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Abstract 

Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance 

between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix 

signaling.  Aberrations in any of these processes can disrupt tissue architecture and 

initiate tumor formation.  Here we show that the small GTPase Rap1 is a crucial element 

in organizing acinar structure and inducing lumen formation.  Rap1 activity in malignant 

HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant 

counterparts.  Expression of dominant-negative Rap1 resulted in phenotypic reversion of 

T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and 

dramatically reduced tumor incidence despite the persistence of genomic abnormalities.  

The resulting acini contained prominent central lumina not observed when other reverting 

agents were used.  Conversely, expression of dominant-active Rap1 in T4-2 cells 

inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity.  

Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of 

activation instructing apical polarity during acinar morphogenesis, and increased 

activation inducing tumor formation and progression to malignancy.  
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Introduction  

Rap1, a member of the Ras family of small GTPases, is activated in response to a 

number of extracellular stimuli, including growth factors, cytokines, and cell-cell and 

cell-extracellular matrix (ECM) adhesion (1, 2).  Like all G proteins, activation of Rap1 

is mediated by specific guanine nucleotide exchange factors (GEFs), and in turn 

disrupted by GTPase activating proteins (GAPs).  Active GTP-bound Rap1 functions 

through its many effectors, including the Rho GTPase family member, Rac1 (3, 4), to 

regulate inside-out signaling to integrins (5, 6) and cadherins (7-9) and to control 

cytoskeletal structure (10), endothelial cell polarity (11, 12), and differentiation (9, 13).  

Despite its original discovery as an inhibitor of Ras-mediated transformation (14), Rap1 

and its GEFs and GAPs have been found to be dysregulated in a variety of mouse and 

human cancers (15-19).  Deregulating Rap1 activity by knocking out its GAP Spa1 in 

mice leads to the development of myeloproliferative disorders mimicking human chronic 

myeloid leukemia (20), and overexpression of Rap1 induces oncogenic transformation in 

cultured fibroblasts (21).  Additionally, the E6 protein of oncogenic human 

papillomavirus transforms cells in part by degrading the Rap1-GAP E6TP1 (22, 23).  

Because it both responds to and regulates cell-cell and cell-ECM adhesions, Rap1 is 

emerging as a key regulator of morphogenesis (24, 25). 

 

During normal development, integration of signals from the microenvironment, 

including cell-cell and cell-ECM adhesion, leads to establishment of tissue structure and 

apico-basal polarity (26, 27).  Loss of normal tissue structure and polarity are hallmarks 

of tumor progression (27, 28).  To delineate the mechanisms regulating tissue polarity 
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and its loss in breast cancer, we have used an assay in which normal and malignant 

human breast epithelial cells are cultured within a physiologically relevant three-

dimensional (3D) laminin-rich ECM (lrECM).  Phenotypically normal nonmalignant S1 

cells from the HMT-3522 tumor progression series form polarized and growth-arrested 

acini when cultured in 3D lrECM, resembling the structures formed by primary breast 

epithelial cells taken from reduction mammoplasty (29).  In contrast, tumorigenic T4-2 

cells form highly proliferative disorganized apolar structures reminiscent of malignant 

tumors in vivo.  Expression levels of EGFR, d1-integrin, and their downstream effectors, 

including MAPK and PI3K, are increased in T4-2 compared to S1 cells, and 

downregulation of any of these signaling pathways in T4-2 cells cultured in 3D lrECM 

leads to growth arrest and reversion to a phenotype resembling normal polarized acini in 

vivo (30-32). 

 

In the 3D assay, proliferation and tissue polarity appear phenotypically coupled, 

yet they were shown to be controlled by distinct signaling pathways, with high levels of 

Akt and the small GTPase Rac1 correlating with loss of growth control and tissue 

polarity, respectively; downregulation of Rac1 activity was necessary for restoration of 

basal polarity (32).  However, while apical polarity as demonstrated by ZO-1 localization 

was partially restored, the acini failed to form lumina.  Since Rap1 is an upstream 

activator of Rac1 (3, 4) and regulates a number of pathways (24, 25), we postulated that it 

may integrate microenvironmental signaling in these cells in 3D.  We measured Rap1 

activity and showed that it was much higher in malignant cells, which led us to 

hypothesize that Rap1 activation may play a role in loss of apical polarity and lumen 
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formation during tumor progression.  Here we show that this is indeed the case, and that 

exogenous expression of dominant-active Rap1 in T4-2 cells cultured in 3D lrECM 

interferes with reversion of tissue structure and malignant phenotype and establishment 

of tissue polarity.  We show also that a lower level of Rap1 activity is required for lumen 

formation in breast acini.  Surprisingly, decreasing Rap1 activity had no effect on cell 

proliferation, even though PI3K signaling through Akt and PTEN were normalized.  

These data underscore that Rap1 functions as an organizer of breast acinar apical polarity, 

and demonstrate that its dysregulation causes destruction of tissue architecture and leads 

to tumor progression. 
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Methods 

Reagents and antibodies.  Growth factor-reduced Matrigel™ (BD Biosciences) with 

protein concentration of ~10 mg/ml was used for 3D lrECM assays.  Rat tail collagen I 

(~3 mg/ml; Vitrogen
 
100, Celtrix Laboratories) was used to thinly coat the surfaces

 
of 

culture dishes as described(30). Inhibitors and antibodies used for reversion assays were 

as follows: EGFR inhibitor tyrphostin AG1478 (Calbiochem), MEK inhibitor PD98059 

(Calbiochem), PI3K inhibitor LY294002 (Cell Signaling Technologies), human EGFR 

function-blocking antibody mAb225 (Oncogene Research).  Antibodies used for 

biochemical analyses and
 
immunostaining were as follows: anti-total and phospho-Erk1/2 

(Thr202/Tyr204), anti-total and phopho-p38 MAPK (Thr180/Tyr182), anti-total and 

phospho-Akt (Ser473), anti-total and phospho-p90RSK (Ser380), anti-total and phospho-

GSK3d (Ser9), anti-cleaved caspase-3 (Asp175), anti-PTEN, and anti-FOXO1 from Cell 

Signaling Technologies; anti-d1-integrin, anti-GM130, and anti-total and phospho EGFR 

from BD Transduction; anti-c6-integrin from Chemicon; anti-d-catenin and anti-Rap1 

from Santa Cruz; anti-Bim from Calbiochem; anti-Ki67 from Zymed; anti-d-actin from 

Sigma; rhodamine-phalloidin from Molecular Probes.      

 

Cell culture.  HMT-3522 human mammary epithelial cells were maintained as described 

previously (30). Three-dimensional (3D) cultures on top of lrECM were prepared by 

growing cells as monolayers, followed by trypsinization and plating (3×10
5 

cells/ml) on 

polymerized lrECM.  Culture medium containing 5% lrECM was added and replaced 

every 2 days.  For reversion assays, antibodies and inhibitors were added to culture 
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medium.  At days 3, 5, and 8 of culture, colony size and Ki67 positive indices were 

measured.  Colonies which contained Ki67-positive cells were scored as positive. 

 

Plasmid constructs and transfections.  The cDNAs encoding human Rap1-V12 

(dominant-active) and Rap1-N17 (dominant-negative) were PCR-amplified using 

pcDNA-Rap1-V12 and pcDNA-Rap1-N17 (gift of Dr. Kinashi T., Kansai Medical 

School) as templates, respectively.  Amplified fragments were digested with EcoRI and 

EcoRV, and subcloned into pEYFP-C1 (BD Biosciences Clontech).  HMT-3522 

mammary epithelial cells were transfected with pEYFP-Rap1V12, pEYFP-Rap1N17, or 

pEYFP-C1 using Lipofectamine 2000 (Invitrogen). Stably transfected cells were selected 

with 100-og/ml G418 and positive populations were enriched by EPICS Cell Sorting 

System (Beckman Coulter).    

 

Immunoblotting and immunostaining.  Cells cultured in 3D lrECM were first isolated 

as colonies in ice-cold PBS containing 5mM EDTA, as previously described (30), and 

lysed thereafter in RIPA buffer (1% Nonidet P-40, 0.5% deoxycholate, 0.2% sodium 

dodecyl sulfate,
 
150 mM sodium chloride, and 50 mM Tris–HCl pH 7.4 containing 

protease inhibitor cocktail (Calbiochem)). Equal amounts of protein lysates were 

analyzed by SDS–polyacrylamide gel electrophoresis
 
(SDS–PAGE) and transferred to 

nitrocellulose membrane.  Membranes were blocked with TBS containing 3% skim-milk 

or 5% BSA and incubated with primary antibodies (1:1000 dilution), followed by 

incubation with HRP-labeled secondary antibodies (1:1000 dilution).  Positive bands 

were detected with SuperSignal West Dura (Pierce).  For immunostaining of 3D lrECM-
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cultured samples, cells were incubated with 18% sucrose in PBS for 15min, and then with 

30% sucrose in PBS for 15min. Cells were smeared on frosted glass slides (VWR) and 

air-dried briefly for further processing.  After fixation with 3% formaldehyde in PBS for 

15 min or methanol/acetone (1:1) for 10 min, cells were permeabilized with 0.3% Triton 

X-100 in PBS, washed twice with PBS, and blocked with 1% BSA in PBS.  Samples 

were incubated with primary antibody diluted 1:100-300 in blocking buffer for 1 h at 

room temperature, followed by incubating with FITC- or Cy3-conjugated secondary 

antibody, and processed following the same protocol as monolayer-cultured samples.  

Nuclei were counterstained with DAPI (Sigma) and actin-filaments were stained with 

rhodamine-phalloidin.  Samples were mounted with Prolong antifade reagent (Molecular 

Probes) and observed with Nikon DIAPHOT 300 or Zeiss LSM 410 confocal 

microscope.  Images for figures were pseudo-colored and resized using Adobe 

Photoshop. 

 

Pull-down assays.  Rap1 activity was measured using Rap1 Assay Reagent (Upstate). 

Cells were lysed in TLB (50mM Tris-HCl, pH 7.4, 500mM NaCl, 1% NP40, 2.5mM 

MgCl2, and 10% glycerol) at 4 °C for 30 min.  Lysates were cleared
 
by centrifugation at 

15,000g at 4 °C for 15 min.  Supernatants
 
were incubated with 30 µg of RalGDS-RBD 

fusion protein coupled with agarose beads for 1 h at 4 °C.  Agarose beads were washed 

three
 
times in TLB and resuspended in Laemmli buffer.  Samples

 
were analysed by SDS–

PAGE, followed by transfer to nitrocellulose membranes.  Affinity-purified activated 

Rap1 was detected by
 
immunoblotting using an anti-Rap1 antibody. 
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Invasion assay.  The migration and invasion capacity of cells were evaluated in 24-well 

chambers with filter inserts (8-om pores) or filter inserts coated with 30 ol of Matrigel 

protein at 6-8 mg/ml, respectively.  Approximately
 
1 x 10

5
 cells were plated into the 

upper chamber in 300 µL
 
of culture medium.  The lower chamber

 
was filled with 350 µL 

of medium containing 5% fetal bovine serum.  After culture for 48hr, cells were fixed 

with 5% glutaraldehyde in PBS and stained with 0.5% toluidine blue (Sigma) in 2% 

Na2CO3.  Cells on the upper side of the filter, including
 
those in the Matrigel, were 

removed with a cotton swab, and cells
 
on the lower side of the filter were visualized and 

counted.
 
 Each experiment was repeated four times in duplicate, and one

 
representative 

experiment is shown.
 
 

 

Tumor formation in vivo.  Tumor formation ability in vivo was examined by injecting 1 

x 10
7
 cells subcutaneously into the rear flanks of Balb/c female athymic nude mice 

(Simonsen Laboratories) at 7 weeks of age.  Tumors were measured weekly for 4-10 

weeks and tumor size was recorded at the time of sacrifice.  Tissue from injection sites 

was paraffin embedded, sectioned, and stained with Hematoxylin and Eosin for histology. 
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Results 

Lumen formation and acinar polarity are disrupted by Rap1 activation.  

We had found previously that malignant T4-2 cells (which form disorganized and 

apolar colonies when grown in 3D lrECM; Fig. 1A) showed appreciably higher levels of 

Rac1 activity relative to their nonmalignant S1 counterparts, and that down-modulation 

of Rac1 caused T4-2 cells to form polarized acinar structures without lumina (32).  Since 

Rac1 functions downstream of Rap1 (3, 4), we examined Rap1 activity in S1 and T4-2 

cells using pull-down assays (33).  Whereas the total level of Rap1 was similar in these 

two cell lines, the level of active GTP-bound Rap1 was appreciably higher in T4-2 than 

in S1 cells when cultured in 3D lrECM (Fig. 1B).  As shown previously for a number of 

other signaling molecules in our system (reviewed in (27)), this difference was observed 

only in 3D cultures and not in cells grown on tissue culture plastic, underscoring the 

importance of tissue context in regulation of signaling pathways. 

 

Blocking Rap1 activity restores tissue polarity and induces lumen formation. 

We asked whether down-modulating Rap1 could restore normal tissue 

architecture in malignant T4-2 cells.  We established stable T4-2 transfectants that 

exogenously expressed dominant-negative Rap1 (T4-DN-Rap1) or vector only (T4-

vector) as a control.  T4-vector cells cultured in 3D lrECM behaved in a manner similar 

to untransfected cells, forming large disorganized colonies that could be induced to 

undergo phenotypic reversion with the EGFR inhibitor AG1478 (Fig. 1C).  In sharp 

contrast, T4-DN-Rap1 cells had markedly different morphology in 3D lrECM, forming 

organized acinar structures similar to nonmalignant S1 cells even in the absence of the 
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reverting agents (Fig. 1C).  Indirect immunofluorescence of T4-DN-Rap1 and AG1478-

treated acini showed correct localization of the basal marker c6-integrin, the basolateral 

marker d-catenin, and the apical marker GM130 (a Golgi component that distributes to 

the apical side of the nucleus in polarized cells).  In T4-vector colonies, c6-integrin, d-

catenin, and GM130 were all randomly distributed, confirming that polarity was 

impaired.  Therefore, expression of DN-Rap1 was sufficient to induce polarized acinar 

architecture in T4-2 cells in 3D lrECM. 

 

Despite the fact that c6-integrin, d-catenin, and GM130 were correctly localized 

by down-modulating either EGFR or Rap1, we observed distinct differences between the 

resulting reverted acini.  At each day of culture, T4-DN-Rap1 acini were twice as large as 

AG1478-treated T4-vector acini (Fig. 1D).  Whereas inhibition of EGFR led to growth 

arrest by day 5, T4-DN-Rap1 cells continued to proliferate as assessed by a high 

percentage (~45%) of Ki67-positive acini remaining at day 8 of culture (Fig. 1D).  The 

architectural differences between AG1478-treated vector acini and T4-DN-Rap1 acini 

became more evident by day 15 in 3D lrECM, at which time there were prominent 

lumina in greater than 60% of T4-DN-Rap1 acini but in fewer than 2% of AG1478-

treated vector acini (Fig. 2A).  Establishment of apical polarity involves creation of apical 

membrane domains associated with the presence of filamentous actin (34, 35).  We 

detected apically localized actin in T4-DN-Rap1 acini but not in AG1478-treated T4-

vector acini (Fig. 2A), confirming that DN-Rap1 leads to the development of both apical 

and basal polarity in 3D lrECM. 
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Lumen formation is accompanied by apoptotic cell death within acinar structures 

(36-38).  Bim, a pro-apoptotic BH3-only Bcl-2 family protein, was identified as having a 

role in this process (39).  We examined apoptotic cell death in situ by indirect 

immunofluorescence for activated caspase-3; as expected (40), apoptosis was restricted to 

those cells not in contact with basement membrane within T4-DN-Rap1 acini (Fig. 2A).  

Furthermore, western blotting of lysates demonstrated that Bim was upregulated at day 

10 of culture in T4-DN-Rap1 acini (Fig. 2B).  In contrast, we detected neither activated 

caspase-3 nor upregulation of Bim in AG1478-treated T4-vector acini. Thus 

normalization of Rap1 activity caused reversion of T4-2 cells with a resulting architecture 

comparable to that of non-malignant mammary epithelial cells, such as MCF-10A, which 

form lumina in 3D lrECM.  The resulting acini form prominent lumina despite persistent 

proliferation, extending our previous observation that normal tissue polarity can be 

uncoupled from growth control (32).  These results suggest that formation of organized 

acinar structure by expressing DN-Rap1 in malignant T4-2 cells is achieved by increased 

apoptotic signaling within the center of the colonies.  

 

Dominant-active Rap1 desensitizes T4-2 cells to reversion by treatment with EGFR 

inhibitors. 

Whereas expression of DN-Rap1 reverted cells to a normal tissue polarity when 

cultured in 3D lrECM, stable T4-2 transfectants that exogenously expressed dominant-

active Rap1 (T4-DA-Rap1) formed disorganized clusters indistinguishable from controls 

(compare Fig. 1A to Fig. 3A).  However, in the presence of AG1478, T4-DA-Rap1 cells 

failed to revert, forming large colonies with improperly localized c6-integrin (Fig. 3A).  
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Reverting T4-vector cells by treatment with AG1478 resulted in down-regulation of both 

EGFR and d1-integrin, as reported previously for wild-type T4-2 cells (31).  However, 

expression of these molecules was unaffected in AG1478-treated T4-DA-Rap1 cells (Fig. 

3B).  Expression of DA-Rap1 likewise blocked restoration of tissue polarity by treatment 

with standard inhibitory concentrations of the function-blocking EGFR antibody mAb225 

(2 og/ml; Fig. 3C) or the MAPK pathway inhibitor PD98059 (10 oM; Fig. 3C).  To 

determine if the resistance to inhibitors of the EGFR pathway was dose-dependent or 

absolute, we applied higher doses of AG1478, mAb225, or PD98059 and found that a 3-

4-fold higher concentration of each antagonist was required to revert T4-DA-Rap1 cells 

than to revert the controls (Fig. 3C).  In contrast, T4-DA-Rap1 cells were reverted 

successfully by standard treatment with the PI3K inhibitor LY294002 (Fig. 3C).  These 

data suggest that expression of DA-Rap1 prevents T4-2 cells from sensing the 3D lrECM 

microenvironment, and results in an uncoupling of EGFR and d1-integrin signaling 

pathways analogous to the effects of growing T4-2 cells on tissue culture plastic (31). 

 

Rap1 activity affects invasive phenotype and tumorigenesis of malignant T4-2 cells. 

To explore whether these findings had relevance to tumor formation in vivo, we 

investigated two aspects of malignant behavior: invasion in Matrigel-coated transwell 

chambers and frequency of tumor formation.  We found that invasiveness correlated with 

Rap1 activity: invasion of T4-DN-Rap1 and T4-DA-Rap1 cells were 50% and 400% that 

of controls, respectively (Fig. 4A).  To determine the effect of Rap1 on the tumorigenic 

potential of T4-2 cells, xenograft tumors were formed by injecting T4-vector, T4-DN-

Rap1, and T4-DA-Rap1 cells subcutaneously into athymic nude mice.  Tumor growth 
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correlated with Rap1 activity: the percentage of mice bearing large (>10 mm
3
) tumors 

was enhanced by DA-Rap1 and abrogated by DN-Rap1 (Fig. 4B).  Pathological 

examination revealed that tumors derived from T4-DA-Rap1 cells were of a higher grade 

of malignancy than controls.  At week 10 after injection, the tumors formed by control 

T4-vector cells were no longer proliferative, as determined by the absence of Ki67 

staining, while T4-DA-Rap1 cells were still dividing (data not shown).  In addition, blood 

vessel infiltration was frequently observed in xenografts derived from T4-DA-Rap1 cells 

(Fig. 4C). 

 

MAPK and PI3K signaling are modulated by Rap1. 

To dissect the molecular mediators of Rap1 signaling in 3D lrECM, we examined 

the expression and phosphorylation levels of downstream signaling molecules.  Although 

T4-DA-Rap1 cells were resistant to reversion by AG1478, and T4-DN-Rap1 cells 

adopted normal tissue structure and polarity in the absence of EGFR inhibitors, we could 

detect no differences in the levels of active or total EGFR under these two conditions 

(Fig. 5A).  This is in contrast to cells reverted by small molecule inhibitors of EGFR or 

PI3K as well as d1-integrin伊 or EGFR inhibitory antibodies (30-32).  However, Erk1/2 

and its target molecule p90RSK were more highly phosphorylated in T4-DA-Rap1 than 

in T4-DN-Rap1 cells or in controls, consistent with studies reporting activation of Erk1/2 

by Rap1 (13, 19), and consistent with our inability to revert them using standard 

concentrations of MEK inhibitor (Fig. 4C).  Another MAPK family protein, p38, which 

was shown to be activated by Rap1 in neuronal cells (41), was unaffected, suggesting that 

Rap1 acts downstream of EGFR and upstream of Erk1/2 specifically in T4-2 cells. 
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To delineate the connection between Rap1 and apoptotic mechanisms carving the 

lumen, we measured the level of phosphorylated active Akt, which plays a central role in 

activating survival signals and suppressing death signals (42). We found that its level was 

greatly decreased in T4-DN-Rap1 cells (Fig. 5B).  Phosphorylation of GSK3d, a target of 

Akt, was similarly downregulated, whereas the PI3K antagonist PTEN was upregulated 

in T4-DN-Rap1 cells, indicating that PI3K signaling through Akt was decreased by 

expression of DN-Rap1.  Unsurprisingly, we did not detect significant differences in the 

expression of phospho-Akt, phospho-GSK3d, or PTEN in T4-DA-Rap1 cells compared 

to controls, consistent with our ability to revert them with equal doses of the PI3K 

inhibitor LY294002.  We found that expression of the pro-apoptotic factor FOXO1 was 

reduced in T4-DA-Rap1 and increased in T4-DN-Rap1 cells at both the mRNA and 

protein levels (Fig. 5C), providing further evidence that cell death pathways were 

affected by Rap1 activity, and implicating FOXO1 in lumen formation in mammary 

epithelial cells.  Thus, upregulated activity of Rap1, as is found in tumorigenic T4-2 cells, 

uncouples normal microenvironmental cues from apoptotic signaling, thereby inhibiting 

establishment of tissue polarity, lumen formation, and acinar morphogenesis. 
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Discussion 

The functional unit of the mammary gland is the acinus, the establishment and 

maintenance of which depend on integration of cues from the surrounding 

microenvironment (43).  A defining feature of the acinus is that its constituent cells are 

polarized, with distinct basolateral and apical membrane domains, surrounding a central 

lumen, which is required for secretion and storage of milk during lactation.  One of the 

early events in breast cancer progression (44) is the loss of the cues that maintain the 

lumen (28, 36, 37, 39, 45), i.e., aberrations in both apoptosis and autophagy.  Here, we 

identify Rap1 as a central modulator of lumen formation in breast epithelial cells, 

functioning upstream of the previously identified regulator Bim as well as several other 

pro-apoptotic molecules, including PTEN and FOXO-1.  The level of Rap1 activity 

correlates with the architecture of the acinus: if the level is appropriate, acini are formed; 

if it is too high, apoptosis is impaired, cells lose polarity, become motile, and acini are 

filled. 

 

Whereas inhibiting Rap1 activity restored tissue polarity and reduced 

tumorigenicity of T4-2 cells, high levels of Rap1 activity rendered cells resistant to 

reverting agents, and resulted in formation of high grade tumors.  These data underscore 

the notion that tissue polarity and malignancy are inversely related (43), but that tissue 

polarity and growth suppression are regulated by distinct pathways: here, cells expressing 

DN-Rap1 formed correctly polarized acini yet continued to proliferate more than their 

vector-transfected AG1478-reverted counterparts, and xenografts derived from these cells 

essentially failed to generate tumors.  These data, and our previously published work 
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delineating the roles of Akt and Rac1 in proliferation and polarity downstream of PI3K 

(32), suggest that reversion of the malignant phenotype need not necessarily target 

deregulated proliferation if the treatment restores tissue architecture.  Moreover, a 

polarized epithelial architecture has a protective effect, preventing malignancy even in 

cells with underlying genomic abnormalities (46-48).  Intriguingly, down-modulating 

Rap1 activity also down-modulated Akt signaling – as evaluated by levels of phospho-

Akt, phospho-GSK3d, and PTEN (Fig. 5B) – but had no effect on cell proliferation.  

These data are in contrast to reversion by treatment with the PI3K inhibitor LY294002, 

which also down-modulates signaling through both Akt and Rac1, but which leads to 

restoration of tissue polarity accompanied by growth modulation (32).  One obvious 

difference between these two treatments is that PI3K inhibition leads to feedback 

modulation on both EGFR and d1-integrin levels (32, 49), whereas DN-Rap1 does not, 

suggesting either that PI3K and Rap1 are parallel pathways downstream of EGFR, or that 

Rap1 is activated independently of EGFR in tumorigenic T4-2 cells.  In fact, DN-Rap1 is 

thus far the only reverting agent found that fails to normalize the activities of the other 

untreated pathways. 

 

The data demonstrating that dysregulation of Rap1 correlates with destruction of 

tissue architecture and increased grade of malignancy are supported by several other 

studies showing a role for Rap1 in tumor progression (15, 16, 18, 20, 50).  In the case of 

T4-2 cells, active Rap1 down-modulates pro-apoptotic pathways and upregulates MEK.  

T4-DA-Rap1 cells have a molecular signature that suggests a more aggressive malignant 

phenotype compared to vector controls.  That T4-DA-Rap1 cells formed larger and more 
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aggressive tumors suggests that hyperactivation of Rap1 either directly or indirectly 

stimulates the production of cytokines or pro-angiogenic molecules.  Indeed, activation of 

Rap1 was previously found to stimulate production of vascular endothelial growth factor 

(VEGF) in transformed prostate cells (51), and T4-DA-Rap1 cells show enhanced 

expression of VEGF by cDNA microarray analysis (not shown). 

 

The integration of signals from cell-cell and cell-ECM adhesions is crucial for 

organizing acinar architecture and maintaining mammary tissue homeostasis.  Decreased 

d1-integrin signaling and lack of ECM contact induce apoptosis of mammary epithelial 

cells resulting in the induction of acinar morphogenesis and lumen formation (37, 40); 

these signals are aberrant in tumorigenic cells such as T4-2.  Appropriate Rap1 signaling 

appears to redress the balance of these elements.  Further studies on the effects of Rap1 

on integrins, cadherins, Rac1, and FOXO1 in our culture models will yield insight into 

the molecular mechanisms organizing acinar architecture and breast tumor progression. 
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Figure Legends 

 

Figure 1.  Downregulation of Rap1 activity in malignant T4-2 cells restores tissue 

polarity in 3D lrECM culture.  (A) Phase-contrast images of S1 and T4-2 cells cultured in 

3D lrECM. (B) Rap1 expression and activity levels in S1 and T4-2 cells.  Bar, 10 om.  

(C) Morphology of T4-vector treated with and without AG1478 and T4-DN-Rap1 

colonies in 3D lrECM.  Cell polarity was examined by staining markers for basal (c6-

integrin), basolateral (d-catenin), and apical (GM130) membrane domains.  Bar, 5 om. 

(D) Cell proliferation in 3D lrECM was determined by measuring colony size (left) and 

Ki-67 positive colonies (right). Shown are averages and standard deviation across three 

independent experiments.  (*) p<0.05. 

 

Figure 2.  Bim-mediated lumen formation is induced in T4-DN-Rap1 cells but not in 

AG1478-treated control cells. (A) Phase contrast images after 15 days of culture in 3D 

lrECM, showing prominent lumina in T4-DN-Rap1 acini but not in AG1478-treated T4-

vector acini.  The localization of actin filaments in apical membrane domains confirmed 

lumen formation and establishment of apical polarity in T4-DN-Rap1 acini.  Apoptotic 

cell death was examined by staining for active-caspase3 at day 10 of culture. (B) 

Expression level of Bim in T4-vector, AG1478-treated T4-vector, and T4-DN-Rap1 cells 

at day 10 of culture in 3D lrECM.  Bar, 5 om. 

 

Figure 3.  T4-DA-Rap1 cells show dose-dependent resistance to reversion by inhibitors 

of EGFR and MAPK. (A) Phase-contrast images and immunofluorescence localization of 
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c6-integrin in T4-DA-Rap1 cells with or without 70nM AG1478 in 3D lrECM. (B) 

Levels of d1-integrin, EGFR, and phospho-EGFR in 3D lrECM cultured T4-vector cells, 

and T4-DA-Rap1 cells in the presence and absence of 70nM AG1478.  (C) Dose-

dependent effect of reverting agents on T4-DA-Rap1 cells in 3D lrECM.  Cells were 

treated with different doses of inhibitors against EGFR (AG1478 and mAb225), MEK 

(PD98059) or PI3K (LY294002). Bar, 5 om.   

 

Figure 4.  Level of Rap1 activity affects invasiveness and tumorigenic potential of T4-2 

cells. (A) Invasiveness of T4-vector, T4-DA-Rap1, and T4-DN-Rap1 cells was examined 

using matrigel-coated transwell filters.  Quantification at 48 hr after plating. (B) The 

transfectants were subcutaneously injected into nude mice to examine tumorigenic 

potential. Tumor size measured at 8 weeks after injection and mice bearing tumors larger 

than 10mm
3
 were scored. (C) Histology of tumors derived from T4-vector and T4-DA-

Rap1 cells.   

 

Figure 5.  Phenotype modulation caused by Rap1 occurs through different signaling 

pathways from those targeted by EGFR or d1-integrin modulation.  Activity and 

expression of the components of EGFR-MAPK pathway (A) and PTEN/Akt pathway (B) 

were examined by western blotting. 

(C????The??levels??of??FOXO1??protein??and??mRNA??were??determined??by??wes

tern??and??RT-PCR??analysis,??respectively.?? 

 



Figure 1: Down-regulation of Rap1 activity in malignant T4-2 cells

restores tissue polarity in 3D lrECM culture 

A B

active Rap1

total Rap1

d-actin

S1 T4-2T4-2S1

C

D

C
o

lo
n

y
 s

iz
e
 (
om

)

0

20

40

60

80

T4-vector T4-DN-Rap1T4-vector

+ AG1478

day3
day5

day8

0

20

40

60

80

T4-vector T4-DN-Rap1T4-vector

+ AG1478

K
i-

6
7
 (

+
) 

c
o

lo
n

ie
s
 (

%
)

day3
day5
day8

T
4

-D
N

-R
a
p
1

phase-contrast c6-integrin

T
4

-v
e
c
to

r
T

4
-v

e
c
to

r
+

 A
G

1
4
7
8

d-catenin

/GM-130 

d-catenin

/GM-130 



BimEL

d-actin

T4-
ve

ct
or

T4-
D
N
-R

ap
1

T4-
ve

ct
or

+AG
14

78

B

lumen

T
4

-v
e
c
to

r

+
A

G
1
4
7
8

T
4

-D
N

-R
a
p
1

actinphase contrast active caspase3A

Figure 2: Bim-mediated lumen formation is induced in T4-DN-Rap1 cells

but not in EGFR inhibitor-treated control cells
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Figure 4: Level of Rap1 activity affects invasiveness and

tumorigenic potential of T4-2 cells
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