
 - 1 -

CRISPR Recognition Tool (CRT): a tool for automatic
detection of clustered regularly interspaced
palindromic repeats

Charles Bland
1§

, Teresa L. Ramsey
3
, Fareedah Sabree

1
, Micheal Lowe

1
, Kyndall

Brown
1
, Nikos C. Kyrpides

 2
, Philip Hugenholtz

 2

1
Department of Computer Science, Jackson State University, Jackson, MS 39217

2
DOE Joint Genome Institute, Walnut Creek, CA 94598

3
Department of Computer Science and Engineering, University of Nebraska-Lincoln

§
Corresponding author

Email addresses:

CB: charles.bland@jsums.edu

FS: fareedah.sabree@jsums.edu

TLR: tramsey@cse.unl.edu

ML: michael.l.lowe@jsums.edu

KB: kyndall.d.brown@jsums.edu

NCK: NCKyrpides@lbl.gov

PH: phugenholtz@lbl.gov

 - 2 -

Abstract

Background

Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of

direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning

to attract attention because of their proposed mechanism; that is, defending their hosts

against invading extrachromosomal elements such as viruses. Existing repeat

detection tools do a poor job of identifying CRISPRs due to the presence of unique

spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced

that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes

and metagenomes.

Results

CRT was compared to CRISPR detection tools, Patscan and Pilercr. In terms of

correctness, CRT was shown to be very reliable, demonstrating significant

improvements over Patscan for measures precision, recall and quality. When

compared to Pilercr, CRT showed improved performance for recall and quality. In

terms of speed, CRT also demonstrated superior performance, especially for genomes

containing large numbers of repeats.

Conclusions

In this paper a new tool was introduced for the automatic detection of CRISPR

elements. This tool, CRT, was shown to be a significant improvement over the

current techniques for CRISPR identification. CRT’s approach to detecting repetitive

sequences is straightforward. It uses a simple sequential scan of a DNA sequence and

detects repeats directly without any major conversion or preprocessing of the input.

This leads to a program that is easy to describe and understand; yet it is very accurate,

fast and memory efficient, being O(n) in space and O(nm/l) in time.

Background
Repetitive sequences are abundant in bacteria and archaea, accounting for close to 5%

of the genome size in many organisms [1-2]. These repetitive sequences come in

various forms/sizes and may be found dispersed throughout a genome, clustered in

close proximity or arranged contiguously. The identification of repeats has proven to

be of significance, as they provide insight into the functional and evolutionary roles of

various organisms [3-7].

This study centers on a recently recognized family of repeats known as Clustered

Regularly Interspaced Palindromic Repeats (CRISPRs). Since their description by

Mojica et al. [8], CRISPRs have attracted a great deal of interest [9-15]. CRISPRs

have been found only in the genomes of prokaryotes, and are composed of short direct

repeats currently known to range in sizes from 21 – 47 base pairs. This family of

repeats is unique in that they are interspaced by non-repeating sequences of similar

size. CRISPRs were found in approximately 40% of bacterial genomes investigated

[14],. Of those genomes with CRISPRs present, about one half contained multiple

CRISPR loci. The average number of repeats per loci was found to be 27, with an

average repeat length of 32 base pairs. Although knowledge of the characteristics of

 - 3 -

CRISPRs continues to grow, their complete function is still not yet known. One

hypothesis, however, is that they defend against invading foreign DNA [9, 13].

Several software applications are available for identifying various forms of repeats.

However, because the focus on CRISPR elements is only recent, no published tools

yet exist for their automatic detection. Their identification currently relies on a

generic repeat searching application (Patscan [16, 17]) and requires considerable

manual post-processing. In this study, a new tool for the automatic detection of

CRISPR elements is presented. This software program, CRISPR Recognition Tool

(CRT), uses a simple sequential search technique that detects repeats directly from a

DNA sequence. Unlike most repeat detection techniques, the algorithm presented in

this paper does not rely on the use of the suffix tree or alignment matrix as a central

data structure. Instead, repeats are discovered directly from the DNA. As a result,

this technique is very efficient in terms of memory usage, and it is much easier to

understand and implement than most other methods. Despite its simplicity, the

presented algorithm is able to achieved impressive execution speed when compared to

other repeat detection tools.

Implementation
CRT’s search for CRISPRs is based on finding a series of short exact repeats of

length k that are separated by a similar distance and then extending these exact k-mer

matches to the actual repeat length. The value of k should be small and less than the

length of the shortest repeat to be detected. By making k small, string comparison is

faster and the likelihood of finding exact matches between approximate repeats is

increased. Once actual repeats are found, they are filtered to remove those that do not

meet CRISPR specific requirements.

Searching for exact k-mer matches. The algorithm begins its search for repeats

with a left-to-right scan of a sequence using a small sliding search window of length

k. The value in the search window represents a candidate repeat, and each time the

window reads a new k-mer, the algorithm searches forward for exact k-mer matches.

When searching for each successive match, the search space can be restricted to a

small range, called search range. Given a k-mer that begins at position i, any exact k-

mer match, if one exists, should occur in the range:

[i + minR + minS .. i + maxR + maxS + k]

Here, minR and maxR refer to the lengths of the smallest and largest repeats to be

detected. The lengths of spacers, which are the similarly sized non-repeating regions

between repeats, are referred to by minS and maxS (See Figure 1). Since CRISPRs

are to some degree evenly spaced, the distance between the initial repeats can be used

to approximate the spacing between subsequent exact k-mer matches. Thus the size

of the search range can be reduced further, resulting in faster processing time.

The size of the search range has a direct effect on the processing time of the

algorithm, with smaller ranges being more desirable. Thus, the algorithm runs fastest

when there is little variation between the sizes of the smallest/largest repeats and the

smallest/largest spacers.

 - 4 -

If exact k-mer matches are found. The search described above detects a succession

of similarly spaced repeats of length k. Since these repeats do not represent the true

length of the repeating pattern, they must be extended (left and right) to the actual

repeat length. Any method for extending repeats must consider that mutations occur

in DNA sequences, so, repeats may not be exact. The approach taken is this paper is

to read the characters to the left or right of all repeats and compute occurrence

percentages for each base, ACGT. If there is a character that has an occurrence

percentage greater than or equal to some preset value, p, the repeats are extended. For

example, if extending left, a p value of 100% extends exact k-mer matches to exact

(k+1)-mer matches only if the character to the left of all repeats within the CRISPR is

the same. Thus, for p = 100%, exact repeats are detected, while lower values allow

for the detection of approximate repeats. This method of extending repeats works

well for CRISPRs, give an appropriate value for p (CRT uses a default value of 75%).

If no exact k-mer matches are found. If no exact k-mer matches are found, the

search window advances forward and the process described above is repeated. The

search window can actually advance forward in intervals greater than one without

missing any repeats. The size of this interval is one of the major factors contributing

to the speed of the presented algorithm.

The key to being able to advance at greater intervals is guaranteeing that the search

window will never skip any repetitive sequence during its traversal of the DNA

sequence. That is, the interval at which the search window advances must be small

enough that the entire window will (at some point) fall entirely within each repeat.

The length of this interval is dependent on the size of the search window, k, and the

length of the smallest repeats to be identified, minR. It can be computed as follows.

interval = max {minR - (2k - 1), 1}

Longer repeats produce larger intervals, as do smaller search windows. Larger

intervals result in significant improvements in speed because less data is analyzed.

For example, for minR = 21 and k = 6, the search window can skip 10 positions each

time it advances. Thus, processing a DNA sequence of length 1,000,000, for the most

part, becomes equivalent to processing a sequence of length 1,000,000/10 (or

100,000).

Although smaller search windows improve processing speed, if continuing to reduce

their size, the speed of the algorithm may at some point worsen. This is because

smaller search windows increase the likelihood of the program finding short repetitive

sequences that are not really part of a true CRISPR element, but happen by chance.

This will cause the program to spend more time processing repeats that are actually

false positives. As an example, for a search window of length k = 3, there is a 1/4
3

chance that any 3-mer will be a match to the search window. This assumes that all

four bases are equally likely to appear at any position.

Filtering. Many of the candidate CRISPRs found from the process described above

will either be contiguous repeats or repeats with incorrect starting and/or ending

positions. To remove unwanted repetitive sequences, filters are applied. The first

filter checks that the candidate CRISPR is composed of short repeats (between minR

and maxR in length). If that condition is met, the spacers are checked for being non-

 - 5 -

repeating and similarly sized. Filtering is fast because most repetitive sequences do

not make it deep into the process. Also, when testing for similarly sized/non-

repeating spacers, it is only necessary to check the first few spacers of the CRISPR.

The final part of program checks the left and right flanks of a CRISPR in case repeats

were missed because of too many mismatches. The flank check is less strict than the

initial search for repeats in that it does not look for short exact matches. Instead, the

discovered repeats within the CRISPR are used for comparison (using hamming

distance) to detect any nearby approximate repeats. The flank check is important for

two reasons. The likelihood of missing repeats with mismatches increases when

advancing the search window in intervals. Furthermore, according to Jansen et al.

[10], the last or last few repeats of CRISPRs contain mutations in most organisms,

and about one-third of CRISPRs have the last repeat truncated.

Time and Space. The CRT algorithm moves a search window through a sequence in

intervals, at each step scanning the search range for the pattern in the search window.

Searching for a pattern in a text can be done using any fast search algorithm. The

Boyer-Moore [18] string-matching algorithm is used here. It is linear in time (on

average, the algorithm has a sublinear behavior). Thus, the running time of the

algorithm for finding CRISPRs as described in this paper is O(nm/l), where n is the

length of the DNA sequence, m is the length of the search range and l is the interval at

which the search window advances. (The actual behavior of the algorithm is linear

and is supported by empirical evidence in the following section.) The algorithm is

also linear in space, since repeats are detected directly from the input sequence with

no additional major structures required.

Results
CRT (version 1.0), Pilercr (version 1.0) [19] and Patscan [16, 17] were compared

based on execution speed and ability to correctly identify CRISPRs. However, no

reference to implementation details of Pilercr and Patscan is yet available in any

published works. This limits the ability of explaining certain aspects of their

performance behavior.

Patscan is a generic pattern discovery application that identifies repetitive sequences

given a user-specified input pattern. The number of repeats that Patscan detects must

be predefined, and the tool has no mechanism for distinguishing repeating and non-

repeating regions of CRISPRs. Thus, considerable manual processing of the output is

required in order to remove unwanted results and to extend repetitive sequences

beyond the fixed size limit set by the input pattern. Pilercr is a recently developed

and yet unpublished tool designed specifically for the automatic detection of CRISPR

elements. [The pilerCR paper is out: http://www.biomedcentral.com/1471-

2105/8/18/abstract] It is based on the Piler [20] program, which utilizes alignment

matrices for detecting contiguous repeats.

Both Patscan and Pilercr were implemented in the C programming language. CRT

was developed using Java. All tools were tested on finished microbial genomes

available in the IMG version 1.5 database [21]. Each was run under Cygwin version

1.5.21 on a PC having the following specifications: Windows XP operation system,

Pentium 3.4 GHz processor, 1.0 GB RAM.

 - 6 -

Speed Evaluation

Figures 2, 3 and 4 show the execution times of the three tools. The x-axis contains

the accession number for the analyzed organisms followed by their approximate

number of base pairs in millions (Mbp). As the number of repeats may affect

execution time, only genomes with similar repeats counts were used (between 70 and

80). Figures 2 and 3 are based on a search with repeat size 21 – 37, spacer size 19 –

48, and minimum number of CRISPR repeats 3. CRT required an additional setting

for search window length. It was tested for values 6 and 8. Figure 4 shows results

when searching for longer repeats of size 19 – 50 and spacer size 19 – 60 (this is

beyond the range of any CRISPRs found in any previous work). Patscan is not

included in this figure, or any subsequent figures, because it’s extended running times

flattens the other graph lines, making it difficult to compare the other tools (see Figure

2).

The speed of CRT and Pilercr is very impressive and a huge improvement over the

previous technique of CRISPR detection using Patscan, as shown in Figures 2 and 3.

CRT achieves the best performance, being able to process a DNA sequence of nearly

6 million bases in about 3 seconds using a search window of size 8, CRT(8), and in

about 2 seconds for a search window of size 6, CRT(6).

Figure 4 shows a slight decrease in the performance of CRT as the range in the size of

repeats to be detected is increased (see the previous section). The performance of

Pilercr, however, appears to be independent of the size range of repeats. For these

settings, the speed of CRT(8) and Pilercr are about the same, with CRT(6) performing

best.

In the previous example, execution speed was analyzed based on increasing genome

size. In Figure 5, speed is analyzed for increasing number of repeats. Only genomes

of similar sizes were used (2.7 – 3.8 Mbp). The repeat size is 21 – 37 and spacer size

is 19 – 48. The figures show that CRT performs better than Pilercr for larger number

of repeats. Like Pilercr, whose speed appears to be independent of the size range of

repeats, CRT’s speed is independent of the number of repeats contained in a genome.

Actually, CRT improves slightly in processing time as the number of repeats

increases. This is because it is able to process sections of a sequence containing

repeats very fast, as explained in the previous section.

Retrieval Evaluation

In order to assist in determining the effectiveness of the three tools in identifying

CRISPR elements, three evaluation measures were used: quality, precision and recall.

Quality. Detected CRISPRs are sometimes inconsistent with their actual form in a

sequence. This generally results because DNA repeats are not always exact, and

consequently are often difficult to correctly identify. Three common types of

inconsistencies were identified in this study. Type I inconsistencies occur when a

tool reports a CRISPR that is incomplete (that is, the CRISPR does not contain all of

the repetitive sequences). Type II inconsistencies occur when repeats within a

CRISPR do not begin and/or end at the correct position. For example, A CRISPR that

actually begins with the sequence GTTTAC may be reported as beginning with

TTTAC. In this case, it can be seen that the reporting tool is off by one position.

Type III inconsistencies occur when a CRISPR is split. For example, a single

 - 7 -

CRISPR containing 10 repeats may be reported as two CRISPRS, each containing 5

repeats.

Let quality represent the likelihood that a CRISPR reported by a search tool does not

contain an inconsistency of Type I, Type II or Type III. Based on this definition,

there is no distinction between a CRISPR with one inconsistency and a CRISPR with

three inconsistencies. Given the set of CRISPRs resulting from a search, let a be the

total number of CRISPRs reported and b be the total number of CRISPRs containing

at least one inconsistency. Assuming a > 0, quality (q) for a search tool can be

computed as follows.

q =1
b

a

Precision and Recall. Quality alone is insufficient for measuring performance, as it

does not consider the cost of failing to retrieve relevant CRISPRs or the cost of

mistakenly retrieving instances that are not CRISPRs. For evaluating inconsistencies

of these types, precision and recall are used.

Precision and recall are measures commonly used in the field of information retrieval

(IR) when evaluating search algorithms. Their definitions are based on true positives,

false positives and false negatives. The descriptions given here are expressed in terms

of the tools evaluated in this study.

True positive (TP): the number of instances retrieved that were CRISPRs,

False positive (FP): the number of instances retrieved that were not CRISPRs,

False negative (FN): the number of instances not retrieved that were CRISPRs.

Determining FN can be problematic because it requires the total number of CRISPRs

in the dataset to be known. As is often done in IR, in this study FN is estimated using

the composite result sets from all of the available searches tools.

Using the definitions above, precision (p) and recall (r) can be computed as follows.

p =
TP

TP + FP
 r =

TP

TP + FN

Precision is the ratio of the number of instances correctly identified to all the instances

retrieved. Given an instance from the result set, it represents the likelihood of that

instance being a CRISPR. Thus, precision can be used to answer the question, “Did

the retrieval system identify a lot of junk (or instances that were not CRISPRs)?”

Recall is the ratio of the number of instances correctly identified to the total number

of instances that are CRISPRs (whether retrieved or missed). Thus, recall can be used

to answer the question, “Were all of the CRISPRs retrieved?”

In [14], Godde and Bickerton documented CRISPRs in 101 species with the use of

Patscan. From that set, a random sample of size 27 was selected for comparison with

results from CRT and Pilercr (using default parameter settings). Between Patscan,

CRT and Pilercr, a total of 83 distinct CRISPRs were identified. Using the collective

 - 8 -

information, quality, precision and recall were computed for each tool. The results

are presented in Table 1. Note that precision is not applicable for Patscan, because

false positives are removed during manual post-processing. Also, the results for CRT

are based on a search window length of 8. A search window length of 6 would

produce similar precision/recall results, but would have a slightly lower quality score,

because the likelihood of Type III inaccuracies is slightly increased.

The high scores for CRT and Pilercr show that automatic detection of CRISPRs can

be very reliable, even more so than with the use of manual post-processing as is done

with Patscan. However, it is not clear whether the lower scores for Patscan were

mostly from the human involvement in the detection process or from the Patscan

algorithm.

The quality score was highest for CRT. The lower score for Patscan was due entirely

to Type I inconsistencies. The categories of inconsistencies for Pilercr were evenly

spread, with Type I and Type II inconsistencies usually missing by only small

amounts. Precision was highest with Pilercr, while CRT had the best recall score. In

this application of precision/recall, recall is more significant as it gives an indication

of the number of CRISPRs that were missed by a search tool. Although precision is

important, a more sensitive tool that detects most CRISPRs but also reports a few

repetitive sequences that are not really CRISPRs is more desirable than a less

sensitive tool that misses several CRISPRs but reports very few false positives.

As mentioned above, in order to include Patscan in retrieval evaluations, results were

used from Godde and Bickerton. However, they reported CRISPRs only for species

that had CRISPR-associated (Cas) genes [10]. The authors of this study suspect that

CRISPRs with Cas genes may have fewer mutations, thus they are easier for search

tools to detect. As a result, the tools have higher evaluation scores. For this reason, a

second experiment was undertaken using 80 randomly selected finished genomes

from the IMG version 1.5 database. Using CRT and Pilercr, a total of 51 distinct

CRISPR elements were identified within the 80 genomes. The evaluation scores are

shown in Table 2. These results should be more reflective of the performance of the

tools for a typical search. Almost all measures show a reduction in performance. The

most noticeable difference is a decrease in precision for CRT and a decrease in recall

for Pilercr.

Discussion
The importance of identifying repetitive sequences is clear; however, the considerable

size of many genomes makes fast and efficient repeat detection very challenging.

Consequently, many detection techniques convert sequences to an alternative

representation in an attempt to make analysis more efficient. A frequently used

representation is the suffix tree [22]. Here, a DNA sequence is converted into a tree

structure containing indices to all suffixes in the original sequence. By traversing the

tree, an algorithm is able to find all occurrences of any pattern in time proportional to

the size of the pattern. Because of the impressive speed of suffix trees, they have

been widely used in DNA repeat detection [23-26]. The increased speed, however,

comes at a cost. First, even before the search for repeats can begin, the suffix tree

must be constructed from the sequence data. Second, after it is constructed, the tree

can consume large amounts of memory.

 - 9 -

Another technique frequently used for detecting repeats involves computing

alignment matrices from DNA sequences [27, 28]. Once implemented, the matrix can

be used to find repeated regions in the sequence using one of several algorithms [22,

29-31]. These algorithms, however, can be problematic because of extended

processing times.

Unlike most repeat detection techniques, the algorithm presented in this paper does

not rely on the use of the suffix tree or alignment matrix as a central data structure.

No major conversion or preprocessing of the input is required. Instead, repeats are

discovered directly from the DNA sequence using simple search methods. As a

result, CRT is very efficient in terms of memory usage, at O(n), and O(nm/l) in time.

Thus, a standard desktop machine is sufficient for processing large prokaryotic

genomes, usually in a matter of seconds.

Future research plans are to modify the presented algorithm so that it is also able to

identify contiguous repeats. Because of the nature of the CRT algorithm, the tool

would not be practical for detecting very short patterns of sizes 2 - 4 nucleotides, for

example. CRT is fastest when identifying longer repeats, and when there is little

variation between the sizes of the smallest and largest repeats to be detected. Also,

the tool is fast when processing genomes with large numbers of repeats; so, CRT may

be useful for detecting contiguous repeats in eukaryotes, which tend to have more

repetitive sequences than prokaryotic genomics.

Conclusions
In this paper a new tool was introduced for the automatic detection of CRISPR

elements. This tool, CRT, was shown to be a significant improvement over the

current technique for CRISPR identification using Patscan. CRT’s approach detects

repeats directly from a DNA sequence. This leads to a program that is easy to

describe and understand, yet it is very fast and memory efficient. In terms of retrieval

performance, CRT was shown to be very reliable in detecting CRISPRs, based on

measures precision, recall and quality. For performance measures tested, CRT

outperformed Patscan in all cases. Additionally, when compared to a recently

developed CRISPR detection program, Pilercr, CRT showed improved performance

under most conditions. However, we recommend using both CRT and Pilercr for

detecting CRISPRs as both are fast and have complementary strengths (precision and

recall).

Availability and requirements
Project name: CRISPR Recognition Tool (CRT)

Project home page: http://www.room220.com/crt

Operating system(s): Platform independent

Programming language: Java

Authors’ contributions
CB implemented CRT and wrote the manuscript. NCK, PH and VK guided the

research and revised the manuscript. FS, TLR, ML and KDB participated in

background research, data collection and tool comparison.

 - 10 -

Acknowledgements
The project was enabled by an NSF grant allowing CB to visit the DOE Joint Genome

Institute. Lawrence Berkeley National Lab’s CSEE and Jackson State University’s

LSMAMP programs are kindly acknowledged for their support.

References
1. Ussery DW, Binnewies TT, Gouveia-Oliveira R, Jarmer H, Hallin PF:

Genome Update: DNA repeats in bacterial genomes. Microbiology 2004,

150: 3519–3521.

2. Hofnung M, Shapiro J: Research in Microbiology 1999, (special November–

December double issue on bacterial repeats) 150.

3. Achaz G, Coissac E, Netter P, Rocha EP: Associations between inverted

repeats and the structural evolution of bacterial genomes. Genetics 2003,

164(4): 1279–1289.

4. Rocha EPC, Danchin A, Viari A: Functional and evolutionary roles of long

repeats in prokaryotes. Research in Microbiology [Res. Microbiol.] 1999,

150(9-10): 725-733.

5. Shapiro JA, von Sternberg R: Why repetitive DNA is essential to genome

function. Biological Review 2005, 80: 1-24.

6. van Belkum A: Short sequence repeats in microbial pathogenesis and

evolution. Cell Mol Life Sci 1999, Nov 30;56(9-10): 729-34.

7. van Belkum A., Scherer S, van Alphen L, Verbrugh H: Short-sequence DNA

repeats in prokaryotic genomes. Microbiology and Molecular Biology

Reviews 1998, 62(2): 275–293.

8. Mojica FJ, Diez-Villasenor C, Soria E, Juez G: Biological significance of a

family of regularly spaced repeats in the genomes of Archaea, Bacteria

and mitochondria. Mol Microbiol 2000, 36: 244–246.

9. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E: Intervening

sequences of regularly spaced prokaryotic repeats derive from foreign

genetic elements. J Mol Evol 2005, 60: 174–182.

10. Jansen R, Embden JD, Gaastra W, Schouls LM: Identification of genes that

are associated with DNA repeats in prokaryotes. Mol Microbiol 2002, 43:

1565–1575.

11. Pourcel C, Salvignol G, Vergnaud G: CRISPR elements in Yersinia pestis

acquire new repeats by preferential uptake of bacteriophage DNA, and

provide additional tools for evolutionary studies. Microbiology 2005, 151:

653–663.

 - 11 -

12. Haft DH, Selengut J, Mongodin EF, Nelson KE: A guild of 45 CRISPR-

associated (Cas) protein families and multiple CRISPR/Cas subtypes exist

in prokaryotic genomes. PLoS Comput Biol 2005, 1(6): e60.

13. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD: Clustered regularly

interspaced short palindrome repeats (CRISPRs) have spacers of

extrachromosomal origin. Microbiology 2005, 151: 2551-2561.

14. Godde JS, Bickerton A: The repetitive DNA elements called CRISPRs and

their associated genes: evidence of horizontal transfer among

prokaryotes. J Mol Evol. 2006, 62(6): 718-29.

15. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV: A putative

RNA-interference-based immune system in prokaryotes: computational

analysis of the predicted enzymatic machinery, functional analogies with

eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct

2006, 1:7.

16. Dsouza M, Larsen N, Overbeek R: Searching for patterns in genomic data.

Trends Genet. 1997, Dec;13(12): 497-8.

17. Patscan [http://www-new.mcs.anl.gov/compbio/PatScan/]

18. Boyer RS, Moore JS: A fast string searching algorithm. Communications

of the ACM 1977, 20(10): 762–772.

19. Pilercr [http://www.drive5.com/pilercr/].

20. Edgar RC, Myers EW: PILER: identification and classification of

genomic repeats. Bioinformatics 2005, Jun 1;21 Suppl 1:i152-i158.

21. Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A,

Zhao X, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromatis K,

Ivanova N, Kyrpides NC: The Integrated Microbial Genomes (IMG)

system. Nucleic Acids Research 2006, 34(Database issue):D344-348.

22. Gusfield D: Algorithms on Strings, Trees and Sequences: Computer Science

and Computational Biology. Cambridge University Press; 1997.

23. Sagot M.-F: 1998. Spelling approximate repeated or common motifs using

a suffix tree. In Proc. of the Third Latin American Symposium on Theoretical

Informatics, LATIN 98; 1380 of LNCS: 111–127. Berlin: Springer Verlag.

24. Brodal GS, Lyngsø RB, Pedersen CNS, Stoye J: Finding maximal pairs

with bounded gap. In Journal of Discrete Algorithms, Special Issue of

Matching Patterns, 1(1): 77-104.

25. Gusfield D, Stoye J: Linear time algorithms for finding and representing

all the tandem repeats in a string. Journal of Computer and System

Sciences 2004, 69(4): 525 – 546.

 - 12 -

26. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R:

REPuter: the manifold applications of repeat analysis on a genomic scale.

Nucleic Acids Res. 2001, 29(22): 4633-42.

27. Needleman SB, Wunsch CD: A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of

Molecular Biology 1970, 48(3): 443-53.

28. Smith TF, Waterman MS: Identification of common molecular

subsequences. Journal of Molecular Biology 1981, 147: 195-197.

29. Benson GA: Space-efficient algorithm for finding best scoring non-

overlapping alignments. Theoretical Computer Science 1995, 145:357-369.

30. Schmidt JP: All highest scoring paths in weighted grid graphs and their

application to finding all approximate repeats in strings. SIAM J.

Computing 1998, 27(4): 972–992.

31. Kannan SK, Myers EW: An algorithm for locating nonoverlapping regions

of maximum alignment score. SIAM J. Computing 1996, 25(3): 648–662.

Figures

Figure 1 - An occurrence of a CRISPR

Repetitive sequences are detected by reading a small search window and then

scanning ahead for exact k-mer matches separated by a similar distance.

Figure 2 - Running time based on genome size, using repeat length 21–37 and

spacer length 19–48.

Running times for the three compared search tools, based on genome size (CRT is

listed twice, once for windows size 6 and once for window size 8). The y-axis

represents time in seconds. The x-axis lists the genome accession numbers, followed

by their sizes in million base pairs (Mbp). As the size of the genomes increase, it can

be seen that running times of the search tools increase at different rates. Below, the

corresponding organism names are given.

[AE015450] Mycoplasma gallisepticum (strain R(low))

[AE004439] Pasteurella multocida (strain Pm70)

[AE017282] Methylococcus capsulatus (strain Bath / NCIMB 11132)

[AP006627] Bacillus clausii (strain KSM-K16)

[BX470251] Photorhabdus luminescens (subsp. laumondii, strain TT01)

Figure 3 - Running time based on genome size, excluding Patscan.

Running times for the search tools, excluding Patscan. The parameter values and

organisms are the same as that in Figure 2. However, by removing Patscan, a better

comparison of the execution speeds of PilerCR and CRT can be achieved.

 - 13 -

Figure 4 - Running time based on genome size, using repeat length 19–50 and

spacer length is 19–60.

Running times for two of the compared search tools, based on genome size (CRT is

listed twice, once for windows size 6 and once for window size 8). This figure is the

same as Figure 3, except the ranges of the repeat length and spacer length to be

detected are increased.

Figure 5 - Running time based on number of repeats, using repeat length 21–

37 and spacer length 19–48.

Running times for two of the compared search tools based on number of repeats

processed. CRT is listed twice, once for windows size 6 and once for window size 8.

The y-axis represents time in seconds. The x-axis lists the genome accession

numbers, followed by the number of repeats detected in the genome. As the size of

the genomes increase, it can bee seen that running times of the search tools increase at

different rates. Below, the corresponding organism names and the number of CRISPR

loci are given. All genomes are close in size (2.7 – 3.8 Mbp).

[BA000031] Vibrio parahaemolyticus (serovar O3:K6, strain RIMD 2210633) loci: 0

[CR628337] Legionella pneumophila (strain Lens) loci: 2

[AP006840] Symbiobacterium thermophilum (strain IAM 14863 / T) loci: 3

[AE017180] Geobacter sulfurreducens (strain ATCC 51573 / PCA) loci: 2

[AE008691] Thermoanaerobacter tengcongensis (strain MB4 / JCM 11007) loci: 3

[AE006641] Sulfolobus solfataricus P2 loci: 7

[BA000023] Sulfolobus tokodaii str. 7 DNA loci: 7

Table 1 - Performance evaluation measures for the examined tools only on

CRISPRs with Cas genes.

A comparison of the three search tools, based on measures quality, precision and

recall. The higher scores for CRT and Pilercr show that automatic detection of

CRISPRs can be very reliable, even more so than with the use manual post-processing

as is done with Patscan.

 Quality Precision Recall

CRT .95 .99 .99

Pilercr .77 1 .95

Patscan .74 n/a .89

Table 2 - Performance evaluation measures for the examined tools on

CRISPRs with and without Cas genes.

The results in Table 1 are for CRISPRs containing Cas genes. Because the authors

suspect that CRISPRs with Cas genes have fewer mutations, and are thus easier to

detect, a second experiment was performed using randomly selected finished

genomes. As expected, slightly lower scores resulted. These scored should better

reflect the effectiveness of the tools.

 Quality Precision Recall

CRT .90 .89 1

Pilercr .75 1 .86

