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Abstract 

 

Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in 

Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be 

resolved for many environmentally relevant conditions. In order to understand the metabolism of these 

microorganisms under adverse environmental conditions for improved bioremediation efforts, 

Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an 

important intermediate in the nitrogen cycle. Physiological studies demonstrated that growth was inhibited 

by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global 

transcriptional profiling with whole-genome microarrays revealed a coordinated cascade of responses to 

nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron 

homeostasis. In agreement with previous observation, nitrite stressed cells showed a decrease in expression 

of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and 

ATPase activity. Consequently, the stressed cells had a decrease in expression of ATP-dependent amino 

acid transporters and of proteins involved in translation.  Nitrite detoxification also appeared to shift the 

flow of reducing equivalents from oxidative phosphorylation to nitrite reduction. Increased demand for 

iron, resulting from these regulatory events and the chemical oxidation of available Fe2+, likely contributed 

to iron depletion and the derepression of the Fur regulon. The regulatory mechanisms during nitrite stress 

response implicated in this work need to be elucidated by further biochemical studies on D. vulgaris. 

 

Introduction 

 

The sulfate-reducing bacteria represent a group of microorganisms characterized by the 

ability to use sulfate as an electron acceptor in anaerobic respiration (Postgate, 1984). 

Microbial sulfate reduction by these microorganisms is recognized as a widely distributed 

process of great ecological importance (Singleton, 1993; Madigan et al., 2000). Historical 

interest in sulfate-reducing bacteria has been focused on their involvement in 
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biocorrosion of ferrous metals in the petroleum industry and of concrete structures in 

wastewater collection systems (Hao et al., 1996; Little et al., 2000). More recent studies 

(Lovley et al., 1993a&b; Lloyd et al., 1999; Chardin et al., 2002) have documented the 

ability of a number of sulfate-reducing bacteria to reduce soluble metal oxyanions to 

insoluble forms, a process of great potential in the bioremediation of toxic heavy metals 

and radionuclides such as chromium and uranium (Gadd and White, 1993; Valls and de 

Lorenzo, 2002).  

To effectively immobilize heavy metals and radionuclides using sulfate-reducing 

bacteria, it is important to understand the microbial response to adverse environmental 

factors common in contaminated subsurface environments. One such factor is the high 

nitrate concentration of many contaminated sites at the U.S. nuclear weapon complexes 

managed by the Department of Energy (Riley and Zachara, 1992; NABIR 2003). The 

presence of nitrate may pose a specific stress to sulfate-reducing bacteria as nitrate was 

observed to suppress sulfate reduction activity in situ (Jenneman et al., 1986; Davidova et 

al., 2001). However, it has been suggested that nitrite, an intermediate that transiently 

accumulates during nitrate reduction (Betlach and Tiedje, 1981; van Rijn et al., 1996; 

Kelso et al., 1999), is directly responsible for the inhibition of sulfate reduction activity 

(Londry and Suflita, 1999; Myhr et al., 2002). Therefore, it is important to understand the 

inhibitory effects of nitrite on the cellular physiology and biochemical capacity of sulfate-

reducing bacteria in order to predict their performance for bioremediation. 

In this report we used Desulfovibrio vulgaris Hildenborough as a model organism to 

investigate the inhibition of sulfate reduction by nitrite. The microbial stress responses at 

the transcriptional level were studied with whole-genome microarrays. Our results 
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indicate that D. vulgaris is capable of rapid nitrite reduction and the exposure to nitrite 

triggers a well coordinated response in pathways of energy metabolism, nitrogen 

metabolism, oxidative stress response, and iron homeostasis.  

 

Results 

 

Growth inhibition of D. vulgaris by nitrite 

The inhibitory effect of nitrite on the growth of D. vulgaris was evaluated by adding 

various concentrations of nitrite to actively growing cultures (OD 600 nm ca. 0.4). No 

significant growth inhibition was observed with nitrite concentrations below 1 mM as the 

growth curves overlapped between nitrite-treated cultures and control cultures (Fig. 1).  

With 2.5 mM nitrite, a slower growth rate was observed. When nitrite concentration 

increased to 5 mM, the growth of D. vulgaris was significantly decreased, and little 

change in OD was observed over the monitored time (Fig. 1).  

 

Reduction of nitrite by D. vulgaris  

To further determine the connection between nitrite and the growth inhibition of D. 

vulgaris, nitrite levels were monitored in the D. vulgaris cultures (Fig. 2). Abiotic 

reduction of nitrite by the medium or sulfide was excluded as nitrite was stable with the 

presence of 40 mM sulfide in no-cell controls. On the other hand, with initial 

concentrations lower than 2.5 mM, nitrite decreased rapidly in active D. vulgaris cultures, 

indicating that nitrite was reduced by D. vulgaris cells. In contrast, D. vulgaris cultures 
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were unable to reduce 5 mM nitrite, which coincided with nearly complete inhibition of 

growth as shown in Fig. 1. 

 

Transcriptome analysis of nitrite stress 

To study the mechanisms exploited by D. vulgaris cells to alleviate the toxicity of nitrite, 

microarray experiments were carried out to compare global gene expression profiles 

between nitrite stressed D. vulgaris cultures and control cultures without nitrite exposure. 

In order to achieve an optimal stress response, D. vulgaris cells were challenged by a 

sub-lethal nitrite level (2.5 mM), which effectively inhibited cell growth but still allowed 

active reduction of nitrite (Fig. 2). Because tolerance to nitrite was suggested to be 

dependent on the biomass concentration at the time of nitrite addition (Haveman et al., 

2004), cultures of similar optical densities (OD 600 nm  ca. 0.4) were used throughout the 

study. 

Significant changes in gene expression profile occurred within 30 min following 

nitrite addition and peaked at 60 min with 330 genes being up-regulated and 273 genes 

down-regulated (Fig. 3) greater than two fold. Subsequently, transcriptional responses 

rapidly diminished with only 82 genes still up-regulated and 86 genes down-regulated 

more than two fold 4 hours after nitrite addition (Fig. 3).  About the same time, the initial 

2.5 mM nitrite concentration dropped below 0.5 mM. The steady decline in 

transcriptional response subsequent to the changes initially observed mirrored the time 

course of reduction of nitrite by D. vulgaris, showing an apparent correlation between the 

dynamics of transcriptional response and reduction of nitrite.  
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To illustrate the gene functions involved in nitrite stress response, genes with altered 

expression levels after 1h of nitrite exposure were grouped into functional role categories 

according to The Institute for Genomic Research (TIGR)’s annotation of D. vulgaris 

Hildenborough genome sequence (Peterson et al., 2001; Heidelberg et al., 2004) as 

shown in Fig. 4. Notably, a large portion of the highly up-regulated genes belong to 

cellular roles involved in organic acid oxidation, regulatory functions, and signal 

transduction, suggesting a shift in energy flow through complex regulatory pathways 

when D. vulgaris cells signal the presence of nitrite. On the other hand, many of the 

highly down-regulated genes have functions in protein biosynthesis and encode transport 

and binding proteins, perhaps indicating a slowdown in normal cellular biosynthetic 

activities when challenged by nitrite stress. 

 

Validation of microarray results  

To validate transcriptional results generated by microarray hybridization, real-time RT-

PCR analysis was conducted to quantitate the expression levels of eight genes (data not 

shown). A high degree of correlation was found between results from microarray and RT-

PCR (r2=0.93), as reported in previous studies that used this microarray procedure (Gao 

et al., 2004; Wan et al., 2004).  The accuracy of this approach in the current study was 

affirmed. 

In addition to real-time RT-PCR analysis, expression differences for gene pairs within 

the same predicted operon or gene pairs selected at random were compared to determine 

whether changes observed in microarray experiments were authentic (Gao et al., 2004). 

Consistent with our expectation (Fig. 5A), genes within the same operon responded more 
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similarly than did genes randomly selected from the genome. As shown in Fig. 5A, the 

within-operon pairs had higher probabilities to exhibit much smaller log-ratio differences 

than gene pairs chosen at random, thus confirming the agreement between microarray 

results and operon prediction, and the high quality of the expression data. Furthermore, a 

second operon-based computational method was also used to test the validation of the 

microarray results through evaluation of the confidence levels of gene expression (Price 

et al., 2005). Consistently, genes identified as confident changers were generally in close 

agreement with other genes found in the same operon (Fig. 5B).  In addition, at the 90 

min time point, about half of the genes measured were identified as confident changers.  

Thus the comparison with operon structure confirmed both the high quality of the 

expression data, and our ability to identify which data points were most reliable. 

 

Hierarchical clustering analysis of temporal gene expression profile  

To understand the various mechanisms involved in nitrite stress response by D. vulgaris, 

a hierarchical clustering analysis was conducted on the transcriptional profile (Fig. 6). 

Cluster A consists of genes highly induced throughout the duration of the experiment, 

including the operon encoding the nitrite reductase and several redox-active proteins. 

Notably, the hybrid cluster protein was highly up-regulated in response to the presence of 

nitrite, providing more evidence for its suggested role in nitrogen metabolism (van den 

Berg et al., 2000; Wolfe et al., 2002). Cluster B represents a group of genes highly 

induced within 1.5 h of the addition of nitrite but for which the induction diminished or 

even reversed subsequently. Interestingly, genes included in this cluster encode for 

ferrous iron transport proteins, suggesting the important role of iron homeostasis in the 
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initial stress response to nitrite. Cluster C covers a large number of genes repressed 

during the early response to nitrite that were later restored to expression levels observed 

in the control cultures. Within Cluster C, genes for ribosomal proteins were particularly 

in abundance, consistent with prior findings of an early slowdown in protein synthesis 

(Fig. 4). Cluster D is comprised of genes down-regulated throughout the experiment 

duration, including genes that have functions in energy metabolism. From the concurrent 

induction of genes in nitrite reduction (Cluster A) and the repression of genes encoding 

ATP synthase subunits (Cluster D), we inferred that electron flow was likely shifted from 

respiratory phosphorylation to the reduction of nitrite. 

 

Genes involved in energy metabolism 

Genes having functions in energy metabolism exhibited considerable divergence in their 

transcriptional response to nitrite (Table 1). In contrast to the severe repression of ATP 

synthase genes, genes encoding the membrane-bound lactate dehydrogenase (ldh) and 

pyruvate ferredoxin oxidoreductase (porAB) were induced, pointing to potential increases 

in substrate level phosphorylation and electron flow. In parallel with the increased 

electron flow, a number of operons encoding redox proteins participating in periplasmic 

electron transfer were also up-regulated, including that encoding the periplasmic [NiFe] 

hydrogenase (hynBA-2) and its putatively associated tetraheme cytochrome (DVU2524-

2526) and one encoding a formate dehydrogenase (DVU2810-2812). Thus the possibility 

exists that these redox proteins are involved in electron transfer to nitrite or in the 

turnover of reduced electron carriers allowing a greater rate of substrate oxidation for 

substrate level phosphorylation. Additionally, the fumarate reductase operon (frdABC) 
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was induced, possibly allowing fumarate to serve as an alternative electron acceptor 

(Table 1). 

Among genes involved in the sulfate reduction pathway, the operon for the triheme 

cytochrome c-containing membrane-bound oxidoreductase (dsrMKJOP), which has been 

implicated as having a role in electron transfer for sulfite reduction (Haveman et al., 

2004), was considerably down-regulated in response to nitrite. Two other operons with 

unknown functions, one encoding the membrane-bound decaheme electron transport 

complex (rnfABCDEFG) and the other for the membrane-bound cytoplasmically-oriented 

Ech hydrogenase (echABCD) were also significantly down-regulated.  

 

Genes with functions in nitrogen metabolism  

One important observation in response to nitrite was the down-regulation of multiple 

genes encoding ATP-binding ABC-transporters for amino acids and polyamines (Table 

2). With the sulfate reduction pathway and oxidative phosphorylation being severely 

hindered (Table 1), the decrease in expression of energy linked transport systems could 

result from a lower energy level in the cells under nitrite stress. The demand for amino 

acids could also be slowed as a result of the decrease in protein biosynthetic machinery. 

 Paradoxically, the glutamine synthetase gene (DVU3392), which participates in 

nitrogen assimilation (Merrick and Edwards, 1995), was induced during nitrite stress 

(Table 2). This might result from the increased flux of carbon needed to support substrate 

level phosphorylation that may spill over increasing the ratio of α -ketoglutarate to 

glutamine, the signal for nitrogen limitation. Additionally, genes encoding the aspartate 

ammonia-lyase (DVU1766) and asparaginase (DVU2242), which are responsible for the 
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catabolism of amino acids acquired from the medium, were down-regulated (Table 2). 

Thus, the transition from respiration of sulfate to alternative energy sources appeared to 

influence overall carbon and nitrogen metabolism of the cells. 

 

Genes in the predicted Fur regulon 

Among the highly induced genes during nitrite stress are ferrous iron transporter genes 

(Fig. 6), which were predicted to be controlled by the ferric uptake regulator (Fur) at the 

transcriptional level (Rodionov et al., 2004). Interestingly, all genes in the predicted Fur 

regulon (Rodionov et al., 2004) were highly up-regulated for 1.5 hours following the 

onset of nitrite stress (Table 3). Since the Fur regulons of many bacteria are known to be 

derepressed by iron deficiency (Escolar et al., 1999; Hantke, 2001), its induction in nitrite 

stress implies a link between this stress and iron depletion.  Indeed, genes encoding iron-

containing proteins, including nitrite reductase, were on average up-regulated in response 

to nitrite (Fig. 7), resulting in a higher demand for iron. It is thus likely that the highly 

induced Fur-regulated genes, which include ferrous iron transporters, served to meet the 

increased demand for iron. 

 

Genes belonging to the predicted PerR regulon 

Because reactive nitrogen species have been shown to trigger oxidative stress responses 

(Nunoshiba et al., 1993; Mukhopadhyay et al., 2004), expression levels of genes 

predicted to be regulated by the oxidative stress regulator PerR (Rodionov et al., 2004) 

were examined (Table 4). All genes in the PerR regulon were moderately up-regulated at 
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one or more sampling points during the experiment, suggesting oxidative stress response 

as a derivative from nitrite stress. 

 

Discussion 

 

The sulfate-reducing bacteria are of great potential in the bioremediation of heavy metals 

and radionuclides in anaerobic environments (White et al., 1997; and de Lorenzo, 2002). 

Therefore, considerable research effort has been made to understand the response of these 

bacteria to unfavorable environmental factors using physiological and genetic 

approaches. One significant finding is the inhibition of sulfate reduction by nitrite, an 

important intermediate during microbial nitrate reduction (Pereira et al., 2000; Nemati et 

al., 2001; Haveman et al., 2004; Hubert et al., 2005). The availability of the genome 

sequence of D. vulgaris makes it possible to study stresses at the whole-genome level 

(Heidelberg et al., 2004). Using global transcriptional analysis, this work revealed that D. 

vulgaris cells responded to the presence of nitrite with a series of well coordinated 

regulatory pathways linking energy metabolism, nitrogen metabolism, iron homeostasis, 

and oxidative stress response.   

Physiological and transcriptional analyses demonstrated that nitrite reduction was the 

primary mechanism for detoxification by D. vulgaris (Fig. 2 and Table 2), which is 

consistent with previous observations (Greene et al., 2003). A significant increase in the 

expression of the nitrite reductase genes reported here (Table 2) was also seen by 

Haveman et al. (2004). However, earlier reports measuring the specific activity of nitrite 

reductase indicated that the enzyme was essentially constitutive (Mitchell et al., 1986) or 
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that activity was actually less in cells exposed to nitrite (Pereira et al., 2000). This 

disparity has not yet been resolved here and requires further examination.  

Major effects on energy generation were expected from the biochemical studies that 

demonstrated nitrite inhibition of sulfite reductase (Wolfe et al., 1994; Haveman et al., 

2004) and the periplasmic [Fe] hydrogenase of D. vulgaris (Pereira et al., 2000). 

Furthermore, as nitrite reduction consumes electrons and protons, which are central to 

respiration, one would expect changes in energy metabolism. Indeed, a number of genes 

with important roles in energy metabolism were differentially expressed, highlighting the 

extensive energetic consequences of nitrite stress (Table 1), that are illustrated in the 

proposed conceptual model of the energetics of nitrite reduction (Fig. 8). D. vulgaris cells 

could respond to this energy requirement by the up-regulation of ldh and porAB, thus 

increasing the electron flow and the opportunity for substrate level phosphorylation. 

Simultaneously, the triheme cytochrome c (dsrMKJOP) operon, which has been 

suggested to transfer electrons to the sulfite reductase (Haveman et al., 2004), was 

significantly down-regulated. These results are in good agreement with the earlier work 

of Haveman et al. (2004) who showed repressive effects of nitrite on sulfate reduction 

including sulfate adenylyl transferase and pyrophosphatase. The outcome of these 

regulatory events is a redirected electron flow with at least a portion being used for nitrite 

reduction.   

Interestingly, earlier work on the effects of nitrite on the growth of D. vulgaris on 

lactate/sulfate containing medium reported a large accumulation of hydrogen (Pereira et 

al., 2000). Thus some of the excess reductant may be channeled to hydrogen production, 

although isozyme-2 of the [NiFe] hydrogenase was observed to be up-regulated in our 
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work. Additionally, the up-regulation of the genes in the fumarate reductase operon 

(frdBAC) (Table 1) could signal the use of fumarate as a terminal electron acceptor in the 

absence of sulfate/sulfite reduction. Taken as a whole, the repression of sulfate reduction, 

the increase in nitrite reduction, and the inhibition of [Fe] hydrogenase likely contribute 

to a diminished proton motive force, which in turn may be responsible for the repression 

of genes encoding the ATP synthase subunits (Table 1). The resulting slow down in 

growth might also explain the down-regulation of genes for ribosomal proteins and those 

for biosynthesis of expensive amino acids during nitrite stress (Fig. 6). 

Notably, while the [NiFe] hydrogenase was up-regulated under nitrite stress, the [Fe] 

hydrogenase was down-regulated (Table 1). Currently, the physiological roles of the 

various hydrogenases in D. vulgaris are still not clear. However, the [NiFe] hydrogenase 

is apparently more suited to functioning in the presence of nitrite, based on prior reports 

that nitrite strongly inhibits the periplasmic [Fe] hydrogenase but has no impact on 

[NiFe] hydrogenase (Berlier et al., 1987). Thus, the redundancy in periplasmic 

hydrogenases may allow for functional compensation under stressconditions (Heidelberg 

et al., 2004).  

Furthermore, the up-regulation of periplasmic formate dehydrogenase points to the 

possibility that formate oxidation acts as another mechanism to supply electrons and 

protons for nitrite reduction, but the source of formate in the periplasm needs to be 

resolved. Interestingly, it is proposed that the “hydrogen cycling’ model (Odom and 

Peck, 1981) for contributing to a proton gradient could potentially be one example of a 

more general phenomenon termed redox cycling (Jormakka et al., 2003). In fact, 

consideration of the D. vulgaris genome sequence reveals the potential for production of 
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formate in the cytoplasm. Movement of the protonated, uncharged species through the 

cytoplasmic membrane and its oxidation in the periplasm could contribute to the electron 

and proton flows across the membrane (Heidelberg et al., 2004). Thus, it is possible that 

uncharged formate generated during pyruvate oxidation diffuses across the membrane 

and then is oxidized by the formate dehydrogenase to contribute to the electrons and 

protons used in nitrite reduction or hydrogen generation. 

The energetic consequences of nitrite stress also affected nitrogen metabolism in D. 

vulgaris (Table 2). The down-regulation of multiple genes encoding ATP-requiring ABC 

amino acid and polyamine transporters may reflect the inhibition of ATP generation from 

sulfate respiration and/or the decreased demand for amino acids for protein biosynthesis. 

In contrast, the up-regulation of the glutamine synthetase gene (glnA) would appear to 

signal nitrogen-limiting conditions (Woods and Reid, 1993; Merrick and Edwards, 1995). 

It is possible that an increased flux of carbon to support substrate level phosphorylation 

might overflow into the TCA cycle, altering the α -ketoglutarate/glutamine ratio 

controlling glnA expression. Another strategy to preserve amino acids for biosynthetic 

demand was the repression of genes encoding aspartate ammonia-lyase and asparaginase, 

which catabolize amino acids when they are present in excess. Thus the presence of 

nitrite adversely impacted energy generation and indirectly affected the nitrogen signals 

of the cells. 

Interestingly, results from this study show that genes in the Fur regulon were among 

the most highly up-regulated genes in response to nitrite stress (Table 3). As Fur is 

known as the primary regulator of iron homeostasis in many other microorganisms 

(McHugh et al., 2003; Moore and Helmann, 2005), this observation raises a question 
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about the connection between nitrite stress and iron homeostasis. The Fur family of 

metallo-regulatory proteins are typically dimeric DNA-binding transcriptional factors that 

also bind Fe2+ as co-repressor in order to repress downstream genes. Therefore, 

derepression of Fur regulated genes could be attributed to interactions of nitrite, directly 

or indirectly, with either the Fur protein, Fe2+, or both. Derepression of the Fur regulon 

could be effected by iron deficiency resulting from consumption of cytoplasmic Fe(II), 

since genes encoding many iron-containing proteins, including the nitrite reductase, were 

up-regulated in response to nitrite. Compounding this demand for iron, chemical 

oxidation of Fe2+ by NO2
- has been readily observed (Obuekwe et al., 1981; Brons et al., 

1991) and Fe3+ is generally unavailable for biosynthesis or signaling. A less likely 

mechanism posits that nitrite might react directly with the protein-bound Fe2+ co-

repressor, generating Fe3+, leading to dissociation and concomitant derepression. The 

intracellular concentrations of NO2
- are likely to be small because of the rapid reduction 

of nitrite in the periplasm and the apparent absence of a specific transport system for this 

ion. However, given the complex chemistry of reactive nitrogen species (Poole, 2005), it 

is still possible that reactive nitrogen species generated from nitrite reduction could enter 

the cytoplasm to react with Fe2+ (D'Autréaux et al., 2002). However, the contribution of 

each mechanism to the relief from Fur repression during nitrite exposure is not clear and 

further biochemical study is needed to address the mechanism and importance of Fur 

regulation in this stress response in D. vulgaris. 

Since Fur and PerR both respond to oxidative stress and belong to the same 

superfamily of metalloregulatory proteins that respond to metal ions (Mongkolsuk and 

Helmann, 2002), it is possible that the same mechanism derepresses both regulons. 
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Studies on other microorganisms have shown that reactive nitrogen species, including 

nitrite, incidentally induce genes responsive to oxidative stress, in addition to genes 

specifically designed to protect cells from nitrosative stress (Moore et al., 2004; 

Mukhopadhyay et al., 2004). Whether proteins encoded in the PerR regulon confer 

protection against nitrite or are adventitiously derepressed remains to be determined.   

In summary, the results reveal that D. vulgaris cells initiate a coordination of 

transcriptional regulations allowing the alleviation of nitrite toxicity via nitrite reduction. 

The inhibition of energy metabolism pathways could force D. vulgaris to shift the flow of 

reducing equivalents from oxidative phosphorylation to nitrite reduction. In addition, 

substrate level phosphorylation becomes prominent and the excess reductant generated 

may be disposed of as succinate or hydrogen. Increased demand for iron resulting from 

these regulatory events likely contributes to iron depletion along with the chemical 

oxidation of available Fe2+, derepressing the Fur regulon. However, further biochemical 

study is needed to elucidate the regulatory mechanisms and importance of transcriptional 

regulators in D. vulgaris during stress responses. 

 

Experimental procedures 

 

Organism and growth conditions 

Desulfovibrio vulgaris strain Hildenborough (ATCC 29579) was grown in an anaerobic 

medium containing lactate plus sulfate (LS medium) of the following composition (per 

liter): 6.72 g of sodium lactate, 7.10 g of Na2SO4, 0.963g of  anhydrous MgSO4, 1.07 g of 

NH4Cl, 0.383 g of K2HPO4, 0.088 g of CaCl2·2H2O, 0.620 mg of resazurin, 0.600 g of 
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Na2CO3, 25.0 ml of 1 M HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

(pH 7.0), 12.5 ml of a trace mineral solution, 0.75 g of L-cysteine, and 1.0 g of yeast 

extract. The trace mineral solution contained the following (per liter): 1.0 g of 

FeCl2·4H2O, 0.3 g of CoCl2·4H2O, 0.5 g of MnCl2·4H2O, 0.2 g of ZnCl2, 20 mg of 

H3BO3, 50 mg of Na2MoO4·4H2O, and 0.1 g of NiCl2·6H2O. Cysteine was added as a 

reductant after the medium had been boiled and cooled to room temperature. The 

headspace of the medium container was continuously flushed with oxygen-free nitrogen 

gas, and the pH was adjusted to 7.2±0.1 with 5 M NaOH. A vitamin solution (10ml per 

liter) (Brandis and Thauer, 1981) was added to the autoclaved medium from filter-

sterilized anaerobic stock solutions. Cultures were incubated in the dark at 37°C in 

stoppered 160-ml serum bottles with 100 ml of LS medium or in 30-ml anaerobic culture 

tubes with 10 ml of medium and sealed with butyl rubber stoppers and aluminum seals. 

Strictly anaerobic techniques were used throughout all experimental manipulations.  

 

Oligonucleotide probe design and microarray construction 

DNA microarrays covering 3,482 of the 3,531 annotated protein-coding sequences of the 

D. vulgaris genome were constructed with 70mer oligonucleotide probes (He et al., 

2005).  Oligonucleotide probes (3,574) were designed to cover all open read frames 

(ORFs) for the genome of D. vulgaris Hildenborough using a computer software tool 

ArrayOligoSelector (Bozdech et al., 2003) based on an early version (June 2003) of the 

gene model with 3,584 ORFs. The specificity of all designed oligonucleotide probes was 

examined with two criteria. From a BLAST analysis (Altschul et al., 1997), 

oligonucleotides (496) were considered non-specific if they showed a >85% sequence 
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identity or a >18-base continuous homologous stretch with other ORFs in the genome 

(He et al., 2005). These non-specific oligonucleotide probes were re-designed against the 

genome using two other programs, OligoPicker (Wang and Seed, 2003) and OligoArray 

(Rouillard et al., 2002) with the same design parameters. Following the examination of 

the entire probe set according to the oligonucleotide probe design criteria (He et al., 

2005), 3,471 (97.1%) specific oligonucleotide probes were obtained, and 103 (2.9%) 

remained non-specific. Ten ORFs with multiple copies had only one probe designed. 

When this early version gene model was mapped to the published version of the D. 

vulgaris gene model (Heidelberg et al., 2004), 3,482 of the 3,531 protein-coding 

sequences were covered with 3,439 specific, and 43 non-specific oligonucleotide probes.  

In addition, 10 oligonucleotides for 10 human genes and 10 oligonucleotides for 10 

Arabidopsis genes were selected against the D. vulgaris genome for positive (with 

mRNA spiked) or negative (without mRNA spiked) controls. All designed 

oligonucleotides were commercially synthesized without modification by MWG Biotech 

Inc., (High Point, NC). The concentration of oligonucleotides was adjusted to 100 

pmol/µl. Oligonucleotide probes were prepared in 50% vol/vol DMSO (Sigma-Aldrich, 

St. Louis, MO) and spotted onto UltraGAPS glass slides (Corning Life Sciences, 

Corning, NY) using a BioRobotics Microgrid II microarrayer (Genomic Solutions, Ann 

Arbor, MI). Each oligonucleotide probe had two replicates on a single slide.  

Additionally, 6 different concentrations (5, 25, 50, 100, 200, and 300 ng/µl) of genomic 

DNA were also spotted (8 duplicates on a single slide) as additional positive controls. 

After printing, the oligonucleotide probes were fixed onto the slides by UV cross-linking 
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(600 mJ of energy) according to the protocol of the manufacturer of the UltraGAPS glass 

slides (Corning Life Science, Corning. NY). 

 

Exposure to nitrite stress 

In experiments for nitrite stress microarray analysis, D. vulgaris cultures were grown to 

exponential phase (OD 600 nm ca. 0.4) in LS medium. To triplicate cultures, nitrite from 

anaerobic stock solutions was added to a final concentration of 2.5 mM. Cell samples of 

each culture were harvested immediately after the addition of nitrite (T0), and after 30 

(T1), 60 (T2), 90 (T3), 150 (T4), and 240 (T5) min by centrifugation (5,000 × g) for 5 

min at 4°C. Cell samples from triplicate control cultures without the addition of nitrite 

were collected simultaneously at the same time points. Cell pellets were then 

immediately frozen in liquid N2 and stored at -80°C prior to RNA isolation. To prevent 

organic contamination, all glassware was acid washed and baked at 300°C overnight. 

 

Analytical methods 

Growth of cultures was monitored spectrophotometrically (OD600 nm). Nitrite and other 

oxyanions were analyzed on a Dionex DX-120 ion chromatograph (IC) apparatus with a 

PeakNet analysis software package and a Dionex IonPak Anion Exchange column as 

previously described (He and Mankin, 2002). The mobile phase contained 1.8 mM 

Na2CO3 and 1.7 mM NaHCO3. Peaks were quantified via an electrochemical detector as 

conductivity and concentrations were determined using known standards. Samples from 

the cultures were filtered through 0.20-µm pore-sized filters prior to IC analysis.  
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Total RNA extraction, purification and labeling 

Total cellular RNA was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA) 

following the manufacturer’s protocol. RNA extracts were purified according to the 

RNeasy Mini Kit (Qiagen Valencia, CA) instructions and on-column DNase digestion 

was performed with the RNase-free DNase Set (Qiagen, Valencia, CA) to remove 

genomic DNA contamination according to the manufacturer’s procedure.  

To generate cDNA probes with reverse transcriptase, 10 µg of purified total RNA 

was used for each labeling reaction using a previously described protocol (Thompson et 

al., 2002). Briefly, random hexamers (Invitrogen) were used for priming and the 

fluorophor Cy3-dUTP or Cy5-dUTP (Amersham Biosciences, Piscataway, NJ) was used 

for labeling. After the labeling, RNA was removed by NaOH treatment and cDNA was 

immediately purified with a Qiagen PCR Mini kit. The efficiency of labeling was 

routinely monitored by measuring the absorbance at 260 nm (for DNA concentration), 

550 nm (for Cy3), or 650 nm (for Cy5). Two samples of each total RNA preparation were 

labeled, one with Cy3-dUTP and another with Cy5-dUTP for microarray hybridization. 

 

Microarray hybridization, washing and scanning 

To hybridize microarray glass slides, the Cy5-dUTP-labeled cDNA probes from one 

nitrite-treated culture were mixed with the Cy3-dUTP-labeled cDNA probes from one 

untreated control culture and vice versa (dye swap). As a result, each biological sample 

was hybridized to two microarray slides. Equal amounts of Cy3- or Cy5-labeled probes 

were mixed and resuspended in 35-40 µl of hybridization solution that contained 50% 

(vol/vol) formamide, 5 × saline-sodium citrate (5 × SSC; 1X SSC = 150 mM NaCl, 15 
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mM sodium citrate, pH 7.0), 0.1% (wt/vol) sodium dodecyl sulfate (SDS), and 0.1 mg 

herring sperm DNA /ml (Invitrogen). The hybridization solution was incubated at 95-

98°C for 5 min, centrifuged to collect condensation, kept at 50°C, and applied onto 

microarray slides. Hybridization was carried out in hybridization chambers (Corning Life 

Sciences, Corning, NY) at 45°C overnight (16-20 h). 10 µl of 3 × SSC solution was 

added to the wells at both ends of the microarray slides to maintain proper chamber 

humidity and probe hydration around the edges of the cover slip. Microarray slides were 

washed according to the instructions for spotted oligonucleotide microarrays on 

UltraGAPS slides by the manufacturer (Corning) in the following steps:  twice in a 

solution containing 2 × SSC and 0.1% (wt/vol) SDS at 42°C at 5-min intervals, twice in a 

solution containing 0.1 × SSC and 0.1% (wt/vol) SDS at room temperature at 10-min 

intervals, and twice in 0.1 x SSC at room temperature at 2-min intervals. After being 

blown dry by a stream of N2, the slides were scanned for the fluorescence intensity of 

both the Cy5 and Cy3 fluorophores using the ScanArray Express microarray analysis 

system (Perkin Elmer, Boston, MA). 

 

Image quantification and data analysis 

To determine signal fluorescence intensities for each spot, 16-bit TIFF scanned images 

were analyzed by application of the software ImaGene version 6.0 (Biodiscovery, Marina 

Del Rey, Calif.) to quantify spot signal, spot quality, and background fluorescent 

intensities. Empty spots, poor spots, and negative spots were flagged according to the 

instruction of the software and removed in subsequent analysis (Gao et al., 2004).  
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The resulting data files were subjected to Lowess intensity-based normalization and 

further analyzed using GeneSpring version 5.1 (Silicon Genetics, Redwood City, Calif.).  

To assess the statistical significance of individual data points, the Student t-test was used 

to calculate a p-value to test the null hypothesis that the expression level was unchanged. 

A statistical model incorporating both per gene variance and operon structure was further 

used to compute the posterior probability that each gene changed its expression level in 

the direction indicated by its mean value (Price et al., 2005). An average linkage 

hierarchical clustering analysis of the time course transcriptional response to nitrite stress 

with the Euclidean distance as the similarity metric was performed and visualized with 

Hierarchical Clustering Explorer Version 3.0 (Seo et al., 2004). 

 

Analysis of average expression levels of genes encoding iron-containing proteins 

The significance of iron-containing proteins was evaluated by comparing the expression 

levels of transcripts coding for iron-containing proteins to the average values for all genes 

in the cell.  To estimate absolute transcript levels from ratios we fixed control channel 

measurements to be equal to average values reported in hybridizations using genomic 

DNA as a reference under similar conditions in our laboratory.  Absolute levels 

(normalized for total cellular mRNA abundance) in treatment conditions were then 

computed directly from the observed ratios.  To identify genes encoding iron-containing 

proteins, we examined domain structure as predicted by InterPro version 9 and included 

all genes with domains annotated as binding iron. 

 

Real-time quantitative reverse-transcription-PCR (RT-PCR) analysis 
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To independently validate gene expression results from the microarray analysis, eight 

open reading frames (ORFs) were chosen for analysis using real-time RT-PCR. Primer 

pairs (in parentheses, forward and reverse) were designed for the following genes to yield 

products of ~100 bp (Rozen and Skaletsky, 2000): DVU0625 (5΄-

AGAACCTCTGGCTCGGCTAT, 5΄-CGATTGATACGGTCGATGTG); DVU0942 (5΄-

CATCGCCGTATTTCAGGATT, 5΄-GAGATGCCCGCCTACTTTC); DVU1290 (5΄-

TTTCCGGCTTTCAGTACGTT, 5΄-AGACTTGGCCCAATCCACTA); DVU1574 (5΄-

GGTGGCAAGCTCGAAGTCTA, 5΄-GATGTCGAGTTCGGTCAGGT); DVU2247 (5΄-

TCTATCCGCTGGACTTCACC, 5΄-ACACCGATGACCTC GACATT); DVU2543 (5΄-

ACCTCACCATCTACGCCTTG, 5΄-GCTTTGGCCGTGTATTCATC); DVU2571 (5΄-

GAAGGAGGTCATCGTCTCCA, 5΄-GGGGTCGTTCCTGATCTGT); DVU2680 (5΄-

CTTCATTCCCCTTTTCGACTC, 5΄-CCCGCAGAAGTACTCGTAGG). 

The RT-PCR analysis was carried out using a previously described protocol (Wan et 

al., 2004). Briefly, the cDNA template for real-time RT-PCR was synthesized from 5 µg 

of total RNA using the reverse transcriptase reaction with random hexamer priming 

(Invitrogen). The quantitative PCR was carried out in an iCycler thermal cycler (Bio-Rad, 

Hercules, Calif.) that measured the increases in fluorescence resulting from the 

incorporation of SYBR green dye (Molecular Probes, Eugene, Oreg.) into double-strand 

DNA. Real-time data acquisition and analysis were performed with the software iCycle 

2.3 version B according to the manufacturer's instructions. Standards for each gene of 

interest were obtained by serial dilutions of PCR amplification product from D. vulgaris 

genomic DNA using the procedure described above but without SYBR green dye. The 

standards were used to establish a standard curve consisting of seven points serially 
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diluted from 107 to 101 copies. Copy numbers of the target gene transcripts were 

determined by comparison with the standard curves and then gene expression differences 

between the treatment and control samples were determined. 

 

Acknowledgements 

 

This research was supported by the U.S. Department of Energy under the Genomics:GTL 

Program through the Virtual Institute of Microbial Stress and Survival (VIMSS; 

http://vimss.lbl.gov), and Microbial Genome Program, of the Office of Biological and 

Environmental Research, Office of Science, under Cont# DE-AC02-05CH11231.
 
Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the 

Department of Energy under contract DEAC05-00OR22725. 

 

References 

 

Altschul, S., Madden, T., Schäffer, A., Zhang, J., Miller, W., and Lipman, D. (1997) 

Gapped BLAST and PSI-BLAST: a new generation of protein database search 

programs. Nucleic Acids Res 25: 3389-3402. 

Berlier, Y., Fauque, G.D., LeGall, J., Choi, E.S., Peck, H.D., Jr, and Lespinat, P.A. 

(1987) Inhibition studies of three classes of Desulfovibrio hydrogenase: Application 

to the further characterization of the multiple hydrogenases found in Desulfovibrio 

vulgaris hildenborough. Biochem Biophys Res Commun 146: 147-153. 



 26 

Betlach, M.R., and Tiedje, J.M. (1981) Kinetic explanation for accumulation of nitrite, 

nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ 

Microbiol 42: 1074-1084. 

Bozdech, Z., Zhu, J.C., Joachimiak, M.P., Cohen, F.E., Pulliam, B., and DeRisi, J.L. 

(2003) Expression profiling of the schizont and trophozoite stages of Plasmodium 

falciparum with a long-oligonucleotide microarray. Genome Biol 4: R9. 

Brandis, A., and Thauer, R.K. (1981) Growth of Desulfovibrio species on hydrogen and 

sulfate as sole energy source. J Gen Microbiol 126: 249-252.  

Brons, H.J., Hagen, W.R., and Zehnder, A.J. (1991) Ferrous iron dependent nitric oxide 

production in nitrate reducing cultures of Escherichia coli. Arch Microbiol 155: 341-

347. 

Chardin, B., Dolla, A., Chaspoul, F., Fardeau, M.L., Gallice, P., and Bruschi, M. (2002) 

Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on 

sulfate-reducing bacteria. Appl Microbiol Biotechnol 60: 352-360. 

D'Autréaux, B., Touati, D., Bersch, B., Latour, J.-M., and Michaud-Soret, I. (2002) 

Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein 

via nitrosylation of the iron. Proc Natl Acad Sci USA 99: 16619-16624. 

Davidova, I., Hicks, M.S., Fedorak, P.M., and Suflita, J.M. (2001) The influence of 

nitrate on microbial processes in oil industry production waters. J Ind Microbiol 

Biotechnol 27: 80-86. 

Escolar, L., Perez-Martin, J., and de Lorenzo, V. (1999) Opening the iron box: 

transcriptional metalloregulation by the Fur protein. J Bacteriol 181: 6223-6229. 



 27 

Gadd, G.M., and White, C. (1993) Microbial treatment of metal pollution - a working 

biotechnology? Trends Biotechnol 11: 353-359. 

Gao, H., Wang, Y., Liu, X., Yan, T., Wu, L., Alm, E., et al. (2004) Global transcriptome 

analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186: 7796-

7803. 

Greene, E.A., Hubert, C., Nemati, M., Jenneman, G.E., and Voordouw, G. (2003) Nitrite 

reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-

reducing, sulphide-oxidizing bacteria. Environ Microbiol 5: 607-617. 

Hantke, K. (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4: 172-177. 

Hao, O.J., Chen, J.M., Huang, L., and Buglass, R.L. (1996) Sulfate-reducing bacteria. 

Crit Rev Environ Sci Technol 26: 155-187. 

Haveman, S.A., Greene, E.A., Stilwell, C.P., Voordouw, J.K., and Voordouw, G. (2004) 

Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris 

Hildenborough by nitrite. J Bacteriol 186: 7944-7950. 

He, Q., and Mankin, K.R. (2002) Assessing removal kinetics of organic matter in rock-

plant filters. Trans ASAE 45: 1771-1778. 

He, Z., Wu, L., Li, X., Fields, M.W., and Zhou, J. (2005) Empirical establishment of 

oligonucleotide probe design criteria. Appl Environ Microbiol 71: 3753-3760. 

Heidelberg, J.F., Seshadri, R., Haveman, S.A., Hemme, C.L., Paulsen, I.T., Kolonay, J.F., 

et al. (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium 

Desulfovibrio vulgaris Hildenborough. Nature Biotechnol 22: 554-559.  



 28 

Hubert, C., Nemati, M., Jenneman, G. E., Voordouw, G. (2005) Corrosion risk associated 

with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68: 

272-282. 

Jenneman, G.E., McInerney, M.J., and Knapp, R.M. (1986) Effect of nitrate on biogenic 

sulfide production. Appl Environ Microbiol 51: 1205-1211. 

Jormakka, M., Byrne, B., and Iwata, S. (2003) Proton motive force generation by a redox 

loop mechanism. FEBS Lett 545: 25-30. 

Kelso, B.H.L., Smith, R.V., and Laughlin, R.J. (1999) Effects of carbon substrates on 

nitrite accumulation in freshwater sediments. Appl Environ Microbiol 65: 61-66. 

Little, B.J., Ray, R.I., and Pope, R.K. (2000) Relationship between corrosion and the 

biological sulfur cycle: A review. Corrosion 56: 433-443. 

Lloyd, J.R., Ridley, J., Khizniak, T., Lyalikova, N.N., and Macaskie, L.E. (1999) 

Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization 

and use in a flowthrough bioreactor. Appl Environ Microbiol 65: 2691-2696. 

Londry, K.L., and Suflita, J.M. (1999) Use of nitrate to control sulfide generation by 

sulfate-reducing bacteria associated with oily waste. J Ind Microbiol Biotechnol 22: 

582-589. 

Lovley, D.R., Roden, E.E., Phillips, E.J.P., and Woodward, J.C. (1993a) Enzymatic iron 

and uranium reduction by sulfate-reducing bacteria. Marine Geol 113: 41-53. 

Lovley, D.R., Widman, P.K., Woodward, J.C., and Phillips, E.J.P. (1993b) Reduction of 

uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ. Microbiol 59: 

3572-3576. 



 29 

Madigan, M.T., Martinko, J.M., and Parker, J. (2000) Brock biology of microorganisms. 

Upper Saddle River, N.J.: Prentice-Hall. 

McHugh, J.P., Rodríguez-Quiñones, F., Abdul-Tehrani, H., Svistunenko, D.A., Poole, 

R.K., Cooper, C.E., et al. (2003) Global iron-dependent gene regulation in 

Escherichia coli: A new mechanism for iron homeostasis. J Biol Chem 278: 29478-

29486. 

Merrick, M.J., and Edwards, R.A. (1995) Nitrogen control in bacteria. Microbiol Rev 59: 

604-622. 

Mitchell, G.J., Jones, J.G., and Cole, J.A. (1986) Distribution and regulation of nitrate 

and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Arch Microbiol 

144: 35-40. 

Mongkolsuk, S., and Helmann, J.D. (2002) Regulation of inducible peroxide stress 

responses. Mol Microbiol 45: 9-15. 

Moore, C.M., and Helmann, J.D. (2005) Metal ion homeostasis in Bacillus subtilis. Curr 

Opin Microbiol 8: 188-195. 

Moore, C.M., Nakano, M.M., Wang, T., Ye, R.W., and Helmann, J.D. (2004) Response 

of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside. J 

Bacteriol 186: 4655-4664. 

Mukhopadhyay, P., Zheng, M., Bedzyk, L.A., LaRossa, R.A., and Storz, G. (2004) 

Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional 

response to reactive nitrogen species. Proc Natl Acad Sci USA 101: 745-750. 



 30 

Myhr, S., Lillebo, B.L.P., Sunde, E., Beeder, J., and Torsvik, T. (2002) Inhibition of 

microbial H2S production in an oil reservoir model column by nitrate injection. Appl 

Microbiol Biotechnol 58: 400-408. 

Natural and Accelerated Bioremediation Research Program (2003) Bioremediation of 

metals and radionuclides: what it is and how it works. In NABIR primer. Hazen, T.C., 

Benson, S.M., Metting, F.B., Faison, B., Palmisano, A.C. and McCullough, J. (eds). 

Lawrence Berkeley National Laboratory, Berkeley, Calif. 

Nemati, M., Mazutinec, T.J., Jenneman, G.E., and Voordouw, G. (2001) Control of 

biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol 26: 

350-355. 

Nunoshiba, T., DeRojas-Walker, T., Wishnok, J.S., Tannenbaum, S.R., and Demple, B. 

(1993) Activation by nitric oxide of an oxidative-stress response that defends 

Escherichia coli against activated macrophages. Proc Natl Acad Sci USA 90: 9993-

9997. 

Obuekwe, C.O., Westlake, D.W., and Cook, F.D. (1981) Effect of nitrate on reduction of 

ferric iron by a bacterium isolated from crude oil. Can J Microbiol 27: 692-697. 

Odom, J.M., and Peck, H.D., Jr (1981) Hydrogen cycling as a general mechanism for 

energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol 

Lett 12: 47-50. 

Pereira, I.A.C., LeGall, J., Xavier, A.V., and Teixeira, M. (2000) Characterization of a 

heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio 

vulgaris Hildenborough. Biochim Biophys Acta 1481: 119-130. 



 31 

Peterson, J.D., Umayam, L.A., Dickinson, T., Hickey, E.K., and White, O. (2001) The 

comprehensive microbial resource. Nucleic Acids Res 29: 123-125. 

Poole, R.K. (2005) Nitric oxide and nitrosative stress tolerance in bacteria. Biochem Soc 

Trans 33: 176-180. 

Postgate, J.R. (1984) The sulfate-reducing bacteria. Cambridge, UK: Cambridge 

University Press. 

Price, M.N., Huang, K. H., Alm, E.J., and Arkin, A.P. (2005) A novel method for 

accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33: 880-

892. 

Riley, R.G., and Zachara, J. (1992) Chemical contaminants on DOE lands and selection 

of contaminant mixtures for subsurface research. DOE/ER-0547T. U.S. Department 

of Energy, Washington, D.C. 

Rodionov, D.A., Dubchak, I., Arkin, A.P., Alm, E., and Gelfand, M.S. (2004) 

Reconstruction of regulatory and metabolic pathways in metal-reducing δ -

proteobacteria. Genome Biol 5: R90. 

Rouillard, J.M., Herbert, C.J., and Zuker, M. (2002) OligoArray: genome-scale 

oligonucleotide design for microarrays. Bioinformatics 18: 486-487. 

Rozen, S., and Skaletsky, H.J. (2000) Primer3 on the WWW for general users and for 

biologist programmers. In Bioinformatics methods and protocols: Methods in 

molecular biology. Krawetz, S. and Misener, S. (eds). Totowa, N.J.: Humana Press, 

pp. 365-386. 

Seo, J., Bakay, M., Chen, Y.-W., Hilmer, S., Shneiderman, B., and Hoffman, E.P. (2004) 

Interactively optimizing signal-to-noise ratios in expression profiling: project-specific 



 32 

algorithm selection and detection p-value weighting in Affymetrix microarrays. 

Bioinformatics 20: 2534-2544. 

Singleton, R., Jr. (1993) The sulfate-reducing bacteria: an overview. In The sulfate-

reducing bacteria: contemporary perspectives. Odom, J.M. and Singleton, R., Jr. 

(eds). New York, N.Y.: Springer-Verlag, pp. 1-21. 

Thompson, D.K., Beliaev, A.S., Giometti, C.S., Tollaksen, S.L., Khare, T., Lies, D.P., et 

al. (2002) Transcriptional and proteomic analysis of a ferric uptake regulator (fur) 

mutant of Shewanella oneidensis: Possible involvement of fur in energy metabolism, 

transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68: 881-892. 

Valls, M., and de Lorenzo, V. (2002) Exploiting the genetic and biochemical capacities 

of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26: 

327-338. 

van den Berg, W.A.M., Hagen, W.R., and van Dongen, W.M.A.M. (2000) The hybrid-

cluster protein (`prismane protein') from Escherichia coli - Characterization of the 

hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and 

identification of an associated NADH oxidoreductase containing FAD and [2Fe-2S]. 

Eur J Biochem 267: 666-676. 

van Rijn, J., Tal, Y., and Barak, Y. (1996) Influence of volatile fatty acids on nitrite 

accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized 

bed reactor. Appl Environ Microbiol 62: 2615-2620. 

Wan, X.-F., VerBerkmoes, N.C., McCue, L.A., Stanek, D., Connelly, H., Hauser, L.J., et 

al. (2004) Transcriptomic and proteomic characterization of the Fur modulon in the 

metal-reducing bacterium Shewanella oneidensis. J Bacteriol 186: 8385-8400. 



 33 

Wang, X.W., and Seed, B. (2003) Selection of oligonucleotide probes for protein coding 

sequences. Bioinformatics 19: 796-802. 

White, C., Sayer, J.A., and Gadd, G.M. (1997) Microbial solubilization and 

immobilization of toxic metals: key biogeochemical processes for treatment of 

contamination. FEMS Microbiol Rev 20: 503-516. 

Wolfe, B.M., Lui, S.M., and Cowan, J.A. (1994) Desulfoviridin, a multimeric-

dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough) 

Purification, characterization, kinetics and EPR studies. Eur J Biochem 223: 79-89. 

Wolfe, M.T., Heo, J., Garavelli, J.S., and Ludden, P.W. (2002) Hydroxylamine reductase 

activity of the hybrid cluster protein from Escherichia coli. J Bacteriol 184: 5898-

5902. 

Woods, D.R., and Reid, S.J. (1993) Recent developments on the regulation and structure 

of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol 

Rev 11: 273-284. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 34 

 
Table 1. Effect of nitrite exposure on the transcriptional responses of Desulfovibrio 

vulgaris genes involved in energy metabolism  
Fold Change (Treatment/Control)a Gene ID Annotation 

0.5h 1.0h 1.5h 2.5h 4.0h 
Up-regulation: 
DVU0172 iron-sulfur cluster-binding protein +3.0 +2.8 +1.8 -2.0 -3.3 

DVU0173 thiosulfate reductase, putative +2.5 +1.9 +1.5 -1.8 -2.2 

DVU0600 L-lactate dehydrogenase (Ldh) +2.1 +1.8 +1.9 - - 

DVU0624 NapC/NirT cytochrome c family protein +13.5 +11.4 +12.2 +9.4 +11.4 

DVU0625 
cytochrome c nitrite reductase, catalytic subunit NfrA, 
putative +18.5 +12.8 +14.9 +7.5 +5.7 

DVU1080 iron-sulfur cluster-binding protein +54.2 +81.8 +58.6 +28.7 +27.2 

DVU1081 iron-sulfur cluster-binding protein +12.6 +10.5 +12.5 +6.8 +7.2 

DVU1569 
pyruvate ferredoxin oxidoreductase, alpha subunit 
(PorA) — +2.0 +2.3 — — 

DVU1570 
pyruvate ferredoxin oxidoreductase, beta subunit 
(PorB) — +2.2 +2.3 — — 

DVU2524 cytochrome c3, putative +2.2 +3.4 +5.0 — — 

DVU2525 
periplasmic [NiFe] hydrogenase, small subunit, 
isozyme 2 (HynB-2) — +1.5 +1.6 — — 

DVU2526 
periplasmic [NiFe] hydrogenase, large subunit, 
isozyme 2 (HynA-2) +8.1 +9.1 +9.5 +4.7 +3.2 

DVU2543 hybrid cluster protein +27.5 +34.5 +65.1 +82.7 +37.3 

DVU2544 iron-sulfur cluster-binding protein +39.8 +50.7 +82.0 +233 +30.3 

DVU2810 
formate dehydrogenase formation protein FdhE, 
putative +1.5 — +1.5 +1.8 — 

DVU2811 formate dehydrogenase, beta subunit, putative — — +2.1 +2.8 — 

DVU2812 
formate dehydrogenase, alpha subunit, selenocysteine-
containing (FdnG-3) — — +1.8 — — 

DVU3261 fumarate reductase, cytochrome b subunit (FrdC) +2.0 +3.5 +3.2 — — 

DVU3262 fumarate reductase, flavoprotein subunit (FrdA) +1.8 +2.9 +2.6 — +1.4 

DVU3263 fumarate reductase, iron-sulfur protein (FrdB) +1.9 +3.7 +3.1 — — 

Down-regulation: 
DVU0431 Ech hydrogenase, subunit EchD, putative -2.7 -1.9 — — — 

DVU0432 Ech hydrogenase, subunit EchC, putative -2.4 -2.0 -1.7 — — 

DVU0433 Ech hydrogenase, subunit EchB, putative -2.0 -1.7 — — — 

DVU0434 Ech hydrogenase, subunit EchA, putative -1.7 -1.7 — — — 

DVU0774 ATP synthase, F1 epsilon subunit (AtpC) — -2.4 -2.6 -2.2 — 

DVU0775 ATP synthase, F1 beta subunit (AtpD) — -3.2 -3.1 -3.4 — 

DVU0776 ATP synthase, F1 gamma subunit (AtpG) — -3.3 -2.4 -5.5 — 

DVU0777 ATP synthase, F1 alpha subunit (AtpA) -2.5 -3.2 -4.4 -4.2 — 

DVU0778 ATP synthase, F1 delta subunit (AtpH) -2.1 -3.3 -2.6 -4.0 — 

DVU0779 ATP synthase F0, B subunit, putative (AtpF2) -1.8 -2.6 -2.8 -2.5 — 

DVU0780 ATP synthase F0, B subunit, putative (AtpF1) -2.3 -2.5 -2.5 — — 

DVU0917 ATP synthase F0, C subunit (AtpE) — -2.7 -3.4 -3.2 -1.7 

DVU0918 ATP synthase F0, A subunit (AtpB) -2.2 -2.7 -3.5 -2.4 -1.5 

DVU1286 reductase, transmembrane subunit, putative (DsrP) -3.0 -3.0 -4.2 -1.8 — 

DVU1287 reductase, iron-sulfur binding subunit, putative (DsrO) -5.3 -5.3 -6.0 -1.8 — 

DVU1288 cytochrome c family protein (DsrJ) -5.2 -4.8 -4.4 -2.3 — 
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DVU1289 reductase, iron-sulfur binding subunit, putative (DsrK) -6.7 -5.1 -4.6 -2.1 — 

DVU1290 nitrate reductase, gamma subunit, putative (DsrM) -6.4 -5.7 -5.9 -1.9 — 

DVU1769 periplasmic [Fe] hydrogenase, large subunit (HydA) — -1.7 -2.6 — -2.6 

DVU1770 periplasmic [Fe] hydrogenase, small subunit (HydB) -1.8 -2.4 -4.2 -4.1 -4.8 

DVU2792 electron transport complex protein RnfC, putative -2.3 -3.0 -2.4 -2.1 -2.0 

DVU2793 electron transport complex protein RnfD, putative -1.7 -2.8 -1.7 -2.1 -1.8 

DVU2794 electron transport complex protein RnfG, putative -2.0 -2.8 -2.1 -2.3 -2.0 

DVU2795 electron transport complex protein RnfE, putative — -2.5 — -2.1 — 

DVU2796 electron transport complex protein RnfA, putative — -2.1 -1.7 -1.8 -1.6 

DVU2797 iron-sulfur cluster-binding protein — -2.4 — -1.6 — 

DVU2798 ApbE family protein -1.7 -2.4 -1.9 -1.6 — 
aChanges of gene expression level at different time points following addition of 2.5 mM sodium nitrite to 
cultures compared to controls without nitrite addition. Expression levels were obtained at the same time 
points from both the treatment and control cultures for the calculation of the expression fold changes 
resulting from the stressor. Positive fold change values denote increases in gene expression and negative 
fold change values indicate decreases in gene expression (p<0.05). Dash signs indicate that no significant 
change in gene expression was observed. 
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Table 2. Effect of nitrite exposure on the transcriptional responses of Desulfovibrio 
vulgaris genes involved in nitrogen metabolism 
 

Fold Change (Treatment/Control)a Gene ID TIGR Annotation 
0.5h 1.0h 1.5h 2.5h 4.0h 

DVU0095 
polyamine ABC transporter, periplasmic 
polyamine-binding protein -4.1 -5.2 -4.7 — — 

DVU0105 glutamine ABC transporter, ATP-binding protein -3.3 -2.1 -1.7 — — 
DVU0106 glutamine ABC transporter, permease protein -1.6 -1.6 -1.6 — — 

DVU0107 
glutamine ABC transporter, periplasmic glutamine-
binding protein -2.5 -3.4 -2.5 — — 

DVU0388 amino acid ABC transporter, ATP-binding protein -4.0 -5.2 -3.6 — — 
DVU0624 NapC/NirT cytochrome c family protein +13.5 +11.4 +12.2 +9.4 +11.4 

DVU0625 
cytochrome c nitrite reductase, catalytic subunit 
NfrA, putative +18.5 +12.8 +14.9 +7.5 +5.7 

DVU0751 
amino acid ABC transporter, permease protein, 
His/Glu/Gln/Arg/opine family -2.0 -2.5 -2.4 -1.9 -2.2 

DVU0752 
amino acid ABC transporter, amino acid-binding 
protein -2.1 -3.9 -3.0 -3.6 -3.8 

DVU0966 
amino acid ABC transporter, periplasmic amino 
acid-binding protein -2.5 -5.9 -5.8 -2.6 -3.8 

DVU0967 
amino acid ABC transporter, permease protein, 
His/Glu/Gln/Arg/opine family -2.1 -2.5 -1.8 — — 

DVU0968 amino acid ABC transporter, ATP-binding protein -3.1 -2.6 -2.8 — — 
DVU1026 uracil permease -7.0 -4.7 -3.4 — -2.1 

DVU1237 
amino acid ABC transporter, permease protein, 
His/Glu/Gln/Arg/opine family -3.6 -1.6 -2.4 — — 

DVU1238 
amino acid ABC transporter, periplasmic amino 
acid-binding protein -2.6 -1.6 -3.1 — -2.1 

DVU1766 aspartate ammonia-lyase, putative -1.9 -2.1 -2.8 -2.0 -1.9 
DVU2113 xanthine/uracil permease family protein -4.3 -3.6 -3.2 — -1.9 
DVU2242 asparaginase family protein -1.6 -1.7 -2.0 — — 
DVU2543 hybrid cluster protein +27.5 +34.5 +65.1 +82.7 +37.3 
DVU3392 glutamine synthetase, type I +1.5 +2.2 +2.8 +2.2 +1.6 
aChanges of gene expression levels in treatment cultures exposed to 2.5 mM nitrite compared to controls 
without nitrite addition. Expression levels were obtained at the same time points from both the treatment 
and control cultures for the calculation of fold changes in expression resulting from the stressor. Positive 
fold change values denote increase in gene expression and negative fold change values indicate decreases 
in gene expression (p<0.05). Dashes indicate that no significant change in gene expression was observed.   
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Table 3. Effect of nitrite exposure on the transcriptional responses of Desulfovibrio 
vulgaris genes in the predicted Fur regulona 

Fold Change (Treatment/Control)b Gene ID TIGR Annotation 
0.5h 1.0h 1.5h 2.5h 4.0h 

DVU0763 GGDEF domain protein +11.9 +2.1 — — — 
DVU2378 transcriptional regulator, AraC family +4.3 +4.1 +2.4 — — 
DVU2574 ferrous iron transport protein, putative FeoA +3.5 +5.0 +3.9 — — 
DVU2680 Flavodoxin +27.6 +22.6 +4.9 — — 
DVU3330 conserved hypothetical protein +2.3 +5.7 +2.3 — — 
DVU0273 conserved hypothetical protein +15.3 +5.2 +1.8 — -2.2 
DVU0304 hypothetical protein +34.0 +10.1 +3.7 — — 

aPredicted Fur-binding sites from Rodionov et al. (2004). 
bChanges in gene expression levels following addition of 2.5 mM sodium nitrite to treatment cultures 
compared to controls without nitrite addition. Expression levels were obtained at the same time points from 
both the treatment and control cultures for the calculation of expression fold changes resulting from the 
stressor. Positive fold change values denote increases in gene expression level and negative fold change 
values indicate decreases in gene expression level (p<0.05). Dashes indicate that no significant change in 
gene expression was observed. 
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Table 4. Effect of nitrite exposure on the transcriptional responses of Desulfovibrio 
vulgaris genes in the predicted PerR regulona 

Fold Change (Treatment/Control)b Gene ID TIGR Annotation 
0.5h 1.0h 1.5h 2.5h 4.0h 

DVU0772 hypothetical protein +1.8 +2.4 +2.6 +2.1 — 
DVU2247 antioxidant, AhpC/Tsa family +3.0 +3.1 +2.1 +1.8 — 
DVU2318 rubrerythrin, putative — — +1.5 — -1.9 
DVU3095 Transcriptional regulator, Fur family, PerR — — — +2.2 — 
DVU3096 hypothetical protein — +1.8 — — — 
aPredicted PerR-binding sites from Rodionov et al. (2004). 
bChanges of gene expression levels following addition  of 2.5 mM sodium nitrite to treatment cultures 
compared to controls without nitrite addition. Expression levels were obtained at the same time point from 
both the treatment and control cultures for the calculation of expression fold changes resulting from the 
stressor. Positive fold change values denote increases in gene expression level and negative fold change 
values indicate decreases in gene expression level (p<0.05). Dashes indicate that no significant change in 
gene expression was observed. 
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Fig. 1. Impact of nitrite on the growth of D. vulgaris. Nitrite of different concentrations 
was added to sulfate-reducing bacterial cultures in mid-log phase and growth was 
subsequently monitored as OD 600 nm. Data are averaged from triplicate cultures with error 
bars indicating standard deviations.  
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Fig. 2. Changes in sodium nitrite concentrations in D. vulgaris cultures. Following the 
addition of various concentrations of nitrite into mid-log-phase cultures (OD 600 nm, 0.4), 
reduction of nitrite was monitored over time. The inset shows the changes in nitrite 
concentration in the presence of (a) 40 mM sulfide but no cells or (b) mid-log cells (OD 
600 nm, 0.4) with sulfide present in the growth medium. Results shown are averages of 
triplicates with error bars indicating standard deviation. 
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Fig. 3. Temporal profiling of the transcriptional response to sodium nitrite by 
Desulfovibrio vulgaris. Each column represents the number of genes showing significant 
changes (p<0.05) in gene expression level versus time elapsed following addition of 
nitrite. Positive and negative values indicate up-and down-regulation, respectively. 
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Fig. 4. Functional profiling of the transcriptional response by Desulfovibrio vulgaris 1 h 
following 2.5 mM sodium nitrite addition. The functional role category annotation is that 
provided by the Institute of Genomic Research (TIGR—www.tigr.org).  Each column 
represents the number of genes in a selected functional category showing significant 
changes in mRNA abundance in response to nitrite. Positive and negative values indicate 
up-and down-regulation, respectively. Columns: 1, amino acid biosynthesis; 2, 
biosynthesis of cofactors, prosthetic groups, and carriers; 3, cell envelope; 4, cellular 
processes; 5, energy metabolism; 6, protein synthesis; 7, regulatory functions; 8, signal 
transduction; and 9, transport and binding proteins. Shown are selected role categories 
with highly differentially expressed genes (fold>3). 
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Fig. 5. Validation of microarray results by computational approaches. (A) Log ratio 
expression difference of gene pairs within the same operon versus gene pairs selected at 
random. The normalized frequency was plotted against the ratio expression difference 
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between the treatments and control. Genes within the same operon responded more 
similarly than genes randomly selected from the genome under sodium nitrite exposure. 
(B) Agreement within predicted operons at the 90min time point.  All genes were divided 
into eight groups based on the confidence level of the measured change computed by the 
OpWise program. A confidence of 0.5 indicates complete uncertainty as to whether the 
gene was up- or down-regulated, while a value of 1 indicates certainty that the measured 
change in mean reflects the actual direction of change.  The y-axis shows the fraction of 
genes (above that expected by chance) in each group that changed in the same direction 
as adjacent genes predicted to be in the same operon, together with 95% confidence 
intervals for the estimate. Values near 1 indicate perfect agreement with all co-operonic 
genes changing in the same direction, while values near 0 indicate the level of agreement 
expected by chance (i.e. 50%). 
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Fig. 6. Hierarchical clustering of selected genes with significant changes (P <0.05 and a 
fold change of >2 at least at one time point) in expression in response to 2.5 mM nitrite. 
The red color indicates up-regulation, whereas the green color represents repression. 
Each row represents the expression of a single gene and each column represents an 
individual time point following nitrite addition: T1, 0.5 h; T2, 1.0 h; T3, 1.5 h; T4, 2.5 h; 
T5, 4.0 h. Listed genes are examples from each cluster. Cluster A consists of genes 
highly induced throughout the duration of the experiment; Cluster B, genes highly 
induced within 1.5 hour of the addition of nitrite but the induction diminished or even 
reversed subsequently; Cluster C, genes repressed during the early response to nitrite but 
the repression was later alleviated; and Cluster D, genes down-regulated throughout the 
experiment. 
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Fig. 7. Average changes in expression level of selected Desulfovibrio vulgaris gene 
groups following 2.5 mM sodium nitrite addition. Blue, all genes covered by the 
microarray; burgundy, genes encoding iron-containing proteins; and pale yellow, genes 
belonging to the predicted Fur-regulon (Rodionov et al., 2004).  
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Fig. 8. Conceptual model of the energy pathways responding to nitrite stress (2.5 mM 
NaNO2) by Desulfovibrio vulgaris based on the transcriptional profile obtained 60 min 
after stress exposure. With the inhibition of the dsrMKJOP triheme transmembrane 
complex by nitrite, reducing equivalents derived from lactate oxidation were shifted to 
nitrite reduction. Color code: red designates up-regulation and blue designates down-
regulation; changes in the intensity of the red or blue color represent the extent of the up- 
or down regulation, respectively; white color indicates no change detected in expression 
level. 


