to ensure that the droplet remained upon the window, rather than drying onto 

the window frame.  Additional drops of solution were added as necessary to form an opaque 

mass of dried nanocrystals readily visible to the naked eye. 

 Once a satisfactory amount of nanocrystals had been deposited, the concave side of 

another Si3N4 window was placed on top.  One side of this “sandwich” was secured with a 

pair of EM tweezers, and Torrseal epoxy was carefully applied to the open edges of the 

sandwich.  After 24 hours, this procedure was repeated for the other side.  The epoxy on 

both sides set for the maximum setting time (3 days).  During epoxy setting in the drybox, 
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samples were shielded from light to prevent photooxidation from any residual oxygen or 

water.  Samples were transferred to the ALS under argon in sealed vials. 

 

4.2.3. Spectroscopy and diffraction 

The setup was the same as described in chapter 3, except for two main features.  

First, all data was measured on room temperature samples.  Second, Cd and S XAS 

measurements were conducted in a slightly different 

fashion to improve signal.  Only X-ray fluorescence 

was collected for Cd and S XAS, as there was not 

enough sample for useful X-ray transmission data.  

The X-ray beam path was encased in helium by 

attaching a modified piece of pipe to the X-ray 

fluorescence detector, as shown in figure 4.4.  This so-

called “beampipe” had X-ray transparent mylar 

windows and was constantly purged with an He gas 

supply.  The beampipe was necessary for reducing air 

absorption of the lower energy X-rays, increasing the signal 

substantially.  Powder XRD at 16 keV was collected as part 

of the standard characterization for the nanorods, to 

confirm that they had undergone the same structural 

changes as previously documented [72].  Data was collected 

on a CCD and integrated using the Fit2D software package.  

Alumina (National Institute of Standards and Technology) was used as a calibrant. 

He

beam

sample

Fluorescence 
detector

He

beam

sample

Fluorescence 
detector

Figure 4.4.  Helium-filled 

beampipe attachment.  The 

opening on the side and the 

angled end of the beampipe 

are covered with X-ray 

transparent mylar. 
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 EXAFS and XRD bulk standards used were commercially purchased, except for the 

bulk CdSe standard (see chapter 3) and the bulk wurtzite ZnS, provided by Dr. Benjamin 

Gilbert, LBNL. 

 

4.3. Powder X-ray diffraction results 

 The powder XRD diffraction results are shown in figure 4.5 for three reflections: 

100, 002, and 101.  The (002) planes are perpendicular to the c-axis of the nanorod, while the 

(100) planes are parallel.  The 002 reflection is considerably sharper and narrower due to the 

shape of the nanorod; there are many more (002) planes than there are (100) or (101) planes, 

hence size-broadening effects are not so pronounced. 

 The d-spacings of these planes decrease as the shell thickness increases.  In 

particular, relative to the cores, the (002) interplanar spacings show the most compression.  

These results qualitatively agree with previously recorded XRD for core-shell nanorods. 

 

Table 4.1.  XRD Peak Position Changes as a Function of Shell Thickness 

 

Sample q(100) q(002) q(101) (100) d-
spacing 
change 

(002) d-
spacing 
change 

(101) d-
spacing 
change 

Cores 17.07 18.01 19.08 0% 0% 0% 

Thin shell 17.10 18.16 19.18 0.20% 0.80% 0.54% 

Medium shell 17.10 18.22 19.27 0.20% 1.15% 1.00% 

Thick shell 17.25 18.34 19.42 1.10% 1.80% 1.75% 
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4.4. EXAFS results and discussion 

 Analysis and fitting methods used for the data were the same as those described in 

chapter 3.  As the core-shell nanorods were not crystallographically aligned, no further 

analysis regarding polarization effects was necessary.  All data was k2-weighted for analysis. 

 In chapter 3, discussion of the EXAFS Debye-Waller factors (DWFs), otherwise 

known as the statistical variances in the interatomic distance distributions (assuming 

Gaussian bond distributions) was highly limited.  This was due to the fact that the data from 

the EXAFS empirical standard was measured at a different temperature than the 

nanocrystals.  The nanorod data was fit using the phase and amplitude functions derived 

from the empirical bulk data.  Thus, in the absence of good heat capacity models for 

nanorods, it was not possible to draw any conclusions about bond disorder in the samples.  

For the core-shell studies, all samples were measured at room temperature, allowing for 

comparisons between the nanorod samples and the bulk standards.   

 By definition, the DWFs for bulk standards are zero.  Thus, positive DWFs for a 

sample mean that the sample is more disordered than the bulk standard, whereas negative 

DWFs mean that the sample is more ordered.  

 

4.4.1. Se K-edge EXAFS 

 Fourier transform magnitudes for the raw Se data of the CdSe core nanorods, the 

CdSe/ZnS core-shell nanorods, and various standards are shown in figure 4.6.  No peak 

corresponding to the Zn-Se first shell signal is present in the nanorods, confirming that there 
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is no significant diffusion of Se or Zn through the CdSe/CdS/ZnS interface.  Of all of the 

Se species considered in the fitting, only CdSe was detected. 

 

4.4.1.1. Se first shell distances (Cd-Se distances) 

 The Cd-Se distances are displayed in figure 4.7 A.  Contrary to the trends displayed 

in the XRD data of section 4.3, core-shell nanorod Cd-Se distances are not significantly 

reduced with respect to those in the cores, except for the distances in the thick-shell 

nanorods.  While these EXAFS results may appear to contradict with the XRD data, the 

differences between these two structural probes must first be considered.   

 One of the primary differences between EXAFS and XRD is that the EXAFS is an 

orientation-averaged technique (unless the sample is crystallographically aligned; see the 

studies in chapter 3).  For the first shell, ¼ of the EXAFS signal arises from the Cd-Se 

bonds parallel to the c-axis; the other ¾ of the signal comes from those that are more aligned 

with the a- and b-axes.  Thus, even if the Cd-Se bonds parallel to the c-axis of the rod are 

compressed, if the other Cd-Se bonds have expanded accordingly, then EXAFS will register 

no change in the overall Cd-Se distance.  This is a possible scenario for the core-shell 

nanorods. 

 Such a hypothesis involving the expansion of the bonds along the a- and b-axes may 

seem to be invalidated by XRD data concerning the (100) interplanar spacings, which are 

reduced with increasing shell thickness.  Nevertheless, this seeming contradiction illustrates 

another primary difference between XRD and EXAFS.  While the XRD is a convolution of 

diffraction from both the CdSe and the CdS/ZnS shell, EXAFS specifically probes one set 
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of atoms at a time.  Thus, if the core expands, but the shell contracts, it might still be 

possible to obtain an XRD signal showing an overall contraction. 

 Parsing out such hypotheses may require simulation of XRD patterns from core-

shell nanorods, as well as a deeper analysis of the EXAFS Debye-Waller factors.  The latter 

shall be discussed in the next section. 

 

4.4.1.2. Cd-Se Debye-Waller factors 

4.4.1.2.1. General contributions to disorder in materials 

Disorder in EXAFS is measured as the Debye Waller factor, or the variance in the 

distribution of interatomic distances (assuming a Gaussian distribution).  Contributions to 

disorder in a structure can be divided into two categories: static, and temperature-dependent 

[31].  Static contributions refer to distributions of interatomic distances that do not change 

dramatically with time or temperature.  One example of this has already been alluded to in 

the previous section.  For example, the presence of both compressive and tensile strain in a 

nanorod might result in two different overall bond lengths for most temperature ranges.  

The presence of two bond lengths, rather than one, by definition is a broader distribution in 

bond lengths; this would be a static contribution to the DWF.  

Temperature-dependent contributions refer to the vibrational properties of a 

material.  For a crystal, as temperatures are raised, more vibrational modes can be sampled, 

which increases the overall distribution in interatomic distances sampled by EXAFS.  If the 

vibrational modes available to a crystal are reduced, either by reducing temperature or via 

mechanical means, then the DWF measured from that crystal should be reduced. 
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4.4.1.2.2. Cd-Se DWFs 

 In figure 4.7 B, it is apparent that the DWFs decrease as the shell thickness increases.  

This trend can be easily explained.  First, capping a plain CdSe nanorod should significantly 

decrease Cd-Se DWFs, because underbonded surface Cd and Se are eliminated.  As the shell 

is thickened, additional strain may exert more compressive pressure upon the nanocrystal 

interiors, reducing the vibrational degrees of freedom, which would also cause a measurable 

decrease in the Cd-Se DWFs. 

 

4.4.1.3.  Cd-Se coordination numbers 

The Cd-Se coordination numbers for the core-shell nanorods are not easily explained.  

Certainly, the value for the cores is not surprising; it is similar to that measured for the 

longer CdSe nanorods discussed in chapter 3.  Naïvely, however, assuming that the shell 

growth mechanism is correct, one would expect that as more Cd is added to a plain CdSe 

core, all of the dangling Se bonds would be capped.  This would result in a coordination 

number of 4 for all core-shell nanorods.  While this result is observed for the thin-shell 

nanorods, the medium- and thick-shell nanorods again show underbonded Se.  It is not clear 

why the coordination number would decrease for thicker-shelled nanorods, unless additional 

interfacial strain could result in Cd vacancies.  One additional possibility not yet accounted 

for is Se-S bonding; previous EXAFS studies showed that Se-Se bonding occurred in CdSe 

quantum dots [13]. 
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Figure 4.5.  X-ray diffractograms from core and core-shell nanorods, featuring the first three 

strong reflections.  As the shell thickness increases, these reflections shift to higher q values, 

indicating a decrease in interplanar spacings.
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Figure 4.6.  Fourier transform magnitudes from raw Se K-edge EXAFS data (k2-weighting).  

Dotted line is centered on the first-shell peak for bulk CdSe.  Se-TBP refers to Se-

tributylphosphine, a synthesis precursor (see chapter 3); the oxide standards represent likely 

oxide surface species.
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Figure 4.7.  Structural parameters derived from Se K-edge EXAFS on core and core-shell 

nanorods.  Error bars represent 1-sigma limits, and dashed lines denote bulk values.  (A) Cd-Se 

distances.  (B) Cd-Se coordination numbers.  (C) Cd-Se Debye-Waller factors (relative to bulk).
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4.4.2. Zn K-edge EXAFS 

 Fourier transform magnitudes of raw Zn K-edge EXAFS are shown in figure 4.8. 

Principal component analysis was used to select standards for fitting.  Final EXAFS fitting 

was done using phase and amplitude files derived from zinc sulfide and zinc phosphate 

(Zn3(PO4)2), a model compound for zinc-phosphonic acid surfactant complexes on the 

nanorod surfaces.  Sphalerite ZnS data was used instead of wurtzite data as our bulk 

standard, as the first shells for both polymorphs are indistinguishable, and the sphalerite data 

was of higher quality. 

 

4.4.2.1. Zn-S distances 

 A plot of Zn-S distances with respect to shell thickness is shown in figure 4.9 A.  

What is most remarkable is the contraction of the Zn-S distances despite being grown on 

top of two materials with lattice parameters larger than those of Zn-S.  Normally, as has 

been demonstrated in other epitaxial systems, the Zn-S lattice would be expected to expand 

in order to relieve some of the lattice mismatch strain.   

It is possible that such bond contraction is a result of the ZnS being on the surface.  

For many crystalline surfaces, it is common for the first few surface monolayers to rearrange 

themselves to a new low-energy geometry, generally to maximize bonding interactions; such 

rearrangements may involve bond contractions [81].  The contraction lessens as the shell 

thickens.  This may be due to the fact that as the shell grows, a lower percentage of the total 

ZnS bonds are actually at the surface.  The presence of a surface-induced contraction is 

consistent with the calculations discussed in chapter 3, although it is not clear why they 

would be so much more dramatic with a ZnS shell. 
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4.4.2.2. Zn-S coordination numbers 

 The Zn-S coordination numbers (figure 4.9 B) are not particularly surprising; as the 

shell thickens, the coordination number increases, much as would be expected.  EXAFS 

detects the presence of zinc bonding to a surfactant species (the fitting error decreases when 

zinc phosphate is included as opposed to zinc oxide).  Currently, the average number of 

surfactant molecules per zinc atom cannot be quantified, due to the nature of the empirical 

standard used for fitting, zinc phosphate, which has an ill-defined first shell (multiple Zn-O 

distances).   A more quantitative analysis necessitates the use of FEFF to directly simulate 

EXAFS from surfactant species. 

 

4.4.2.3. Zn-S Debye-Waller factors 

 Despite the fact that ZnS is on the surface, the DWFs (figure 4.9 C) do not vary 

greatly from bulk (defined as zero).  Normally, due to underbonding, surfaces, particularly of 

nanocrystals, are expected to be disordered with respect to the bulk.  It is possible that the 

static disorder that would be expected for a surface is balanced out by decreased vibrational 

freedom due to surface-induced compression. 
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Figure 4.8.  Fourier-transform magnitudes of Zn K-edge raw data.  Dashed lines serve to guide 

the eye with respect to the peaks shown in the thin shell nanorod data.  Sphalerite ZnS data is 

shown, as it is virtually identical to that for wurtzite and the data was of higher quality. 
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Figure 4.9.  Physical parameters for first-shell Zn-S bonds derived from Zn K-edge EXAFS.  Error 

bars represent 1-sigma limits, and dashed lines denote bulk values.  (A) Zn-S distances.  (B) Zn-

S coordination numbers.  (C) Zn-S Debye-Waller factors (relative to bulk). 
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4.4.3. Cd L3-edge EXAFS 

 The Cd EXAFS signal-to-noise ratio was much poorer than that of the Se and Zn, 

primarily because of the lower absorption cross section, as well as the reduced flux for this 

energy range.  Principal component analysis was performed upon the Cd XANES data to 

select for the major chemical species contributing to the Cd signal.  The two main species 

were CdS and CdSe.  The Cd EXAFS was fit with both CdS and CdSe shells.  Due to the 

lower signal-to-noise ratio, the k-range of this data was shortened.  In order to keep the 

number of parameters fit below the number of the degrees of freedom in the data, values of 

distance and the Debye-Waller factor were fixed for the Cd-Se shell to those derived from Se 

EXAFS.   

 The Fourier transform magnitudes of the raw Cd EXAFS data are displayed in figure 

4.10.  In figure 4.11, plots of the Cd-S distances, the coordination numbers, and the Debye-

Waller factors with respect to shell thickness are shown.  The Cd-S distances do not differ 

from bulk, even though the shell has been grown onto CdSe, which has a larger lattice 

spacing.  It is possible that the ZnS shell causes a compressive strain which cancels out any 

effect of the underlying CdSe lattice. 

 The Cd-S coordination number shows the same trend observed for the Cd-Se 

coordination number; the thinnest shell has the highest coordination number, followed by a 

reduction for the thicker shells.  Again, this may imply that upon continued growth of ZnS, 

vacancy formation is induced at the interface.  An alternative possibility is that of a vacancy-

ridden mixed ZnS/CdS shell (previous energy-dispersive X-ray analyses have indicated that 

the shells contain small amounts of Cd beyond the interface [72]).    The presence of Se-S 
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bonding might also explain such anomalous coordination numbers [13].  The DWFs for the 

Cd-S are either positive or zero, indicating the presence of some disorder. 
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Figure 4.10.  Fourier-transform magnitudes of Cd L3-edge raw data.  Dashed line A is centered 

on the Cd3(PO4)2 peak, while line B is centered on the bulk CdS first shell peak.  Bulk CdSe and 

the nanorod signals are multiplied by 3 for easier visual comparison. 
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Figure 4.11.  First-shell physical parameters for Cd-S pairs derived from Cd L3-edge EXAFS.  

Error bars represent 1-sigma limits, and dotted lines denote bulk values.  (A) Cd-S distances.  (B) 

Cd-S coordination numbers.  (C) Cd-S Debye-Waller factors (relative to bulk). 
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4.4.4. S K-edge XAS 

 S K-edge XAS was collected from multiple nanorod samples, as well as standards.  

Unfortunately, despite the helium-filled beam path, the signal-to-noise ratio was still poor.  

Analyses of EXAFS has produced inconsistent results.  Principal-component analysis and 

linear-combination fitting of XANES has also produced results incongruent with other 

spectra (e.g. showing that no ZnS is present when the Zn EXAFS has displayed a strong 

signal).  Further analyses are underway to see if such incongruities in the fitting might be 

resolved. 

 

4.5. Outlook and conclusions with respect to previous work on nanoscale epitaxial 

structures 

 Despite the great variety of core-shell colloidal semiconductor nanocrystal syntheses 

described in the literature, there is still an astonishing paucity of detailed structural studies 

concerning these materials.  One EXAFS study concerning CdTe quantum dots [82] capped 

with thiols displayed trends both contrary to and in agreement with our observations.  This 

study found that relative to bulk, Cd-S bonds were elongated, while some Cd-Te bonds 

(attributed to the surface) were constricted.  In the core-shell nanorods, the Zn-S bonds 

were constricted, and the core constriction, while present, was not nearly as dramatic.  The 

study on the quantum dots also showed that the Debye temperature decreased for the CdTe 

core with respect to bulk, indicating increased stiffness (decreased temperature-dependent 

disorder), while the static disorder increased with respect to bulk.  Debye-Waller factors for 

the core in core-shell nanorods decreased with respect to the bulk.  Note that these DWFs 
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are a measurement of overall disorder, inclusive of both temperature-dependent and static 

effects. 

 More regarding II-VI heteroepitaxial structures or mixed II-VI semiconductor 

structures may be found in bulk or thin-film literature, although there exists further room for 

investigations (especially EXAFS investigations sensitive to local structure or vacancies).  It 

should be noted that the structures of these bulk or thin films may heavily depend upon 

their preparation conditions; thus, any comparisons between these structures and those of 

the nanocrystals must be considered carefully.  For the most part, only broadly general 

comparisons can be made. 

The observations of bond relaxations for mixed semiconductors and thin-film 

superlattices have varied in the literature.  Generally, they either show bond relaxations, in 

which smaller lattices stretch to accommodate larger ones and vice versa [83-85]; at times, 

there are minimal to no changes in bond distances with respect to the bulk [86].  

Nevertheless, despite the variability in the literature, it appears that the bond distance 

contraction observed for the ZnS nanorod shell cannot be explained according to what has 

been observed for bulk/thin-film systems.  We have not been able to find any examples in 

which a material epitaxially grown onto or mixed with another material with a larger lattice 

parameter contracts.  This indicates that such contractions must be surface-induced or 

otherwise the result of the unique 1D geometry of the system, in between a quantum dot 

and a thin film.  A Raman study of core-shell CdSe-ZnS quantum dots indicated that thinner 

ZnS shells were amorphous and only grew more crystalline with increasing thickness [87].  If 

a similar phenomenon is occurring in the nanorods, this might explain anomalous bond 

distances.  Regarding the possibility of either switched anions/cations or defects at the 
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epitaxial interface, the bulk/thin-film literature contains examples of both [84, 88-90], 

indicating that both are possible for the nanorods.  The results of the EXAFS studies in this 

chapter have ruled out the former phenomenon, but the possibility of vacancy defects [91] 

must be taken into account more quantitatively for future analyses. 

Further analysis of the core-shell nanorod data is necessary for a more complete 

picture of their structures.  First, as mentioned in section 4.4, the analysis of the sulfur XAS 

will need to be completed.  If S-Se bonding appears to be present, XPS may be a useful 

complementary technique for independent detection of Se-S bonds.  Second, simulations of 

the XRD patterns for nanorods could be very useful to see if simultaneous bond expansions 

and contractions would be consistent with the observed XRD.  Such simulations might 

resolve the apparent discrepancies between the XRD and EXAFS data.   
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CHAPTER 5.  INTRODUCTION TO ELECTRON DIFFRACTION 

 

5.1 Background and motivation 

 Diffraction is an immensely useful tool for the structural characterization of 

materials.  This technique is an integral part of some of the studies in this dissertation, 

discussed in chapter 6.  Therefore, a brief introduction to the principles of diffraction is 

presented in this chapter.  Diffraction is defined as the bending or scattering of traveling 

waves by an obstruction [32].  The intensity of the resulting waves, called a diffraction 

pattern, depends upon the structure of the obstacle.   Diffraction patterns are particularly 

helpful for characterizing periodic arrangements of obstacles, such as the periodic array of 

atoms in a crystal. 

 Electron diffraction was specifically used for the studies described in chapter 6.  

Thus, the discussion in this chapter focuses in particular on electron diffraction and how it is 

coupled with electron microscopy to characterize structure [92][93-96].  As the majority of 

readers are the most familiar with X-ray diffraction (XRD), attempts are made to draw 

comparisons between XRD and ED. 

 

5.1.1. The Bragg description of diffraction 

 W.L. Bragg provided an early description of X-ray scattering from crystalline 

materials [93].  He envisioned a crystal as being composed of parallel planes of atoms 

separated by a distance d.  When X-rays strike these planes, they are specularly reflected.  
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Consequent constructive or destructive interference between the rays gives rise to periodic 

scattering patterns. 

 

 

 

Figure 5.1.  Schematic of Bragg diffraction model. 

 

 A schematic of X-ray scattering from a set of planes is depicted in figure 5.1.  In 

order for the two X-rays depicted to interfere constructively, the difference in path length 

between them equaling 2dsinθ  (where θ  is the angle of incidence) must equal an integral 

number of wavelengths.  This requirement leads to the Bragg equation, 

     θλ sin2dn =      (5.1) 

where n must be an integer, and λ is the wavelength of the incident radiation.  This 

description illustrates the link between the positions of intense peaks in the diffraction 

pattern and spacings of crystallographic planes.  Furthermore, given a single crystalline 
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sample and a monochromatic source, θ  is constrained to a number of values.  Thus, it is 

also (correctly) predicted that a very restricted set of orientations (characterized by θ)  give 

rise to observation of one or few pairs of diffraction spots.  Indeed, for simple analyses of 

diffraction data, the Bragg equation is still heavily used (see figure 5.2 for a schematic of an 

X-ray diffraction experiment). 

 

Figure 5.2.  Schematic of a typical diffraction experiment.  The experimenter already knows the 

wavelength of the incident radiation.  By knowing the geometry of the setup, she can measure 

distances between reflections on the film, derive the angle of diffraction, and use Bragg’s Law to 

quickly obtain d-spacings. 
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5.1.2. Real and reciprocal space 

A crystal consists of a periodic array, generally of atoms (although nanocrystals can 

form their own periodic arrays, which will be discussed in chapter 6).  The Bravais lattice, 

defined as the periodic set of points situated in indistinguishable environments, describes the 

underlying periodicity of the lattice, rather than the locations of specific atoms [93].  (The 

geometries of specific atoms will be addressed in section 5.1.5.)  A three-dimensional Bravais 

lattice can be described as the points with position vectors  

cnbnanR vvvv
321 ++= .     (5.2) 

The position vectors ,av b
v

, and cv are the translations of the unit cell (the smallest repeatable 

unit in the structure), and n1, n2, and n3 are integers. 

Now we have a way to describe the crystal structure, but this is not sufficient for a 

discussion of diffraction.  Note that DPs are caused by the presence of periodic structural 

motifs; in fact, when using Bragg’s Law to interpret a scattering pattern, we derive the 

periodic lattice spacings rather than any real-space vectors.  Intuitively, it behooves us to 

express diffraction phenomena directly in terms of these spacings. 

 The problem is much simplified in ‘reciprocal space’, in which each vector *R
v

is 

associated with a particular set of planes in a crystal, hence a particular periodicity.  In other 

words, reciprocal space and real space are related by a Fourier transform.  The reciprocal 

space vectors *R
v

satisfy the relation [93]  

.1
*

=⋅RRie
vv

     (5.3) 

For a given reciprocal space vector **** clbkahR vvvv
++= ,  
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 *R
v

, commonly denoted in the electron diffraction literature as hklgv , has the following 

important properties relative to real space [94]: 

(1) hklgv is normal to the real-space plane that cuts the a, b, and c axes of the unit cell at 1/h, 

1/k and 1/l, respectively.  Indices h, k, and l are are commonly known as the Miller indices 

of this plane.  The set of planes to which hklgv  is normal is referred to as the (hkl) planes.  

(2)  
hkl

hkl g
d v

π2
= , that is, the length of hklgv  is inversely proportional to the spacings between 

the real-space planes (hkl). 

  

5.1.3. The Laue description of diffraction [97] 

 Consider two identical sets of atoms placed at the positions R
v

of a Bravais lattice.  

These atoms re-radiate incident radiation isotropically as spherical waves; the outgoing waves 

interfere constructively only along certain directions for a monochromatic source. 

The two sets of atoms are separated by a displacement vector d
v

, as illustrated in figure 5.3.  

(Note that , , andθ  are defined in figure 5.3). In̂ Fn̂
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Figure 5.3.  Schematic for discussion of Laue description of diffraction, showing the path 

difference when radiation or particles are scattered from two points separated by d
v

.  The vectors 

correspond respectively to the direction of the incident beam and the direction of the vector 

connecting the sample and the detector measuring diffracted intensity.  Image adapted from N. W. 

Ashcroft, and N. D. Merman, Solid State Physics (Brooks Cole, Pacific Grove, CA, 1976). 

FI nn vv ,

 

 These atoms are struck by incident X-rays (or electrons, or neutrons) traveling in the 

direction with a wavelength λ.  The incident waves can be described according to their 

momentum wavevector 

In̂

λπ /ˆ2 II nk =
v

.  In order for a maximum in the intensity of scattered 

rays to be seen for the momentum wavevector λπ /ˆ2 FF nk =
v

, the path difference between 

the rays scattered towards this direction must be equal to an integral number of wavelengths 

for constructive interference.  From figure 5.3 we can see that this relationship can be 

expressed simply as 

λθθ mnnddd FIFI =−⋅=+ )ˆˆ(coscos
v

.   (5.4) 

Multiplying both sides of this equation by 2π/λ, we obtain 

mkkd FI π2)( =−⋅
vvv

.    (5.5) 

 



 
 
 

79 
 

For an entire lattice of points, in which the points are separated from each other by the 

Bravais lattice vectors R
v

,  

mkkR FI π2)( =−⋅
vvv

,    (5.6) 

which alternatively can be expressed as  

1)( =−⋅ FI kkRie
vvv

.     (5.7) 

The Laue condition for diffraction is realized upon combining this expression with equation 

5.3, in which the reciprocal lattice was defined.  Constructive interference occurs only when  

FI kk
vv

− = hklgv ,      (5.8) 

that is, when the change in the momentum wavevector is also a vector of the reciprocal 

lattice [94]. 

The ability of the Laue description to retrieve the empirically correct Bragg equation 

is illustrated in figure 5.4.  The magnitude of the vector FI kk
vv

− is λθπ /sin4 .  We also 

know that when FI kk
vv

− fulfills the Laue conditions for diffraction it is equal to hklgv , and 

that 
hkl

hkl g
d v

π2
= .  Thus, we obtain the equation hkld/2/sin4 πλθπ = , which reduces to 

equation 5.1. 

 

5.1.4. The Ewald sphere 

 A convenient geometric construction, known as the Ewald sphere, aids visualization 

of the Laue diffraction conditions and is depicted in figure 5.4 [93, 94].  In reciprocal space, 

the incident X-ray (or electron, or neutron) wavevector Ik
v

 is drawn such that its beginning is 

at the center of a sphere; the vector ends on the origin O.  The Ewald sphere has a radius of 
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Ik
v

(also Fk
v

).  The wavevector for the scattered X-ray Fk
v

 is drawn with its beginning at the 

center as well.  Using basic vector addition, the difference FI kk
vv

−  is thus depicted.  Per 

equation 5.8, constructive interference can occur only when FI kk
vv

−  equals a reciprocal 

space vector hklgv .  In other words, if the sphere intersects a given point (h,k,l)  in reciprocal 

space, there should be constructive interference from the (hkl) set of real space planes.   

 

 

Figure 5.4.  Schematic of a typical 2D cross-section of an Ewald sphere for X-rays.  Ik
v

 is the 

wavevector of the X-ray incident upon the crystal, Fk
v

 is the wavevector of the diffracted X-ray.  

The vector hklgv  is a vector of the reciprocal lattice. 

 

5.1.5.  The structure factor [98] 

 So far in this review of diffraction, we have not included the effect of the geometry 

and composition of atoms in a given unit cell of the crystal.  When collecting diffraction 

patterns from real crystals, not every set of planes ends up producing a diffraction signal.  

 



 
 
 

81 
 

Consider a real-space unit cell with identical atoms at positions 1d
v

and 2d
v

.  Incident X-rays 

(both with the same wavevector) scatter from these atoms; the change in wavevector 

is hklgv (satisfying Laue conditions for diffraction).  The phase difference between the X-rays 

is )( 21 ddghkl
vvv −⋅ (per figure 5.3), and the amplitudes of these rays will differ by a factor of 

.  The amplitudes of the rays scattered are in the ratios )( 21 ddgi hkle
vvv −⋅ )( 1dgi hkle

vv ⋅ and )( 2dgi hkle
vv ⋅ .  

Summing up the contributions of these two atoms in the unit cell to the scattered X-ray 

produced by the entire unit cell, we have an amplitude with the factor 

      .   (5.9) ∑
=

⋅=
n

j

dgi
K

jhkleS
1

vv

This is known as the geometrical structure factor, and the intensity of any diffracted beam is 

proportional to 2
KS .  For systems with non-identical atoms, this structure factor has the 

form 

∑
=

⋅=
n

j

dgi
hkljK

jhklegfS
1

)(
vvv ,   (5.10) 

where )( hklj gf
v is the atomic form factor, a function specific to the particular scattering atom 

j. 

 The structure factor explains the variations of intensities among the diffraction peaks 

corresponding to different reciprocal space vectors.  Particularly important is the prediction 

of so-called “forbidden” reflections.  These refer to complete absence of diffracted intensity 

in conditions where Bragg’s equation would predict observation of non-zero intensity.  

These turn out to be cases in which SK = 0, usually due to a real-space symmetry for the 

crystal structure under consideration.  While we can rely on the structure factor to predict 
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which reflections are forbidden for systems in which kinematical scattering (single-event, 

elastic) of waves can be assumed, this does not take into account dynamical scattering 

(multiple scattering) phenomena.  Dynamical effects are non-negligible for electron 

diffraction, complicating the interpretation of diffraction data [94-96]. 

 

5.2. Electron diffraction (ED) 

 

 The previous material universally applies to diffraction with any form of radiation, 

including electrons.  Nevertheless, ED has its own idiosyncrasies.  In this section, the special 

features of ED are contrasted with the already discussed features of XRD. 

 

5.2.1. Energy range of electrons as opposed to X-rays 

 Electron diffraction data is often collected in a transmission electron microscope 

(TEM); this was done for the studies discussed in chapter 6.  In a TEM, electrons are 

commonly accelerated through voltages from 100-300 kV.  The corresponding de Broglie 

wavelength is on the order of picometers, two orders of magnitude smaller than the value 

for X-rays.  Given the smaller wavelength of electrons, the corresponding Ewald sphere is 

much larger, as depicted in figure 5.5.  One consequence of a large Ewald sphere is that it 

contacts many points in reciprocal space—for a single orientation of the crystal, multiple sets 

of lattice planes may simultaneously give rise to diffraction spots.  
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Figure 5.5.  Schematic cross section of Ewald sphere for high-energy electrons.  (Image not 

exactly to scale.) 

 

5.2.2. Additional idiosyncrasies of electron diffraction 

 

5.2.2.1. Relrods 

 As previously mentioned, reciprocal space is a Fourier transformation of real space.  

Each point in reciprocal space represents an infinite set of parallel planes of a given spacing.  

However, real TEM samples are not infinitely large; they are thinned down to dimensions 

<100 nm for electron transparency, or may contain crystal domains <100 nm.  When a 

crystalline solid is not infinite in extent, the resulting Fourier transform is no longer a set of 

discrete points, each corresponding to one spatial frequency; rather, these points are smeared 

out.  These diffuse points are referred to as relrods (figure 5.6).  The relrods depicted in 

figure 5.6 are from a thin film.  They are elongated along the thin direction of the film 

(normal to the plane of the film).  For a material that is <100 nm in multiple directions, such 
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as a spherical nanocrystal, the distributions in reciprocal space would be spherically 

symmetric. 

 Relrods are particularly important because they “relax” diffraction conditions.  In 

figure 5.6, the black arrows point to some of the relrods touching the Ewald sphere.  If these 

relrods were contracted down to points, they would not touch the sphere, and hence these 

sets of planes would not diffract.  The presence of relrods can make electron diffraction 

patterns harder to interpret than XRD patterns. 

Electron beam

Thin-film sample

Electron beam

Thin-film sample

Electron beam

Thin-film sample

 

Figure 5.6.  Materials with dimensions < 100 nm can result in rods (or other frequency 

distributions) rather than discrete points in reciprocal space.  An example of relrods for a thin film 

sample is depicted.  The black arrows point to relrods in reciprocal space touching the Ewald 

sphere.  For a thick, single crystalline sample, these rods would be points and would not be 

touching the sphere, and hence we would not see a diffraction signal from these sets of crystal 

planes. 

 

5.2.2.2. Dynamical scattering of electrons 

 Generally, any basic discussion of diffraction assumes kinematic scattering in which 

waves are scattered only once.  Scattering events are assumed to be elastic.  On the other 
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hand, electrons interact strongly with atoms, leading to inelastic scattering.  Scattered 

electron waves also interact with each other.  Dynamical scattering, in which electrons are 

subjected to multiple scattering events, can make electron diffraction more difficult to 

interpret than XRD.  First, the interaction of scattered electrons can lead to phenomena 

such as double diffraction, in which normally structurally forbidden reflections appear in the 

diffraction pattern.  Second, dynamical scattering makes it difficult to obtain quantitative 

information from the intensities of different reflections. 

   

5.3.  Electron microscopy 

 

 Often, electron diffraction of materials is performed in an electron microscope.  

Electron diffraction patterns and microscopic images from the same sample contain 

complementary information.  In addition to doing electron diffraction and imaging, many 

electron microscopes also allow for electron spectrometry, which can provide chemical or 

structural information about materials [94].  

 The following discussion of electron microscopy is by no means complete; the 

interested reader is referred to more detailed discussions in references [94-96].  Here, a few 

features of electron microscopy particularly salient to the studies in chapter 6 are presented. 

 

5.3.1. Bright-field and dark-field imaging 

 When the electron beam in a microscope interacts with a crystalline sample, 

electrons can be elastically forward-scattered or diffracted.  (Inelastic interactions occur as 

well; the reader is referred to [94, 95] for further information.)  For bright-field imaging with 
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a TEM, only the forward-scattered beam is collected for imaging purposes.   This is the 

imaging mode with which many readers will be most familiar. 

 An alternative imaging mode that can be an extremely powerful tool for structural 

characterization is dark-field imaging.  When examining a diffraction pattern, especially one 

originating from a mixture of materials, it is useful to know which parts of the material being 

imaged contributed to the different parts of the diffraction pattern. 
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Sample

Obj. lens

Obj. aperture

Dark-field Bright-field 

Sample

Obj. lens

Obj. aperture

Dark-field Bright-field 

 

Figure 5.7.  Basic beam alignment for bright-field imaging versus dark-field imaging.  For both 

imaging modes, the objective aperture isolates electrons that form the image, blocking the rest.  

In bright-field mode, the main (forward-scattered) beam is allowed to travel along the optic axis.  

In dark-field mode, the incoming electron beam is tilted such that the diffracted beam is traveling 

along the optic axis. 
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pattern Bright-field image

sample
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Pattern with tilted beam Dark-field image

Obj. aperture
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Bright-field image

sample

Pattern with tilted beam
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Pattern with tilted beam Dark-field image
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Figure 5.8.  Schematic of dark-field imaging.  A sample consists of two crystals (colored black 

and white) with two orientations.  (White diffraction spots correspond to the white crystal, black 

diffraction spots correspond to the black crystal.)  In bright-field mode, the image is formed with 

the primary forward-scattered beam; hence the crystals appear dark, as part of the beam has 

been diffracted.  In dark-field mode, the beam is tilted such that electrons from a given reflection 

travel along the optic axis.  The part of the sample that contributes to this particular reflection 

“lights up” in the image.  The rest of the field remains dark because it is not contributing to the 

given reflection.  Different parts of the sample are illuminated depending upon which reflections 

are isolated with the objective aperture. 
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 Dark-field imaging enables us to do this by imaging only with the electrons from a 

specific scattering event (e.g. a single reflection spot) of the diffraction pattern.  The electron 

gun source is tilted such that the diffracted beam of interest is centered in the column (figure 

5.7).  Thus, only the parts of the sample that contribute to that particular part of the 

diffraction appear in the image, per the schematic in figure 5.8.  

 

5.3.2. High resolution transmission electron microscopy (HRTEM) 

With HRTEM, we can image extremely small features in a material, even learning 

about the crystal structure of a material at the scale of a few nanometers.  HRTEM differs 

from conventional TEM in that phase information is included in the image, rather than 

being discarded.  In HRTEM, the objective aperture is left out so that diffracted beams are 

part of the signal being used to form images.   

 

 

Figure 5.9.  Typical HRTEM images of cobalt nanocrystals.  Scalebar is 5 nm.  Images taken by 

D. Aruguete with the Alivisatos group TEM (FEI Tecnai 20). 
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Figure 5.9 shows HRTEM images of cobalt nanocrystals.  The periodic arrays of 

dots or lines are the result of constructive and destructive interference among scattered 

electron waves.  The periodicities imaged will depend upon the orientation of the 

nanocrystal with respect to the beam, the quality of the illumination source, and the defocus 

setting of the objective lens.  HRTEM thus can be used in conjunction with electron 

diffraction in a microscope to understand the finer crystallographic structure of a material. 
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CHAPTER 6.  CRYSTALLOGRAPHIC CHARACTERIZATION OF ε-
COBALT NANOCRYSTAL ASSEMBLIES 
 

6.1.  Motivation and background 

 

 Nanocrystals are not only a matter of academic study, but may also be of great 

importance for data storage and signaling applications [20, 22].  With increasing 

miniaturization of computer data storage, there is great interest in controllably creating 

nanometer scale features for circuitry and other devices.  One means by which nanoscale 

devices could be built is the “bottom up” approach, in which nano-sized or moelecular 

components assemble themselves into desired structures [23, 24, 99].  More recent work has 

suggested that such approaches could even be integrated with traditional “top down” device 

fabrication methods, such as lithography [99, 100]. 

 When a solution of colloidal nanocrystals is allowed to dry on a substrate, the 

nanocrystals often spontaneously assemble to create ordered structures.  Highly 

monodisperse nanocrystals will often form lattice-based arrays, or “supercrystals” in which 

the nanocrystals themselves behave as “artificial atoms”.  Such behavior has been observed 

for many different types of colloidal nanocrystals, including various semiconductors (PbTe 

[101], CdSe [102] ) and metals (Au [103], Ag [104-106], FePt [107], Co [102, 108-110]).  

Recently, even ordered arrays of mixed nanocrystals (two different types of nanocrystals) 

have been shown to be possible [27, 111, 112]. 

 Magnetic nanocrystals and their assemblies are of particular interest for data storage 

or signaling because each nanocrystal contains a single magnetic domain which in theory can 
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be manipulated [50].   In other words, each nanocrystal contains a single large magnetic 

dipole (the sum of the atomic magnetic dipoles acting collectively).  Controlled assembly of 

magnetic nanocrystals could lead to such breakthroughs as a higher-density hard drive [107].   

The magnetic properties of such nanocrystals are size-dependent [113] and can vary with 

surface modifications [114].  Thus with rigorously-controlled syntheses, the properties of the 

nanocrystals should be finely tunable. 

 Understanding the mechanisms of magnetic nanocrystal assembly can be 

complicated, as both electrostatic Van der Waals interactions and dipole interactions must be 

considered.  Currently, there are two size regimes for which magnetic nanocrystal assembly 

is well-understood.  Representative TEM images of these assemblies are featured in figure 

6.1.  Nanocrystals that are small enough are superparamagnetic, meaning that their magnetic 

dipoles are not aligned along any given crystal axis for a significant period of time [50].  

These nanocrystals will assemble according to Van der Waals forces, approximately imitating 

hard-sphere packing models (with soft shells) [25], as shown in figure 6.1.1.  For a larger 

nanocrystal, the magnetic dipole is greater and more strongly fixed along a given easy axis (or 

axes) of the nanocrystal [115].  Thus, interparticle dipole interactions are more important for 

larger nanocrystals, causing them to assemble into loops or chains (Fig 6.1.2.).  These 

arrangements minimize the magneto-static energy of the dipole interactions. 

 One area of magnetic nanoparticle assembly that has not been so well-studied is the 

size regime in which both Van der Waals forces and magnetic forces play a key role.  This 

chapter concerns the preparation and structural characterization of assemblies formed by 

particles in this size regime, namely 9 nm diameter cobalt nanocrystals.  These nanocrystal 

assemblies were crystallographically aligned in a novel fashion.  Characterizations of these 
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assemblies with selected area electron diffraction (SAED) and complementary TEM imaging 

techniques are discussed in detail. 

 

Figure 6.1.  Both images are of cobalt nanoparticles (ε-phase) after drying a solution on a TEM 

grid.  (1) Cobalt  nanoparticles < 9 nm in diameter.  Magnetic interactions between them are 

insignificant, thus they display close-packing behavior dominated by Van der Waals forces.  

Scalebar is 100 nm.  (2) Cobalt nanoparticles ~16 nm in diameter.  Stronger magnetic forces 

cause the particles to form loops or chains.  Scalebar is 200 nm.  Images were collected at the 

UCB Electron Microscope Laboratory with a Philips Tecnai 12 by D. Aruguete. 

 

6.2. Preparation of ε-cobalt nanocrystals and their assemblies 

 

 All synthesis and processing of the cobalt nanocrystals were performed under air-

free, water-free conditions.  9 nm diameter cobalt nanocrystals were synthesized via 

previously established methods [116] that will be briefly described here.    To summarize, 

dicobaltoctacarbonyl (dissolved in 1,2 dichlorobenzene, or DCB) was rapidly injected into a 

boiling solution of oleic acid and trioctylphosphine oxide (TOPO) in 1,2 DCB.  Aliquots (in 

nitrogen-purged vials) were collected 1, 3, and 5 minutes after injection and immediately 
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transferred into an argon drybox.  The nanocrystals were cleaned with a single step of size-

selective precipitation (1 part methanol to 3 parts solution) to improve the size distribution; 

the remaining precipitate was re-suspended in 1,2 DCB and stored at room temperature in 

the drybox.  No further washing was performed; thus it is likely that this suspension 

contained some residual methanol, oleic acid, and TOPO.  X-ray diffraction confirmed that 

the samples were ε-cobalt, a phase of cobalt that has only been found in nanocrystals [117].  

ε-Co is isostructural with a high-temperature phase of manganese (β-Mn), and is a cubic, 

non close-packed structure. 

 All TEM samples were made and stored under air-free, water-free conditions.  A 

schematic of sample preparation is depicted in figure 6.2.  Samples were made by depositing 

a drop (5 μL) of the concentrated suspension onto an amorphous carbon-coated 

transmission TEM grid on top of a paper towel, which absorbed excess solution.  The grids 

were then covered and allowed to dry.  (While initially they were allowed to dry for a 

minimum time of 2 hours, later observations showed that the substrates generally dried in 5-

10 minutes.)  This resulted in the formation of close-packed multilayered nanocrystal islands 

(Figure 6.3), as well as discontinuous monolayers.  Interestingly enough, the choice of 

substrate did not make a clear difference in the formation of the islands; amorphous carbon, 

plasma-treated amorphous carbon (hence charged, and more polar), and silicon monoxide 

could be used. 
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Figure 6.2.  Preparation of cobalt nanocrystal assemblies on TEM grids. 

 

 Excess surfactant on nanocrystals can create problems for TEM imaging by not 

effectively conducting away charge.  Thus, many of the TEM samples were additionally 

washed by gently depositing drops of methanol directly onto the grids and wicking away the 

excess.  Unfortunately, this had the consequence of making the samples more susceptible to 

oxidation, even within the time it took to transfer the sample from an air-tight vial to the 

electron microscope vacuum column.  In other samples, oxidation was avoided by simply 

not washing the TEM grids. 

 

6.3.  Transmission electron microscopy (TEM) and SAED (selected-area electron 

diffraction) of cobalt nanocrystal assemblies 

 

6.3.1. Instrumentation 

 Transmission electron micrsocopy (TEM) and selected area electron diffraction 

(SAED) were used to structurally characterize the assemblies formed from deposition.  TEM 

and SAED were conducted utilizing a number of different microscopes at UC Berkeley and 

the National Center for Electron Microscopy (NCEM) at Lawrence Berkeley National 

Laboratory (LBNL).  The UC Berkeley microscopes used were an FEI Tecnai 12 at the UCB 
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Electron Microscope Laboratory (EML) and an FEI Tecnai 20 in the Alivisatos group.  The 

electron diffraction and dark field imaging were performed primarily at NCEM using the 

JEOL 3010 in-situ microscope and the JEOL 200CX analytical electron microscope.  The 

Philips CM 200, Philips CM 300, JEOL-JEM ARM 1000, and the Topcon 002B microscopes 

were also used for high-resolution imaging, conventional imaging, and diffraction.   

 

6.3.2. TEM image/SAED pattern processing 

 All images and patterns were subjected to the minimum levels of digital processing 

deemed necessary for obtaining useful data.   For most images, the tonal range (the gray 

levels) was adjusted using the Levels command in Adobe Photoshop 7.0.   Occasionally, 

slight corrections to the contrast and brightness were also made in Adobe Photoshop 7.0 

using the Brightness/Contrast command.  The most heavily-processed images were some of 

the dark field images, which had their tonal ranges adjusted such that most or all of the gray 

levels were discarded; these images are shown in figures 6.12 and 6.13.   Examples of 

adjustments to tonal ranges with Adobe Photoshop 7.0 are in Appendix 1.  Fourier 

transforms of images were performed using Media Cybernetics Image Pro Plus version 

4.5.0.19. 

 All of the SAED patterns analyzed had been originally captured on film.  Many of 

the ε-Co reflections important for analysis are very closely spaced, necessitating the high 

resolution and dynamic range of film.  Negatives were scanned at NCEM and in the 

Alivisatos group computer laboratory at the highest resolution possible (often at 1200 dpi) as 

16-bit tagged image files (tifs). 
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6.3.3. Bright-field imaging of the assemblies 

 The structures formed from the deposition of the nanoparticles were generally close-

packed multilayered nanocrystal islands, as well as discontinuous  monolayers (figure 6.3). 

 

 

Figure 6.3.  Examples of structures formed after deposition of cobalt nanocrystals.  (1) 

Multilayered island of close-packed nanocrystals surrounded by patches of mono- or bilayers.  

Scalebar is 0.2 μm.  (2) Magnification of upper right-hand corner of image (1), showing close-

packed layers of nanocrystals in island.  Scalebar is 100 nm.  (3) More multilayered islands, 

surrounded by unconnected monolayers.  Scalebar is 2 μm.  Images (1) and (2) were collected 

on the JEOL 3010 at NCEM by Dr. Radetic; image (3) was collected at the UCB EML by D. 

Aruguete. 
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6.3.4. SAED from monolayer and multilayer assemblies 

The monolayers exhibited electron diffraction patterns typical of polycrystalline films 

with no preferred crystallographic orientations (figure 6.4).   Indexing the diffraction pattern 

reveals that the nanocrystals are cubic ε-cobalt, in agreement with XRD measurements. 

 

Figure 6.4.  (1) Part of a monolayer of cobalt nanocrystals.  Scalebar is 50 nm.  (2) Typical SAED 

pattern from a monolayer.  Indexing reveals that the nanocrystals are cubic ε-cobalt.  Image and 

SAED were collected by D. Aruguete at the UCB EML. 

 

SAED from islands (typically containing 10-15 layers, but some with as few as 4 layers), on 

the other hand, commonly displayed concentration of diffracted beams into strong spots, as 

well as the extinction of some reflections.  There were two types of patterns generally 

observed, both of which generally had a six-fold symmetric pattern.  Examples of the most 

common type of pattern observed are shown in figure 6.5; indexing is shown in figure 6.6.  

This pattern displays a kinematically forbidden 200 reflection which cannot be attributed to 

oxides or other cobalt phases.  This 200 reflection may be the result of various dynamical 

events due to a thin film of oxide on the nanocrystal surfaces, or phenomena such as double 
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diffraction [94, 95].  A second type of diffraction pattern was observed in one instance, 

shown in figure 6.7.  It is clear from the indexed reflections that the patterns in 6.6 and 6.7 

are different.  Details of indexing for all wide-angle SAED patterns are documented in 

section 6.4 and Appendix 2. 

 This strong six-fold symmetric texture was observed in SAED patterns from the 

centers of the islands, as shown in figure 6.8.  From probing different parts of the islands 

(sides versus centers) it was evident that the preferred orientations were not maintained 

throughout the island. 
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igure 6.5.  SAED patterns from various multilayered islands.  Patterns were all collected at 

and 

 

F

NCEM with the JEOL 3010 and the Topcon 002B by D. Aruguete, except for the lower right-h

corner pattern collected by Dr. Radetic. 
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Figure 6.6. Typical SAED pattern from the center of a multilayer island, with indexing.  The 221 

reflection is the most intense and is strongly textured.  Note the presence of the kinematically 

forbidden 200 reflection.    Pattern collected by D. Aruguete using the JEOL 3010 at NCEM. 

 

 

Figure 6.7.  Alternate SAED pattern from multilayer island, with indexing.  Note how this pattern 

differs from the more common textured pattern in figures 6.5 and 6.6.  The 422 and 522 ε-cobalt 

reflections coincide with those expected from CoO; hence, they cannot be positively identified.  

Pattern collected by Dr. Radetic using the JEOL 3010 at NCEM. 
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Figure 6.8.  SAED from various parts of an island, approximately 1 μm in diameter.  SAED 

patterns from the center show that nanocrystals in the center of the island have preferred 

orientations.  The SAED pattern collected from the side of the island does not show much 

preferred orientation.  Scalebar in bright field image is 0.2 μm.  Data collected by Dr. Radetic at 

NCEM, using  the JEOL 200CX AEM. 
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 In addition to examining the crystallographic ordering of the atomic lattices within 

the nanocrystals, the structure of the lattice-based arrays of the nanocrystals (often 

incorrectly referred to in the general literature as “superlattices” [103]) was inspected using 

small-angle electron diffraction.  Small-angle electron diffraction was performed by 

increasing the camera length in the microscope (from 1.6-3 m) and using short (often <1 s) 

exposure times.  These three-dimensional lattice-based arrays were generally found to have a 

face-centered cubic (fcc) structure, often with a <111>-type zone axis.  Representative 

patterns from an island are shown in figure 6.9 1A and 1B.  In 1A, a pattern is shown that 

appears to be originating from an fcc crystal with a <111>-type zone axis.  To confirm that 

the nanocrystal lattice had fcc packing, the island was tilted; at a 30° tilt, the expected pattern 

from an fcc crystal with a <110>-type zone axis was observed (the angle between these 

vectors is 35.26°).   Occasionally, other zone axes such as <110> were found for non-tilted 

samples (Fig. 6.9.2).  There was no immediately obvious correlation between the orientations 

of these arrays and the atomic lattice orientations, although further study is merited. 
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Figure 6.9.  Small-angle diffraction from the lattice-based arrays of nanocrystals present in the 

islands (Camera length = 3 m for patterns 1A and 1B, 1.6 m for pattern 2).  Patterns shown in 1A 

and 1B arise from the same crystal.  A is the SAED from an fcc crystal with a <111>-type zone 

axis, while B shows the same crystal tilted, such that it is oriented with a <110>-type zone axis.  

(2) Example of a non-<111>-type zone axis from another island; even at zero tilt, this island 

produces a pattern typical of a <110>-type zone axis orientation for an fcc crystal.  Patterns 1A 

and 1B collected at NCEM on the JEOL 3010 by Dr. Radetic and D. Aruguete.  Pattern 2 

collected at NCEM on the Topcon 002B by D. Aruguete. 

 

6.3.5. Dark-field imaging from multilayered assemblies 

 Dark-field images were collected to determine if there were any higher levels of 

organization present in the assemblies.  In figure 6.11.A-1, A-2, and A-3, dark-field imaging 

using the arcs present in the 221 reflections indicated that three separate groups of 

nanocrystals were contributing to these reflections.  (The 310 reflections could not be 

excluded from the dark-field imaging, as the objective aperture was not small enough.)  Of 

particular interest was that when the 221gv  corresponding to the intense arcs or spots in the 

221 reflection are assigned to the various domains, a loop-closing arrangement is suggested.  

(Remember that the ε-Co phase is cubic; hence real-space and reciprocal-space vectors with 

the same indices hkl point in the same direction.  This shall be further discussed later in this 
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chapter.).  The images in figure 6.3, as well as those in figure 6.10 suggest that nanocrystal 

monolayers with this loop-closing arrangement are stacked on top of each other to form a 

multilayered island with a vortex-like alignment of the nanocrystals (figure 6.11).   Loop-

closing structures may originate from magnetic interactions between the nanocrystals [118].  

This topic will be further discussed in section 6.6.1.1.   

 Dark-field images were also collected from samples with the more common type of 

six-fold symmetric pattern, shown in figures 6.12 and 6.13.  While these images are faintly 

suggestive of the sort of arrangement displayed in figure 6.8, this can only be seen when 

most of the gray levels were removed from the tonal range of the image (details in Appendix 

1).  Thus, it is not certain that the same phenomenon of higher ordering is occurring within 

these assemblies. 
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Figure 6.10.  (A) SAED pattern shown in figure 6.7 multilayered island.  Images (1), (2), and (3) 

are dark-field images taken from the correspondingly labeled reflections in image A.  The 

objective aperture was not small enough to separate the 221 and 310 reflections.  (B) Schematic 

of  from the SAED pattern in (A).  (C) When these vectors are assigned to the different 

illuminated segments of the dark-field images corresponding to these reflections, an interesting 

loop-closing arrangement is suggested.  Scalebar is 0.2 μm.  Data was collected at NCEM from 

the JEOL 3010 by Dr. Radetic.   

221gv
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Figure 6.11.  Schematic of possible crystallographic orientations of the nanocrystals within an 

island.  (A) A single layer of close-packed nanocrystals, constituting a layer of the island.  Three 

crystallographic orientations are present.   This monolayer is represented as a hexagonal plate  

with three crystallographic orientations.  (B) Stacks of these monolayers constitute a multilayered 

island with a 3D vortex-like orientation of the nanocrystals. 
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Figure 6.12.  Top row, left to right: Bright field image of an island approximately 1.5 μm in 

diameter, SAED from the island, and a schematic of 221gv  corresponding to the observed arcs.  

Middle row, left to right: corresponding dark field images from reflections at positions one, two, 

and three.  Bottom row, left to right: Dark field images with additional processing (described in 

section 6.3.2.) from reflections at positions one, two, and three.  Note that these are suggestive of 

the same vortex-like configuration presented in figure 6.8.  
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Figure 6.13.  Another example of dark-field data from a multilayered island.  Top row, left to right: 

Bright-field image of an island approximately 1 μm in diameter, the corresponding diffraction 

pattern, and a schematic of corresponding to the intense 221 arcs in the pattern.  Bottom 

row, left to right: processed dark field images (see section 6.3.2. for description of image 

processing) corresponding to those 221 reflections labeled in the schematic.  Note that while for 

images (1) and (2), the corresponding 

221gv

221gv  are aligned in a vortex-like fashion similar to that 

present in figure 6.8, (3) is not particularly consistent with this model. 
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6.3.6.  High-resolution TEM (HRTEM) imaging of individual particles and their 

assemblies 

 

6.3.6.1.  HRTEM of individual particles 

 When attempting to understand the factors influencing the assembly of nanocrystals, 

it is important to consider their individual shapes.  The presence of their surfactant coatings 

does not rule out the effect of shape upon assembly ; indeed, in previous studies, surfactant-

coated faceted nanocrystals were seen to pack in a limited number of orientations, giving rise 

to textured diffraction patterns [102, 103].   

 To closely examine the morphology of individual ε-cobalt nanocrystals, they were 

imaged with HRTEM.  HRTEM data was collected by D. Aruguete as well as Steven 

Hughes, a fellow graduate student in the Alivisatos group.  Representative mages of the 

nanocrystals are shown in figure 6.14.  While such images cannot rule out the presence of 

facets, it appears that these nanocrystals do not have pronounced faceting. 

 

 

Figure 6.14.  HRTEM images of three separate ε-cobalt nanocrystals.  Scalebar is 5 nm.  The 

nanoparticles were imaged at NCEM by Steven Hughes, using the Philips CM300.   
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6.3.6.2.  HRTEM of multilayer nanocrystal assemblies 

 HRTEM imaging was used to further examine the local structure of nanocrystal 

orientation within the assemblies.   HRTEM of these assemblies was complicated by 

multiple factors.  First, the beam sometimes induced what was likely to be carbonization of 

the surfactants coating the nanocrystals; in minutes, a film formed upon the imaged areas, 

occluding any lattice fringes.  Second, it was difficult to maintain proper stigmation; the 

nanocrystals are magnetic and hence local magnetic fields vary depending upon the position 

of the beam on the sample.   Third, the most highly aligned parts of the islands are the 

centers, which are the thickest parts of the islands.  Repeated attempts to image through 

these centers, even with high-energy electrons (800-1000 keV) proved to be unsuccessful; 

not enough electrons were transmitted to provide any signal.  (Note that for hcp Co, the 

extinction distances of 1000 keV electrons range from 42.5 nm to 208.6 nm [95].)  

 The few partially successful images that were obtained are displayed in figures 6.15 

and 6.16.  Sections of images were Fourier-transformed with Media Cybernetics Image Pro 

Plus version 4.5.0.19 to look for any preferred orientations.  Some preferred orientation was 

seen on the edge of an island, as shown in figure 6.15.3.   Other results could not be clearly 

interpreted; while suggestions of orientation were observed in the Fourier transform of the 

image (Fig. 6.16.2), such results could be artifacts due to sample drift, astigmatism, or beam 

alignment. 
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Figure 6.15.  Example of partial orientation on edge of island.  (1) is an image of an island edge.  

(2) is an inset from the lower left-hand corner of the image.  (3) is a Fourier transform of this inset 

image, clearly showing a single strong frequency with a single orientation.  Scalebars are 10 nm.  

Images were collected by D. Aruguete from the NCEM JEOL-JEM ARM 1000 at 800-1000 keV.   

 

 

Figure 6.16.  (1) Another HRTEM image from an island.  (2) The corresponding Fourier transform.  

Scalebar is 10 nm.  Image collected by D.Aruguete from the NCEM JEOL-JEM ARM 1000 at 800-

1000 keV.   
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6.4.  Basic interpretation of SAED patterns 

 When faced with any diffraction pattern, the first step in interpretation is to index 

the various reflections (identify which planes contribute to which reflections).  As we already 

know that the substance is ε-cobalt from X-ray diffraction, this is fairly simple.  Electrons 

are scattered by an angle 2θ.  It can be deduced via simple geometry that [94] 

L
r

=θ2tan ,     (6.1) 

where r is the radial distance from the center of the diffraction pattern to the reflection spot 

(or arc, or ring) of interest, and L is the sample-to-detector distance. 

As the scattering angle is quite small, 

L
r

≅θ2 , and     (6.2) 

Bragg’s Law reduces to 

θλ d2= .     (6.3) 

Combining equations 6.2 and 6.3, we obtain the expression 

Lrd λ= .     (6.4) 

As Lλ  is a constant term (known as the camera constant), this means that for any given set 

of reflections on a pattern, 

K== 2211 drdr     (6.5) 

By simply measuring the distances r on a pattern and comparing these ratios to d-spacing 

ratios, the pattern can be indexed. 

 Once the pattern is indexed, the next step is to figure out the real-space zone axis 

[UVW], which is the crystallographic orientation of the electron beam with respect to the 
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sample.  The zone axis is common to all planes of the zone, that is, all planes that diffract for 

a particular orientation, and is perpendicular to the normal vectors of these planes, as 

depicted in figure 6.17.  In other words, Uh + Vk + Wl = 0.  This is known as the Weiss 

zone law [94]. 

 

 

A B

Figure 6.17.  Two depictions of the zone axis for a crystal.  In (A), a schematic of planes in a 

crystal is depicted, with the arrow as the zone axis (the direction of the incident electron beam).  

(B) shows how many planes in the crystal can contain the zone axis; by taking the cross product 

of the corresponding reciprocal space vectors for these planes, one can obtain the zone axis. 

 

 It may seem impossible for diffraction to occur for planes containing the zone axis 

(the incident beam direction vector); in the Bragg equation, certainly, diffraction cannot 

occur for θ = 0°.  The Laue conditions for diffraction (Eqn. 5.8) stipulate that 

FI kk
vv

− = hklgv ,      (5.8) 

where Ik
v

 is the incident electron wavevector, Fk
v

 is the scattered electron wavevector, and 

hklgv is a vector in reciprocal space corresponding to the (hkl) planes in the real crystal (see 
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chapter 5 for further discussion).  In reality, this condition is relaxed due to the finite nature 

of the sample, as well as deviations from monochromaticity of the incident electrons [94].  

Diffraction can occur when 

FI kk
vv

− = sghkl
vv + ,     (6.6) 

where is a vector, called the deviation parameter, that measures the deviation from exact 

diffraction conditions. 

sv

 To find the zone axis, one takes the cross products of the reciprocal vectors present 

(the reflections present) in the pattern.  As the ghkl-vectors are perpendicular to the real-space 

(hkl) planes, the cross products should be contained within these planes.  The resulting cross 

product is a vector in reciprocal space; for non-cubic systems, a transformation is necessary 

to obtain the correct indices for the real-space zone axis.   ε-cobalt has cubic symmetry; thus, 

the real space and reciprocal space vectors of the same indices point along 

crystallographically equivalent directions [94].  This can be easily shown using equations 

derived from the definitions of reciprocal space vectors (eqn 5.4). 

 From these definitions, we find that 

1*** =⋅=⋅=⋅ ccbbaa vvvvvv ,    (6.7) 
 
and 
 

0****** =⋅=⋅=⋅=⋅=⋅=⋅ bcaccbabcaba
vvvvvvvvvvvv .  (6.8) 

 
For a cubic system, the following is true for the unit cell vectors: 
 

0=⋅=⋅=⋅ cbcaba vvvvvv .     (6.9) 
 
In other words, due to the orthogonal nature of the cubic unit cell vectors, av  is parallel to 

*av , etc., and, since , av b
v

, and cv all have the same length, *av , *b
v

, and *cv have the same 
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lengths as each other.  Thus, reciprocal space and real-space vectors point in the same 

directions for cubic systems. 

 

6.5.  Analysis of textured patterns from cobalt nanocrystal assemblies 

 

6.5.1. Basic indexing 

 Patterns from oriented and non-oriented nanocrystals were indexed (see figures 6.4, 

6.6, and 6.7) by taking ratios of the ring or arc radii.  Determination of the zone axis entailed 

taking the cross products of all possible <hkl> corresponding to the observed hkl reflections.  

For the pattern in 6.7, the common result of these cross products was a <652> zone.  For 

the typical textured patterns shown in figures 6.5 and 6.6, no common zone axis was found.  

Cross-product results are listed in Appendix 2.   This means there are probably multiple 

orientations present, although it is not clear whether there is merely a distribution around a 

given zone axis, or a fixed number of different orientations.  The most common results for 

zone axes were <652>, <110> and <100>.  The dark-field images in figure 6.10 (and 

perhaps, those in 6.12 or 6.13) suggested the possibility of having three different crystal 

orientations within a single island.  Further consideration of the 221 reflections in the SAED 

also indicated the possible presence of multiple domains, because, while the 221 arcs are 60° 

apart, there are no three planes within the {221} family that are 60° apart. 

  In order to learn more about the crystal orientations present in the islands, the 

sample was tilted with a double tilt holder (figure 6.18) and SAED patterns at different tilt 

orientations were collected (figure 6.19).  
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Figure 6.18.  Geometry of tilting in the sample holder. 
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Figure 6.19.  SAED from center of island at various orientations..  SAED patterns obtained at 

NCEM with the JEOL 3010 TEM by D. Aruguete. 
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6.5.2. Hypotheses regarding crystallographic organization within the nanocrystal 

islands 

 As previously mentioned, dark field imaging of the assemblies suggested the 

presence of three populations of nanocrystals, each with a specific orientation.  An early 

attempt was made to interpret the patterns in figures 6.5 and 6.6 using a simple model of 

three separate single-crystal domains, without taking any orientational distributions into 

account.  The results from this analysis, detailed in Appendix 2, were inconclusive.   

Crystallographic models which account for an angular distribution are currently under 

consideration.  These are described in the following sections. 

 

6.5.2.1. Hypothesis 1: Three separate partially-aligned domains 

One of the most common types of partial orientation seen in many polycrystalline 

materials is a configuration in which one crystal axis is fixed for all crystalline domains (i.e., in 

this discussion, the nanocrystals), but other axes vary freely [119].  The effect of this 

preferred orientation upon diffraction is most easily visualized in reciprocal space, as shown 

in figure 6.20. 
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Figure 6.20.  Images of different types of orientation in reciprocal space. 

 

For an ideal set of identically-aligned crystals with all axes fixed, reciprocal space is a lattice 

of fixed points.  If only one axis of these crystals is fixed, but they are otherwise allowed 

rotational freedom, these points will turn into rings.  Finally, if this axis is not perfectly fixed, 

instead of rings in reciprocal space, there will be belts.  When the Ewald sphere slices 

through these belts, the resuting image in the diffraction pattern is that of arcs, as we see in 

our texture patterns. 

 An arrangement of three separate groups of nanocrystals, or domains, in which each 

domain has a single imperfectly fixed crystal axis in the sample plane might give rise to the 

sixfold symmetric patterns observed.  This hypothesized scenario is depicted in figure 6.21. 
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Figure 6.21.  Hypothesized three-domain crystallographic arrangement of the cobalt nanocrystals 

in multilayered assemblies.  Reciprocal-space depictions of three crystal domains (top row) and 

the resulting diffraction patterns (bottom row).  Each domain has one imperfectly fixed axis in the 

sample plane.  In this diagram, the Ewald sphere is the plane of this page. 

 

6.5.2.2. Hypothesis 2: Alignment along axis canted out of the sample plane 

 Previous work on other polycrystalline systems with preferred crystallographic 

orientations suggests another possibility.  The nanocrystals could all have a single partially 

fixed axis which is tilted out of the sample plane [120, 121].  Figure 6.22 depicts how this 

arrangement could give rise to the observed SAED patterns. 
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Figure 6.22.  Alternative hypothesized crystallographic arrangement, in which the nanocrystals all 

have a single axis (imperfectly fixed) which is oriented out of the sample plane.  (See figure 6.20 

for further illustration of this type of preferred orientation.)  Top row: Reciprocal space depictions 

of the proposed crystallographic arrangement at three different sample tilt settings.  The dashed 

lines depict the tilt axis for the sample, and the dashed ellipse is the projection of the Ewald 

sphere.  The bottom row of figures depicts the resulting diffraction patterns; they are schematics 

of the 221 reflections observed in the experimental SAED patterns. 
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Currently, efforts are underway to computationally simulate diffraction patterns from these 

various possible crystallographic arrangements for comparison with our experimental data.  

 

6.6.  Causes of crystallographic orientation in cobalt nanocrystal assemblies 

   

6.6.1. Introduction 

 When contemplating the drying-mediated assembly of colloidal nanocrystals, there 

are many factors to consider, such as particle-particle interactions, particle-solvent 

interactions, and particle-substrate interactions [28-30].  For colloidal magnetic nanocrystals, 

forces between particles are of particular interest.   In addition to Van der Waals interactions, 

the magnetic dipoles of the nanocrystals can interact with each other.  This section is a 

discussion of  both the magnetic and van der Waals forces that may have led to the observed 

assemblies. 

 

6.6.2. Magnetism and crystallographic alignment in nanocrystals 

 

6.6.1.1. Energetic considerations 

Magnetism is intimately coupled with the crystal structure of a material via the 

magnetocrystalline anisotropy energy EC, which is the energetic stabilization gained when the 

dipoles of a crystal align along a given crystal axis.   For magnetic ordering to translate into 

an alignment of the crystalline axes, the EC  per particle must be large enough to provide an 

observable correlation between the magnetic dipole and crystallographic orientation.  Since 

ε-Co has not been produced as a bulk phase, experimental values of the magnetocrystalline 
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energy must be extracted from the magnetic relaxation kinetics of dilute nanoparticle 

solutions.  The best value in the literature is ~5 kT for a 9.5 nm ε -Co particle [49].  

Assuming a Boltzmann distribution, this coupling gives a FWHM of ~ 40° for the angle 

between the easy axis and the dipole direction, somewhat larger than the FWHM of ~20° 

observed for the diffracted intensity around a peak in our SAED diffraction patterns.  The 

discrepancy can be partially accounted for by assuming a significantly larger 

magnetocrystalline energy for the particles, which is reasonable given the large (±60%) 

estimated particle-to-particle variation for EC within a single sample [49].  A less rigorous 

estimate from previous work in the Alivisatos group gives EC ~ 7.4 kT [122].  An undetected, 

slight faceting of particles might also improve alignment, reducing the FWHM of the 

orientation distribution function to the experimentally observed values. 

Finding a possible vortex-like configuration of nanocrystals, as shown in figures 6.10 

and 6.11, encouraged the consideration of the magnetic interactions between nanocrystals.  

Classical magnetic dipoles are the most stable when aligned end-to-end [123]; hence loop-

closing configurations are an expected outcome from spontaneous dipole alignment.   

To investigate the magnetic structures likely to form in lattice-based arrays of cobalt 

nanocrystals, a collaboration was initiated with Professor Joel Moore (physics, UCB), who 

conducted thermal Monte Carlo (MC) simulations on multilayer fcc crystals of dipoles.  As 

expected, the temperature for significant ordering in an assembly was considerably reduced 

from the nearest-neighbor interaction energy (EM~1500 K) both because of the angular 

dependence of the dipole-dipole interaction and because, in the limit of a large assembly, 

there are low-energy “spin-wave” fluctuations of the ordering direction that prevent 

spontaneous symmetry breaking in 2D systems [124].  Fig. 6.23 A shows the in-plane vortex 
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structure of dipoles that appeared in the ground state (T = 0) for a single layer of 123 dipoles.  

Thermal fluctuations at nonzero temperature both reduced the vorticity (quantified as the 

average magnitude of the sum over all dipoles of the tangential component of the dipole 

direction), and caused the dipoles to lie partially out-of-plane. 

The primary numerical result (Fig. 6.23 B) was the mean vorticity as a function of 

temperature for systems of 1-4 layers with 123 or 124 dipoles per layer.  In cylindrical 

coordinates r, θ, z, where z is the out-of-plane direction, vorticity is defined as ∑ ⋅
i iin θ̂ , 

where the sum is over all dipoles and n is the local dipole direction.  The temperature values 

assume dipole moments of 4 × 104
Bμ  per particle [49] with a center-to-center spacing of 11 

nm.  The vorticity showed a rapid crossover but no sharp transition, as expected, and the 

center of this crossover occurs at around 400-500 K.  Increasing layer thickness and system 

radius were found to sharpen the crossover and slightly lower its temperature; the largest 

system studied was 5 layers of 243-244 dipoles each, which shows vorticity  v > 0.6 at T = 

390 K.  The MC simulation used a local Metropolis-type algorithm with ~105 samples per 

dipole.  At temperatures below 400 K, the statistical error bars were larger because the 

ergodic time for the assembly becomes very long.z  

The simulation approximated the magnetic moment distribution within an fcc lattice 

as single dipole moments fixed at the center-of-mass of each nanocrystal. Thermal 

equilibrium was assumed to describe the configuration of these dipole moments.  The actual 

growth process does not take place at equilibrium, but the simulational results support the 

conclusion that dipolar interactions between nanoparticles can result in the observed vortex 

ordering at room temperature.  At short distances, the actual interaction between 
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nanoparticles will be somewhat stronger than the pure dipole-dipole interaction we have 

assumed, but this difference vanishes as interparticle separation increases. 

Fig. 6.23 C shows the squared z-component of the dipole direction as a function of 

distance from the center of a 5-layered island of 1220 dipoles, at T = 389 K.  The dipoles 

cant out-of-plane close to the origin and near the edge, as at these points the ordering field 

from the other dipoles is relatively weak.  The dipole loops are never perfectly circular 

because the dipole locations are fixed to an fcc lattice, which results in preferred directions 

for the dipoles.  This anisotropy allows a nonvanishing sextupole moment for the dipole 

array, which gives the dominant average field at distances much larger than the array size. 

 



 
 
 

127 
 

 

 

Figure 6.23. Results of energy calculations on lattices of classical dipoles.  (A) Ground-state 

vortex arrangement of a monolayer of 123 dipoles. B) Mean vorticity versus temperature for 

assemblies of 1 to 4 layers with 123 or 124 dipoles per monolayer.  In cylindrical coordinates r, θ, 

z, where z is the out-of-plane direction, vorticity is defined as ∑ ⋅
i iin θ̂ , where the sum is over 

all dipoles and n is the local dipole direction.  The configuration in (A) has vorticity 0.98.  (C) 

Mean squared z component of dipole direction versus radius for a system with 5 layers and 1220 

dipoles at 389 K. 
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6.6.1.2. Kinetic effects of magnetism in assembly 

While the previous discussion demonstrates that a vortex configuration at room 

temperature may indeed be possible for an fcc lattice of nanocrystals, it does not take into 

account the processes of actually forming the assembly.  For a nanoparticle in contact with a 

monolayer of particles in a vortex state, the interaction energy between its dipole and the 

monolayer’s field is ~EM.  Far away from the monolayer (particle-monolayer separation r >> 

R, the monolayer radius), the interaction energy scales as r-7, as the lowest nonvanishing 

multipole of the monolayer is the sextupole.  Therefore, orientation of the particle by the 

monolayer field must take place very close to the monolayer, e.g. r/d < 2, where d is the 

particle separation in the monolayer.  Using simplifying arguments, it is possible to place 

some kinetic constraints on the monolayer growth process for orientational order to emerge.  

Assuming EC >> EM > kT, the correlation between the particle dipole and crystallographic 

coordinates becomes perfect.  In that case, the magnitude of the torque orienting a particle 

with the monolayer, N, is due to the magnetic interaction energy and given by 

φsinMHN −= , whereφ  is the angle between the position dependent magnitude of the 

field due to the monolayer, H, and the magnetic dipole, M, of the approaching particle.  The 

maximum value for this torque is attained for a particle in contact with the monolayer and 

has magnitude ~EM.  This torque gives rise to a rotational velocity, rN ξω /= , where rξ  is 

the rotational friction constant for the particle.  The average time for the particle to rotate to 

the minimum energy configuration is given by )(φωφ=Rt , with the average taken over 

φ .  For a rigid spherical nanoparticle of diameter d in a solvent of viscosity η , .  

Using d = 11 nm and 

3dr πηξ =

η = 1.32 cP for 1,2-dichlorobenzene, tR ~ 0.3 μs.  For comparison, 
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using with  as measured for 25 nm fcc-Co 

nanoparticles [125], the lifetime of a dipole orientation in zero field, τ, for a 9 nm -Co 

particle will exceed t

)/exp(1
0 kTEf C−= −τ 19

0 104 −×= sf

ε

R when EC ≥ 7kT.  Thus by assuming a somewhat larger anistropy energy 

(and/or magnetic moment density) for -Co than measured previously [49], one predicts 

that the particle dipole is frozen to a single easy crystal axis within the timescale of particle 

rotation, enhancing the likelihood of successful alignment.  For crystallographic alignment to 

emerge, each particle that attaches to a growing island must then remain free to rotate for a 

time exceeding t

ε

R. 

A more realistic discussion of the kinetics is complicated by several factors.  First, 

relevant energies and timescales turn out to be similar in magnitude (EM ~ EC; τ ~ tR).  This 

makes it difficult to make simplifications by considering a degree of freedom to be frozen or 

ergodically sampled during the process.  Future computational work could address in detail 

the mutual evolution of the crystallographic and magnetic orientation of a particle subject to 

thermal fluctuations [126].  Secondly, since any orientation process would have to take place 

when the nanoparticle is in contact with the island, short-range interactions between 

particles are important [28, 127].  Finally, in the experimentally observed multilayers, the 

deposition process might occur in a more complicated mode or geometry than discussed 

above.  

 No crystallographic evidence of vortex formation in monolayers has been observed, 

even though this was predicted to be energetically favorable.  The assemblies are deposited 

onto a carbon surface that is not rigid, and a rough surface topography could induce disorder 

in the first few deposited monolayers of particles.  These bottom layers could then act as a 
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template for the formation of more perfect close-packed layers.  It is also possible that the 

bottom layers act as a magnetic template: the first few layers that are deposited could be 

orientationally disordered and the imperfect vortex field from these layers could increase the 

orientational order of subsequent layers. 

 

6.6.2. Van der Waals (or packing) forces: the role of faceting 

 While faceting has been shown to influence crystallographic orientation in self-

assembled nanocrystals [102], it had not originally been considered to influence the cobalt 

nanocrystal assembly, due to the lack of obvious facets in conventional or HRTEM.  

Nevertheless, studies of the assembly of ostensibly spherical gold nanocrystals indicated that 

faceting may influence assembly, even when it cannot be detected with TEM.  In two 

separate studies of surfactant-coated gold nanocrystals [103, 128], ordered assemblies were 

formed in which the nanocrystals had preferred crystallographic orientations (as seen in the 

SAED patterns); in neither study were the gold nanocrystals obviously faceted.   A similar 

phenomenon may be occurring with the cobalt nanocrystals. 

 There are a few differences between these cases of facet-driven assembly and our 

observations [102, 103].  First, in these cases, when dark-field imaging was performed, there 

was no evidence of large-scale orientation of the particles into separate domains.  Second, 

these faceted particles formed assemblies with preferred orientation even when they were in 

monolayers, which ours did not.  It should be noted that in the case of the gold particles, 

multilayered assemblies displayed stronger alignment than monolayer assemblies.  It is 

possible that we only observed ordering in multilayer assemblies due to less uniformity in 

our nanocrystals (hence necessitating many more “template layers” for better ordering).   
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 Crystallographic alignment was not always observed in the multilayered assemblies of 

Co nanocrystals.  While this might indicate that the Co nanocrystals are not faceted, there are 

actually multiple documented cases of faceted particles (e.g., silver [129] and cobalt [130]) that 

did not display crystallographic alignment of their atomic lattices under SAED examination.  

Some believe that the particles may form very small aligned areas, but do not maintain this 

ordering over larger areas.  Experimental factors beyond absolute control (e.g. varying 

evaporation rates, sample substrates of varying roughness altering crystal nucleation rates) 

may contribute to the disorder present in the assemblies formed during evaporation. 

 

6.7. Conclusion and outlook 

 

 In conclusion, complex crystallographic alignments in magnetic nanocrystal 

assemblies were observed using a combination of TEM and SAED.  In addition to 

measuring partial crystallographic orientation (texture) of the nanocrystals, indications of 

higher-level ordering, namely a crystallographic vortex phase, were also detected.  Modeling 

of magnetic dipoles in fcc lattices revealed a vortex-like arrangement of dipoles at room 

temperature, which may cause the observed crystallographic alignments.  Consideration of 

the interplay between Van der Waals and dipolar forces suggests that varying degrees of 

crystallographic order are possible within a limited regime of experimental parameters.  

Investigation of assembly formation for different combinations of particle magnetic 

properties, solvent, external fields or substrate patterning could lead to a higher degree of 

order and to other novel structures. 
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APPENDIX 1: IMAGE PROCESSING WITH ADOBE PHOTOSHOP 7.0 

(PC) 
 

 The primary image processing performed was the adjustment of the tonal range.  

Here, a dark-field image of a cobalt nanocrystal assembly directly scanned from a negative is 

shown.  The image was contrast was first inverted by using the Invert command (in the 

Image  Adjustments menu).   The image is shown in Figure A1.   

 

 

Figure A1.  Screen capture of Adobe Photoshop with an overexposed dark field image of a cobalt 

nanocrystal island.   The Levels dialogue box is shown next to the image. 

 

 The tonal range (gray levels) of the image can be inspected by using the Levels 

command (in the Image  Adjustments menu).  A close-up of this dialogue box is shown in 

Figure A2.  A histogram of the number of pixels for each gray level, ranging from black to 
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white, is shown.  In this case, the shades towards the white end of the spectrum are 

overrepresented, due to the overexposure of the original image. 

 

 

Figure A2.  Screen capture image of the Levels dialogue box. 

 

 Moving the black slider on the histogram to the first group of pixels will map these 

pixels to black, increasing the tonal range of the image.  The corresponding pixels in the 

other channels are adjusted proportionately to avoid altering the color balance. The 

middle slider is used to change the intensity values of the middle range of gray tones.  A 

moderately-adjusted image is shown in figure A3, and the corresponding Levels dialogue 

box shown in Figure A4. 
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Figure A3.  Dark field image with moderate adjustments of the tonal level range. 

 

 

Figure A4.  Close-up of Levels dialogue box with histogram. 
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 As this image was overexposed, a more drastic change in the tonal range is 

necessary to extract any useful information regarding the spatial distribution of 

nanocrystal orientations.  This change is shown in Figure A5, with the accompanying 

Levels dialogue box in Figure A6.  Most of the gray levels were removed from the image. 

 

 

Figure A5.  Final tonal range adjustment of the dark field image. 
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Figure A6.  The corresponding Levels dialogue box for Fig. A5.  Note how most of the gray levels 

have been discarded. 
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APPENDIX 2: INDEXING OF DIFFRACTION PATTERNS AND CROSS 

PRODUCTS OF RECIPROCAL SPACE VECTORS 
 

2.1.  Diffraction data for reference compounds 

 

Table A1: d-spacings and dhkl/d22l ratios for ε-cobalt 
 

h k l d (Å) dhkl/d221

1 1 0 4.31 2.12 
1 1 1 3.52 1.73 
2 1 0 2.73 1.34 
2 1 1 2.49 1.22 
2 2 0 2.16 1.06 
2 2 1 2.03 1.00 
3 1 0 1.93 0.95 
3 1 1 1.84 0.90 
2 2 2 1.76 0.87 
3 2 0 1.69 0.83 
3 2 1 1.63 0.80 
4 0 0 1.52 0.75 
4 1 0 1.48 0.73 
3 3 0 1.44 0.71 
3 3 1 1.40 0.69 
4 2 0 1.36 0.67 
4 2 1 1.33 0.65 
3 3 2 1.30 0.64 
4 2 2 1.24 0.61 
4 3 0 1.22 0.60 
4 3 1 1.20 0.59 
5 1 0 1.20 0.59 
5 1 1 1.17 0.58 
5 2 0 1.13 0.56 
5 2 1 1.11 0.55 
4 4 0 1.08 0.53 
5 2 2 1.06 0.52 
5 3 0 1.05 0.51 
5 3 1 1.03 0.51 
4 4 2 1.02 0.50 
6 1 0 1.00 0.49 
6 1 1 0.99 0.49 
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Table A2: d-spacings and dhkl/d22l ratios for fcc-cobalt 

h k l d (Å) dhkl/d221

1 1 1 2.05 1.01 
2 0 0 1.77 0.87 
2 2 0 1.25 0.62 
3 1 1 1.07 0.53 
2 2 2 1.02 0.50 

 

Table A3: d-spacings and dhkl/d22l ratios for hcp-cobalt 

h k l d (Å) dhkl/d221

1 0 0 2.17 1.07 
0 0 2 2.03 1.00 
1 0 1 1.91 0.94 
1 0 2 1.48 0.73 
1 1 0 1.25 0.62 
1 0 3 1.15 0.57 
2 0 0 1.09 0.53 
1 1 2 1.07 0.52 
2 0 1 1.05 0.52 
0 0 4 1.02 0.50 

 

Table A4: d-spacings and dhkl/d22l ratios for CoO 

h k l d (Å) dhkl/d221

1 1 1 2.46 1.21 
2 0 0 2.13 1.05 
2 2 0 1.51 0.74 
3 1 1 1.28 0.63 
2 2 2 1.23 0.60 
4 0 0 1.06 0.52 
3 3 1 0.98 0.48 
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Table A5: d-spacings and dhkl/d22l ratios for Co3O4

h k l d (Å) dhkl/d221

1 1 1 4.67 2.30 
2 2 0 2.86 1.41 
3 1 1 2.44 1.20 
2 2 2 2.33 1.15 
4 0 0 2.02 0.99 
3 3 1 1.85 0.91 
4 2 2 1.65 0.81 
3 3 3 1.56 0.77 
4 4 0 1.43 0.70 
5 3 1 1.37 0.67 
6 2 0 1.28 0.63 
5 3 3 1.23 0.61 
6 2 2 1.22 0.60 
4 4 4 1.17 0.57 
7 1 1 1.13 0.56 
6 4 2 1.08 0.53 
7 3 1 1.05 0.52 
8 0 0 1.01 0.50 
7 3 3 0.99 0.49 

 

2.2. Indexing data (ratios of ring radii) 

 Note that “E” stands for a reflection originating from ε-Co.  “O” or “CoO” refers 

to a reflection originating from cobalt (II) oxide.  While other cobalt oxides/hydroxides were 

considered, previous XRD data has shown that ε-cobalt and fcc nanocrystals form CoO 

when oxidized [44, 114, 131]. 
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Table A6: Indexing of diffraction pattern from figure 6.4 (unaligned, unoxidized  
monolayer of nanocrystals) 
 

r (pixels) r221/rhkl index 
362.00 1.33 210 
398.50 1.21 211 
483.00 1.00 221 
509.00 0.95 310 
534.00 0.90 311 
602.50 0.80 321 
685.50 0.70 330 
723.50 0.67 420 
823.00 0.59 510 
869.75 0.56 520 
964.00 0.50 442 

 
Table A7: Indexing of diffraction pattern from figure 6.7 (multilayer of nanocrystals), 
x = 0°, y = 0° stage position 
 

r221/rhkl index 
1.20 CoO 111 (E 211)* 
1.06 CoO 200, (E 220)* 
1.00 E 221 
0.93 E 310 
0.74 CoO 220 
0.61 CoO 222, (E 422)* 
0.56 E 520 
0.52 CoO 400, (E 522)* 
0.50 E 442 
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Table A8: Indexing of diffraction pattern from figures 6.6 and 6.19, x = 0°, y = 0 stage 
position 
 

r221/rhkl index 
1.51 E 200 
1.22 CoO 111, (E 211)* 
1.00 E 221 
0.95 E 310 
0.91 E 311 
0.87 E 222 
0.83 E 320 
0.74 CoO 220* 
0.64 E 332** 
0.60 E 430** 
0.58 E 511 
0.56 E 520 
0.54 E 440† 
0.50 E 442 

 

Table A9: Indexing of diffraction pattern from figure 6.19, x = 0°, y = 17° stage 
position 
 

r221/rhkl index 
1.49 E 200 
1.22 CoO 111, (E 211)* 
1.05 CoO 200, (E 220)* 
1.00 E 221 
0.94 E 310 
0.91 E 311 
0.87 E 222 
0.84 E 320 
0.74 CoO220* 
0.65 E 332** 
0.62 E422** 
0.60 E430** 
0.58 E511 
0.56 E520 
0.53 E440† 
0.50 E442 
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Table A10: Indexing of diffraction pattern from figure 6.19, x = 0°, y = -17° stage 
position  
 

r221/rhkl Index 
1.49 E200 
1.23 CoO 111, (E 211)* 
1.05 CoO 200, (E 220)* 
1.00 E 221 
0.95 E 310 
0.91 E 311 
0.87 E 222 
0.83 E 320 
0.74 CoO 220* 
0.65 E 332** 
0.61 E 422** 
0.60 E 430** 
0.58 E 511 
0.56 E 520 
0.54 E 440† 
0.50 E442 

 

 

Table A11: Indexing of diffraction pattern from figure 6.19, x = 31°, y = 0° stage 
position 
 

r221/rhkl index 
1.22 CoO 111, (E 211)* 
1.06 CoO 200, (E 220)‡ 
1.00 E 221 
0.95 E 310 
0.91 E 311 
0.87 E 222 
0.84 E 320 
0.74 CoO 220* 
0.64 E332** 
0.61 E422** 
0.60 E430** 
0.58 E511 
0.56 E520 
0.52 E530** 
0.50 E442 
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Table A12: Indexing of diffraction pattern from figure 6.19, x = -31°, y = 0° stage 
position 
  

r221/rhkl index 
1.23 CoO 111, (E 211)* 
1.05 CoO 200, (E 220)‡ 
1.00 E 221 
0.95 E 310 
0.91 E 311 
0.87 E 222 
0.83 E 320 
0.74 CoO 220* 
0.64 E332** 
0.61 E422** 
0.59 E430** 
0.58 E511 
0.56 E520 
0.53 E440† 
0.52 E530** 
0.50 E442 
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* While these reflections may index as both CoO and ε-cobalt reflections, it is believed that 

in all likelihood they are CoO, because these particular ε-cobalt reflection intensities are 

predicted to be extremely weak relative to the CoO reflections. 

 

** Some CoO reflections are close in position to these ε-cobalt reflections.  What should be 

noted is that these reflections are strongly textured (as are the ε-cobalt reflections that do  

not coincide with CoO reflections).   Preliminary data in early stages of analysis on non-

oxidized assemblies has shown that these reflections indeed originate from ε-cobalt.  It 

should also be noted that no literature could be found on oxide films with preferred 

crystallographic orientations forming on colloidal cobalt nanocrystals. 

 

† This reflection was textured, but very weak, which made measurements of its position 

more difficult.  There is some uncertainty as to the distance measured for this reflection. 

 

‡ The ε-cobalt 220 reflection is generally very weak.  What is notable about the SAED 

pattern is that this reflection (ε-cobalt 220 or CoO 200) is not a continuous ring, but rather 

two arcs, indicating a preferred orientation.  As mentioned previously, it is expected that the 

oxide film on the nanocrystals would not have a preferred orientation. 
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Table A13. Chart of lower-index cross products for all possible <hkl> corresponding 
to the hkl reflections found in x = 0°, y = 0° tilt position (SAED pattern in figure 6.18) 
 

 200 221 310 311 222 320 332 430 511 520 440 

200   
<110>, 
<210> 

<100>, 
<310> 

<110>, 
<310> <110> 

<100>, 
<320> 

<110>, 
<320> 

<100>, 
<430> 

<110>, 
<510> 

<100>, 
<520> 

<110>, 
<100> 

221    

<652>, 
<631>, 
<762>, 
<831>, 
<431> 

<110>, 
<411>, 
<534>, 
<754>, 
etc. 

<110>, 
<431> 

<100>, 
<322>, 
<324>, 
<641>, 
<647> 

<110>, 
<342> 

<543>, 
<431>, 
<432> 

<110>, 
<411> 

<652>, 
<542> 

<110>, 
<221>, 
<322>, 
<411> 

310      
<310>, 
<631> 

<321>, 
<431> 

<100>, 
<321>, 
<632> 

<331>, 
<631> 

<100>, 
<431> 

<321>, 
<831> 

<652>, 
<100> 

<100>, 
<311>, 
<331> 

311        
<110>, 
<211> <332> <110> <543> 

<110>, 
<411> <521> 

<110>, 
<211>, 
<332>, 
<411> 

222          
<321>, 
<532> 

<110>, 
<651> 

<431>, 
<743> 

<110>, 
<321> <532> 

<110>, 
<211> 

320            

<320>, 
<432>, 
<643> 

<100>, 
<632> 

<321>, 
<237> 

<100>, 
<532> 

<100>, 
<322>, 
<332> 

332              <643> <110> 
High 
index 

<110>, 
<311>, 
<331>, 
<533> 

430                 
High 
index 

High 
index 

<443>, 
<433> 

511                  <552> 

<110>, 
<411>, 
<552>, 
<611> 

520                    
<100>, 
<552> 

440                      

 
Note that “etc.” refers to the fact that there were higher-index cross product results. 
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Table A14.  Cross products from all possible <hkl> corresponding to the observed ε-
Co hkl reflections. (Additional reflections were CoO or could not be distinguished 
from CoO with total certainty). 
 

 221 310 520 442 
221  <652>, 

<631>, 
<762>, 
<831>, 
<431> 

<652>, 
<542>, 
plus higher 
index 
<hkl> 

<652>, 
<110>, 
<210>, 
<432>, plus 
higher-
index <hkl> 

310   <652>, 
<100>, 
plus higher 
index 
<hkl> 
 

Same as 
for 221 

520    Same as 
for 221 
 

442     
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APPENDIX 3: INITIAL ATTEMPTS TO VERIFY A THREE-DOMAIN 

HYPOTHESIS FOR THE NANOCRYSTAL ASSEMBLIES 

 
 The objective of this analysis was to find an arrangement of the nanocrystals’ 

crystallographic orientations that would explain the results of the tilting experiments.   As 

detailed in chapter 6, it was clearly established that no single crystallographic orientation 

could cause the diffraction pattern, indicating that multiple crystallographic orientations were 

present.  The dark field images had suggested that three crystallographic orientations were 

dominant amongst the nanocrystals. 

 With the dark field in mind, it was hypothesized that three crystal orientations were 

present in the sample.  The model tested was the simplest picture possible of such a system.  

The sample was approximated as consisting of three single-crystalline domains, each of 

which had a <221>-type vector fixed in the sample plane.  The angular distributions of the 

nanocrystals were not taken into account.  This model is depicted in figure A7 for the x = 0°, 

y = 0° (non-tilted) orientation, where the vectors av , b
v

, and cv , which all have the same 

magnitudes, represent the <221>-type vectors.  The tilt axis is coincident with the vector av . 

 After tilting to the x = 0°, y = -17° position (Fig. 6.19), it was observed that the 

positions of the 221 reflections shifted to be 90° from each other.   The question to ask was 

the following: could this resulting pattern be consistent with the proposed 3-domain 

hypothesis?  In other words, was it possible to find another <221>-type vector d
v

 in any of 

the domains that would intersect with the Ewald sphere after a 17° tilt?   Answering this 

question merely reduces to solving for the angular relationships between all <221>-type 

vectors, easily done with dot products or a stereographic projection. 
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Figure A7.  Possible 3 crystal domain schemes for obtaining the diffraction patterns observed at x 

= 0°, y = 0° and x = 0°, y = -17°.  The tilt axis is delineated on the domains with dotted lines. 

 

 Figure A7 displays the possible contributions of domains 1 and 2 to the x = 0°, y = -

17° diffraction pattern.  (Domain 3 was also considered in this analysis but its contribution is 

not shown in figure A1.)  In option 1, domain 2 gives rise to the vector d
v

.  However, there 

are no two sets of <221>-type vectors with the proper angular relationship for this to occur 

(that is, b
v

(or ) and cv d
v

cannot co-exist in a single domain).  For option 2,  d
v

 arises upon 

tilting from domain 1.  This is possible because there are <221>-type vectors that are 

orthogonal, e.g. [122] and [-22-1] (the dot product is zero). 

 The next part of this analysis to consider was to look at the x = 0°, y = +17° SAED 

pattern, shown in figure A9.   The goal again was to find other <221>-type vectors that 
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would have the angular relationships necessary to produce the x = 0°, y = +17° pattern.  

Option 2 (figure A8) was found to be a valid possibility.  A similar analysis was performed 

using the x = ±31°, y = 0° patterns, and a 3-domain arrangement of the nanocrystals was 

found to be possible. 

 

Figure A8.  Possible 3 crystal domain schemes for obtaining the diffraction patterns observed at x 

= 0°, y = 0° and x = 0°, y = +17°.  The tilt axis is delineated on the domains with dotted lines. 

 

 Having partially shown that a system with three separate crystallographic orientations 

might be possible, an attempt was made to derive zone axes at the x = 0°, y = 0° position for 

these proposed crystal domains.  The approach was to use basic linear algebra and geometry 

to derive zone axes for the proposed crystal domains.  Unfortunately, resulting derived zone 
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axes did not easily factor out to being vectors of the integer form [UVW].  The analysis was 

likely complicated by the presence of a distribution of orientations.   
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