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Abstract. In this work we consider the numerical solution of a radiative
transfer equation for modeling the emission of photons in stellar atmo-
spheres. Mathematically, the problem is formulated in terms of a weakly
singular Fredholm integral equation defined on a Banach space. Compu-
tational approaches to solve the problem are discussed, using direct and
iterative strategies that are implemented in open source packages.
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1 Introduction and Problem Overview

The emission of photons in stellar atmospheres can be modeled by a strongly
coupled system of nonlinear equations. In this work we consider a restriction of
the system by taking into account the temperature and pressure. We refer the
reader to [2] and [13] for details on the model. The resulting integral equation,
a radiative transfer problem, is expressed by

Tϕ− zϕ = f, ϕ ∈ L1(I), I = [0, τ?], (1)

defined on a Banach space L1 (I) , where the integral operator T is defined as

(Tϕ)(τ) =
$

2

∫ τ?

0

E1 (|τ − τ ′|)ϕ (τ ′) dτ ′. (2)

The variable τ represents the optical depth, τ? is the optical thickness of a stellar
atmosphere, z is in the resolvent set of T and $ ∈ ]0, 1[ is the albedo (assumed
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to be constant in the present work). The free term f is taken to be f(τ) = −1
if 0 ≤ τ ≤ τ∗/2, and f(τ) = 0 if τ∗/2 < τ ≤ τ∗. The first exponential-integral
function E1, defined by

E1(τ) =
∫ ∞

1

exp(−τµ)
µ

dµ, τ > 0, (3)

has a logarithmic behavior in the neighborhood of 0.
The numerical approach used to solve this problem is based on the projec-

tion of the integral operator into a finite dimensional subspace. By evaluating
the projected problem on a specific basis function we obtain a linear system of
equations whose coefficient matrix is banded, sparse and nonsymmetric. In order
to obtain a good accuracy for the solution it is necessary to use a large dimen-
sion for the space where the problem is projected into. One possible approach
is to compute an approximate initial solution in a subspace of moderate (small)
size and then iteratively refine it by a Newton-type method. This approach was
adopted with success in [17]. Alternatively, one can discretize the problem on a
finer grid and then solve a large banded sparse algebraic linear system. In this
case, depending on the dimension of the problem, we can employ either direct
or iterative methods.

This work aims to explore the second approach mentioned above. Due to the
large dimensional cases of interest to the astrophysicists and due to the memory
limitation of computers, one needs to have access to scalable parallel versions
of the code. Scalability is crucial either for the generation phase of the matrix
coefficients as well as for the solution phase. In [17], scalability of the solution
phase was not achieved because the (moderate size) systems were not solved in
a distributed way. The parallelization of the solution phase was limited to the
iterative refinement process. MPI was used for this purpose.

A large number of computational models and simulations that are analyzed
and solved on nowadays high end computers benefit from the use of advanced and
promptly available software tools and libraries to achieve performance, scalability
and portability. In these lines, we are interested in investigating the trade offs
and capabilities implemented in several packages, in particular the ones that are
available in the DOE Advanced CompuTational Software (ACTS) Collection [9].
In the following sections we outline the projection and matrix formulation that
we use to tackle the integral operator. Next, we give a brief description of the
ACTS Collection, and the tools that are pertinent to our application. Finally,
we present some numerical results and drawn up some conclusions.

2 Projection Phase and Matrix Formulation

Integral equations as the one described in the previous section are usually solved
by discretization mechanisms, for instance by projection into a finite dimensional
subspace. The operator T is thus approximated by Tn, with its projection into
the finite dimensional subspace given by Xn = span{en,j , j = 1, . . . , n} (spanned
by n linearly independent functions in X). In this case, we will take for Xn the
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basis en = [en,1 . . . en,n] of piecewise constant functions on each subinterval of
[0, τ∗] determined by a grid of n + 1 points 0 = τn,0 < τn,1 < . . . < τn,n = τ∗.

For x ∈ X let

〈x, e∗n,j〉 = e∗n,j(x) =
1

τn,j − τn,j−1

τn,j∫

τn,j−1

x(τ)dτ,

and define

Tnx = πnTx =
n∑

j=1

〈x, T ∗e∗n,j〉en,j , (4)

where πnx =
n∑

j=1

〈x, e∗n,j〉en,j and T ∗e∗n ∈ X∗(the adjoint space of X). The

approximate problem
(Tn − zI)ϕn = f (5)

is then solved by means of an algebraic linear system of equations

(A− zI)x = b, (6)

where A is a non singular matrix of order n, and A(i, j) = 〈en,j , T
∗e∗n,i〉, b(i) =

〈f, T ∗e∗n,i〉, x(j) = 〈ϕn, T ∗e∗n,j〉 (see [2]). The relation between x and ϕn is given
by

ϕn =
1
z




n∑

j=1

x(j)en,j − f


 .

In order to achieve an approximate solution ϕn with good accuracy by this
method it may be necessary to use a very large dimensional linear system.

To obtain the elements of A we need to compute

A(i, j) =
$

2 (τn,i − τn,i−1)

∫ τn,i

τn,i−1

∫ τ∗

0

E1 (|τ − τ ′|) en,j (τ ′) dτ ′dτ

for i, j = 1, ..., n. Using the fact that E3(0) = 1/2, we obtain

A(i, j) =





$
2(τn,i−τn,i−1)

[−E3 (τn,i − τn,j) + E3 (τn,i−1 − τn,j) +
+ E3 (τn,i − τn,j−1) + E3 (τn,i−1 − τn,j−1)]

if i 6= j

$
[
1 + 1

τn,i−τn,i−1
(−E3 (τn,i − τn,i−1)− 1)

]
if i = j

, (8)

where

E3(τ) =
∫ ∞

1

exp(−τµ)
µ3

dµ. (9)

For computational purposes, this function is evaluated according to [1].
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3 ACTS: Tools of the Trade

The ACTS Collection consists of a set of computational tools for the solution
of common and important computational problems. The tools were developed
in various laboratories and universities and have allowed a wide spectrum of
important computational problems to be solved to content [10]. We refer the
reader to [9] for an overview of the project and available numerical tools, and
also to the ACTS Information Center [12] for details about all tools available in
the Collection.

In this paper we are interested in solving equation (1) on a fine mesh. ACTS
incorporates the packages ScaLAPACK [6], SuperLU [7], PETSc [5] and Trili-
nos [11]. ScaLAPACK provides routines for distributed-memory message-passing
MIMD architectures, in particular routines for solving systems of linear equa-
tions, least squares, eigenvalue problems and singular value problems. SuperLU
is a library for the direct solution of large, sparse, nonsymmetric systems of linear
equations, but that can also be applied efficiently to many symmetric systems.
Working precision iterative refinement subroutines are provided for improved
backward stability. PETSc provides a number of functionalities for the numeri-
cal solution of PDEs that require solving large-scale, sparse linear and nonlinear
systems of equations. It includes nonlinear and linear equation solvers that em-
ploy a variety of Newton techniques and Krylov subspace methods. Trilinos is
one the the last additions to ACTS. It targets the development of parallel solver
algorithms and libraries within an object-oriented software framework. It pro-
vides self-contained packages, each one with its own set of requirements. One of
this packages is AztecOO, which superseded the widely used package Aztec.

In order to solve the problem for larger values of τ? we need to use high per-
formance computers as well a scalable software. Taking into account the charac-
teristics of the coefficient matrix here we will focus on SuperLU and PETSc, for
the direct and iterative solution, respectively, of a large, sparse, nonsymmetric
system of linear equations.

4 Numerical results

The numerical results showed in this section were obtained on an SGI Altix 350,
an AMD Opteron cluster, and an IBM SP. The Altix is configured with 32 64-
bit 1.4 GHz Intel Itanium-2 processors, with 192 GBytes of shared memory. The
cluster is configured with 356 dual-processor nodes, each processor running at
a clock speed of 2.2 GHz, with 6 GB of memory per node, interconnected with
a high-speed InfiniBand network. The IBM SP is configured with 380 compute
nodes with 16 Power 3+ processors per node. Most nodes have 16 GB of mem-
ory. These three systems are located at the National Energy Research Scientific
Computing Center (NERSC), Lawrence Berkeley National Laboratory, of the US
Department of Energy. To validade our implementation, our experiments used
only a small fraction of the computer power provided by those systems. For the
physical problem we considered $ = 0.75 and $ = 0.90, and explored the band
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generation solution
m factor solve

1000 3.26E+03 6.95E+01 1.00E+00
2000 2.12E+04 1.65E+02 3.00E+00
4000 9.71E+04 3.59E+01 6.00E+00
8000 4.26E+05 7.51E+02 1.80E+01

16000 1.80E+06 1.54E+03 3.00E+01
32000 7.36E+06 3.12E+03 5.35E+01

Table 1. Normalized times for the generation of the matrix and solution of the system
of equations with SuperLU, for various matrix sizes (m) and $ = 0.75, on the SGI
Altix.

generation SuperLU GMRES
m nnz (factor+solve) (22 iterations)

1000 104918 5.79E+01 1.14E+00 1.00E+00
2000 215718 2.27E+02 2.75E+00 1.90E+00
4000 445264 8.83E+02 6.11E+00 3.36E+00
8000 880518 3.46E+03 1.26E+01 6.96E+00

Table 2. Normalized times for the generation of matrices of various sizes (m), with
the corresponding number of nonzeros in the matrix (nnz) for $ = 0.75, and solution
with two distinct solvers, on one processor of the IBM SP.

and sparse characteristics of the coefficient matrix obtained for this particular
kernel as mentioned earlier.

In Table 1 we show normalized times required for the generation of the matrix
(and right-hand side) and for the solution of problem with SuperLU on one
processor of the SGI Altix, for $ = 0.75. As can be seen in the table, the most
time consuming part of the simulation is the generation of the matrix, due to the
large number of exponential evaluations. This phase is orders of magnitude more
expensive that the other calculations and grows exponentially. The factor phase
of the solution is then the second most time consuming part. One of the main
advantages of the LU factorization is the potential gain that we can achieve if
there is a need to solve several linear systems with the same coefficient matrix.
However, this is not the case here. In addition, for higher dimensional problems
direct methods usually becomes less competitive.

Table 2 shows normalized times required for the generation of the matrix (and
right-hand side), and for the solution of problem with SuperLU and GMRES
with Jacobi preconditioner on one processor of the IBM SP. The tolerance for
the iterative method was set to 10−10. We notice that for the parameters we
have used in defining the problem an iterative method is very adequate in the
sequential case.
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generation GMRES BiCGstab
m p (22 iterations) (14 iterations)

10000 2 7.70E+03 8.77E+00 9.16E+00
4 3.87E+03 6.32E+00 6.11E+00
8 1.93E+03 3.06E+00 3.24E+00

16 9.72E+02 1.90E+00 2.43E+00
32 4.87E+02 1.33E+00 1.00E+00

25000 16 6.13E+03 4.95E+00 3.62E+00
32 3.00E+03 2.47E+00 2.04E+00
64 1.49E+03 1.76E+00 1.36E+00

Table 3. Normalized times and number of iterations for various matrix sizes (m) and
for $ = 0.75 on up to 64 processors (p) of the IBM SP.

The numbers in Tables 1 and 2 stress the need for parallelization in order
to solve the problem for higher dimensions. It turns out that the terms in (8)
can be analytically developed such that their generation becomes embarrassing
parallel, that is, without any communication needed among the processors [17].
As a result, the data distribution can also be done accordingly to the solver used.

In Table 3 we list (normalized) times for the generation phase and for two
preconditioned iterative methods implemented in PETSc on the IBM SP, for up
to 64 processors, for $ = 0.75. We observe that there are significant gains by
using the parallel version of the code. The generation phase is still the most time
consuming part of the algorithm. The two sparse iterative solvers show similar
times, although for the parameters chosen BICGstab requires fewer iterations.

In Table 4 we list (normalized) times for the generation phase and for two
preconditioned iterative methods implemented in PETSc on the Opteron cluster,
for $ = 0.75. Once more, we observe that there are significant gains by using the
parallel version of the code. The generation phase dominates the computational
costs. The two sparse iterative solvers show similar times, although, as before, for
the parameters chosen BICGstab requires fewer iterations. The achieved speedup
is not ideal but together with the generation phase the performance of the code
is almost linear, see Figure 1. The stagnation of the speedup curve for the linear
solver in Figure 1 only indicates that for m = 10000 it is not worthy to use
more than 16 processors. In fact, the speedup gets better for larger values of m.
The time required to generate the matrix for m = 2.5× 104 on 8 processors was
similar to the time to generate the matrix for m = 5× 104 on 32 processors. For
the solver, the time to solve the linear system for m = 2.5× 104 on 8 processors
was similar to the time required for the solution of a linear system for m = 5×104

on 16 processors, showing a good relative speedup.
In Table 5 we list, as in Table 4, the normalized times on the Operon cluster

but now for $ = 0.90. The time for the generation phase was the same but,
as expected, for higher values of the albedo the linear system becomes more
difficult to solve. In fact, for $ = 0.90 GMRES performed better than BiCGstab,
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generation GMRES BiCGstab
m p (22 iterations) (14 iterations)

10000 1 5.40E+03 7.54E+00 7.95E+00
2 2.67E+03 4.02E+00 4.58E+00
4 1.39E+03 2.32E+00 2.56E+00
8 6.90E+02 1.80E+00 1.97E+00

16 3.51E+02 1.15E+00 1.25E+00
32 1.79E+02 1.15E+00 1.36E+00

25000 4 8.41E+03 5.42E+00 5.61E+00
8 4.28E+03 3.02E+00 3.15E+00

16 2.16E+03 2.05E+00 1.83E+00
32 1.07E+03 1.00E+00 1.15E+00

50000 16 8.57E+03 3.14E+00 3.20E+00
32 4.24E+03 1.53E+00 1.86E+00

Table 4. Normalized times and number of iterations for various matrix sizes (m) and
for $ = 0.75 on up to 32 processors (p) on the Opteron cluster.
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Fig. 1. Speedup for m = 104, solid line: ideal, dashed line: preconditioned GMRES.
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generation GMRES BiCGstab
m p (24 iterations) (37 iterations)

10000 1 2.83E+03 6.14E+00 6.99E+00
2 1.36E+03 3.62E+00 4.12E+00
4 7.20E+03 2.20E+00 2.31E+00
8 3.59E+02 1.67E+00 1.76E+00

16 1.80E+02 1.11E+00 1.30E+00
32 9.19E+02 1.02E+00 1.00E+00

25000 4 2.83E+03 4.96E+00 5.37E+00
8 2.22E+03 2.96E+00 3.39E+00

16 1.11E+03 1.78E+00 2.11E+00
32 5.55E+03 1.33E+00 1.46E+00

50000 16 4.36E+03 2.82E+00 3.14E+00
32 2.21E+03 2.15E+00 2.05E+00

Table 5. Normalized times and number of iterations for various matrix sizes (m) and
for $ = 0.90 on up to 32 processors (p) on the Opteron cluster.

requiring only a few more iterations than for $ = 0.75. That was not the case of
BiCGstab, which required almost three times as many iterations and therefore
a degradation in performance for this system.

The entries of the coefficient matrices show a high decay in magnitude from
the diagonal. This property allowed us to successfully employ the highly parallel
Jacobi preconditioner for the iterative methods. As we can see in Fig. 2, both
iterative solvers performed better with the simple Jacobi preconditioner than
with the block-Jacobi.

5 Conclusions and Future Work

In this contribution we discussed the numerical solution of a radiative transfer
equation for modeling the emission of photons in stellar atmospheres, in par-
ticular mechanisms that we have implemented to enable the solution of large
systems. This is necessary because the generation of the matrix associated to
the model requires a significant amount of time. The parallelization of genera-
tion phase, as dicussed in the previous section, dramatically reduces the time to
solution. At the same time, it is also important to select an appropriate solver
for the resulting system of linear equations. Here we focused on tools available
in the DOE ACTS Collection, and in particular (the sequential version of) Su-
perLU and iterative methods implemented in PETSc. These tools have delivered
capability and portability and thus have been very useful in the development of
a number of applications, including the one discussed here.
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Fig. 2. CPU time in seconds for m = 5 × 104, solid line: GMRES/Jacobi,
dashed line: BiCGstab/Jacobi, dashdotted line: GMRES/blockJacobi, dotted line:
BiCGstab/blockJacobi.
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