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ABSTRACT

Determining how transcriptional regulatory signals are encoded in vertebrate genomes is

essential for understanding the origins of multi-cellular complexity; yet the genetic code of

vertebrate gene regulation remains poorly understood.  In an attempt to elucidate this code,

we synergistically combined genome-wide gene expression profiling, vertebrate genome

comparisons, and transcription factor binding site analysis to define sequence signatures

characteristic of candidate tissue-specific enhancers in the human genome.  We applied

this strategy to microarray-based gene expression profiles from 79 human tissues and

identified 7,187 candidate enhancers that defined their flanking gene expression, the

majority of which were located outside of known promoters.  We cross-validated this

method for its ability to de novo predict tissue-specific gene expression and confirmed its

reliability in 57 of the 79 available human tissues, with an average precision in enhancer

recognition ranging from 32% to 63%, and a sensitivity of 47%.  We used the sequence

signatures identified by this approach to assign tissue-specific predictions to ~328,000

human-mouse conserved noncoding elements in the human genome.  By overlapping these

genome-wide predictions with a large in vivo dataset of enhancers validated in transgenic

mice, we confirmed our results with a 28% sensitivity and 50% precision.  These results

indicate the power of combining complementary genomic datasets as an initial

computational foray into the global view of tissue-specific gene regulation in vertebrates.
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INTRODUCTION

Increasing lines of evidence support the notion that the majority of functional elements in

the human genome do not code for proteins 1, 2, yet our ability to systematically categorize

and predict their function remains limited.  For instance, most progress in elucidating

transcriptional regulatory mechanisms has stemmed from computational and experimental

analyses of transcription factors (TFs) acting within promoter regions of functionally

related cohorts of genes.  While informative 3-6, these studies did not assess distant-acting

regulatory elements and thereby only sampled a limited portion of the vertebrate gene

regulatory network 7, 8.  Several recent studies have provided conclusive evidence that the

complex transcriptional expression pattern of human genes is mediated through multiple

discrete sequences, often located hundreds of kilobases (kb) away from their core

promoters 9, 10.  In these studies, evolutionary sequence conservation has served as a

reliable indicator of biological activity, with an increasing number of distant noncoding

evolutionary conserved regions (ECRs) validated as tissue-specific enhancers during

development 9-15.  Although genome comparisons have provided a powerful approach for

identifying noncoding ECRs that are under selective pressure, we have yet to develop

reliable high-throughput computational methods for the discovery of distant regulatory

elements with predetermined functional specificity.  Here we describe a strategy for

translating noncoding sequence data into transcriptional regulatory information that serves

two vital purposes: to define the genetic vocabulary of tissue-specific gene regulation and

to use this information to predict tissue-specific enhancers in the entire human genome, de

novo.  This approach combines genome-wide tissue-specific gene expression profiling

data 16, vertebrate genome comparisons, and pattern analysis of transcription factor

binding sites (TFBS), thus providing an initial foundation for deciphering vertebrate gene

regulation from a purely computational strategy.
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RESULTS

Predicting candidate regulatory elements for tissue-specific

genes

As a first step towards directly relating gene expression to comparative sequence data, we

clustered overlapping gene transcripts in the human genome and identified 18,504 unique

protein-coding loci (the boundaries of each locus were defined by the neighbouring genes,

independent of the absolute size of the locus; see Materials and Methods).  We next

assigned transcriptional information obtained from the GNF Atlas2 gene expression

database (gnfAtlas2) 16 to these genomic loci.  This included 79 human tissues with the

majority of human loci (85%) successfully linked to their corresponding gene expression

pattern.  For each represented tissue, we defined two sets of genes: high expressors and

low expressors.  The high expressor group included the top 300 most highly expressed

genes, while the low expressors included the bottom 5,000 least expressed genes.  Our

goal was to compare the genomic loci containing these two contrasting gene sets (across

available tissues) to search for possible shared DNA sequence features in the vicinity of

genes highly expressed in a given tissue.

We initially observed a strong correlation between the tissue specificity of a gene and the

size of the locus, such that loci of highly expressed genes in the central nervous system

(CNS) were on average significantly larger than the global median locus length.  In

contrast, loci corresponding to highly expressed genes in the immune system or various

tumour tissues were significantly shorter (Figure 1; Figure S1).  For example, the median

locus length of a human gene highly expressed in fetal brain was 245kb, while genes
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highly expressed in testis were on average 3.6 times shorter (68kb) (Figure S1).  We also

found that 10% of the brain and CNS loci coincided with vast noncoding regions termed

gene deserts 9 in the human genome (a 2-fold increase over the expected value; p-value <

1e-7), consistent with the observation that most enhancers identified within gene deserts,

to date, are biased towards brain and/or CNS expression during vertebrate development 9,

11, 17.  Finally, we observed a linear correlation between locus length and the number of

human/mouse noncoding ECRs regardless of the tissue under investigation (Figure S1E).

Recent studies suggest that the most highly conserved noncoding ECRs within a locus

commonly possess gene regulatory function 9, 18, 19.  Therefore, we selected the three most

conserved human/mouse noncoding ECRs for each of the 18,504 human genes in our

study, as well as noncoding ECRs overlapping with the gene’s promoter region (defined as

the 1.5kb region upstream of the transcription start site).   These selection criteria

generated a dataset of 60 thousand (k) candidate regulatory elements in the human

genome, comprising ~1% of the entire genomic sequence (on average 4.2 candidate

regulatory elements per locus).  For comparison, functional noncoding elements have been

previously estimated to span ~2-3% of the human genome 20, while the dataset defined in

this study corresponds to the most highly conserved portion of this functional dataset.

Classification of these elements based on their genomic location annotated 32% of these

candidate regulatory elements as intergenic, 28% as promoter, 20% as intronic, 13% as

3’UTR, and 8% as 5’UTR.  Approximately 24k of these elements flanked 6,059 genes

with the highest gene expression in at least one of the 79 tissues and ~55k of these

elements flanked 15,632 genes with the lowest gene expression (serving as a negative

control dataset).
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To explore the sequence motifs of these noncoding ECRs linked to genes displaying high

versus low expression in the same tissue, we used a previously described motif

identification strategy 21 and identified 1.8 million (M) evolutionarily conserved putative

TFBS within this dataset (see Materials and Methods).  We found that several individual

motifs were significantly enriched in 43 human tissues (Table S1).  For example, we

observed a strong association among NRF1, OCT, MEF2 and CREB, transcription factors

known to play key roles in brain and neuronal development 22-26 in candidate regulatory

elements from loci highly expressed in human fetal brain (Table S1A).  However, as

described in further detail below, no single TF by itself was sufficient to predict where a

candidate enhancer will drive gene expression.

Determining sequence signatures of candidate tissue-specific

enhancers

Based on the presumed combinatorial nature of multiple TFs to mediate a given

enhancer’s activity, we employed an analysis strategy that simultaneously scored the

impact of multiple TFBS motifs in an attempt to classify noncoding ECR candidate

enhancers based on sequence signatures that define gene expression in a particular tissue.

This was accomplished by assigning a weight to each TF that quantifies its association

with a given tissue.  By summing these TFBS motif weights, we were thus able to

generate a regulatory potential tissue-specificity score for each of the 24k candidate

enhancers of highly expressed genes as well as 55k background elements of the low

expressed genes.  This scoring scheme provided the means to optimize TF weights in an
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effort to enrich for positively scoring candidate enhancers in tissue-specific loci of highly

expressed genes while simultaneously minimizing their presence in loci of genes with low

expression (independently performed for each tissue; see Materials and Methods).  We

named this approach Enhancer Identification (or EI) and its application allowed us to

select candidate tissue-specific enhancers from the pool of conserved noncoding elements

in loci of genes highly expressed in a given tissue (Figure 2).  We performed EI analysis

independently on both human and mouse gene expression data and while we primarily

utilized human statistics in our discussion, mouse data analysis is provided in the

Supplementary Materials (Figures S1 and S2; Tables S2 and S7).

The EI scoring optimization allowed us to maximize our resolving power to the point

where 60% (+/-5%) of genes highly expressed in a tissue group contain signatures that are

present in less than 15% of the low expressed genes, for any given tissue (Figure 3B).  For

example, EI identified at least one fetal lung candidate enhancer for 65% of genes with

high fetal lung expression, while no such candidates were identified in the non-intergenic

regions (promoter, UTR, or intronic) of greater than 86% of genes with low fetal lung

expression (intergenic regions were excluded from the negative control group to prevent

potential associations with neighboring genes’ regulation; see Materials and Methods).  Of

the original 24k candidate regulatory elements linked to genes highly expressed in one or

more of the 79 available tissues, EI optimization identified 7,187 candidate enhancers with

signatures that defined tissue-specific expression.  Through this consolidation of the

dataset, we found that 47% of human noncoding ECRs defined as candidate enhancers

were predictive of expression in more than one tissue, consistent with our finding that 66%

of the human genes in this study are highly expressed in multiple tissues.  Since these
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candidate enhancers were assigned to different tissues that are functionally related (for

example, CD4 and CD8 T-cells) (Table S6), it is possible that the transcriptional

regulation of genes expressed in similar tissues could be achieved through shared gene

regulatory mechanisms.  These findings are consistent with in vivo expression data derived

from enhancer scans in transgenic mice indicating that one-third of embryonic enhancers

active during a single time-point in development drive expression in more than one tissue

type 9, 11, 12, 27.  Finally, we also found that 20% of highly expressed genes within our

dataset harbor more than one distinct candidate enhancer predicted to be active in the same

tissue, supporting the hypothesis that certain genes contain multiple discrete regulatory

elements that overlap in their enhancer activity 11, 28.

Since the EI method is based on the weighting of multiple TFs for their association with

tissue-specific expression, we sought to further explore the nature of this combinatorial TF

scoring scheme.  We found that in no case was a single TF sufficient to predict tissue-

specific gene expression, supporting the notion that tissue-specific gene regulation is a

direct result of interplay among multiple TFs.  To quantify the impact of an individual i-th

TF on predicting gene expression in a particular tissue t, we calculated the TF importance

parameter ( t
iI ) defined as the product of the TF occurrence (percentage of tissue-specific

candidate enhancers with a particular conserved TFBS) and its weight, in a tissue-specific

group of candidate enhancers (Table S2).  Since TF importance compounds the effects of

TF occurrence and weight, it presents an integrative measure of the TF’s role in generating

high positive scores of tissue-specific candidate regulatory elements.  At the same time, it

minimizes the impact of TFs that are rare or have small weights and thus do not contribute

significantly to establishing either a positive or a negative tissue-specificity score.  This
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quantification allowed for the identification of cohorts of TFs in candidate enhancers

potentially involved in tissue-specific regulatory networks, i.e. those TFs both with high

weights and high occurrences.  As an example of a high TF impact on tissue-specific

regulation, the photoreceptor-specific CRX TF has the highest importance parameter value

in eye development (Table S2) consistent with the known function of this regulatory

protein in Cone-Rod Dystrophy (CRD), an inherited progressive disease that causes

deterioration of the cone and rod photoreceptor cells and leads to blindness 29.

To illustrate this method’s ability to predict functional enhancers, we examined two well

characterized enhancers, one for skeletal muscle and one for liver, flanking the human

cardiac/slow skeletal muscle troponin C (TNNC1) and the apolipoprotein B (APOB) genes,

respectively (Figure 4).  An EI scan of the TNNC1 locus first identified 4 noncoding ECRs

(out of 12 total) as candidate regulatory elements (two intergenic, one intronic, and one

promoter element).  Subsequent EI optimization then correctly predicted the noncoding

ECR in intron 1 as a skeletal muscle enhancer in precise agreement with the previously

defined TNNC1 skeletal muscle enhancer 30, 31.  In a second example, EI correctly

identified the APOB promoter element as a fetal liver (and adult liver) enhancer and

predicted transcription factors HNF4 and C/EBP to be activating APOB expression, in

concordance with previous experimental studies 32.

To explore the possibility of synergistic TF linkage that may be biologically required for

directing tissue-specific gene expression, we extracted the top 10 scoring TFs for each

tissue based on their importance in predicting tissue-specific expression.  As an example,

we focused on the TF characteristics of two similar tissue types: heart and skeletal muscle
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(Figure 5A) (a complete list of the top TF for each tissue is provided in Table S2).  We

observed that 5 of the top 10 TF predictions for both these muscle types are shared, four of

which (MEF2, SRF, Myogenin, and ERR1) are strongly linked to transcriptional

regulation in muscle tissue and associated to various human cardiac myopathies 33-36.  As a

second example, the top 10 TFs predictors of liver expression included Hepatocyte

Nuclear Factor 1 (HNF1), HNF4, PPAR, SREBP1, HNF4-DR1, NR2F2, and FRX-IR1

(Figure 5A), all of which are known regulatory proteins important in liver function 37-39.

These two examples highlight the biological plausibility of the EI’s method of tissue-

specific gene expression prediction.

To globally address the power of the predicted TF-tissue associations in addition to the

support gained from the above selected examples, we mapped TFs to the human genome

and determined the tissue gnfAtlas2 expression profile for each TF gene.  Our rationale

was that if tissue-specific gene expression predictiveness is based on TFBS density in

candidate enhancer sequences, then the TF required for this function should be expressed

in the tissue of activity.  Thus, we attempted to correlate positive TF importance with the

level of TF gene expression in the available 79 human tissues.  This was accomplished by

adjusting the minimal TF importance threshold increasingly from -0.25 to +0.25 (thus

gradually increasing the ratio of TFs with positive importance values in the group) to

determine if TF expression and enhancer predictiveness were positively correlated (Figure

5B).  Indeed, we observed that ~60% of predicted positive TF-tissue associations

corresponding to TF importance thresholds of ≥0.1 were supported by an increased level

of gene expression in the associated tissue (Figure 5B).  One possible explanation for the

lack of total concordance between the predicted TF-tissue associations and tissue-
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specificity is the ubiquitous nature of TF gene expression that often leads to ambiguous

definitions of tissue-specificity with increased and decreased level of gene expression in

gnfAtlas2.  Manual curation of these interactions, revealed that 90% (142/158) of

predicted TF-tissue associations with ≥0.25 TF importance threshold are supported by

published literature or alternative sources of experimental evidence (see Supplementary

Materials; Table S3).

Since any parametric optimization approach could potentially introduce “over-fitting” -

the identification of random profiles that separate genes with high versus low expression

purely by chance - we attempted to cross-validate our results.  This was accomplished by

characterizing the ability of the EI method to annotate tissue-specific enhancers in loci of

highly expressed genes without any a priori knowledge of tissue-specificity of gene

expression (i.e. these genes were excluded from the training set; see Materials and

Methods).  This approach allowed us to quantify both the method's precision (defined as

the proportion of predicted elements that act as tissue-specific enhancers) and sensitivity

for each tissue (Figure 3).  Through this analysis, we observed a high variability in EI

precision across the 79 sampled human tissues, and hence were classified into three

quality groups (Figure 3A): (1) poor (lower-bound precision, ↓P , less than 20%), (2)

good (lower-bound precision, ↓P  between 20-40%), and (3) excellent (lower-bound

precision, ↓P  greater than 40%) (Table 1).  Next, we grouped lower- and upper-bound

precision values to use their average as an estimate for the true precision and found that

72% (57/79) of human tissues have an average precision of 40%.  These data allowed us to

conclude that over-fitting did not account for the majority of signals obtained from the EI

predictive method.  In contrast, EI was suboptimal for the remaining 22 human tissues
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which fell into the poor category where the average precision was below 30%, indicating

that over-fitting likely explained a significant fraction of the signature derived for these

tissues.  Tissues comprised within this category mainly consisted of multiple gland and

germ tissues as well as structures such as the appendix and olfactory bulb.  Based on these

observations, we placed low significance values on the predictions derived for these

tissues and their enhancer predictions should be treated cautiously as they are likely to

represent false-positives.  In contrast, the average precision of the excellent group was

above 50% for 12 tissues including heart, liver, tongue, blood and several immune tissues

(Table 1).  Thus, these tissue-types bear the highest confidence of EI predictions.

Assigning tissue-specific predictions to conserved noncoding

sequences in the human genome

Since the EI method can generate tissue-specific predictions for any conserved element,

we used this approach to score 364k previously reported candidate enhancers in the human

genome 19 (see Materials and Methods).  In total, EI was able to assign a tissue-specificity

to 90% (328k) of these elements covering 4.0% of the human genome.  This large dataset

comprises tissue-specificity predictions for the majority (86%) of genes in the human

genome and represents a useful resource for detailed experimental follow-up studies by

gene-centric investigators.  We anticipated this latter approach to feature a relatively high-

rate of false-positive predictions since tissue-specificity of the predictions could not

always be supported by high expression of flanking genes.  However, this genome dataset

could represent an important resource for prioritizing tissue-specific enhancers in loci of

genes with known functions when one is interested in sifting through multiple
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evolutionary conserved elements and prioritizing only those that correspond to candidate

enhancers with matching tissue-specificity.  We should note that we observed an overlap

in tissue-specificity predictions as a result of several related tissues having similar EI

recognition profiles (Tables S6 and S7).  For example, 24% of CD4+ T-cell predicted

elements were also classified as CD8+ T-cell, while 14% of liver predicted elements were

simultaneously classified as fetal liver.  In contrast, only 0.8% of CD4+ T-cell predicted

elements were simultaneously classified as fetal liver predictions.  This suggests that the

direct EI tissue-specificity annotation of conserved elements may fail to distinguish

between closely related tissues, but can possibly distinguish between major tissue

categories or different organs.

Experimental validation of tissue-specific enhancer predictions

Based on our genome-wide predictions of tissue-specific activities for all noncoding

ECRs, we sought to determine their performance against existing enhancer data of gene

expression derived from transgenic mouse studies.  As a test bed, we examined the EI

tissue-specific predictions for 5 previously characterized enhancers expressed in the brain

and nervous system in the 1Mb region upstream of the DACH1 gene 9.  We found that 3 of

these elements were predicted to have enhancer activity limited to brain tissues while the 2

remaining elements were not assigned to any tissue (Table S4).  While these initial

correlations were based on a small sample set, the statistical significance of this match is

supported by a p-value of 0.004 (see Supplementary Materials).

To expand these data beyond the limited published in vivo data for distant-acting enhancer

elements, we next performed a large-scale analysis of our whole genome predictions
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against a publicly available dataset of 106 elements that have been shown to act as tissue-

specific enhancers in the mouse at embryonic day 11.5 of development (E11.5) (data

available at http://enhancer.lbl.gov) 27 (Table S5).  In this dataset we found 71 (67%)

enhancers to dictate expression in forebrain, midbrain, hindbrain, and/or neural tube.  We

thus assessed whether whole genome EI tissue-specific predictions overlap with these in

vivo characterized enhancers.  Indeed, 28% (20/71) of these elements were selectively

predicted as enhancers active in the brain and/or the nervous system.  In addition, another

7% (5/71) of these validated CNS-specific enhancers had EI predictions with a mixed

annotation of brain/CNS and another organ/tissue, suggesting these elements are possibly

multi-functional.  We also observed 21% (15/71) of predictions provided tissue

annotations inconsistent with the experimental data, while the remaining 44% (31/71)

elements had no tissue-specific prediction(s) (Table S5).  This corresponded to 28%

sensitivity and 50% precision in recognition of brain and CNS-specific enhancers using

the EI method, de novo.  By calculating the distribution of brain/CNS predictions in a

large random dataset (see Supplementary Materials) we found the overlap of this analysis

to be 2.5-fold greater than what would be expected by chance, corresponding to a p-value

of 0.0001.

To further explore the relationship between the 20 concordant EI whole genome

predictions and the existing in vivo nervous system dataset described above, we examined

the distribution of the predictions within the 18 different brain tissues present in gnfAtlas2

database.  While we found 4 or less of these in vivo defined CNS-enhancers were

predicted to be expressed in each of the 17 adult brain tissues present in the expression

annotation, 11 of them were annotated solely to the fetal brain category in the gnfAtlas2
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[the probability of this observation being random is less than 1e-7 (see Supplementary

Materials)].  This high ratio of fetal brain predictions is consistent with the entire in vivo

expression dataset that corresponds to a single time point of enhancer analysis during

embryonic development at E11.5.  This suggests that the fetal brain enhancer recognition

profile of EI is a specific signature of in vivo embryonic brain enhancers, in contrast to

enhancers active in specialized compartments of the adult brain.  Additional in vivo

datasets based on non-embryonic time points will further aid in assessing the ability of this

approach to predict enhancer elements active in adult tissues.

DISCUSSION

Deciphering the genetic code of gene regulation in vertebrate genomes remains a

significant challenge that has been partially aided by the availability of the human and

other vertebrate genome sequences.  However, while techniques such as comparative

genomics can enrich for putative enhancer sequences based on evolutionary conservation,

predicting their tissue-specificity has been difficult.  Nevertheless, several proof of

principle studies have demonstrated that there is a vaguely defined but computationally

recognizable genetic code of gene regulatory elements corresponding to selected

biological functions 40-42.  Additional studies have also revealed the power of microarray

expression data to correlate the distribution of evolutionary conserved putative TFBS in

the promoters of co-expressed human (and mouse) genes with the level and dynamics of

gene expression 43, 44.  These early focused studies suggest that computationally predicting

enhancer function is a solvable problem.  We therefore developed a multi-faceted

approach coupling TF binding specificities, comparative genomics, and microarray

expression data in an attempt to recognize sequence signatures within putative enhancer
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elements in the human genome.  Through these efforts, we show that it is possible to

identify tissue-specific enhancers for 72% of human sampled tissues by constructing

sequence recognition profiles based on the distribution of TFBS in noncoding ECRs

linked to genes expressed in similar tissues.

One of the inferences we can formulate based on the results of the EI method introduced

here is the proportion of enhancer activity assigned to promoters versus more distant-

acting sequences.  This measurement was possible since the EI approach utilizes the 3

most highly conserved human-mouse elements neighboring the gene under investigation

and thus goes beyond promoter only exploration of cis-regulatory features; the dominant

method currently employed in regulatory genomics.  Through the comparison of the EI

signal strength in promoter versus non-promoter conserved elements, we found that only

23% of EI candidate enhancers map to promoter regions of corresponding genes.  While a

caveat to this analysis is the incomplete status of precisely defined promoter boundaries,

this result is consistent with ChIP-chip and in vivo enhancer studies which also suggest

that more than half of human genes potentially rely on distant mechanisms of gene

regulation 7-10.

Since this method can be applied to the analysis of any set of co-expressed genes, this

provides a rapid and efficient approach for translating gene expression data into function-

specific gene regulatory principles.  Thereby, it should be straightforward to extend this

method to other tissues, developmental time-points, or functional gene categories (such as

Gene Ontology and KEGG datasets 45, 46, for example).  In addition, the elements

identified in this study represent a dataset of tissue-specific candidate enhancers that could
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be used to guide the ongoing large-scale experimental efforts aimed at exploring

transcriptional regulatory function in human, mouse and other vertebrate genomes.  Since

the backbone of the EI optimization method is the association of TFs with tissue-

specificities, we were able to predict over 7k such associations and retrieve experimental

evidence for 90% of them in a selected group of 158 TF-tissue associations (at a TF

importance threshold of 0.25).  Furthermore, characterization of TF spacing in predicted

tissue-specific enhancers allowed us to extract approximately one thousand TF pairs

significantly enriched as putative synergistic activators in a given tissue (see

Supplementary Materials).  While we were able to bring forth published evidence for

several predicted TF co-occurrences, the vast majority of TF-tissue linkages and their

potential interactions represent novel regulatory associations that could be used in

facilitating future studies of the complexities of gene regulatory pathways.

It is likely that general approaches that assign tissue-specificity to enhancer function will

greatly improve over time.  Current challenges include the varying quality of the human

and mouse microarray expression data and their primary adult material source that serves

to define gene expression tissue-specificities, the lack of in vivo spatial and temporal

enhancer data to further serve as training sets, and our incomplete knowledge of TFs as

well as their precise sequence-based binding properties currently available in the

TRANSFAC database 47.  In addition, the comparative analysis exploited here was limited

to human-mouse genome alignments under one alignment and conservation scoring

method.  Nevertheless, despite these limitations, our finding of EI’s ability to identify

tissue-specific enhancers with the available datasets is encouraging, and represents a

platform for further efforts in this area.
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In summary, the data presented here lend further support to the notion that sequence-based

features in vertebrate cis-regulatory elements are computationally recognizable, similar to

previous successes in the inference of coding, intron-exon, core promoter, and repetitive

DNA sequence signatures.  Even though our study is limited by the availability and

reliability of position weight matrices (PWM) of known TFs, the methods introduced here

present a universal framework for the de novo prediction of regulatory elements with

shared biological function, as well as for defining novel interactions among transcription

factors that can explain tissue-specific function of enhancer elements.  Future

computational efforts linked to topics such as human disease and vertebrate phenotypic

diversity are likely to provide insights into gene regulatory mechanisms of unexplained

biological phenomena.



19

MATERIALS AND METHODS

Gene annotation and expression data. The UCSC Genome Browser 48 database was

used to extract gene positional information.  Human and mouse “knownGene”

transcripts49 were mapped to the NCBI Build 35 of the human (hg17) and mouse (mm7)

genomes and grouped into 18,504 and 17,636 non-overlapping loci, respectively.  GNF

Novartis Atlas2 tissue-specific gene expression 16 was extracted from the gnfAtlas2 table

and mapped to genes using the knownToGnfAtlas2 table (both tables are available in the

UCSC Genome Browser database).  At least one tissue-expression profile was available

for each of the 15,690 human and 14,303 mouse genes.

Profiling putative TFBS in the human genome. Human-mouse ECR Brower genome

alignments 50 were processed by rVista 2.0 21 to identify evolutionary conserved putative

TFBS in the human and mouse genomes.  We utilized previously described optimized

PWM thresholds 51, 52 to limit the appearance of predictions to 5 TFBS per 10kb of random

sequence.  In total, 13.4M conserved putative TFBS were identified using 554

TRANSFAC 9.4 PWMs 47 and 3 manually-curated PWMs for TBX5, NKX2.5, and GLI

TFs.  These putative TFBS were then grouped into 364 separate TF families (as several

TFs have multiple overlapping definitions in the TRANSFAC database) – we refer to

those TF families simply as TFs in the text – and superimposed with the 60k candidate

enhancers to construct a dataset of 1.8M putative TFBS in candidate enhancers for the

study.

Tissue-specific enrichment of individual putative TFBS. We calculated the ratio of

highly-to-lowly expressed gene loci containing putative TFBS in candidate enhancers for

different TFs and utilized the hypergeometric distribution with Bonferroni correction for
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multiple testing to identify significantly enriched putative TFBS in different tissues (Table

S1).

Assigning tissue specificity scores to candidate enhancers. We utilized the distribution

of putative TFBS inside a candidate enhancer (or noncoding ECR) to assign a tissue-

specificity score to that element.  First, we assigned a tissue specificity weight t
iw  to each

i-th TF as a measure of its association with the tissue t.  Next, the distribution of putative

TFBS in the k-th candidate enhancer was scored to define candidate enhancer tissue-

specificity:
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kN  is the number of i-th TF putative TFBS located in the k-th candidate enhancer

and the summation is performed over all TFn  TFs.  TF weights were allowed to vary from

-1 to 10.  Large positive weights t
iw  indicate a strong correlation between the i-th TF and

the t-th tissue-specificity, while large negative weights indicate the unlikely presence of

the i-th TF in a candidate enhancer that is active in the tissue t.

EI optimization to define TF tissue specificity weights.  To identify tissue-specific

candidate enhancers, we performed the Brent’s method optimization of TF weights t
iw

that maximizes the number of positively scoring candidate enhancers in loci of highly

expressed genes ( +L ) and simultaneously minimizes the number of positively scoring

candidate enhancers in loci of lowly expressed genes ( −L ).  Optimization was performed

independently for different tissues.  To ensure a reliable and specific identification of

noncoding features in loci of highly expressed tissue-specific genes we included a large
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background dataset comprising 5,000 loci of lowly expressed genes assigned to each

tissue.  A scoring function tF ,
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containing summations over all positively scoring candidate enhancer associated with +L

( +⊂ Lk ) and −L  ( −⊂ Ll ) was maximized to perform the optimization of weights (the

distribution of positively scoring candidate enhancers in +L  and −L  was free to change

following the change in TF weights).  The ratio of the total number of candidate enhancers

in +L  ( +EN ) to the total number of candidate enhancers in −L  ( −EN ) was introduced

to the scoring function to account for differences in the number of highly and lowly

expressed genes and the number of corresponding candidate enhancers.  λ , or the signal

enrichment coefficient served to increase the negative impact of positively scoring

noncoding ECRs in −L .  λ  was selected as 1 during the initial optimization step and then

gradually increased to 10,000 to achieve the greatest separation between loci of highly and

lowly expressed genes.  Optimization was initialized with TF weights estimated using the

density of putative TFBS in +L  and −L  as
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Initial TF weights were upper-bounded by 1 and the optimization was performed

contiguously and recursively for each i-th TF.  It was interrupted after achieving an

increase less than 0.1 in the scoring function during a cycle of TF weights optimizations

across all TFs.  An important property of this optimization is the dynamic selection of the
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positively scoring subset of tissue-specific candidate enhancers from the original set of

candidate enhancers.

Cross-validation.

Cross-validations was performed by expanding the dataset of highly expressed genes to

400 and further subdividing this set into 2 groups consisting of 300 genes for EI

optimization and 100 genes for testing the signal recognition (test genes were not included

in the optimization).  Cross-validation was repeated four times to estimate the statistical

error in precision and sensitivity.  The four cross-validation replicas of 100 test genes did

not overlap with each other to ensure that four independent quantifications are carried out.

Similarly, each time a different group of 500 genes was removed from the background

dataset for each cycle of EI optimization.  Using this approach we performed four

independent rounds of EI optimization with 300 signal (highly expressed) and 4,500

background (lowly expressed) genes and subsequently applied the generated TF profiles to

independently calculate the percentage of tissue-specific candidate enhancers from the 100

test ( +R ) and 500 control ( −
intR ) datasets.  Optimization and testing of control genes was

restricted to non-intergenic regions to avoid potential cross-talk with tissue-specific

enhancers controlling the expression of neighboring genes.  Therefore, EI precision in

recognizing tissue-specific enhancers (which measures the ratio of true positive tissue-

specific enhancers in the full  dataset  of predicted elements)

+

−+
↑ −
=

R

RR
P int

represents the upper-bound estimate of the precision.  By excluding the non-intergenic

component of loci of test highly expressed genes from the quantification, after that, one

decreases the percentage of recognized test gense to +
intR  and the corresponding precision
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then represents the lower-bound of the precision of the method.  By averaging these two

values we were able to estimate the real precision of the method ( P ).  Also, +R  served as

an estimate for the lower-bound sensitivity of the method ( ↓Sn ) in the de novo

recognition of tissue-specific enhancers (which measures the probability of a tissue-

specific enhancer to be detected by EI) in cases where the corresponding gene does not

belong to a specific group of highly expressed genes.

Mapping TFs to known transcripts. We used information on TF gene names

corresponding to PWM used by the TRANSFAC database for automated (and manually-

curated after that) GenBank queries to identify the name and chromosomal location of the

human gene best matching each TF. For example, we were able to map the AML1 TF

matrix to the human runt-related transcription factor 1 (RUNX1) residing at chr21

(q22.12).  In total, 314 of 364 utilized TRANSFAC TFs were successfully mapped to

human genes.  In several instances, a TF mapped to more than one gene locus (in the case

of E2F1DP2 hetero-dimer, the TF complex mapped to E2F1 and TFDP2 genes; similarly

the SREBP TF mapped to both SREBP1 and SREBP2 genes); in such cases the expression

profiles were averaged across all genes corresponding to the TF or TF-complex.

Permutation analysis to identify significant tissue-specific inter-TF interactions. We

analyzed the distribution of positively scoring TFBS in tissue-specific candidate enhancers

independently of each tissue.  Only TFs with individual TF occurrence >= 5% or TF

importance >= 0.05 were sub-selected for the analysis.  The number of TF-TF pairs with

the minimal and maximal inter-TF distances of 5 and 100, respectively, was calculated for

each pair of TFs.  10,000 permutations randomizing the distribution of TF name labels
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among different TFBS were performed.  The total number of TFBS for each TF as well as

positions of individual TFBS was kept intact during the randomization.  We then extracted

a subset of TF pairs that occur less frequently in 95% of permutation tests than in the

original distribution (corresponding to a p-value < 0.05 to observe the original distribution

by chance) and that corresponded to at least a 2-fold increase in their density in the

original distribution as compared to an average pair density in permutation tests.

Assigning tissue-specific enhancer predictions to a whole genome dataset of human-

mouse noncoding ECRs. We profiled TFBS distributions for 364k previously catalogued

human/mouse conserved noncoding sequences 19, and a comprehensive 1.4M noncoding

ECRs set for the entire human genome, to identify 328k and 588k elements, respectively,

that have a positive tissue-specificity score according to EI tissue-specificity profiles.  We

used a p-value 0.05 cut-off for the 364K set that corresponds to an estimate of 0.05 false

positive enhancer predictions per 10kb of random sequence 19.  In cases of multiple tissue

associations assigned to an elements we selected up to three top scoring associations with

the score of at least 50% of the most top scoring tissue-association (data available at

http://www.dcode.org/EI).  The same score selection procedure was applied for the

analysis of organ specificities.
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FIGURE LEGENDS

Figure 1.  Locus length of human genes highly expressed in several tissues.  Bound

horizontal lines represent the inter-quartile range (the distance between the 25th and 75th

percentiles) of the tissue-specific distributions, solid colored rectangles measure the

standard error in median calculations (median locus length is depicted by a white line

inside colored rectangles.  Statistically significant (<5%) distributions that deviate from

the global median (represented by a solid vertical black line) are marked by an asterisk on

the left side bar.  Tissues with a median value two-fold smaller or larger than the median

are marked by a vertical line on the left side bar.

Figure 2. Schematic of the general EI strategy for defining signatures of tissue-specific

enhancers.

Figure 3. Precision (A) and sensitivity (B) of the EI method in recognizing human tissue-

specific enhancers.  Lower- and upper- bound estimates of precision along with their

average are given in red, blue, and black on precision plots (A), respectively.  Standard

deviation is also depicted for each lower and upper bound estimates.  Tissues are split into

poor, good, and excellent groups based on the lower-bound estimate of the precision.  See

Figure S2 for corresponding mouse data.  Navy and red curves on sensitivity plots (B)

measure the percentage of high and low expressed gene loci with tissue-specific

enhancers, respectively; while the purple curve estimates EI sensitivity for de novo

enhancer recognition.

Figure 4. EI annotation of TNNC1 skeletal muscle (A) and APOB (B) liver enhancer.

Zoomed-in view of Mulan 51 human/mouse evolutionary conservation profiles for these

loci depicts candidate enhancer elements followed by profile of conserved TFBS present

within.
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Figure 5. Importance and occurrence of individual TFs in candidate enhancers

corresponding to mouse liver, B-cells, heart, and skeletal muscle (A).  Binning of 25k

predicted TF-tissue associations by a minimal TF importance threshold (B).  The number

of TF-tissue associations almost does not change in the area of negative TF importance

thresholds and rapidly decreases in the area of positive TF importance thresholds (dark red

graph; right y-axis) indicative of a small number of TFs with large positive importance

values and an even smaller number of TFs with large negative importance values.  The

percentage of TF-tissue associations that are confirmed by an increase in TF gene

expression (orange bars) increases with the increase of minimal TF importance (followed

by the corresponding decrease in the number of non-confirmed associations – blue bars).

As ~60% of predicted TF-tissue associations with a minimal TF importance of 0.1 are

supported by an increased level of TF gene expression in the corresponding tissue this

threshold could serve as a cut-off of reliability in TF-tissue association predictions.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.

A) B)
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Table 1. Separation of human tissues into three precision groups. Tissues in a group list

are sorted by the average EI precision so that tissues with the highest precision are listed

lastly.

Precision
group

Tissues

poor pituitary gland, thymus, testis Leydig cell, cardiac myocytes, adrenal gland, salivary gland, testis,
leukemia chronic myelogenous (k562), hypothalamus, testis germ cell, bronchial epithelial cells,
pancreatic islets, olfactory bulb, fetal thyroid, dorsal root ganglion, atrioventricular node, appendix,
testis interstitial, thyroid, ovary, skin, testis seminiferous tubule, skeletal muscle

good prostate, smooth muscle, thyroid, amygdala, medulla oblongata, cingulate cortex, uterus corpus,
prefrontal cortex, BM-CD71+ early erythroid, spinal cord, pancreas, BM-CD105+ endothelial, PB-
CD4+ Tcells, lymphoma Burkitts Daudi, adipocyte, ciliary ganglion, subthalamic nucleus, trigeminal
ganglion, adrenal cortex, whole brain, caudate nucleus, colorectal adenocarcinoma, leukemia
promyelocytic (hl60), pons, globus pallidus, cerebellum peduncles, fetal brain, temporal lobe, PB-
CD19+ Bcells, uterus, superior cervical ganglion, lymphoma Burkitts Raji, occipital lobe, PB-CD8+
Tcells, placenta, tonsil, thalamus, trachea, BM-CD34+, fetal liver, fetal lung, parietal lobe, kidney, PB-
BDCA4+ dentritic cells, PB-CD14+ monocytes

excellent PB-CD56+ NKCells, tongue, BM-CD33+ myeloid, cerebellum, bone marrow, lung, leukemia
lymphoblastic (molt4), 721 B lymphoblasts, heart, whole blood, lymph node, liver
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