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ABSTRACT 

An aberration monitoring technique based on lateral shifts of two-wave interference patterns in centrally obscured 

optical systems is presented, and simulations are used to evaluate the performance of such a technique. The technique is 

being explored as a convenient means for monitoring the aberration level in the 0.3-NA Micro Exposure Tool (MET) 

optic over time.  A binary mask was designed for observing phase differences across the MET optic on cut-lines at 0, 45, 

90 and 135 degrees across the pupil. The mask consists of 5 line-and space patterns in a dark field that measure the side-

to-side phase difference across the pupil at 7 equally spaced radial points extending from 35% to 95% of the pupil 

radius. For near on-axis illumination the blockage of the zero-order creates a two-wave, interferometric pattern at the 

wafer with half of the period expected under normal imaging conditions. The optical path difference between the two 

orders produces an image shift of one full period of the (frequency doubled) interference pattern per 360 degrees of side-

to-side path difference. Shifts on the order of 5 to 20 nm are expected and are measured using a reference target of an 

array of 5 medium sized dots.  Aerial image simulation is being utilized to predict the expected performance and to 

improve the initial design. The aberrations measured by interferometry are being used for this purpose. Also the quality 

of images at low partial coherence with the wavefront convergence present in the MET illumination is being studied.  In 

addition to theory and simulation results, practical considerations in implementing this technique on actual lithography 

tools based upon MET-type optics are addressed, including pattern design, illumination characteristics, and data 

analysis. 
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1. INTRODUCTION 

Conventional optical lithography is widely believed to be a non-manufacturable solution at the 32 nm technology node 

and beyond, and several different potential next-generation lithography (NGL) technologies have been the subject of 

active research for many years.  One such technology is lithography at extreme ultraviolet (EUV) wavelengths around 

13.5 nm.  Transitioning from deep UV to EUV wavelengths requires much more than simply a shorter-wavelength 

source, as the absorptive nature of virtually all materials in this region of the electromagnetic spectrum leads to a wide 

range of other difficulties.  In spite of these difficulties, a great deal of progress in this field has been made in the past 

few years. 

In order to investigate issues related to EUV lithography development, a static micro-field exposure tool based on the 

Micro-Exposure Tool (MET) optic and operating at a wavelength of 13.5 nm has been installed at the Advanced Light 

Source, a synchrotron facility at the Lawrence Berkeley National Laboratory.
1-3

  The MET optic is composed of two 

multilayer-coated reflective elements and has a numerical aperture (NA) of 0.3, comparable to the value expected for 

first-generation EUV production tools.  The optic has an annular pupil with a central obscuration of NA 0.1.  The field 

size is 600 µm  200 µm at the wafer, and the tool uses a scanning illuminator to provide programmable coherence 

control.
4
  This is highly advantageous as it allows for a many different illumination types and a partial coherence ( ) 

range of roughly 0.05 to 1. 
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One area of concern in EUV lithography is the quality of the projection optics with regard to aberrations and flare.  In 

this work, a method for monitoring drift in the level of aberrations present in an optic with an annular pupil (such as the 

MET optic) is presented.  The method is described in detail in Section 2.  A mask to test this technique has been 

designed and fabricated, and this is presented in Section 3.  Practical considerations in the actual implementation of the 

test method are discussed in Section 4.  Finally, conclusions are given in Section 5. 

2. DESCRIPTION OF MEASUREMENT TECHNIQUE 

This method uses line/space patterns and highly coherent illumination (   0.05) to create diffracted orders that 

“sample” the wavefront of the projection optics.  The zero order is entirely blocked by the central obscuration, and the 

pitch is chosen so that the first orders pass through the lens at a specified radius within the pupil.  These two waves will 

then interfere at the wafer plane to create the aerial image, which is then transferred into photoresist.  If aberrations are 

present in the lens, then an optical path difference (OPD) will exist between the two waves.  As shown in Figure 1, this 

may be thought of as causing a “tilt” in the wavefront.  This tilt will result in a lateral shift of the aerial image at the 

wafer.  By measuring the lateral shift as a function of pitch (and therefore a function of pupil position), the “signature” of 

a particular set of aberrations may be recorded.  Changes in this signature over time indicate a drift in the aberrations 

present in the system. 

 

                            

Figure 1. The interference of two waves with a non-zero optical path difference (OPD) may be interpreted as a tilted wavefront, 

resulting in a lateral shift of the aerial image at the wafer. 

 

The blocking of the zero order in this method has one important consequence:  the aerial image becomes frequency-

doubled relative to the mask pattern.  The process by which this occurs is illustrated in Figure 2.  The aerial image 

electric field and intensity for the case with no central obscuration are shown In Figure 2a.) and b.), respectively.  Here 

the aerial image intensity, I, is given by I = E
*
E, where E is the aerial image electric field.  The aerial image electric field 

and intensity for the case with the central obscuration are shown in Figure 2c.) and d.), respectively. 

The amount of lateral shift expected in the aerial image for a given OPD may be deduced by noting that the 

difference in phase between the two waves interfering at the wafer goes from 0° to 180° (one half-wave) over a lateral 

distance of Pwafer/2, where Pwafer is the pitch of the aerial image at the wafer.  Due to the frequency doubling which 

occurs when the zero order is blocked, Pwafer = Pmask/2.  Therefore, the amount of lateral shift x which will occur for an 

OPD  in waves as a function of normalized pupil radius rpupil is given by 

x rpupil( ) =
Pmask

2
 .                                                                  (1) 

 



 

Figure 2. Illustration of frequency doubling with central obscuration (the x-axis is in units of mask period).  a.)  Aerial image electric 

field with no central obscuration, b.)  aerial image intensity with no central obscuration, c.)  aerial image electric field with central 
obscuration blocking zero order, d.)  aerial image intensity with central obscuration blocking zero order. 

The MET wavefront has previously been measured using a variety of interferometry techniques.
5
  The results from 

at-wavelength lateral shearing interferometry were used to determine the expected pattern shift in the x-direction as a 

function of normalized pupil radius based on aerial image simulations.  The results are summarized in Table 1.  The 

expected pattern shifts range from less than 1 nm to nearly 7 nm, and the direction of the lateral shift changes as a 

function of pupil radius.  These pattern shift values (along with the corresponding values for other pattern orientations) 

may be thought of as a “signature” for a particular wavefront.  Changes in the wavefront over time as a result of 

aberration drift will result in a change in this signature.  Therefore, this technique may serve as a method for monitoring 

aberration drift.  A significant change in the pattern shift signature could be a signal of a potentially problematic change 

in the system wavefront.  More detailed characterization and corrective measures could then be performed as needed. 

In order to measure the amount of lateral shift in the line/space patterns in photoresist, a reference that remains 

stationary in the presence of aberrations is required.  Ideally, this would be something like a large (e.g., 500 nm) square  

 

Table 1. Expected pattern shifts in the x-direction  for the base MET wavefront. 

rpupil Pmask Pattern Shift in Aerial Image 

0.35 129 nm -6.8 nm 

0.45 100 nm -5.3 nm 

0.55 82 nm -4.5 nm 

0.65 69 nm -3.2 nm 

0.75 60 nm -2.0 nm 

0.85 53 nm 0.8 nm 

0.95 47.4 nm 3.2 nm 
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pattern.  However, because such large features are primarily composed of relatively low spatial frequencies, the 

corresponding diffracted orders from the highly coherent illumination are blocked by the central obscuration and only 

the highest spatial frequencies (related to the edges and corners of the square) reach the wafer to form the image.  This  

image tends to be very weak, as only a small fraction of the total diffracted energy is contained in these higher orders, 

and only the outline of the square is present.  On the other hand, small features (which have stronger high-frequency 

content) tend to be more sensitive to aberrations.   

As a compromise between these two extremes, the initial design uses an array of five 100 nm squares as a reference 

with which to measure lateral pattern shifts in the line/space patterns.  However, this design is not perfect.  The aerial 

image of a 100 nm square for an unaberrated annular pupil with a NA of 0.3 and a central obscuration with a NA of 0.1 

(the same parameters as the MET optic) is shown in Figure 3.  Note that the central obscuration blocks the diffracted 

orders corresponding to the low spatial frequencies of the square, and only the corners of the square show up in the aerial 

image.  In addition, the aerial image of a 100 nm square using the MET wavefront as measured with lateral shearing 

interferometry is shown in Figure 4.  Note that the aberrations present in the MET cause significant aerial image 

distortion when compared with the unaberrated case in Figure 3.  This will make it difficult to establish the correct center 

of the reference pattern.  Alternative designs are being considered. 

3.  TEST MASK DESIGN 

A multilayer-coated reflective mask suitable for use in the MET tool has been designed and fabricated for testing this 

technique.  This mask consists of many replications of a test cell.  The test cell is an array of line/space patterns with 

different pitches designed to have a first diffraction orders at evenly spaced intervals within the pupil (normalized pupil 

radius values of 0.35 to 0.95 in steps of 0.1).  Small arrays of 100 nm squares are interspersed with the line/space 

patterns to serve as pattern shift reference marks.  This cell is shown in Figure 5. 

The test cell in Figure 5 is present on the mask in four different rotations:  0°, 45°, 90°, and 135°.  This will allow for 

“sampling” of the pupil wavefront in four different directions.  These four rotated cells together form a test module, 

which is shown in Figure 6.  This module is then repeated throughout the 600 µm  200 µm (in wafer dimensions) field 

as shown in Figure 7. 

 

Figure 3.  Simulated aerial image of a 100 nm square for an unaberrated annular pupil with a NA of 0.3 and a central obscuration with 

a NA of 0.1 (the same parameters as the MET optic).  Conventional illumination with  = 0.05 was used.  The diffracted orders 

corresponding to low spatial frequencies are blocked by the central obscuration, leaving only the highest spatial frequencies to form 
the image. 



 

 

Figure 4.  Simulated aerial image of a 100 nm square using the MET wavefront as measured using lateral shearing interferometry. 

Conventional illumination with  = 0.05 was used.  Again, the diffracted orders corresponding to low spatial frequencies are blocked 

by the central obscuration, leaving only the highest spatial frequencies to form the image.  The aberrations present in the MET optic 
are responsible for the image deformations in comparison to the unaberrated case shown in Figure 3. 

 

 

 

 

Figure 5.  Test cell consisting of an array of line/space patterns with different pitches designed to have a first diffraction orders at 

evenly spaced intervals within the pupil (normalized pupil radius values of 0.35 to 0.95 in steps of 0.1).  Small arrays of 100 nm 

squares are interspersed with the line/space patterns to serve as pattern shift reference marks. 

 



 

Figure 6.  Aberration test module.  Target orientations are (left to right) 0°, 45°, 90°, and 135°. 

 

 

 

 

Figure 7.  Test mask layout.  Field size is 600 µm  200 µm at the wafer. 

 

4.  PRACTICAL IMPLEMENTATION CONSIDERATIONS 

There are several practical concerns in the implementation of this aberration monitoring technique.  One is the issue 

of exposure dose imbalance between the reference marks and the line/space patterns.  Because most of the energy from 

the square reference patterns is in lower diffraction orders that are blocked by the central obscuration, the effective dose 

at the wafer for the square patterns is much lower than the dose for the line and space patterns.  One possible solution to 

this problem is to target the exposure dose in order to print the square corners, which will result in overexposure of the 

line and space patterns (causing them to print as a cleared block rather than distinct lines and spaces).  Additionally, the 

lines and spaces will be very small at the wafer (as small as ~12 nm) because of the frequency doubling effect described 

in Section 2.  At the present time there are no EUV resists which can support this kind of resolution.  However, as only 

the lateral position of the line and space patterns is important, it is not necessary to resolve individual lines.  The position 

of the overexposed block may still serve to measure the amount of pattern shift. Therefore, the overexposure is not 

expected to pose a problem. 

A second challenge is the development of image processing software to perform the actual measurements.  Because 

the relative position measurements required by this technique are not supported in commercial SEM software, this would 

most likely be implemented as an offline software package.  The software would need the capability to read a SEM 

image, locate both the reference structures and line and space patterns, find the center of each, and measure the relative 

position shifts. 

One additional practical consideration is the alignment of the illumination within the pupil.  For measuring odd 

aberrations, it is desirable to have a small illumination size at the center of the pupil.  However, due to the central 

obscuration, the illumination pupil fill monitor in the MET cannot see this illumination pattern.  Therefore, it is difficult 



to ensure that the illumination is properly centered.  This is critical because any position deviation from the pupil center, 

in combination with radially symmetric errors including defocus, will result in lateral shifts in the line and space patterns 

that may be erroneously interpreted as the result of aberrations.  In addition, the measurement of even aberrations 

requires a small illumination size at a specific off-axis location in the pupil.  Again, the position of the line and space 

patterns at the wafer is highly sensitive to the placement of the illumination within the pupil.  Achieving the required 

precision in illumination placement is therefore critical. 

Finally, for other commercial EUV lithography systems that use a similar optic but different illuminators
6
, achieving 

the required level of partial coherence may be problematic.  In the MET system at LBNL, the use of synchrotron 

radiation as a source provides a high degree of coherence.  However, this may be more difficult to achieve in systems 

that use Xe gas discharge plasmas, for example. 

7.  CONCLUSIONS 

A technique for monitoring drift in aberrations levels over time for centrally obscured optical systems was described.  

This method relies on highly coherent illumination (   0.05) and takes advantage of the central obscuration to block the 

zero diffraction order from line/space patterns, creating a two-wave interference pattern at the wafer.  This pattern will 

shift laterally in the presence of wavefront aberrations, and the amount of shift is proportional to the amount of optical 

path difference between the two waves (the +1 and –1 diffracted orders) that interfere to form the image at the wafer.  

The blocking of the zero order leads to a frequency doubling effect in the aerial image at the wafer.  Varying the pitch of 

the line/space patterns allows for “sampling” of the optical path difference for different locations within the pupil. 

Aerial image simulations using the interferometrically-measured wavefront for an EUV optic with an annular pupil 

(the MET optic) were used to predict the amount of lateral shift expected for this wavefront as a function of normalized 

pupil radius.  The shifts were on the order of 1-7 nm.   

The design of reference structures intended to remain stationary within the aerial image in the presence of aberrations 

was also addressed.  The central obscuration makes selection of an optimal reference structure difficult.  A sub-optimal 

compromise based upon an array of five 100 nm squares was adopted for the initial design.  Aerial image simulations 

were also used to predict the performance of these reference squares for both the unaberrated case and for the measured 

wavefront from the MET optic. 

An initial test mask to implement this technique has been designed and fabricated.  The mask consists of multiple test 

modules placed throughout the field.  Each module contains four different rotations of a test structure cell consisting of 

the various line/space patterns and reference structures. 

Finally, several challenges in implementation remain.  As mentioned previously, the reference structure design is 

most likely sub-optimal.  Also, the image processing software required to make the data analysis efficient enough for 

routine operation needs to be developed.  The alignment of the illumination spot at the center of the pupil is difficult 

because the central obscuration prevents the small illumination spot from being seen by the pupil fill monitor in the MET 

system.  Finally, other tools with a similar optical design but different illuminators may have difficulty achieving the 

high degree of coherence required.  Each of these challenges must be addressed in order for this technique to be viable.  

However, if they can be met successfully, this method may provide a relatively quick way of monitoring aberration drift 

over time. 
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