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Abstract
 

Utilizing load, price, and survey data for 119 large customers that paid 

competitively determined hourly electricity prices announced the previous day 

between 2000 and 2004, this study provides insight into the factors that 

determine the intensity of price response. Peak and off-peak electricity can be: 

perfect complements, substitutes, or substitutes where high peak prices cause 

temporary disconnection from the grid, as for some firms with on-site 

generation.  The average elasticity of substitution is 0.11. Thirty percent of the 

customers use peak and off-peak electricity in fixed proportions. The 18% with 

elasticities greater than 0.10 provide 75% of the aggregate price response.  In 

contrast to Industrial customers, Commercial/Retail and Government/Education 

customers are more price responsive on hot days and when the ratio of peak to 

off-peak prices is high. Price responsiveness is not substantially reduced when 

customers operate near peak usage.  Diversity of customer circumstances and 

price response suggest dynamic pricing is suited for some, but not all customers. 
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1. INTRODUCTION 

The enthusiasm for dynamic pricing of electricity in the 1970s, in part 

motivated by PURPA, was supplanted in the following two decades by the focus 

on other issues, such as energy efficiency and market restructuring. Recently, 

there has been a resurgence of interest in implementing real-time pricing (RTP) 

of electricity. Ruff (2002) and Borenstein, et al. (2002), among others, argue that 

rather than relying on rates that internalize risks, customers should decide 

whether or not to hedge against price volatility. In doing so, customers are 

motivated to evaluate the benefits of strategies for adjusting load to price 

changes, that would reduce price volatility in wholesale electricity markets and 

act as a deterrent to market power (Neenan, et al., 2002). If customers have 

diverse hedging needs, making RTP the retail standard offer would create 

opportunities for new, competitive market entrants (Flaim, 2000) to provide 

diversified hedging options. 

These arguments have led policy-makers in some states to conclude 

that mandating RTP for large end users in retail markets with customer choice 

would achieve these goals. Products offered by competitive retail suppliers 

would provide customers with choices on how much price risk to bear. To 

increase market efficiency, others could extend that prescription to vertically 

integrated markets through self-selecting RTP type services (Barbose, et al., 

2004). 

In 1998, Niagara Mohawk Power Corporation (NMPC), now a 

National Grid Company, implemented a market-based, RTP-type rate as the 

default service for commercial and industrial customers with peak demands 

greater than two MW.  NMPC indexes RTP energy usage rates to the NYISO’s 

zonal day-ahead market prices. Recently, New Jersey, Maryland, and 

Pennsylvania have implemented a similar plan as the default service for large 
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customers, and other states, such as Illinois, New York, and Ohio, are 

considering or have implemented new RTP initiatives (Barbose, et al., 2005). 

RTP has also attracted the attention of regulators in markets that remain 

vertically integrated. California, in particular, seems committed to widespread 

implementation of some form of dynamic pricing (CPUC, 2002) to promote 

price response. 

 The strong theoretical and philosophical foundations for implementing 

dynamic pricing for retail electric services are supported by market simulations, 

such as those by Borenstein (2005), that demonstrate long-run efficiency gains 

from implementing RTP.  There is, however, a paucity of information in the 

public domain to quantify the ability of customers to respond to the imposition 

of RTP, a critical element of such modeling endeavors. A few empirical studies 

have provided measures of price responsiveness for individual firms and at an 

aggregate level, but typically there has been too little information to identify 

which customer-specific factors most influence price responsiveness (Zarnikau, 

1990; Herriges, et al., 1993; Patrick and Wolak, 2001; Schwarz, et al., 2002; 

Boisvert, et al., 2004; Charles River Associates, 2005; Taylor, et al., 2005). 

Some of these studies relied on functional forms that are unable to quantify how 

price responsiveness is affected by weather, by the nominal level of electricity 

prices, and by the intensity of electricity usage. Consequently, the benefits of 

RTP to customers and other stakeholders remain speculative, a fact that impedes 

serious policy debate about the value of RTP in both competitive and regulated 

retail markets. 

To address these shortcomings, we combine data on hourly electricity 

consumption and price with responses from a survey of customers paying 

dynamic electricity prices, to quantify more precisely differences in the price 

responsiveness among customers facing hourly prices.  Despite the fact that RTP 

prices differ by hour, this analysis focuses on the price responsiveness of 
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customers between peak and off-peak periods of the day. This view of daily 

electricity demand is supported by compelling evidence from survey responses 

(e.g. Neenan, et al., 2002 and 2003; and Goldman, et al., 2004 and 2005), and by 

Taylor, et al. (2005) and Patrick, et al. (2001) who find that electricity use by 

RTP customers during consecutive afternoon hours is complementary, but 

exhibits a substitute relationship with electricity use during other hours of the 

day. We also test for three types of response behavior, where peak and off-peak 

electricity are: substitute inputs; perfect complements; or substitutes for which 

there are times when the peak to off-peak price ratio is so large that peak 

electricity usage from the grid effectively goes to zero. We incorporate the effect 

of weather on both the intensity of use between peak and off-peak periods and 

on the customer’s price responsiveness. We test explicitly the null hypotheses 

that the price responsiveness of customers is affected neither by the levels of 

peak and off-peak prices nor by how close customers are to their maximum 

demand. We proceed with an overview of NMPC’s RTP default service, 

followed by a description of the demand model, a discussion of a strategy for 

estimation, and the specification of the empirical models. Finally, we discuss the 

empirical results and conclude by highlighting important policy implications. 

2. NMPC’S PIONEERING RTP SERVICE 

In 1998, NMPC redesigned its electric service offering so that large 

retail customers could purchase the electricity commodity from NMPC or from 

a competitive retailer. This introduced customer choice as part of an electricty 

market restructuring initiative. Other service charges, for capacity, transmission 

and distribution, were separated from commodity rates so that customers pay 

common delivery service charges to collect these revenues, regardless of their 

choice of electric commodity supplier. This default-service commodity tariff 

(“SC-3A Option One”) consists of the electricity commodity prices indexed to 
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the New York Independent System Operator (NYISO) location-based day-ahead 

market prices.  Markups to that price collect ancillary services costs and delivery 

losses. An hourly price schedule with the next day’s commodity prices is posted 

daily, by customer location and voltage level, on NMPC’s website by 4:00 p.m.  

At the inception of customer choice in 1998, NMPC also offered a 

fixed rate alternative - a forward contract referred to as “SC-3A Option Two”- to 

address customers’ concerns about the availability of hedging opportunities in 

the newly established retail market. Option Two was comprised of a time-of-use 

rate schedule with fixed commodity prices that was applicable for up to five 

years. To participate, customers were required to designate the amount of peak 

and off-peak load to be priced under the TOU schedule in each month of the 

subsequent five-year period. Any additional usage was subject to the hourly 

RTP prices. Customers were required to pay for all nominated load regardless of 

whether they used it or not. About 18% of SC-3A customers elected this option 

for some or all of the five years. 

Alternatively, customers could purchase their commodity from 

competitive retailers. In 2004, 63% of all eligible customers were purchasing 

their electricity from competitive suppliers—a 110% increase compared with 

2000. Based on survey responses, competitive retailers were primarily offering 

physical commodity service contracts that insulated customers from hourly spot 

market price volatility. However, some retailers did offer service indexed to the 

SC-3A rate or to the NYISO day-ahead market directly.  

There were other circumstances that could affect customers’ price 

responsiveness. They could install “enabling technologies” either independently 

or with technical and financial assistance from the New York State Research and 

Development Agency (NYSERDA) specifically to affect their ability to adjust 

usage to price variability. Among the 76 survey respondents, almost half owned 

energy management control systems (EMCS) or peak load management (PLM) 
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devices, 41% had available energy information systems (EIS), and 55 % 

reported on-site generation equipment. 

  Beginning in 2001, SC-3A customers could also participate directly in 

the wholesale electricity market through demand response (DR) programs 

implemented by the NYISO. Forty-two percent of SC-3A customers participated 

in the Emergency Demand Response Program (EDRP), which pays the 

maximum of $500/MWh or the real-time market price for load curtailments 

when NYISO declares emergency events, and/or the Installed Capacity/Special 

Case Resource (ICAP/SCR) program, which provides up-front capacity 

payments and entails penalties for participating customers who fail to reduce 

load when called upon to do so.  

3. THE DATA 

 NMPC provided hourly electricity usage data, tariff history, basic 

customer characteristics and hourly prices for 146 large customer accounts 

eligible for default RTP service during the study period. NMPC assisted in the 

administration of customer surveys, which achieved a response rate of almost 

50%, to collect more detailed information on retail market choices, technology 

endowment, load response strategies, and other adaptations to default-service 

RTP. 

3.1. SAMPLE CHARACTERISTICS  

Based on data from these sources, we determined that 119 of the 146 

SC-3A customers were exposed to hourly-varying prices for some or all summer 

months during the 2000-2004 period  (Table 1). For customers choosing Option 

Two or obtaining commodity service from a competitive supplier, we included 
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daily price and load data only for those specific days or months during which 

some portion of these customers’ loads were exposed to hourly prices.1  

Among the 119 customers that faced hourly prices, 55 customers 

completed the survey; respondents represented the population of large customers 

in the SC-3A rate class quite well in terms of customer business sector and size, 

as measured by non-coincident peak load (Table 1).2

Table 1. Niagara Mohawk’s SC-3A Customer Accounts, 2000-2004 

  Manuf. 
Gov't / 

Ed 
Comm / 

Retail
Health 

Care
Public 
Works Total

SIC Codes 01 - 39 81 - 98 50 - 79 80 40 - 49  
Count 46 44 17 17 22 146

Accts.  
% Total 32% 30% 12% 12% 15%  

       
Count 233 206 55 78 70 642St

ud
y 

Po
pu

la
tio

n 

MW 
% Total 36% 32% 9% 12% 11%  

Count 44 34 17 8 16 119
Accts.  

% Total 37% 29% 14% 7% 13%  
       

Count 221 166 49 38 40 514St
ud

y 
   

   
 

Sa
m

pl
ea

MW 
% Total 43% 32% 10% 7% 8%  

Count 23 16 8 2 6 55
Accts.  

% Total 42% 29% 15% 4% 11%  
       

Count 127 82 24 5 15 253Su
rv

ey
 

R
es

po
nd

en
ts

b

MW 
% Total 50% 32% 9% 2% 6%  

a Customers were included in this category for each summer that they did not purchase a fully 
hedged alternative commodity service. Statistics here refer to all customers that met this criterion 
for at least one summer of the study, but were only included in the empirical analysis for 
summers in which they paid hourly prices. 

b Only the survey respondents that also paid hourly prices for at least one summer are shown 
here.  Altogether, 76 customers responded to the survey. 
 

When grouped by business class, the 119 customers exhibit stark 

differences in hourly load characteristics (Figure 1). The load curve for Public 

Works customers, for example, is nearly flat. Government/Education and 

Commercial/Retail establishments have large plug and HVAC loads coincident 

with a daily business cycle, and whose peak demands coincide with expected 

 
1 Of these 119 customers, about 35% faced day-ahead hourly prices for all five summers for which 
we have data (see Goldman, et al., 2005).  
2 A total of 76 customers responded to the customer survey; 19 of them were on fixed price contracts 
or tariffs during the entire study period. 
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high priced periods.  Manufacturing customers illustrate a marked change in 

consumption during these high priced early to mid-afternoon hours, relative to 

the surrounding periods.   

Figure 1. SC-3A Customer Load Profiles by Business Sector
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3.2. TRENDS IN SC-3A COMMODITY PRICES AT NIAGARA 

MOHAWK 

Compared to other wholesale markets operating during the same time 

period (e.g., in California and other parts of the Eastern United States), day-

ahead hourly prices in upstate New York, where NMPC service territory is 

located, were relatively stable during the study period.3 The data in Figure 2 

pertain to prices for the Capital region, one of the several NYISO pricing zones 

in the NMPC service territory, where prices and price volatility were highest. In 

other zones, SC-3A prices were slightly lower and less volatile.4 In all pricing 

zones, average prices remained relatively stable throughout the study period, but 

 
3 NYISO day-ahead prices have been higher and more volatile in the downstate regions (e.g., New 
York City) where transmission capacity constraints are more frequently binding. NMPC service 
territory does not cover these areas. 
4 See Goldman, et al. (2005) for a more detailed analysis of prices and price volatility in various 
NMPC regions. 

 9



price volatility (as measured by the standard deviation of hourly prices) has 

declined considerably since 2001.  

Figure 2. Trends in SC-3A Prices 
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4. THE ELECTRICITY DEMAND MODEL  

For the empirical analysis, we adopt a model for electricity demand 

consistent with that used initially by Caves, et al. (1984), and later by King and 

Shatrawka (1994) and Schwarz, et al. (2002) to evaluate electricity price 

response.5 Customers are assumed to optimize economic returns under a 

sequential, three-level profit or cost function, which is assumed to be separable 

in electricity usage.6 At the first level, weekday electricity usage is allocated 

between defined peak and off-peak periods reflecting differences in the price 

and value of electricity. At the second level, customers are assumed to allocate 

 
5 The model is also conceptually similar to the consumer demand model discussed by Braithwait 
(2000). 
6 For manufacturing and other business firms, the assumption of profit maximization is appropriate, 
and it also implies that firms minimize the cost of electricity usage in each of the three separable 
stages.  Caves, et al. (1981) and Cowing and Holtmann (1983) argue convincingly that service 
industries, governmental institutions and common carriers attempt to minimize the cost of providing 
service levels that are exogenously determined.  Thus, as is done below, we are able to model this 
separable electricity demand by first specifying an indirect electricity cost function for all firms and 
institutions in our sample. 
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monthly usage between weekdays and weekends. At the third level, customers 

are assumed to determine their overall electricity expenditures as a proportion of 

their total production costs.  

We focus on the allocation of daily electricity usage between the high-

price hours (peak) and low-price (off-peak) hours of each day.7 Due to the 

continuous nature of electricity supply and usage, defining what constitutes peak 

and off-peak is an empirical question driven by prices and the circumstances by 

which customers use and value electricity. Studies of price response to time-of-

use (TOU) rates typically utilize either pooled data for customers participating 

in different TOU rates or data that are pooled across several treatments where 

prices or the definition of the on-peak period vary by the experimental design 

(Caves, et al., 1984; Patrick, 1990; Braithwait, 2000). To establish a uniform 

definition of distinct electricity commodities, peak and off-peak electric energy, 

Caves, et al. (1987) identified six separate commodities facing customers. A six-

hour afternoon pricing period was divided into one two-hour commodity and 

one four-hour commodity. The other hours of the day were aggregated into four 

separate commodities. The authors argued that this sub-aggregation was needed 

to characterize behavior in response to prices that are high for only very short 

periods. In other words, they assumed that electricity within each aggregation 

was complementary.  

Extending this structure to hourly RTP-type programs would lead to 24 

electricity commodities. Such an extensive specification would be warranted 

only if industrial and commercial customers adjust usage on an ongoing basis to 

changing hourly prices. Recently, Taylor, et al. (2005) analyzed the hourly price 

elasticity of large commercial and industrial customers served under a day-ahead 

RTP rate to identify patterns based on whether electricity use in certain hours 

was a complement or a substitute for electricity use in other hours. They report 

 
7 Few analysts have attempted to estimate all three levels of electricity demand. Caves, et al. (1984) 
is an exception.  
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that generally electricity use during several consecutive afternoon hours appears 

to be complementary—thus constituting a single electricity commodity. In turn, 

this single commodity exhibits a substitution relationship with electricity use 

during the other hours of the day. These results confirm an earlier conclusion of 

Patrick and Wolak. (2001), and when combined the two studies offer strong 

empirical support for our use of a peak/off-peak electricity demand 

specification. 

There is also compelling evidence from customers that they implicitly 

characterize the day as being comprised of an on-peak and off-peak period 

(Neenan, et al., 2002a, b and 2003). While the specification of what comprises 

the peak hours may be customer specific, common business practices, driven in 

large part by traditional rate structures, support a bifurcation of the day that 

captures most of the variation in usage. Accordingly, we assume that daily 

electricity decisions involve the allocation of electricity usage, and the 

rearrangement of business activity, between high-price hours (peak) and low-

price (off-peak) hours of summer days on which SC-3A prices deviate from the 

average most often. Over 75% of prices above $0.20/kWh during the study 

period occurred between 12 Noon and 6:00 p.m., and typically appeared in 

clusters of four or more consecutive hours. In other months, prices exceeded that 

threshold infrequently, and then only in isolated hours. For this study, the 

definition of the peak and off-peak period is determined empirically.  

4.1. ESTIMATING LARGE CUSTOMERS’ DEMAND FOR 

ELECTRICITY 

To formulate a demand model for electricity, we define a customer’s 

production function as:  

(( )1 2, ,..., , ,n p oQ F x x x E k k= )               (1) 
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where Q = customer output; xi = non-electricity production inputs; kp = peak-

period electricity usage; and ko = off-peak electricity usage. By assuming that 

production is separable between daily electricity inputs and other inputs, daily 

peak and off-peak electricity inputs are, in turn assumed, to be combined 

according to the aggregator function, E, within the function F. Any combination 

of kp and ko that yields the same value for E is equally productive in producing 

the firm output, Q, other factors of production constant. 

From duality theory (Shephard, 1970), we specify an indirect cost-

minimizing electricity cost function, C.8 Assuming a generalized Leontief (GL) 

functional form:9

( )1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2
pp p p po p o op o p oo o oC E d p p d p p d p p d p p= + + +           (2) 

where E is effective electricity; pp and po are prices for peak and off-peak 

electricity, respectively, and dpp, dpo, dop, and doo are parameters to be 

estimated.10 

 
8 This involves solving the first-order conditions to the constrained optimization problem for 
minimizing the cost of producing a given output for the factor demands and substituting them into 
the direct cost function, thus allowing one to write the cost-minimizing cost function in terms of 
output and input prices. 
9 In conducting this analysis, there were a number of other second-order flexible forms that might 
have been used in the empirical specification. One such commonly used flexible form, the translog 
(TL) model (Boisvert, 1982 and Chambers, 1988) would have avoided estimating any equations that 
are non-linear in the parameters. The TL model relies on estimating a set of electricity cost share 
equations that are linear in the model parameters and does not require observations on the electricity 
aggregate. While this TL form was particularly attractive from an estimation perspective, this 
alternative was not pursued because as Caves and Christensen (1980a, b) point out, the TL model 
does not perform well when substitution elasticities are likely to be small, or when there are likely to 
be small shares or large relative differences among shares. This is partly true because the translog 
has the Cobb-Douglas form (a form that implies unitary elasticities of input substitution) as a special 
case. Patrick and Wolak (2001) found this to be problematic in an application of customer demand 
for electricity under real time pricing and argue that the GL model is superior to the TL model 
because it has a fixed-coefficient Leontief technology as a limiting case, and therefore, it can reflect 
rather modest substitution possibilities. However, these authors also note that if one imposes global 
concavity, the GL model loses some of its flexibility—in particular all inputs must be substitutes. To 
circumvent these difficulties related to both the TL and GL models, Patrick and Wolak (2001) and 
Taylor, et al. (2005) employ a Generalized McFadden (GM) cost function that is “…second-order 
flexible, yet suited to capture small positive and negative elasticities of substitution between 
electricity demands across load periods within a day” (Patrick and Wolak, 2001, p. 27). Their need 
to accommodate both positive and negative elasticities of substitution results from their specification 
of more than two demand periods. However, our empirical model specifies only two demand 
periods. In this case, any model in which global concavity is either assumed, or imposed, requires 
that the inputs be substitutes. Therefore, the primary issue that led to their selection of the GM model 
is of no concern in our present application of the GL indirect cost model.  
10 As with all indirect cost functions, the GL function is linear homogeneous in all prices. 
Furthermore, Diewert (1971) shows that when the GL indirect cost function (or any other indirect 
cost function) is decomposed in this fashion, the underlying aggregator function for E exhibits 
constant returns to scale.  
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Also from Shephard (1970), the optimal (constant output) demands for 

peak and off peak electricity can be determined by differentiating (2) with 

respect to each price: 

( )1/ 2
/ p p pp po p oC p k E d d p p⎡ ⎤∂ ∂ = = +⎢ ⎥⎣ ⎦

/              (3) 

( )1/ 2
/ /o o oo op o pC p k E d d p p⎡ ⎤∂ ∂ = = +⎢ ⎥⎣ ⎦

             (4) 

According to Berndt (1991), the Allen partial elasticities of input substitution for 

the GL model are: 

( ) 1/ 2

2

op p o

op
p o

Cd p p

Ea a
σ

−⎡ ⎤
⎢ ⎥⎣ ⎦=

⎡ ⎤⎣ ⎦
              (5) 

where ap = kp / E and ao = ko / E.  

4.2. RELATING THE PARAMETERS TO THE PARTIAL 

ELASTICITIES OF SUBSTITUTION 

It is well known that the cross Allen partial elasticity of substitution in 

the two-input case (equation (5)), is equal to the direct elasticity of substitution, 

defined as the percentage change in factor intensities as the inverse price ratio 

changes by one percent, holding a customer’s energy aggregate (and therefore 

output) constant. In the GL model, the elasticities of substitution differ, 

depending on the price ratio and there is no guarantee that the function is well 

behaved at each data point; specifically that ∞ > σop ≥ 0 (Ferguson 1969).11  

However, a sufficient condition for the GL function to be well behaved 

is for all parameters to be non-negative (Diewert, 1971); a necessary condition is 

that dop ≥ 0. For this reason, three situations particularly significant for daily 

electricity demand can be readily identified.  

 
11At each data point, the estimated cost function must be monotonically increasing and strictly quasi-
concave in input prices. Consequently, we must verify that the fitted values for all the input-output 
equations are positive and that the “n x n” matrix of the σij substitution elasticities is negative semi-
definite at each observation (Berndt, 1991, p. 465).  
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Case 1: If dpp, dop, and doo are all non-negative, then peak and off-peak 

electricity are substitutes, σop > 0. This is the most typical relationship between 

two inputs.  

Case 2: If dop takes on an extreme value of zero, then for the function to 

be well behaved, dpp ≥ 0 and doo ≥ 0, with at least one strict inequality. The GL 

model reduces to the ordinary two-factor Leontief production function; peak and 

off-peak electricity are perfect complements, σop = 0, and there is no opportunity 

for input substitution. Because this situation is captured by one coefficient in the 

model, we have a means to identify customers with fixed proportions in their 

customer’s peak and off-peak electricity usage.  

Case 3: For this case, we have dpp < 0, dop> 0, and doo > 0. Here, σop > 0, 

but there is a price of peak and off-peak electricity, pp
* and po

*,at which the peak 

to off-peak price ratio is so large that peak electricity is no longer used. This 

happens when po/pp < dpp
2/doo

2. This case may depict very well the behavior of 

customers with on-site generation, as suggested by Taylor, et al. (2005). 

Although the customer may still use peak electricity, demand for peak power 

from the grid falls to zero as the price ratio of electricity rises to this critical 

level. The customer would rely upon on-site generation for its peak electricity. 

4.3. ESTIMATING THE PARAMETERS OF THE GL MODEL  

Ordinarily by assuming an additive error structure associated with the 

input share equations ap and ao,the parameters of the GL cost function can be 

estimated as a system of equations, However, in our case, the energy aggregate 

E (from equation (1)) is an unspecified function of peak and off-peak energy 

usage, and E cannot be observed in the data. Therefore, to estimate the 
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parameters of the model, we specify a single equation which is the logarithm of 

the ratio of ap and ao:12  

( )
( )

1/ 2

1/ 2

/
ln ln ln

/

pp po o p
p p

o o
oo op p o

d d p pa k
a k d d p p

⎧ ⎫⎡ ⎤+⎪ ⎪⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎪ ⎣ ⎦= =⎜ ⎟ ⎜ ⎟ ⎨⎜ ⎟ ⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎝ ⎠ ⎪ ⎪+⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎪
⎬  .           (6) 

Denoting estimated parameters from equation (6) as dij*, we can 

calculate (ap)fit and (ao)fit at each data point. We can also substitute the estimated 

parameters from equation (6) into equation (2) to obtain estimates of (C/E)fit. 

Finally, these three expressions can be substituted into equation (5) to obtain for 

each data point estimates of:  

( )

( ) ( )

1/ 2*

2

op p o
fit

op
p o fitfit

C d p p
E

a a
σ

−⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦=               (7) 

4.4. EMPIRICAL ANALYSIS 

The GL model’s flexible form is well suited for characterizing potentially 

diverse customer price response behavior. To calculate elasticities of 

substitution according to the procedures outlined above, we first estimate for 

each customer, f: 

( )1/ 2
, , , , , , , , , , , , ,ln / ln /p t f o t f f t f p f t f pp f po f o t f p t fk k w W h H d d p p⎧ ⎫⎡ ⎤⎡ ⎤ = + + +⎨ ⎬⎣ ⎦ ⎢ ⎥⎣ ⎦⎩ ⎭

( )1/ 2
, , , , , , , , ,ln /o f t f oo f op f p t f o t f t fh H d d p p ε⎧ ⎫⎡ ⎤− + + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

          (8) 

 
where  t is the index for weekday observations, kp,t,,f  =  peak usage (kWh); pp,t,f  

=  average daily peak price ($/kWh);  ko,t,f  =  off-peak usage (kWh); po,t,f  =  

average daily off-peak price ($/kWh); εt,f  = a random error term; and wf, hp,f, ho,f, 

 
12 This specification is equivalent to modeling the ratio of equations (3) and (4), and it is necessary in 
order to eliminate the unobservable energy aggregate from the estimating equations.  For this reason, 
we are limited to a homothetic form of the indirect cost function (equation (2)).  Thus, unlike Taylor 
and Schwarz (1990), we are unable to test both homothetic and non-homothetic versions of a 
Generalized Leontief specification.     
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dpp,f, dpo,f, dop,f, and doo,f  are parameters to be estimated. The effect of weather is 

accounted for in two distinct ways.13 The variable Wt,f measures cooling degrees 

(e.g., the difference between the average peak period temperature and 65 

degrees F). It enters as an intercept shifter, thus controlling for inherent 

differences in peak to off-peak usage as temperature changes. The variable Ht,f is 

a binary (0,1) variable to distinguish hot (Ht,f = 1 when Avg. THI ≥ 85 during 

peak periods) from cool days (Ht,f = 0 when Avg. THI < 85 during peak 

periods), defined by the temperature heat index (THI).14 This variable allows the 

model parameters to differ on hot and cool days.15  

From the estimated model described in equation (8) we generate a 

substantial number of estimates of daily elasticities of substitution for each 

customer. Therefore, to ascertain if the level of price response is affected by the 

nominal level of electricity prices and/or differs systematically by type of 

business and by the intensity of electricity use, we estimate an additional model 

by pooling the elasticity estimates across customers.16 The variables defined to 

measure these factors are specified in the model as intercept and/or slope shifters 

to account for interaction among the characteristics. The pooled model is: 

( ) ( ) ( )1 , , , , 2 , 3 , , , ,/ %tf p t f o t f t f p t f o t fp p Man MaxD Man p pσ α β β β= + + + /

), ,

), ,

 

 

( ) (4 , 5 , ,% /t f p t f o t fGovEd MaxD GovEd p pβ β+ +  

( ) (6 , 7 , ,% /t f p t f o t fPW MaxD PW p pβ β+ +  

13 The complexity of this non-linear equation precludes the inclusion of a number of additional 
variables to account for effects of important customer characteristics, etc. on the parameter estimates 
and the subsequent elasticities of substitution. It was possible to include two additional variables. We 
chose to identify the effects of weather primarily because electricity demand is thought to be 
weather-sensitive, and while weather would vary over time for each customer, there would likely be 
less variability across customers due to their geographic proximity in upstate New York. 
14 The Temperature Heat Index is constructed from temperature and dew point values for five 
National Weather Service stations located in the utility’s service territory. See Goldman, et al. 
(2005) for details. 
15 We used FIML methods within PROC MODEL in SAS, dpo,f = dop,f  to ensure symmetry. We also 
require that doo,f + dpp,f + dop,f + dpo,f =1 and hp,f = ho,f, normalizing to reflect a unit isoquant for the 
energy aggregate. The parameter estimates changed if this condition were set to a different number, 
but the estimates of the elasticities of substitution were invariant.  The Durbin-Watson test indicated 
the data was serially correlated, so an AR(1) correction was added to the model.  
16 This strategy for analyzing these types of results is similar to the one used by Taylor and Schwarz 
(1990). They estimated household demand response, and pooled the corresponding GL parameter 
estimates for each cross section in their data. Then, using each set of estimated parameters as the 
dependent variable in a regression model, they determined the extent to which the parameter 
estimates were affected by weather and customers’ prior experience with TOU rates. 
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( ) ( )8 , 9 , , ,% t f p t f o t f tfComRtl MaxD ComRtl p p uβ β+ + ,/ +            (9) 

 
where pp,t,f / po,t,f  = ratio of peak to off-peak electricity prices on day t for 

customer f; %MaxDt,f  = peak use on day t as a percentage of customer f’s 

maximum summer demand; Man = 1 for Manufacturing customers, 0 otherwise; 

GovEd = 1 for Government/Education customers, 0 otherwise; PW = 1 for 

Public Works customers, 0 otherwise; ComRtl = 1 for Commercial and Retail 

customers, 0 otherwise; utf  = a random error term; and α and βi  (i =1,…,9) are 

parameters to be estimated.  

5. FINDINGS AND IMPLICATIONS 

Estimating the GL model (equation (8)) requires specifying what hours 

of the day constitute the peak period. To accomplish this, we examined the 

estimated elasticities of substitution, calculated according to the procedures in 

equations (6) and (7), to see how they are affected by the length and timing of 

the peak period. The results for three alternative peak period definitions—12 

Noon.–5:00 p.m., 1:00–5:00 p.m., and 2:00–5:00 p.m.—are shown in Table 2. 

The three-hour peak period (2:00–5:00 p.m.) produces the highest elasticities of 

substitution, suggesting that this period best reflects a peak period in which the 

electricity use in the hours included in the peak are complementary inputs, as 

described by Taylor, et al. (2005). Furthermore, since the prices for SC-3A 

customers typically reach their highest levels between the hours of 2:00 and 5:00 

p.m., this period has particular policy significance. For this reason, and for the 

fact that the statistical performance (which is discussed in some detail below) is 

similar for all three peak periods, the remainder of the discussion focuses on the 

weekday afternoon hours of two to five. 
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Table 2. Load-Weighted Elasticities of Substitution by Sector and Peak 
Period 

  Manuf. 
Gov't / 

Ed 
Comm / 

Retail
Health 

Care
Public 
Works TotalPeak 

Period N 44 34 17 8 16 119
Min. 0.00 0.00 0.01 0.00 0.00 0.00
Avg. 0.07 0.04 0.03 0.04 0.01 0.0512 noon 

to 5 p.m. 
Max. 0.09 0.05 0.04 0.05 0.01 0.06

      
Min. 0.12 0.07 0.05 0.03 0.01 0.08
Avg. 0.12 0.08 0.06 0.04 0.01 0.091 p.m. to 

5 p.m. 
Max. 0.14 1.21 1.43 0.04 0.01 0.63

      
Min. 0.15 0.09 0.05 0.03 0.01 0.10
Avg. 0.16 0.10 0.06 0.04 0.02 0.112 p.m. to 

5 p.m.   
Max. 0.18 0.42 1.49 0.04 0.02 0.38

 

5.1. AVERAGE ELASTICITIES OF SUBSTITUTION  

For the peak period 2:00 p.m. to 5:00 p.m, the load-weighted average 

elasticity of substitution for the 119 customers in the sample is 0.11 (Table 2). 

The highest average elasticity (0.16) is in the Manufacturing sector. 

Government/Education customers are also quite price responsive (0.10), a group 

of customers whose potential to respond to price is thought by many to be small. 

Commercial/Retail, Health Care, and Public Works customers, with respective 

sector-average elasticities of substitution of 0.06, 0.04, and 0.02, are much less 

price responsive. 

5.2. EFFECTS OF WEATHER 

To identify the effects of weather both on customer electricity demand 

and on price responsiveness, we incorporated two weather variables, an intercept 

and a slope shifter, into the GL model (equation (8)). The number of customers 

for which these variables are statistically significant, and the corresponding 

signs of the parameter estimates are shown in Table 3.  
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The weather intercept variable reflects the relationship between daily 

cooling degrees and customer’s electricity demand and was statistically 

significant for 58 of the 119 customers (49%); most of the significant parameters 

were positive, indicating that on hot days, peak usage for these customers 

increases disproportionately relative to off-peak usage, all else equal. As 

expected, the Government/Education, Commercial/Retail and Health Care, 

which are characterized by large cooling loads, exhibit the most weather-

sensitive peak loads; for at least 65% of customers in each of these sectors the 

estimated coefficients are positive. 

The slope shifters measure the effect of weather on the intensity of 

price responsiveness. For example, customers with weather-sensitive loads may 

be more price responsive on hot days if these loads are discretionary.17 However, 

the coefficients on this variable are significant for only 32 customers (27%) and 

are usually negative. These customers are less able or willing to shift load from 

peak to off-peak when peak prices rise. Significant results were observed for 

more than 40% of customers in only two sectors (Commercial/Retail and Health 

Care).  

 

 

 

 

 

 

 

 

 
17 Although 22% of the survey respondents reported that they shift load from peak to off-peak 
periods in response to high prices, another 49% reported that they curtail discretionary loads, such as 
lighting or air conditioning, without making up the foregone usage at another time. Since the 
reduction in discretionary load during peak periods reduces relative peak to off-peak usage, such 
behavior is still properly accounted for in the elasticity of substitution, even though there is no 
associated increase in off-peak load.  
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Table 3. Effects of Weather on Demand and Price Responsiveness 

    Manuf. 
Gov't / 

Ed
Comm / 

Retail
Health 

Care
Public 
Works Total

  N 44 34 17 8 16 119
Positive 7 22 12 6 5 52Weather 

Intercept Negative 3 1 1 0 1 6
      

Positive 2 0 3 1 0 6Si
gn

ifi
ca

nt
 

R
es

ul
ts

a

Weather 
Slope Negative 7 8 4 3 4 26

        

Cool Days 
(THIb<85) 0.16 0.10 0.05 0.04 0.02 0.11

A
ve

ra
ge

 
Su

bs
tit

ut
io

n 
El

as
tic

ity
 

Hot Days 
(THIb≥85) 0.15 0.12 0.10 0.04 0.02 0.11

a 10% significance level. 
b THI = Temperature Heat Index - average for the hours from 2-5 p.m. 

 

Table 3 also illustrates the combined, overall effect of weather on price 

responsiveness, reporting load-weighted elasticities of substitution on cool days 

and on hot days. For all customers taken as a group, there is essentially no 

difference in the average elasticities of substitution on hot and cool days. The 

sector-level results, however, reveal that customers for whom cooling needs 

drive a substantial proportion of energy usage—Government/Education and 

Commercial/Retail sectors—exhibit marked increases in overall price 

responsiveness on hot days, 20% and 100%, respectively. Manufacturing 

customers, on the other hand, appear to be only slightly less price-responsive on 

hot days.  For other sectors, the effect is minimal. 

5.3. DIFFERENCES IN PRICE RESPONSIVENESS AMONG 

CUSTOMERS 

Estimating customer-level demand models allowed us to explore the 

heterogeneity of price responsiveness among the study customers. Figure 3 

contains the distribution of elasticities of substitution by customer account and 

non-coincident peak demand. For the most part, customers’ maximum electricity 

demands are distributed in similar proportions to their numbers. Thus, contrary 
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to some common expectations, it appears that price responsiveness is not 

primarily driven by customer size, at least among customers with peak demands 

greater than two MW. 

Figure 3. Distribution of Elasticities of Substitution by Account and 
Maximum Demand 
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By examining this figure, we are able to gain an understanding of the 

number of customers in our sample whose ability to respond to price is 

characterized by one of the three cases mentioned above, that is where peak and 

off-peak electricity: (1) are substitute inputs; (2) are used in fixed proportions; 

and (3) are substitutes up to a threshold price at which point peak power from 

the grid is “priced” out of the market, customers may substitute on-site 

generation. 

About one-quarter of customers (28% of the accounts and 24% of the 

load) appears to use peak and off-peak electricity in fixed proportions (the “zero 

elasticity” group in Figure 3);18 the remaining firms have positive elasticities of 

 
18 Since a sufficient condition for peak and off-peak electricity to be required in fixed proportions is 
that the estimated coefficient dop from equation (8) be zero, it is encouraging that for all 32 
customers in this group, dop is either zero or based on a simple t-test not significantly different from 
zero. Since the elasticities of substitution are non-linear functions of the GL parameter estimates 
(following equation (7)), we also calculated standard errors for the elasticities of substitution by the 
delta method described by Greene (2003). Based on these calculations at the mean level of prices, 
the elasticity of substitution is less than twice its standard error for all but two of the customers in 
this group. This is additional evidence that these customers use peak and off-peak electricity in fixed 
proportions.  
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substitution, indicating that peak and off-peak electricity are substitute inputs. A 

large group of customers (35% of the accounts and 40% of the load) are only 

slightly responsive (elasticities of substitution of less than 0.05).19 About 20% 

are moderately responsive, with elasticities of substitution between 0.05 and 

0.10. Finally, the 18% of customers in the high and very high groups (elasticities 

of substitution greater than 0.10) provide 75-80% of the 119 customers’ 

aggregate demand response.20

Among this final group, we also identified five customers—four 

Government/Education customers and one Commercial/Retail customer—whose 

parameter estimates suggest that they would curtail grid-supplied peak 

electricity usage at a threshold peak to off-peak price ratio. The threshold price 

ratio ranged from 7:1 to over 100:1. In responses to the survey, all of these 

customers indicated that they had on-site generating capacity.21

Because of the availability of information from NMPC and the 

customer survey responses, we are also able to document the price 

responsiveness of those customers who participated in the Emergency Demand 

Response Program, one of the NYISO’s demand response programs. As shown 

in Figure 4, EDRP participants are distributed throughout the several categories 

of price responsiveness. However, only two groups with the highest elasticities 

of substitution have more EDRP participants than non-participants. There are a 

 
19 We calculate standard errors for the elasticities of substitution by the delta method for these two 
groups of customers as well. For all customers in the group whose elasticities of substitution are less 
than 0.01, the standard elasticity of substitution is less than twice its standard error, evidence that the 
elasticities are not statistically different from zero and that these customers also use peak and off-
peak electricity in fixed proportions, or nearly so. For 27 of the 33 customers in the group whose 
elasticities of substitution are between 0.01 and 0.05, the average elasticity of substitution is also less 
than twice its standard error. Again this is as it should be, particularly for firms at the low end of the 
range. 
20 For each of the 11 customers in the group whose elasticities of substitution are above 0.20, the 
average elasticity of substitution is greater than twice its standard error, providing strong statistical 
evidence for the magnitude of their price responsiveness. For the remaining two groups (those with 
elasticities of substitution between 0.05 and 0.10 and between 0.10 and 0.20, the results are mixed. 
For about half the customers in each group, the estimated elasticities of substitution are greater than 
twice their standard errors. Most of the customers in these two groups for which the elasticitities of 
substitution are not statistically different from zero are Manufacturing firms. 
21 A number of other survey respondents have on-site generation capacity; they appear much less 
price responsive because for most of them the on-site generation is used primarily to meet 
emergency backup requirements. 
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couple of possible explanations for the association of EDRP participation and 

price responsiveness. First, customers who are naturally more price responsive 

may be more likely to enroll in EDRP, as they see a greater opportunity to 

benefit from participation. We attempted to capture this added incentive in 

estimating the demand model by substituting the minimum EDRP incentive of 

$500/MWh as the effective price, and not the prevailing day-ahead price, during 

program events. Second, while 63% of the survey respondents participating in 

EDRP reported reducing load to earn curtailment payments, 59% also indicated 

that they respond in part due to a perceived civic duty to help keep the electric 

system secure.  

It is more difficult to explain why there are 30 EDRP customers among 

the groups with the lowest elasticities of substitution. It appears that these 

customers may have enrolled in EDRP, only to find out later that they were 

unable to reduce loads during EDRP events, or that the financial incentives were 

too small to do so. Since load reduction performance during EDRP events is 

voluntary, there is no penalty for non-compliance. 

Figure 4. Distribution of Accounts by Elasticity of Substitution and NYISO 
Program Participation 
 

Zero
Elasticity
(0.00)

Very
Low
Elasticity
(< 0.01)

Low
Elasticity
(0.01 -
0.05)

Medium
Elasticity
(0.05 -
0.10)

High
Elasticity
(0.10 -
0.20)

Very
High
Elasticity
(> 0.20)

0

10

20

30

N
um

be
r 

of
 A

cc
ou

nt
s

4
3

14

9

7
8

28

6

19

14

4
3

N=119
NYISO Emergency Program Participants
Non-Participants

 

 24



The presence of an Energy Management Control Systems (EMCS) 

would seem to facilitate shifting load in response to higher relative peak prices. 

It was somewhat surprising that among the 22 customers that had purchased a 

system, only three of the respondents had elasticities of substitution above the 

overall average. However, in responding to additional survey questions, fewer 

than 20% of these customers said they used the EMCS to facilitate short-term 

price response; instead, most respondents used the EMCS to achieve energy-

efficiency or peak load reduction goals. 

5.4. EFFECTS OF PRICES AND DEMAND INTENSITY ON DAILY 

PRICE RESPONSE 

As the second component of this empirical analysis, we estimated a 

model (equation (9)) to identify systematic relationships between day-to-day 

differences in electricity usage attributable to customers’ price response, peak to 

off-peak price ratios and customers’ daily usage as a proportion of their summer 

peak demand. We included interaction terms (the products of business-sector 

dummy variables with these factors) to determine if these effects differ by 

business sector. The parameter estimates are presented in Table 4. The statistical 

performance of the model is quite good—the R2 is high and all of the 

coefficients are statistically significant.22

 

 

 

 

 

 
22 This model was initially estimated by generalized least squares, using an AR(1) process to correct 
for autocorrelation in the residuals due to a strong, time-dependent persistence of similar elasticities 
on consecutive days. Any variations around this trend, due to the explanatory variables in the model, 
are reflected in the resulting parameter estimates. The high R2 value is primarily the result of this 
correction. Using White’s test for heteroskedasticity, we found that the residuals were systematically 
related to the factors that make a customer more or less price responsive on a particular day. To 
correct for the heteroskedasticity, we re-estimated the model using the generalized method of 
moments.  
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Table 4. Estimated Elasticity of Substitution  
Regression Model Results 

Variable 
Parameter 

Estimate t-Statistic
Pk Off-Pk Price Ratio (PR) -0.0028 -8.92
Commercial/Retail * PR 0.0199 4.22
Manufacturing * PR 0.0016 2.34
Gov't/Education * PR 0.0241 3.44
Public Works * PR 0.0010 2.80
% of Max Demand (MD) -0.0513 -1.99
Commercial/Retail * MD 0.0646 2.43
Manufacturing * MD 0.0487 1.89
Health Care * MD 0.0514 2.00
Public Works * MD 0.0509 1.97
AR(1) 0.4657 8.82
N = 119              R2 = 0.99             DW Statistic = 2.13 

 

Since many of the variables involve interaction terms, an effective way 

to interpret the results is to estimate the changes in elasticity resulting from a 

specified change in the explanatory variables. For each business sector, the 

change in the elasticity of substitution due to a unit increase in the price ratio 

(e.g., from 2:1 to 3:1) is shown relative to the sector’s un-weighted average 

elasticity in Figure 5. The results indicate that Government/Education and 

Commercial/Retail customers curtail peak usage more on days with higher price 

ratios than on moderately priced days.23 Because days in which the price ratios 

are high are highly correlated with days in which nominal peak prices are also 

high, we can infer that these customers tend to be more price responsive as 

prices increase.24 The opposite is true for other sectors, although the magnitude 

of the effect is not as large and, in the case of Manufacturing customers, is 

negligible.  

 
23 In interpreting these results, it is important to recall that the estimated elasticities of substitution 
already account for the effect of weather. Thus, these results isolate the effects of the level of prices 
on price responsiveness, net of any weather effects.  
24 In specifying the regression models, the daily elasticities of substitution for all customers were 
regressed on the peak-to-off peak price ratio, which maintains consistency with the interpretation of 
the elasticity of substitution. Our inference that these results translate to higher nominal peak prices 
is supported by two factors. First, nominal peak prices are correlated with price ratios—off-peak 
prices seldom rise at the same rate as peak prices, so price ratios tend to rise in accordance with 
nominal peak prices. Second, we estimated an alternative specification in which daily elasticities 
were regressed against nominal peak prices and obtained similar, but slightly less statistically robust, 
results (see Goldman, et al., 2005, Appendix C). 
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Figure 5. Marginal Changes in Elasticity of Substitution from a 50% 
Increase in the Peak to Off-Price Ratio 
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A similar analysis shows that unit increases in customers’ daily usage 

(e.g., from 60% to 70% of maximum demand) results in much smaller marginal 

changes in sector-average elasticities of substitution, from –3.2% for 

Government/Education customers to 1.2% for Commercial/Retail customers. 

6. SUMMARY AND CONCLUSIONS 

In this study, we characterize the price responsiveness of customers that 

face market-based electricity prices by combining customer hourly load and 

price data with survey information to characterize business circumstances.  The 

price responsiveness of these customers, as measured by the load weighted 

average elasticities of substitution, is modest, 0.11—a 10% increase in the peak 

to off-peak price ratio leading to a 1.1% reduction in demand. At one extreme, 

nearly 30% of the customers appear to use peak and off-peak electricity in fixed 

proportions. About 9% exhibit average elasticities of substitution less than 0.01. 

About 75% of the aggregate price response is concentrated in the 18% of 
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customers with the highest elasticities of substitution, those greater than 0.10. 

The remaining customers exhibit modest price responsiveness, with average 

elasticities of substitution ranging from 0.01 to 0.05. In the aggregate, we 

estimate that when peak to off-peak electricity prices reach a ratio of 5:1, the 

highest ratio during the study period, these 119 customers would reduce their 

peak-period usage by about 50 MW, approximately a 10% reduction from their 

typical usage. 

Industrial customers are the most price responsive, perhaps as expected. 

However, Government/Education customers are quite price responsive as well, 

and as a group Commercial/Retail customers are somewhat less price 

responsive. Equally important, our study documents that for these latter two 

groups, the elasticities of substitution are higher, both on hot days, and on days 

in which peak to off-peak prices are high. These results in part reflect the 

discretionary nature of some load for these customers and stand in sharp contrast 

to those for Manufacturing firms. Furthermore, there is no evidence that the 

price responsiveness of any customer group is substantially reduced during days 

in which they are operating at or near their peak usage. Through customer 

survey responses, we know that customers use EMCS primarily to generally 

reduce peak load, thus appearing less price-responsive than might be expected. 

It is also true that while some customers do use on-site generation to respond to 

price, others use it primarily for emergency backup.  

In conclusion, these results are consistent with portfolio substitution 

elasticity estimates for large industrial customers on voluntary RTP tariffs at 

vertically integrated utilities (Herriges, et al., 1993; Schwarz, et al., 2002; 

Boisvert, et al., 2004; and Taylor, et al., 2005), and suggest that the retail market 

context for RTP (i.e. two-part hedged vs. one-part market-based designs) does 

not greatly influence the price response behavior of industrial customers.  In 

other words, the estimates of elasticities of substitution associated with two-part 
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RTP service can be extended to similarly constructed RTP pricing plans in 

competitive markets where all load is exposed  Furthermore, these results add 

substantial support for the hypothesis that average price responsiveness conceals 

the diversity of response among customers even within the same business 

classifications, and that size along is not enough to predict price response. It is 

only through knowing something about the specific customer characteristics or 

circumstances that one can understand why certain customers in a particular 

business class are price responsive and others are not.  
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