
MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT*

H. Nishimura1 and C. Timossi2, LBNL, Berkeley, CA 94720, U.S.A.

Abstract
Mono is an independent implementation of the .NET

Framework by Novell that runs on multiple operating
systems (including Windows, Linux and Macintosh) and
allows any .NET compatible application to run
unmodified. For instance Mono can run programs with
graphical user interfaces (GUI) developed with the C#
language on Windows with Visual Studio (a full port of
WinForm for Mono is in progress). We present the results
of tests we performed to evaluate the portability of our
controls system .NET applications from MS Windows to
Linux.

.NET PLATFORM AND CONTROLS

Windows in an Accelerator Environment
Microsoft Windows is widely used as a platform for

GUI based applications used for machine operations and
physics studies. Windows is also a useful platform for
instrumentation controls because of the wide industry
support of specialized drivers for it. For these reasons
Windows has become an essential platform for accelerator
and beamline control systems.

The fundamental programming API for developing
Windows software is changing from Win32 to .NET. The
.NET framework has been evolving since .NET 1.0 in
2002, and reasonable backward compatibility with
existing Windows software APIs such as Win32 and
Active/X (COM) has been maintained. During this time
we have been adapting our applications for the .NET
framework on Windows.

EPICS on Windows at ALS
Our accelerator control applications use the Channel

Access (CA) layer of EPICS[1] to access accelerator
controls data. To support the widest variety of
development tools on Windows (e.g. Delphi, C++
Builder, Visual Basic and LabView), we package CA as
an ActiveX Control we call SCACOM[2]. This control is
a thin wrapper around another library, Simple Channel
Access (SCA)[3], that was developed to ease CA client
development at the ALS[4].

Although .NET programs can use ActiveX controls
directly, there is an advantage to repackaging the control
as a .NET assembly. ActiveX is only available on
Windows platforms whereas .NET was designed to be
portable to other platforms. So, a .NET application - even
a GUI application using WinForm - at least has the
potential to run unmodified on a non-Windows OS.
We’ve named this new assembly: SCA.NET[5]. In fact,
we did much more than re-package SCACOM. We

decided to spend some effort recoding some of the
routines (in C#) to make better use of CA, thus improving
data access performance.

MONO AS .NET ON LINUX

Mono for Cross Platform Support of .NET
Mono[6] is an implementation of the .NET Framework

originally developed by Ximian which is now under
Novell. It can be run on multiple operating systems
(including Linux, Mac OS X, Solaris, BSD, and
Windows) on multiple hardware platforms (s390/s390x,
SPARC, PowerPC, x86, x86-64, IA64 and ARM). We
report on Linux running on x86 based PCs in this paper.

Compatibility
The Microsoft .NET Framework for Windows has

evolved from version 1.0 in 2002, to 1.1 in 2003, to 2.0 in
2005 (version 3.0 will be delivered on Vista). Not
surprisingly, Mono has lagged behind Microsoft and is
currently delivering version 1.1. In addition to the basic
framework, Mono also includes support for ADO.NET for
database access and WinForm for GUI development.

In our experience, non-visual classes, such as
ADO.NET, have been well supported on Mono.

On the other hand, GUI programming using WinForm
is behind that in .NET 1.1 on Windows. When we use
graphical libraries from third parties, we need to take
extra steps to assure their availability/compatibility on
Mono. For example, we use a popular open-source library
ZedGraph[7] for plotting and charting. Its newest version
5.0 is for .NET 2.0. However, the previous version for
.NET 1.1 required only minor modifications to run on
Mono.

Third party library support can also be an issue.
Generally speaking, these .NET libraries, which
applications need to access with the Platform Invoke
interface, are now moving to managed code rather than
unmanaged DLLs. However, this move to managed code
often occurs together with the migration to .NET 2.0,
which is only partially supported on Mono.

At the time of this conference in October 2006, the
version of Mono is at 1.1.17. This version basically
covers .NET 1.1 and some of the new .NET 2.0 features.
Better compatibility is expected with the release of Mono
1.2 and 2.0 in the near future.

Mono as Runtime Environment
Mono becomes a runtime environment for the .NET 1.1

programs developed on Windows, including those made
using WinForm. In principle, they should run on Linux
with Mono without rebuilding as long as run-time
libraries are available. However, it is not unusual to

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC03-76SF00098.
1. H_Nishimura@lbl.gov. 2. CATimossi@lbl.gov

modify and rebuild such programs to alleviate minor
incompatibilities.

To start a .NET application with Mono:

$ mono WinApp.exe

where WinApp.exe is a .NET application developed either
on Windows or with the Mono development tools.

Mono as Development Environment
Mono includes a C# compiler (MCS) that enables .NET

development on non-Windows platforms. Although there
are more than 10 programming languages already
available on Mono[8], including Java, Visual Basic.NET
and Python, we currently focus on C# on Mono.

MonoDevelop[9] is the integrated development
environment (IDE) for Mono, running primarily on
Linux. It can import a Visual Studio 2003 solution
containing .NET 1.1 projects in C# developed on
Windows. It supports GUI development with several GUI
tool kits including GTK# with visual designer. However,
WinForm is not currently supported in this manner.

MONO FOR EPICS CLIENTS ON LINUX

SCA.Net for Mono
SCA.NET wraps the Channel Access shared libraries as

a .NET assembly that calls into CA using the Platform
Invoke API (also known as P/Invoke). For example, on
Windows:

public unsafe class Ca
{
 . . .
 [DllImport("ca.dll")]
 public static extern
 short ca_field_type (IntPtr ChanID);
 . . .
}

On Linux, we would expect to need to replace the

reference to “ca.dll” with “ca.so” (the shared library for
Linux-x86). However, if this class is built with “Any
CPU” option, this is not required. It picks up “ca.so”
properly at runtime on Linux. Therefore, there is no need
to modify the source code of SCA.NET.

Here is an example of a client program running on
Windows XP (Fig.1) and Linux (Fig.2); there is no need
for source code changes. It reads the beam current and
beam locations (X, Y) at 4 locations through SCA.NET.
Its binary is identical on both platforms. Here ca.dll is in
the PATH on Windows and ca.so is in the
LD_LIBRARY_PATH on Linux.

Thus, by carefully limiting the use of WinForm 1.1
controls for GUI programming, Linux is seamlessly
supported at run-time for .NET 1.1 programs with EPICS
access.

Fig.1. EPICS Client Program on Windows XP

Fig.2 EPICS Client Program on Linux

AKNOWLEDGEMENTS
The authors thank A. Biocca and D. Robin for their
support, T. Scarvie for useful advices, and C. Ikami and T.
Kellogg for their technical support.

REFERENCES
[1] L. R. Dalesio, et al., ICALEPCS '93, Berlin, Germany,

1993.http://www.aps.anl.gov/epics

[2] C. Timossi and H. Nishimura, IEEE PAC’97, 0-7803-
4376-X/98, p805, 1998

 http://www-controls.als.lbl.gov/epics_collaboration/
sca/win32

[3] http://www-controls.als.lbl.gov/epics_collaboration/
sca

[4] LBL PUB-5172 Rev. LBL,1986

 A. Jackson, IEEE PAC93, 93CH3279-7(1993)1432

[5] H. Nishimura and C. Timossi, PCaPAC 2005,
Hayama, Japan, 2005.

[6] http://www.mono-project.com

[7] http://zedgraph.org

[8] http://www.mono-project.com/Languages

[9] http://www.monodevelop.org

