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ABSTRACT

The interest in highly excited nuclei with large angular momentum

has prompted this proposal of a universal y-ray spectrometer (called

the Crystal Ball) consisting of a 4r modularized NaI(T1) detector system

with 162 elements of equal solid angle. The proposed detector has an

overall spherical shape with an inner radius of 22.86 cm and an outer

radius of 38.10 cm. The major experimental quantities to be measured are:

a)

b)

c)

d)

Gamma-ray multiplicity, with about 20% resolution in an event-

by-event mode. This allows for the first time the measurement

of multiplicity spectra, while up to now only moments of multiplicity

distributions have been determined. The multiplicity is closely

related to the spin of the nucleus.

Total energy of the gamma rays, with about 20% resolution for a

total energy of 30 MeV in an event-by-event mode.

Gamma-ray‘angular distributions, with an angular resolution

of about +9° in an évent-by-event mode. The direction of the
spin of the nucleus and the multipolarities of the y-ray
transitions can be deduced from the angular distribution.

The energies of individual gamma rays, with about 7% resolution

fbr 1 MeV transitions. The spectrum of individual vy rays is
distorted by pile-up in the crystal and Compton scattering between
crystals. To reduce the former effect requires a large number of
ghystals compared to the number of y-rays, and on]y'a few
crystals per event which show no hits in any neighbor crystal

avbid the second problem.

In a more general way the high efficiency, the tolerance of high counting

rates and the good time resolution (2-3 ns) of the spectrometer aliow



the selection of special events in more elaborate coincidence experiments
with additional counters.

A detailed test of a prototype section consisting of six NaI(T1)
detectors is planned for 1979, and as a result of these tests, the .
optimum configuratién will be chosen. The total system could be in
operation by 1981. Usage at the 88" Cyclotron as well as at the
SuperHILAC accelerator is anticipated.

A March, 1979 price estimaté for the total system is $600K,
divided into 332K$ for the Nal detector system jtself, 140K$ for elec-
tronics and cables, 97K$ for support frame and scattering chamber, and
30K$ for contingencies. In addition, it is éstimated that one man-year
of programming help will be needed from operating money.

The proposal is organized in four sections:

I) scientific justification for this universal y-ray
spectrometer,
II) an explanation of the special design of the Crystal Ball,
IIT) a description of the components of the total system,

IV) the time schedule and budget.



I. SCIENTIFIC JUSTIFICATION

A. Requirements

~ The study of electromagnetic radiation, or gamma rays, is one of

our most important sources of information about nuclear systems. The
systematics of the energy of 1ndividuaT v-ray transitions is generally
closely related to the structure of the emitting states, and its study
has always been one of the principal branches of nuclear spectroscopy.
An obvious example wbu]d be the observation of a cascade of y-ray
transitions, each diffefing by a constant amount of energy from the one
preceding it. This would be a clear signal of a rotational cascade from
a deformed.nucleus. But also the total energy emitted as y rays is
important; it defines an "entry point" in the excitation enérgy-angular
momentum surface where electromagnetic radiation takes over from other
decay processes. The locus of such points for different angular momenta,
the entry 1ine,]’2) gives information both about the nuclear structure
and about the mechanism of the preceding decay processes. Such studies

are rélatiye]y new, but have already been.used with heavy-ion compound
nucleus (HICN) reactions to give moments of inertia at very high spin

3)

values.”’ The angular correlation and polarization of y rays contain >
information both about the orientation (including the alignment) of the
angular momentum of the emitting nucleus and about the multipolarity of
the observed vy rays.4’5) The alignment of the nucleus has recently become
a lively topic in deep-inelastic co]]ision'(DIC) studies and discussions,
as the expected alignment does not always appear in all types of measure-

ments.s'g) Determination of y-ray multipolarity by angular correlation

studies4) has recently been used to identify rotational behavior following



the HICN events. The total number of vy rays emitted, the multiplicity,
can be large, and when it exceeds ten or so it very likely is due to the

3,10-12) The exact

high total angular momentum of the emitting system.
relationship between multiplicity and total angular momentum after

particle emission varies in different cases, but for the broad class of
rotational nuclei it is approximately just a factor of two -- essentially
all electric quadrupole transitions removing two units of angular momentum.
More accurately it can be expressed as I = (M-§)2, where § stands for

the 3-4 statistical transitions that carry away essentially zero spin.
Since the total angular momentum is an important quantity in the study

of both nuclear structure and reaction mechanisms (particularly for deep-
inelastic collisions), the measurement of the y-ray multiplicity is now
qUite important. A final parameter involved in y-ray measurements is their
time of emission. This is used to relate the observed y ray to other vy
rays or decay processes, and often is essential for its proper identifi-
catibn. These four quantities, the energy, both individual and total, the
angular correlation and polarization, the number of y rays, and the time
'of emission, are the information that we can presently obtain from nuclear
electromagnetic radiation, and the purpose of this proposal is to build

an instrument to measure simultaneously as many of these quantities as
possible with reasonable accuracy.

It is important to distinguish between a "complete" measurement of
one of these quantities on an event-by-event basis, and an "incomplete"
measurehent which can only be related statistically to a value or set
of values for that quantity. Only in the former case (whether or not a

calculation is involved) can events be selected (gates set) which



correspond to any desired value for that quantity. This is not possible

in the latter case, even if the obsérved distribution of values for the

measured events can be uniquely connected to the true distribution. -
Consider the multiplicity, for example. Information from an array of,
say, ten detectors can be statistically related to the first ten moments
of the multiplicity distribution, which will normally define this
distribution rather we]i. Yet a single event, in which six detectors
fire, cannot be uniquely related to any particular multiplicity. That

is, those events having exactly multiplicity six cannot be selected.
Rather, a particu]ar measurement (six detectors fire) corresponds,vwith

a certain probability distribution, to a range of multiplicity values

from six on up. If,.on the other hand, the space surrounding the emitting
nucfeus is completely filled with a Targe number of detectors, the true
number of y-rays‘given out‘event—by—event can be determined, within a
certain "resolution" caused by experimental difficulties, such as Compton
scattering between counters and md]tip]e hits in the same counter. It is
of crucia] importance that this resolution be sufficiently good for all

’ tﬁe quéntities we want to measure, since otherwise we do not realize the
full power of event-by-event multi-dimensional storage of the measured

parameters.

B. Instrument
With these requirements in mind, the general features of an ultimate
y-ray detector are surprisingly clear. For reasonable resolution of total
energy we need a high efficiency for the vy .rays; this means the detector
must subtend a large fraction of the total solid angle (4w) and not be

significantly transparent to the original vy rays or to their Compton-



scattered secondaries. For a cascade of thirty 1 MeV y-ray transitions,
total efficiencies of 0.5, 0.7, and 0.9 give resolutions, (FWHM) .divided
by the value at the maximum, of 61%, 34%, and 15%, respectively. Preseht]y
operating tota]-enefgy spectrometers have efficiencies up to about 0.8

(of 4m), and the resolution obtained has proved valuable in several
contexts: resolving reaction channels in heavy-ion compound-nucleus
reactions, defining entry lines for y-ray emission, establishing the
connection between total energy and angu]af momentum, and in discriminating
against Tow total-energy events like radioactive decays, transfer reactions,
and Coulomb excitation. As good,or better, resolution would be c]ear1y
desirable, so we must aim at an efficiency of =0.8, implying a spherical
shell of NaI, having a thickﬁess of 15-18 cm. To avoid multiple vy rays
hitting one detector in the same event, we need many detectors. The
number, N, must be large compared with the maximum multiplicity, Mmax’
we anticipate measuring. Already multiplicities fo]iowing (HI,xny)
reactions have been measured between 30-35. The deep-inelastic reactions
with two y-emitting fragments, will surely go beyond values of 50 in some
‘cases. Since we want N >> Mmax’ we must have N2>100. The detailed.
analysis in Section II of this proposal suggests N = 122 or 162ﬂ

In such- cases the multiplicity resolution will be 20-25% compared with
the best so far obtained by any method of ~70%. This is an important
gain, since it implies a corresponding resolution in the angular momentum.
The shell of Nal detectors wi]] need an inner radius large enough to

allow separation by time-of-flight of the y rays from all partic]es'

(v/c ~ 0.1), particularly neutrons, that might be emitted from a reaction.
Since the time resolution achievable with Nal detectors is 2-3 ns, a

distance from target to detectors of 22-25 cm would give a difference



in flight-time of 6-7 ns. This is about the minimum to achieve such a
separation. With such an inner radius for the Nal shell, the diameter
of the inner face of each counter (for a 162 counter system) is ~7 cm,
o) tHat they subtend a‘half-ang]e of ~9°.  Thus an event can be
localized to +9° by the system, which is adequate for most anaular
correlation purposes.

So, to recapitu]ate,'we need a'sphericél shell of Nal with an
inner radius of 22-25 cm and an outer radius of ~40 cm, divided into 162
detectors of equal solid angle. This would give on an event-by-event
basis: total y-ray energy to 20%, <vy-ray multiplicity to 20%, the
ang]e of emission of a y ray to £9°, and time resolution of 2-3 ns.
It would not give polarization information in any simple way, and more
unfortunately, it does not uniformly give individual y-ray energies with
good resolution. This is because Compton scattering and multiple y-ray
hits in the same detectdr smear out considerably the individual y-ray
energies. The true spectrum can be recovered on the average by unfolding,
and some gating selection can be made (setting of lower-energy limits,
for example). A few counters, those that show no hits in any neighbor
counter, can yield true Y;ray energies (though the problem of multiple
hits remains). The number 6f such "anfi-Compton" type counters ihcreases
with the total number of counters, thus favoring the larger number.
HoweVer, even with 122 detectors, the "crystal ball" far exceeds anything
now existing in its ability to extract information associated with Y-ray
de-excitation._ We should note the large store of information already

available on the Stanford crystal ba11]3) and a proposal for a smaller

instrument by D. G. Sarantites.]a)

W
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C. Experiments

There are many problems that will benefit from studies using the
crystal ball and associated counters, and the present secfion will
provide a few illustrations. There are certainly very interesting and
rg}evant experiments that could be done with the crystal ball alone,
and a number of examples have already been given above. One more that
might be mentioned is to measure, not just the average entry line in a
heavy-ion, xny reaction, but the full three-dimensional distribution of
intensity, angular momentum (multiplicity), and total y-ray energy.
Furthermore, at each point of this distribution, the angular correlation
-of the y-rays will give information about the nuclear structure along
the decay pathway to the ground state. |

Nevertheless, the ease of adding other types of detectors to obtain
additional information at relatively little cost will make such more
complex experiments very attraétive relative to ones using the crystal
ball alone. So further discussion will be dfvided, somewhat arbitrarily,
~into two parts: the first involves removing one or a few individual Nal
counteré from the ball and replacing them with other types of detectors,
and the second involves placing the additional detectors inside the
crysta 1v ball.

The removal of one counter from the shell will open an area about
7 cm in diameter on the inner sphere, and cost 0.6% in Nal solid angle
(for a ball of 162 counters). Several such counters can be removed
(for examp]e,_at selected angles) before‘the solid-angle loss
becomes serious. . Such an opening can accommodate a Ge'detector,

which, if mounted in a Tong snout, could be pushed in quite close to
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the target (center). These counters have a high resolution for y-ray
energies, and insofar as there are resolved y-ray lines in the spectrum,
can'detect thém with reasonab]e efficienéy (a few percent). This can be
used to identify the product nucleus provided its y-ray lines are known.
In the HICN reactions the reaction channel can thus be identified, and
all the crystal ball information sorted evenf-by-event for each reaction
channel. Comparison of different channels gives detailed information on
" the reaction mechanism. Likewise in transfer reactions, a particular
product can readily be selected (as can only be done with great difficulty
to a mass resolution of one for medium and heavy nuclei by time-of-flight)
and information on its cross section, spin, entry line, and nuclear
structure is provided by the crystal ball. In deep-inelastic collisions
(DIC), one might want to make selection on the total energy or multiplicity
to try to resolve lines in the Ge spectfum (not heretofore done) and
thus identify specific product nuclei. In somewhat more detail, one
could go into the HICN products, where the appropriate y rays are known,
and study the population Teading to various excited states (the side-
: féeding.properties) having different spin, energy, etc. Nuclear structure
studies could be greatly helped by obtaining Ge spectra and Ge-Ge coinci-
dence spectra, when_se]eétions are made on angular momentum (multiplicity)
total energy, or spin'a]ignment (from the angular correlation of the
coincident y-rays) as given by the coincident crystal-ball channel.
In HICN reactions one could select the highest angular-momentum states,
for examp1e, and study their y-ray transitions, and hence learn about
the structure of these states; One might even hope to resolve the y-ray
continuum in favorable cases by suitable gates on mu]tip]icity and total
energy; Also in_Cou]omb—ekcitation studies the placement in the level

A\

)
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scheme of a y ray resolved in the Ge detector should be given by the
associated crystal ball data. Still other examp]es could be given for
the Ge detector-crystal ball system.' |

A large Nal cfysta], shielded except in the center of one face,
would have a response function good enough to give individual y-ray
energies event-by-event. This detector could look through an opening in

the crystal ball provided by removal of one of the crystal ball's counters.

This would permit the selection.of yrast "bump" transitions, for example,
following HICN reactions, and would allow the determination of the
multiplicities and total energies associated with such transitions.

The highest-energy bump transitions are generally stretched E2 transitions

between states of very high spin, and their study Ean provide information

about these states (especially their moments of inertia). Such transitions

might be sought following DIC events also, and if observed would indicate
a large conversion of orbital to internal angular momentum.

The area opéned up by the removal of one, two, or even several
crystal-ball counters can also be covered by position-sensitive avalanche
counters for particle detection. Two such counters (which can give the
position of charged particles to ~0.2 mm and time to 0.3 ns) can identify
the products (mass and energy) of a two-body breakup fo]]owing‘a héavy-ion
collision. (To obtain a good velocity measurement by time-of-flight, these
counters must be placed sufficiently distant from the target, and, in
particular, outside the crystal ball.) In transfer reactions and in
Coulomb excitation, the direction of the recoiling fragments, as determined
by the avalanche counters, can be used to correct the Doppler shift of
the coincident y-ray lines observed in a Ge detector, thus considerably

improving the resultant resolution. The combination of the position-
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sensitive detectors fo]jowed by particle total-energy detectors (ionization
chambers, for example) would give virtually complete kinematic information
on the products of most heavy-ion reactions. The crysta]-bé]] information
on the y-rays' total energy, multiplicity, angular correlation, and time
distribution can then be studied for the selected type of heavy-ion
rgaction. Such information can now be taken only in part, and even so
would involve several bombardments with different Nal arrangements.

Neutron counters can also be positionéd at the openings to determine
the energy and angle of the emitted neutrons. It would be possible to
search for fast neutrons (pre-equilibrium particles, possible Fermi jets)
as a functioh of all the crystal-ball parameters.

Detector éystehs of relatively low mass can be put inside the
crystal ball, and still cause Fittle loss in the total y-ray efficiency.
Silicon solid-state detectors would be excellent for this purpose, and
one or more AE-E telescopes consisting of a thin Si transmission or
gas-proportional counter and a thick Si detector are obvious choices.

Such systems can resolve the Z of product fragments completely up to
Z~50, and'higher values of Z to two or three units. Most experiments
on DIC processes have involved such telescopes, and the crystal ball
would proVidé the full gamma-ray information for every event. In such
reactions, questions ébout the amount and alignment of the transferred.
angular momentum should b@ relatively easy to answer. The patterh of
_crysta]-ba]] counters firing should define the plane of the reaction if
.the y-ray transitions are mainly stretched E2 (or all dipoles) and there
is no twisting mbtion of the fragments; If there is such motion, it

might be possible to determine the alignment of each fragment. Also,
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it would be very interesting to study the relationship between kinetic-
energy loss and angular momentum transfer throughout the whole range

from elastic through quasi-elastic to deep-inelastic collisions.

- 'Particle telescopes can also be used to search for high-energy pre-compound

“charged particles as well as the alpha particles and protons emitted from

a compound nucleus, and the y-ray properties of these processes can then
be studied in detail with the crystal ball. |
To summarize, we have discussed how the construction of a crystal
ball will provide very significant advantages in the study of heavy-ion
compound-nuclear events, deep-inelastic collisions, Coulomb excitation,
and partic]e-transfer reactions. There are certainly other areas where
such a y-ray detector will prove useful, as for example, fission studies,
the identification and study of isoﬁeric states, and traditional nuclear
spectroscopy. In addition, it may be possible to use the crystal ball
as energy detectors for high-energy charged particles such as protons,
or even electrons or pions. It.is cTear that such an instrument has the

potential to contribute to many areas of nuclear physics studies.
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II. DESIGN

A. Physics Capabilities of the Crystal Ball and Their
Dependence on Design Parameters |

Since the desired quantities to be measured with the crystal ball,
such as the y-ray multiplicity, the total y-ray energy, or the y-ray
angular distribution, differ in their dependence on the main properties
of the crystal ball, e.g.,vthe number of counters and the y-ray efficiency,

“we first outline these dependencies.

1. Gamma-ray multiplicity

The response function of the crystal ball for a sharp y-ray
multiplicity completely determines which structures of a multiplicity
spectrum can be resolved. ThereforeAwe calculate the probabi]ity PNp(M)
that p detectors out of a total number of N detectors are triggered ,
when M photons are emitted from the target. This probability is a function
of the following pfoperties of the crystal ball:

a) the number of counters, N

b) the y-ray efficiency, @, of an individual counter

c) the probability, f, for Compton scatteringlfrom one

A counter into its neighbors. |
The smaller the total number of counters, N, the higher the probability
that two or more 7y rays hit the same detector, leading to a reduction
in the number of counters triggered and to an increase in the statistical
uncertainty of determination. To calculate the probability we make some
simplifications by assuming average values of the detector efficiency, Q,
and of the probability of a Compton scattering into neighboring detectors, f.

A reduced total efficiency of the system, N.Q, less than unity results in a



L)

-15-

reduction in the number of ? rays detected, and Compton scattering
between two counters leads td an increase in the number, as one initial
Y quantum may trigger two counters. Both effects results in a larger
statistical uncertainty in the number of triggered counters.

The derivation of the probability ENp(M) that p detectors out of
N detectors are triggered, when M photons are emitted from the target

isotropically without any Compton scattering between counters is given

in Ref. 11. An intuitive derivation of ENP(M)'is obtained in the following

way: The probability not to observe a vy quantum is (1 -N-Q) and the

probability to observe none out of M quanta is
~ _ . M
Pyt = (1 -N-Q)

"To obtain the probability ﬁN1(M) to observe in one and only one detector

at least one Y quantum, we define the quantity Fx =1-(1-x -Q)M. Fy

is the probability that at least one vy ray is detected in any of x counters
out of a total group of M y rays. The probability that one or more vy rays

are observed in one particular detector and none are observed in

-all other detectors is equal to the probability that at least one y ray

is observed in all N detectors minus the probability that at least one

_ . (N
is Observed in (N-1) detectors: F, - F Since there are <1)

N N-T°
possible selections of this detector, we obtain

N
M = <])m SURPES LIS P |

O2?

The probability ENZ(M) is found in a similar way from (FN- FN-Z) minus

the probability that one firing occurs in either one of the two detectors,
- N

2(Fy -Fy.p)- This yields F-Fy_, - 2(F - Fy 1), but there are( )

2
possible selections of two detectors out of N detectors, so
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~ N " M M
PNZ(M) = <2>[(1 -(‘N-Z)Q) - 200 -(N-1)R)" + (1-N-Q)7]
Extendingvthis to p detectors triggered; we obtain 0
- Ny D p
- _1\P+n CIN- M
Py M) <P>nz(; (-1) (n)n (N-n)a}

In order to generalize the formula of PNp(M) to include Compton
scattering, we introduce the probability 95 that i additional y quanta

are produced out of M original ones via Compton scattering out to the

My .
< .>f1 (1 -
'I .

where 9; is a binomial element. For f=0 no additional vy rays are produced;

first neighboring counters

95

for f=1 each initial y-ray yields two y rays. ?
Now we can decompose the probability PNp(M) with Compton scattering
into a sum of probabilities ﬁNp(M) without Compton scattering between detec-

tors by multiplying each element ﬁNp(M) with its probability of occurrence:

Pyp (M)

1]
M=
T
=
p=]
—
=
+
—
~—
.
(o]

1]
T
=
N——
™M=
M-
L
]
—
o
s
+
©
o~~~
)
~———
o
—
]
=
]
3
N
0
()
+
N
=
N———
~h
—
—
—
]
-h
g
n
—

This expression can be transformed into-

M

Ny P - ‘
PapM) = ( )Z(-])n+p<p\l]-(N-n)Q[]+f(1-(N-n)Q)]}
P/ n=0 ‘ n/

The main properties of the probability PNp(M) are demonstrated in Fig. 1.
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Fig. 1. Distribution of the number of hits, p, for a spherical
@ :

shell of 50 counters with 100% efficiency and 20% Compton

scattering between crystals.
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This shows the probability dependence of the number of hits, p, for
multiplicities varying between 10 and 45 in steps of 5 with a fixed
number of 50 counters, a 100% efficiency of the total system (N-Q =v1.00),
and 20% Compton scattefing between crystals. One obtains rather symmetric
bell-shaped response functions. For multiplicities that are low compared
to the number of counters, the maximum for the detected folds is higher
than the multiplicity drigfnating from the target. For multiplicities
comparable to the number of counters, the center position of the fold
distribution is lower than the multiplicity originating from the target
because of multiple hits in the same counter. There the multiplicity
scale becomes strongly nonlinear. As compiled in the table of Fig. 1,
the full width half maximum (FWHM) of the bell-shaped curves given as a
peftentage of the average value, decreases with increasing multiplicity.
The increasing overlap of the bell-shaped curves, however, indicates that
the resolution decreases for higher multiplicities. We therefore define
a new quantity, FWHM/(A<M>/AM), as a measure for the multiplicity
reso]ution, dividing the relative FWHM by the nonlinearity of the multi-
- plicity scale. 'A<M>/AM is the ratio between the difference of the
measured average multiplicities and the difference of the values taken.
In Fig. 2 the multiplicity resolution is shown for a fixed multi-
plicity (M=30) as a function of the three determining quantities: the
number of counters, N, the tofa] efficiency of the system, N<Q, and the
probability, f, of Compton scattering from the central counter into its
neighbors; As a function of counter nUmber, we find a very strong
dependencecéor N < 2-M. Above about 250 counters the improvement of
the resolution with counter number is relatively small, and not very

significant compared to the influence of the other factors.
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The multiplicity resolution (the FWHM in percent divided by
A<M>/AM, the ratio between the difference of the measured
average multiplicity and the original differences) as a
function of the number of counters, N, the total efficiency
N-Q; and the probability for Compton scattering between one

crystal and its neighbors, f.
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One observes a rather strong dependence on the total efficiency. And as a
function of Compton scattering, there is only a 1ittle chanae in resolution
after an initial rise. A significant shift in the average value <M> as

a function of f remains. The y-ray enefgy dependence of the factor f
therefore will Tead to>an additional broadening,which can be corrected to
first order on an event-by-event basis usiﬁg the measured y-ray energies.
For a system with 162 counters, a total efficiency of 90% and a Compton
scattering from one crysta1 into its neighbors between 20% and 30%, a
multiplicity resolution of about 20% will be obtained. The respbnse

functions for such a system are shown in Fig. 3.

2. Total gamma-ray energy

For the measurement of the tota] Y-ray energy the subdivision into
individual counters and their Compton scattering is of no relevance. The
total energy resolution is mainly determined by the total efficiency
€ = N*Q of the system. V

We make the simplifying assumptions that we have a fixed number, M,
of y-rays, all with the same energy EY’ which are detected with a

probability e for the full photoenergy peak and O otherwise. Thus (1-¢)
is the probability that a y-ray is not detected at all. (The formalism
can be, and has been, extended to include a Compton contribution, but
this makes no significant difference in the conclusions.) Then the
response function of the system for the original energy EZ =M .EY is

given by:

M .
P(K) = ( )eK (1 -e)M-K
K

measuring the energy in units of EY'

The average detected energy E is agiven by

M
E o= B D KoK = Moy e ks
k=0
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Fig. 3. Distribution of the number of hits, p, for a spherical shell

of 162 counters with 90% efficiency and 25% Compton scattering.
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For the variance of the distribution o we obtain:
M )
2 = Ez ..M. 3 =‘ -_2 L) L) - = -. 0- -
o y EZ% (K=Meg)“ « P(K) EY Meg(1-¢) E  Ey(l €)

When determining the series of K, we used the three relations:

2P =135 A3 =0 LS p=o0.
K=0 K= de K=0

o

For a photopeak efficiency of € = 0.80, a total y-ray energy Ez = 30 MeV,
and an average y-ray energy EY = 1.0 MeV, we obtain a FWHM = 2,350 =
5.2 MeV. The FWHM measured with respect to the mean detected energy is
21%. Since the expected resolution of an individual counter is about 7%
for 1 MeV y rays, and decreases with increasing energy, the total energy
resolution is predominantly determined by the total efficiency of the
system. While this efficiency, e, refers to the detected fraction of
the total y-ray energy, the system has a larger efficiency with respect
to the multiplicity measurement, since only the triggering of a counter

, is demanded there.

3. Gamma-ray angular distributions

Let us assume that the y rays are emitted by a completely aligned
nucleus with large angular momentum I. The expressionls) for the angular
distribution of stretched E2 transitions is, W(8) = 5/4(1-cos‘e), and
for stretched dipole transitions, W(e) = 3/4(1 +cos?8), where 8 is the
angle of emission of the y-quanta measured with respect to the angular
momentum axis. ?or compound nuclear reactions, the very marked minimum

in the E2 angular distribution allows a rather precise determination of
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the spin direction within the plane normal to the beam éxis via the known
E2 transitions of tﬁe yrast bump. The multipolarity and type of transi-
tion for other y-ray energies may then be determined by comparison with
the E2 behavior. Compared to an isotropic distribution, the intensity

of stretched E2 transitions is énhanced by 23% within the equatorial band
from 60° < 8 < 120°, corresponding to one—ha]f the surface of the sphere.
This leads to an enhanced pile-up compared to the estimates assuming an
isotropic distribution. While the Compton scattering into neighboring
crystals does notbdistort the angular distribufion on the average, the
pile-up reduces deviations from an isotropic distribution. The study

of angular distributions thérefore favors the selection of larger

counter numbers even at the expense of increased Compton scattering.

4. Energies of individual gamma-ray transitions

The spectra of individual counters are distorted by pile-up and
Compton scattering. However, each crystal with its surrounding elements
may be regarded as an anti-Compton spectrometer. The average number of
counters, n, which had only a single hit and for which no hits occurred

in neighboring detectors is given by
no= (1-f)me(1-g) M1 (1) -1 (0+6/2)

where Q is the efficiency of the individual counters, N the total number
of counters, L the number of neighboring counters, M the y-ray multipli-

city originating from the target, and f the probability of Compton

)M-1

scattering into neighboring counters. The factor MNQ(1-Q corresponds

to the probability that one and only one y ray hits the central counter,

and the factor (1-f) excludes those that Compton scatter into surrounding

M-1)(1+f/2)

counters. The factor (1-LQ)( represents the further decrease
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from y rays that hit counters in the first circle or Compton scatter
into the first ones around the central counter. In Fig. 4 this average
number of anti-Compton counters, n, is shown as a function of counter
number N for f = 0.20; L=6; M=30, and @ = 0.90/N. The probabi]ity

p for pile-up in a counter with the anti-Compton requirement is:

1-(1-gM0-F) _ M(1-£)a(1-)"!
| 1-(1-)M1-F)

For 162 counters, a Y-ray multiplicity of M=30, f=0.2, and an efficiency
Q =.0.90/162, about 9.4% pile-up occurs. This does lead to some degree
of uncertainty in the determination of y-ray energies on an event-by-
event basis (although, on the average, energy spectra can be corrected
for pile-up in the unfolding procedure).

However, since there are several anti-Compton counters with a good
' ehergy-response functipn for a single event, it is possible to derive
energy-correlated quantities for the continuum y rays on an event—by-event
mode, remembering the error introduced by pile-up. For example, let us
assume that all transftions in the yrast bump are rotational with energies
given by E = (41 —2)ﬁ2/26, where I is the spin of the upper state and
there is a fixed moment of inertia, 6. In a spectrum of E2—E1, the
difference in energies between two coincident (anti-Compton) y-ray cbunters,
there will be a minimum at the origin, and a sequence of peaks on each

side spaced at 8h%/20. With a small spread in the initial moments of
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Fig. 4. The number of counters, n, without pile-up and no
neigﬁbor counters firing as a function of the total
number of counters, N, with‘a total efficiency of 90%,
a multiplicity of 30, f=0.2, and six nearest neighbors

for each crystal.
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inertia, these peaks will gradually spread in width and decrease in
heighth in proportion to their distance from the origin. The study of
these structures (to determine the magnitbde and spread of the moments

of inertia) requires a}reso1ution in the detectors of the order of 8n2/2,
and the most imbortant region of the spectrum is that between consecutive
transitions. Statistics for this region increase very rapidly with fhe
number of anti-Compton typé counters. The increase of n with counter
number N of Fig. 4 suggests selecting a counter number, N, as large as
possible, but the method still seems feasible for 122 counters. A
comparison of the energy resolution with predicted energy differences
between rotational transitions shows that a rather good energy resolution
for the Nal counters is required. It will, in fact, determine up to

which mass number these studies can be performed.

5. Neutron gamma-ray separation

The large v61ume of the crystal ball leads to a large fraction of
events where neutron capture or inelastic neutron scattering in the Nal
crystal distorts the measured y-ray multiplicity, total énergy, and
angular diﬁtribution. The disturbance by neutron capture becomes
especially important for the most interestihg but rare events with
rather high total energy, since the capture process leads to a large
-~ amount of y-ray energy (7-8 MeV), which can be in coincidence with the
more numerous Tow total-energy events, and so falsely give too high a

proportion of high-epergy events. Taking a capture cross section]6) of

]271 and 1 MeV néutrons, a crystal ball with a shell thickness

80 mb for
of 6 inches will detect a neutron capture in about 8% of all events for

a (HI,4n)-reaction. The rather isotropic scattering of neutrons within
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the crystal will lead to a further increase of the fraction of events
with neutron capture. A free scattering length of A = 5.3 inches for
neutrons is obtained from a scattering cross section]s) of about 5 b.

16) 127I

The 1ne1asti¢ neutron scattering cross section of about 2 b for
results in about two inelastically scattered neutrons per event with an
average y-ray energy release of about 400 keV per neutron.

We want to discriminate neutrons from vy rays by the difference in
flight time from target to the Nal shell. With achievable time resolutions
by Nal detectors of FWHM = 2-3 ns, a separatibn seems possible if the
inner radius of the Nal shell is of order 23 cm or larger. Such a Iower

limit for the inner radius of the NaI shell represents an important

restriction for the design. In addition, neutron-capture events possibly

may be identified by the rather large energy which is deposited in a

single crysta]. Both methods of discriminating neutrons from y rays

‘will be tested with a prototype sector of the crystal ball.

B. Determination of Specific Design Parameters

The preceding discussion of the different properties of the crystal
ball now allows a rather simple specification of the main design parameters.
These are:

a) the total number of counters
b) the ;ize of an individual counter

c) the shape of the total system.

1. The number of counters

The y-ray multiplicity resolution is one of the important figures of

merit of the crystal ball. For a given multiplicity, M, this multiplicity
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resolution of a system with N counters is a rapidly deteriorating function
of decreasing counter number N in the region N < 2M (compare Fig._Z)._
Using the relation N > 2M, the minimum nuhber, Nmin’ is determined by

‘the maximum number of y rays expected in a nuclear event. For larger
nuclear spins the average multiplicity of emitted y rays is about half
the average angular momentum of good rotational nuclei. Maximum spin
values of about 70 f are pfedicted for nuclei with mass numbers of about
120. The spin is limited by either fission or alpha-particle emission.17)
This leads to an estimated upper multiplicity of about 35-40 for compound
nucleus reactions. In deep-inelastic reactions involving two final

nuclei with abouf equal masses of 160, y-ray multiplicities up to 45

have been observed and somewhat larger values might be expected. Deep
inelastic reactions followed by sequential fission should not lead to
higher multiplicities since a large part of the spin of the original
nucleus is transferred into orbital angular momentum of the fragments.
Assuming therefore a maximum multiplicity of 50, we obtain a lower limit
for the counter number of Nmin ~ 100. If one also assumes the multiplicity
resolution as a basic criterion for determining the maximum number of
counters, an investigation of the multiplicity resolution shows that

beyond 250 counters other factors like the total efficiency become
dominant and little improvement is obtained by increasing the counter

number. Therefore

100 < N < 250

Geometrical considerations on the tiling of a sphere with hexagons and
pentagons (see section II1.B.3) lead only to six configurations within

these limits: with 122, 132, 162, 192, 212, and 252 counters. Further
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symmetry considerations favor fhe solutions with 122, 162, and 252
elements. Since the production of the counters, the electronics and
also the price of the support frame are a roughly linear function of the
ccunter number, the.price of these systems can be predicted by scaling
the price for 162 elements with the counter numbers. Though many
arguments, e.g., the number of anti-Compton counters, the study of the
Y-ray anguiaf distribution, etc., favor large counter numbers, we must
come to a compromise with the cost, and have tentativeiy chosen a
configuration with 162 elements. Our proposed testing of a module with
six counters will either confirm this decision or suggest a different

number.

2. Size of the individual counters

The strong dependence of the multiplicity resolution on the absolute
efficiency (see Fig. 2) leads to the requirement that at least 90% of all
vy rays should be detected. In Fig. 5 the three dashed curves show the
fraction of y rays which pass through a Nal shell of 10,-15, and 20 cm
~ thickness without any interaction. The calculation is based on published

15) If the detector is triggered only by

total absorption coefficients.
events where more than 100 keV of energy are deposited in the crystal,
the abéorption cross section due to Compton scattering is decreased by
less than 10%. This can be seen from the differentiai Compton cross

sectionls)

as a function of the energy of the scattered electron. The
three curves of Fig. 5 show, therefore, that a shell of 15 cm thickness
seems to be sufficient. The real total efficiency of the system will be
about 3% smaller since the material of the cans and the light reflecting

material surrounding each crystal has a thickness of about 1 mm. These
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Fraction of the vy rays which pass through a Nal shell of
10, 15, and 20 cm without any interaction (dashed 1lines).
Fraction of y-ray energy not detected, assuming one

Compton scattering only, for 15 cm shell (full line).
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theoretical estimates indicate that with 15 cm long crystals one obtains
a total average efficiency of about 90% for the measurement of the
multiplicity. This number will be determined more accurately with a
test module. | |

With respect to the total y-ray energy detectéd,vthe efficiency is
smaller and can to a certain extent be estimated by using the true

15)

absorption coefficient. There the Compton cross section is weighted

with the fraction of the energy transferred to the e]ectronf The full
curve in Fig. 5 shows this loss in detected energy for a 15 cm thick Nal
shell as a function of y-ray energy. The actual total-energy efficiency
of the crystal ball depends on the degree of absorption of the scattered
vy rays and will be better than the prediction.

In a measurement with a 33x20 cm Nal sum spectrometer with the
source placed in the center, a total loss of energy of 19% was obtained
for 1.17 MeV vy rays. Therefore an efficiency around 80% with respect to
the detected total energy is exbected. Again, more accurate efficiencies
will be obtained with the test module.

" After specifying the length of each individual crystal to be about
15 cm, we have to consider the shape and diameter of each crystal. It is
immediately clear that the radial cross section of each crystal should be
as close to a circle as possible to minimize the Compton scattering from |
oné crystal into neighboring ones for a given Nal volume. In our design
we have Cross sections of rather regular hexagons or pentagons. For the
calculation of the properties of the crystal ball we need the percentage
of Compton scattering, f, from one crystal into its neighbors. This

depends on the average diameter of the crystal and on the y-ray energy.

Though there are mahy publications on the peak-to-Compton ratio for
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differeﬁt crysta]yshapes, the Strong angular dependence of the Compton
scattering makes it difficult td derive from those values what fraction

is scattered to the lateral sides compared to the end faces. We therefore
performed a measurement with two 14 cm long crystals which have a U-shaped
cross section. Both crystals touch each other along their 14 cm by 7.6 cm
surfaces. From this measurement we obtained an estimate for the
fraction, f, of Compton scattering through all lateral sides. This
estimated fraction is shown in Fig. 6 as a function of f«-ray energy.

The fraction, f, shows a y-ray energy dependence much like the Compton-
to-total ratio. For an average y-ray energy of 1 MeV we obtain f = 0.2,
which is within the range of values used in earlier estimates. The exact
values of f as a_fﬁnction of gamma-ray energy will be obtained with the
test modules. Since the absorption length of a 1 MeV y ray in Nal is

4.7 cm, the ffaction of Compton-scattered quanta which leave the central
crystal goes as exp[-adu], where d is the average diameter of the
crystal cross section, ﬂ is the absorption coefficient for 1 MeV y-quanta

in Nal, and the constant o takes care of the averaging over scattering

~angles and over the position where the scattering takes place. Empirically,

o has a value of 0.8 for a 14 cm by 7.6 cm crystal. Therefore a first-
order estimate of the dependence of f on the average diameter d s

_(d_do)oaou
f = f_ e

0
This suggests that f does not change significantly within reasonable
1imits for the average diameter. On the other hand, the diameter of a
crystal should be larger than about 3 cm, because otherwise Compton

scattering into second-nearest neighbors also becomes important.

g 2



-33-

L T
3in.x 55in. Nal(T1)crystal
. l

30— ]
f(%)
20— ]
10~ 7
. ° | | L,
‘ 0 10 2.0 30

Ey [MeV]

XBL 792-3I9

Fig. 6. Fraction of y rays scattering into all neighboring crystals
as a function of y-ray energy for a 14 cm long, 7.6 ¢
diameter Nal crystal. _ ’
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If one wants to keep the smallest crystal diameter no less than
7 cm, the number of crystals 1mmediate1y leads to another lower limit

for the inner radius of the crystal shell, namely, 23 cm for 162 elements.

3. Shape of the total system

The individual e]ements-of the crystal ball consist of tapered prisms,
which if extended would meet in the center of the sphere. Therefore we
only have to specify the inner (or outer) faces of thé prisms, and the
search for the optimum shape of the crystal ball reduces to the question,
"how to ti1é a sphere in an optimum way with polygons, but without gaps
or overlaps?" That 15, how to find the optimum polyhedron. For an intro-

dﬂction to the following discussion we recommend the book, Polyhedra, A
| 18)

Visual Approach," by Anthony Pugh.
We now 1list some requirements which will allow us to select the

optimum shape:

1. 411 polyéons of the polyhedron should cover the same solid angle.
This requirement allows the determination of gamma-ray multiplicities
| from the number of counters firing, without specifying the individual
countefs.
2. The ratio between circumference and the area of the polygons
should be as small as reasonably possible. This leads to the minimum |
"Compton scatterihg between crystals for a given volume of the crystals.
_ The more polygons meet at a vertex of the polyhedron the sharper
(in general) the angle of the polygons and the larger the scattering
from one crystal into others. We therefore introduce the further
requirement:

3. At each vertex of the polyhedronboniy three polygons should meet.
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4. The number of different polygons should be as small as possible.
This simplifies the consfruction, productibn, assembly and rép]acement
of defective counters. Later we add for the same reason that the
polyhedron should have a high degree of symmetry.
5. The number of faces of the polyhedra should be larger than 100.
This requirement was obtained frdm'the discussion earlier of the
number of countefs.

From these requirements rather general properties of the desired polyhedra

can be derived.

In Ref. 18 one finds a compilation of all reqular polyhedra; they consist of:
1. The five Platonic po]yhedka, where at each vertex the same number
of a particular type of regular polygon meet (tetrahedron, octahedron,
cube, icosahedron, and dodecahedron).
2. The thifteen Archemedian polyhedra and prisms, in which the base
is a reqular n-gon while the lateral faces are squares, and the
so-called skew prisms,in which the base is a regular n-gon while the
lateral faces are 2n equilateral triangles. This second .class 6f
polyhedra again consist of regular polyhedra in which at every vertex
tHe same number of polygons meet, but now they may be of different

~ types.

3. 92 convex polyhedra, which represent the group where
-dissimilar arrangements of regular polygons occur about each
of the vertices.

A scan of all these polyhedra shows that in most cases the polygons do not

cover the same solid angle. If they do, the number of faces is much smaller
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than 100, and in many cases some po]ygdns are triangles, which is
undesirable because of the large-ratio between circumference and area.
Therefore the desired polyhedra belong to the much more general but less
investigated class of polyhedra with at least one type of non-regular
polygon.

We now want to show that the class of optimal polyhedra always has
12 pentagons and a variable number of hexagons.

Our requirement that at each vertex.only three polygons meet, leads
to strong restrictions on the possible solutions. Let us assume that
we have a polyhedron consisting of N6 hexagons (regular or non-regular)
and NX x-gons. (regular or non-regular), in which at each vertex three
faces meet. We now prove that such a polyhedron has to have, besides
hexagons, either 12 pentagons or 6 sduares or 4 triang]és. We fntroduce
in each polygon of the polyhedron a center point and connect it with
~ the vertices of the polygon. Then the polyhedron becomes a network of
triangles. There are 6-N6 + x-NX triangles, and the sum of all face
angles is 180° (6-N6 + x-NX). Since each triangle has three vertices
and six triangles meet at each vertex (except for that one in the centef
of each polygon which has x triangles meeting), the number of vertices, V,
is: V= (6-N6)(2/6 +1/6) + (x-NX)(2/6 + 1/x). For any convex polyhedron18)
the sum of all face angles is given by

360°V - 720°

if V is the number of vertices. Therefore we obtain
2

180°- (6+Ng + x-N) = 360° [(6+N)+( 2 +(xeN)( 2 + 1)]-720°,

or
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For x =6,NX is infinite, corresponding to the tiling of the infinite
plane with hexagons. For x = 6 no solutions exist. By |

setting x equal to 5, 4, and 3, we 6btain that the polyhedron contains
either 12 pentagons or 6 squares or 4 triangles respectively. If one
would introduce polygons with more than 6 edges one would have to
introduce an additional number of polygons with less than 6 edgés to
obtain the correct sum of all face angles.

The larger the number of faces of a polygon, the smé]]er the average
length of a side for a given area. Polygons with different numbers of
edges but equal area bordering each other will, in general, deviate the
more from a regu1ar shape, the bigger the difference in the number of
edges. The demand for an optimum ratio of circumference to area for
all polygons, on the average, therefore, leads to an optimum solution
of polyhedra with hexagons and 12 pentagons. Hexagons combined with
squares or triangles lead to hexagons strongly deviating from regular
ones, when they neighbor the squares or triangles. Polygons with more than

6 edges increase the number of different polygons of the polyhedron and

~ also Tead to more polygons with edges less than 6, which have unfavorable

circumference to area ratios. So we obtain an optimum so]ution of hexagons
combined with 12 pentagons without specifying which polygons are regular
and without specifying their arrangement.

We now introduce an additional requirement for a high degree of
symmetry of the polyhedra, demanding that the center of each pentagon be
a five-fold symmetry axis of the polyhedron. Other solutions with
randomly oriented irregular hexagons and pentagons are possible, but
the calculation of such figures will be complex, and since the shapes

are irregular, the diffﬁcu]ties of production will be much greater.
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In Fig. 7 polyhedra containing héxagons and 12 pentagons, with‘
,each pentagon representing a five-fold symmetry axis, are shown as a
function of increasing number of faces. A1l these polyhedra have the o
symmetry properties of.the dodecahedron — the first polyhedron of Fig. 7
and its dual, the icosahedron. Connecting the centers of the pentagons “
by straight lines one obtains the icosahedron; connecting the mid-points
of the connections between neighboring pentagon centers one obtains the
dodecahedron. In Fig. 8 we show the icosahedron and dodecahedron viewed
from their face, edge, and vertex.
One can characterize these polyhedra by two 5-fold symmetry axes;
the operation of the first 5-fold symmetry axis on the other 5-fold axis
leads in total to 12 points around which one has a 5-fold symmetry — the
centers of the 12 pentagons.
The sfrange sequence of the number of faces of these polyhedra, i.e.,
12, 32, 42, 72, asks for an explanation, and one wants to know all possible
solutions. We introduce with Fig. 9 a complete ordering scheme for all
.possible solutions. There one pentagon is plotted at the tip of a triangle
- built up from a mesh of hexagons. If one replaces a particular hexagon
by a pentagon, the demand for thé 5-fold symmetry with respect to the
center of ‘the pentagon immediately determines the po§ition of the third
pentagon. The center points of the three pentagons form an equilateral
triangle of the basic icosahedron, and thus the total polyhedron is
defined. At each side of the hexagons the number of faces of the
corresponding total polyhedron is written. By comparing Fig. 9 and Fig.
7 one can easily identify some configurations. For the radial sides of
the hexagons no numbers are given, since the pentagon will touch another

edge, which is closer to the original pentagon at the tip. Because of
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Fig. 7. Polyhedra containing 12 pentagons and hexagons
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Fig. 8. Face, vertex, and edge view of a dodecahedron and an icosahedron.
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Fig. 9. Ordering scheme'to derive configurations based on 12
pentagons and varying numbers of hexagons (see text,
section II.B.3).
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the five-fold symmetry, only hexagons in a sector of 60° have to be
considered. Every possible arrangement of hexagons around a pentagon
is coyered in this scheme, which therefore allows an ordering of all v
these polyhedra.

The number, N, of faces of these polyhedra is given by: S
N = 10+(h®* + k> + he k) + 2

with integer values (0,1,2,...) for h and k. This allows an immediate
prediction of all possible numbers of faces;

The first few numbers in this sequence are: 12, 32, 42, 72, 92,
122, 132, 162, 192, 212, and 252.

To decide which of the six solutions in the region of 100 to 250
counters: 122, 132, 162, 192, 212, and 252 is best, we have to study
their properties, including their symmetry properties. The latter are
mainly determined by the properties of the basic icosahedron and dodeca-
hedron (see Fig. 8).

There are always two pentagons opposite each other with respect to
the center of the polyhedron (but are rotated 36° against each other).
If a hexagon occurs in the center of a triangular face (for example in
the so]utiohs with 32, 92, 122 faces), another hexagon occurs in the
opposite face, that is, at 180° with respect to the center of the polyhedron.
This is apparent from the face view of the icosahedron in Fig. 8. 1If there
are hexagons in the middle of the connecting lines between the centers
of neighboring pentagons (solutions with 122, 162, 252 faces) they have
the property that there afe equivalent hexagons at 90° with respect‘to
the center of the polyhedron. This can be deduced from the edge-view

of the icosahedron of Fig. 8. If those heXagons are used as portholes
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of the crystal ball, one has a hole to bring the beam in. and out, and
holes at 90° up and down and left and right of the center. Studies at

0° and 90°; where counters of the crystal ball are replaced by other
itypes of counters, arevof considerab]e value as these are usually extrema
of angular distfibutions. Furthermore, ten of those hexagons lie in the
equatorial plane with respect to two opposing pentagons with a constant
angle of 36° between them.

These properties of the center points of the edges of the icosa-
hedron make the selection of polyhedra with 122 and 162 faces more
desirable. Both consist of four basic types of polygons. Since both
configurations seem equivalent, other considerations, such as the
difference in price compared to thé gain in resolution of the measured
quantities, must be taken into acéount to choose one or therther of
these systems.

Some arbitrakiness exists in the actual determination of the shapes
of the crystals, because one has to select which hexagons are regular or
not. The hexagons neighboring the pentagons cannot be regular, since they.
have one side in common with the pentagon and have to cover the same
solid angle. In the case of the 122-element configuration, we selected
the hexagon in the center of the triangle of the basic icosahedron to be
regular because the selection of the hexagons on the 1ines connecting the.
pehtagoﬁs led to more strongly distorted hexagons neighboring the pentagons.
In the case of the 162-element system, on the other hand, we selected the
hexagon on this connecting 1ine to be regular since the deviations from
Fegu]arity for the other hexagons are not very large and it seems most
suitable to have regular hexagons as units which may be used as portholes

for the system. After selecting these hexagons as regular ones, the shapes
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~of the other hexagons are - immediately fixed by the requirement of equal
solid angles for all thé po]ygons and the 120° symmetry of the triang]e'
between the neighboring pentagons.

In Tables 1 and 2 we specify the arc lengths between the vertices of the
polyhedra on the sphere. In the case with 122 elements the sides of the
triangular faces of the basic icosahedron are divided into six parts,

18) is called a six-frequency icosahedron. In the

and the representation
system with 162 elements we start with a dodecahedron in which each
pentagonal face is divided into five equal triangles. The sides of each
of these triangles is further divided into four parts, and the represen-
tation is ca]]ed‘a four-frequency dodecahedron.

One could imagine obtaining a polyhedron by connecting the vertices
of‘the polygons on the sphere with straight'1ines. But then one faces
the problem that the six vertices of a non-regular hexagon lying on a
sphére do not 1lie in a common p]ane.-(In our case these deviations are
sma]],.since the deviafions from a regular hexagon are small.) Therefore
the vertices on the sphere and their connecting lines are used only to
- spécify'the radial faces of the crystals. This representation on the
sphere made the determination of equal solid angles for the different |
polygonal crystals easy.

The actua1’crysta]s have flat (para]]e]) front and end faces.
The shapes of these faces are given for a sphere with a unit radius in
Tables 3 and 4. They were obtained by introducing tangential planes
ﬁorma] tovthe radius through the center points’ of each polygon and

then projecting the arcs on the sphere (from its origin) on to those

planes. As a result, neighboring polygons do not, in general, meet

)]
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a = 0.207741

£ b = 0.243059
/// ¢ = 0.190807
d = 0.176757

e = 0.222301

f = 0.190582

g = 0.202734

h = 0.169066

i = 0.215728

k = 0.197976

m = 0.198952

XBL 792-308

TABLE 1. Arc lengths for a six-frequency icosahedron, dividing the

sphere into 110 hexagons and 12 pentagons of equal area.
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XBL 792-3Il

o o o o o O

0.192179
0.172685

o O o o o

o

. 172685
.172040
.174179
. 149429
.201765
.172040
. 142340
.163529
. 149429
.204913
. 178088
.173138
.211274
.180363v

TABLE 2. Arc lengths for a four-frequency dodecahedron, dividing

the sphere into 150 hexagons and 12 pentagons of equal area.

o
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AT2

A23 -

A34
A45
A51

A10
A20
“A30
A40
A50
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Length of hexagons and pentagons of a polyhedron with

122 elements, having an instribed touching sphere of unity.

O O O O o

O O O O O

.24779
.24779
.24779
.24779
.24779

.21078
.21078
.21078
.21078
.21078

B12
B23
B34
B45
B56
B61
B10
B20
B30

B40
B50

B60

O O O O O O 0O o oo o o o

. 18051
.20692
.20128
. 20692
. 18051
. 24695
.19316
.22604
.19292
.19292
.22604
.19316

C12
€23
C34
C45
C56
C61
C10
€20
€30
C40

€50 .

C60

O 0O 0O OO0 o0 o oo o © o

XBL 792-309

. 20645
.20233

. 20645
.20645
.20233
.20645
.17070
.21914
.21914 -
.17070
.21914
.21914

D12
D23
D34
D45
D56
D61
D10
D20
D30
D40
D50
D60

0.20162
0.20162
0.20162
0.20162
0.20162
0.20162
0.20162
0.20162
0.20162
0.20162
0.20162
0.20162
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A34
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TABLE 4. Length of hexagons and pentagons of -a polyhedron

with 162 elements, having an inscribed touching

sphere of unity.

.21436
.21436
.21436
.21436
.21436

.18234
.18234
.18234
.18234
.18234

B12
B23
B34
B45
B56
B61
B10
B20
B30
B40
B50
B60

O O O O.0O0 O O O O O O O

.17624
.16630
.17358
.16630
17624
.21428
.18000
.20783
.14331
.14331
.20783
.18000

C12
c23
C34
c45
C56

C61

C10
C20
C30
C40
€50
Cé0

[ T e T o T o B = T < T o T o SN oo B oo SN = R o

XBL 792-309

.19423
.17501
. 16622
.16622
. 17501
.19423
. 15055
.17596
. 20455
.15055
. 20455
.17596

D12
D23
D34
D45
D56
D61
D10
D20
D30
D40
D50
D60

O O O O O O O O O O o o

.17442
17442
.17442
17442
17442
17442
17442
17442
17442

.17442
17442
.17442

4
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in a common edge, but rather iﬁ a cbmmon slip plane; that is, the edge
is not quite at the same distance from the center of the polygons, and
furthermore, the length of the sides of the touching crystals are no
1ohger the same. A1though these deviations are small, they must be

considered in the actual design.
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III1. COMPONENTS OF THE CRYSTAL-BALL DETECTOR SYSTEM

1. The NaI(T1) detectors

In the crystal ball, which approximates a spheré of radius 15 inches
with a central spherical cavity of‘radius 9 inches, béth the outer and
inner surfaces are subdivided into 150 hekégons and 12 pentagons as
specified in Table 3 of Section II. These 162 modules belong to four
different three-dimensibna] shapes. The following numbers of modules

make up the complete sphere:

Number of Modules Type of Module
12 A regu]ak pentagon
60 B irregular hexagon
60 C irregular hexagon
30 D regular hexagon

Thefr drawings are compiied in the Appendix. While the NaI(T1) crystals
have a thicknéss of 6", the cans will be longer, with perhaps a 1ength
of 7", allowing for a wall thickness of about 1" at the outer hemisphere.
These drawings define the critical outer dimensions and orientations of
all faces of each module. The aluminum cans will probably be produced

' by folding and welding. Rather high mechanical tolerances have to

be demanded for the cans, so that the modules, when packed together,
reproduce the desired shell. We give here the same tolerances as for
‘the Stanford crystal ba]]. The tolerances of the longitudinal dimensions
of the modules are +0.000 inch and -0.015 inch, and the diameters of the
different inscribed circles in the end faces are +0.000 iﬁch and -0.005
inch. The tolerances of the flatness of the longitudinal sides of the
modules are +0.000 inch and -0.005 inch. The tolerances on all dihedral

angles are *2.5 minutes of arc. A1l edges of each module are rounded
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with a radius of 0.05 inch to preveht scratching of modules during
assembly of the crystal ball. The crysta]s are hermetically sealed
within an aluminum housing of 0.02" wall thickness at the: inner and
1afera1 faces. The'thickness of the optical reflecting material is no
more than 0.01". Each crystal is supplied with»a feed-through for a LED,
and is coupled to a selected RCA-4900 "teacup" 3-inch phototube. The
phototube is enclosed within a hu-meta] magnetic light shield and is
terminated in a standard voltage divider.

Each crystal has a guaranteed energy resolution of 8% or better

for Cs-137, independent of the position of the source. The shift in the

detected photo-peak position is less than 1%, when changing the count-

rate from 1 kHz to 70 kHz.

The prices for differently shaped crystals, including cans, photo-
multipliers, and voltage dividers fulfilling these requirements, are
estimates due to offers from Bicron Corp., Newbury, Ohio, and Harshaw
Chemical Company, Solon, Ohio. The prices are compiled in Table 5,

resulting in a total price of $332,000 for all detectors.

TABLE 5. Cost of Detector System

162 NaI(T1) crystals © $241,000
(fabrication, encapsulation)

Photo-tubes, light-pipes, mu-metal shields

($1482 per unit)

162 cans and back plates 91,000
($562 per unit)

Total \ $332,000
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2. Mechanics
The individual counters of the crystal ball have to be kept in place
by an outside support frame. ‘In the Appéndix, two technical drawings-
show a preliminary design study on the support frame. We wanf to use an
aluminum sphere of 1.5-inch thickness and an inner diameter of 48 inches
into which 162 portholes for the detectors are pierced with a large
computer-driven mill. After preparing the portholes, the sphere is
split into two vertical hemispheres. To each porthole an adjustab]é
back plate is screwed. The detectors are held in place by a tube
with a flange. Even when rép]acing a detector, the adjustment
-of the back plate is kept. This allows for an easy assehb]y of theFWhole
system. The two hemispheres are carried by legs, which run on ball bearings
in rails. The hémiépheres can be separated to the left and right, to
allow access to the central scattering chamber.

The scattering chamber will be a 1/8-inch-thick spherical aluminum
chamber with an outer diameter of 17.5 inches. The small wall thickness
and spherica1 shape are necessary to keep the absorption of vy rays as

-small as possible and to have a similar attenuation with respect to all
detectors. MWe plan to divide the spherical chamber into three sections:
a top 1id, a central part, and a base part.

Price estimates for the design and construction of the support frame

and the scattering chamber are compiled in Table 6.

Ll
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TABLE 6. Mechanical costs.

Machine shop time fof scattering chamber
(300 hrs @ $19/hr)

Fabrication of the supporting aluminum sphere
with 162 portholes (900 hrs @ $30/hr)

Forging of sphere

Fabrication of adaptors and adjusfment plates
for 162 detectors (2000 hrs @ $19/hr)

Fabrication of carriage, track and support leas
(440 hrs @ $19/hr)

Design time for chamber and detector support
(400 hrs @ $23/hr)

Total

'$ 5,700
27,000

9,000

38,000
8,360

9,200

$97,260




-54-

3. Electronics

From the crystal ball we shall obtain a linear energy signal from
each of the counters that fires during an event, and also a summed or
total energy signal. We shall also obtain a time signal from each counter
that fires which will be grouped with the ﬁorresponding energy signal, and
a single multiplicity output, that is, a signal that indicates how many
counters fired during that event. The main purpose of the time signal
is to be able to discriminate neutrons ffom Y rayé in the crystal batl
counters by time-of-flight. But its application in isomer studies is
evident. To decrease the amount of data actually stored on tape, a
master gatevwill be required at the ADC's that is generated if both the
total energy and the multiplicity are within certain limits.

A wideband gain-of-10 amplifier opefating off the anode will be
inc]uded with each phototube divider unit, and the output_sp]it to yield
the linear energy signal and the fiming signal. The former signal is
divided again, one part going to a second gain-of-10 amplifier and then
on to-qne'channel of a multi-channel gated ADC. The other part goes to
a resistor.network which allows summing of the signals from eight counters
and theh goes to another gain-of-10 amplifier. For 162 counters there
will be 21.such amp]ifiers; they are then summed in two fan-in-units to
furnish the total-energy signal. This signal goes to an ADC and is
also branched through a discriminator. The outpuf of the discriminator
is put in coincidence with a similar gate from the multiplicity unit
(see below) to make a master gate for all the ADC's.

The timing signal from each counter goes to one channel of a multi-

channel constant-fraction discriminator. Two outputs are taken from the
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discriminator. One goes to a 32-channel multiplicity logic unit which
gives an output whose amplitude is proportional to the number of simul-
‘taneous inputs received. The six suchvunits necessary to accommodate

162 channels can be further summed together in a fan-in unit, and the
resulting multiplicity signal is branched, one signal going to an ADC

for processing as the event multiplicity, and the other to a discriminator.
The Tatter signal in'cdincidence with the already described total-energy
gate makes up the master gate for the ADC's.

The second timing signal from the constant-fraction discriminator

goes to a fast overlap coincidence unit which is also supp1iéd by either a
machine rf’pulse (at the SuperHILAC) or the output of a thin transmission
plastic scintillator (at the 88" Cyclotron) to yield a pulse-length
proportional to the time difference. This time signal is sent to the

ADC into the channel next to its corresponding linear-energy signal, and
can be used to decide whether that pulse is due to a y ray or to a neutron.

The gain of the linear-energy signals is held constant by a H.V.
controller which responds to the position of phofo—diode pulses in the
 final y-ray energy spectrum.

Most of the electronic units will be purchased commercia]]y. " The
major exception is the multi-channel constant-fraction unit which will be
produced here, but will have been built and used at the Bevalac well before
it is needed here. The costs for the electronics for a crystal ball with

162 units is compiled in Table 7.



TABLE 7. Electronics for the Crystal Ball.

master gate

) Channels  Number Cost Total
Unit Company Ttem per unit units  per unit ($)
HV4035 LRS HV power supply; computer controlled, 32 6 4750 28,500

2 mA and 3 kV
2132 LRS HV to Camac interface -- 1 450 450
VV1008 LRS Wideband Pulse Amplifier for Photo- -~ 350 34 11,900
multiplier; 10x gain, risetime <2 nsec, ’
- 20.1% integral linearity
AAT00BL LRS VV1008 Amplifier mounting board for testing - 1 86 86
127FL LRS Dual bipolar linear fan-in 16 4 425 1,700
2285A LRS ADC 200 us digitizing time, 12 bits, 24 15 1585 . 23,775
charge integrating :
2280 LRS ADC System Processor; pedestal correctfon,, -- 1 2500 2,500
Zero suppression
DK-6/50 LRS Multicoax ribbon cable delay (100 nsec) 6 28 48 1,344
[$35(connectors) + .65¢ x feet]
-- Home- Octal constant fraction discriminator, 2 out- 8 21 ~1200 25,200
built puts, LED indicator, & overlap coincidence unit
380A LRS Mu]tipiicity Logic Unit; no strobe signal, . 32 6 895 5,370
generates master trigger, analog multi-
plicity output
821 LRS Quad 100 MHz Discriminator for multiplicity 4 1 825 825
: and total energy gates
365AL LRS Dual 4-fold Majority Logic Unit; generates 2 1 715 715

_99_



Electronics for Crystal Ball (continued)

. Channels Number Cost Total
Unit Company Item per unit units per unit ($)
429A LRS Fan-out for master gate 16 2 529 1,058
2551 LRS 12—channe1, 24-bit, 100 MHz Scaler 1 575 575
108P-6 LRS NIM power chassis (x12V, 24V, 6V) _ 4 - 810 3,240
Ultima Standard  CAMAC Crate | 2 2000 4,000

3000 Engineering
CAMAC crate controller 2 2000 4,000
Cables and connectors 25,000
$140,238

_Lg_
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IV. LOGISTICS

1. Time schedule

In summer 1979, a sub-unit consisting of one central détector with
a pentagonal end-face surrounded by five hexagqna] detectors can be
ordered and then tested. The aim is to study the proberties (response
function, timing, etc) of an individual detector and the Compton scattering
between detectors. Thié check of the predicted properties of the detectors
allows for a final optimization of the design. At the same time, elec-
tronics and first software programs can be developed.

This unit will be useful in its own right as a Compton-suppressed or
Compton-added spectrometer. If this proposal is accepted, the total Nal
system could be ordered October, 1980; delivery of the canned NaI(T1)
deteétors and phototubes by Harshaw Chemical Company of Solon, Ohio, or
Bicron Corp. of Newbury, Ohio, is guaranteed within 6-9 months. About
the same delivery time exists for the commercial electronics (Le Croy).
Thus, first tests of the system could be performed in Summer-Fall 198].
This is likely to be at the 88" Cyclotron,studying primarily compound
'nu¢1ear reactions, as these studies would emphasize the y-ray measure-
ments and not require any coincident particle counters. When some
familiarity is achieved with the crystal ball, it will be moved to the
SuperHILAC for more cohp]icated deep-fne]astic reaction studies,
observation of high-energy non-equilibrium particles, transfer

reactions of heavy ions with simultaneous Coulomb excitation, etc.



-59-

2. Budget

Table 8 Tlists all major anticipated costs. It is subdivided into
the NaI(T]) detectors, mechanics, and electronics.

Only the purchase of the complete NaI(T1) detectors (crystals,
cans and phototubes) allows for guarantees of energy resolution, count-
rate stability, and most importantly, the hermeticity of the cans and
required mechanical to]eraﬁces. |

The mechanical cost consisfs predominantﬁy of the support frame for
the 162 crystals, while the price for the thin spherical scattering chamber
is re]atiye]y Tow. The cost of the support frame is divided about equally

into the basic aluminum support sphere with legs and carriage, and the

many adaptors and adjustment plates for the individual crystals.

The electronics consists predominantly of commercial units. The
home-built units are octal constant-fraction triggers. A quadruple
model is a1ready in use and allows a rather good estimate of the price
for the octal unit, which is being designed for another purpose already.

. These costs are as of March, 1979, and, depending upon the time of

actual construction, will have to be increased for inflation.

TABLE 8. Total cost estimates for the Crystal Ball.

Detectors (details, Table 5) $332,000
Mechanics (details, Table 6) 97,260
Electronics (details, Table 4) 140,238
Contingencies (5%) . 30,000

Grand Total $599,498
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‘ APPENDIX ,
TECHNICAL DRAWINGS OF THE CRYSTAL BALL
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