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Abstract 
Energy modulation of the electron beam after the 

interaction with the laser field in the wiggler magnet can 
be calculated using interference of the laser field and the 
field of spontaneous emission in the far field region of 
wiggler radiation. Quite often this approach gives a 
deeper insight on the process than traditional calculations 
where the effect of the laser field on the electron energy is 
integrated along the electron trajectory in the wiggler. We 
demonstrate it by showing the agreement between the 
analytical model and the experiment involving wiggler 
scan measurements with large detuning from the FEL 
resonance producing more than one order of magnitude 
variations in the amplitude of the energy modulation. The 
high sensitivity was achieved using the THz radiation 
from a sub-mm dip in the electron density that energy 
modulated electrons leave behind while propagating along 
the storage ring lattice. All measurements were performed 
at the BESSY-II electron storage ring. 

ENERGY MODULATION 
The energy gain/loss obtained by the electron in the 

interaction with the laser field xE  polarized in the 
horizontal plane and co-propagating the planar wiggler 
magnet together with the electron in z  direction can be 
found by solving the equation [1]: 
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where γ  is the relativistic factor, cvxx /=β , where xv  
is the horizontal velocity of the electron and c  is the 
speed of light, me,  are the electron charge and mass, and 
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where k  is the wave number of the laser field, 
2/2

00 kaz =  is the Rayleigh length, 0a  is the waist size 
which is assumed to be in the center of the wiggler, 

( )0
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0 /tan zz−−=ψψ , where 0ψ  is the phase of the 
wave at the beginning of the interaction with the electron 
at the entrance of the wiggler and τσ  is the rms width of 
the laser pulse intensity. 

For electron motion inside the wiggler one obtains: 
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where wwk λπ /2=  and wλ  is the wiggler period, 

mckeBK w/0= , 0B  is the peak magnetic field and zβ  is 
the normalized velocity along the wiggler, i.e.: 
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In what follows we consider on-axis electrons only. 
This assumption can be extended to all electrons in the 
electron bunch if the electron beam size 0, ayx <<σ . 
Then, using (1) and (3) we write: 
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It is further convenient to define the resonance electron 
energy, also called an FEL resonance energy, 
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with )2/( 22 KK +=ξ . Using a generation function for 
Bessel functions [2] we found: 
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where in the last step we retain only slowly varying terms 
with ( ) .1/1 2 <<− γγ r  Finally, using dimensionless 
variables in Eq. (6) [3]: wLzz /ˆ = , ,/2 rN γδγν = and 

0/ zLq w= , where wL  is the length of the wiggler with 
N  periods, 0/τσσ ττ =)  and kcN /20 πτ = , one obtains: 
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where definition { } ( ) ( )2/2/ 10 ξξ JJJJ −=  is used 
following [4]. Introducing the laser pulse energy 
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where α  is the fine structure constant, s0ω  is central 
frequencies of the field of spontaneous emission, and ...  # AAZholents@LBL.GOV 



defines averaging over one wiggler period. By integrating 
Eq.(8) one obtains for the amplitude of the energy 
modulation: 
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Figure 1 shows plots of ),,( τσνqf  for various q  and ν  
and τσ

) . Using the maximum value of 
)25.0,7.0,8( =−== τσν )qf =2.2, one finds: 
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Figure 1. Function ),,( τσν )qf  for τσ

) =0.25 (left plot) and ν =-
0.7 (right plot) and for q = 4, 6, and 8 (curves 1, 2, and 3). 

 
Alternatively, the energy gain/loss obtained by the 

electron in the interaction with the laser field can be 
calculated considering the interference of the field of its 
spontaneous emission in the wiggler and the laser field. 
This technique takes it roots in a so-called acceleration 
theorem [5,6] declaring that the very existence of 
spontaneous emission is mandatory if the acceleration by 
the external field is employed in a linear order to this 
field. Following this idea and using Parseval’s theorem, 
we write for the amplitude of the energy modulation: 
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where ( ) ( )( ) ( )ssss EE 0000 /2/sin/2 ωωτωωπω −−=  is 
Fourier component of the field of spontaneous emission, 
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−−⋅=  is a Fourier component 
of the laser field, and L0ω  is the central frequency of the 
laser field. Further defining the energy of spontaneous 
emission (see, also [3]): 

( )( ) { }2
2

2

00
2
0

2

2
52/8/ JJ

K
KcaEA ssS
+

== ωατππ h  (12} 

radiating in the mode with a rms divergence of the 
intensity wsR Lπλσ /2=′ , where ss c 0/2 ωπλ = , one 
can obtain from (11): 
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where we used substitution 2/0ωτ=x  and 
2/000 τω ssx =  and 2/000 τω LLx = . The entire 

expression inside the figure bracket shows the 
overlapping of the spectra of the laser signal and the 
spectra of spontaneous emission signal. This expression is 
normalized in such a way that it is approximately one 
when Ls 00 ωω =  and τσ

) =0.25 corresponding to the 
optimal condition of the maximum energy modulation 
found previously. Finally we note that in the case of a 
large detuning from the FEL resonance a contribution of 
the second term with ( ) ( )ss xxxx 00 /sin ++  could be 
comparable to a contribution of the main term with 

( ) ( )ss xxxx 00 /sin −−  and, thus, should be added to the 
overlapping integral.  

EXPERIMENT 
The energy modulation of electrons by the laser field 

was measured as a function of the detuning of the central 
frequency of the electron spontaneous emission in the 
wiggler from the central frequency of the laser field. The 
experiment was conducted at BESSY-II synchrotron light 
source [7]. The laser operated at a fixed wavelength of 
800 nm while wiggler detuning covered large range of 
frequencies with the wavelengths changing from 200 nm 
to 1000 nm, i.e. in the range greatly exceeding the 
bandwidth of the laser pulse. As an illustration, Figure 2 
shows normalized spectra of the laser field and the field 
of the electron spontaneous emission in the wiggler for a 
single set point during this scan.  

 
Figure 2. Spectra of the laser field (curve 1) and the field of 

spontaneous emission of electrons in the wiggler (curve 2). 
 

Measurements of the energy modulation were 
performed indirectly using coherent THz radiation from a 
bending magnet 11 m downstream of the wiggler magnet. 
THz radiation was produced by the dip in the electron 
density distribution that energy modulated electrons leave 
behind after propagating the storage ring lattice with non-
zero time-of-flight properties, a phenomena which is 
described elsewhere [8]. Use of the THz signal allowed us 
to obtain sufficient signal-to-noise ratio even with wiggler 
settings leading to very small amplitudes of the energy 
modulation. A typical example of THz spectra and the dip 
in the electron density distribution is shown in Figure 3.  

The width and the magnitude of the dip are defined by 
the amplitude of the energy modulation of electrons and 
by time-of-flight parameters 51R , 52R , 56R  of the lattice 



 
 
Figure 3. a) THz spectra for different wiggler gaps 

corresponding to different detunings near the FEL resonance, b) 
a dip in electron density determined from spectra measured at 
the FEL resonance and corrected for beamline transmission. 

 
between the wiggler magnet and a source of the THz 
radiation. Figure 4 shows the magnitude of the dip 
calculated as a function of the amplitude of the energy 
modulation normalized on the relative energy spread of 
electrons Eσ . The following parameters were used: 

310−=Eσ , 56R =-0.011 m, 51R = 5.5 10-5, 52R = 0.53 m 
[9] , the electron beam size and angle in the wiggler 
magnet xσ =320 µm and x′σ = 55 µrad.  

 
Figure 4. A relative magnitude of the dip as a function of the 

amplitude of the energy modulation modE∆ . The magnitude of 
one corresponds to 100% electron density modulation. 

 
Variations in width and magnitude of the dip affect the 

THz signal, which was measured using an InSb- 
bolometer during the wiggler scan and plotted in Figure 5. 
Analyzing this measurement, we assumed that the THz 
signal is proportional to the square of the magnitude of 
the dip and that the magnitude of the dip itself is 
proportional to the amplitude of the energy modulation of 
electrons. We calculated the amplitude of the energy 
modulation using Eq. (13), which was, essentially, a 
calculation of the function ( )τσ

),, 00 Ls xxF , i.e. the 
overlapping area between two spectra shown in Figure 2. 
These calculations are more accurate than calculations 
using Eq. (9) because of the assumption of a small 
detuning used there does not work for a broad scan of the 
wiggler wavelength as used in the experiment.  

The width of the dip defines the spectra of the emitted 
THz signal [8] and, therefore, indirectly impacts the 
measurement because of the spectral dependence of the 
detector and THz beamline transmission. We accounted 
for this effect using empirically defined coefficient 0.75 
for calculated intensity of THz radiation when the 

amplitude of the energy modulation dropped below 
eE σ/∆ <3. The other parameters used to obtain the fit 

were 75.9=N (i.e. effective number of wiggler periods 
instead of 10 real periods), τσ = 45 fs and a floor level of 
10-4 (defined in the units used in Figure 5) as given by 
incoherent synchrotron radiation from the regular bunch.  

 
Figure 5. THz signal produced by the electron bunch with a 

dip in the electron density. The black curve shows the 
experimental result and the red curve the analytical fit. 

CONCLUSION 
Using a concept of the far field region we demonstrated 

that the energy modulation of electrons in the wiggler 
magnet by the laser light can be found by calculating the 
interference of the laser field and the field of the electron 
spontaneous emission in the far field region of the 
electron radiation in the wiggler. This allowed us to 
obtain a correct explanation for the measurements, where 
the wiggler detuning from the laser frequency covered a 
large range of frequencies exceeding the bandwidth of the 
laser field by many times.  
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