
A survey of codes and algorithms used in NERSC
material science allocations

Lin-Wang Wang
NERSC System Architecture Team
Lawrence Berkeley National Laboratory

We have carried out a survey of codes and algorithms used on NERSC computers within
the science category of material science. This is part of the effort to track the usage of
different algorithms in NERSC community. This survey is based on the data provided in
the ERCAP application of FY06. To figure out the usage of each code in one account, we
have multiplied the total high performance computer (HPC) time allocation (MPP hours)
of this account with the percentage usage of this code as estimated by the users in the
ERCAP application. This is not the actual usage time, but should be a good estimation of
it, and it represents the intention of the users. In a few cases (~5) where the estimated
usages are not provided, rough values are used based on the numbers in similar projects
and the author’s experience in the related field. Different groups might have used slightly
different names for a same code. This has been corrected manually by the author. The
statistics is done based on the original allocation. The additional allocation after Bassi is
online has roughly doubled the total allocation.

We have the following observations based on our survey:

(1) There are 65 accounts under the BES/material science category, they account for
20% of the 324 total NERSC accounts. The total HPC allocation for these
accounts is 4.1 Mhours before the Bassi was online, 8.8Mhours after the Bassi
was online. These account for 13% of the total NERSC allocations (66.7Mhours
after the Bassi was online). This percentage is smaller than a few years ago, partly
because the increase of some other categories, like fusion, and partly because the
creations of special programs like SciDAC and INCITE.

(2) There are in total 62 major codes used in these 65 accounts, thus in average about
one code per account (or say user group). However, since the same code can be
used by different accounts, in average one code is used by 2.15 user groups.
Except the VASP code, which is used by 23 groups, the majority of the codes is
used by less than 5 groups, and many of the codes are used only by one group.
This is a very diverse community, with many groups using their own codes.

(3) The different codes can be classified into 6 categories based on their physics and
the corresponding algorithms. They are: DFT (density functional theory); beyond
DFT (GW+BSE); QMC (quantum Monte Carlo); CMD (classical molecular
dynamics); CMC (classical Monte Carlo); and other PDE (Partial differential
equation). Their corresponding HPC time usages are: 74.0%, 6.9%, 6.7%, 6.4%,
3.1%, and 2.9%, as represented in Fig.1. Thus, the majority of the time is spent on
the DFT method, owing to the current success of that method in ab initio material
science simulation. Within the DFT method, based on their different numerical

approaches, they can be divided into: Plane Wave DFT, Green’s function DFT,
localized basis and orbital DFT, Maffin Tin sphere type DFT, and real space grid
DFT (as listed in Table.II). The most popular (both in terms of number of codes
and the HPC hours) one is the plane wave DFT. There are 12 codes for Planewave
DFT, and account for 1.6 Mhours (before Bassi) (see Table.II). A more detailed
explanation of these codes and algorithms will be given in the last paragraph.

All the 62 codes are listed in Table.I, along with the number of user groups, and the
estimated HPC hours. A short description is also included for each code. This table is
also presented as a plot in Fig.1. The data in Table.I has been regrouped in Table.II,
divided into different types of codes, e.g, planewave LDA, localized orbital LDA, etc.
Finally, the results in Table.II are summarized in Fig.2 and Fig.3.

As for mathematical algorithms and libraries, the information we can get from the
ERCAP application is very limited. It might not be a reliable source to gauge which
library is used and by what percentage of time. We do notice that many group indicate
the usages of ESSL, fftw, lapack and scalapack. However, there is no information for
which subroutines are used in these libraries, and by how much. But in general, we do
feel that the above libraries are extremely important. At this point, we also do not know,
for a typical material science code, how much time is spent on library routines, and how
much time is spent on the rest of the code (e.g., the Fortran part written by users).
Different extremes exist. For example, for a typical planewave DFT code, the majority of
the time is spent on the user written Fortran code. But for a beyond DFT GW+BSE code,
the majority of the time is spent on solving a dense linear algebra problem using, e.g,
scalapack.

Finally, we like to provide a more detailed description of difference methods shown in
Fig.3. This is most to help us to understand what are the relevant mathematical aspects
and computer science issues. First, in the DFT (density functional theory) method, one
needs to solve the single particle Schrodinger’s equation (a second order partial
differential equation). Typically 5-10% of the lowest eigen vectors are needed from this
Schrodinger’s equation (eigenstate equation). The number of eigen vectors is
proportional to the number of electrons in the system. For example, for a thousand atom
system, a few thousand eigen vectors are needed. This is a major difference to most
engineering problems (e.g, fluid dynamics, climate simulation, combustion, where a
small fixed number of time evolving fields are solved, and for Maxwell equation where a
few electric magnetic eigen vector fields are solved). In DFT, the Schrodinger’s equation
(eigen state matrix) itself depends on the eigen vectors through the density function (thus
the name of density functional theory). Thus it is a nonlinear problem. This nonlinear
problem can be solved by selfconsistent iterations of the linearized eigenstate problem
(Schrodinger’s equation), or by direct nonlinear minimization. Currently, most large scale
calculations are done using selfconsistent iterations. Numerically, what distinguish the
different DFT methods and codes are the different basis sets used to describe the
wavefunctions (the eigen vectors). Planewave DFT uses planewaves to describe the
wavefunctions, while real space DFT uses a regular real space grid. Due to the sharp peak
of the potential near the atomic nuclei, special cares are needed to choose different basis

set. Besides the planewave and real space grid, the other conventional basis sets include:
atomic orbital basis set where the eigen vectors of the atomic Schrodinger’s equation are
used to describe the wavefunctions in a solid or molecule; Gaussian basis set which is
more often used in quantum chemistry due to its analytical properties; Muffin-tin basis
where a spherical hole is cast out near each nuclei and spherical Harmonics and Bessel
functions are used to describe the wavefunction inside the hole; Augmented planewaves
where spherical Bessel functions near the nuclei are connected with the planewaves in the
interstitial regions and used as the basis set; and the wavelet basis sets. In terms of the
methods to solve the eigenstate problem, both iterative scheme and direct eigensolvers
have been used in different codes. In the planewave DFT, iterative method (e.g,
conjugated gradient method) is often used. While in the atomic orbital, Gaussian, and
Augmented planewave (FLAPW) methods direct dense solvers (scalapack) are often used.
For real-space grid method, sparse matrix solver is used. For the iterative solver, the most
time consuming steps are the matrix vector multiplication and vector-vector
multiplication (for orthogonalization). For the planewave DFT, the FFT is one bottleneck
for large processor calculations.

GW+BSE is one approach to calculate the excited states and optical spectrums. It
requires large dense matrix. The most time consuming parts are to generate these matrix
and diagonalize the matrix (for its eigen vectors). The diagonalization part is often done
using dens eigen solver (scalapack). The dimension of the matrix is proportional to the
square of the number of the electron in the system. Quantum Monte Carlo (MC) method
uses stochastic random walk to carry out the multidimensional integral of the many body
wavefunctions. Since it needs an assemble sum of different independent walkers, it is
possible for embarrassing parallelization. Quantum MC is a very accurate method, but it
suffers from statistical noises, thus it is difficult to be used for atomic dynamics (where
the forces on the atoms are needed). For the classical molecular dynamics (MD), the
parallelization is done in the step of force calculations. Since the classical force field
formalism is local in nature (except the electrostatic force), efficient parallelization is
possible as in the code of NAMD. Classical MC some time is used to replace the
classical MD, thus it is more interested in the time evolving process, instead of an
assemble sum (like in quantum MC). As a result, the parallelization is not so trivial.
There are many recent developments for how to develop parallel schemes for classical
MC (besides the possible approach for parallel evaluation of the total energy like in
classical MD). Other PDE includes Maxwell equations (e.g, in photonic study), and time
evolving differential equation for grain boundary and defect dynamics, etc.

 Fig.1, the computer time usage of different codes. Each symbol represents one code.

Fig.2: The percentage of computer time used for codes belong to different categories. The
workload is dominated by Density Functional Theory (DFT) codes.

 Fig.3: The number of codes belonging to different categories.

 Table.I, The list of all the codes used in Material Science on NERSC machines.
 N_user is the number of groups (accounts) using that code. HPC(KH) is the
 estimated high performance computer time (MPP hours) used for each code
 measured in thousand hours (KH).

 Table.II, the computer codes in Table.I grouped into different categories.

	A survey of codes and algorithms used in NERSC material science allocations

