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Abstract  

Background 

Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of 

direct repeat found in a wide range of bacteria and archaea.  CRISPRs are beginning 

to attract attention because of their proposed mechanism; that is, defending their hosts 

against invading extrachromosomal elements such as viruses.  Existing repeat 

detection tools do a poor job of identifying CRISPRs due to the presence of unique 

spacer sequences separating the repeats.  In this study, a new tool, CRT, is introduced 

that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes 

and metagenomes. 

Results 

CRT was compared to CRISPR detection tools, Patscan and Pilercr.  In terms of 

correctness, CRT was shown to be very reliable, demonstrating significant 

improvements over Patscan for measures precision, recall and quality.  When 

compared to Pilercr, CRT showed improved performance for recall and quality.  In 

terms of speed, CRT also demonstrated superior performance, especially for genomes 

containing large numbers of repeats. 

Conclusions 

In this paper a new tool was introduced for the automatic detection of CRISPR 

elements.  This tool, CRT, was shown to be a significant improvement over the 

current techniques for CRISPR identification.  CRT’s approach to detecting repetitive 

sequences is straightforward.  It uses a simple sequential scan of a DNA sequence and 

detects repeats directly without any major conversion or preprocessing of the input.  

This leads to a program that is easy to describe and understand; yet it is very accurate, 

fast and memory efficient, being O(n) in space and O(nm/l) in time. 

Background  
Repetitive sequences are abundant in bacteria and archaea, accounting for close to 5% 

of the genome size in many organisms [1-2].  These repetitive sequences come in 

various forms/sizes and may be found dispersed throughout a genome, clustered in 

close proximity or arranged contiguously.  The identification of repeats has proven to 

be of significance, as they provide insight into the functional and evolutionary roles of 

various organisms [3-7].   

 

This study centers on a recently recognized family of repeats known as Clustered 

Regularly Interspaced Palindromic Repeats (CRISPRs).  Since their description by 

Mojica et al. [8], CRISPRs have attracted a great deal of interest [9-15].  CRISPRs 

have been found only in the genomes of prokaryotes, and are composed of short direct 

repeats currently known to range in sizes from 21 – 47 base pairs.  This family of 

repeats is unique in that they are interspaced by non-repeating sequences of similar 

size.  CRISPRs were found in approximately 40% of bacterial genomes investigated 

[14],.  Of those genomes with CRISPRs present, about one half contained multiple 

CRISPR loci.  The average number of repeats per loci was found to be 27, with an 

average repeat length of 32 base pairs.  Although knowledge of the characteristics of 
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CRISPRs continues to grow, their complete function is still not yet known.  One 

hypothesis, however, is that they defend against invading foreign DNA [9, 13]. 

 

Several software applications are available for identifying various forms of repeats.  

However, because the focus on CRISPR elements is only recent, no published tools 

yet exist for their automatic detection.  Their identification currently relies on a 

generic repeat searching application (Patscan [16, 17]) and requires considerable 

manual post-processing.  In this study, a new tool for the automatic detection of 

CRISPR elements is presented.  This software program, CRISPR Recognition Tool 

(CRT), uses a simple sequential search technique that detects repeats directly from a 

DNA sequence.  Unlike most repeat detection techniques, the algorithm presented in 

this paper does not rely on the use of the suffix tree or alignment matrix as a central 

data structure.  Instead, repeats are discovered directly from the DNA.  As a result, 

this technique is very efficient in terms of memory usage, and it is much easier to 

understand and implement than most other methods.  Despite its simplicity, the 

presented algorithm is able to achieved impressive execution speed when compared to 

other repeat detection tools. 

Implementation  
CRT’s search for CRISPRs is based on finding a series of short exact repeats of 

length k that are separated by a similar distance and then extending these exact k-mer 

matches to the actual repeat length.  The value of k should be small and less than the 

length of the shortest repeat to be detected.  By making k small, string comparison is 

faster and the likelihood of finding exact matches between approximate repeats is 

increased.  Once actual repeats are found, they are filtered to remove those that do not 

meet CRISPR specific requirements. 

 

Searching for exact k-mer matches.  The algorithm begins its search for repeats 

with a left-to-right scan of a sequence using a small sliding search window of length 

k.  The value in the search window represents a candidate repeat, and each time the 

window reads a new k-mer, the algorithm searches forward for exact k-mer matches.  

When searching for each successive match, the search space can be restricted to a 

small range, called search range.  Given a k-mer that begins at position i, any exact k-

mer match, if one exists, should occur in the range:  

 

[ i + minR + minS  ..  i + maxR + maxS + k ] 

 

Here, minR and maxR refer to the lengths of the smallest and largest repeats to be 

detected.  The lengths of spacers, which are the similarly sized non-repeating regions 

between repeats, are referred to by minS and maxS (See Figure 1).  Since CRISPRs 

are to some degree evenly spaced, the distance between the initial repeats can be used 

to approximate the spacing between subsequent exact k-mer matches.  Thus the size 

of the search range can be reduced further, resulting in faster processing time. 

 

The size of the search range has a direct effect on the processing time of the 

algorithm, with smaller ranges being more desirable. Thus, the algorithm runs fastest 

when there is little variation between the sizes of the smallest/largest repeats and the 

smallest/largest spacers.   
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If exact k-mer matches are found.  The search described above detects a succession 

of similarly spaced repeats of length k.  Since these repeats do not represent the true 

length of the repeating pattern, they must be extended (left and right) to the actual 

repeat length.  Any method for extending repeats must consider that mutations occur 

in DNA sequences, so, repeats may not be exact.  The approach taken is this paper is 

to read the characters to the left or right of all repeats and compute occurrence 

percentages for each base, ACGT.  If there is a character that has an occurrence 

percentage greater than or equal to some preset value, p, the repeats are extended.  For 

example, if extending left, a p value of 100% extends exact k-mer matches to exact 

(k+1)-mer matches only if the character to the left of all repeats within the CRISPR is 

the same.  Thus, for p = 100%, exact repeats are detected, while lower values allow 

for the detection of approximate repeats.  This method of extending repeats works 

well for CRISPRs, give an appropriate value for p (CRT uses a default value of 75%).  

 

If no exact k-mer matches are found.  If no exact k-mer matches are found, the 

search window advances forward and the process described above is repeated.  The 

search window can actually advance forward in intervals greater than one without 

missing any repeats.  The size of this interval is one of the major factors contributing 

to the speed of the presented algorithm.  

 

The key to being able to advance at greater intervals is guaranteeing that the search 

window will never skip any repetitive sequence during its traversal of the DNA 

sequence.  That is, the interval at which the search window advances must be small 

enough that the entire window will (at some point) fall entirely within each repeat.  

The length of this interval is dependent on the size of the search window, k, and the 

length of the smallest repeats to be identified, minR.  It can be computed as follows.  

 

interval = max {minR - (2k - 1), 1} 

 

Longer repeats produce larger intervals, as do smaller search windows.  Larger 

intervals result in significant improvements in speed because less data is analyzed.  

For example, for minR = 21 and k = 6, the search window can skip 10 positions each 

time it advances.  Thus, processing a DNA sequence of length 1,000,000, for the most 

part, becomes equivalent to processing a sequence of length 1,000,000/10 (or 

100,000). 

 

Although smaller search windows improve processing speed, if continuing to reduce 

their size, the speed of the algorithm may at some point worsen.  This is because 

smaller search windows increase the likelihood of the program finding short repetitive 

sequences that are not really part of a true CRISPR element, but happen by chance. 

This will cause the program to spend more time processing repeats that are actually 

false positives.  As an example, for a search window of length k = 3, there is a 1/4
3
 

chance that any 3-mer will be a match to the search window.  This assumes that all 

four bases are equally likely to appear at any position. 

 

Filtering.  Many of the candidate CRISPRs found from the process described above 

will either be contiguous repeats or repeats with incorrect starting and/or ending 

positions.  To remove unwanted repetitive sequences, filters are applied.  The first 

filter checks that the candidate CRISPR is composed of short repeats (between minR 

and maxR in length).  If that condition is met, the spacers are checked for being non-
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repeating and similarly sized.  Filtering is fast because most repetitive sequences do 

not make it deep into the process.  Also, when testing for similarly sized/non-

repeating spacers, it is only necessary to check the first few spacers of the CRISPR. 

 

The final part of program checks the left and right flanks of a CRISPR in case repeats 

were missed because of too many mismatches.  The flank check is less strict than the 

initial search for repeats in that it does not look for short exact matches.  Instead, the 

discovered repeats within the CRISPR are used for comparison (using hamming 

distance) to detect any nearby approximate repeats.  The flank check is important for 

two reasons.  The likelihood of missing repeats with mismatches increases when 

advancing the search window in intervals.  Furthermore, according to Jansen et al. 

[10], the last or last few repeats of CRISPRs contain mutations in most organisms, 

and about one-third of CRISPRs have the last repeat truncated. 

 

Time and Space.  The CRT algorithm moves a search window through a sequence in 

intervals, at each step scanning the search range for the pattern in the search window.  

Searching for a pattern in a text can be done using any fast search algorithm.  The 

Boyer-Moore [18] string-matching algorithm is used here.  It is linear in time (on 

average, the algorithm has a sublinear behavior).  Thus, the running time of the 

algorithm for finding CRISPRs as described in this paper is O(nm/l), where n is the 

length of the DNA sequence, m is the length of the search range and l is the interval at 

which the search window advances.  (The actual behavior of the algorithm is linear 

and is supported by empirical evidence in the following section.)  The algorithm is 

also linear in space, since repeats are detected directly from the input sequence with 

no additional major structures required. 

Results 
CRT (version 1.0), Pilercr (version 1.0) [19] and Patscan [16, 17] were compared 

based on execution speed and ability to correctly identify CRISPRs.  However, no 

reference to implementation details of Pilercr and Patscan is yet available in any 

published works.  This limits the ability of explaining certain aspects of their 

performance behavior. 

 

Patscan is a generic pattern discovery application that identifies repetitive sequences 

given a user-specified input pattern.  The number of repeats that Patscan detects must 

be predefined, and the tool has no mechanism for distinguishing repeating and non-

repeating regions of CRISPRs.  Thus, considerable manual processing of the output is 

required in order to remove unwanted results and to extend repetitive sequences 

beyond the fixed size limit set by the input pattern.  Pilercr is a recently developed 

and yet unpublished tool designed specifically for the automatic detection of CRISPR 

elements. [The pilerCR paper is out: http://www.biomedcentral.com/1471-

2105/8/18/abstract]  It is based on the Piler [20] program, which utilizes alignment 

matrices for detecting contiguous repeats.   

 

Both Patscan and Pilercr were implemented in the C programming language.  CRT 

was developed using Java.  All tools were tested on finished microbial genomes 

available in the IMG version 1.5 database [21].  Each was run under Cygwin version 

1.5.21 on a PC having the following specifications:  Windows XP operation system, 

Pentium 3.4 GHz processor, 1.0 GB RAM. 
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Speed Evaluation 

Figures 2, 3 and 4 show the execution times of the three tools.  The x-axis contains 

the accession number for the analyzed organisms followed by their approximate 

number of base pairs in millions (Mbp).  As the number of repeats may affect 

execution time, only genomes with similar repeats counts were used (between 70 and 

80).  Figures 2 and 3 are based on a search with repeat size 21 – 37, spacer size 19 – 

48, and minimum number of CRISPR repeats 3.  CRT required an additional setting 

for search window length.  It was tested for values 6 and 8.  Figure 4 shows results 

when searching for longer repeats of size 19 – 50 and spacer size 19 – 60 (this is 

beyond the range of any CRISPRs found in any previous work).  Patscan is not 

included in this figure, or any subsequent figures, because it’s extended running times 

flattens the other graph lines, making it difficult to compare the other tools (see Figure 

2). 

 

The speed of CRT and Pilercr is very impressive and a huge improvement over the 

previous technique of CRISPR detection using Patscan, as shown in Figures 2 and 3.  

CRT achieves the best performance, being able to process a DNA sequence of nearly 

6 million bases in about 3 seconds using a search window of size 8, CRT(8), and in 

about 2 seconds for a search window of size 6, CRT(6). 

  

Figure 4 shows a slight decrease in the performance of CRT as the range in the size of 

repeats to be detected is increased (see the previous section).  The performance of 

Pilercr, however, appears to be independent of the size range of repeats.  For these 

settings, the speed of CRT(8) and Pilercr are about the same, with CRT(6) performing 

best. 

 

In the previous example, execution speed was analyzed based on increasing genome 

size.  In Figure 5, speed is analyzed for increasing number of repeats.  Only genomes 

of similar sizes were used (2.7 – 3.8 Mbp).  The repeat size is 21 – 37 and spacer size 

is 19 – 48.  The figures show that CRT performs better than Pilercr for larger number 

of repeats.  Like Pilercr, whose speed appears to be independent of the size range of 

repeats, CRT’s speed is independent of the number of repeats contained in a genome.  

Actually, CRT improves slightly in processing time as the number of repeats 

increases.  This is because it is able to process sections of a sequence containing 

repeats very fast, as explained in the previous section. 

Retrieval Evaluation 

In order to assist in determining the effectiveness of the three tools in identifying 

CRISPR elements, three evaluation measures were used:  quality, precision and recall. 

 

Quality.  Detected CRISPRs are sometimes inconsistent with their actual form in a 

sequence.  This generally results because DNA repeats are not always exact, and 

consequently are often difficult to correctly identify.  Three common types of 

inconsistencies were identified in this study.  Type I inconsistencies occur when a 

tool reports a CRISPR that is incomplete (that is, the CRISPR does not contain all of 

the repetitive sequences).  Type II inconsistencies occur when repeats within a 

CRISPR do not begin and/or end at the correct position.  For example, A CRISPR that 

actually begins with the sequence GTTTAC may be reported as beginning with 

TTTAC.  In this case, it can be seen that the reporting tool is off by one position.  

Type III inconsistencies occur when a CRISPR is split.  For example, a single 
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CRISPR containing 10 repeats may be reported as two CRISPRS, each containing 5 

repeats. 

 

Let quality represent the likelihood that a CRISPR reported by a search tool does not 

contain an inconsistency of Type I, Type II or Type III.  Based on this definition, 

there is no distinction between a CRISPR with one inconsistency and a CRISPR with 

three inconsistencies.  Given the set of CRISPRs resulting from a search, let a be the 

total number of CRISPRs reported and b be the total number of CRISPRs containing 

at least one inconsistency.  Assuming a > 0, quality (q) for a search tool can be 

computed as follows. 

 

q =1
b

a
 

 

Precision and Recall.  Quality alone is insufficient for measuring performance, as it 

does not consider the cost of failing to retrieve relevant CRISPRs or the cost of 

mistakenly retrieving instances that are not CRISPRs.  For evaluating inconsistencies 

of these types, precision and recall are used.  

 

Precision and recall are measures commonly used in the field of information retrieval 

(IR) when evaluating search algorithms.  Their definitions are based on true positives, 

false positives and false negatives.  The descriptions given here are expressed in terms 

of the tools evaluated in this study. 

 

True positive   (TP):  the number of instances retrieved that were CRISPRs, 

False positive  (FP):  the number of instances retrieved that were not CRISPRs, 

False negative (FN):  the number of instances not retrieved that were CRISPRs.   

 

Determining FN can be problematic because it requires the total number of CRISPRs 

in the dataset to be known.  As is often done in IR, in this study FN is estimated using 

the composite result sets from all of the available searches tools. 

 

Using the definitions above, precision (p) and recall (r) can be computed as follows. 

 

p =
TP

TP + FP
  r =

TP

TP + FN
 

 

Precision is the ratio of the number of instances correctly identified to all the instances 

retrieved.  Given an instance from the result set, it represents the likelihood of that 

instance being a CRISPR.  Thus, precision can be used to answer the question, “Did 

the retrieval system identify a lot of junk (or instances that were not CRISPRs)?”    

 

Recall is the ratio of the number of instances correctly identified to the total number 

of instances that are CRISPRs (whether retrieved or missed).  Thus, recall can be used 

to answer the question, “Were all of the CRISPRs retrieved?” 

 

In [14], Godde and Bickerton documented CRISPRs in 101 species with the use of 

Patscan.  From that set, a random sample of size 27 was selected for comparison with 

results from CRT and Pilercr (using default parameter settings).  Between Patscan, 

CRT and Pilercr, a total of 83 distinct CRISPRs were identified.  Using the collective 



 - 8 - 

information, quality, precision and recall were computed for each tool.  The results 

are presented in Table 1.  Note that precision is not applicable for Patscan, because 

false positives are removed during manual post-processing.  Also, the results for CRT 

are based on a search window length of 8.  A search window length of 6 would 

produce similar precision/recall results, but would have a slightly lower quality score, 

because the likelihood of Type III inaccuracies is slightly increased. 

 

The high scores for CRT and Pilercr show that automatic detection of CRISPRs can 

be very reliable, even more so than with the use of manual post-processing as is done 

with Patscan.  However, it is not clear whether the lower scores for Patscan were 

mostly from the human involvement in the detection process or from the Patscan 

algorithm. 

 

The quality score was highest for CRT.  The lower score for Patscan was due entirely 

to Type I inconsistencies.  The categories of inconsistencies for Pilercr were evenly 

spread, with Type I and Type II inconsistencies usually missing by only small 

amounts.  Precision was highest with Pilercr, while CRT had the best recall score.  In 

this application of precision/recall, recall is more significant as it gives an indication 

of the number of CRISPRs that were missed by a search tool.  Although precision is 

important, a more sensitive tool that detects most CRISPRs but also reports a few 

repetitive sequences that are not really CRISPRs is more desirable than a less 

sensitive tool that misses several CRISPRs but reports very few false positives. 

 

As mentioned above, in order to include Patscan in retrieval evaluations, results were 

used from Godde and Bickerton.  However, they reported CRISPRs only for species 

that had CRISPR-associated (Cas) genes [10].  The authors of this study suspect that 

CRISPRs with Cas genes may have fewer mutations, thus they are easier for search 

tools to detect.  As a result, the tools have higher evaluation scores.  For this reason, a 

second experiment was undertaken using 80 randomly selected finished genomes 

from the IMG version 1.5 database.  Using CRT and Pilercr, a total of 51 distinct 

CRISPR elements were identified within the 80 genomes.  The evaluation scores are 

shown in Table 2.  These results should be more reflective of the performance of the 

tools for a typical search.  Almost all measures show a reduction in performance.  The 

most noticeable difference is a decrease in precision for CRT and a decrease in recall 

for Pilercr. 

Discussion  
The importance of identifying repetitive sequences is clear; however, the considerable 

size of many genomes makes fast and efficient repeat detection very challenging.  

Consequently, many detection techniques convert sequences to an alternative 

representation in an attempt to make analysis more efficient.  A frequently used 

representation is the suffix tree [22].  Here, a DNA sequence is converted into a tree 

structure containing indices to all suffixes in the original sequence.  By traversing the 

tree, an algorithm is able to find all occurrences of any pattern in time proportional to 

the size of the pattern.  Because of the impressive speed of suffix trees, they have 

been widely used in DNA repeat detection [23-26].  The increased speed, however, 

comes at a cost.  First, even before the search for repeats can begin, the suffix tree 

must be constructed from the sequence data.  Second, after it is constructed, the tree 

can consume large amounts of memory. 
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Another technique frequently used for detecting repeats involves computing 

alignment matrices from DNA sequences [27, 28].  Once implemented, the matrix can 

be used to find repeated regions in the sequence using one of several algorithms [22, 

29-31].  These algorithms, however, can be problematic because of extended 

processing times.   

 

Unlike most repeat detection techniques, the algorithm presented in this paper does 

not rely on the use of the suffix tree or alignment matrix as a central data structure.  

No major conversion or preprocessing of the input is required.  Instead, repeats are 

discovered directly from the DNA sequence using simple search methods.  As a 

result, CRT is very efficient in terms of memory usage, at O(n), and O(nm/l) in time.  

Thus, a standard desktop machine is sufficient for processing large prokaryotic 

genomes, usually in a matter of seconds. 

 

Future research plans are to modify the presented algorithm so that it is also able to 

identify contiguous repeats.  Because of the nature of the CRT algorithm, the tool 

would not be practical for detecting very short patterns of sizes 2 - 4 nucleotides, for 

example.  CRT is fastest when identifying longer repeats, and when there is little 

variation between the sizes of the smallest and largest repeats to be detected.  Also, 

the tool is fast when processing genomes with large numbers of repeats; so, CRT may 

be useful for detecting contiguous repeats in eukaryotes, which tend to have more 

repetitive sequences than prokaryotic genomics.  

Conclusions  
In this paper a new tool was introduced for the automatic detection of CRISPR 

elements.  This tool, CRT, was shown to be a significant improvement over the 

current technique for CRISPR identification using Patscan.  CRT’s approach detects 

repeats directly from a DNA sequence.  This leads to a program that is easy to 

describe and understand, yet it is very fast and memory efficient.  In terms of retrieval 

performance, CRT was shown to be very reliable in detecting CRISPRs, based on 

measures precision, recall and quality.  For performance measures tested, CRT 

outperformed Patscan in all cases.  Additionally, when compared to a recently 

developed CRISPR detection program, Pilercr, CRT showed improved performance 

under most conditions. However, we recommend using both CRT and Pilercr for 

detecting CRISPRs as both are fast and have complementary strengths (precision and 

recall). 

Availability and requirements 
Project name:  CRISPR Recognition Tool (CRT) 

Project home page:  http://www.room220.com/crt 

Operating system(s):  Platform independent 

Programming language:  Java 
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Figures 

Figure 1  - An occurrence of a CRISPR 

Repetitive sequences are detected by reading a small search window and then 

scanning ahead for exact k-mer matches separated by a similar distance. 

Figure 2  - Running time based on genome size, using repeat length 21–37 and 

spacer length 19–48. 

Running times for the three compared search tools, based on genome size (CRT is 

listed twice, once for windows size 6 and once for window size 8).  The y-axis 

represents time in seconds.  The x-axis lists the genome accession numbers, followed 

by their sizes in million base pairs (Mbp).  As the size of the genomes increase, it can 

be seen that running times of the search tools increase at different rates.  Below, the 

corresponding organism names are given. 

[AE015450] Mycoplasma gallisepticum (strain R(low))  

[AE004439] Pasteurella multocida (strain Pm70) 

[AE017282] Methylococcus capsulatus (strain Bath / NCIMB 11132) 

[AP006627] Bacillus clausii (strain KSM-K16) 

[BX470251] Photorhabdus luminescens (subsp. laumondii, strain TT01) 

Figure 3  - Running time based on genome size, excluding Patscan. 

Running times for the search tools, excluding Patscan.  The parameter values and 

organisms are the same as that in Figure 2.  However, by removing Patscan, a better 

comparison of the execution speeds of PilerCR and CRT can be achieved. 
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Figure 4  - Running time based on genome size, using repeat length 19–50 and 

spacer length is 19–60. 

Running times for two of the compared search tools, based on genome size (CRT is 

listed twice, once for windows size 6 and once for window size 8).  This figure is the 

same as Figure 3, except the ranges of the repeat length and spacer length to be 

detected are increased.    

Figure 5  - Running time based on number of repeats, using repeat length 21–

37 and spacer length 19–48. 

Running times for two of the compared search tools based on number of repeats 

processed.  CRT is listed twice, once for windows size 6 and once for window size 8. 

The y-axis represents time in seconds.  The x-axis lists the genome accession 

numbers, followed by the number of repeats detected in the genome.  As the size of 

the genomes increase, it can bee seen that running times of the search tools increase at 

different rates. Below, the corresponding organism names and the number of CRISPR 

loci are given.  All genomes are close in size (2.7 – 3.8 Mbp). 

[BA000031] Vibrio parahaemolyticus (serovar O3:K6, strain RIMD 2210633)  loci: 0 

[CR628337] Legionella pneumophila (strain Lens)  loci:  2 

[AP006840] Symbiobacterium thermophilum (strain IAM 14863 / T)  loci: 3 

[AE017180] Geobacter sulfurreducens (strain ATCC 51573 / PCA)  loci: 2 

[AE008691] Thermoanaerobacter tengcongensis (strain MB4 / JCM 11007)  loci: 3 

[AE006641] Sulfolobus solfataricus P2  loci: 7 

[BA000023] Sulfolobus tokodaii str. 7 DNA  loci: 7 

 

Table 1  - Performance evaluation measures for the examined tools only on 

CRISPRs with Cas genes. 

A comparison of the three search tools, based on measures quality, precision and 

recall.  The higher scores for CRT and Pilercr show that automatic detection of 

CRISPRs can be very reliable, even more so than with the use manual post-processing 

as is done with Patscan.   

 

 Quality Precision Recall 

CRT .95 .99 .99 

Pilercr .77 1 .95 

Patscan .74 n/a .89 

 

Table 2  - Performance evaluation measures for the examined tools on 

CRISPRs with and without Cas genes. 

The results in Table 1 are for CRISPRs containing Cas genes.  Because the authors 

suspect that CRISPRs with Cas genes have fewer mutations, and are thus easier to 

detect, a second experiment was performed using randomly selected finished 

genomes.  As expected, slightly lower scores resulted.  These scored should better 

reflect the effectiveness of the tools. 

 

 Quality Precision Recall 

CRT .90 .89 1 

Pilercr .75 1 .86 

 


