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Abstract 
We present an analytical approach for pressure transient test analysis in naturally fractured vuggy reservoirs. This 
analysis approach relies on a triple-continuum concept, using observed geological data from carbonate oil 
formations in western China, to describe transient flow behavior in fracture-vug-matrix reservoirs. In the conceptual 
mathematical model, fractured vuggy rock is considered as a triple-continuum medium, consisting of fractures, rock 
matrix, and vugs (or cavities). Similar to the classical double-porosity model, the fracture continuum is assumed to 
be responsible for the occurrence of global flow, while vuggy and matrix continua (providing primary storage space) 
interact locally with each other as well as with globally connected fractures. Furthermore, the triple continua of 
fractures, matrix, and vugs are assumed to have uniform and homogeneous properties throughout, and 
intercontinuum flows between them are at pseudosteady state. With these assumptions, we derive analytical 
solutions in Laplace space for transient flow toward a well in an infinite and finite reservoir with wellbore storage 
and skin effects.  The analytical solutions reveal typical pressure responses in a fracture-vug-matrix reservoir and 
can be used for estimating vug properties, in addition to fracture and matrix parameters, through properly designed 
and conducted well tests. As application examples, actual well test data from a fractured-vuggy reservoir in Western 
China are analyzed using the triple continuum model. 
 
Introduction  

Since the 1960s, significant progress has been made towards understanding and modeling of flow processes in 
fractured rock [Barenblatt et al., 1960; Warren and Root, 1963; Kazemi, 1969; Pruess and Narasimhan, 1985]. 
However, most of these studies have focused primarily on naturally fractured reservoirs without taking into 
consideration large cavities. Recently, characterizing vuggy fractured rock has received attention, because a number 
of fractured vuggy reservoirs have been found worldwide that can significantly contribute to oil and gas reserves and 
production [Kossack and Curpine, 2001; Rivas-Gomez et al., 2001; Liu et al. 2003; Hidajat et al., 2004; Camacho-
Velazquez et al., 2005; Kang et al. 2006; Wu et al. 2006].  

Among the commonly used mathematical methods for modeling flow through fractured rock, dual-continuum 
models (i.e., double- and multi-porosity, and dual-permeability) are perhaps the most popular approaches used in 
reservoir modeling studies. In addition to the traditional double-porosity concept, a number of triple-porosity or 
triple-continuum models have been proposed [Closemann, 1975; Wu and Ge, 1983; Abdassah, and Ershaghis, 1986; 
Bai et al. 1993; Wu et al., 2004; Kang et al. 2006; Wu et al. 2006] to describe flow through fractured rock. In 
particular, Liu et al. [2003] and Camacho-Velazquez et al. [2005] present several new triple-continuum models for 
single-phase flow in a fracture-matrix system that includes cavities within the rock matrix (as an additional porous 
portion of the matrix). In general, these models have focused on handling the heterogeneity of the rock matrix or 
fractures, e.g., subdividing the rock matrix or fractures into two or more subdomains with different properties.  

This study develops an analytical model for analyzing transient pressure behavior in naturally fractured vuggy 
reservoirs and presents our continuing effort in investigating flow processes in naturally fractured vuggy reservoirs 
[Kang et al. 2006; Wu et al. 2006]. In this study, we focus on single-phase transient flow and fractured vuggy rock, 
conceptualized also as a triple-or multiple-continuum medium, consisting of (1) highly permeable fractures, (2) low-
permeability rock matrix, and (3) vugs. Similar to the conventional double-porosity model, the fracture continuum is 
responsible for global flow, while vuggy and matrix continua, providing storage space, are locally connected to each 
other and interacting with globally connecting fractures. With these assumptions, we derive a mathematical model 
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and analytical solutions in the Laplace space for transient flow toward a well in an infinite and finite reservoir. In 
addition, wellbore storage and skin effects are included. As application examples, actual well test data from a 
fractured-vuggy reservoir in Western China are analyzed using the triple-continuum model. 

 
Conceptual and Mathematical Models 

As observed in the carbonate formation of the Tahe Oilfield in western China, fractured vuggy reservoirs 
consist typically of large-scale, well-connected fractures, low-permeable rock matrix, and a large number of cavities 
or vugs. Those vugs and cavities are irregular in shape and size. Several conceptual models for fractured-vuggy 
reservoirs are proposed to study flow behavior through such formations in Kang et al. (2006) and Wu et al. (2006). 
Figure 1 presents a conceptualization for this study, showing that vugs are indirectly connected to fractures through 
small fractures or microfractures. Similar to the conventional double-porosity concept (Warren and Root, 1963), 
large fractures are conceptualized to be main pathways for global flow, while vug and matrix continua, locally 
connected to each other as well as directly or indirectly interacting with globally connecting fractures, generally 
provide storage space, acting as sinks or sources. Note that vugs and cavities directly connected with fractures are 
considered part of the fracture continuum. More specifically, we conceptualize the fracture-vug-matrix system as 
consisting of (1) “large” fractures (or fractures), globally connected on the model scale, (2) various-sized vugs, 
locally connected to fractures either through “small” fractures (Figure 1) or through rock matrix, and (3) rock 
matrix, which may contain a number of cavities, locally connected to large fractures and/or vugs.  

With these conceptualizations, the Warren-Root model is extended to include one more medium—vugs—in 
developing the governing equations with the following basic assumptions for obtaining analytical solutions: 

1. The reservoir is of uniform thickness with impermeable lower and upper boundaries. 
2. The fluid flow from the system into the wellbore is radial, and only the fractures feed the well. 
3. All rock properties, such as permeability, initial porosity and compressibility, are constants in each 

continuum. 
4. Fluid flow is isothermal, single-phase, and slightly compressible with constant fluid viscosity. 

Furthermore, the quasi-steady-state flow assumption is used for flow between the fracture continuum and the matrix 
(F-M), and between the vug (V) continuum and the matrix (V-M). Given these assumptions, the flow in a triple-
continuum system can be described as a triple-porosity model (Liu et al. 2003; Wu et al. 2004): 

For flow through large fractures: 
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For interacting with vugs (or cavities): 
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For interacting with the matrix: 
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In Equations (1)–(3), subscripts F, M, and V are indexes for fracture, matrix, and vuggy systems, respectively; P, φ , 
C, and k denote pressure, initial porosity, total effective compressibility, and the permeability of each continuum, 
respectively; µ  is fluid viscosity, and 

FV
! , 

FM
!  and 

VM
!  are the interporosity flow shape factors. The shape 

factor for F-M or V-M is defined by Warren and Root (1963): 
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For F-V interaction, the shape factor for vugs is defined as 
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where AFV is the total fracture and vug connection area per unit volume of rock (m2/m3) and lFV is characteristic 
length, defined as: 

lFV= lf /2 (6) 
where lf is the average length of small fractures that connect vugs with fractures. 
 



 

Initial and Boundary Conditions: The initial pressure 
i
P  is assumed uniform for the three media throughout the 

reservoir 

iP)0,r(MP)0,r(VP)0,r(FP ===  (7) 
On outer boundaries, the same constant pressure for a radially infinite system remains: 

iP)t,r(FP =!=  (8) 
For a radially finite system, the outer boundary (with a radius = re) is subject to the following two conditions: 
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for constant boundary condition; and 
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for closed outer boundary condition. 
The boundary conditions at the wellbore (r = rw) are decided by a constant volumetric flow rate, q, imposed  to 

the well at surface conditions, subject to wellbore storage effects and the effect of an infinitesimal skin region 
around the wellbore. They can be related by: 
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where S is a skin factor, dimensionless constant, C is wellbore storage constant, Pwf is flowing borehole pressure, 

w
r  is wellbore radius, and h  the thickness of the uniform, horizontal formation. The wellbore storage constant is 
defined as: 

L
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where Vw is wellbore volume and cL is compressibility of liquid or fluid in wellbore. 
Introducing dimensionless pressure, )t,r(P DDD , dimensionless radial distance 
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r , and dimensionless time 
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Governing equations (1)–(3), initial conditions (7), and boundary conditions (8)–(12) become 
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where ω’s and λ’s are defined in Table 1.  
Initial condition: 
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Outer boundary conditions: 
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and inner boundary conditions: 
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where  
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and dimensionless wellbore storage coefficient, 
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Laplace Space Solutions: Applying the Laplace transformation to Equations (17) through (25) yields:  
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and inner boundary conditions: 
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where DFP , DVP , DMP , and DwfP  are Laplace transformed functions of 
DF
P , 

DV
P , 

DM
P , and 

Dwf
P  in the 

Laplace domain, and s  is the Laplace transformation variable. 
Substituting the matrix and cavity equations of (29) and (30) into the fracture equation (28), we have: 
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The general solution to Equation (36) is  
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where 
0

K  and 
0
I  are the modified Bessel functions of the second and first kinds of zero order, respectively. 

 
Infinite Reservoir: The solution subject to boundary conditions Equations (31), (34) and (35) of an infinite 
reservoir is: 
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Finite Reservoir with Closed Outer Boundary: The solution subject to boundary conditions Equations (32), (34) 
and (35) of an infinite reservoir is: 
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where, 
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Finite Reservoir with Constant-Pressure Outer Boundary: The solution subject to constant-pressure outer 
boundary conditions without wellbore storage and skin effects rr is 
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According to Warren and Root (1963), flow through a double-porosity medium can be sufficiently characterized by 

two parameters, storage parameter ω and interporosity parameter λ. The solution in Equation (40) indicates that the flow 
in the triple-continuum reservoir is characterized by five dimensionless parameters: 2 ω’s and 3 λ’s (Table 1). Note that 
only two of the three ω’s are independent.  
 
Model Behavior 

The analytic solution of Equation (40) can be used to investigate transient flow behavior in fractured vuggy 
reservoirs. Figure 2 shows basic behavior as well as how wellbore storage affects pressure responses. As discussed 
in Wu et al. (2004), flow behavior in a triple-continuum reservoir may exhibit three straight, parallel lines in semi-
log space (Figure 2). However, depending on the magnitude of the wellbore storage effect, one or both of the semi-
log lines may be masked or distorted.  

The characteristic behavior is also observed in the log-log presentation of the logarithmic pressure derivative, 
with the presence of 2 interporosity flow “valleys”. Interporosity flow from the vuggy continuum through the 
fracture system into the wellbore is observed first, because of its higher interporosity transmissivity parameter λ’s, 
and is identified by the initial valley in the early time region. Then, if the contrast in the interporosity flow parameter 
is large enough, the second valley, corresponding to fluid transfer from the matrix continuum to the fracture system, 
is observed later. It can be observed from Figure 3 that it is possible, in some cases, for the wellbore storage to 
completely mask the presence of the first valley produced by flow from the vuggy continuum. In such cases, the 
pressure transient test may be wrongfully interpreted as a double-porosity reservoir, thereby effectively ignoring the 
contribution of the vugs. It is even possible for wellbore storage to mask both valleys, giving the false impression of 
a homogeneous reservoir.  

The fraction of oil reserves in a vuggy fractured reservoir contributed by vuggy porosity may be small when 
compared with the matrix contribution. However, the computation of the additional porosity due to the vug 
continuum will cause a noticeable increase in the estimated reserves. In the example used in Figure 3 (parameters 
given in Table 2), the addition of the vuggy continuum contribution masked by the wellbore storage increases the 
effective porosity of the reservoir by 13% and would consequently increase the reserves estimate by as much as 10% 
or more, depending on the method of reserves estimation. 
 
Field Examples 

Pressure transient data from two oil-production wells (T313 and TK609) in the Tahe Reservoir, a carbonate, 
naturally fractured reservoir in western China, exhibit apparent triple-porosity behavior. For these two wells, drilling 
records, core samples, and geophysical data all indicated that the associated geologic formations are typical of 
fractured, vuggy rock. The two wells were completed in 2000 and 2001, respectively, with completion depths more 
than 5,000 m. Buildup tests were performed for both wells and are used here to demonstrate the application of the 
proposed pressure-transient-analysis approach. 

Figures 4 and 5 present matches for the buildup data from the two wells using the triple continuum model. As 
shown in Figures 4 and 5, model results reasonably match both measured pressure and its derivative data from the 



 

wells. In both of these examples, the buildup duration was not sufficiently long to observe all of the second 
characteristic valley, representing interporosity flow from the matrix to natural fractures. As a result, both of these 
tests can also be matched with a dual-porosity model by matching the falling derivative in late time as a constant-
pressure boundary. Figure 6 illustrates that the data for Well T313 can be matched in this way. In fact, the dual-
porosity model provides a better match for these data.  

The matches for T313 and TK609 testing data provide the parameters listed in Table 3. An increase in effective 
porosity from vugs is also indicated in the table, and the increase in reserves after accounting for vugs is quite 
substantial for T313. The matrix porosity used for the analysis of TK 609 is very small and seems inconsistent with 
the permeability value determined from the match. All three matches for the two wells show very negative skins that 
cannot be explained by usual mechanisms. More work is needed to explain the skin results. The dual-porosity match 
for T313 is achieved with a constant-pressure boundary 6,070 ft from the well. The triple-porosity model does not 
show any reservoir limit up to the end of the buildup.  
 
Summary and Concluding Remarks 

A physically based conceptual and mathematical model is presented for analyzing flow through fractured vuggy 
rock using a multiple-continuum-medium concept. The proposed multiple-continuum model is a natural extension of 
the classic double-porosity model, with the fracture continuum responsible for conducting global flow, while vuggy 
and matrix continua, locally connected and interacting with globally connecting fractures, provide storage space for 
fluids. In particular, analytical solutions including wellbore storage and skin effects are obtained in Laplace space 
for pressure-transient analyses in such reservoirs. 

As an application example, the proposed well testing approach is demonstrated on actual buildup data for two 
wells from a naturally fractured vuggy oil reservoir, with reasonable results obtained.   
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Table 1. Dimensionless parameters and variables used in the analytical solutions of flow through a triple-
continuum reservoir 

Parameter Definition 
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Table 2: Triple continuum model parameters used to generate the WBS example 
 
Well  Example 1   
C varying bbl/psi 
Pi 9000 psia 
k.h 296 md.ft 
k 9.86 md 
Skin 2 -- 
F-M interporosity  parameter 

5.0E-09   
F-V interporosity  parameter 3.0E-07   
F Storativity  1.00E-02   
V Storativity  0.1188   
M Storativity  0.8712  
   

 
 
 
 

Table 3: Triple-continuum and double-continuum model parameters used to match field-case examples 

Well  T313 Double-
Porosity Match T313 TK609   

C 0.0186 0.0251 0.0973 bbl/psi 

Pi 8246.32 8225.55 7627.85 psia 

k.h 14200 14200 22100 md.ft 

k 193 193 337 md 

Skin -6.31 -7.36018 -10 -- 

F-M interporosity  parameter 1.44E-06 1.5E-09 4.7E-12   

F-V interporosity  parameter -- 2.0E-07 1.0E-09   

F Storativity  8.84E-04 4.31E-05 1.69E-10   

V Storativity  -- 0.1437 0.0033   

M Storativity  0.999 0.8563 0.9967   

Matrix porosity 0.15 0.15 0.02  

Vuggy Porosity 0 0.025172 
 

6.65E-05 
  

% increase in effective porosity 0% 16.8% 0.33%  

Effective Porosity 0.15 0.175 0.02  

 
 
 
 



 

 
 
 
 
 
 

 

 

 

 
 

 

Figure 1. Conceptualization of vuggy fractured rock as a triple-continuum system, with vugs indirectly 
connected to fractures through small fractures 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Pressure-transient behavior of flow through a fractured vuggy media, showing triple-continuum 

flow behavior and the effects of wellbore storage 
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Figure 3. Effects of wellbore storage on pressure-transient behavior in fractured vuggy media (the lower 

three curves for pressure derivatives) 
 
 

Figure 4. Comparison between measured pressure drawdown and its derivative data, and model predictions 
for Well T313 
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Figure 5. Comparison between measured pressure drawdown and its derivative data and modeled 
predictions for Well TK609 
 
 
 
 
 
 

 
Figure 6. Alternate double-porosity pressure-transient analysis for field example  
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