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Abstract

The initial value representation (IVR) of semiclassical (SC) theory is used in con-

junction with the Meyer-Miller/Stock-Thoss description of electronic degrees of free-

dom in order to treat electronically non-adiabatic processes. It is emphasized that the

classical equations of motion for the nuclear and electronic degrees of freedom that

emerge in this description are precisely the Ehrenfest equations of motion (the force

on the nuclei is the force averaged over the electronic wavefunction), but that the tra-

jectories given by these equations of motion do not have the usual shortcomings of

the traditional Ehrenfest model when they are used within the SC-IVR framework.

For example, in the traditional Ehrenfest model (a mixed quantum-classical approach)

the nuclear motion emerges from a non-adiabatic encounter on an average potential

energy surface (a weighted average according to the population in the various elec-

tronic states), while the SC-IVR describes the correct correlation between electronic

and nuclear dynamics, i.e., the nuclear motion is on one potential energy surface or
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the other depending on the electronic state. Calculations using forward-backward ver-

sions of SC-IVR theory (FB-IVR) are presented to illustrate this behavior. An even

more approximate version of the SC-IVR, the linearized approxiation (LSC-IVR), is

slightly better than the traditional Ehrenfest model, but since it cannot describe quan-

tum coherence effects, the LSC-IVR is also not able to describe the correct correlation

between nuclear and electronic dynamics.

I Introduction

Classical molecular dynamics (MD) simulations are the most common and generally ap-

plicable way to describe dynamical processes in large molecular systems. When electroni-

cally non-adiabatic processes are involved (those that involve transitions between different

Born-Oppenheimer (BO) potential energy surfaces) it is natural to try to generalize MD

simulations to deal with them. This has led to a variety of mixed quantum-classical (QC)

models, where the electronic degrees of freedom are treated quantum mechanically via an

electronic wavefunction determined by the time-dependent Schroedinger equation, and the

nuclear degrees of freedom (dof) classically as numerically computed classical trajectories.

The time dependence for the electronic dof comes from the dependence of the potential en-

ergy surfaces and their couplings on the nuclear coordinates, which vary with time along

classical trajectories.

The various mixed QC models differ primarily in the forces, or equivalently the effective

potential surfaces that determine the classical motion of the nuclei. Most such approaches can

be classified as either Ehrenfest (mean field) models or surface-hopping models. Tully1 has

given an excellent discussion of the differences of these two approaches as well as the strengths

and weaknesses of each. Briefly, in Ehrenfest models one computes the force on the nuclei by

averaging the electronic potential surface (matrix) using the instantaneous electronic wave

function, while in surface hopping approaches the force is determined from one (adiabatic)

potential surface or another, with instantaneous hops between different adiabatic surfaces

2



permitted according to some hopping algorithm.

A positive feature of the Ehrenfest model is that it is a well defined approximation,

while surface-hopping models have a number of ad hoc features which, though physically

reasonable, may be difficult to justify. A significant shortcoming of the Ehrenfest model is

that the nuclear trajectories are determined by the average PES even in the asymptotic region

of a scattering problem, where the nuclear trajectories should, of course, be determined by

one PES or another depending on the electronic state. The mean field aspect of the Ehrenfest

model is not able to describe this correlation.

A significant contribution to the theory was made by Neria and Nitzan2 in pointing out

that the failure of these mixed QC models results from the fact that the nuclear dof are not

described by a wavefunction, but only as classical trajectories. Though their analysis was

based only on the Golden Rule (lowest order perturbation theory), it correctly identified the

problem and suggested some ways to try to overcome it, for instance, by assigning a Gaussian

wavepacket (nuclear wavefunction) to the classical trajectories of the nuclei. Rossky et al3

picked up on this idea and made good use of it, and more recently Truhlar et al4 have also

used it to construct more refined surface hopping models.(Both of these groups have focused

on determining a decoherence time for the nuclear wavefuntion to collapse to one electronic

PES or another.)

The initial value representation (IVR) of semiclassical (SC) theory5 provides a natural and

correct description of electronically non-adiabatic processes. This is perhaps not surprising

since the nuclear (and electronic) dof do have a wavefunction in the SC description. It is

interesting, though, that the equations of motion that determine the nuclear trajectories are

precisely the Ehrenfest equations, but by processing the trajectories though SC theory, the

nuclear motion emerges (in a scattering problem, as the present examples are) on one PES

or another, not on the average PES.

To apply SC theory to a vibronic system (one with electronic and nuclear dof), we use

the Meyer-Miller-Stock-Thoss(MM-ST) classical analog model for the electronic degrees of
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freedom. This replaces the N electronic states involved in the process by N classical degrees

of freedom, specifically a harmonic oscillator for each electronic state. All dof — those of the

nuclei and those of the N ‘electronic’ oscillators — are then treated semiclassically via the

IVR methodology (involving trajectories computed in the full coordinate and momentum

space of nuclear and ‘electronic’ dof). Though MM6 developed this classical model for the

electronic degrees of freedom as an approximate way to be able to treat electronic and

nuclear dynamics on a equal footing, the more recent derivation of the model by Stock and

Thoss (ST)7 shows that it is actually not a model (i.e approximation), but rather an exact

representation of the full vibronic system. In other words, if one were to take the MM-ST

vibronic Hamiltonian and implement it quantum mechanically, the exact vibronic dynamics

would be obtained. The only approximation here is that it is implemented semiclassically

via the IVR.

In a previous paper8 we demonstrated that the approach described above captured trans-

mission probabilities accurately for Tully’s1 three model systems. In this paper we further

show that the IVR and some of its variations can indeed provide a complete dynamical pic-

ture of nonadiabatic systems both in terms of instantaneous populations of states as well as

the quantum coherences between them. Section II first gives a brief summary of the MM-ST

description of the electronic-nuclear system, and Section III does the same for the SC-IVR

methodology. We utilize the forward-backward(FB) version of the IVR approach, which

makes the calculations efficient and yet retains the ability to describe quantum coherence

effects correctly. As seen in the examples treated in Section IV, if one makes the cruder

linearized approximation to the SC-IVR (which reduces to the classical Wigner model), one

loses the ability to describe coherence; the results of this linearized, or LSC-IVR approxima-

tion become essentially those of the traditional Ehrenfest model, with the nuclear trajectory

emerging (incorrectly) on the average of the electronic PESs. With the more rigorous FB-

IVR, however, the nuclear trajectory emerges on one potential energy surface or the other.
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II The MM-ST Vibronic Hamiltonian

MM6 arrived at their classical model for electronic degrees of freedom in the following way.

If Vkk′(R(t)), k, k′ = 1, ...N is the NxN diabatic electronic potential matrix for N electronic

states, where the nuclear coordinates follow some given trajectory R(t), and the electronic

wavefunction is given by an expansion in terms of the N diabatic electronic states,

|Ψel(t)〉 =
N

∑

k=1

|φk〉ck(t), (2.1)

then the time-dependent Schroedinger equation for the electronic amplitudes reads (with

! = 1)

iċk(t) =
N

∑

k′=1

Vkk′(R(t))ck′(t) (2.2)

MM noted that if the complex-valued electronic amplitudes ck(t) were written in terms of a

magnitude and phase,

ck =

√

nk +
1

2
e−iqk , (2.3)

and (nk, qk) considered to be canonically conjugate action-angle variables (generalized coor-

dinates and momenta), then Hamiltons equations of motion for the electronic action-angle

variables,

q̇k =
∂Hel(n,q; t)

∂nk

ṅk = −
∂Hel(n,q; t)

∂qk
(2.4)

are identical to the time-dependent Schroedinger equation of Eq. (2.2) if one defines the

classical electronic Hamiltonian as
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Hel(n,q; t) =
N

∑

k,k′=1

c∗k(t)Vkk′(R(t))ck′(t)

=
N

∑

k=1

nkVkk(R(t)) + 2
N

∑

k<k′=1

Vkk′(R(t))

√

nk +
1

2

√

nk′ +
1

2
cos(qk − qk′) (2.5)

where the constant term (independent of nk, qk ) 1
2

N
∑

k=1

Vkk has been subtracted in obtaining

Eq. (2.5). When the nuclear kinetic energy, P2/2µ, is now added to the electronic Hamilto-

nian of Eq. (2.5), the full classical vibronic Hamiltonian is then given in terms the nuclear

(R,P) and electronic (n,q) coordinates and momenta as

H(P,R,n,q) =
P2

2µ
+

N
∑

k=1

nkVkk(R)

+ 2
N

∑

k<k′=1

Vkk′(R)

√

nk +
1

2

√

nk′ +
1

2
cos(qk − qk′) (2.6)

MM used action-angle variables for the electronic dof because they were implementing the

model within the (very crude) ‘quasi-classical’ procedure, whereby the initial conditions (at

t = 0) for the action variables were ni(0) = 1 for the initial electronic state i, nk(0) = 0 for

all other states k #= i and with all angle variables chosen to be 2π∗ random number. The

final values of the action variables resulting from computing classical trajectories (in the full

nuclear + electronic set of variables) with these initial conditions and this Hamiltonian were

then histogramed in the typical quasi-classical procedure.

Even though MM specified initial conditions in terms of action angle variables as noted

above, they typically transformed to Cartesian ‘electronic’ variables to carry out the calcu-

lations (because they are simpler and better behaved numerically). Defining the electronic
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oscillator coordinates and momenta in the usual way,

xk =
√

2nk + 1 cos(qk)

pk = −
√

2nk + 1 sin(qk) (2.7)

the Hamiltonian of Eq. (2.6) becomes

H(P,R,p,x) =
P2

2µ
+

N
∑

k=1

Vkk(R)
1

2
(p2

k + x2
k − 1)

+
N

∑

k<k′=1

Vkk′(R)(pkpk′ + xkxk′), (2.8)

and this is precisely the Hamiltionian that ST7 obtained by a different, more rigorous proce-

dure. Furthermore, the derivation by ST makes it clear that this model is actually an exact

representation of the vibronic system so that, if the Hamiltonian of Eq. (2.8) were taken to

be a Hamiltonian operator in the usual way, then exact vibronic dynamics would be obtained

from the resulting Schrodinger equation. The only approximation is therefore the SC-IVR

approximation itself, which is summarized in the next Section.

An interesting observation from this classical vibronic Hamiltonian, Eq. (2.8), concerns

the force that the nuclei experience along a classical trajectory. The Newtonian version of

the classical equations of motion gives

µR̈(t) = −
N

∑

k=1

1

2
(p2

k + x2
k − 1)

∂Vkk(R)

∂R

−
N

∑

k<k′=1

(pkpk′ + xkxk′)
∂Vkk′(R)

∂R
, (2.9)

or if this is expressed in terms of the original electronic amplitudes ck it reads

µR̈(t) = −
N

∑

k,k′=1

c∗k
∂Vkk′(R)

∂R
ck′, (2.10)
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which is recognized to be the Ehrenfest force. The traditional Ehrenfest model would choose

initial conditions for the amplitures as ci(0) = 1 for the initial state i, and ck(0) = 0 for all

other states much like the ‘quasi-classical’ model originally used by MM. For the SC-IVR

described in the next section, however, the initial conditions for the electronic degrees of

freedom are specified by the initial electronic-oscillator wavefunction in coordinate space xk.

Therefore for initial electronic state i, the initial oscillator for that mode has one quantum

of excitation, and all the other modes k #= i have zero quanta of excitation (corresponding to

the ground state). The initial electronic-oscillator wavefunction for the ith electronic state

is thus

Φi(x1..xN ) = φ1(xi)
N
∏

k=1,k $=i

φ0(xk)

=

√

(2)

πN/4
xie

− 1

2
x2

, (2.11)

Finally, we note that the classical vibronic Hamiltonian in Eq. (2.8) is that for the diabatic

electronic representation, and there is an analogous one for the adiabatic representation. In

terms of Cartesian coordinates and momentum of the electronic oscillators (as in Eq. (2.8)),

it is

H(P,R,p,x) =
N

∑

k=1

1

2
(p2

k + x2
k − 1)Ek(R) +

|P +∆P|2

2µ
(2.12)

where Ek(R) are the usual adiabatic, or, Born-Oppenheimer potential energy surfaces, and

∆P is given by

∆P =
N

∑

k<k′=1

!〈ψk|
∂ψk′

∂R
〉(xkpk′ − xk′pk), (2.13)

where the electronic matrix elements in Eq. (2.13) are the usual non-adiabatic derivative

coupling.
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III Semiclassical (SC) Initial Value Representation (IVR)

The SC-IVR approach5 has been reviewed a number of times, so we only summarize here

what is necessary for the applications described in Section IV. Thus the coherent state IVR

of Herman-Kluk for the time evolution operator is given as an integral over the phase space

of initial conditions of classical trajectories,

e−iĤt/! =
1

(2π!)F

∫

dp0

∫

dq0Ct(p0, q0)e
i
!

St |pt,qt〉 〈p0,q0| , (3.1)

where |p,q〉 are coherent states, whose wavefunction is

〈q′|p,q〉 =
(γ

π

)F/4

e[−
γ
2
(q′−q)2+ i

!
p.(q′−q)] (3.2)

and (pt,qt) are the coordinates and momenta at time t that evolve along the classical

trajectory from initial conditions (p0,q0). St(p0,q0) is the action for this trajectory, and

Ct(p0,q0) the Herman-Kluk pre-factor that involves the various monodromy matrix elements

Ct(p0,q0) =

∣

∣

∣

∣

1

2

(

Mqq + Mpp +
!γ

i
Mqp +

i

!γ
Mpq

)
∣

∣

∣

∣

1/2

, (3.3)

where,

Mqq =
∂qt

∂q0
; Mpp =

∂pt

∂p0

Mqp =
∂qt

∂p0
; Mpq =

∂pt

∂q0
(3.4)

In the limit that the coherent state paramater γ → ∞ the coherent states become propor-

tional to Dirac position eigenstates, and Eq. (3.1) becomes the original ‘Van Vleck’ IVR,

e−iĤt/! =
1

(2πi!)F/2

∫

dp0

∫

dq0 |Mqp|1/2 e
i
!
St |qt〉 〈q0| (3.5)
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For most applications to large molecular systems and for the applications in Section IV, one

is interested in using the SC-IVR to calculate time correlation functions of the form

CAB(t) = tr[ÂeiĤtB̂e−iĤt] (3.6)

Direct use of Eqs. (3.1) or (3.5) would thus lead to a double phase space average on ini-

tial conditions, so various approximations to this have been developed which are easier to

implement and thus more applicable to large molecular systems. We consider three such

approaches in this paper, summarized here in terms of increasing accuracy.

A The Linearized SC-IVR Approximation.

If one uses the coordinate space IVR, Eq. (3.5), for the two propagators in the correlation

function Eq. (3.6), and then approximates the integrand by expanding all quantities to first

order in the difference of two sets of initial conditions, then the classical Wigner model9 is

obtained,

CAB(t) = (2π!)−F

∫

dp0

∫

dq0Aw(p0,q0)Bw(pt,qt) (3.7)

where Aw and Bw are the Wigner functions corresponding to operators Â and B̂, respectively,

e.g.

Aw(p,q) =

∫

d∆qe−ipT .∆q/!

〈

q +
∆q

2
|Â|q −

∆q

2

〉

, (3.8)

This linearized SC-IVR (LSC-IVR)/classical Wigner model is an old idea and has been

around for a long time; the interest here is seeing that it is contained within the SC-IVR, be-

ing a (rather crude) approximation to it. (And there are even other, more recent derivations

of the Wigner model from other starting points).10,11 Ones sees that it has precisely the form

of the classical time correlation function, only with the classical functions corresponding to

operators Â and B̂ replaced by their Wigner functions.
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B The Forward-Backward IVR.

Though the LSC-IVR/classical Wigner model is able to describe some of the quantum aspects

of the dynamics, it cannot describe true quantum coherence features (as will be illustrated in

Section IV). The simplest IVR approach known at present which can do so is the ‘forward-

backward’ (FB) IVR as described by Miller et al.12 To illustrate it we state the result for the

case that operator B̂ in Eq. (3.6) involves only the momentum operator(s) in the following

manner

B̂ = eiΦ(p̂) (3.9)

The FB-IVR then gives the correlation function as a single phase space average over initial

conditions.

CAB(t) = (2π!)−F

∫

dp0

∫

dq0C0(p0,q0)e
iS0(p0,q0)/!〈p0,q0|Â|p′

0,q
′
0〉 (3.10)

The forward-backward trajectory begins at t=0 with initial conditions (p0,q0), evolves to

time t, at which point it undergoes at jump in position (with no change in the momentum

pt),

qt → qt −
∂Φ(pt)

∂pt
, (3.11)

and then evolves backward in time to t=0; (p′
0,q

′
0) is the final phase point reached. The net

FB action S0(p0,q0) in Eq. (3.10) is

S0(p0,q0) =

∫ t

0

dt′[p.q̇ − H(p,q)] + ∆S +

∫ 0

t

dt′[p.q̇ − H(p,q)], (3.12)

where

∆S = −pt.
∂Φ(pt)

∂pt
+ Φ(pt) (3.13)

We note here that if Φ(p̂) is a linear function then ∆S is zero. The pre-factor takes the same

form as before in Eq. (3.3)
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The FB-IVR comes from making a stationary phase approximation at time t, and is an

important result that reduces the double phase space average over initial conditions to a single

such average, and is thus very much the same level of complexity as the LSC-IVR described

above (although over the more complicated FB trajectory). A number of applications have

shown that the FB-IVR can indeed describe true quantum coherence effects.13

C An Exact FB-IVR

It has been shown by one of us how an ‘exact’ FB-type IVR5(c) can be constructed, ‘exact’

in the sense that it involves no approximation other than the basic IVR expression for the

propagator itself, e.g., Eq. (3.1) or Eq. (3.5). Here we show how this works for the special

case that operator B̂ is a function only of the momentum operator(s), B̂ = B(p̂), as will be

the case for the applications in Section IV. For this purpose we use the generalized HK-IVR

given by Kay,14 where the coherent state parameter gamma is allowed to be different for

time 0 and time t. Eq. (3.1) - Eq. (3.3) thus give the two time evolution operators as

e−iĤt/! = (2π!)−F

∫

dq0

∫

dp0 Ct(q0,p0; γo, γt) e
i
!
St(q0,p0) |pt,qt; γt〉 〈p0,q0; γo| (3.14)

eiĤt/! = (2π!)−F

∫

dq
′

t

∫

dp
′

t C−t(q
′

t,p
′

t; γ
′

o, γ
′

t) e
i
!

S−t(q′

t,p
′

t) |p′

0,q
′

0; γ
′

o〉 〈p
′

t,q
′

t; γ
′

t| (3.15)

The expression for the time correlation function thus becomes

CAB(t) = (2π!)−2F

∫

dq0

∫

dp0

∫

dq
′

t

∫

dp
′

t C−t(q
′

t,p
′

t; γ
′

o, γ
′

t) Ct(q0,p0; γo, γt)

〈p′

t,q
′

t; γ
′

t| B̂ |pt,qt; γt〉 e
i
!
St(q0,p0) e

i
!
S−t(q′

t,p
′

t)

〈p0,q0; γo|Â|p′

0,q
′

0; γ
′

o〉

(3.16)

To take advantage of the fact that operator B̂ = B(p̂) and its momentum space matrix thus

diagonal, one then takes the momentum space limit for the coherent state parameter γt and
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γ
′

t , whereby Eq. (3.16) becomes

CAB(t) = (2π!)−F

∫

dq0

∫

dp0

∫

dq
′

t Df
t (q0,p0; γo) Db

−t(q
′

t,pt, γ
′

o) B(pt)

e
i
!

St(q0,p0) e
i
!

S−t(q
′

t,pt)e
i
!
pt·(q

′

t−qt) 〈p0,q0; γo| Â |p′

0,q
′

0; γ
′

o〉
(3.17)

where the two prefactor matrix elements are :

Df
t (q0,p0; γo) =

∣

∣

∣

∣

1

2
√
π

(

Mpp γ
1/2
o +

i

!
Mpq γ

−1/2
o

)
∣

∣

∣

∣

1/2

Db
−t(q

′
t,pt, γ

′

o) =

∣

∣

∣

∣

1

2
√
π

(

γ′ 1/2
o M

′

qq +
i

!
γ′ −1/2

o M
′

pq

)
∣

∣

∣

∣

1/2

(3.18)

IV Applications.

Calculations have been carried out for model systems consisting of 2 electronic states and

1 nuclear degree of freedom (translation), the same kind of models Tully used earlier for

testing various surface-hopping approaches. A diabatic electron matrix Vnn′(R), n, n′ = 1, 2

characterizes the 2 electronic states. The overall system thus consists of 3 degrees of freedom,

for which the classical vibronic Hamiltonian of Eq. (2.8) is

H(P, R, p1, x1, p2, x2) =
P 2

2µ
+ V11(R)

1

2
(p2

1 + x2
1 − 1) + V22(R)

1

2
(p2

2 + x2
2 − 1)

+V12(R)(p1p2 + x1x2) (4.1)

Figures 1 and 2 show the diabatic (and also the adiabatic) potential functions for the two

specific models that are treated; the specific forms of the diabatic electronic matrix for model

1 are

V11(R) = V0tanh(aR)

V22(R) = −V0tanh(aR) (4.2)

V12(R) = Ce−DR2
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and for model 2 are

V11(R) = V1tanh(aR)

V22(R) = −V2tanh(aR); V1 >> V2 (4.3)

V12(R) = Ce−D(R+f)2

Model 1 is identical to one of the examples Tully used, and the parameters used here are V0

= 0.01, a = 1.6, C = 0.005, D = 1. Model 2 is an asymmetric system where one channel

has a very high energetic threshold and the parameters used in this case are V1 = 0.04, V2

= 0.01, C = 0.005, D = 1, f = 0.7.

The quantity calculated in all cases is the probability distribution of final nuclear trans-

lational momentum, which can be expressed as the long time limit of the A-B correlation

function of Eq. (3.6), where operator Â is the projection operator for the initial state,

|Ψi〉〈Ψi| (4.4)

and operator B̂ is

δ(Pf − P̂ ) (4.5)

The correlation function is therefore,

C(Pf ; t) = lim
t→∞

tr
[

|Ψi〉〈Ψi|eiĤtδ(Pf − P̂ )e−iĤt
]

= lim
t→∞

〈Ψi|eiĤtδ(Pf − P̂ )e−iĤt|Ψi〉 (4.6)

The initial state is chosen to be a translational coherent state (with a relatively well-defined

value of the initial translational momentum) in electronic state 1,

Ψi(x1, x2, P, R) =
(γ

π

)1/4
e−

γ
2
(R−Ri)2 eiPi(R−Ri)

(

2

π

)
1

2

x1 e−
1

2
(x2

1
+x2

2
) (4.7)
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The initial position Ri is chosen well to the left of the curve-crossing region (Ri = −5), the

initial momentum is positive, with trajectories headed toward the crossing region.

For the LSC-IVR/classical Wigner approximation of Section IIIa it is necessary to cal-

culate the Wigner function for operator Â; this can be done analytically in this case, giving

Aw = (|Ψi >< Ψi|)w

= (2)3e−γ(R−Ri)2e−
1

γ
(P−Pi)2e−(x2

1
+p2

1
+x2

2
+p2

2
)(2x2

1 + 2p2
1 − 1) (4.8)

Operator B̂ remains unchanged under the Wigner transformation.

For the FB-IVR of Section IIIb one Fourier expands the delta function of operator B̂, so

that Eq. (4.6) becomes

C(Pf ; t) = (2π!)−1

∫ ∞

−∞

dR̄eiR̄.Pf/!〈Ψi|eiĤte−iP̂ R̄/!e−iĤt|Ψi〉 (4.9)

and the FB-IVR is used to evaluate P̃ (R̄)

P̃ (R̄) ≡ 〈Ψi|eiĤte−iP̂ R̄/!e−iĤt|Ψi〉 (4.10)

= (2π!)−F

∫

dp0

∫

dq0〈Ψi|p′
0,q

′
0〉〈p0,q0|Ψi〉C0(q0,p0)e

iS0(q0,p0)/!

The FB trajectory for Eq. (4.10) begins with initial conditions (p0,q0), evolves to time t at

which the translational coordinate undergoes a jump in the nuclear coordinate Rt → Rt + R̄

and then propagates back to time 0, (p′
0,q

′
0) being the final values. Once P̃ (R̄) is thus

calculated by this FB-IVR procedure, its Fourier transform gives C(Pf ; t) by Eq. (4.9)

The Exact FB-IVR expression in this case is :

C(Pf ; t) = (2π!)−F

∫

dq0

∫

dp0

∫

dq
′

t Df
t (q0,p0; γo) Db

−t(q
′

t,pt, γ
′

o) δ(p
r
t − pf )

e
i
!
St(q0,p0) e

i
!
S−t(q

′

t,pt)e
i
!
pt·(q

′

t−qt) 〈Ψi|p′
o,q

′
o; γ

′
o〉 〈po,qo; γo|Ψi〉 (4.11)
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The trajectory has the same forward-backward structure as in the FB-IVR case. However,

the position jump at time t is over both the nuclear and the electronic co-ordinates.

V Results and Discussion

First, Figures 3a and 3b show the results of the FB-IVR and the EFB-IVR compared with ex-

act quantum results for Model 1, at two incident translational energies, 0.03 and 0.1 hartree,

respectively. These distributions show two peaks at positive momentum, corresponding to

the two electronic states in which the system may emerge. The peaks have finite width be-

cause the initial translational wavefunction has a (small) spread in translational energy. The

area under the peaks give the transition probabilities from the initial electronic state to the

two possible final states, either for transmission (Pf > 0) or reflection (Pf < 0). The basic

conclusion from Figures 3a and 3b is that the FB-IVR and EFB-IVR both describe the pro-

cess semi-quantitatively, with the FB-IVR showing less numerical noise than the EFB-IVR

(at least with our present calculations).

Figures 4a and 4b show the results of the FB-IVR calculations, compared to the exact

quantum results, for Model 2 at the same two translational energies. At the lower energy

(Fig. 4a) the excited electronic state is energetically forbidden (i.e., it is a closed channel) in

transmission (Pf > 0) , but both states are open for reflection (Pf < 0); the FB-IVR (and

quantum result) correctly show one peak for positive momentum and two peaks for negative

momentum. And again, the FB-IVR agrees well with the correct quantum result. At the

higher energy (Fig. 4b), both electronic states are open in transmission, and one sees two

peaks for positive momentum and essentially no peaks corresponding to reflected transitions.

Figures 5a, 5b and 6a, 6b show the results of the classical Wigner/LSC-IVR model, and

also the standard Ehrenfest model, for models 1 and 2, for two initial nuclear translational

energies, 0.03 and 0.1 hartree. One sees in Figures 5a and 5b (Model 1) that for each energy

there is only a single peak in the translational energy distribution, clearly demonstrating

16



that the translational motion has emerged on an average electronic potential curve, not one

curve or the other. One also sees that the classical Wigner/LSC-IVR model is essentially

the same as the standard Ehrenfest model, the primary difference being that since the initial

conditions for the electronic variables have a distribution (the Wigner distribution) in values

- while there is no distribution in the initial electronic variables in the standard Ehrenfest

model - there is a broadening in the very sharp peak given by the Ehrenfest model. (The

Ehrenfest peak is in fact a delta function, so its width in Figures 5-6 is for visual purposes

only.) Figures 6a and 6b shows similar behavior for Model 2; here the distribution given by

the classical Wigner model is extremely broad for the lower energy case because here there

is a significant probability of reflection (Pf < 0) as well as transmission. The results in both

Figures 5a-b and 6a-b verify the unphysical behavior of the Ehrenfest model, and that the

LSC-IVR/classical Wigner model is essentially equivalent to it. These shortcomings are due

to the fact that these models cannot describe quantum coherence/interference effects, which

are necessary to properly quantize the electronic degrees of freedom.

Finally, Figues 7a and 7b show FB-IVR calculations for Model 1 at the two energies, com-

paring the results given by using the diabatic electronic representation (as did all calculations

above) and the adiabatic electronic representation (with Hamiltonian given by Eq. (2.12)).

The results should of course be the same, and within an extremely small numerical error

they are.

VI Concluding Remarks

The SC-IVR and LSC-IVR along with the MM-ST Hamiltonian have already been shown

to be useful in the study of nonadiabatic dynamics. In this paper we further show the

effectiveness of the FB-IVR, which allows us to better evaluate quantities that involve double

phase space integrals. We also further discuss the application of the LSC-IVR and compare

it favorably to the Ehrenfest model. We also demonstrate the representation independent
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nature of our methods. It is important to note that both the FB-IVR and LSC-IVR are more

feasible for extension to multidimensional systems and in particular, the ability of FB-IVR

to model nonadiabatic dynamics almost exactly shows that there need be no compromise on

the incorporation of quantum effects in order to do so.
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VIII Captions

Fig. 1 : The Potential Curves in both Diabatic and Adiabatic Representation for Model 1

Fig. 2 : The Potential Curves in both Diabatic and Adiabatic Representation for Model 2

Fig. 3a : Comparison of results of FB-IVR, Exact FB-IVR and exact Quantum calculations

for Model 1 with an initial energy of 0.03 Hartree

Fig. 3b : Comparison of results of FB-IVR, Exact FB-IVR and exact Quantum calculations

for Model 1 with an initial energy of 0.1 Hartree

Fig. 4a : Comparison of results of FB-IVR, Exact FB-IVR and exact Quantum calculations

for Model 2 with an initial energy of 0.03 Hartree

Fig. 4b : Comparison of results of FB-IVR, Exact FB-IVR and exact Quantum calculations

for Model 2 with an initial energy of 0.1 Hartree

Fig. 5a : Linearised IVR and Ehrenfest results for Model 1. Inital Energy = 0.03 Hartree

Fig. 5b : Linearised IVR and Ehrenfest results for Model 1. Initial Energy = 0.1 Hartree

Fig. 6a : Linearised IVR and Ehrenfest results for Model 2. Initial Energy = 0.03 Hartree

Fig. 6b : Linearised IVR and Ehrenfest results for Model 2. Initial Energy = 0.1 Hartree

Fig. 7a : Comparison of the Adiabatic and Diabatic results for Model 1, with an initial

energy 0.03 Hartree

Fig. 7b : Comparison of the Adiabatic and Diabatic results for Model 1, with an initial

energy 0.1 Hartree
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