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Abstract

Almost three decades ago, we presented a model where the extracellular matrix (ECM) was 

postulated to influence gene expression and tissue-specificity through the action of ECM 

receptors and the cytoskeleton.  This hypothesis implied that ECM molecules could signal to the 

nucleus and that the unit of function in higher organisms was not the cell alone, but the cell plus 

its microenvironment.  We now know that ECM invokes changes in tissue and organ 

architecture and that tissue, cell, nuclear and chromatin structure are changed profoundly as a 

result of and during malignant progression. Whereas some evidence has been generated for a link 

between ECM-induced alterations in tissue architecture and changes in both nuclear and 

chromatin organization, the manner by which these changes actively induce or repress gene 

expression in normal and malignant cells is a topic in need of further attention. Here, we will 

discuss some key findings that may provide insights into mechanisms through which ECM could 

influence gene transcription and how tumor cells acquire the ability to overcome these levels of 

control.  
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I. Introduction 

“No man is an island, entire of itself; every man is a piece of the continent, a part of the main.” 

John Donne (1573-1631) 

Over the years, studies of transcription, chromatin structure and nuclear organization, mostly 

performed in lower organisms or in cells isolated from higher organisms and cultivated on tissue 

culture plastic, have provided important and valuable evidence for elucidating intracellular 

signaling events important for gene expression. But much still remains to be elucidated in order 

to understand the intricate complexity of gene expression within a three-dimensional tissue 

context. Vertebrate cells exist as part of an integrated unit of multiple cell types, i.e. an organ, in 

a milieu rich in growth factors, hormones and an assortment of ECM molecules, the combination 

of which is organ-specific. Similarly, the nucleus within each cell is not an isolated vessel. It is 

connected to its external milieu and the ECM through a dynamic intracellular network that 

includes the nuclear matrix, the nuclear envelope and the cytoskeleton. In the past few decades, a 

number of studies have provided evidence that the physical and biochemical signals transmitted 

from the ECM to the nucleus are indeed dynamic and reciprocal (Bissell et al., 1982; Lelievre et 

al., 1998; Plachot and Lelievre, 2004; Roskelley et al., 1994; Zoubiane et al., 2004). More 

specifically, the nature of ECM receptors and their signaling, and the nature of the connections 

between these receptors and intracellular components, such as the cytoskeleton and its 

interacting proteins, promote changes in nuclear events which influence gene expression and 

initiate the production of specific signaling molecules that are fed back into the extracellular 

environment which, in turn, influences the cell and the nucleus (Bissell et al., 1982) (Figure 1). 

Understanding how signaling by the ECM and its receptors are integrated into messages that 

alter chromatin structure and nuclear function is essential for knowing how a normal cell 
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functions in the context of a tissue and an organ, and for identifying aberrations that lead to the 

development of diseases such as cancer. Here we will discuss the influence of ECM on cellular 

and nuclear functions, as well as chromatin structure, and relate these changes to alterations in 

transcriptional events essential for functional differentiation and transformation. 

II. The Extracellular Matrix 

There are two broad subtypes of ECM: interstitial/stromal ECM and basement membrane (BM) 

(Guo and Giancotti, 2004). The interstitial matrix surrounds cells in the connective tissue (Guo 

and Giancotti, 2004), while the BM is present at the basolateral surface of different cell types in 

many tissues (Kalluri, 2003). The BM is composed mainly of laminin, type IV collagen, 

entactin/nidogen, and proteoglycans such as heparin sulfate that are deposited by many different 

cell types (Kalluri, 2003).  

In order to fully appreciate how profoundly a cell and its nucleus are affected by the ECM, one 

must consider that the composition of the ECM is constantly influenced by physiological 

effectors such as growth factors, cytokines, and hormones, and, thus, is continuously changing 

throughout development, ageing, tissue repair and tumor progression (Guo and Giancotti, 2004; 

Labat-Robert, 2003; Mott and Werb, 2004). There are now multiple types of ECM receptors that 

have been identified including integrins, syndecans, glypicans  and dystroglycan (Guo and 

Giancotti, 2004; Rizki and Bissell, 2004; Weir and Muschler, 2003).  Different integrins are 

known to activate distinct signaling pathways but the same integrin receptor can stimulate 

multiple signaling pathways (DeMali et al., 2003; Guo and Giancotti, 2004).  

Exposure to ECM promotes changes in cell shape, initiates the clustering of neighboring integrin 

receptors at cell-matrix contact sites, and promotes the recruitment of kinases and adaptor 
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proteins that link these receptor molecules to the actin cytoskeleton (Schatzmann et al., 2003). 

These changes initiate a series of mechanical and biochemical signals within the cell that 

ultimately change the program of gene expression and influence cellular processes such as 

survival, transcription factor activation, and apoptosis (Schatzmann et al., 2003). In the case of 

mammary epithelial cells, changes in cell shape that are mediated by exposure to a laminin-rich 

ECM gel (lrECM) activate expression of the milk protein lactoferrin (Close et al., 1997; 

Roskelley et al., 1994) (Figure 2). When these cell shape changes are combined with further 

biochemical and mechanical signals generated from the prolactin receptor and laminin 1-induced 

activation of integrin receptors, the transcription of additional milk proteins such as β-casein is 

initiated, but the expression of growth factors such as TGF-β1 is inhibited concomitantly (Streuli 

et al., 1991; Streuli et al., 1995; Streuli et al., 1993). Following initial exposure to lrECM, 

morphogenic events take place that lead to the development of spherical, acinar structures with 

hollow lumen (Barcellos-Hoff et al., 1989). The formation of these structures is accompanied by 

growth arrest, enhancement of milk protein production, down-regulation of growth factors such 

as TGF-α, and the expression of new milk proteins such as whey acidic protein (WAP) 

(Barcellos-Hoff et al., 1989; Chen and Bissell, 1989; Lin et al., 1995; Petersen et al., 1992). As a 

result, the ability of lrECM to promote the functional differentiation of normal mammary 

epithelial cells into polar, acinar structures that produce and secrete milk requires several levels 

of control (Bissell et al., 1999; Lin and Bissell, 1993; Roskelley et al., 1995).  

III. ECM-Response DNA Elements 

One of the most convincing pieces of evidence linking the ECM to gene expression was the 

identification of an ECM response element in the promoter region of the bovine β-casein gene. 

Deletion analysis of the bovine β-casein promoter revealed that the transcriptional activation of 
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this promoter was completely dependent on a 160 bp BCE-1 transcriptional enhancer located 

approximately 1.5 kb upstream of the transcription start site (Schmidhauser et al., 1992). Since 

this discovery, ECM response elements have been identified in several other genes from different 

species (DiPersio et al., 1991; Novaro et al., 2004; Schmidhauser et al., 1994; Schmidhauser et 

al., 1992) (See Table 1). However, exactly how the ECM influences gene expression through 

these response elements is poorly understood.  

IV. Potential Mechanisms for the Transcriptional Activation of ECM-Response DNA 

Elements 

A). Exposure to ECM influences the nuclear translocation and DNA binding properties of 

specific transcription factors that bind to ECM-response elements. 

One mechanism through which exposure to ECM may influence the activation of response 

elements is by altering the levels of specific transcription factors residing in the nucleus.  

Cognate DNA binding elements for STAT5, and C/EBPβ reside in both the bovine β-casein and 

mouse ERα ECM-response elements (Myers et al., 1998; Novaro et al., 2004). Mutation analysis 

of these binding sites revealed that their requirement for activation of the β-casein promoter is 

absolute (Myers et al., 1998). In mammary epithelial cells, exposure to lrECM and prolactin 

promotes the phosphorylation and translocation of STAT5 into the nucleus (Edwards et al., 

1998; Gouilleux et al., 1994; Groner and Gouilleux, 1995; Ihle, 1996). Chromatin-binding 

proteins locate their cognate sites by scanning the 3D space of the nucleus and bind transiently to 

chromatin with a residence time on the order of seconds (Phair et al., 2004). An increase in 

STAT5 levels within the nucleus likely increases the frequency with which this factor interacts 

with its target DNA sites. In support of this, we have recently observed that exposure of mouse 
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mammary epithelial cells to lrECM and prolactin induces the recruitment of STAT5 to the β-

casein promoter (Xu et al., 2005). Whether lrECM treatment alters the nuclear levels of other 

factors important for β-casein expression such as C/EBPβ or GR remains to be determined. In a 

previous study, the culturing of primary rabbit mammary epithelial cells on collagen increased 

the expression levels of C/EBPβ  (Jolivet et al., 2001). In addition, we have also observed an 

increase in the binding of C/EBPβ to the endogenous mouse β-casein promoter in response to 

lrECM and prolactin treatment (Xu et al., 2005). Such evidence supports the possibility that 

lrECM affects gene transcription by influencing transcription factors levels within the nucleus.  

B). Exposure to ECM may initiate mechanical signals that alter the organization of nuclear 

factors in a manner that promotes activation of ECM-response elements  

However, the possibility remains that the expression level of some nuclear proteins does not 

change in response to ECM treatment. Exposure to ECM has profound effects on cell shape, and 

cytoskeletal organization (Roskelley et al., 1994; Zoubiane et al., 2004) and the integrity of the 

cytoskeleton is essential for both STAT5 nuclear translocation and β-casein transcription 

(Phung-Koskas et al., 2005; Roskelley et al., 1994; Zoubiane et al., 2004). Furthermore, the 

cytoskeleton bridges the nucleus with the ECM by interacting with both nuclear envelope 

proteins and integrin receptors on the plasma membrane (Crisp et al., 2006; D'Angelo and 

Hetzer, 2006; Fey et al., 1984a; Fey et al., 1984b; Janmey, 1998; Wilhelmsen et al., 2005). 

Lamins help constitute the nuclear envelope and organize DNA into loop domains (Davie, 1995). 

Alterations in the organization of cytoskeletal filaments, distortions in nuclear shape and a 

redistribution of nucleoli along an axis of applied tension have been observed in bovine capillary 

epithelial cells in response to the mechanical tug of an integrin receptor lining the cell surface 
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(Maniotis et al., 1997; Maniotis et al., 2005). Thus, it is possible that the ECM promotes 

transcriptional activation of response elements by changing cytoskeletal organization, which 

may, in turn, alter the arrangement of nuclear components to promote a localized concentration 

of transcription factors to areas of the nucleus containing target DNA sequences. In addition, 

exposure to ECM may also stimulate cellular events that post-translationally modify and, 

therefore, alter the properties of transcription factors and chromatin remodeling enzymes. 

C). ECM-induced activation of DNA response elements involves mechanisms that invoke 

changes in chromatin structure  

Regardless of whether the ECM mediates an increase in the nuclear levels of transcription factors 

and/or an increase in the proximity of these factors to their target DNA binding sites, the fact 

remains that exposure of mammary epithelial cells to lrECM induces STAT5 and C/EBPβ 

binding to DNA sites that are within close proximity of one another within the BCE-1 element 

and the mouse β-casein promoter (Myers et al., 1998; Rosen et al., 1999; Xu et al., 2005). We 

have shown previously that the treatment of stably transfected mouse mammary epithelial cells 

with a general histone deacetylase inhibitor increases BCE-1 activity, albeit not to the same 

extent as cells treated with inhibitor and lrECM together (Myers et al., 1998). In a recent study, 

we also observed an increase in the association of acetylated histones with the endogenous 

mouse β-casein promoter after lrECM and prolactin treatment (Xu et al., 2005). Further 

examination of the effects of lrECM on transcription factor recruitment revealed that exposure to 

lrECM induced also the binding of Brg1 (Xu et al., 2005), an ATPase subunit of the SWI/SNF 

chromatin remodeling complex (de la Serna et al., 2006). Over-expression of a dominant 

negative Brg1 isoform significantly decreased β-casein RNA levels (Xu et al., 2005). These 
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results indicate that lrECM-mediated induction of β-casein gene transcription requires both 

histone acetylation and ATP-dependent chromatin remodeling.  

STAT5, GR and C/EBPβ have been shown to interact with histone acetyltransferases (Lee et al., 

1985; Li et al., 2003; Litterst et al., 2003; Pfitzner et al., 1998) and the transactivation potential 

of GR depends on its ability to recruit the chromatin remodeling factor Brg1 to target genes 

(Nagaich et al., 2004; Trotter and Archer, 2004). We have observed by co-immunoprecipitation 

analyses that STAT5, C/EBPβ and GR are associated with the SWI/SNF complex in response to 

lrECM and prolactin treatment (Xu et al., 2005). In addition, this treatment promotes the binding 

of RNA polymerase II to the endogenous mouse β-casein promoter (Xu et al., 2005). Therefore, 

besides altering the nuclear localization and DNA binding properties of transcription factors, 

exposure to lrECM promotes transcription factor-mediated recruitment of chromatin remodeling 

factors to the bovine BCE-1 enhancer and the endogenous mouse β-casein promoter. A localized 

decondensation in chromatin structure would allow additional factors such as RNA polymerase 

II to access their target DNA sites and potentiate further rounds of transcription (Figure 3). Such 

events support a currently popular paradigm for transcriptional activation that describes the 

recruitment of specific transcription factors to their cognate DNA sequences and their subsequent 

recruitment of chromatin remodeling- and DNA-modifying enzymes followed by the general 

transcriptional machinery (Kosak and Groudine, 2004).  

Interestingly, mouse mammary epithelial cells transiently transfected with a construct containing 

the BCE-1 element positioned upstream of a minimal bovine β-casein promoter cloned adjacent 

to a CAT reporter gene did not display an increase in BCE-1 activity upon exposure to lrECM 

and prolactin, while cells stably transfected with the same construct displayed a significantly 
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large induction (Myers et al., 1998). The fact that BCE-1 required integration into the genome to 

become transcriptionally active suggests that the proximity of this sequence to its target 

transcription factors, chromatin remodeling factors and the basal transcriptional machinery likely 

plays an important role in its activation. Thus, to accurately depict the factors and events 

involved in ECM-mediated gene expression, we must consider how the ECM could influence the 

general organization of the nucleus. 

V. Potential Mechanisms Through Which ECM Influences the General Organization of 

Nuclear Factors & Overall Transcriptional Activity 

The nucleus has a 10 micron diameter and contains approximately two meters of DNA 

(Getzenberg et al., 1991; Hager et al., 2004; Misteli, 2005). In order for this vast amount of DNA 

to fit within the confines of the nuclear envelope, it must be assembled into chromatin that 

undergoes several orders of compaction resulting in a DNA-protein assembly that differentially 

impedes the access of transcription factors to their cognate sites.  Residing alongside chromatin 

is a large number of nuclear proteins involved in diverse nuclear processes such as transcription, 

RNA splicing and DNA repair. Add to this the presence of RNA and proteins required for 

maintaining structural integrity of the nucleus and it becomes clear that the nucleus is a very 

crowded organelle indeed.  

Past studies have shown that transcription factors are located in discrete bodies within the 

nucleus (Handwerger and Gall, 2006; Lamond and Spector, 2003; Zimber et al., 2004). A 

number of investigators have speculated that these bodies are either protein storage sites or 

centers for the recruitment of specific regulatory cofactors in response to extracellular and 

intracellular signals (Boisvert et al., 2000; Borden, 2002; Pearson and Pelicci, 2001). Factor 
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recruitment to nuclear bodies is important for events such as proliferation, senescence, and 

apoptosis. It is thus clear that understanding the factors that affect nuclear organization and the 

role of nuclear organization in gene expression is essential for understanding cell development 

and ECM-induced differentiation. 

A). Of Mouse and Women: Application to Human Breast Epithelial Cells 

The principles learned from the phenotypic and functional behavior of mouse mammary 

epithelial cells in 3D culture have been applied to human cells with an added advantage: the 3D 

assay provides a rapid and robust assay with which to distinguish between non-malignant and 

malignant breast cells (Bissell et al., 2005; Bissell et al., 1999; Petersen et al., 1992; Schmeichel 

and Bissell, 2003). To examine the principle of ECM signaling to the nucleus in human cells, we 

showed that culturing non-malignant HMT-3522 (S1) human mammary epithelial cells on 

lrECM gels induced acinar morphogenesis, and caused the nuclear mitotic apparatus (NuMA), 

and the serine/arginine repeat-related nuclear matrix protein of 160 kDa (SRm160), to coalesce 

into discrete foci (Knowles et al., 2006; Lelievre et al., 1998). SRm160 is a splicing factor found 

in interchromatin granule clusters (IGCs). IGCs are considered to be storage sites for splicing 

factors (Huang et al., 1994; Misteli et al., 1997; Spector, 1993). Importantly, disturbing the 

integrity of NuMA foci with an antibody to its C-terminal end reversed lrECM-mediated changes 

in chromatin organization, disrupted the BM integrity and activated one or more matrix 

metalloproteinases (MMPs). Treatment of cells on lrECM with trichostatin A, a histone 

deacetylase inhibitor, also resulted in the disruption of NuMA foci, and the loss of BM. Plachot 

and Lelievre (2004) subsequently showed that treatment of acini formed by S1-HMT3522 cells 

with 5-aza-2’deoxycytidine, an inhibitor of DNA methylation, induced DNA hypomethylation 

and prevented the establishment of apical polarity (Plachot and Lelievre, 2004). These results 
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lend further credence to the concept of a dynamically reciprocal interaction between the nucleus 

and the ECM, and show that DNA organization, nuclear matrix organization and the BM are all 

intimately connected. While the principles appear to hold true, the exact events through which 

ECM influences nuclear and chromatin organization remain to be resolved.  

B). ECM-induced differentiation may involve the selective activation of particular tissue-

specific genes, but an overall decrease in gene activity 

Exposure of mouse mammary epithelial cells to lrECM decreased total levels of acetylated 

histones (Pujuguet et al., 2001) and the assembly of human mammary epithelial cells into 

functionally differentiated acinar structures on lrECM (Barcellos-Hoff et al., 1989; Petersen et 

al., 1992) is accompanied by a decrease in overall acetylated H4 levels, an increase in HP1γ , and 

an increase in the expression levels of MeCP2 (Plachot and Lelievre, 2004). Because these and 

the other results cited in the previous subsection promote and/or are a consequence of gene 

silencing, the findings suggest strongly that lrECM-induced differentiation of human mammary 

epithelial cells may involve changes in chromatin structure that are conducive to selective 

activation of particular tissue-specific genes, but an overall decrease in gene activity.  

Exposure to lrECM promotes cell cycle arrest (Fournier et al., 2006; Petersen et al., 1992) and 

this effect may play an important role in its ability to decrease overall transcriptional activity. For 

instance, in the nuclei of cells in G0/G1, the retinoblastoma (Rb) protein is complexed with c-

abl, a nonreceptor tyrosine kinase (Welch and Wang, 1993; Welch and Wang, 1995). When 

associated with Rb, nuclear c-abl is inactive; in cycling cells, however, cyclin-dependent kinases 

phosphorylate Rb and disrupt this complex, causing activation of nuclear c-abl which, in turn, 

activates RNA polymerase II by phosphorylating its C-terminal repeated domain (Baskaran et 
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al., 1996; Baskaran et al., 1993). In a recent study, the number of active RNA polymerase II 

molecules and the number of active transcription sites significantly decreased in mouse F9 

teratocarcinoma and totipotent mouse embryonic stem cells when they were induced to 

differentiate (Faro-Trindade and Cook, 2006). Thus, exposure to lrECM may decrease total 

levels of transcriptional activity by indirectly decreasing RNA polymerase II activity.  

A decrease in the number of transcription sites would eliminate the need for certain transcription 

factors and create a temporary surplus of these factors that could be redistributed to discrete 

nuclear domains such as promyelocytic leukemia (PML) nuclear bodies for storage and/or 

eventual degradation (Borden, 2002; Kosak and Groudine, 2004; Zimber et al., 2004). In support 

of this possibility, increasing the levels of a particular transcription factor by transient or stable 

expression causes excess factors to localize into PML bodies (Tsukamoto et al., 2000).   

A decrease in demand for transcription factors may also reduce the need for splicing factors. The 

C-terminal tail of the largest subunit of RNA polymerase II recruits splicing factors from nearby 

IGCs during transcription (Misteli and Spector, 1999). Treatment with α-amanitin, a specific 

inhibitor of RNA polyermase II (Lindell et al., 1970), causes these clusters to round up and 

prevents the movement of splicing factors from IGCs (Misteli et al., 1997). Thus, a decrease in 

overall transcription levels resulting from exposure to lrECM could be responsible for the 

formation of SRm160 foci we observed in mammary epithelial cells (Lelievre et al., 1998). In 

support of this, hnRNP RNA processing proteins were shown to accumulate into HERDS, 

heterogeneous clusters, within the interchromatin space in response to transcriptional arrest 

(Biggiogera et al., 2004).  
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C). ECM-induced changes in overall chromatin structure may have profound implications 

on nuclear organization and gene expression 

ECM-induced foci formation may be explained also by the ability of lrECM to promote an 

overall decrease in total histone acetylation levels.  In proliferating monkey CV-1 cells, the 

formation of a nuclear body containing class I and II histone deacetylases, as well as SMRT and 

NCoR nuclear receptor corepressors were dependent on histone deacetylase activity (Downes et 

al., 2000). The integrity of these domains was disrupted by treatment with histone deacetylase 

inhibitors, substantiating again that the act of histone deacetylation plays an important role in 

nuclear organization. A function for DNA-mediated organization of nuclear factors is supported 

also by the findings of Kaminker and colleagues (2005) which showed that lrECM-induced 

cessation of growth in epithelial breast cell lines led to the formation of TIN2 foci. However, 

whereas treatment with DNase I eliminated the foci, treatment with RNase did not. One possible 

explanation for histone deacetylase-mediated formation of nuclear domains could be that histone 

deacetylation promotes the formation of highly condensed chromatin structures that would 

restrict the access of transcription factors to their target DNA sequences, thereby causing them to 

either localize to more accessible regions of the nucleus or amalgamate with nearby domains 

enriched in transcription factors. Such an event would also promote HERD formation since it 

would contribute to a decrease in transcription and RNA synthesis. 

VI. Advancing Towards a Deeper Understanding of the Malignant Phenotype 

Based on the discussion presented so far, our understanding of the effects of ECM on cellular, 

and, in particular, nuclear events important for normal cell differentiation is in its infancy. 

Furthermore, much remains to be learned of the effect of ECM on tumor cell development. We 

 14



have shown previously that non-malignant S1 and malignant T4-2 mammary epithelial cells 

express similar levels of β1-integrin and the coxsackievirus and adenovirus receptor (CAR) 

when cultured on a 2D plastic surface (Anders et al., 2003; Weaver et al., 1997) (see Table 2). 

However, when cultured in 3D lrECM, the expression levels of these receptors decline 

dramatically in non-malignant cells, but remain unaltered in malignant cells (Anders et al., 2003; 

Weaver et al., 1997). In addition, unlike S1 cells, T4-2 cells cultured on lrECM express a profile 

of cell surface receptors that favors increased proliferation through pathways involving the 

epidermal growth factor receptor (EGFR) and phosphatidylinositol 3-kinase  (PI3K) (Liu et al., 

2004; Wang et al., 1998; Weaver et al., 1997).  

Interestingly, the levels of β1-integrin, CAR, phosphorylated Akt and EGFR dramatically 

decline in T4-2 cells when cultured on 3D lrECM in the presence of a reverting agent that 

promotes the assembly of these cells into organized, polar structures closely resembling those 

that formed by non-malignant cells (Anders et al., 2003; Liu et al., 2004; Wang et al., 1998; 

Weaver et al., 1997). In addition, exposure to reverting agents induces T4-2 cells to express the 

tumor suppressor protein, anti-zuai-1 (AZU-1), to levels observed in S1 cells when cultured on 

either 2D plastic or 3D lrECM (Chen et al., 2000). In a recent study,  lrECM-induced 

morphogenesis of normal breast epithelial cells was shown to cause a drastic change in NuMA 

nuclear organization without inducing morphogenesis or changes in the distribution of NuMA in 

malignant cells (Knowles et al., 2006; Weaver et al., 1997). Thus, the nature with which a non-

malignant cell communicates with its 3D environment at both the cell surface and the nucleus 

differs from that of a malignant cell.  
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The ability of reverting agents to reverse the expression of T4-2 cell surface receptors and 

signaling proteins shows that the acquisition of a malignant phenotype is accompanied by 

changes in tissue architecture and reversible changes in protein expression that allow a 

transformed cell to bypass the strict hierarchical events inherent to normal cell differentiation. 

With this said, additional studies on normal and malignant mammary epithelial cells need to be 

performed to further understand and identify the cellular and nuclear events that allow a cancer 

cell to flourish uncontrollably in an environment that promotes the differentiation and growth 

cessation of normal cells.  

VII. A 3D Reconstruction for the Future of Cancer Research 

The union between a cell and its surrounding environment has profound implications on cellular 

processes such as proliferation, differentiation and apoptosis. However, during tumorigenesis, 

the communication between a cancer cell and its environment becomes altered. Mechanisms 

once enacted to provoke controlled growth and tissue-specific gene expression become obsolete, 

conferring a tumor cell with a growth advantage non-existent to a normal cell. While efforts have 

been made to elucidate the mechanisms through which ECM influences normal and tumor cell 

behavior and development, the underlying complexity with which a cell communicates with its 

external environment has thwarted advancements towards obtaining a deeper and truer 

understanding.  

The fact that only a handful of studies have looked at the relationship between ECM and the 

nucleus is surprising since it is now accepted that ECM signals to gene expression and almost 

every cellular component outside of the nucleus is affected by ECM. One can only imagine what 

intriguing discoveries remain to be uncovered in the nucleus by future investigations! Such 
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efforts will not only provide valuable basic information about signaling regulation but also may 

lead to identification of novel targets for drug therapy. 
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Figure 1. A schematic diagram illus trating the basic principles of dynamic reciprocity between 

neighboring cells and their extracellular environment. Mechanical and biochemical 

signals received at points of cell-cell or cell-ECM contact are transduced to the nucleus 

by transmembrane receptors, signaling molecules and cytoskeletal components where 

they initiate nuclear events resulting in the expression of specific gene products that are 

excreted back into the extracellular milieu. Green arrows represent the bidirectional flow 

of mechanical and biochemical signals between the ECM and the nucleus. RTKs 

represents receptor tyrosine kinase. (Modified, with permission, from Bissell et al., 

2005). 

 

Figure 2. An illustration of the different levels through which ECM controls gene expression and 

tissue function. As cells transition from a 2D monolayer to a 3D environment, they 

undergo changes in cell shape that influence the expression of certain genes. Exposure to 

ECM engages specific cell surface receptors and initiates the transduction of biochemical 

and mechanical signals through the cell to the nucleus, where they further influence gene 

expression. As the duration of exposure time to ECM increases, cells undergo 

morphogenic events involving the formation of acinar structures and once again exhibit 

changes in their gene expression profile. Thus, tissue structure influences gene expression 

and, therefore, dictates tissue function. (Modified, with permission, from Bissell et al., 

2005; Bissell et al., 1999; Roskelley et al., 1995). 

 

Figure 3. Schematic representation of lrECM- and prolactin-induced changes in nuclear 

organization and transcription factor binding in mammary epithelial cells that lead to the 
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initiation of β-casein gene transcription. In the absence of prolactin and lrECM, STAT5 

is predominantly cytoplasmic in primary cells. Exposure to lrECM and prolactin induces 

STAT5 phosphorylation, nuclear translocation and binding to its cognate DNA sequence 

in the β-casein promoter. In addition, this treatment increases the association of 

acetylated histones and promotes the binding of additional transcription factors including 

C/EBPβ, SWI/SNF, GR and RNA polymerase II to the β-casein promoter. Ac represents 

acetylation at lysine residues along histone N terminal tails. 
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