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Abstract 
 
Background 
 
Molecular evolutionary studies of noncoding sequences rely on multiple alignments. Yet 
how multiple alignment accuracy varies across sequence types, tree topologies, 
divergences and tools, and further how this variation impacts specific inferences, remains 
unclear. 
 
Results 
 
Here we develop a molecular evolution simulation platform, CisEvolver, with models of 
background noncoding and transcription factor binding site evolution, and use simulated 
alignments to systematically examine multiple alignment accuracy and its impact on two 
key molecular evolutionary inferences: transcription factor binding site conservation and 
divergence estimation. We find that the accuracy of multiple alignments is determined 
almost exclusively by the pairwise divergence distance of the two most diverged species 
and that additional species have a negligible influence on alignment accuracy. Conserved 
transcription factor binding sites align better than surrounding noncoding DNA yet are 
often found to be misaligned at relatively short divergence distances, such that studies of 
binding site gain and loss could easily be confounded by alignment error. Divergence 
estimates from multiple alignments tend to be overestimated at short divergence distances 
but reach a tool specific divergence at which they cease to increase, leading to 



underestimation at long divergences. Our most striking finding was that overall alignment 
accuracy, binding site alignment accuracy and divergence estimation accuracy vary 
greatly across branches in a tree and are most accurate for terminal branches connecting 
sister taxa and least accurate for internal branches connecting sub-alignments. 
 
Conclusions 
 
Our results suggest that variation in alignment accuracy can lead to errors in molecular 
evolutionary inferences that could be construed as biological variation. These findings 
have implications for which species to choose for analyses, what kind of errors would be 
expected for a given set of species and how multiple alignment tools and phylogenetic 
inference methods might be improved to minimize or control for alignment errors. 
 
 
Background 
 
Annotation of cis-regulatory sequences, non-coding RNAs and other functional 
noncoding sequences is a major challenge in molecular genetics today. Whole genome 
sequences of closely related species, such as those now available in mammals, flies, 
worms, yeast and bacteria, provide an opportunity for evolutionary analyses to greatly aid 
in this effort, but also present new challenges for sequence analysis [1]. 
 
The first step in studying the evolution of noncoding sequences is alignment. New tools 
have been developed for fast and accurate alignment of long stretches of genomic 
sequence (reviewed in [2-4]) and benchmarking studies have begun to address the 
accuracy of these pairwise [5, 6] and multiple [7, 8] alignment tools under various 
evolutionary scenarios. Knowing the nucleotide-level accuracy of alignment tools greatly 
informs decisions about which tools to use and which species to compare, but the impact 
of alignment error on evolutionary studies of noncoding sequences is only just beginning 
to be explored [6, 8]. 
 
Sophisticated molecular evolution models and tests have been developed over the last 
few decades to identify various forms of selection and sequence features, yet their 
application nearly always assumes a perfect alignment [9]. It is commonly appreciated 
that highly diverged species align poorly and therefore are unsuitable for many alignment 
based evolutionary inferences. Thus cautious researchers tend to study recently diverged 
species that align trivially, but which have the potential to not be as informative as more 
diverged species. Ideally one would use the set of species that maximize information for 
an acceptable amount of error in an estimate. 
 
Because of the inferential nature of evolutionary studies, no experiment in extant taxa 
could generate information about the true orthology of sequences, so simulations offer a 
tractable alternative. Molecular evolution simulations have been used to assess 
evolutionary analysis methods, including divergence estimation [10, 11] and phylogeny 
reconstruction methods [12-15], as well as protein [16, 17] and non-coding alignment 
accuracy [5-8, 18, 19]. 



 
Here we present the results from a simulation-based study assessing the accuracy of 
multiple alignments and the effect of alignment accuracy on two fundamental 
evolutionary inferences: transcription factor binding site conservation and divergence 
distance estimation.  
 
The most frequent noncoding targets of comparative analyses are cis-regulatory DNAs 
that contain functional binding sites for transcription factors and thereby control gene 
expression [20]. Although transcription-factor binding sites are generally more conserved 
than surrounding sequences [21-34], they have also been observed to be gained and lost 
through evolution [35-42]. Precise measurements of binding site conservation, therefore, 
are essential for studying their evolutionary dynamics as well as identifying regulatory 
regions.  
 
Divergence estimates inform nearly all evolutionary analyses. Accurate measurements of 
noncoding divergences are used for many purposes including differentiating functional 
from non-functional sequences based on constraint [43-51], showing lineage specific rate 
changes [52, 53] and as a baseline for comparing other kinds of rates, like binding site 
gain and loss [38].  
 
Below we first examine multiple alignment accuracy across tools, sequence types, trees 
and divergences. We show that multiple alignment accuracy is primarily determined by 
the pairwise divergence of the two most diverged species. We next look at alignment 
accuracy of transcription factor binding sites. We show that although they align better 
than their surrounding noncoding DNA, they are misaligned at a high enough frequency 
such that precise studies of gain and loss events could easily be confounded by alignment 
errors. Finally we look at the impact multiple alignment accuracy has on divergence 
distance estimation. We show that divergences tend to be overestimated at short distances 
and cease to increase at a tool specific maximum divergence, corresponding to the point 
at which alignment accuracy reaches its minimum. We also show that overall alignment 
accuracy, binding site alignment accuracy and divergence estimation accuracy vary 
across branches in a tree such that terminal branches are aligned better than internal 
branches. Implications for method development and evolutionary analysis are discussed. 
 
Results 
 
CisEvolver 
 
For the purposes of this study we developed a molecular evolution simulator, CisEvolver, 
that incorporates several known characteristics of noncoding sequences. CisEvolver takes 
an ancestral DNA sequence and evolves it along a mutation guide tree, producing 
sequences for which we know the true alignment. The utility of such a simulation is that 
the sequences can be re-aligned using standard alignment tools and the accuracy of the 
tool alignment as well as the accuracy of any inference from the tool alignment can be 
measured by comparison with the true alignment. In cases where the error in an inference 
is due to both alignment error and error in the inference method itself, the contribution of 



alignment error to the total inference error can be directly measured by comparison of 
inference from the tool alignment and inference from the true alignment. 
 
We implemented CisEvolver with two types of sequences, background genomic sequence 
and transcription factor binding sites. Background genomic sequences are evolved 
according to the Hasegawa Kashina Yano 1985 (HKY85) substitution model [54], a 
Poisson insertion/deletion (indel) event model and an empirical indel length frequency 
distribution [55]. Transcription factor binding sites are evolved according to the Halpern 
Bruno 1998 (HB98) model of position specific substitution rates [56, 57], which requires 
the less degenerate positions in a transcription factor binding site to evolve more slowly 
and more specifically according to a position specific weight matrix [58] (see Methods 
for more details). 
 
CisEvolver is freely available [59]. 
 
Simulations & Alignments 
 
Using CisEvolver we simulated a large set of alignments on which downstream analyses 
were performed. Sequences were simulated over a range of total divergence distances on 
two, three and four species trees with fixed topologies and fixed branch length 
proportions as depicted in figure 1. The relative branch lengths in these three topologies 
were chosen for direct comparisons of branches within the tree, as discussed below (see 
Alignment Accuracy). Two basic classes of sequences were simulated representing either 
10kb background genomic sequences or variable length enhancer sequences. Background 
genomic sequences were simulated with uniform substitution and indel rates. Enhancer 
sequences were evolved from 36 experimentally characterized regulatory regions from 
Drosophila melanogaster [26, 60] containing the binding sites for eight transcription 
factors with known binding specificity: Bicoid, Caudal, Giant, Hunchback, Knirps, 
Kruppel, Tailless and Torso-Response Element [60-62]. Binding sites within the 
enhancers were evolved using CisEvolver’s binding site evolution model with no gain or 
loss events and surrounding sequences were evolved as genomic background with 
substitutions and indels (see Methods for more details). One hundred replicates and 25 
replicates for each divergence and tree topology were generated for background genomic 
sequences and each of the 36 enhancers respectively.  
 
All alignments were performed using default parameter settings for Clustalw [63], Mavid 
[64], Mlagan [65] and Blastz/Tba [7, 66, 67] (see Methods for details). These tools were 
chosen based on their usage, availability, speed and ability to produce collinear multiple 
alignments of large genomic regions and were meant to be representative of algorithms 
and parameter settings. We note that Blastz/Tba is a local alignment tool and therefore, 
unlike the global alignment tools, does not always return an alignment. Finally, although 
we present the relative performance of these specific tools, our focus in this study is on 
the relationship of their accuracy with evolutionary scenarios and the inferences that can 
be made from their alignments.  
 
Alignment Accuracy 
 



Using simulated true alignments and tool alignments we characterized the variation in 
alignment accuracy across alignment tools, divergences and trees. Alignment accuracy 
was defined as the fraction of ungapped columns in a true alignment that were aligned 
identically in a tool alignment (see Methods & “sensitivity” in [5]). We examined many 
aspects of pairwise and multiple alignment accuracy and our major observations were: 
 
i. Alignment accuracy varies across tools and divergences (figure 2A). 
 
ii. The presence of transcription factor binding sites leads to higher alignment accuracy 
(figure 2B). 
 
iii. More species results in better accuracy when comparing trees of equal total 
divergence but different numbers of leaves (figure 2C).  
 
iv. The improvement of adding a fourth species is less than that of adding a third when 
comparing trees of equal total divergence but different numbers of leaves (figure 2C). 
 
v. Adding in-group species or out-group species to a pair of species has an insignificant 
effect on the alignment accuracy of the pair (figures 2D, 2E & 2F). 
 
In addition to these investigations into alignment accuracy across all species in 
alignments, we also examined the alignment accuracy for subsets of species within 
multiple alignments, attempting to relate the accuracy to the tree topology. We measured 
what we call leaf-to-leaf accuracy, node-to-leaf accuracy and node-to-node accuracy (see 
Methods). Leaf-to-leaf accuracy refers to the accuracy of the alignment of sister taxa (i.e. 
seq3 to seq4 in the four species alignments in figure 1), conditioned on the columns being 
ungapped across all the sequences. Node-to-leaf accuracy refers to the accuracy of the 
three species alignments, conditioned on the columns containing correct alignments of 
seq1 to seq2. Node-to-leaf accuracy therefore only depends on the alignment accuracy of 
node1 to seq3. Similarly, node-to-node accuracy refers to the accuracy of the four species 
alignments, conditioned on the columns containing correct alignments of seq1 to seq2 
and seq3 to seq4. Node-to-node accuracy therefore only depends on the alignment 
accuracy of node1 to node2. Using these measures we also found that: 
 
vi. Leaf-to-leaf alignments are more accurate than node-to-leaf alignments, which are 
more accurate than node-to-node alignments, with the exception of highly diverged 
enhancers (figures 2E & 2F). 
 
Observations i and ii were consistent with our expectations. Although all four tools in this 
study use some form of the Needleman-Wunsch algorithm, they each utilize unique 
algorithmic features and scoring schemes, leading to variation in their alignments and 
therefore alignment accuracy under different evolutionary conditions (figure 2A). Both, 
the decrease in alignment accuracy with greater divergence distance (figure 2A) as well 
as the increase in alignment accuracy with the addition of transcription factor binding 
sites (figure 2B), are the expected outcome of higher similarity and fewer indels leading 
to higher alignment accuracy (as we have previously reported for pairwise alignments 



[5]). 
 
Our results on the relationship of alignment accuracy to the number of species aligned 
(observations iii, iv and v) are consistent with the hypothesis that the pairwise distance 
between the two most diverged species in a tree effectively determines alignment 
accuracy. Across tools and divergences, adding ingroup or outgroup species to a pair of 
species of fixed divergence had an insignificant effect on alignment accuracy (t-test, 
p>0.05) (figure 2D and leaf-to-leaf accuracy in 2E & 2F). Brudno et al found Mlagan 
alignments of human and fugu exons were improved by 3% with the addition of mouse as 
an in-group [65], which is consistent with the trend we observed with Mlagan alignments 
improving with in-group addition, but this trend was not found to be highly significant at 
any divergence. Observations iii and iv, that dividing a fixed total divergence up with 
more species improves accuracy incrementally (figure 2C), may appear to be in conflict 
with this hypothesis but are in fact consistent. The increase in alignment accuracy with 
additional species dividing up a fixed total divergence is due to a decrease in the pairwise 
divergence between the two most diverged species, not the actual addition of species 
(figures 2D, 2E & 2F). Thus the span of the two most diverged species, not the number of 
species in the alignment, appears to be the primary determinant of alignment accuracy. 
 
Finally, observation vi, that alignment accuracy varies across branches in a tree, is quite 
unexpected. The progressive alignment steps that these four tools use appear to be biased 
toward aligning leaf sequences better than internal nodes, where sub-alignments must be 
aligned (figure 2E). This bias was found to be inconsistent for enhancer sequences, for 
which alignment accuracy of node-to-node and node-to-leaf branches actually were better 
than leaf-to-leaf branches at high divergences (figure 2F). This variation is surprising 
given that the accuracy of the alignment of a node to another node or sequence is 
conditioned on the sequences below that node (in the tree) having been aligned correctly 
(see Methods). These results suggest that the step of aligning sub-alignments is harder 
than aligning sequences, consistent with the idea that progressive alignment heuristics 
often lead to sub-optimal alignments [68]. Variation of alignment accuracy across 
branches in a tree has profound implications for phylogenetic analysis. 
 
To understand the relationship of the observed variation in alignment accuracy with 
phylogenetic analyses performed using automated alignments, we explored the following 
two evolutionary inferences. 
 
Transcription Factor Binding Site Alignment 
 
Using simulated true alignments and tool alignments of enhancers containing conserved 
transcription factor binding sites we examined the accuracy of binding site alignment and 
its relationship with overall alignment accuracy. We used two definitions of binding site 
alignment. Aligned sites were classified as either perfectly aligned, meaning every base 
in the binding site was aligned correctly across all species, or overlapping, meaning the 
binding sites across the species overlapped at at least one position (similar to definitions 
in [34]).  
 



We first looked to see if binding site alignment accuracy varies across tools and 
divergences. Indeed, across tools binding alignment accuracy is a decreasing function of 
divergence distance. Figure 3A shows the fraction of sites overlapping in four species 
enhancer alignments. 
 
We next compared our two binding site alignment scores. We were somewhat surprised 
to see how different the two scores are, based on the intuition that conserved binding sites 
should make for good anchors and large indels in flanking sequences therefore ought to 
be the cause of most alignment errors. Instead it appears that binding sites are often still 
overlapping in an alignment even if they are not perfectly aligned. Figure 3B shows the 
difference between our two scores in four species alignments. The large difference 
between the two scores suggests that evolved binding sites might not be strong anchors 
and therefore alignment errors in regulatory regions may often be subtle. 
 
We next looked to see how binding site alignment accuracy is related to overall 
alignment accuracy. Across tools, divergence distances and trees, binding site alignment 
accuracy is highly correlated with overall alignment accuracy, however, binding site 
alignment accuracy is consistently higher than overall alignment accuracy. Figure 3C 
shows overlap binding site accuracy as a function of overall alignment accuracy for four 
species alignments. Similar to overall alignment accuracy of enhancers (figure 2F), 
binding site alignment accuracy also varies across branches in trees (figure 3D).  
 
Lastly, we looked at properties of enhancers and binding sites to see how they are related 
to binding site alignment accuracy. We expected that enhancers with a greater density of 
binding sites would align more easily. Indeed, across tools, divergence distances and 
trees, binding site alignment accuracy is strongly and significantly correlated with the 
density of binding sites in an enhancer (figure 3E, Spearman’s rho=0.92 p<10-10). We 
also looked at the length and average information content of binding sites to see if longer 
or more highly specified sites tend to align better. Across tools, divergence distances and 
trees, binding site alignment accuracy is correlated with binding site length (figure 3F, 
Spearman’s rho=0.44 p<0.3) and average information content (Spearman’s rho=0.40 
p<0.35) but neither correlation is significant, likely because of the small number of 
factors used in this study. Thus the greater the density and the longer and more specified 
the sites in an enhancer, the more likely the sites will be aligned correctly. 
 
Divergence Estimation 
 
Using simulated true alignments and tool alignments of 10kb background noncoding 
sequences we investigated the effects of alignment errors on divergence estimation. 
Divergence distances were estimated from alignments using the Baseml program from 
the PAML package [69] (see Methods for run parameters). We used divergence 
estimation error, instead of accuracy, so as to capture the directionality of errors 
(overestimated or underestimated). We defined it as the fractional difference between the 
Baseml estimate and the true divergence used in the simulation: (Estimate – True) / True. 
 



We first checked to see if divergence estimates from the simulated alignments are 
accurate. Indeed out to high divergence distances, Baseml estimates are very close to 
input divergences (figure 4).  
 
We next looked to see if and how divergence estimation accuracy varies across tools and 
divergences. Our expectation was that divergence estimation accuracy would steadily 
decrease with divergence distance at a tool specific rate, as alignment accuracy does. 
Instead we found estimated divergences tend to be mostly accurate (or somewhat 
overestimated) at short divergence distances but are always underestimated at long 
divergence distances. Figure 4A shows divergence estimates from four species 
alignments across tools and divergences. Figure 4B shows the same data presented as 
divergence estimation error, as a function of true divergence distance. Perhaps most 
striking is the asymptotic approach of estimates to tool specific maxima. This result is 
consistent with Shabalina and Kondrashov’s findings that the alignment of random 
sequences results in a percent identity much greater than the random expectation of the 
sum of the squared base frequencies [70]. If diverging sequences evolve to a lower 
identity than that of random sequences then alignment tools treat them like they are 
random and produce an alignment that has a fixed divergence. Indeed aligned random 
sequences produce similar divergences as the observed maximum divergences from our 
simulations (data not shown). Interestingly, the two tools that have the highest maximum 
divergence (Clustalw and Mlagan) both overestimate divergences at short divergence 
distances while the two other tools do not. Finally, Tba, the only local alignment tool in 
our analysis, stops returning alignments before it reaches its maximum divergence, 
indicating that the algorithm can avoid aligning random alignments but therefore also 
cannot return weakly informative alignments at large divergence distances. 
 
Because divergence estimation accuracy appears to vary in different ways than alignment 
accuracy, we looked directly at their relationship. Figure 4C shows four species 
divergence estimation error as a function of alignment error. With the exception of Tba, 
which stops returning alignments while alignment error is still small, tools reach the point 
at which divergence estimates cease to increase close to the point at which alignment 
accuracy reaches its minimum. The accuracy of divergence estimates from Mavid may be 
due to the fact that it requires a tree with branch lengths and we provided the true 
divergences. The accuracy of divergence estimates from the other three tools is 
remarkable given the poor quality of the alignments at long divergence distances. 
 
We last looked to see if divergence estimation accuracy varies across branches in trees as 
alignment accuracy does. Across tools, divergence estimates were most accurate for leaf-
to-leaf branches, less accurate for node-to-leaf branches and least accurate for node-to-
node branches. Figure 4D shows the error in divergence estimates from Mlagan 
alignments of leaf-to-leaf, node-to-leaf and node-to-node branches in two, three and four 
species trees. Mlagan’s tendency to overestimate divergence distances at short divergence 
distances and to underestimate divergence distances at long divergence distances is least 
pronounced in leaf-to-leaf alignments and most pronounced in node-to-node alignments. 
The point at which divergence distances cease to increase also appears to be at a shorter 
divergence distance for node-to-node branches than leaf-to-leaf branches, reflecting the 



lower alignment accuracy of those branches. The variation in divergence estimation 
accuracy across branches in a tree has significant implications for phylogenetic analysis 
of DNA sequences. 
 
Discussion 
 
Molecular evolutionary studies of noncoding DNA have either relied on the intuition that 
closely related species can be aligned well or have ignored alignment error all together 
[1-4, 9]. To gain perspective on how alignment might impact evolutionary analysis, we 
investigated multiple alignment accuracy and its relationship with two fundamental 
evolutionary inferences: transcription factor binding site conservation and divergence 
estimation. 
 
Because gold standards for base-level noncoding and regulatory DNA alignment 
accuracy do not exist, we developed a simulation platform called CisEvolver that can 
evolve background noncoding DNA, transcription factor binding site DNA or a mixture 
of the two (enhancers). We implemented CisEvolver with features of background and 
regulatory sequence evolution that are well modeled and are present in most comparative 
systems. Certainly more complicated evolutionary phenomena have been observed, and 
in cases where modeling is successful, ought be the subject of future studies. For 
instance, substitution rates have been shown to vary across sequences and have been 
modeled in various ways, most commonly using a gamma distribution [71]. In our study 
we modeled both substitution and indel rate variation using interspersed transcription 
factor binding sites, but rates may vary for additional reasons other than regulatory 
constraints, in which case a gamma distribution in our background model may be 
appropriate. Interestingly, a recent study showed that using a gamma distribution in 
simulations has no effect on Clustalw alignment accuracy when comparing sequences 
with the same overall identity [6], suggesting that our results are likely robust to rate 
variation. Compensatory substitutions (like those observed in structural noncoding 
RNAs) [72-74], ancient and lineage specific repetitive sequences (like those common in 
mammals), inversions and rearrangements [75, 76] could all be incorporated into the 
CisEvolver platform for alignment analysis. As models of the cis-regulatory code [77] 
and binding site evolution [38, 57] are developed, they too should be tested for affects on 
alignment accuracy. Additionally, the trees we chose to study are idealistic, in that they 
are ultrametric (leaves are equidistant from parent nodes), and they contain relatively few 
species compared to many real datasets. Trees with rate changes across many lineages 
would likely present additional problems that should be examined in future studies. A 
comprehensive analysis of the influence of tree shapes on alignment would be an 
interesting future direction (see [8] for an initial analysis). Despite the absence of these 
more complicated or unexplored aspects of noncoding evolution in the current study, our 
results suggest that even under these simple and ideal circumstances numerous issues 
arise from alignment error that ought to be qualitatively informative for all systems. 
 
Using alignments generated by CisEvolver we tested the accuracy of alignments 
generated by four commonly used genomic alignment tools. All tools were run using 
their default parameter values (see Methods). It is quite possible that the accuracy of the 



alignments generated by some of these tools is highly sensitive to parameter settings and 
scoring schemes. In this study we focused on consistent behavior across tools and also 
how variation influenced inferences and were therefore not concerned with the relative 
performance of each tool. In order for users to optimize the use of current tools and also 
in order for designers of alignment tools to understand which algorithmic innovations 
actually improve alignment accuracy (beyond parameter settings), a systematic analysis 
of parameters is needed. In this study, using just default parameters, we found that the 
primary determinant of multiple alignment accuracy is the pairwise divergence distance 
between the two most diverged species in the alignment (figure 2D). Although dividing 
up a given divergence distance by more species improves accuracy (figure 2C), this 
appears to be simply due to the decrease in pairwise divergence separating the two most 
diverged species. Although we found that adding additional species (either in-groups or 
out-groups) to two species of a fixed divergence distance had an insignificant and 
inconsistent (across tools) impact on alignment accuracy (figure 2D), a concurrent study 
found that Clustalw alignments are most improved when an additional species is added at 
a distance equal to one third the pairwise distance separating two other species [8] (which 
we note is the topology we used in this study; see figure 1). Brudno et al also found that 
adding mouse to human-fish alignments improved Mlagan alignments by 3% [65]. If 
there is an affect of adding an in-group, our results suggest that it is weak and is not 
robust to alignment tool choice. Perhaps our most striking finding is that the accuracy of 
alignments varies across branches in a tree such that they are most accurate for 
alignments of sister taxa and least accurate between internal nodes that align sub-
alignments. As we discuss below, this variation in accuracy causes variation in inferences 
across the tree, which could easily be construed as lineage specific biological variation. 
Future development of tools that minimize this distortion in accuracy across branches in a 
tree will be extremely valuable. 
 
The first evolutionary inference we examined was the measurement of the conservation 
of transcription factor binding sites in regulatory regions. Studies have used conservation 
of binding sites as either a means of classifying functional from spurious predictions [21-
33] or for the purposes of understanding their rates of change, or turnover [35-42]. Here 
we wanted to understand how far out such estimates might be accurate, what approaches 
might be taken to improve such estimates and also which features of regulatory regions 
might affect such estimates. We found that binding sites are usually aligned better than 
their surrounding sequences (figures 2B & 3C) but are still misaligned starting at very 
short divergence distances (figure 3A). For instance, given the approximate divergence of 
Drosophila pseudoobscura from Drosophila melanogaster, at 1.79 substitutions per site 
[78], according to our results, only about 40% of truly conserved binding sites should 
even be overlapping in alignments. Unless the rate of binding site turnover is high 
enough such that the number of sites that have turned over is much larger than the 60% of 
truly conserved sites that have been misaligned, its unlikely that such a comparison 
would be useful for studying binding site evolution. If 40% binding site conservation, 
however, is higher than what might be expected in non-functional regions, then 
comparing these species might still be useful for predicting functional regulatory regions. 
Our finding that binding sites are often still overlapping in alignments even if they are not 
perfectly aligned (figure 3B) suggests that binding sites are not always strong alignment 



anchors, that small indels could lead to small alignment errors and that methods for 
identifying conserved binding sites that do not rely on perfect alignments would have 
greater sensitivity [21, 28, 79] (the specificity of such methods, however, would need to 
be explored to understand their predictive power). Finally we found that the higher the 
density of sites in an enhancer, the higher the alignment accuracy of the binding sites 
within, presumably due to the overall higher constraint and suppression of indels. 
Bacterial and yeast regulatory regions, for instance, are not understood to contain such 
high-density arrays of binding sites as metazoans [80, 81] and would therefore be 
expected to align more poorly, all else being equal. Although we also found that longer 
binding and more highly specified sites are easier to align, this requires further 
investigation with a larger panel of transcription factors. The variance in alignment 
accuracy introduced by such regulatory sequence properties is important to consider 
before determining the expected error from simulations or before interpreting an 
evolutionary comparison across regulatory regions. 
 
The second inference we considered was divergence distance estimation. We were 
impressed that our estimates using PAML’s Baseml program on the true alignments 
generated in our simulations were highly accurate out to rather high divergences, 
suggesting that saturation does not lead to inaccuracies at short divergence distances, at 
least when the right model is used (figure 4A & 4B). Because of the accuracy of the 
divergence inference step, we were able to look directly at the contribution of alignment 
error to divergence estimation. Although the tendency of two of the tools to overestimate 
divergences at short divergence distances is noteworthy (as was observed for Clustalw in 
[8]), most striking is the behavior that all tools reach a unique divergence distance at 
which divergence estimates cease to increase (figures 4A & 4B) (this underestimate was 
also observed for Clustalw in [8]). This point of maximum divergence corresponded with 
the point at which tools reached their minimum alignment accuracy or where they were 
essentially randomly aligned (figure 4C). Shabalina and Kondrashov previously reported 
that unrelated sequences produce alignments that have a greater percent identity than 
would be theoretically predicted from base composition, suggesting that alignment tools 
add gaps to create more matches and fewer mismatches in order to maximize their scores 
[70]. The “twilight zone” (the point where alignments become random) [82] is therefore 
not 25% identity but instead is a much shorter divergence (or higher identity) which 
varies across alignment tools. For instance, pairwise alignments generated by Mavid 
reach the point where divergence estimates cease to increase at about 0.5 substitutions per 
site, which is approximately the divergence estimated for human and mouse, suggesting 
that fast evolving human or mouse sequences would on average not be detected as such 
from Mavid alignments. It is worth noting that Tba, stops returning alignments before it 
reaches the point where divergence estimates cease to increase, suggesting that the 
scoring scheme Tba uses to filter its alignments can avoid producing random alignments 
but also that it might fail to return an alignment with some remaining phylogenetic signal. 
 
Our findings that overall alignment accuracy, binding site alignment accuracy and 
divergence estimation accuracy vary greatly across branches in a tree have profound 
implications for phylogenetic research of noncoding DNA. All four of the tools we 
examined exhibit systematic biases toward higher accuracy along branches connecting 



sister taxa relative to branches connecting internal nodes (figures 2E, 2F, 3D & 4D). 
Consider the example of studying binding site turnover rates relative to substitution rates 
in human, mouse and rat alignments. Even if these rates were constant across the tree, 
binding site turnover might be detected as higher along the human branch because of 
increased alignment error along the longer node-to-leaf branch and substitution rates 
might be underestimated along the human branch because it is longer than an alignment 
tool’s maximum divergence. Theses two biases combined would then cause turnover 
events per substitution to be even more distorted along the human branch. These results 
strongly suggest that either new alignment tools that minimize this bias or new 
phylogenetic methods that control for this bias need to be developed. 
 
Conclusions 
 
Errors in the alignment of noncoding DNA are systematic phenomena that affect 
evolutionary inferences, decreasing accuracy and biasing results. In order to use the rich 
diversity of variation in more diverged sequences, new alignment and phylogenetic 
methods need to be developed to reduce and control for errors in automated alignment. 
 
Methods 
 
CisEvolver 
 
CisEvolver was written in Perl. It is available for download [59]. 
 
Trees 
 
For both the divergence estimation and binding site conservation estimation simulations, 
each divergence distance tested was transformed into a Newick formatted tree. Figure 1 
shows how divergences were distributed across trees. 
 
Divergence Simulations 
 
For the divergence estimation simulations, 100 simulations were run for each divergence 
distance. For each simulation, a 10kb ancestral sequence was randomly generated from 
the D. melangaster mono-nulceotide base frequencies (60/40 AT/CG). The 10kb 
sequences were evolved from the root node of the tree down the branches to leaves using 
a substitution and indel model. Substitutions occurred according to the HKY85 
substitution model [54], using the D. melanogaster mono-nucleotide base frequencies and 
kappa set to 2.0 as has been observed in Drosophila [83]. Indel events occurred according 
to a Poisson indel event model: 
 
pindel =1− e−Rk  
 
where R is the relative rate of indels to substitutions and k is the length of the branch. In 
Drosophila indels have been found to occur approximately 10% the rate of substitutions 
so we used R=0.1 [84, 85]. Indel lengths were determined by a frequency distribution 



derived from D. melanogaster indel polymorphisms with a maximum of 58bp [55]. 
Insertions and deletions were treated identically. 
 
Cis-Regulatory Sequences 
 
Thirty-six experimentally characterized cis-regulatory regions that have been found to 
drive expression patterns in reporter assays recapitulating some or all of the expression 
pattern of an adjacent gene were collected from two recent papers on anterior/posterior 
patterning in D. melanogaster [26, 60]. The sequences were mapped to release 4.0 of D. 
melanogaster using BLAT [86]. A GFF file with the enhancer coordinates is available in 
additional file 1: Enhancers.gff. 
 
Transcription Factor Binding Sites 
 
The 36 cis-regulatory regions used in the study have been reported to be bound or 
predicted to be bound by some combination of the following factors: Bicoid [61], Caudal 
[61], Giant [62], Hunchback [62], Knirps [62], Kruppel [62], Tailless [62] and Torso-
response element [60]. Position weight matrices (PWMs) were either taken from 
published resources [60, 61] or were generated from published footprints [62] using 
MEME [87] (described at [88]). Matrices are available in additional file 2: Matrices.txt. 
 
For each of the 36 cis-regulatory regions, PASTER [89] was used to find sites with a p-
value less than 10-3 for each of the eight PWMs. If sites were overlapping one was 
randomly chosen and the others were thrown out. 
 
Transcription Factor Binding Site Conservation Simulations 
 
For the binding site conservation simulations, 25 replicates for each of the 36 cis-
regulatory regions were evolved to each of the divergence distances. Sequences were 
evolved from the root down the branches of each tree using either a background or 
binding site mutation model. Non-binding site sequences in the enhancers were evolved 
according the HKY85 and indel models described above. Binding sites were evolved 
according to the HB98 substitution model [56]. We have previously shown that there is 
position-specific variation in substitution rates across functional binding sites and that the 
HB98 substitution model accurately predicts the relationship between the degeneracy of 
positions in a PWM and the position specific substitution rate across binding sites [28, 
57]. The rate of change from residue a to b at position i in the binding site is given by: 
 

R(i)ab = Qab

log f ibQba

fiaQab

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1−
fiaQab

fibQba

, 

 
where Q is the background substitution model (HKY85) and f is the PWM for the factor. 
Indel events were not permitted in binding sites and deletions from background 
sequences were not allowed to extend into binding sites. 



 
Alignments 
 
Alignments were performed using default parameter values for each of the following 
tools: Clustalw [63], Mavid v0.9 [64], Mlagan v1.2 [65] and Blastz/Tba [7, 66, 67]. 
 
Alignment Accuracy 
 
Alignment accuracy was defined as 
 

Acc =
CTSU

CSU

, 

 
where CSU is the count of the ungapped columns in the simulated alignment and CTSU is 
the count of the ungapped columns in the simulated alignment that are aligned identically 
in the tool alignment. This measure is the same as “sensitivity” defined in [5]. 
 
Branch specific alignment accuracy was calculated similarly except that CSU was the 
count of ungapped columns columns for which the alignment was joining either 
sequences or correctly aligned sub-alignments and CTSU was the count of such columns in 
the simulated alignment that were aligned identically in the tool alignment. For instance, 
in a four species alignment, the node-to-node alignment accuracy was only based on the 
columns for which Seq1 and Seq2 were aligned correctly to each other and Seq3 and 
Seq4 were aligned correctly to each other (figure 1). Similarly, in a three species 
alignment, the node-to-leaf alignment accuracy was only based on the columns for which 
Seq1 and Seq2 were aligned correctly to each other. The motivation for this was to 
consider only the contribution to alignment accuracy a given branch contributes. 
 
A script written in PERL that can calculate these measures is available for download 
[59]. 
 
Binding Site Alignment Measures 
 
Binding site alignment was evaluated based on two measures. Sites that had the same 
start and stop position in each sequence in an alignment were considered to be perfectly 
aligned. Sites that were overlapping by at least one base in each of the sequence in an 
alignment were considered to be overlapping. The fraction of sites that were perfectly 
aligned and the fraction of sites overlapping in alignments across all cis-regulatory 
regions and all replicates are reported. The Pearson correlation between the density of 
binding sites in cis-regulatory regions and each measure as well as the correlation 
between the length of binding sites for each factor and each measure were calculated 
using the R statistics package [90]. 
 
Divergence Estimation 
 



Divergence estimates were calculated using the baseml program from the PAML package 
v3.14 [69]. Baseml was run with the HKY85 model, estimating kappa with an initial 
value of 2, fixed alpha at infinity, no clock and estimating the equilibrium base 
frequencies from the observed averages. 
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Figure legends 
 
Figure 1. Mutation Guide Trees. 
Simulations were performed on two, three and four species trees. Numbers on the 
branches indicate the fraction of the total tree divergence distance on each branch. 
 
Figure 2. Multiple Alignment Accuracy. 
A: Alignment accuracy varies across tools and divergences. Mean four species alignment 
accuracy for each tool was measured as a function of total divergence distance. B: 
Alignment accuracy improves with the presence of transcription factor binding sites. 
Mean improved alignment accuracy of enhancers over background sequences for four 
species alignments was measured as a function of total divergence distance. C: Dividing a 
fixed total divergence up with more species improves alignment accuracy. Mean Mlagan 
alignment accuracy for two, three and four species trees was measured as a function of 
total divergence distance. D: Adding in-group species to a pair of species has no effect on 
the alignment accuracy of the pair. Mean improved alignment accuracy of three species 
alignments over two species alignments, where the divergence distance between Seq1 
and Seq3 in the three species alignment was the same as the divergence distances 
between Seq1 and Seq2 in the two species alignment, was measured as a function of 
divergence distance. E & F: Alignment accuracy varies across branches in a tree and is 
best for leaf-to-leaf alignments and worst for node-to-node alignments, with the 
exception of highly diverged enhancers. Mean Clustalw alignment accuracy along 
branches in three and four species trees subtracted from mean two species alignment 
accuracy, where divergence along each branch is the same as the two species divergence, 
was measured in background sequences (E) and enhancers (F) as a function of divergence 
distance. 
 
Figure 3. Transcription Factor Binding Site Alignment Accuracy. 
A: Binding site alignment accuracy varies across tools and divergences. Fraction of 
binding sites overlapping in four species alignments was measured as a function of total 
divergence distance. B: Binding sites are often still overlapping in alignments even when 
they are not perfectly aligned. Fraction of binding sites perfectly aligned in four species 
alignments subtracted from the fraction of binding sites overlapping in four species 
alignments was measured as a function of total divergence distance. C: Binding site 
alignment accuracy is highly correlated with overall alignment accuracy and is 
consistently higher. Fraction of binding sites overlapping in four species alignments was 
measured as a function of overall alignment accuracy. D: Binding site alignment 
accuracy varies across branches in a tree and is best for leaf-to-leaf alignments and worst 
for node-to-node alignments. Fraction of binding sites overlapping along branches in 
three and four species trees subtracted from the fraction of binding sites overlapping in 
two species Clustalw alignments, where the divergence along each branch is the same, 
was measured as a function of divergence distance. E: Binding site alignment accuracy is 
positively correlated with binding site density in an enhancer. Fraction of binding sites 
overlapping in replicate four species Mlagan alignments of each of the 36 enhancers was 
measured as a function of the density of binding sites in the enhancer. F: Binding site 
alignment accuracy is positively correlated with binding site length. Fraction of binding 



sites overlapping in four species Mlagan alignments for each of the eight transcription 
factors was measured as a function of the length of the transcription factors’ binding 
sites. 
 
Figure 4. Divergence Distance Estimation. 
Divergences estimated from tool alignments are overestimated at short divergence 
distances and underestimated at large divergence distances while divergences estimated 
from true simulated alignments are accurate to large divergence distances. A: Mean 
divergence distance estimated from simulated alignments and tool alignments for four 
species trees was measured as a function of total true divergence distance. B: Mean 
divergence estimation error (Estimate – True / True) for four species trees was measured 
as a function of total true divergence distance. C: Divergence estimation error from tool 
alignments is not correlated with alignment error. Mean divergence estimation error for 
four species trees was measured as a function of mean alignment error. D: Divergence 
estimation error varies across branches in a tree and is best for leaf-to-leaf alignments and 
worst for node-to-node alignments. Mean divergence estimation error along branches of 
equal true divergence from two, three and four species Mlagan alignments was measured 
as a function of true divergence distance. 
 
Additional files 
 
Additional file 1 - Enhancers.gff 
This file, in GFF2 format [91], contains the coordinates of the 36 enhancers used in this 
study in Drosophila melanogaster release 4 coordinates [92]. 
 
Additional file 2 - Matrices.txt 
This text file contains horizontal counts matrices and vertical frequency matrices for each 
of the eight transcription factors used in this study. 


