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Abstract

The quantum instanton approximation is used to compute kinetic isotope effects for intramolecu-

lar hydrogen transfer in cis-1,3-pentadiene. Due to the importance of skeleton motions, this system

with 13 atoms is a simple prototype for hydrogen transfer in enzymatic reactions. The calcula-

tion is carried out using thermodynamic integration with respect to the mass of the isotopes and

a path integral Monte Carlo evaluation of relevant thermodynamic quantities. Efficient “virial”

estimators are derived for the logarithmic derivatives of the partition function and the delta-delta

correlation functions. These estimators require significantly fewer Monte Carlo samples since their

statistical error does not increase with the number of discrete time slices in the path integral. The

calculation treats all 39 degrees of freedom quantum-mechanically and uses an empirical valence

bond potential based on a modified general AMBER force field.
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I. INTRODUCTION

The kinetic isotope effect (KIE) is defined as the ratio kA/kB of rate constants for two

isotopologs A and B. Isotopologs A and B are two chemical species differing only by

replacing an atom (or a group of atoms) in molecule A by its (their) isotope(s) in molecule

B.

Kinetic isotope effects are among the main tools of chemical kinetics for determining

mechanisms of complex chemical reactions or the extent of nuclear quantum mechanical

effects in a simple reaction.1 These effects are particularly strong for hydrogen transfer

reactions with a high activation barrier or at low temperatures. However, unexpectedly

large KIE’s have recently been observed also in several enzymatic reactions at physiological

temperatures.2,3 These experiments imply that in some biochemical reactions, the hydrogen

transfer proceeds via tunneling even at physiological temperatures, often with the help of

thermally excited “promoting” vibrations that modulate the distance between the hydrogen

donor and acceptor. These quantum effects have also been observed in several numerical

simulations.4–7 Most simulations include quantum effects by semiclassical (SC) approxima-

tions or by treating one or two degrees of freedom quantum-mechanically and the rest

classically.

In a recent paper,8 a different approach was developed, based on the quantum instanton

approximation (QI) for the rate constant.9 This approximation is similar to the semiclassi-

cal instanton theory,10 but has an advantage that the Boltzmann operator is treated fully

quantum mechanically rather than within the SC approximation. The quantum instanton

theory thus incorporates all the tunneling, corner-cutting, and quantum-fluctuations effects

correctly and is expected to overcome the quantitative deficiency of the SC instanton model.

Indeed, several test applications have shown the QI theory to give accurate quantum rates

over a wide temperature range, from the “deep” tunneling regimes at low temperatures to

the regime of over-barrier dynamics at high temperature.9,11–14 In Ref. 8 the QI was success-

fully applied to compute KIE’s in a simple hydrogen exchange reaction. The calculation was

based on a thermodynamic integration with respect to the mass of isotopes and the path

integral representation of relevant quantities.

In this paper, this method is developed further: specifically, we derive very efficient

estimators needed in polyatomic reactions. The advantage of these “virial” estimators is
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that their error is independent of the number of discrete time slices in the path integral.

We then test this improved method on the KIE in the [1,5]-sigmatropic hydrogen shift in

cis-1,3-pentadiene.

The outline of the paper is as follows: The QI approximation for the KIE is described

in Sec. II. The new and more efficient virial estimators are derived in Sec. III. In Sec.

IV, the improved method is tested on the intramolecular hydrogen transfer in pentadiene.

In particular, the virial estimators are compared to the thermodynamic estimators from

Ref. 8. The importance of quantum effects are judged by increasing the number of imaginary

time slices and by comparison with mixed quantum-classical calculations. Finally, Sec. V

discusses the merits of the present approach and its possible extensions in future applications

in real enzymatic reactions.

II. QUANTUM INSTANTON APPROXIMATION FOR THE KINETIC ISOTOPE

EFFECTS

The quantum instanton (QI) approximation for the rate constant was introduced in Ref. 9.

Here we summarize a simpler alternative derivation15 described in Ref. 8. This derivation

starts with the Miller-Schwartz-Tromp formula16 for the thermal rate constant k,

k Qr =

∫ ∞

0

dtCff (t) . (2.1)

Here Qr is the reactant partition function (per unit volume for bimolecular reactions) and

Cff (t) is the symmetrized (and therefore real) flux-flux correlation function,

Cff (t) = tr
(
e−βĤ/2F̂ae

−βĤ/2eiĤt/!F̂be
−iĤt/!

)
(2.2)

with Hamiltonian operator Ĥ and quantum flux operators F̂γ through dividing surfaces

γ = a, b (see Ref. 8). The QI expression for the rate follows by multiplying and dividing

the integrand of Eq.(2.1) by the “delta-delta” correlation function Cdd (t), assuming that

Cff (t) /Cdd (t) varies slowly compared with Cdd (t), and applying the steepest descent ap-

proximation to the resulting integral. Assuming further that the stationary-phase point is

at t = 0, we obtain the QI thermal rate constant,

kQI =
1

Qr
Cff (0)

√
π

2

!
∆H

. (2.3)
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Here ∆H is a specific type of energy variance,11

∆H = !
[
−C̈dd (0)

2Cdd (0)

]1/2

, (2.4)

where the delta-delta correlation function Cdd(t) is defined8,12 as

Cdd (t) = tr
(
e−βĤ/2∆̂ae

−βĤ/2eiĤt/!∆̂be
−iĤt/!

)
, (2.5)

with ∆̂γ being a generalized delta operator (see Ref. 8).

In applying the QI approximation to the KIE, it is useful to consider a continuous change

of the isotope mass. If the two isotopologs are A and B, a real parameter λ ∈ [0, 1] can be

defined such that

mi (λ) = mA,i (1− λ) + mB,iλ (2.6)

where mA,i and mB,i are the masses of the ith atom in the isotopologs A and B, respectively.

Within the quantum instanton approximation (2.3), the KIE can be expressed as

kQI(0)

kQI(1)
=

Qr(1)

Qr(0)
× ∆H(1)

∆H(0)
× Cdd (0)

Cdd (1)
× Cff (0) /Cdd (0)

Cff (1) /Cdd (1)
, (2.7)

where the argument denotes the value of λ and for simplicity the time argument of the

correlation functions has been omitted since it is always t = 0 in the QI approximation. Also,

for convenience, we have again multiplied and divided both numerator and denominator by

Cdd(λ).

Four types of quantities have to be evaluated in order to compute the KIE from Eq. (2.7):

the ratio of the partition functions Qr(1)/Qr(0), ratio of the delta correlation functions

Cdd (1) /Cdd (0), and energy variance ∆H(λ) and the “velocity” factor Cff (λ)/Cdd(λ) for

λ = 0 and 1. Since quantum statistical calculations are impractical on a grid for systems

with more than a few degrees of freedom, one usually employs a path integral Monte Carlo

approach. The last two of the four quantities are in the form of thermodynamic averages,

and so can be computed directly by Metropolis Monte-Carlo techniques.8,11,12 The first two

quantities cannot be evaluated directly since they are ratios of quantities for two different

values of λ.

Here is where considering a continuous isotope change becomes useful: instead of com-

puting the ratios directly, we use a variant of thermodynamic integration,17 applied to the
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parameter λ (i.e., to the masses of the isotopes). The two ratios can be expressed as expo-

nentials of the integrals of their logarithmic derivatives,

Qr(1)

Qr(0)
= exp

[∫ 1

0

dλ
d log Qr (λ)

dλ

]
, (2.8)

Cdd(1)

Cdd(0)
= exp

[∫ 1

0

dλ
d log Cdd (λ)

dλ

]
. (2.9)

Since the logarithmic derivatives are given by

d log Qr(λ)

dλ
=

dQr(λ)/dλ

Qr(λ)
, (2.10)

they are normalized quantities (thermodynamic averages) which can be directly computed by

the Metropolis algorithm. To summarize, we compute the ratios of both reactant partition

functions and the delta-delta correlation functions at λ = 0 and 1 by computing the values

of the corresponding logarithmic derivatives for enough values of λ between 0 and 1, and

then by integrating over λ and exponentiating. The relevant path integral representations

and estimators for ∆H(λ) and Cff (λ)/Cdd(λ) have been originally derived in Ref. 11. In

our case, we need a generalized form which is written out explicitly in Appendix A of Ref. 8.

Estimators for d log Qr/dλ and d log Cdd/dλ needed in the thermodynamic integration are

derived in the following section.

III. EFFICIENT ESTIMATORS FOR THE LOGARITHMIC DERIVATIVES

A. Path integral approach

Quantum statistical effects can be rigorously treated using the imaginary time path in-

tegral (PI). Let N be the number of atoms, d the number of spatial dimensions (usually

d = 3), and P the number of imaginary time slices in the discretized PI (P = 1 gives classical

mechanics, P →∞ gives quantum mechanics). Then the PI representation of the reactant

partition function Qr is

Qr ' V −1C

∫
dr(0)

∫
dr(1) · · ·

∫
dr(P−1)ρr

({
r(s)

})
, (3.1)

ρr

({
r(s)

})
= exp

[
−βΦ

({
r(s)

})]
, (3.2)

C ≡
(

P

2π!2β

)NdP/2 N∏

i=1

mdP/2
i . (3.3)
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where r(s) ≡
(
r(s)
1 , r(s)

2 , . . . , r(s)
N

)
is the set of Cartesian coordinates associated with the sth

time slice, V is the volume,37 and Φ
({

r(s)
})

is the effective potential given by

Φ
({

r(s)
})

=
P

2!2β2

N∑

i=1

mi

P−1∑

s=0

(
r(s)

i − r(s+1)
i

)2

+
1

P

P−1∑

s=0

V
(
r(s)

)
. (3.4)

The presence of ρr in the path integral (3.1) strongly suppresses paths away from the reactant

region because the quantum Boltzmann factor gives them an exponentially vanishing weight.

Similarly, the PI representation of Cdd is

Cdd (0) ' V −1C

∫
dr(1)

∫
dr(2) · · ·

∫
dr(P )ρ‡ ({

r(s)
})

, (3.5)

ρ‡ ({
r(s)

})
= ∆

[
ξa

(
r(0)

)]
∆

[
ξb

(
r(P/2)

)]
exp

[
−βΦ

({
r(s)

})]
, (3.6)

where ρ‡ is the thermal density matrix constrained to the two dividing surfaces (“transition

state” region).38 The dividing surfaces are defined by ξγ(r) = 0, i.e., ξa(r) and ξb(r) are

generalized reaction coordinates, functions of coordinates r that take on positive (negative)

values on the product (reactant) sides of the dividing surfaces. Since the density ρ‡ contains

the two delta constraints, the PI (3.5) selects paths that are close to the saddle point of the

potential. In numerical applications, it is useful to replace the generalized delta function in

ρ‡ by its Gaussian approximation.8,11

B. Thermodynamic estimators

By straightforward differentiation of (3.1) with respect to λ one obtains the “thermody-

namic” estimator (TE)39 for the logarithmic derivative (2.10) needed in expression (2.8),

d log Qr (λ)

dλ
'

N∑

i=1

dmi

dλ

〈
dP

2mi
− P

2!2β

P−1∑

s=0

(
r(s)

i − r(s+1)
i

)2
〉

. (3.7)

The similar thermodynamic estimator for the logarithmic derivative of Cdd is obtained by

differentiating the logarithm of expression (3.5) and is given in Ref. 8.

These thermodynamic estimators have the advantage that they do not require evaluation

of the potential. Their disadvantage, however, is that their statistical error σstat of the

computed average grows with the number of slices P . If M denotes the number of Monte

Carlo samples, τ the correlation time, then

σstat ≈ O
(
P 1/2τ 1/2M−1/2

)
. (3.8)
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C. Efficient virial estimators

In this subsection we present one of the central results of this paper, namely the efficient

“virial”estimators for the logarithmic derivatives of Qr and Cdd.

By rescaling the Cartesian coordinates in the PI (3.1) as xi = m1/2
i ri, we obtain a PI in

mass-scaled coordinates,

Qr '
(

P

2π!2β

)NdP/2 ∫
dx(0)

∫
dx(1) · · ·

∫
dx(P−1) exp

[
−βΦ

({
x(s)

})]
, (3.9)

Φ
({

x(s)
})

=
P

2!2β2

N∑

i=1

P−1∑

s=0

(
x(s)

i − x(s+1)
i

)2

+
1

P

P−1∑

s=0

V
({

m−1/2
i x(s)

i

})
. (3.10)

The logarithmic derivative (2.10) of PI (3.9) yields the simple virial estimator (SVE),

d log Qr

dλ
' − β

P

〈
P−1∑

s=0

dV
[{

mi (λ)−1/2 x(s)
i

}]

dλ

〉
(3.11)

' − β

P

〈
P−1∑

s=0

dV
[{

mi (λ + ∆λ)−1/2 mi(λ)1/2r(s)
i

}]

d∆λ

〉
(3.12)

' β

2P

N∑

i=1

dmi/dλ

mi

〈
P−1∑

s=0

r(s)
i ·

∂V
(
r(s)

)

∂r(s)
i

〉
. (3.13)

We have explicitly written three forms of the SVE. The first form (3.11) is for numerical

evaluation if sampling is done in mass-scaled coordinates. (By “numerical” we mean that

the total derivative of V with respect to λ is computed by finite difference.) The second

form (3.12) is for numerical evaluation if sampling is done in Cartesian coordinates. Fi-

nally the third form (3.13) is for analytical evaluation when sampling is done in Cartesian

coordinates. The second and third forms are especially useful since the estimators can be

computed simultaneously with the TE (3.7). For PI Monte Carlo simulations, where forces

are not computed in the simulation, the second form is the most useful one. In PI molec-

ular dynamics simulations, one can equally well use the last estimator since the forces are

available.

The statistical errors of the virial estimators, especially in systems with unbound degrees

of freedom, can be drastically reduced by removing the centroid motion before rescaling,
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i.e., by defining the mass-scaled coordinates as

xi = m1/2
i (ri − r(C)

i ),

r(C)
i =

1

P

P−1∑

s=0

r(s)
i .

Following a more detailed derivation presented in Appendix A, one obtains the generalized

virial estimator (GVE),

d log Q

dλ
' d

2

N∑

i=1

dmi/dλ

mi
− β

P

〈
P−1∑

s=0

dV
[{

r(C)
i + mi (λ)−1/2 x(s)

i

}]

dλ

〉
, (3.14)

' d

2

N∑

i=1

dmi/dλ

mi
− β

P

〈
P−1∑

s=0

dV
[{

r(C)
i + mi (λ + ∆λ)−1/2 mi(λ)1/2

(
r(s)

i − r(C)
i

)}]

d∆λ

〉

(3.15)

'
N∑

i=1

dmi/dλ

mi

[
d

2
+

β

2P

〈
P−1∑

s=0

(
r(s)

i − r(C)
i

)
·
∂V

(
r(s)

)

∂r(s)
i

〉]
. (3.16)

The primary advantage of these estimators is that their statistical error is independent

of the number P of imaginary time slices,

σstat ≈ O
(
P 0τ 1/2M−1/2

)
. (3.17)

Again we have three forms (3.14), (3.15), and (3.16) for various applications: An analytical

approach (3.16) would be useful in PI molecular dynamics simulations where gradient in-

formation is available. In PI Monte Carlo simulations where gradient is not needed for the

random walk, computation of the gradient of the potential just for the estimators is costly,

especially for polyatomic systems. Since we are only interested in the total derivative of the

potential with respect to the change of a single parameter (λ), a direct computation of the

total derivative by finite difference (3.15) is much more efficient. This approach requires at

most 2P potential evaluations for each sampling and also we expect the (already very small)

numerical errors of this approach to cancel under the Monte Carlo averaging. In practice

the computational cost of evaluating virial estimators can be made negligible (relative to the

cost of the random walk) by sampling only after several MC moves and by saving informa-

tion about the previous sample and computing the new sample by evaluating the potential

only for slices that moved in the present Monte Carlo step.
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The virial estimator for the logarithmic derivative of Cdd is the same as for Qr except that

an additional term due to the constraint to the dividing surface is needed. This additional

term is the same as for the thermodynamic estimator and can be found in Ref. 8. If the reader

is confused by the notation of this section where general number of atoms and dimensions

are used, a simplified version of the present approach with preliminary results was presented

in Ref. 18, where the two types of estimators are derived and compared for a system with

one degree of freedom (the Eckart barrier).

IV. KINETIC ISOTOPE EFFECTS IN CIS-PENTADIENE

In this section, the methodology described above is tested on the [1,5]-sigmatropic hy-

drogen shift in cis-1,3-pentadiene. This system has been studied by several authors both

experimentally (by Roth and König19) and theoretically.20–23 On one hand, this 13-atom

system is much smaller than an enzyme; on the other hand, the pentadiene reaction exhibits

certain properties believed to play a role in real enzymatic reactions.

The sigmatropic rearrangement involves an internal rotation to transform the reactant

s-trans conformation to the transition state with Cs symmetry. The results presented here

are for the same isotopologs that were measured experimentally: the KIE is the ratio of the

rate constant kH for D2C-(CH)3-CH3 to that kD for H2C-(CH)3-CD3.

A. The potential energy surface for the reaction

There are several strategies for modeling a Born-Oppenheimer potential energy surface

for a chemical reaction. The most accurate, but computationally most expensive, are ab

initio quantum chemistry methods. Less accurate, but extremely efficient computationally,

are the empirical molecular mechanics force fields. Since our aim is to develop methods

applicable to systems as large as enzymes, it is necessary to use the second option.

Force fields, however, are designed to describe accurately only the stable chemical species

near equilibrium, and are not suitable for modeling reactive systems, which requires accurate

knowledge of the potential energy surface near the saddle point. On the other hand, if the

properties of the reactive potential are known at least in the vicinity of the saddle point, there

are various approaches for constructing a reactive potential from the molecular mechanics
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force fields. Perhaps the most popular is the empirical valence bond (EVB) potential.24,25

The simplest EVB potential can be described as follows. One assumes that the reactants

and products can be accurately described by some molecular mechanics potentials V11 and

V22, respectively. These are the diabatic potentials and the diagonal terms in the symmetric

2 × 2 EVB matrix, and the off-diagonal term V12 is the coupling between the two diabatic

states. The EVB potential is the lower eigenvalue of the EVB matrix,

VEVB =
1

2
(V11 + V22)−

√

|V12|2 +

(
V11 − V22

2

)2

. (4.1)

In the simplest case, V12 is chosen to be a constant, for example to reproduce the barrier

height of the EVB potential at the saddle point of an ab initio barrier height.

Constant coupling results in too strong mixing of V11 and V22 all the way to the reactant

and product regions where the input potentials V11 and V22 are assumed to be accurate. An

improvement is achieved by making the coupling decay, e.g., as a Gaussian function of the

distance from the saddle point of the potential,

V12(r) = A exp(−α|∆r|2/2), (4.2)

∆r = r− r‡

where r‡ is the location of the saddle point of the potential (i.e., the transition state). This

would probably be sufficient for getting an order of magnitude estimate for the rate constant,

which depends most strongly on the barrier height. Since we are interested in the KIE, this

information is not sufficient since, e.g., in the classical limit, the effect of the barrier height

on the rate constant cancels out in the KIE ratio and the first nonvanishing effect on the KIE

is due to the Hessian of the potential at the saddle point. A constant or a one-parameter

Gaussian coupling cannot reproduce this Hessian.

Chang and Miller proposed a refinement of the EVB method which solved this problem.25

In their approach, the EVB coupling has the form

V12(r)
2 = A exp(B · ∆r−∆r · C · ∆r),

and the constants A, B, C are chosen in order to match the Hessian of the potential obtained

by an ab initio calculation.

In our calculation, we used a further refinement by Schlegel and Sonnenberg,26 in which

the EVB coupling is given by

V12(r) = A[1 + B · ∆r + ∆r · (C + αI) · ∆r] exp(−α|∆r|2/2). (4.3)
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The constants A, B, C are again chosen to match the Hessian of the ab initio potential at

the transition state. The advantage of this form is that it avoids divergences which occur

sometimes in the Chang-Miller approach due to the fact that the quadratic form ∆r ·C ·∆r

is not guaranteed to be positive definite.

In our calculation, the ab initio Hessian of the potential for the pentadiene at the tran-

sition state was obtained at MP2/6-31g(d) level, using the Gaussian 03 software package.27

For the nonreactive potentials V11 and V22 we chose the general AMBER force field (GAFF)28

from the AMBER software package.29 The GAFF potential has the form

V (r) =
∑

bonds

Kr (r − req)
2 +

∑

angles

Kθ (θ − θeq)
2 +

∑

dihedrals

Vn

2
[1 + cos (nφ− γ)]

+
∑

nonbonded
pairs i<j

(
Aij

r12
ij

− Bij

r6
ij

+
q1q2

εrij

)
, (4.4)

in which the first term is due to bond stretches, the second due to bond bends, the third due

to torsions, and the fourth due to Coulomb and Van der Waals interactions of nonbonded

pairs of atoms. (See Ref. 28 for details.)

Two small modifications of the force field were necessary in order to prevent unreason-

ably large values of V11 near the saddle point (and the necessity of using a huge coupling

V12): First, the harmonic bond stretch potential for the bond being broken in the reaction

was replaced by a more realistic Morse potential (the Morse potential can be fitted to the

AMBER equilibrium bond length and force constant; the only additional parameter needed

is the bond dissociation energy D). Second, the non-bonded interaction for the bond being

formed in the reaction was omitted because the bond length in the transition state is much

shorter than the equilibrium value for the Lennard-Jones potential and gives a diverging

contribution to the potential.

As for the EVB potential (4.3), there is a free parameter α controlling the decay of the

coupling. This α can be neither too large, because then the PES would not be smooth, nor

too small, because then the reactant and product energies would be affected significantly.

Ideally, there is an intermediate range of α for which the results are fairly independent of

the precise value of α. Indeed this is the case for our pentadiene calculation, where this

range is 0.3 a.u. ! α ! 1.5 a.u. We chose a value α = 0.9 a.u.

The Monte Carlo simulation was performed in Cartesian coordinates. The question arises

how to compute the distance in the configuration space of the current translated, rotated, and
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deformed configuration from the configuration at the transition state. For a rigid body, this

problem is fairly easy and is solved by translation and rotation. In the case of deformations,

one has to invoke the so-called Eckart axis conditions30

N∑

i=1

mir
‡
i × (Rri) = 0. (4.5)

where ri are the current coordinates of the atoms, r‡i are the coordinates at the transition

state, and R ∈ SO(3) is an appropriate rotation matrix that guarantees the Eckart axis

conditions. In the above expression we for simplicity assumed that the center of mass was

already subtracted from both current and the transition-state coordinates. It turns out

that the Eckart axis conditions are equivalent to minimizing the distance between the two

configurations in mass-scaled coordinates:31

min
R∈SO(3)

N∑

i=1

mi|r‡i − (Rri)|2. (4.6)

In the actual calculation, one has to find the appropriate rotation matrix R after each

Monte Carlo step in order to minimize the distance or, equivalently, satisfy the Eckart axis

conditions. We used the algorithm of Dymarsky and Kudin.32

B. Details of the calculation

We computed the KIE for the intramolecular hydrogen transfer in cis-pentadiene at four

temperatures in the range 463-500K, as in the experiment by Roth and König.19 As opposed

to various types of mixed quantum-classical treatments in the literature, in our calculation

all atoms were treated quantum-mechanically, using P imaginary time slices in the path

integral. In order to check the convergence of the results, P was changed from 4 to 50, and

it was found that P = 24 suffices. For each value of P , a Monte Carlo simulation was run in

which four quantities were computed: the ratio of the partition functions Qr(1)/Qr(0), the

ratio of the delta-delta correlation functions Cdd (1) /Cdd (0), the energy variance ∆H(λ) and

the “velocity” factor Cff (λ)/Cdd(λ) for λ = 0 and 1. Ratios Qr(1)/Qr(0) and Cdd (1) /Cdd (0)

were computed by thermodynamic integration (2.8) and (2.9) over five equally spaced values

of λ between 0 and 1. The logarithmic derivatives, in turn, were computed using both

thermodynamic and virial estimators from Sec. III.
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Similarly as in Refs. 11 and 8, the random walk was implemented using the Metropolis

Monte Carlo algorithm for path integrals and the staging algorithm.33 The total number

of Monte Carlo samples for the logarithmic derivatives was 2 × 106 for Qr and 16 × 106

for Cdd, regardless of P . Since only thermodynamic estimators were used for ∆H(λ) and

Cff (λ)/Cdd(λ), the number of samples was increased with P as P × 1.6 × 106, in order to

keep the statistical error of the QI expression for the KIE within 3%. In order to efficiently

sample the configuration space, three types of Monte Carlo moves were used: a single-slice

move, a multi-slice move, and a whole-chain move, with respective frequencies: 0.50, 0.45,

and 0.05.11

C. Numerical results

The result of the thermodynamic integration (2.8) and (2.9) for partition functions and

delta-delta correlation functions are shown in Figs. 1 and 2. Both figures compare results

calculated with the thermodynamic and virial estimators from Eqs. (3.7) and (3.15), respec-

tively. Figure 1 a) shows the convergence of Qr(1)/Qr(0) as a function of the number P

of imaginary time slices. Part b) shows the P -dependence of the relative statistical error.

It is clear that the virial estimator (3.15) is superior to the thermodynamic estimator (3.7)

from Ref. 8: While the error is constant for the virial estimator, it grows with P for the

thermodynamic estimator.

Similar results can be seen in Fig. 2 that shows the P dependence of the ratio of delta-delta

correlation functions and its statistical error. In order to justify that the thermodynamic

integration is good enough with only five values of λ, Fig. 3 shows the λ dependence of the

logarithmic derivative of Qr and Cdd. Both graphs are fairly smooth, in fact almost linear

functions, and therefore the error introduced by the discretization of the integral is small.

Finally, the KIE itself is displayed in Fig. 4 and Table I. The temperature dependence of

the QI result is compared with the experimental results by Roth and König,19 conventional

transition state theory (TST) calculations by Dormans and Buck,20 and the canonical varia-

tional TST with multidimensional SC tunneling (CVT/SCT) by Liu et al.22 Calculation by

Dormans and Buck used Hessian information about the potential at the reactant minimum

and at the saddle point obtained by ab initio calculations at the 3-21G level. Liu et al. used

a semiempirical AM1 potential.
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As expected, the conventional TST underestimates the KIE by not treating quantum

effects properly. The variational TST with SC tunneling seems to match experimental

results quite well. In fact the agreement is almost surprising since only a semiempirical

potential is used.

It should be noted that the QI results are somewhat dependent on the precise value of α

used in the EVB potential (4.3). Depending on α, the KIE can vary by about 10%. This is a

fairly low error, considering that the potential was based on force fields at the reactant and

product wells, and only fitted to the ab initio Hessian at the transition state. What is also

satisfactory is that the temperature dependence of the KIE is very close to the experimental

dependence. It appears that the QI takes correctly into account the quantum effects on the

KIE. The small remaining error is mostly due to the accuracy of the PES and partially due

to the recrossing effects.

V. DISCUSSION

This paper has extended the methodology of computing KIE’s using the quantum instan-

ton approximation from Ref. 8. New virial estimators for the logarithmic derivatives needed

in the thermodynamic integration have been derived and shown to be much more efficient

than the original thermodynamic estimators used in Ref. 8. In future applications, the gen-

eralized virial estimators will be the estimators of choice because their statistical errors are

independent of number P of imaginary time slices. The improved approach was applied

to the [1,5]-sigmatropic hydrogen shift in cis-1,3-pentadiene. The results of the calculation

showed the importance of quantum effects in the reaction.

There are several possible extensions that will be useful in applications of this methodol-

ogy to large biochemical reactions. First, the calculation can be sped up by using a different

number of imaginary time slices for different degrees of freedom: fewer slices would be used

for heavier, more classical atoms or atoms far from the active site of the enzyme.14,34 Second,

a more general approach for systems with no symmetry can use dividing surfaces orthogonal

to the numerically obtained minimum energy path. In fact, this somewhat simplifies the

estimators for constrained quantities and should also minimize recrossing effects.35 Third,

because of the expense of ab initio or even semiempirical potentials, for large systems the

EVB potential should be used. However, the EVB potential should be improved by incor-
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porating information about the Hessian of the reactive potential at several points along the

reaction path obtained by ab initio calculations (rather than just at the saddle point).26

Finally, more efficient virial estimators should be used also for the calculation of ∆H(λ) and

Cff (λ)/Cdd(λ).36

The main advantages of the PI approach using QI approximation are that it does not

use semiclassical approximation for the Boltzmann operator and that it does not arbitrarily

separate degrees of freedom into classical and quantum, which is done in mixed quantum-

classical approaches. To conclude, the QI approximation combined with thermodynamic

integration, path integral Metropolis Monte Carlo implementation, and the efficient virial

estimators derived in this paper appears to be a promising approach to compute kinetic

isotope effects in polyatomic systems.
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APPENDIX A: DERIVATION OF THE GENERALIZED VIRIAL ESTIMATOR

The easiest way to derive this estimator is by using the mass-scaled coordinates for

the path integrals. The dependence on mass is therefore shifted from the kinetic part to

the potential part of the action. Starting from the PI (3.1), we change coordinates to

y(s) ≡ r(s) − r(0) for s = 1, . . . , P − 1, (i.e., we subtract coordinates of one of the slices from

the rest) and obtain

Qr ' C

∫
dr(0)

∫
dy(1) · · ·

∫
dy(P−1)e−βΦ,

Φ =
P

2!2β2

N∑

i=1

mi

[(
y(1)

i

)2

+
P−2∑

s=1

(
y(s)

i − y(s+1)
i

)2

+
(
y(P−1)

i

)2
]

+
1

P

[
V

(
r(0)

)
+

P−1∑

s=1

V
(
r(0) + y(s)

)
]

.
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Now we define mass-scaled coordinates as x(s)
i ≡ m1/2

i y(s)
i and obtain

Qr '
(

P

2π!2β

)NdP/2 N∏

i=1

md/2
i

∫
dr(0)

∫
dx(1) · · ·

∫
dx(P−1)e−βΦ, (A1)

Φ =
P

2!2β2

N∑

i=1

[(
x(1)

i

)2

+
P−2∑

s=1

(
x(s)

i − x(s+1)
i

)2

+
(
x(P−1)

i

)2
]

+
1

P

[
V

(
r(0)

)
+

P−1∑

s=1

V
(
{r(0)

i + m−1/2
i y(s)

i }
)]

. (A2)

Taking the logarithmic derivative of Eq. (A1), we find a set of equations equivalent to Eqs.

(3.14)-(3.16), except that r(C)
i should be replaced by r(0)

i . E.g., instead of Eq. (3.16) we

obtain
d log Qr

dλ
'

N∑

i=1

dmi/dλ

mi

[
d

2
+

β

2P

〈
P−1∑

s=0

(
r(s)

i − r(0)
i

)
·
∂V

(
r(s)

)

∂r(s)
i

〉]
. (A3)

Since we have chosen the slice s = 0 arbitrarily, we can do the same with all slices s =

0, . . . , P − 1, obtain analogs of estimator (A3) and take the average of these estimators.

We thus obtain the GVE of Eq. (3.16), and working backward also the variants (3.14) and

(3.15).
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TABLE I: Experimental and theoretical kinetic isotope effect in cis-1,3-pentadiene for several

temperatures.

T (K) exper.19 TST (3-21G)20 CVT/SCT (AM1)22 QI (EVB + MP2/6-31g(d))

463.25 5.3 2.51 5.2 5.4

470 5.2 2.48 4.9 5.3

478.45 5.0 2.45 4.7 5.1

500 4.7 2.36 4.1 4.3
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FIGURE CAPTIONS

FIG. 1: a) Dependence of the partition function ratio on the number P of imaginary time

slices. b) P dependence of the statistical error.

FIG. 2: a) Dependence of the delta-delta correlation function ratio on the number P of

imaginary time slices. b) P dependence of the statistical error.

FIG. 3: Input for thermodynamic integration: a) λ dependence of the logarithmic derivative

of the partition function. b) λ dependence of the logarithmic derivative of the delta-delta

correlation function.

FIG. 4: Temperature dependence of the experimental and computed kinetic isotope effect.
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