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Single Particle Dynamics in
Fixed Field Alternating
Gradient Accelerators
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Reprinted by permission from SCIENCE be independent of energy imposes a
limitation on the attainable energy when
the relativistic increase of mass becomes
significant.

Fixed-Field Alternating

Gradient Accelerators

Developments in the art of designing
high-energy particle accelerators may be
of interest' not only to nuclear physicists
but also to those working in chemical and
engineering fields, to biologists, and to
workers engaged in medical research.
For the physicist, the possibility of study
ing particle reactions at increasingly high
energies may be the most exciting aspect
of such developments, although a sub
stantial increase of intensity, at energies
presently available, would make possible
definitive experiments that are now diffi
cult to perform. For production of radi
ation effects on matter en gros, as in the
production of cross-linkages in poly
mers or in various investigations of radi
ation damage, intensity may be the more
important characteristic of an acceler
ator. In the present article (I), I attempt
to outline a potential new development
in the accelerator art which appears to
offer not only the prospect of certain
engineering advantages but also the
promise of a substantial increase of in
tensity or of the energy available for the
study of particle reactions. Analysis of
the particle orbits to be expected in the
proposed structures affords a number of
important and challenging mathematical
problems concerning which, it may be
hoped, an improved analytic understand
ing will be built up to supplement results
obtained by digital computation.

The developments discussed here are
the result of study by a group of mid
western physicists (2) who were stimu
lated by the broad class of new acceler
ators apparently made possible by the
use of the alternating-gradient principle,
which was first announced from the
Brookhaven National Laboratory (3).
Specifically, in contrast to the present
Brookhaven efforts, the midwestern
group has concentrated on a class of
cyclic accelerators employing magnetic
fields that are constant in time.

In any cyclic accelerator, such as the
cyclotron, betatron, or synchrotron, a
charged particle makes a great number
of revolutions within the structure, gain
ing a relatively small amount of energy
on each tum, and the provision of suit
able focusing forces is essential. It may
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be of interest to note in this connection
that, in a number of typical accelerators
now in use, the distance covered by the
particle during the acceleration process
ranges from one-third of the distance
across the United States to some 6 or 8
times around the earth. Since particles
with energies that are at least slightly
different will be simultaneously present,
a related property of an annular acceler
ator of importance in its effect on the
cost of the structure is the ability to ac
commodate particles with various ener
gies within an annular region of limited
radial extent. .

If, as is customary, the particles are
guided by a magnetic field as they f<;Jllow
their orbits around the accelerator, it is
particularly convenient to achieve the
requisite focusing by adjustment of the
spatial variation of this field. In the case
in which the fields show no variation
with azimuth, a suitable index to char
acterize this spatial variation is

, dB
n==Bdr

where r represents the distance from the
central axis of the machine, and B repre
sents the strength of the (axial) field in
the median plane. In the absence of an
azimuthal variation, stability in both the
radial and axial directions is obtained
only if the condition

-l<n<O

is satisfied. The energy or momentum
content of such a machine is expressed by
the-quantity

u ==!.. dp =n+ 1
p dr

where p denotes the particle momentum,
and u is so small than an annular acceler
ator must then be operated in a pulsed
manner to provide an increasing field
adequate to hold particles of increasing
energy within the machine.

In a conventional continuous-wave
cyclotron, with the index n constrained
to lie between 0 and - 0.2 in order to
avoid a coupling rfsonance between the
radial and axial oscillations, the require
ment that the frequency of revolution

1-1

Description

A markedly greater energy content can
be achieved in an annular accelerator if
a rapid radial increase of the guide field
is permitted by introduction of alternat
ing-gradient focusing to maintain orbit
stability. The field may then be capable
of accommodating simultaneously parti
cles of a wide range of energy, and the
field strength could be independent of
time. Such a modification, although it
introduces complications associated with
the significantly nonlinear character of
the differential equations governing the
particle motion, evidently promises a·
number of significant advantages.

I) Direct-current magnet construction
and excitation may be employed.

2) The magnetic field need only be
adjusted for operation at a single level
of excitation, thus avoiding the difficul
ties associated with remanence, satura
tion, and eddy currents in a pulsed
accelerator.

3) There is greater freedom in the
choice of injection energy, and the time
schedule for the acceleration process is
flexible.

4) High intensity appears possible,
owing to the permissible flexibility in
planning the means of particle acceler
ation. Azimuthal variation of the field
in a cyclotron, with the associated alter
nating-gradient focusing effects, can also
be advantageous, because it allows higher
energies to be re.ached than otherwise
would be permitted by the relativistic in
crease of mass with energy.

In subsequent paragraphs I discuss a
number of specific types of structures in
which fixed-field alternating-gradient
focusing is present (4-6). The structures
are of two general types, one employing
radial sectors and the other a spiral
sector pattern. The first-mentioned type
is in some ways simpler and easier to con
stru,ct, while the second appears to per
mit a smaller accelerator for a given
energy. In all the structures, particles
with a wide range of'energies can be
simultaneously accommodated by virtue
of a magnetic field whose average value
around the machine varies with radius
as rAo, and focusing forces leading to sta·
ble motion are obtained by a suitable
spatial variation of the field.

The author is at present on leave of absence
from Iowa State College to work at the University
of Illinois as a member of the Technical Group of
the Midwestern Universities Research Association.
Some of the material on which this article is based
was discussed at the International Conference on
Accelerators in Geneva, Switzerland, during the
week of 11 June and at a meeting of the Canadian
Association of Physicists on 14 lune 1956.



Fig. 2. An operating electron model of a reversed-field FFAG accelerator. Eight sectors
of positive field and eight narrower sectors of negative field are employed. The betatron
core is seen linking the region occupied by the particle orbits. (f) Magnet sector with
forward or positive field; (I') magnet sector with reversed or negative field; (c) betatron
core; (i) injector; (m) pump manifold.

Reversed-Field Design

In the reversed-field type of fixed-field
alternating-gradient (FFAG) accelera
tor, the direction of the field is reversed
from one sector to the next. The sector
boundaries are usually supposed to be
formed by geometric planes that extend
radially from the axis of the accelerator.
The strength of the field in the reversed
field sectors, or the length of the reversed
field sectors, must, of course, be less than
for the sectors of positive field in order
that the particle orbits will ultimately be
bent around through 360 degrees and
permit a closed equilibrium orbit to be
drawn (Fig. 1).

The magnitude of the field in the re
versed-field accelerator varies at every
azimuth as rl<, where r is the radius from
the central axis of the machine. If k
is positive, there is axial defocusing in
the positive-field sectors and axial focus
ing in the reversed-field sectors. The
alternating-g-radient action is found to
yield reasonable stability for small-am
plitude oscillations in both the radial and
axial directions, provided that the com
bined circumference of the forward and
reversed-field magnets is some 5 times
that required by an azimuthalIy constant
magnetic field of the same maximum
field strength. The ratio of the combined
circuinference to that required for a con·
stant magnetic field is termed the cir
cumferpnce factor, C.

Within the individual sectors, the fields
would normalIy be such that the com
plete equilibrium orbit would be formed
from a series of circular arcs with their
centers displaced from the axis of the
mach~ne. Denoting the radius of curva
ture of the orbit by p, the local focusing
index is n =k· pjr and, if the same mag-

nitude of field strength prevails in the
positive and nC'gative sectors, p =riC.
In linear approximation the radial and
axial oscillations in such structures can
then be expressed reasonably accurately,
when the number of sectors is large, by
the equations

dOx
d(s/r)" ±kCx=O

dOz.
d(s/r)" :j:kCz=O

scaling property of the orbits in this ac
ceh'raLOr. Possible orbits of particles of
differem energies, or momenta, are scaled
replicas of each other. In consequence,
the frequencies of the oscillations will be
independent of energy, and harmful res
onances may be avoided at all energies
by a consistent design. The momentum
content is represented by p ex: rt+l, so
that the momentum compaction factor a
is given by

a=k+l

Fig. 1. Orbits in a reversed-field FFAG
accelerator.

and can be either positive or negative in
a reversed-field accelerator.

A smalI working model of a reversed
field FFAG accelerator has been put into
operation (7). This model, shown in Fig.
2, employs eight sectors of positive field
and eight shorter sectors of negative field.
Electrons are accelerated, at present by
betatron action, from 25 kev to 400 kev.
Tuning controls have been provided for
the model, so that various oscillation fre
quencies can be produced. These fre
quencies can be measured accurately by
a radio-frequency knock-out technique
(8) and the effect of certain resonances
on the beam noted. The model affords
an opportunity to study operation with
a high duty factor, as is possible in FFAG
accelerators employing betatron acceler
ation. Radio-frequency acceleration
methods will also be investigated.

Possible parameters for a large-scale
reversed-field FFAG accelerator for the
production of 10 Brov protons have been
examined. Although such a machine
\\'ould be expected to have many desir-

where s denotes ~rc length along a refer
ence circle of radius r, the upper and
lower signs refer, respectively, to the
sectors of positive and negative field, and
centrifugal effects have been neglected
since we assume that kC) 1. These
equations may be solved by the aid of the
matrix methods that are customarily
employed in analysis of alternating-grad
ient focusing. If the phase change per
sector for the radial oscillations and the
corresponding phase change for the axial
oscillations are permitted to assume
widely different values, lying near the
upper and lower limits of the stable
range, a design with C as low as 5 may
be feasible. A more accurate calculation
must, of course, take account of the edge
effects that arise at the sector boundaries
and would involve an expansion about
an equilibrium orbit which, accordingly,
must be determined first. For a complete
account of the motion, the effect of non
linear terms would also have to be in
cluded.

Attention is dirf'ctf'd to the important
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able characteristics, the large magnet
mass and power requirements direct in
terest to other FFAG designs of smaller
circumference factor. By virtue of its
essential simplicity, however, the re
versed-field type may remain of interest
for accelerators of low or intermediate
energy, especially if a high duty factor
can be efficiently realized with betatron
acceleration.

Spiral-Sector Design

To avoid the considerable circumfer
ence required for a reversed-field FFAG
accelerator, an alternative arrangement
has been suggested by D. W. Kerst and
others of the Midwestern Universities
Research Association (MURA) group in
which the aIternating-gradimt action i~

provided· by a smaller but more rapid
spatial variation of the field, the field
being alternatively high and low along
spiral curves which all particles must
cross. lIIustrative of the type of field pres
ent in the median plane of such a struc
ture, one may take

Bzo = < B > (rlro)k

and choose T1 so that the dimensionless
variable x will be small. The forced
motion that produces the noncircular
equilibrium orbit is found to be quite
well represented by

Xf =- N2 _ /k + 1) sin NO

and the linearized equations describing
small-amplitude oscillations are repre
sented by Hill equations of sub:;tantially
the following form:

u" + (au +bu cos NO +cu cos 2NO) u = 0

y" + (all +bll cos NO +Cll cos 2NO)y =0

where

u == X-Xf

J (f/W)I
au 2!! k + 1 - Y2 N' _ (k +1)

bu 5!!!i
w

Cu == Y2 (!Nr
, ~_ I. (f/w)'

ay = k + Y2 N' _ (k + 1)

bll 5!!!_l
w

represented by phase plots that depict
the position and associated momentum
of a particle as it progresses through suc
cessive "sectors" (periods of the struc
ture) from one homologous point to an
other (Fig. 4). For small-amplitude
motion, the particle is represented by a
point that moves around an elliptical
curve in phase space, while, with larger
amplitudes, curves departing from the
elliptical shape may be followed. At
still larger amplitudes, unstable fixed
points-representing an unstable equilib
rium orbit-make their appearance. As
sociated with the unstable fixed points,
one finds a separatrix, constituting an
effective stability limit to the motion,
which in the majority of cases the
ILLIAC results depict as a sharp boun
dary and outside of which it is frequently
possible to draw the initial portion of
unstable phase curves.

Because of the nonlinear character of
the· oscillations, it is not surprising (11,
12") that the permissible amplitude of
oscillation is much curtailed if a, the
phase change per sector, . lies ncar 2.n/3
or 2.n/4o. It has, in fact, also been found
(13) that the amplitude limit is reduced,
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Fig. 3. First stability region (0 <a 55

2.n'VIN <.n) for small-amplitude oscilla
tions in spiral-sector FFAG accelerators.
The curves are calculated for the case
k ~ 1 and are believed to be the most ac·
curate for ordinates less than Y3. When the
condition k ~ 1 is not satisfied, the diagram
can best be used by entering at the point
(kiN', flwNJ

) and proceeding up a curve
of constant all until an abscissa of
(k + 1)IN" is reached.
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'V1I= [(!N)'-kr
It is thus seen that the frequency of the
free radial oscillations is substantially de
termined by the exponent k characteriz
ing the radial increase of average field
strength, so that k + 1 must be positive,
and that axial stability may be obtained
if the term (f/ wN) 2 is sufficiently large
to dominate - k. The stability region for
the small-amplitude oscillations repre
sented by the Hill equations cited has
been mapped by aid of the ILLIAC
tables and is depicted in Fig. 3.

The nonlinearities associated with
large-amplitude motion in the spiral
sector accelerator make the use of auto
~atic digital computation particularly
helpful in trajectory studies. Results per
taining to motion with 1 degree of free
dom are appropriately and conveniently

Nonlinear terms in the equations of
motion can also be obtained.

The frequencies and other character
istics of the oscillations characterized bv
the foregoing linear equations can be ob
tained by the use of tables prepared with
the aid of the electronic digital computer
of the Graduate College of the Univer
sity of Illinois (ILLIAC). Usefulorien
tation is provided, however, by writing
the frequencies that are given by a simple
approximate solution (10), ignoring the
relatively small effect of the terms involv
ing cos 2NO and taking N2 ~ k + 1:

'VJ! = [k +IP

r-"X5--

"
z

y==r,

1
NO == N~ - -In(r,/ro)

w

From this expression it is seen that N is
the number of spiraling ridges passed
over by a particle in going around the
machine once. The coefficient t is the
fractional flutter in the magnetic field
owing to the ridges. Finally, if the radial
width of the annulus is small in compar
ison with the outer radius, ro, A e. 2.nToW
is substantially the radial separation of
the ridges. The exponent k is taken to be
positive.

In the spiral-sector design, as in the
radial-sector case, the fields and the
orbits satisfy the scaling condition. In
passing from one energy to another, there
is, however, a Totation of the geometri
cally similar orbits, which presents com
plications if one wishes to introduce
straight-sections (field-free regions)
whos.e boundaries extend radially from
the central axis of the machine.

The equilibrium orbit in the spiral
sector machine departs from a circle by
an amount that affects significantly the
character of the' small-amplitude oscil
lations. For analytic work (9) it is appro
priate to expand the equations of motion
about the scalloped equilibrium orbit. In
terms of cylindrical coordinates (r, .1:, 0)
we introduce the notation
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Fig. 4. Phase plot representing radial motion, at NO =a mod. 2n:, in a spiral-sector FFAG
accelerator. The machine parameters are those of a proposed mouei, for which k =0.8,
l/w:: 23.0, I =v.., and N =5. In this case 0., is close to 0.571lt for small-amplitude motion.
Th# v.lue oi 0" does not c:bangl! greatly with increasing amplitude, and it is noteworthy
that ultimately seven unstable fixed points make their appearance in this particular
example.

POLE FACE
WINDINGS
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The result of such computations may
then be stored, again on a two-dimen
sional grid, for use in trajectory computa
tions (16).

Plans are being completed for the con
struction, at the University of I1Iinois, of
electron models that will provide experi
ence pertaining to spiral-sector and sepa
rated-sector FFAG accelerators. These
models will be similar in size to the re
versed-field model mentioned in a pre
vious section and likewise will employ
betatron acceleration in the initial tests'.
Provisional designs of a large-scale ma
chine have been attempted. It has been
estimated that a separated-sector FFAG
magnet for the production of 15-Bev
protons would weigh about 12,000 tons
and consume some 5 megawatts of elec
tric power. This estimated magnet weight

~ ==.-l [In(1 +x) -NO]
2n: w

VI + (wN)2 _Y_
YI == 2rrw 1 + x

severely limited (15), especially if I dif
fers markedly from the value 0. In ad
dition, the angle tan-1 Nw of the ridges
(measured with respect to a reference
circle) may be inconveniently small in a
large machine, and a convenient con
struction may be difficult to realize. At
tention is accordingly directed to struc
tures involving separated poles (Fig. 5),
a design that affords improved accessi
bility to the vacuum chamber and beam,
easy realization of a more generous mag
net gap, a considerably higher value for
the root-mean-square field flutter, and a
corresponding increase of the spiral
angle. In this design it would be impor
tant to retain the scaling feature of the
field and to take note of the high-order
Fourier components that some pole con
figurations may introduce into the field.
Retention of the scaling requirement
makes it possible to solve the magneto
static problem, which is defined by a
specified pole contour, by relaxation
methods on a two-dimensional grid which
represents variables conveniently taken as

Fig. 5. Pole configuration illustrative of
the separated-sector modification of a
spiral-sector magnet. The currents carried
by the pole-face windings are instrumental
in achieving the rk dependence of the
magnetic field.

x-

.x DENOTES STABLE FIXED POINT

• DENOTES UNSTABLE FIXED POINT

In the spiral-sector accelerator dis
cussed in the foregoing paragraphs, an
unnecessary and probably undesirable
limitation was introduced by requiring
that the field in the median plane have
a precisely sinusoidal variation. The aper
ture that is magnetostatically possible is

Separated-Sector Modification

tude exceeds a certain threshold value,
and the closer one is to the resonance in
question. Som.e quantitative success in
accounting for the growth of axial ampli
tude can be obtained by treating the dif
ferential equation for the axial motion
as linear and inserting a prescribed ex
pression for the radial oscillations into
certain coupling terms that are linear in
the axial coordinate.

In an actual accelerator, the N indi
vidual sectors will not be exactly identi
cal, owing to the presence of unavoidable
small differences in construction, excita
tion, or alignment. The basic period of
the structure will thus be strictly N sec
tors, representing the machine as a whole,
and additional resonances based on
values of No may be of importance.
Computational study of the effect of real
istic misalignments can be very informa
tive prior to the fixing of specifications
of a proposed machine. By way of exam
ple, studies of a proposed five-sector
model ('V., =1.41, Vy =0.87) indicated
that an axial displacement of one sector
by 1/300 of the radius effected a reduc
tion of the stable radial and axial ampli
tudes by factors of about 2 and 3, respec
tively.

.10 t
.08 P.

.06

.04

although not to zero, for 0 =2lt/5. For
cases in which 0., is near 2lt/3, the limit
of radial stability is characterized by the
appearance of three unstable fixed points.
In this case, an examination of the non
linear differential equation for the tra
jectory permits a rough estimate to be
made of the limitin~ amplitude (14):

I t may be noted that, since the oscilla
tion frequencies are essentially deter
mined by k and l/wN, this formula sug
gests that a desirable increase of stable
amplitude might be expected if t and w
were each increased by the same factor.

Introduction of axial .motion into a
study of spiral-sector accelerators pro
duces complications for all but the small
est amplitude oscillations, since there is
coupling between this motion and that
occurring in the radial direction. Surveys
can be made, however, to determine !he
initial conditions that appear to exhibit
short-time stability. In typical cases the
permissible amplitude for axial motion
appears to be materially smaller, possibly
by a factor of 5, that is allowable for the
radial motion. When oscillations in 2
degrees of freedom are treated, the char
acteristics of the axial motion and in
ferences concerning stability limits are
nluterially affected by proximity to cer
tain coupling resonances, notably those
for which 0., = 2011, OJ] + 2011 = 2n:, or
20., + 2011 =2lt. Near such resonances the
amplitude of axial motion exhibits an
exponential increase, over a considerable
amplitude range, the rate of growth being
the greater, the more the radial ampli-
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is intermediate between estimates that
one would make for reversed-field and
spiral-sector magnets, for which the esti
mated weights would be roughly 3 times
greater or one-third as great, respectively.
Although such a separated-sector struc
ture may be some 6 times as massive as
a pulsed accelerator of the same design
energy, it may be felt that this feature is
compensated to a considerable degree by
the many simplifications which a direct
current design affords and that, as will
be emphasized in a subsequent section,
the increased freedom in detailed accel
eration methods may permit a very sig
nificant increase of intensity.

Cyclotrons

It is attractive to consider the possible
applicability of a spiral field variation to
continuous-wave cyclotrons, as a general
ization of the early suggestions of Thomas
(5), in the interests of increasing the at
tainable energy. If, to permit continu
ous-wave operation, the frequency of
revolution is to be independent of particle
energy, the field index k that character
izes (differentially) the radial increase of
the average field must satisfy the relation
ship

k+ 1 = (E/Eo)"

where E and Eo are, respectively, the
total energy and the rest energy of the
particle. In a cyclotron, therefore, k
must increase with energy, the oscilla
tions will not satisfy the scaling require
ment, and the possibility of encountering
dangerous resonances during the acceler
ation process must be carefully consid
ered. If we regard the relationship
V.o =[k + IJ% as sufficiently accurate for
the present purpose, then v", e! E/Eo, the
first half-integral and integral machine
resonances for the radial motion (v", =
3/2 and v", = 2) would be encountered at
kinetic energies of Y2 Eo and Eo, respec
tively (17), and the a", =2n/3 inherent
resonance at [N/3 - 1]Eo• The design of
FFAG cyclotrons is currently heing pur
sued by a number of groups, and design
modifications that hold the promise of
ameliorating the foregoing difficulties
are being explored.

Acceleration Methods

In small-size annular accelerators that
employ the FFAG principle, the use of
betatron acceleration is highly attractive
from the standpoint of intensity. If
charged particles are injected into the
gap of the fixed-field magnet during a
substantial portion of the time the cen
tral flux is rising, they may be accelerated
and arrive at the target with full energy
so long as the flux continues to rise (Fig.
6). If the total change of flux within the

core is twice that required to accelerate
the beam from the low to the high mag
netic-field region, the duty cycle would
approach 25 percent.

For larger machines, radio-frequency
acceleration methods would appear to be
more practicable. The lack of depend
ence on a fixed magnet excitation cycle
may permit in the FFAG accelerators a
more rapid recycling of the radio-fre
quency program and a desirable flexibil
ity in the design of this program. In
analyzing the synchrotron motion, it is
noteworthy that, in distinction to pulsed
machines, the orbit radius and revolution
frequency are a function only of the par
ticle energy rather than of energy and
time. To study in detail the effects of
radio-frequency handling systems, it is
helpful to employ a Hamiltonian theory
for the synchrotron oscillations, in order
that general theorems such as that of
Liouville may be brought to bear on the
problem. With rotE) denoting 2n times
the revolution frequency of the particle
and E the energy, suitable canonical co
ordinates are the electric phase-angle '"
with which the particle crosses the ac
celeration gap and the quantity w, re
lated to energy, defined as

JE dE
w == ro(E)

For a single cavity of peak voltage V, fre
quency v/2n, and operating at the hth
harmonic of the nominal particle fre
quency, the equations characterizing the
synchrotron motion can then be derived
from the Hamiltonian expression

Ii = V cos'" +2n[vw - hE(w)]

in which V and v arc specified functions
of time.

To avoid the large frequency swing
perhaps as great as a factor of II-which
would be required to carry a proton from
its initial to its final energy in a single
modulation cycle, it is attractive to think
of raising the particle energy in a series
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Fig. 6. Operation cycle of a FFAG beta
tron with a high duty factor.
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of steps, each involving a comparatively
small amount of frequency modulation.
Such an arrangement provides a sort of
"bucket-lift" process whereby groups of
particles are simultaneously and progres
sively accelerated by means of a single
radio-frequency source whose frequency
is successively a smaller multiple of the
increasing revolution frequency of the
particle. If one commences with an os
cillator frequency that is s . pM times the
rotation frequency of the injected par
ticle and moduiates by a factor p/q,
the particle frequency is raised by this
factor and the particle may be further
accelerated in the s· q . pM-l harmonic
during the next frequency-modulation
cycle. The modulation cycle may thus be
employed by the particle some M + 1
times, as it progresses to higher energies,
before synchronism is lost. The modula
tion factor p/q could be 3/2, for ex
ample, and a factor 2/1 might be partic
ularly suitable.

If one thinks of using a bucket-lift
process to stack particles at some inter
mediate energy prior to a final accelera
tion of the accumulated group by a sec
ond radio-frequency system, conservation
of area in ("',w) phase space tells us
that the particles in successive buckets
cannot be superposed exactly. Physi
cally speaking, one group is slightly dis
turbed and displaced by the oscillator
when it brings up a later group. This
displacement has been studied computa
tionally and is not sufficient to preclude
the practicality of stacking a number of
groups in a region of synchrotron phase
space sufficiently limited that a second
radio-frequency system could then ac
commodate them all.

For efficient stacking, it is of interest
to ascertain the number of buckets that
may be brought up empty at the end of
the process. If q =1 and p = 2, and if
particles are injected only once per fre
quency-modulation cycle, the number of
such empty buckets may readily be
shown to be s, but these extra buckets
can presumably be used with a conse
quent increase of intensity by more fre
quent injection.

There are several variants of this
bucket-lift arrangement, which may pre
sent advantages chiefly of convenience.
With an unscheduled bucket lift, parti
cles not caught in a bucket at the onset
of a particular frequency-modulation
cycle will usually be displaced downward
in energy by a passing bucket, but will
be caught on occasional frequency-modu
lation cycles and in the end may be car
ried up in energy. The use of a com
pletely stochastic acceleration method
has been discussed in a Soviet paper (18)
and shown to lead to acceleration of
some particles by a sort of random-walk
process.

It seems clear that the flexibility that
fixed-field accelerators permit in regard



to design of particle-handling methods
offers many promising possibilities. These
possibilities are being further studied
within the MURA group, chiefly by
A. M. Sessler and K. R. Symon, both
analytically and with the aid of digital
computation. As a related endeavor, th~

characteristics of mechanically modu
lated radio-frequency cavities are being
studied by Zaffarano and his associates
at Iowa State College. The accumulation
of intense beams within an accelerator
or in adjacent storage rings (19), by a
suitable stacking process may open the
door to study of a new field of high
energy physics.

Intersecting-Beam Accelerators

With the possibility in sight of attain
ing beam intensities higher than have
been possible heretofore, the opportunity
arises (20) of studying high-energy par
ticle interactions by directing one beam
against another (Fig. 7). The outstand
ing advantage of such a system would be
the large increase of effective center-of
mass energy which could be reached in
this way. If two beams, each of energy
El> are directed against each other. the
total energy is, of course, ECM = 2El • In
contrast, a single beam of energy El '

(r.easuf('d in units of the rest energy)
directed against a stationary target makes
available a center-of-mass energy that
is approximately ECll = (2E1') % for
El ') I. Thus two 15-Bev proton beams,
oppositely directed, are equivalent to a
single beam of 500 Bev directed against
a stationary target, and two 21.6-Bev ac
celerators would be equivalent to one
machine of I Tev (1012 ev).

In estimating the practicality of inter
secting-beam accelerators, one must, of
course, judge whether it is feasible to
produce beam intensities that will result
in a sufficiency large reaction rate. The
interactions of interest must, moreover,
be studied in the presence of background
radiation produced by the individual
beams and will bear a more favorable
ratio to the background the greater the
density of intersecting particles. In this
regard, however, it may be noted that the
background radiations will be confined
to directions differing Ii ttle from the
beam direction, while the reactions of
interest will be essentially isotropic in
the laboratory system. The background
and beam survival will be directly de
pend~nt on the degree of vacuum that
can be maintained in the system; hence,
recent developments for the realization
of high pumping speeds (21) and the
measurement of high vacuums (22) will
be of importance. The additional focus
ing or defocusing effects that arise from
space-charge forces, possibly modified by
the effect of any electrons that may be
captured by the beam, and the difficul-

Fig. 7. Schematic method of effecting the
intersection of high-energy beams. In the
case illustrated, the individual accelerators
are considered to be of the separated-sec
tor type.

ties of handling safely a concentrated
beam that may possess an energy of 1
megajoule will also require careful at
tention.

The intensities that one may be able
to build up will certainly depend on the
efficiency of stacking and on the ingenu
ity employed in the injection process. AI-

. though these techniques may be devel
oped and improved as experience is
gained with completed FFAG acceler
ators, an upper limit to the particle den
sity in a stacked beam is imposed by
Liouville's theorem. In regard to this
limitation, we may estimate the number
of injected pulses that theoretically could
be assembled, after acceleration, in a
I'egion of reasonably small cross-sectional
area. With respect to the energy spread
associated with the motion in synchro
tron phase space, we may consider the
fate of particles injected with an energy
spread !i.El> assuming for simplicity that
synchrotron and betatron phase space are
separately conserved. If the most efficient
particle-handling system is used, the
number of pulses that can be contained
within a region !i.E2 in energy at the
completion of the acceleration process
is

np= (M.I!i.E,)/(oo.!ool)

for !i.t/J constant, since the area in phase
space is !i.t/J2!i.E2/OO2 = n.M'l!i.E1/OOl'
The quantity !i.E2 in tum may be ex-
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pressed conveniently in terms of the as
sociated radial spread of the beam

!i.E. = (k+ 1) (p/er/E.) (Mdr.)

Eo! (k +1)E.(!i.r.lr.)

.ultrarelativistically. Thus, if k + 1=100,
E2 = 15 X 109 ev, !i.T2= 0.5 em, T2 ~ 10'
em, 002/001 =11, and !i.E, =4 x lOs ev,
we find that !i.E2 = 7.5 X 107 ev and np =
1700 particle pulses.

Similarly, in regard to the phase space
for betatron oscillations, if the injector
is imagined to scan the aperture, the
number of horizontal and vertical scans
that theoretically could be accommo
dated can be written

_ p. (1!J.r.) I

n", - ill r.~",'¥",!i.r,

_ p. (!i.z.) I

ny - P, r'~-;'V1I1!J.z1

where '¥"" 'I'll denote the angular spread
of the injected beam, ~"" ~11 relate the
angular and linear displacements expe
rienced during the course of a betatron
oscillation (!i.T =T~"''¥",), and the mo
mentum ratio P2/PI accounts for the
adiabatic damping of the oscillations. Ac
cordingly, approximating ~",.lI by 2/vrIJ,lI,

_(P2)' v",vy(!i.r.)·(!i.z.)·
n",ny - PI 4T."'¥J/'¥II!i.r,!i.r.

If we now substitute P2/PI = 100, v", =10,
V/J =5, T2 =104 em, !i.T2 =!i.z2 =0.5 em,
and '¥",!i.T1= '¥/J1!J.z1 = 0.5 X 10-8 radian
em, we find that n",nll = 1250.

Thi~ large value for the theoretically
admissible number of scans implies a
very complex scanning procedure and
suggests that an injector with a much
larger beam spread and correspondingly
higher current would be desirable (23) .

On the basis of the considerations of
the preceding paragraphs, one would
estimate that a I-milliampere injector
would permit the accumulation of

10-<1 231: x 10'
Np=1.6x 1O-19x3x 1010/11 x 1700x 1250

particles within a tube of about 1 square.
centimeter cross-sectional area. If we esti
mate that we actually may have 1/600
as large a beam as this, or 5 x 1014 par
ticles circulating in each mac.hine, some
107 interactions per second (proportional
to N p2) may be expected to be produced
in an interaction region that is 1 meter in
length '(20). With a vacuum of the order
of 10-6 mm-Hg of nitrogen gas, the back
ground produced in this target volume
may be expected to be larger by about
one order of magnitude, but, as is pointed
out previously, the background radiations
will be confined primarily to the median
plane. Interaction with the residual gas
also has the effect of limiting the beam
life, possibly to a time not much longer



than 1000 seconds in the present ex
ample, so that groups of particles must
be injected to replenish the beam at a
rate not less than the reasonable value
of one group per scc@nd.

It is the hope of the MURA group
that further theoretical and experimental
work will lead to the design and con
struction of models tha t will permit test
ing means for efficient particle accelera
tion, the investigation of high-current
beams, and the eventual realization of a
research machine that will take full ad
vantage of the benefits to be derived from
the FFAG principle.
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PARTICLE ORBITS IN FIXED FIELD ALTERNATING GRADIENT
ACCELERATORS

L. J. LASLETT

Iowa State College, Iowa (Ia) and

K. R. SYMON

University of Wisconsin, Madison (Wise.) and Midwestern Universities Research Association, U.S.A. •

(presented by K. R. Symon)

I. Linearized orbit equations

1. Geometry of the equilibrium orbits

In order to develop a theory of orbit stability applicable
to FFAG accelerators generally, it is convenient to charac
terize a particular accelerator by specifying its equilibrium
orbits. We will therefore assume that a set of closed
equilibrium orbits lying in the median plane is given.
If instead, the magnetic field pattern is specified, the
equilibrium orbits must be found by integrating the
equations of motion.

The geometrical properties of each orbit, and the
relations between orbits, will be periodic in the azimuthal
angle 6 with period 2rr:/N. Each orbit is to be specified by
its equivalent radius R defined by

where p is the radius of curvature. Specification of
(1.(0, R), together with the requirement that the center
of the orbit lie at the origin in the median plane, completely
determines the orbit R, provided the reference point
o = 0 is specified. For our purposes, it will be sufficient
to specify the angle ~ (R) between the radius from the
origin and the reference curve 0 = 0 where it crosses the
orbit R (figure 1). Choice of the parameter (1.(0, R) is
restricted by the requirement that it be periodic in 0 with,
period 2rr:/N and mean value

S = 2rr:R, (1.1)

2lt SIf 1fdS<(1.>av = - (1. d 0 = - - = I.
2rr: 2rr: p .

o 0

(1.4)

where S is the length of the orbit. In general, R will be
slightly larger than the mean radius < r >av. We define
an azimuthal coordinate 0 by the equation

where s is the distance measured along the orbit from some
reference point (say at azimuthal angle 0 0), • We shall
require that the orbit be perpendicular to the radius from
the center of the machine at the reference point, and thai
the reference points lie along a continuous curve. The
parameter 0 will be equal to the azimuthal angle 6 - 60

plus a small periodic function with period 2rr:/N.

Each orbit will now be specified by a periodic parameter
(1.( 0, R) defined by

We will need also parameters "IJ (0, R) and e: (0, R)
relating the perpendicular distance dx between two nearby
orbits, and the increment d 0 in 0 along an orthogonal
trajectory to the orbits,. to the increment dR in the para
meter R (see figure 1) :

The function (1.( 0, R) is also restricted by the requirement
that at the point 0 = 0 the orbit R must be perpendicular
to the radius from the origin. This requirement leads to
a rather complicated analytical restriction on the function (1..
It is sufficient if 0 = 0 is a point of symmetry of the
orbit, i.e.,

(1.6)

(1.7)

(1.5)

dx="lJdR

d 0 = e:dR/R

(1.(- 0, R) = (1.(0, R)

(1.3)

(1.2)s = 0R,

(1.(0, R) = R/p(0, R)

• Assisted by the National Science Foundation and the Office of Naval Research.

Published in CERN Symposium on High Energy Accelerators and Pion Phy
sics, 1956, v. 1, pp. 279-289. Reproduced with permission by CERN.
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280 Non-linear theory of betatron oscillations

2. Betatron oscillations

where for any function g(~), periodic in ~ with zero mean,
we define

(2.1)

(1.15)

pc = e Hp = (e H R)/[J.,

If a particle of momentum p moves in an equilibrium
orbit R, then we have by equation (1.3)

where the constant of integration is to be chosen so that
gl(~) has zero mean.

REFERENCE
AXIS

ORBIT PARAMETERS
where H is the magnitude of the magnetic field, so that

Fig. I.
H(R, 0) = pc/eR [L (0, R). (2.2)

It can be shown that 1), e: satisfy the differential equations

where the three constants of integration are to be chosen so
that e: and 1) are periodic functions of 8 (Le. so that the
right hand members of equations (1.8) and (1.9) have zero
mean values), and so that

The magnetic field is thus given in terms of the coordinates
R,8.

lf we differentiate equation (2.1) with respect to x,
where x is measured perpendicular to the orbit, we have

oe:/08 = [LYJ - 1,

01)/08 = - [Le: - f R o[L/oR . d8,

[e:/1)] 6 = 0 = tan ~.

(1.8)

(1.9)

(1.10)

Hop/ox + p (oH/ox) = c/e . op/2>x.

The field index is therefore

n = - p/H . oH/ox

= op/ox - p . olnp/ox.

(2.3)

(2.4)

Making use of equations (1.3), (1.6) and (1.7), we find

]n terms of the mean magnetic field H ~,-, pc/eR, we can
write k also as a mean field index:

where k is a parameter which measures the momentum
compaction:

(2.6)k = R(d In p)/dR - 1.

]f all equilibrium orbits are geometrically similar,
the parameter [J. depends only on 8 and not on R. ]n the
interest of simplicity, we will usually restrict our attention
to machines of this type. ]f in addition, ~ is independent
of R, then by equations (1.8)-( 1.10), the parameters 1) and
e: will be independent of R. In this case, we will say that
the quilibrium orbits scale; the equilibrium orbits scale if
any set of neighboring orbits can be obtained by photo
graphic enlargement or reduction from a set of orbits in
the neighborhood of any other orbit.

Let us set

[L = I + fg (N 8), (1.11) k = R/H ·dH/dR, (2.7)

where f is the flutter factor, and the flutter function g(N 8)
has period 27t in N 8, zero mean, and is normalized so that
its mean square value is 1/2, For example,

The linearized equations for betatron oscillations about an
equilibrium orbit are

g(N8) = cos N8. (1.12)

d2x/ds2- (I - n)/p2 . x = 0,
d2z/ds2- (n/p2) z = 0,

(2.8)
(2.9)

Then an approximate solution of equations (1.8)-(1.9)
which is adequate to exhibit the principal features of FFAG
orbits is

where x and z are the deviations from the equilibrium orbit
in the radial and vertical directions. These become by
equations (1.2) and (1.3),

'I) :::'::: I - f tan ~/N . gl (N 0),

e::::'::: tan~,

(1.13)

(1.14)

d2x/d02 + [J.2 (I-n) x = 0,

d2z/d02- [J.2 n z = O.

(2.10)

(2.11)

1-10



L. J. Laslett and K. R. Symon 281

The character of the betatron oscillations is therefore
determined by the functions fL2 (e, R) and

By making use of equations (1.8) and (1.9) we can rewrite
equation (2.12) in the form

v" + Vz. This implies that vx , Vz, must be the same for
all orbits, or nearly so, and this is the principal limiting
condition on FFAG designs. In accelerators which scale
v"' Vz are necessarily the same for all orbits; this is the
advantage in designs which scale.

The relation between betatron wavelengths and machine
parameters depends upon which term in eq. (2.13) predom
inates in giving alternating gradient focusing. In a
radial sector FFAG accelerator with ~ = 0, and with a
large number of sectors (say N > 10) lJ is very nearly
unity, and the second term in eq. (2.13) is small except
near the edges of the magnets where it gives rise to edge
focusing effects. The edge focusing comes from the term
-lJ-1 • ~ ofLjo e in eq. (2.12). This term has a non-zero mean
value, part of which is included in the fL term in eq.(2-13);
thus eq. (3.7) and (3.8) below include most of the mean
focusing effect due to edges in radial sector machines.
We will call the first term in eq. (2.13) the "fL term" and the
second, the "lJ term". In a spiral sector FFAG accelerator,
the alternating gradient focusing comes predominantly
from the lJ term.

It may be noted that the lJ term includes the term
(RjlJ) (OfLjoR) which appears when the orbits do not scale.
It is not hard to see that in a conventional AG synchrotron
this is the dominant alternating gradient term.

Let us first consider a radial sector FFAG accelerator
with a large number of sectors, and let us neglect the
lJ term. If fjN ~ I, then lJ == I according to eq. (1.13),
let us write fL in the form given by eq. (1.I I). Then eq.
(3.3), (3.4) yield, if we substitute from eq. (2.13), with
lJ = I,(3.1)

(3.2)

(2.13)

(2.14)

(2.15)

d 2Xjd e2 - vx2 X = 0,

d2Zjde 2 - vz2 Z = 0,

p = Po (RjRo) k+l

and

3. Approximate solution for betatron oscillations

If the equilibrium orbits scale, then fL, lJ anq ~ are functions
only of e. Thus fL2 n will be a function of e only, and
the betatron oscillations will also scale, provided k is
constant. Accelerators with this property will be referred
to as accelerators which scale. For accelerators which
scale, we have

In this section we develop some approximate formulas
which give a useful general picture of the properties of
FFAG accelerators. If the betatron wavelengths are long
on comparison with the sector length (say at least four
sectors), then the smooth approximation equations are
applicable 1. 2). The "smooth" betatron oscillation equa
tions become in this case

The curly brackets II indicate that only the oscillatory
part of the enclosed function is to be taken; i.e., the mean
value is to be subtracted. where we have neglected a small term involving g2 - g2 in

eq. (3.8). The betatron oscillation advances in phase
by an angle

where,

Vx
2 = <fL2(I-n»av + <lfL2(I-n»)~ >av,

vz2
= < fL2n >av -+- < IfL2nj ~>av.

The solutions of equations (3.1), (3.2) are

(3.3)

(3.4)

(3.7)

(3.8)

Superposed upon these smooth solutions is a ripple which
has the periodicity of the sectors. It is clear that Vx, Vz are
the numbers of radial and vertical betatron wavelengths
around the circumference of the accelerator. The approxi
mate formulas (3.3), (3.4) give Vx, Vz within about 10 %pro
vided that Vx, Vz are both less than Nj4.

In order to avoid resonance buildup of betatron oscilla
tions, it is necessary to avoid integral and half-integral
values for Vz, Vz and also to avoid integral values for

per sector. For stability, 11 must be less than Tt, and
for the smooth approximation to be valid, a must be less
than about rrj2. If we solve eq. (3.7), (3.8) for k, f in terms
of ax, az, we obtain

X = A cos vxe + Bsin vxe,

Z = C cos vze + Dsin vze.

(3.5)

(3.6)

11 = 2TtvjN

4Tt [ax2 + az2 - b]'/.
f = [2 <gI2>av]'/, Iax2 - az2 - b I '

(3.9)

(3.10)

(3.11 )
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282 Non-linear theory of betatron oscillations

The radius of curvature, and consequently also the magnetic
field, is constant in magnitude along the equilibrium orbit
and opposite in sign in the two half sectors. The ratio of
half sector lengths is

C, - q1t < N e < q1t, (I)

fJ. = 1 + fg(Ne) = (3.19)

- C, q1t < Ne < 21t - q1t, (II)

where

The quantity b is negligible for sufficiently large N.

By appropriate choice of Clx, Clz, k can be made either
positive or negative, i.e., in a radial sector FFAG synchro
tron, with N large, the high energy orbits may be either
on the outside or the inside of the donut. The b-term,
which is important when N is small, is positive and there
fore favors machines with positive k, i.e., with a given N,
/k/ can be larger and f smaller if k>O. For maximum
momentum compaction, i.e., minimum radial aperture, k,
and hence N, should be as large as practicable. If we
define a circumference factor C as the ratio between mean
and minimum radii of curvature of the equilibrium orbit,
then

r=~=C+l
l-q C - I '

and the circumference factor is

C= r + 1= [1 -~J!
r - I 2

(3.20)

(3.21)

It is desirable to minimize C, since for a given maximum
magnetic field, this yields the smallest accelerator design.
It is clear from eq. (3.11), that for a given form of g, the
minimum circumference factor is obtained by making
(Jz as small, and (Jx as large as possible (or vice versa, if
k is to be negative).

Let us assume a rectangular field flutter, with unit
mean square:

g (~) =

C = h.tlmax = 11 + fg(N e)lmax.

[
I-q J!2q ,- q1t < ~ < q1t, (I)

(3.13)

(3.14)

If we take (Jz = 1t/6, Clx = 1t/2, b = 0, and use the approxi
mate formulas (3.10), (3.11), we obtain K = 3\15, r =

1.31, C = 7.5, f = 10.5, k = W/36. It will be shown in
the next section by a more accurate calculation that the
minimum value of C where N is large is about 5.

In a spiral sector FFAG accelerator, ~ is near 90° and
the 'I) - term in eq. (2.13) is large. It is then possible to
use a much smaller flutter factor, so that the oscillatory
part of the fJ. - term is small. We will again assume that
fJ. is given by eq. (2.11) and will use the approximation
(1.13) for 'I). If we expand Ih in a power series in the
second term of formula (\.13), we may calculate

- [-q-J t q1t < ~ < 21t - q1t (II)2 (I - q)'" ,

g (~ + 21t) = g (~). (3.15)

When ~ = N e lies in regions labeled I, we say that e
is in a positive half sector; regions labeled II we call
negative half sectors. We need to calculate

(3.16)

We will neglect the second and higher order terms, and will
neglect also the oscillatory part of fJ./'I). The 'I) - term
can be rewritten in the following way:

The first term on the right is large and oscillatory with
zero mean, and the second is smaller but has a positive
mean value. We neglect the oscillatory part of the second
term, and substitute in eq. (3.3) and (3.4), using (2.13) to
obtain

If now

(3.17)
Vx

2 = k + 1, (3.24)

(3.25)

is fixed by eq. (3.11), then by eq. (3.13), the circumference
factor is

\13K V3K
C = 1 + -- or --- - 1

1tq' 1t(l - q) , (3.18)

Note that the 'I) - term does not contribute in this approxi
mation to the radial focusing. If we take 'I) as given by
formula (1.13), we have

«1 a'l))') < g2 )- - - f2 tan 2~
'I) ae av - (1- fN-l tan ~ 81)2 BV

whichever is greater. The minimum value of C occurs
when q is chosen so that the two values of the right member
of eq. (3.18) are equal. We then have

f2 2)' [1 2f2 tan 2~< 22) ] (3.26)= tan '0 2: + N2 8 81 BV + ...
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We will neglect the second and higher order terms in square
brackets and substitute in eq. (3.24), (3.25), to obtain

If we take, as above, az = rt/6, ax = rt/2, with f = 11h

we obtain k + 1 = N 2/16, A= 5.95 N-2 [I-14.4N-2]-1/2,
tan ~ = 1.05 N [1-14.4N-2]-1/2.

(3.27)
4. Linear stability for radial sectors

where we have also neglected f2. Note that, to this order
of approximation, formulas, (3.24) and (3.27) are independ
ent of the form of the flutter function g (N 0); only the
circumference factor [eq. (3.13)] depends on g(N0).
We can rewrite these formulas in terms of the phase
shifts a per sector:

In order to get .more accurate relations between the
parameters, we return to the betatron oscillation equations
(2.10), (2.11). Making use of eq. (2.12), (1.13) and (1.14),
with ~ = 0, we rewrite eq. (2.10), (2.11) for the case of a
rectangular field flutter of the form (3.19) :

k + 1 = (N2 ax2)/4rt2,

f2 tan 2~ = N 2/4rt2 • (ax2- az2) - 1.

(3.28)

(3.29)

d2x/d 0 2 ± kCx = 0,

d2z/d 0 2 =F kCz = 0,

(4.1)

(4.2)

The reference curve 0 = 0, satisfies, in polar coordinates
r, e, the equation

The radial separation between ridges (points of maximum
magnetic field), in units of r is therefore

Thus for a given choice of ax, az, imd N the ratio f/A is
fixed. The maximum allowable gap between the poles
of the magnet is proportional to A; if the field flutter is
to be obtained by shaping the poles, without extra forward
windings, it can be shown that for f/A fixed the maximum
gap is abouP/4 A r and is obtained for f . 1/4' Under these
conditions, the field flutter will necessarily be very nearly
sinusoidal,

Ilr drlde = cot ~.

A = Mlr = 2rt/N tan ~.

g (~) = cos~,

(3.30)

(3.31)

(3.33)

where the upper signs apply in positive half sectors, and
the lower in negative half-sectors. The term E OI;L/a0 in
eq. (2.12) gives rise to terms in eq. (2.10), (2.11) which repre
sent the focusing which occurs at the sector edges, which
we will here neglect. These approximations are valid
only when N ~ f, and we have accordingly also neglected 1
in comparison with n. When N is small, edge effects
and higher order terms in "I) must be taken into account.
The oscillatory terms in "I) will give rise to effects resulting
from the fact that neighboring equilibrium orbits are not
everywhere equidistant. For small N, edge effects turn
out to increase the vertical focusing and decrease the
radial focusing, so that considerably smaller values of the
flutter factor f may be used if k > 0, without losing vertical
stability.

Let N0 0 = -qrt, N01 = qrt, N02 = (2-q)rt. Then the
solutions of eq. (4.1) within the positive and negative
halfsectors separately yield the following matrix relations
between x and x' = dx/d0 at the points 0 0, 0 10 O2:

and hence the circumference factor will be

C = I + f = 1.25.

(4.3)

where

We thus obtain

with

(
COS Iji+ (KC)-'j, sin Iji+) (COSh Iji- (KC)-Y. sinh Iji-)

M+ = -(KC)'j, sin h cos Iji+ ' M- = (KC)Y. sinhlji- cosh Iji_ ' (4.4)

(4.5)

(4.6)

M - M M _ (COS h cosh Iji- - sin Iji+ sinhlji-, (KC}-'/· (cos Iji+ sinh Iji- - sin Iji+ cosh Iji-») (4.7)
- - + - (KC)'/' (cos Iji+ sinh Iji- + sin h cosh Iji-), cos Iji+ cosh Iji- + sin Iji+ sinh Iji-
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284 Non-linear theory of betatron oscillations

We can now calculate da\. We will therefore assume a field in the median plane
of the form.

cos ax = t Trace (M) = cos <Ji+ cosh <Ji- (4.8)
Bzo = Bo (1'/1'o)k [I - f sin (1/w . In (1'/1'0) - NO)], (5.1)

within the magnets (we take n as positive here), and the
ratio r of sector lengths [eq. (3.20)], we may rewrite
<Ji+ and <Ji-:

Formulas (4.5), (4.8), (4.9) and (4.11) have been written
for k > O. However they may also be used for k < 0,
in which case it is convenient to regard C as negative.

where 1', 0 are polar coordinates in the median plane. The
argument of the sine function is made logarithmic rather
than linear in I' in order to make the magnetic field (and
hence the particle orbits) scale. The constant w is related
to the spiral angle and'the ridge separation (eq. 3.31) by

(5.2)I/w = N tan ~ = 2rr/A.

The linearized equations for the betatron oscillations in
the field (5.1) can be obtained from the general analysis
of the first two sections, but it is perhaps more illuminating
to derive them directly.

If one undertakes to write the linear terms in the differ
ential equations characterizing the departure of the particle
from a reference circle of radius 1'1 = p/eBo(ro/r])k one
obtains substantially the following, where x "" (I' - 1'1)/1']

and y '''' z/r].

(4.9)

(4.11)

(4.10)

cos az = cos <Ji- - cosh <Ji+.

n = k/C,

and in the same way,

Tn terms of the local field index

The smallest circumference factor is obtained by choosing
ax as large as possible and az as small as possible (or vice
versa). If we choose ax = 3rr/4, (lz = rr/6, we calculate
from eq. (4.8), (4.9), <Ji+ = 1.32, <Ji- = 1.93. From eq.
(4.11), (3.21) we have

5. Linear stahility [or spiral sectors

For spiral sector accelerators, the circumference factor
is close to unity, and minimizing C is no longer a major
consideration. The ridge separation A is, however,
rather small, and if the gap between magnet poles is to be
kept as large as possible, it appears that the field flutter
in the median plane must be at least approximately sinusoi-

The theoretical minimum value of C is 4.45 for ax = rr,
az = O. Tn order to keep the amplitude of betatron oscil
lations within reasonable bounds, the above choices of
(lx, az run about as close to the stability limits as it is
safe to go. (For the choice ax = rr/2, az = rr/6, these
more exact formulas give r = 1.29, C = 7.9, which may
he compared with the approximate values 1.31, 7.5 obtained
in the preceding section.)

Tn this way one obtains equations of which the most signifi
cant terms appear below:

(5.6)

(5.5)x = - f sin NO.
Na - (k + 1)

v = x - f si11 Nfl
N2 - (k + 1)

These equations suggest alternate gradient focusing of the
type characterized by the Mathieu differential equation,
but the presence of the forcing term on the right hand side
of the equation for the x-motion indicates that a forced
oscillation will be expected and will be given approximately
by

x" + [1 + k + f/w . cos NO] x ='= f sin NO (5.3)

y" - [k + f/w . cos NO] y ='= O. (5.4)

Because of the presence of this forced motion one realizes
that not only will the nonlinear terms in the differential
equations be large but that a noticeable influence upon the
betatron oscillation wavelength can result.

It is appropriate, therefore, to perform. an expansion
about a more suitable reference curve by writing

(4.12)r = <Ji+N- = 1.46, C = 5.35

[
P/W2 f P/w2 ]

v" -I k I- I - t 2 + - cos NO + t N2 _ (k + 1) cos 2NO V= 0
N - (k + I) w

(5.7)

[
f~~ f f~~ ]y" - k - -} + - cos NO + t cos 2NO y ~ 0

N2 - (k + I) W N2 - (k + 1)
(5.8)
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Each of these equations is of the form

In a perfectly constructed accelerator, the only periodicity
would be that associated with the N identical sectors
around the machine, and the period of the coefficients
would be 2rr/N. In an actual accelerator, there will be
imperfections, so that the coefficients will be strictly
periodic with the period h in 0, and approximately
periodic with period 2rr/N. Associated with the period
27t/N is the requirement that ax and az must not be integral
or half integral multip'les of h; in practice it appears
that 0 should be less than 7t since otherwise the tolerances
on magnet construction and alignment become very severe.
Associated with the period 2rr is the requirement that
Vx and Vz must not be integral or half-integral if imper
fection resonances are to be avoided, and, in addition, if
imperfections can couple the x - and z - motions, Vx +
Vz must not be an integer.

The study of the effects of non-linear terms in the
equations of motion has not advanced nearly as far as the
study of the linearized equations. Approximate analytic
methods of treating non-linear equations with periodic
coefficients have been developed by J. Moser 4) and P. A.
Sturrock5). Their results can be summarized as follows.
If the coefficients in the equations have period 2rr in 0,
and if Vx, Vz are the numbers of betatron oscillations in one
period 27t, then imperfection resonances can occur when

0.2

O.h
o

0.1

_ FIRST STABILITY REGIOH
FOR SMAU-AMPLITUDE
OOCILLAT()HS IN MARK V
FFAG ACCELERATOR

k )11
(CALCULATED-LESS ACCURATE

fOR ORDINATES ABOVE 1I31

0.1 --~--

0.2 -

0 .•

0.'r-----,------r-----,

~I

Fig. 2.

d2z/dr2 + [A + B cos 2 T+ C cos 4 T] Z = O. nx Vx + nz Vz = any integer, for (6.1)

Then if q = 1 or q = 2, the motion is unstable even in
linear approximation (this is the rule stated in the preceding
paragraph). If q = 3, then in general, the effects of quad
ratic terms in the differential equations are such as to
make the motion unstable even at very small amplitudes.
If q = 4, then the effects of cubic terms may be to render
the motion unstable, depending on the form of the cubic
(and linear) terms. If q > 4, then, in general, the motion
is stable for sufficiently small amplitudes of betatron oscil
lation. In any case, if q ~ 4, and if the equations of motion
are non-linear, then there will be in general a limiting ampli
tude of betatron oscillations beyond which the oscillations
are unstable in the sense that they leave the donut. Numer
ical studies carried out on the ILLIAC at the University
of Illinois seem to confirm these conclusions.

If we apply the above criteria to the sector periodicity
27t/N, then we must replace Vx, Vz in eq. (6.1) byax/h,
az/27t, the number of betatron oscillations per sector.
We then conclude that values of ax or az near 27t/3 are to
be avoided as well as values such that ax + 2az or Oz +
2 Ox is nearly 27t. We call these resonances with the period
icity of the structure itself "sector resonances". We
have indeed found in numerical studies that the limiting
amplitude for betatron oscillations in spiral sector machines
become very small when 0 approaches h/3.

Tables of the characteristic exponent (a/rr) of the extended
Mathieu equation (5.9) have been computed on the
ILLIAC, using a variational method3). Values of A are
tabulated for a range of values of a, B, C covering the signifi
cant portion of the first stability region. Results for the
Mathieu equation (C = 0) are included. So far as we are
aware there are at present no published tables of charac
teristic exponents for the Mathieu equation within the
stability region.

In fig. 2 we plot a stability diagram for a spiral sector
FFAG accelerator with k p 1 computed from the above
formulas and the tabulated solutions. If k p 1, the co
efficients A, B, C, depend only on k/N2 and f/w N2. We
accordingly plot curves of constant ax and az vs k/N2 and
f/WN2. If we take Oz = rr/6, ax = rr/2, with f = 1/4,
we obtain k = .057N2, f/WN2 = .25, A = 6.3N-2, which
may be compared with the approximate values k =
.062 N2, f/WN2 = .265, A = 5.95 N-2 obtained in Section 3.

n. Non-linear effects in FFAG orbits

6. General description of non-linear effects

The preceding analysis of betatron oscillations has been
based on an expansion of the equations of motion in
powers of the displacement from the equilibrium orbit,
keeping only the linear terms. The small amplitude
betatron oscillations in x and Z are then found to satisfy
linear differential equations with coefficients periodic in the
independent variable 0.

Let

nx, nz = 0, 1,2, .

nx + nz = q: (6.2)
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It should be pointed out that non-linear terms in the
equations for the radial sector accelerator are not very
large, being not greater in order of magnitude than non
linear terms which arise in some conventional alternating
gradient accelerators which have been contemplated.
However, the non-linear terms which arise when the sectors
spiral are much larger and play a very important role in
determining the character of the betatron oscillations.
Numerical studies indicate that although the motion in
spiral sector synchrotrons exhibits marked non-linear
effects, the amplitude limits are large enough to accom
modate reasonable betatron oscillations provided a is not
close to 21t/3. (Say ax < .61t).

7. Characteristics of particle motion in spiral sector
structures

The digital computer studies have been carried out
with the aid of the Electronic Digital Computer of the
Graduate College of the University of Illinois (ILLIAC).
A large fraction of the computations pertained to structures
for which the parameters fell in the range suitable for the
spiral-sector model, which is under development at the
University of Illinois, but the majority of the orbit charac
teristics revealed in this way appear to be common to
large-scale spiral-sector machines, including cyclotrons
of the type currently being studied by groups in other
laboratories.

The computational studies for spiral-sector machines
have so far involved integration of differential equations
describing the particle-trajectories, although attention
is being directed towards the formulation of transformations
(suitable for rapid computation of particle-motion through
successive sectors) akin to those employed earlier as part
of an analogous study of non-linear alternate-gradient
structures similar in form to the Courant-Livingston
Snyder design.

The differential equations have involved (i) a set of
exact equations covering motion in the median plane and
(ii) a set of approximate, but Hamiltonian, equations de
scribing both radial and exial motion in a magnetic field
of the form necessarily associated with that prescribed
in the median plane. The present programs have confined
attention to fields with a sinusoidal dependence upon
azimuth angle, but active programming has been begun
on others free of this restriction. The utility of structures
possessing poles which do not lead to pure sinusoidal
fields is under study. The analytic work for a two-part
computational program has been completed, involving (i)
solution of the magnetostatic problem in the space between
such poles, employing only two position variables

~ == .!. [In (I + x) _ N6J and 1) == VI + (WN)2 _y_
21t W 21tw I + x

when use is made of the scaling property of the structure,
and (ii) solving the differential equations for trajectories
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in this field, which will, in effect, be stored in the computer
memory.

The results of computations pertaining to motion with
one degree of freedom are appropriately and conveniently
represented by means of phase plots, depicting on invariant
curves the position and associated momentum of a particle
as it progresses through successive" sectors" (periods of
the structure) from one homologous point to another.
Such studies provide information concerning the location
of "fixed-points", corresponding to an equilibrium orbit;
the phase-change of the betatron oscillation per sector
(a); the displacement associated with trajectory directions
different from that of the equilibrium orbit; and the extent
of the region within which stable motion is possible. The
characteristics of small-amplitude motion found in this
way agree well, for sinusoidal fields, with the predictions
of the analytic theory. At large amplitudes, unstable
fixed-points-representing unstable equilibrium orbits
make their appearance. These fixed-points are usually
3 or 4 in number, corresponding to an unstable periodic
solution 3 or 4 sectors in wavelength, although other cases
have also been observed.

Associated with the unstable fixed-points one finds a
separatrix, constituting an effective stability limit, which
in the majority of cases the ILLIAC results depict as a
sharp boundary and outside of which it is frequently
possible to draw the initial portions of what appear to be
invariant curves for unstable motion. Fig. 3' shows a
number of invariant curves, on a phase plot of this nature,
for parameters not far from those which would be suitable
for a model. In this case the phase change per sector is
close to ax = .5711t for small-amplitude motion; ax does not
change greatly with increasing amplitude and it is note
worthy that ultimately 7 unstable fixed-points (ax =

41t/7 ...:.- .57141t make their appearance. In this example
a rather large permissible amplitude of stable motion is
found (I~ rl approximately 0.08 or 0.09 times the radius,
at N6 = 0, mod 21t). The existence of this relatively
large region of stability is connected with the fact that

" t
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axo differs materially from the value 2rr:/3, for which a
prominent non-linear sector-resonance makes its presence
felt.

When axial motion is also permitted, there is in 'general
coupling between this motion and that occurring in the
radial direction. For small-amplitude oscillations about
the equilibrium orbit, however, the motion is virtually
decoupled. Limits of axial stability can be readily exam
ined for special cases such as that in which the radial
motion is introduced with initial conditions characteristic
of the stable equilibrium orbit. For the structure with the
parameters to which fig. 3 pertains, one finds in this way
an axial amplitude limit of slightly over O.014r-this limit
applies to locations such that N6 = 0 (mod 211:), near the
center of an axially defocusing region, and has associated
with it amplitude limits which become almost twice as
large at intermediate points.

Fig. S.

8. Application of Walkinshaw's equation to the 2ay =

ax resonance

A method of analysis which appears to account for
the behavior of the axial motion, in the presence of appre
ciable radial oscillation, has been developed by Walkin
shaw 6). The differential equation characterizing the axial
motion is trated as linear, but contains a coefficient which
involves the radial motion. As is well-known, the forced
radial motion enhances the A-G focusing which appears
in the axial equation-now, however, the additional effect
of the free radial betatron oscillations is also included in the
axial equation. The super-position of the comparatively
long-wavelength radial oscillations on the forced motion
in effect modulates the smooth-approximation coefficient
in the axial equation, to yield a Mathieu equation with a
coefficient having the period of the radial motion. Under
"resonant" conditions, which will be seen to include the
case of interest here, this equation may have unstable
solutions and, in such cases, the characteristic exponent
of the solution appears to compare reasonably in magnitude
with the lapserate characterizing the exponential growth
of the ILLIAC solutions of the "Feckless Five" equations.

-......
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Fig. 6.

Fig. 4.

Coupled axial and radial motion is more difficult to
study systematically. By examining the behavior of the
axial motion for various amplitudes of radial oscillation,
however, some progress has already been made in the
examination of the importance of various resonances
involving the two frequencies which characterize the small
amplitude motion.

Similarly constructed phase plots for other values of
machine parameters are shown in fig. 4 and the following
figures. We are indebted to N. Vogt-Nilsen for supplying
these plots from his studies of orbit stability.

When the machine as-a-whole is considered, as it must
because the presence of unavoidable misalignments makes
the basic period strictly not one sector but one complete
revolution, numeroils additional resonances become
possible. The effect of some of these has been examined
with the ILLIAC, and further active investigation of this
question is planned.
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Walkinshaw's analysis pertains to differential equations
which, in the MURA notation (f. ex., LJL(MURA) - 5),
are taken to be of the form

and (ii) the lapse rate found to characterize the growth
of the axial motion when the radial oscillations exceed
this limit.

(cf. LJL MURA Notes 6-22 Oct. 1955, Sect. 6, for y/w
~ 1). A solution for the radial motion, representing a free
oscillation of amplitude A superposed on the forced motion,
is taken of the form

xH+(k+ l)x=-fsin(x/w-NO),

y" + [- k - (f/w) cos (x/w - NO) y = °

x = A cos (vxO + e:) - (f/02) sinfOdO,

(8.1)

(8.2)

(8.3)

The numerical application of the Mathieu equation to
specific problems of stability or instability may be accom
plished by reference to ILLIAC solutions for the stability
boundaries or for the characteristic exponent charac
terizing the solution.

(i) A useful estimate of the expected restrictions on the
radial motion may be obtained, however, by appeal to the
fact that near a = 1, b = °the stability boundaries can
be represented rather well by the condition

where (8.9)

o~ N + A (vx/w) sin (vxO + e:) and Vx == (k + 1)\1, (8.4) We find in this way the following estimate for the limiting
amplitude:

This solution is substituted into the axial equation to
yield, after some approximation (and a shift of the origin
of (} which we introduce for convenience),

,,[ f2 (Y + -k + -- I
w2N2

2A Vx )J+ wN' cos vxO Y = 0.

(8.5)

2vv
(for ----'- - 1 ~ I).

Vx

(8.10)

to obtain an equation of the Mathieu type with a coefficient
of period 2rt/vx in O. By the transformation vxO = 2 t,
we have the standard form

It is noted that, when A = 0, this equation reduces to that
given by the smooth approximation-we accordingly
write

[
8£2 A ]d2y/dt2 + (2 Vy/vx)2 + -- - cos 2 t Y = °

w 3N3 Vx
(8.7)

It may be noted that this result, although expressed in
terms of Vx and Vy, concerns an inherent sector resonance
which arises when 2 cry/crx = 1. This resonance is par
ticularly interesting in that it does not appear to fall under
the general criteria outlined in Section 6.

(ii) An estimate of the lapse rate characterizing unstable
solutions near a = 1, b = °may, moreover, be made by
taking

when

(Ibl > 2Ia- l l)

rt Vx
= - - y'b2- 4(a - 1)2 nepers per sector

4N

rt
IJ. == - y'b2- 4(a - 1)2 nepers for M = rt

4

(8.6),,[ 2Af
2

Vx Jy -I- . vy2 + --- cos vxO y = 0,
wON"

with a coefficient of period rt in the independent variable t.

A solution of the Mathieu equation

d2y/dt2+ [a + b cos 2t] y = 0, (8.8)

rt/4
N

A convenient alternative form for this last result is

0.68 V(4f2A)2 [ J2 decades perN w3N3 - (2Vy)2- vx2 /vx2 sector(8.11)
for b small but not zero, will exhibit instability when the
coefficient a is equal or close to the square of an integer.
In the present application stop-bands may thus be expected
at operating points such that 2 vy/vx = m, the broad band
of instability at 2 Vy/vx c= I (or z cry/crx = I) being of chief
interest in connection with the work presented here.
H appears, moreover, possible to employ the Mathieu
equation to account semi-quantitatively for (i) the range
of b, and hence of the amplitude of free radial oscillation,
which may be permitted when the oscillation frequencies
depart by a specified amount from the resonant condition,

2rtP
p.== w3N 4 y'A2 - A12 nepers/sector

2.73 P
--4 y'A2 - A 12 decades/sector.
w3 N

(8.12)
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Results obtained with the ILLlAC, for 5-sector machines
with model-like parameters such that 0.57t < O"xo < 0.67t
and O.27r < ayO < O.47t, appear fairly close to these esti
mates. In all the ILLlAC runs the radial amplitudes
were measured, however, near the center of a focusing
region, at NO = 0 (Mod. 27r), where the amplitudes of
the non-sinusoidal A-G oscillations can exceed those
corresponding to the smooth approximation representation
of the motion. By way of example we present here the
results for an accelerator for which

NO = 0 (mod 27t) thus being within 20% of this estimate.
With respect to the lapse rate, we continue this example

by consideration of the case A = 0.0225. Then VA2 - A I 2
= 0.02035, and one expects

0.171 (20.82)"
Il- = 625 (0.02035)

= 0.050 decades/sector,

In this case the oscillation frequencies are such that

== 0.0092, the observed limiting amplitude at

Al = (2~~)3 1.347 [(1.06)2 - I]

O"xo = 0.53887t} ( V XO = 1.347or
ayO = 0.28557t 1 vyO "'- 0.714

in close agreement with the value 0.055 decades/sector
found from the ILLJAC work. (For this case the coeffi
cients in the Mathieu equation are a ~ 1.12, b -,= 0.604,
for which an independent extrapolation of coarse tables
extending to a ~ 1 suggests Il- = 0.107 nepers/sector=
0.046 decades/sector.) In fig. 7, we plot the. amplitude
of radial motion for which the vertical motion becomes
unstable (represented by the lengths of the rods) at various
points in the ax, az - plane.

Growth of the axial motion, similar in appearance to
that reported here, has also been observed in the neigh
borhood of the 2 ax + 2 ay = 2rr and ax + 2ay = 2rr
resonances. It appears that these sum resonances may be
connected with the presence of terms in the y-equation
which involve u2y cos NO and uy sin NO, where u represents
the radial oscillation about the scalloped equilibrium
orbit.

N = 5:I/w = 20.82k = 0.6436

and the limiting amplitude for x appeared to be some
0.0075 units to the left of the stable fixed point (NO = 0,
mod. 27r). For these machine parameters the equation
for Al yields
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I. General description

Alternating gradient (AG) focusing 1) provides a high
degree of stability for both the radial and vertical modes
of betatron oscillations in circular particle accelerators.
This stability makes possible the construction of many
kinds of circular accelerators with magnetic guide fields
which are constant in time, called fixed field alternating
gradient (hereafter FFAG) accelerators. These machines
contain stable equilibrium orbits for all particles from the
injection energy to the output energy. These orbits may
all be in an annular ring, as in a synchrotron or betraton;
the magnetic field must then change rapidly with radius
to provide orbits for the different energy particles. If

. the guide field gradient were made independent of azimuth,
one of the modes of betatron oscillation would be clearly
unstable. Application of alternating gradient focusing,
however, can keep both modes of betatron oscillation
stable even with the rapid radial change of magnetic
field. It is interesting to note that circular particle
accelerators can be classified into four groups according
to the type of guide field they use: fixed field constant
gradient (conventional cyclotrons, synchro-cyclotrons and
microtrons), pulsed field constant gradient (weak focusing
synchrotrons and betatrons), pulsed field alternating gra
dient (AG synchrotrons), and fixed field alternating gra
dient (FFAG synchrotrons, betatrons, and cyclotrons).

Two types of FFAG design appear the most practical.
The radial sector type** achieves AG focusing by hav
ing the fields in the successive focusing and defocusing
magnets vary in the same way with radius but with alter
nating signs (or in certain cases alternating magnitudes).
Since the orbit in the reverse field magnet bends away
from the center, the machine is considerably larger than a
conventional AG machine 1) of the same energy having
an equal peak magnetic field. This serious disadvantage
is largely overcome in the spiral sector type (suggested by
D. W. Kerst), in which the magnetic field consists of a
radially increasing azimuthally independent field on which
is superimposed a radially increasing azimuthally periodic
field. The peaks and troughs of the periodic field spiral
outward at a small angle to the orbit. The radial separa-

tion between peaks is small compared to the radial aper
ture. The particle, crossing the field ripples at a small
angle, experiences alternating gradient focusing. Since the
fields need not be anywhere reversed, the size of this machine
can be comparable to that of an equivalent conventional
AG machine.

FFAG synchrotrons have a number of important
advantages over conventional synchrotrons. A major
one is beam intensity. Since the magnetic field is time
independent in an FFAG synchrotron, the beam pulse
rate is determined only by the repetition rate of the radio
frequency modulation cycle. In a conventional synchro
tron, the beam pulse rate is limited by the time to complete
the pulsed magnetic field cycle. It is reasonable to assume
that RF cycle repetition rates can be made considerably
higher than field recycling rates. In addition, one may
consider accelerating several groups of particles simul
taneously, so that the interval between times when groups
of particles are accepted from the injector may be made
much less than the time required to accelerate one group
to full energy.

The radio-frequency acceleration may follow a more
arbitrary frequency-versus-time program with FFAG
synchrotrons since there is no magnetic field tracking
requirement as in pulsed-field synchrotrons. This allows
the use of a mechanical modulation system with high-Q
cavities. With the high-Q realized in unloaded cavities,
the required voltage gain per turn could be given the
particles by one cavity driven at reasonable pover. Modu
lation could be accomplished by a moving diaphragm or
similar device to tune the cavity capacity. With such a
system, model tests indicate a frequency change of a
factor of greater than 3:1 is practical. Using 5 Mev
injection, a frequency change of 10 : I is required to reach
relativistic velocities. One might then use one cavity
operating as a self-excited oscillator to accelerate par
ticles from injection to about 50 Mev. The voltage on
that cavity would then be turned off as voltage on a second
cavity is turned on, and acceleration continued with the

* Assisted by the National Science Foundation and the Office of Naval Research.
** Suggested by K. R. Symon. This structure was also suggested independently earlier (1953) by T. Ohkawa, University of

Tokyo, Tokyo, Japan. (private communication.)
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second cavity. The change-over could be triggered by
frequency comparison between cavities. The relative
phases of the cavities could be controlled by a loose coupl
ing between them. (With the University of Michigan
electron synchrotron two cavity RF system, it was observed
that is was possible to make the transition from one cavity
to another without an observable beam loss.) A third
cavity might be added and a second transition made if
desired, since it is observed that most of the energy is
given the particles after they have reached almost constant
velocity, c, and this third cavity could be designed to pro
vide very high voltage over a small frequency range.
Fine frequency adjustments would be made with reactance
tube loading of the cavities. With this RF system it
appears reasonable to accelerate protons to 20 Bev with
a repetition rate of two or three per second. While the
above system is suggested on the basis of experimental
tests already in progress, it is realized that other RF
systems might prove more practical. In alternating
gradient synchrotrons, phase stability vanishes at a tran
sition energy. It is possible in the radial sector FFAG
designs to have k large and negative. In this case there
is no transition energy, and high energy orbits lie on the
inner radius of the machine. Negative k designs appear
o be not practical with spiral sectors.

Another reason for high beam intensity is the large
injection aperture possible in the FFAG designs. Whereas
injection from a 50 Mev proton linear accelerator is
planned for 25 Bev pulsed-field accelerators, a 5 Mev Van
de Graaff electrostatic generator might be used to inject
into FFAG synchrotrons for the following reasons. Eddy
current effects on the magnetic fields are absent in FFAG
synchrotrons and the effects of remanent magnetic fields
can be reduced by properly distributed currents (or by
a demagnetizing procedure at the end of an operating day),
so that injection into weaker magnetic fields appears
practical. By enlarging the injection aperture space
charge and gas scattering effects may be reduced, allowing
the lower injection energy. Conventional synchrotrons
must inject into a region where the magnetic field will later
be pulsed to its maximum value, so that an increase in
injection aperture would require an increase in peak
magnet power and stored energy. The use of electro
static generator injection with FFAG synchrotrons would
have the advantages of higher pulse currents, greater sim
plicity, lower cost, and better beam energy and size reso
lution than are at present realized with proton linear
accelerators. Although one-turn injection using a pulsed
inflector with a pulsed current of milliamperes is the most
obvious injection system, many-turn injection might be
used to give greater beam currents if methods of circum
venting the space charge limit are found.

Other advantages of the FFAG synchrotron are engineer
ing and maintenance simplifications. The direct current
magnet power supply is simpler and cheaper than a pulsed
supply to construct and to maintain. The magnets do

not have to be laminated, and field trimming is all time
independent. Disadvantages of the FFAG synchrotron
are the large increase in circumference for the radial sector
type (at least a factor of three) and the increase in complexity
of the magnetic fields, particularly for the spiral sector
machine.

Fixed field betatrons have potentially a much higher
intensity than conventional betatrons. * Beam can be
injected for a considerable fraction of a cycle, if extra
accelerating flux is available, rather than the few tenths
of a microsecond presently possible. The only beam
current limitation appears to be space charge at injection,
and this may be decreased by such techniques as high
voltage injection. An FFAG betatron has no problems
of tracking a pulsed guide field wit~ the accelerating flux,
and has also other engineering simplifications mentioned
in the synchrotron case.

Application of the FFAG principle to a cyclotron
allows the radial dependence of the magnetic field to be
such as to keep the particle revolution rate constant, inde
pendent of energy even in the relativistic region. Present
high energy cyclotrons must be frequency modulated to
compensate for the relativistic increase of mass. A con
stant frequency cyclotron should increase the beam output
about two orders of magnitude. A radial sector cyclo
tron, in which the field alternates between high and low
values, was first suggested by Thomas 2). The spiral sec
tor design seems even more advantageous for application
to the cyclotron.

II. Types of FFAG design

1. Radial sector type

Circular particle accelerators with radial sectors can be
built with the high energy orbits at the outer edge of the
machine and the injection orbits at the inside edge, or vice
versa. This discussion assumes the highest energy orbits
are at the outside edge. (We will refer specifically to
FFAG synchrotrons, but most of our comments will
apply also to betatrons and cyclotrons.) In the radial
sector design the magnet structure consists of N identical
sectors, each composed of a focusing magnet and a defo
cusing magnet. The magnet which is focusing for radial
oscillations is of course defocusing for vertical oscillations
and vice versa. The azimuthal boundaries of the magnets
are on radii from the machine center (hence the name).
The magnetic field direction in one magnet of a sector is
opposite to that of the other, while the radial dependence
of the field is the same in both. The field in the median
plane at any azimuth is

H = H o (~/ (1.1)

where r is the distance from the machine center to the equili
brium orbit and k is a constant for the machine. This
field shape requires that orbits for different energy particles
are similar, i.e. photographic images of each other. Ideally,

*This has been pointed out independently by Miyamoto, Tokyo University, Tokyo, Japan, at a symposium on nuclear physics
of the Physical Society of Japan in October, 1953. (private communication.)
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the field along a closed equilibrium orbit is constant through
each magnet, and the path is composed of arcs of circles.
This situation is perturbed by the impossibility of a sharp
field boundary. If we assume the ideal situation, a partic
ularly simple case occurs when the fields for a given energy
orbit have the same magnitude in the positive and negative
field magnets.

It is evident that particles deviating from the equilibrium
orbit experience AG focusing. The numbers of radial
and vertical betatron oscillations around the machine,
\Ix and \lz , are determined by k and the magnet lengths.
Both \Ix and \lz are constant for all energies.

It is desirable to make the negative field magnets as
short as possible, to keep the radius of the machine small;
the minimum length of the negative field magnet is of
course determined by the necessity for preserving stability
of the vertical betatron oscillations. Some vertical
focusing and radial defocusing occur because the orbits
are scalloped and do not cross the magnet edges at right
angles. In machines in which the number of sectors is
large and the effects of orbit scalloping small, the negative
field magnet can be made no shorter than about 2/3 of
the positive field magnet if we wish to preserve vertical
stability. This means that, neglecting straight sections,
the circumference of the machine is five times that necessary
if there were no negative field magnets. The ratio (in
this case, five) between the actual orbit circumference of a
circle whose radius is the minimum radius of curvature
at any point along the orbit, we call the circumference
factor. The fixed magnetic field in an FFAG machine
can be made considerably larger than the pulsed field of
a conventional accelerator, so a machine of the radial
sector type might actually be about three times the size
of a pulsed field AG accelerator of the same energy. It
is also desirable to make the radial extent of the magnets
as small as possible, which requires a high field gradient.
The allowable gradient is determined by the effect of magnet
misalignments. Reasonable values indicate a minimum
radial aperture of about 2% of the radius of the machine.

2. Spiral sector type

The spiral sector design of FFAG accelerator has the
high energy orbits at the outside edge of the machine. It
is not practical to have the high energy orbits on the inside
and inject at the outside edge, because stability of the radial
oscillations becomes virtually impossible to achieve.

The guide field on the median plane, if there are no
straight sections, is given by

H = H o (r/ro? II -I- f cos [N 0- Ntan ~ In (r/ro)])
(2.1)

where r is again the distance from the center of the machine;
k, the mean field index; e, the azimuthal angle, also
measured from the center of the machine; f, the flutter
factor (the fraction of field variation); N, the number of
sectors (periods of the field variation) around the machine;
and ~ is the spiral angle between the field maximum and

the radius. The equilibrium orbits are all similar figures,
whose linear dimensions are proportional to the radius,
but their positions rotate with radius due to the spiraling
periodic field. A particle going around the machine expe
riences a gradient first of one sign then the opposite as it
crosses the periodic field peaks and troughs at a small
angle, so there is AG focusing of the betatron oscillations.
The negative gradient is less than the positive gradient,
due to the radial increase of field. This is somewhat
compensated by the scalloping of the orbits, which causes
the particle to experience a longer path in the negative
gradient and a shorter path in the positive gradient than
if it moved on a circle. The strength of betatron focusing
depends on the rate of radial increase of the field, the
spiral angle, and the number of sectors. The minimum
size of radial aperture is limited primarily by the difficulty
of achieving strong AG focusing with a periodic field
while requiring a given vertical aperture. A flutter factor
of about 1/4 gives the largest vertical gap for a fixed strength
of focusing when iron magnet poles are used without
distributed backwindings and forward windings. This
small flutter factor means the machine has a circumference
factor (in this case, I + f), close to unity, so the radius
of an FFAG spiral sector synchrotron is about the same
as that of an equivalent energy conventional synchrotron.
By using a field variation in the median plane which is
more rectangular than sinusoidal, some increase in ver
tical aperture and also in the maximum stable amplitude
of vertical oscillations is achieved at some sacrifice of
circumference factor. The minimum radial aperture for
reasonable parameters is about 3% of the radius.

3. Other FFAG types

Both the radial sector and spiral sector designs discussed
above have equilibrium orbits of constant shape scaled
in proportion to the orbit radius. There are many modi
fications of these designs. Some differ only in that the
fields are not the square wave type used in the radial sector
design described or the sinusoidal shape used in the spiral
sector design. There are other variations of these designs
which preserve betatron oscillation stabilit~, hold \Ix

and \lz constant, but do not retain the property of similar
ity of equilibrium orbits. The magnet edges of focusing
and defocusing sectors can be made non-radial, and the
fields in the positive and negative field magnets made
different functions of radius (the negative field magnet can
even be designed to have zero field). The magnet edges,
radial or non-radial, can be tipped in the same direction,
approaching the spiral sector design. Machines made
with these modifications do not seem to show any strong
advantages with perhaps the following exception. It is
conceivable, using backwindings, to transform from a spiral
sector at the outside edge of the machine, with a small
circumference factor where it is needed, to a radial sector
at the inside edge, with a large vertical aperture for injec
tion. Such a design would have the advantages of both
types with, however, a considerable increase in magnet
complexity.
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Another modification is the spiral sector constant fre
quency cyclotron. In this machine, the frequency of
revolution of the particles can be made independent of

energy even at relativistic energies, but the orbits in this
case do not scale, and the number of betatron oscillations,
Vx and Vz cannot be kept constant.
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[1.1]

In the present report we will consider only
synchrotron resonances of type [1.3], and we
will study only the stability limits introduced by
these resonances when the acceleration parame.
ters are held constant.

A resonance of type [1.3] may be regarded as
dl1iven by neighboring harmonics in the acce·
leration signal. That is, if the synchronous revo
lution frequency is

I. INTRODUCTION

The synchrotron frequency is given in the
usual approximation (1) (valid for v,« 1) by

_ f,yachro..Oll _ [h KV COSell,]I/J
v, - -

f.....'ull.. 2 ,; E,

where v. 4s the number of synchrotron osoilla
tions per revolution, V is the peak vQltage gain
rer turn, ell, is the stable phase, h the harmonic
nllmber. and

f. = fJh [1.~)

[1.6]f•• = fJ(h - 1)

would also be synchronous. In the case of a
single accelerating ,gap, when all travel,ing wave
components into which we can resolve the accel
erating voltage have equal amplitudes, i,t is of
interest to compare the energy extension of a
bucket with the distance between adjacent har·
monies, which is'

where f. is the frequency at the accelerating r. f.
gap, then a particle at frequency[1.2]

[1.3]
m

v,=-
n,

E df
K=--

f dE

Ordinarily, v,« I, but if h is very large, as it
conceivably could be iri the 100-1000 GeV acce
lerators, v, can be of the ordell 1 or even larger.
We may then expect to encounter resonant beha
vior when

• Work supponed by the U. S. Atomic Energy Commillsion

.lust as is the case with betatron oscillations,
and for n, ~ 4 similar instabilities and nonlinear
stability limits may occur. Since v, changes
during acceleration, and eventually decreases to
small values, a value such as v, > 1/. will necessi
tate crossing a quarter-integral resonance during
acceleration, and higher values of v, will necessi·
tate crossing more serious resonances. We may
also expect coupling resonances with the radial
betatron oscillations whenever

when h» 1. The maximum excursion from the
synchronous. energy is (1) given roughly by

[1.7)

[1.8]

[1.9]
E

>-
2h iKI

E f._ - f, E
AEh=-- =-

f IKI hlKj

[
2 V EJ"I(1-0 --

,;h IKI

AE.. = (1 _ r) [2 V E ]/
J

, r _ sin «P.
,;h IKj

As a result, the usual bucket fonnulas certainly
break down (buckets would overlap) when

[1.4)n.V, ± DrV. =m
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uf, in view of Eq. [l.l], for v, ~ '/4 , for reasonable
\alu:.:s of r.

In the next section, we formulate tht:: accelera
tion problem in terms of canonical variables sui·
table fur applying Moser's (2) techniques to.
!>tudy the behaviot' at resonant values of v.. We
Ihen apply these in succeeding sect,iolls.

E. = f. V sin ell. [2.6J

(where cos <11. has the same sign as ilC/ilE).

Dimensionless phase, energy, and time varia
bles may be introduced by (')

[2.7]

II. SYNCHROTRON ACCELERATION EQUATIONS

The time derivative of· the phase of the r.f.
vollage when a particle crosses an accelerating
gap is

where f is the particle revolution frequency,. f.
Ihe frequency of the gap voltage, h tre harmo
nic number, and f. the synchronous particle fre·
quency. For the case of a single accelerating
gap of negligible width at 0 = 0, where (l is the
a/imulhalcoordinate of the accelerator, the rate
al which the energy E of a particle increases
i!o given by (-1) where v. is given by Eq. [1.1] and where we have

assumed h to be large (neglected m/h relative
to I). Equations [2.10], [2.11] may be derived
from the Hamiltonian

[1 + 2

[2.9]

[2.8]

[2.10)

[2.11]

i cos m 'T]
m. ,

'T = 2 'It f. t

h fa
y =---(E-E.)

f.

so that Eqs. [2.], [2.4] become

dq>
--=y.
d..

dy ( ~
= v: - sin q> + 2 tan ell. sin' -)

d'T 2

[2.1]

E = 2 'It f Ii (0) V sin 2 'It f. t =

$ = 2 'It (f. - hf) = 2 'It h (r. - f)

where V is the peak gap voltage (which we take
as independent of time). Letting

The first term, which corresponds to n = h, re
presents the component of the r.r. which re
\'ol\'l.~s with the synchronolls particle, The other
lerms are commonly dropped, but they are im
porlant here as they may drive resonances when
v. is not small. We will, however, assume that
quantities such as fo vary so slowly that they
may be taken as constant (during a few synchro
Iron oscillation periods). Expanding f(E, t)
about Ihe synchronous energy E. (which corres
ponds to the frequency f.) gives

f Vsin [(1 +:) eII- 2 'It m f. t]

[2.13]
Ii q> + (Ill + h) 5 0

IiVIV

00

2 1: E cos (m 'T + 1;),
•• I

H = : y' + v: f 2 sin' : - Ian <11. (Ip - sin q» J

[1 + 2. f, cos m 'T] [2.12)

For N properly phased and evenly spaced gaps
with identical peak voltages V/N, one would
again arrive at Eq. [2.11] except that only those
values of m which ale divisible by N appear. A
few evenly spaced gaps can thus eliminate the
terms which drive low order resonances: Howe
ver, any error in position, voltage, or phase will
give rise to smail terms in cos m'T for which m is
not divisible by N. If, for example, a single gap has
errors lie, IiV, liep in position, voltage, and phase,
the errors will contribute to the sum the terms

[2.2]

[2.4]

[2.3]

[2.5]elf If.=--
elE E = E.

ell = 2 'It f. t - hO

00

m '" 0

- f V sin (nO - 2 'It f. t)
".-"

f = f. + fa (E - E.).

leads 10 a rate of energy gain given by

f: = f V sin ell + 1:

10 first order. Note that the synchronous phase
ell. is given by Note that our y b not the same as that used in Ref. I.
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In the usual treatment in which the time-de·
pendent terms in Eq. [2. II] are neglected, it is
clear if we linearize Eq. [2.11] that v. is the
angular frequency of small phase oscillations.
Since the time -r is measured here in radians. of
revolution of the synchronous particle, v. will
be ,the frequcncy in phase oscillations per revo
lution. We will see later that the time-dependent
terms have a negligible effect if '11,« 1. In that
case the usual treatment yields, for the nonlinear
problem, a region of stable phase oscillations, a
" bucket ", whose area in phase space, iIi the
present units, is

where now p, yare new canonical variables
related by a sequence of transformations to the
original p, y variables introduced in the linear
problem. The transformations are suc.h that the
new variables differ from the original ones only by
nonlinear terms, so that the difference between
them is only important at large amplitudes. The
frequency of phase oscillations, v. (p), is a func
tion of the amplitude p, or equivalently of the
area A of the phase trajectory, since

A
p=

2~

[2.19]

[2.18]

[2.20]

d y el H
-- = -- = v, (p)
d'f elp

H =F(p),

d p el H
--= - --=0,
d'f ely

[2.14]et(r) =---

Ar = 16 v. Itdr)l(l- r')I/' = 16 v, «(r),

It, (r)

where the r dependence, lX, (r), is a numerical
factor shown graphically in (1). "tie cQnsider
first the linearized Eqs. [2.10], [2.11], with time
dependent terms neglected. Let us make a ca
nonical transformation (y, rp) -+ (p, 1') to canoni
cal polar coordinates, defined by

y =(2 'II, p)111 cos 1', [2.15]

Although it would be possible to find the functIOn
F( p) and hence '11.( p) by thus transforming Eq.
[2.12], we may obtain an approximate result in
a simpler way by noticing that v, , '110 , and

p-+o
v. (p) , 0 with vertical slope. Letting p-+ p,

p ... p,
label the separatrix, one obtains

The quadratic par.t of the Hamiltonian [2.12]
is then

The phase trajectories are circles of constant p.

If the time-dependent terms are included, then
the linearized equations [2. 10], [2. .Jl] lead to a
Hill equation. The solution is of Floquet type
with a linear oscillation frequency '110 replacing
from v•. We shall determine '110 later. Instabilities
appear when '110 approaches an integral or half-in
tegral value. When the linearizcd motion is stable,
it is again possible to find a canonical transforma
tion (now I?eriodic in -r) which transforms the
quadratic part of the Hamiltonian to form [2.17],
with'll" replacing'll,. Thus in suitable variables,
the linear motion is again reduced to a circle
of constant p in phase space. Using further
canonical transformations of types introduced by
Birkhoff (.3), one could formally eliminate the y
and 'f dependence from successively higher order
terms of H, so .that to any desired order one
may formally. transform the phase curves into
cirdes of constant p, obtaining

(
2 P )111

cp = -;,- siny.

1 1
H, =- Y + - v: 11" = v, P

2 2

[2.16]

[2.17]

--- "'1/3

----- 1'0 >113

--- 1', <.,o<lIa
_.._.- "0 < 1',

(II.,.. 0' Itr.llhl Lin•• Ar. lta....rated I

Th. ClIrv.d Lin.. R.,r...nt

1'0(1-~)~
c

J.-,.o::_=-=;,

Fig. 1 • Graphical solution of Eq. (3.6) near 1/3 Integral
resonance.
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[2.23]

[2.24]

[2.27)

c.b,0,

~
1thK

lp.... =, EL
EV cos lXI.

l'hea area of this ellipse (in units of energy and
phase) is

for \1.« 1. Equation [2.26] is exhibited graphi
caJ.ly as the curve in Fig. 5. This equation pre
dicts a cuthoff frequency; for v. greater than N/Tt
which corresponds to v. = N/2), synchrotron mo
tion is unstable.

It can further be shown that the amount of
beam one may accelerate (in a fix(~d orbit syn
chrotron) becomes strongly limited before the
\I. = N/2 reson~nce is reached,approaching zero at
the resonance. If we let EL denote the max,i·
mum energy excursion (E· E.) that is acceptable
w,ithin the radial aperture, of the synchrotron,
(where EL is small compared to the bucket
height) then the' usable phase space is confined
to an eHipse for whkh the maximum excursion
from the synchronous phase is

Fig. 2 - Phase trajectories In neighborhood of \I. = 1/3 reo
sonance. Arrows show direction of motion. aJ For
v. = 1/3; b) For v, < \I. < 1/3; c) Phase trajectories for
v. > 1/3.

[2.21]

[2.22]

Ar 8 v. a (f)
p.=--'"

2n n

where Ar is the bucket area, given in the usual
approximation by Eq. [2. 1~1.. (\ function wit.h
Ihe dcsired behavior at the hmltmg values of p IS

v. (p) = v. (1 - :. )'.0 < x < 1
which corresponds to the Hamiltonian

1 [( P ')'T']H =--v.P. 1- 1---
x + 1 p.

The function [2.22J has the correc,t limiting
values at p == 0, p = p. for any exponent x in the
range indicated, and hence may be expected to
\'icld topologically correct prediction about phase
irajeclOrics. By expanding Eq. (2. 12), one may
,how Ihat the value of dv./dp i! also correctJy
11 •.ltched near P = 0 (when "C-.dependent terms
..n: neglected) if we take

Sear the separatrix, it can be shown that v.~ 0
more slowly than formula [2.22] no matter how
!mall x is taken. However formula [2.22] gives
a reasonably good fit to the actual function \I. (p)
if the value [2.24] is taken for x.

When v./N is not small we may treat the linear
I/cd equations exactly, with discrete transfor
;11.ltions. It may be shown, for the case of N
IJ,'ntical accelerating gaps, that .the transfor
mation matrix' giving the energy and phase of
.a particle at the (n + 1)'h accelerating gap cross
m~. in terms of that at the nih gap crossing is

't: - EoI •• ,

2nhK

NE

V 2nhKV
- (,~ ell. 1 - cos ell.
INN'E E --'- E.

[2.25]

~
1t h K V cos ell, ,

A=n 1- EL

V cos lXI. E 2N'E

[2.28]

2 n' \I,

)1 - (n:'J E:=
V cos lXI.

from this, we conclude in the usual way (4),
U\lOg Eq. [I. 1], that there is a relationship

This formula, however, is modified by other reson
ances and nonl,inear effects.

1h,' oIuthors are indebted to L. Smith for this approach
10 the problem.

tx'tw(,'Cn the actual synchrotron oscillation fre
quency v. and the approximate frequency v., valid

2

v.
(21t-)'

N

The equations of motion, '[2.10] and [2.11],
include terms of all orders in cp, if tan CII. po! 0, so
one expects resonance effects whenever Eq. [1. 3]
is satisfied. The mIn, resonances whith odd inte
gers n become very strongly driven an r -- 1
(tan ell. ~ 00) and disappear for r = O. For
brevity we shall mainly examine onc of the

III. Nlh·INTEGRAL RESONANCES

[2.26]
2 'IC v.

cos --=1 - ----
N
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[3.2}

I A more detailed discussion will be aiven In a forthc-om
ini paper by the present authors.

[3.7]

[3.8]

[3.9]

[3.10)

[
fl(J, (n }'" 2 V7t.'It

IElv. <--
1- fl 3

in view of Fig. 1 and Eqs. [2.21]. Since it may
be shown that Of. tad ell. ~ r /2, the previous ine·
quality is certainly satisfied, so there are always
some stable loops for Vn =.'/a• These are shown
in Fig. 2a. The present treatment is not valid for
e> pc. (Cf. Eq. [2.26] which defines p).

For v. ¢ '/3 there is stability near the origin.
i.e., arbitrarily small closed orbits exist. It is
evident from F.ig. 1 that if v. is small enl1ugh,
Eq. [3.6] has no roots and the bucket is topoiogi
cally normal. However, for Vo equal to some
value v" there is a double root, and for v, < v. < 'I.
there are two roots, leading to the trajectories
shown in Fig. 2b. We may show, after some ma
nipulation, that (again with x = 1/Of.)

1 [ £1 a r l ] -III
v, =- 1 +-----

3 4'1t (1 - f')

ongm at angles r = n'lt/3. The criterion as to
whether Eq. [3.6] has anotper solution is (if
we put x :.::l/Of. for algebraic convenience).

(thus v,. is very close to '/a) and that the inner
separatrix encloses less than a fraction 0.04 r~'

of the normal bucket area. For Vo > 'Ia, there is
one root in each branch of the equation (see
Fig. 1). The phase trajector.ies are then as shown
in Fag. 2e, with the inner separatrix occurring
at a value of p' given by v. (p) = Ila or we now
take x from Eq. [2.24]

For the case of an inherent resonance (Le., E = I)
computations showed no stable orbits outside
the beads (see Sec. IV) for v. > t/a• Furthennore,
the loops may be unstable (unless they occur at
small values of £), so that Eq. [3. 9] is a crude
estimate of the shrinkage of bucket size due to
the third integral resonance. For E « I, however,
a small structure of 3 pearls (in a normal sized
bucket) is all that is observed.

The linearized equation for the analogou~ func
tion tl for the half-integral resonance,

H = tv. - -=-. - !... Evo cos 2 Y) P
- \' 2 2 -.

yields stopbands, areas where curves of constant
H are not closed around the origin, since the
coefficient of °e can be zero if .

[3.1)

[3.41

[3.3}

p
H=H-'::"

3

dS
p=-=p
- dy

"C'

Y=Y--,
- 3

most important resonances, v = '/3, and just indi
cate important results of the other ones.'

Assume that all terms in the equation 'of mo
tion for synchrotron oscillations have been trans
formed away, so the Hamiltonian is a function
only of P, except for the v. = '/a driving term
from Eq. [2. P]. This driving term

(
dY) (IH V_III
- = EV: tan ell, ll" cos 't :::; -
d'T V _ II' (Ill'

so that the new variables become

plus ignorable terms which do not drive the
resonance. To eliminate the time dependence,
we make a canonical transformation to a coor
d'ioate system rota,ting in the phase space. The
generating function is

'1/2
+ -- tan ell, EV.'/I pIlI sin (3'Y - 't)

12

\I. p. [ P 1+1
H == -- 1 - (1 --) . +

l+x P.

may be integrated, and added to Eq. [2.23) to
obtain the Hamiltonian H applicable to the re
sonance, namely

Curves of constant H have singular points where

aH .[2 (IB
-- =-- tan ell. Evo'/l pIlI cos 3 y = 0, --=- :::; 0 [3.5)
(ly 4 - il£

SO that

y = (n + .2.)~, n= 0, 1 ... 5;
- \' 2 3

v" (1 - ~,}- :::; : + (- 1)-+1 ~ Etan ell, v~' ell' [3.6]

This latter equation is solved graphically in Fig. 1.
We consider first the case v. = 'Ia, for which one

solution of Eq. [3.6] is p = O. In this case the
curve!! =0 has six branches radiating from the
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IV. COMPUTATIONS: COMPARISON WITH
THEORY

• In lhis casco lhe most Important t1me-dependent tenn
(COt 2 1) hi beina lreated explicitly, eo that one should
\lie v. ilislead of ". in Eq. [3. I].

holds at the resonance, yielding stability, or
trajectories which are topologically normal (near
p =0).

.10.eo.10JOo

.I

o .. _. ,
LI

,.I

lA

v.
V.

U
~ •.D"

1.0

• Nee

phase area, and behavior in the neighborhood of
particular resonances. The general shape of the
trajectories and structure resemble closely the
shape of the predicted energy contours (Cf.
Fig. 2c wth Fig. 4d or 7d, for instance).

A dramatic result is the enhancement of v.
with respect to v., which leads to the stopband
discussed in Sections II and III. Figure 5 shows
a graph of v. versus v. obtained from the com
puter calculations and a comparison with values
of v. calculated from relations [2.261 The agree
ment is excellent, for cases of either 1 or 5 ac
celerating gaps. For the 'I. and If. integral reso
nances, prominent beads are observed for values
v. above the resonance in a single gap configura
tion (Fig. 3). Some trace of these persists in
the five-gap case (for a 10% error signal, see
Fig. 7b).

One can see by comparing Fig. 3 with Fig. 4
that while the quarter-integral case docs not
affect stability near the center of the bucket, the
1/3 integral resonance destroys even this, as was
shown in Section III.

For the case of many accelerating gaps, pre
dicted effects are verified in Figs. 6 - 8, namely,
stability is restored and the resonances are mi
nimized. The following examples, unless other
wise noted, are for the case of five evenly spa
ced accelerating gaps. For simplicity, the gap
voltages have been chosen equa.l fo'r four of
the gaps, and 10/0, 100/0, or 250/0 different for the
fifth gap. This provides a simple example of a
type of inhomogeneity which is likely to occur
in an actual accelerator. Such an error signal
will weakly dr,ive the resonances experienced in
a single gap machine. Then, instead of resem·

~-./hKV
Fig. 5 • Graph of v. vorsus v. and comparison of computa·
tlonol values with theoretical approximate values derived
from Eq. (2.26). N represents the number of d. stations.

[3.11)
1 1

--t:. v.<--
2 + lEI 2 ~ lEI

If there is only one accelerating gap, E = 1 and
the stopband extends from v.:::: III * to v. = 1.
This lower limit is close to the v.:::: 1/1t cut-off
predicted by Eq. [2.26].

for the quarter-integral resonance, we can
show, by similar manipulations, that no major
instability occurs at or below v. = II. but that
lour pearls are obtained when v. > II.. We solve
the analogue of Eq. [3.6] in this case, but use
the more accurate value of x given by Eq. [2.24]
"inee at v.:::: II. both the resonant and central parts
have the same.e dependence as e--+ 0, making the
coefficients important. The central forces domi·
nate, as the inequality

~ _ v. (1 _ _e_)~ > lEI ~ [3.12]
4 p. 24

Some of the preceding theoretical arguments
ha\l~ been checked by computer calculations and
tl1l' rl',ults of these wi\.l be described.

A, a simplyfying device in most of these cal
l'Uliitions, a confttant energy loss dyfdt has been
m,ated and adjusted so that an energy boost r V
" rl"quired to make a synchronous particle stay
s'nehronous. Configurations of one and more
th:m one accelerating gaps have been examined.

The Hamiltonian is time-varying, and the pre
'Cnce of errors in voltages or phases of rJ.
b:lPS makes the over-all period of H equal to the
urbital frequency of the synchronous particle.
Panicle positions have been plotted for time incre·
ml'nts equal to this period, i.e., essentially, the
(lO,ition (phase) and energy have been plotted
on.:c per revolution (of the synchronous particle).
L1Ch different symbol corresponds to the « foot
prints .. of a given particle with different initial
londitiOIlS generally selected to represent a dU·
fl'rl"nt value of p.

Relevant effects of the theory which have been
l"Umined include the comparison of v. with v.,
\1ll"S of stopbands, detailed shape of the phase
space diagrams, effect of error signals on stable
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bling the wild patterns of Fig. 4 in which the
phase plot had degenerated into islands, the 1/3

integral resonance no longer causes a complete
breakdown of the bucket, and graphs of Fig. 7
merely show a string of (3) beads enclosing a.
stable area. These three stable beads observed
here are quite similar, for instance, to the five
stable beads which are observed in Rig. 3a with
one accelerating gap. Computer runs with a sup
pressed voltage on one of four gaps (E "" 0.0 to
- 0.25, N. =4) have shown that the I/a integral re
!ionance could cause a reduced region of sta
bility, even as an error signal. For lEI 16 0.1, stable
motion only occurred for values of e smaller than
that at which v.(p):;:: I/a. The \/0 = 1/. resonance,
however, had little effect when driven by an error
signal of this magnitude.

We have also investigated the reduced stop
band predicted in Eq. [3. 11] when the II. integral
resonance is driven by an error signal (in this
case c :;:: 0.02). This is shown in Fig. 8, where first·
order stability (stability at p = 0) is observed for
II. :;:: 0.487 (but with vertically elongated ellipses)
and 0.527 but not for \/0:;:: 0.497 or 0.507. For the
calculations shown in F,igs. 8a-d, & V :;:: lOa/a and
E ~,0.02, and as expected, the stopband (for
\\hi~'h small oscillations about the origin are
umlable) extends from \/0:;:: 0.49 to 0.51.

One phenomenon which seems common to the
·e. ::. 'II, 'Is, and 1/. resonances is that the effect of
.In instability near the outside of a nominal
huckct appears much more dramatic than the
C'lTccts when the instability is ncar the center.
Thu,> the major bucket perturbaLions are seen
whcn v. is greater than '/., 'la, or 1/. at the center
of the II bucket ". An investigation of v.(p) versus
p gave reasonably good agreement with predic
tions of Eqs. [2.22] and [2.24]. In particular,
for r =0.5, the prediction is x = 0.11, and the
computations verified this slow rate of decline
of frequency with oscillation amplitude.

A search for the (outermost) separatrix as a
function of voltage errors on the. accelerating
gaps (calculated for the case of four accelerating
iaps) has shown that large errors may reduce
lhe stable area considerably.

A value of K:;:: - 0.03 has been used in most
~f the computer calculations. These calculations
have b~en carried out on an IBM 704 computer,
employing ,eight decimal digits of accuracy, and

the scatter in the experimental points is belie
ved to be due to this. Preliminary results with
" double precision" computation (16 digit accu
-racy) showed smooth curves for the trajectories,
but otherwise little change in the structure.

V. CONCLUSIONS

We conclude from the above results that in
accelerators with a single accelerating 'gap, or
with unsymmetrically placed gaps, the resonance
v. = 1/1 must be avoided. The resonance \/0 = I/a
should probably also be avoided, although in
certain cases it may be possible to accelerate
through this resonance. In applying these con
siderations, it is important to remember. that
the true synchrotron frequency '.10 can be consi
derably greater than the value v. given by the
usual formula [I. 1] when \/, ~ 0.2.

With symmetrically placed accelerating gaps,
these resonances may be made relatively harm
less, provided the voltage and phase errors are
not too large. The resonant beads produced by
r.f. errors are small and disappear at values of
\/0 at or sl,ightly below the resonance in each
case. Since \/0 generally decreases during accel·
e-ration, the beads will move in toward the syn
chronous point as the resonance is approached,
·then shrink and disappear. Beads near the buc
ket boundary can result in instabilities which
reduce the stable bucket area. If however the
r.f. phase traje<.:tories at 'injection are stahle in
the region occupied by the injected, particles.
and if there are no resonant beads outside this
region, then no difficulty due to imperfection
resonances may be expected during acceleration.
This conclusion may not hold, however, if the
dnjected particles covet only a small ellipse at
the center of the bucket. In that case, as a
resonance is crossed, the bounding ellipse is
distorted, and its energy dimension may be cun
siderably increased, as dis,cussed at the end of
Section II. Furthermore, the resonant beads, as
they move into the bucket center, will bring
with therp empty phase space which becomes
mixed with the phase space occupied by parti
cles; the phase area containing the accelerated
particles. will therefore be increased after the
resonal1~e is crossed, by the area of the resonan t
beads.
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DISCUSSION

PENTZ: You have explained the effect described in
terms of the picture of two buckets, corresponding to
two harmonic members of the radio-frequency aCClele
ration differing by unity (h, h±l), which may overlap..
Is it correct, then, that the effect will occur when the
bucket height is large enough for such overlap to occur?
SYMON: Yes.
PENTZ: Could one then study the effect experimentally
by using two accelerating gaps separately programmed
so as to locate two buckets at eoeri}' separations com- .
pa.rable to the buckets heights?

1-37

SYMON: Yes, this would be approximatively equivalent
situation to that which would exit in the· case of acce
leration at high harmonic number.

KOLOMENSKY: In your paper you have considered one.
dimensional (longitudinal) motion. I' think that the
two-dimensional character of motion (i.e, coupling with
the radial betatron oscillation) would be taken into ac
count particularly In the case of larae number of ao
celeratina stations?

SYMON: Yes, I 8aree.
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It is p?ssible, by using .alt:rnating-gradient focusing, to design circular accelerators with magnetic guide
fields which are constant in tllue, and which can accommodate stable orbits at all energies from injection to
o~tPut ene~gy. Suc~ accelerators are in some respects si~pler to construct and operate, and moreover, they
s ow promise of gleater ~utl?ut currents than conventIOnal synchrotrons and synchrocyclotrons. '1'11'0 im
portant types of magnetic held patterns are described, the radial-sector and spiral-sector patterns the
former. being easier to understand and simpler to construct, the latter resulting in a much smaller accele~ator
f?r a given e~ergy. A theory of orbits in fixed-field alternating-gradient accelerators has been worked out in
linear apprOXimation, which yields approximate general relationships hetween machine parameters, as well
as.m~re accurate for~ulaswhich can be used for design purposes. There are promising applications of these
pnnClples to the deSign of fixed-field synchrotrons, betatrons, and high-energy cyclotrons.

INTRODUCTION

ALTERNATING-GRADIENT (AG) focusing!
provides a high degree of stability for both radial

and vertical modes of betatron oscillations in circular
particle accelerators. This stability makes possible the
construction of many kinds of circular accelerators with
magnetic guide fields which are constant in time called
fixed-field alternating-gradient (hereafter FFAG) ac
celerators. These machines contain stable equilibrium
orbits for all particles from the injection energy to the
output energy. These orbits may all be in an annular
ring, as in a synchrotron or betatron' the maanetic, b

field must then change rapidly with radius to provide
orbits for the different energy particles. If the guide
field gradient is made independent of azimuth, one of
the modes of betatron oscillation is clearly unstable.
Application of alternating-gradient focusing, however,
can keep both modes of betatron oscillation stable even
with the rapid radial change of magnetic field. Circular
particle accelerators can be classified into four groups
according to the type of guide field they use: fixed-field
constant-gradient (conventional cyclotrons, synchro
cyclotrons, and microtrons), pulsed-field constant
gradient (weak-focusing synchrotrons and betatrons),
pulsed-field al ternating-gradient (AG synchrotrons),
and fixed-field alternating-gradient (1'1'AG synchro
trons, betatrons, and cyclotrons).

Two types of FFAG design appear the most practical.
The radial-sector type2 achieves AG focusing by having
the fields in the successive focusing and defocusing

* Supported by National Science Foundation.
t University of Wisconsin, Madison Wi~consin.

t University of Illinois, Champaign,' Illinois.
§ University of Michigan and Michigan Memorial Phoenix

Project, Ann Arbor, Michigan.
II Iowa State College Institute for Atomic Research, ;\mes,

Iowa.
1 Courant, Livingston, and Snyder, Phys. Rev. 88, 1190 (1952).
2 K. R. Symon, Phys. Rev. 98, 1152(:\) (1955). This structure

was. also suggested, independently earlier by T. Ohkawa, Uni
versity of Tokyo, fokyo, Japan at a Symposium on Nuclear
Phy.ics ~f t~e I'hysica.l Society of Japan in October, 1953 (private
communIcatIOn), and Il1dcpcndcntly by II. Snyder at Brookha""n
l'\ational Laboratory.

magnets vary in the same way with radius but with
alternating signs (or in certain cases alternating magni
tudes). Since the orbit in the reverse field magnet bends
away from the center, the machine is considerably
larger than a conventional AG machine l of the same
energy having an equal-peak magnetic field. This
serious disadvantage is largely overcome in the spiral
sector type3 in which the magnetic field consists of a
radially increasing azimuthally independent field on
which is superimposed a radially increasing azimuthally
periodic field. The ridges (maxima) and troughs
(minima) of the periodic field spiral outward at a small
angle to the orbit. The radial separation between ridges
is small compared to the radial aperture. The particle,
crossing the field ridges at a small angle, experiences
alternating-gradient focusing. Since the fields need not
be reversed anywhere, the circumference of this machine
can be comparable to that of an equivalent conventional
AG machine.

FFAG synchrotrons have a number of important
advantages over conventional synchrotrons. A major
one is beam intensity. Since the magnetic field is time
independent in an FFAG synchrotron, the beam pulse
rate is determined only by the repetition rate of the
radio-frequency modulation cycle. In a conventional
synchrotron, the beam pulse rate is limited by the time
to complete the pulsed magnetic field cycle. It is
reasonable to assume that frequency-modulation repe
tition rates can be made considerably higher than field
recycling rates. Another reason for high beam intensity
is the large injection aperture possible in the FFAG
designs (larger for the radial sector than for the spiral
sector). Other advantages of the FFAG synchrotron
are engineering and maintenance simplifications. The
direct-current magnet power supply is simpler and
cheaper to construct and to maintain than a pulsed
supply. The magnets do not have to be laminated, there
are no eddy curren t problems, and remanent field and
sa tu rat ion clitTicu1tics are less serious than in pulsed-field

. "Suggested by 1>. W. Kcrst [Kcrst, Terwilligcr, Jones, and
Syillon, I'hys. Rev. 'i8, 1153(:\) (1955)].
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MAGNt fiG
EQUIPOTENTIALS

SECTION
A-A

FIG. I. Vertical section through positive or negative
radial-sector magnets.

(1.1)

highest energy orbits are at the outside edge. (We will
refer specifically to FFAG synchrotrons, but most of
our comments will apply also to betatrons and cyclo
trons.) In radial-sector design the magnet structure
consists of !V-identical sectors, each composed of a
focusing magnet and a defocusing magnet. The magnet
which is focusing for radial oscillations is of course
defocusing for vertical oscillations and vice versa. The
azimuthal boundaries of the magnets are on radii from
the machine center (hence the name). The magnetic
field direction in one magnet of a sector is opposite to
that of the other, while the radial dependence of the
field is the same in both. The field in the median plane
at any azimuth is

where r is the distance from the machine center to the
equilibrium orbit and k is a constant for the machine.
Figure 1 shows this type of field pattern. This field shape
requires that orbits for different energy particles be
similar, i.e., photographic images of each other. Ideally,
the field along a closed equilibrium orbit is constant
through each magnet, and the path is composed of arcs
of circles. This ideal orbit cannot be attained because
of the impossibility of a sharp field boundary. However,
if we assume the ideal situation, a particularly simple
case occurs if the fields for a given energy orbit have the
same magnitude in the positive- and negative-field
magnets. Equilibrium orbits for this case are shown in
Fig.2.

It is evident that particles deviating from the
equilibrium orbit experience AG focusing. The numbers
of radial and vertical betatron oscillations around the
machine, Px and Pz , are determined by k and the magnet
lengths. Both Px and Pz are constant for all energies.

It is desirable to make the negative-field magnets as
short as possible, to keep the radius of the machine
small; the minimum length of the negative-field magnet
is of course determined by the necessity for preserving
stability of the vertical betatron oscillations. Some
vertical focusing and radial defocusing occur because
the orbits are scalloped and do not cross the magnet
edges at right angles. In machines in which the number
of sectors is large and the effects of orbit scalloping
small, the negative-field magnet can be made no shorter
than about i of the positive-field magnet if we wish to
preserve vertical stability. This means that, neglecting

Circular particle accelerators with radial sectors can
be built with the high-energy orbits at the outer edge
of the machine and the injection orbits at the inside
edge, or vice versa. This discussion assumes that the

• Terwilliger, Jones, Kerst, and Symon, l'hys. Rev. 98, 1153(A)
(1955). This had been pointed out independently by G. Miyamoto,
Tokyo University, Tokyo, Japan, at a meeting of the Physical
Society of Japan ill April, 1952 (private communication).

• L. II. Thomas, l'hys. Rev. 54, 580, 588 (1938).

1. TYPES OF FFAG DESIGN

1. Radial-Sector Type

accelerators. All field trimming is time independent.
The necessity for accurate tracking of the rf accelerating
voltage with a pulsed magnetic field is eliminated, with
a resulting greater freedom and ease in design of the rf
system. Injection should be possible at a lower energy
than is contemplated for a conventional synchrotron,
because of the fewer low-field problems and the easier
frequency-modulation program and the possibility of
large apertures at the injection radius; the complexity
of the injection system will then be decreased. Dis
advantages of the FFAG synchrotron are the large
increase in circumference for the radial-sector type (at
least a factor of three) and the increase in complexity
of the magnetic fields, particularly for the spiral-sector

.machine.
Fixed-field betatrons have potentially a much higher

intensity than conventional betatrons.' The beam can
be injected for a considerable fraction of a cycle, if extra
accelerating flux is available, rather than the few tenths
of a microsecond presently possible. The only beam
current limitation appears to be space charge at in
jection, and this may be decreased by such techniques
as high-voltage injection. An FFAG betatron has no
problems of tracking a pulsed guide field with the ac
celerating flux, and also has other engineering simpli
fications mentioned in the synchrotron case.

Application of the FFAG principle to a cyclotron
allows the radial dependence of the magnetic field to
be such as to keep the particle revolution rate constant,
independent of energy even in the relativistic region.
Present high-energy cyclotrons must be frequency
modulated to compensate for the relativistic increase of
mass. A constant-frequency cyclotron should increase
the beam output by two orders of magnitude. A radial
sector cyclotron, in which the field alternates between
high and low values, was first suggested by Thomas. 6

The spiral-sector design seems even more advantageous
for application to the cyclotron.

In Part I of this paper we discuss the radial- and
spiral-sector types of FFAG accelerator in detail. In
Part II the theory of particle trajectories in FFAG
machines is developed. Part III contains a description
of a lO-Bev radial-sector synchrotron, a 20-Bev spiral
sector synchrotron, and FFAG betatrons and
cyclotrons.
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2. Spiral-Sector Type

The spiral-sector design of FFAG accelerator has the
high-energy orbits at the outside edge of the machine.
It is not practical to have the high-energy orbits on the
inside and to inject at the outside edge, because stability
of the radial oscillations becomes virtually impossible
to achieve.

The guide field on the median plane, if there are no
straight sections, is given by

H = Ho(r/ro)k(l + j cos[1\'O- N tans In(r/ro)J}, (2.1)

where r is again the distance from the center of the
machine j k, the mean field index; 0, the azimuthal angle,
also measured from the center of the machine; j, the
flutter factor (the fraction of field variation) j N, the
number of sectors (periods of the field variat.ion) around
the machine j and S is the spiral angle between the locus
of the field maximum and the radius.

Figure 3 shows how the ridges and troughs of the
periodic field spiral toward the outside of the machine
and indicates the equilibrium orbits for this design. The
equilibrium orbits are all similar figures, whose linear
dimensions are proportional to the radius, but their
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3. Other FFAG Types

Both the radial-sector and spiral-sector designs
discussed above have equilibrium orbits of constant
shape scaled in proportion to the orbit radius. There are
many modifications of these designs. Some differ only
in that the fields are not the square-wave type used in
the radial-sector design described or the sinusoidal
shape used in the spiral-sector design. Changes of this
kind will not affect the constancy of shape of the
equilibrium orbits and will modify other machine
characteristics only slightly. There are other variations
of these designs which preserve betatron oscillation

FIG. 3. Spiral-sector configuration.

positions rotate with radius due to the spiraling periodic
field. Figure 4 is a plot of the radial dependence of the
median-plane magnetic field. A particle going around
the machine experiences a gradient first of one sign then
of the opposite sign as it crosses the periodic field ridges
and troughs at a small angle, so there is AG focusing of
the betatron oscillations. The negative gradient is less
than the positive gradient, due to the radial increase of
field. This is somewhat compensated by the scalloping
of the orbits, which causes the particle to experience a
longer path in the negative gradient and a shorter path
in the positive gradient than if it moved on a circle. The
strength of betatron focusing depends on the rate of
radial inFease of the field, the flutter factor, and the
spiral angle.

The minimum size of radial aperture is limited pri
marily by the difficulty of achieving strong AG focusing
with a periodic field while requiring a given vertical
aperture. If we restrict ourselves to a sinusoidal vari
ation of field, a flutter factor of t= i gives the largest
vertical gap for a fixed strength of focusing when iron
magnet poles are used without distributed back
windings and forward windings. This small flutter
factor means that the machine has a circumference
factor (in this case, 1+ j), close to unity, so the radius
of an FFAG spiral-sector synchrotron is about the same
as that of an equivalent-energy conventional synchro
tron. The minimum radial aperture for reasonable
parameters is about 3% of the radius.
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straight sections, the circumference of the machine is
five times that which would be necessary if there were
no negative-field magnets. The ratio (in this case, five)
between the actual orbit circumference and the circum
ference of a circle whose radius is the minimum radius
of curvature, we call the circumference factor. The fixed
magnetic field in an FFAG machine can be made con
siderably larger than the pulsed field of a conventional
accelerator, so a machine of the radial-sector type might
actually be about three times the size of a pulsed-field
AG accelerator of the same energy. It is also desirable
to make the radial extent of the magnets as small as
possible, which requires a high field gradient. The
allowable gradient is determined by the effect of magnet
misalignments. Reasonable values indicate a minimum
radial aperture of about 2% of the radius of the
machine.
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"1
FIG. 4. Radial depend

ence of the axial magnetic
field in the median plane.

radius from the center of the machine at the reference
point, and that the reference points lie along a con
tinuous curve. The parameter 8 will be equal to the
azimuthal angle 8-80 plus a small periodic function
with period 27r!:Y.

Each orbit will now be specified by a periodic
parameter fJ.(0,R) defined by

fJ.(0,R)=R/p(0,R), (4.3)

where S is the length of the orbit. In general, R will be
slightly larger than the mean radius (r)Av. We define an
azimuthal coordinate °by the equation

where s is the distance measured along the orbit from
some reference point (say at azimuthal angle 80). We
shall require that the orbit he perpendicular to the

II. ORBIT THEORY

4. Geometry of the Equilibrium Orbits

In order to develop a theory of orbit stability ap
plicable to FFAG accelerators generally, it is convenient
to characterize a particular accelerator by specifying its
equilibrium orbits. We will therefore assume that a set
of closed equilibrium orbits lying in the median plane
is given. If instead, the magnetic field pattern is speci
fied, the equilibrium orbits must be found by integrating
the equations of motion.

The geometrical properties of each orbit, and the
relations between orbits, will be periodic in the azi
muthal angle 8 with period 27r/X Each orbit is to be
specified by its equivalent radius R defined by

S=27rR, (4.1)

(4.4)

(4.5)fJ.( - 0,R)=fJ.(0,R).

FIG. S. Equilibrium orbit notation.

where p is the radius of curvature. Specification of
fJ.(0,R), together with the requirement that the center
of the orbit lie at the origin in the median plane, com
pletely determines the orbit R, provided the reference
point 8=0 is specified. For our purposes, it will be
sufficient to specify the angle ~(R) between the radius
from the origin and the reference curve e=o where it
crosses the orbit R (Fig. 5). Choice of the parameter
fJ.(0,R) is restricted by the requirement that it be
periodic in (3 with period 27r/N and mean value

ORBIT R+ dR

The function fJ.(0,R) is also restricted by the require
ment that at the point e=o the orbit R must be
perpendicular to the radius from the origin. This re
quirement leads to a rather complicated analytical
restriction on the function fJ.. It is sufficient if O=0 is a
point of symmetry of the orbit, i.e.,

If there are no points of symmetry, it is necessary to
construct the orbit in order to locate properly the
reference point O=0. Fortunately, an error in properly
locating the reference point will produce only a very
small error (of order 1/N2) in the equations for the
betatron oscillations, provided the angle ~ is correctly
specified. .

We will need also parameters T/(0,R) and E(0,R)
relating the perpendicular distance dx between two
nearby orbits, and the increment de in °along an
orthogonal trajectory to the orbits, to the increment

(4.2)s=8R,

r

stability, hold IIx and liz constant, but do not retain the
property of similarity of equilibrium orbits. The magnet
edges of focusing and defocusing sectors can be made
nonradial, and the fIelds in the positive- and negative
field magnets made different functions of radius; (the
negative-field magnet can even be designed to have zero
field). The magnet edges, radial or nonradial, can be
tipped in the same direction, approaching the spiral-sec
tor design. It is conceivable, using back windings, to
transform from a spiral sector at the outside edge of
the machine, with a small circumference factor where
it is needed, to radial sector at the inside edge, with a
large vertical aperture for injection. Such a design
would have the advantages of both types with, how
ever, a considerable increase in magnet complexity.

Another modification is the spiral-sector constant
frequency cyclotron. In this machine, the frequency of
revolution of the particles can be made independent of
energy even at relativistic energies, but the orbits in
this case do not scale, and the number of betatron
oscillations, IIx and liz, cannot easily be kept constant.
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dR in the parameter R (see Fig. 5)

dX=f/dR,

d8=EdR/R.

(4.6)

(4.7)

it is convenient to introduce the notations

(4.13)

It can be shown6 that 7/, E satisfy the differential
equations

at
-=Jl.7/-1,
at)

(4.8)

{F} =FW-(F)AV,

F'=dF/d~,

F 1 = f{F}d~,

(4.14)

(.tlS)

(4.16)

where the three constants of integration are to be chosen
so that E and 7/ are periodic functions of 8 [i.e., so that
the right-hand members of Eqs. (4.8) and (4.9) have
zero mean values], and so that

If all equilibrium orbits are geometrically similar,
the parameter JI. depends only on 8 and not on R. In the
interest of simplicity, we will usually restrict our
attention to machines of this type. If in addition, t is
independent of R, then by Eqs. (4.8)-(4.10), the
parameters 7/ and E will be independentof R. In this
case, we will say that the equilibrium orbits scale; the
equilibrium orbits scale if any set of neighboring orbits
can be obtained by photographic enlargement or re
duction from a set of orbits in the neighborhood of any
other orbit.

The solution of Egs. (4.8) and (4.9) may be obtained
by successive approximations. Let us s~t

(4.17)

where the integration constants have been chosen as
required. [Note that

1 2~

(r;lg)M=- f tldgl=O, (4.20)
211" 0

where the integration constants in the last two equations
are to be chosen so that F R has mean value zero. All the
functions defined by Eqs. (4.14)-(4.17) have period 211"
and mean value zero.

We now substitute Egs. (4.11) and (4.12) in (4.8)
and (4.9) and integrate again to get a first approxi
mation

(tant
7/=1--'-gl(NE), (4.18)

IV

fgl(O) f
t=tant---- sec2~+-gl(N8), '(4.19)

.Y .V

(4.9)

(4.10)

,vhich satisfy the conditions imposed on E and 7/.
If F(~) is any periodic function of ~ with period 211",

6 K. R. Symon, Midwestern Universities Research Association
report, MURA-KRS-R (unpublished) . .'\ more elegant derivation
has been given by B. Hamermesh and E. A. Crosbie [ArgontH'
Accelerator Croup, l'rogrt'ss Report No.7, Jllly 13, 1955 (un
puhlisherl)].

where g(NG) has period 211" in 1\TG, has mean value zero,
and is normalized so that its mean square is t; f is the
flutter factor. Since the right members of Egs. (4.8)
and (4.9) have period 211"/N (and zero mean), they
contribute to 7/ and E oscillatory terms of order 1/,,".
The integral in Eg. (4.9) is constant, if we assume that
fJ. is independent of R; it will in any case contribute
only very small oscillatory terms unless fJ. changes
appreciably within a very small fractional increase in
radius. The quantity tant is zero in radial-sector FFAG
machines, but is of order ;"\T in spiral-sector FFAG
machines. \Ve therefore write as a zero-order approxi
mation to 7/ and E the constant values

r.:d)
ap all c iJp

/I - -+p--- -- .
ilx iJx ,: fix

H(G,R)= (pc/eR)fJ.(8,R). (5.2)

and that if g(~) is even, then glW is odd, and g\(O)=O.
In any case, gl(O) is ordinarily small.]

A second approximation may be obtained by sub
stituting 7/, E from Eqs. (4.18) and (4.19) in the right
members of Eqs. (4.8) and (4.9) and integrating again.
Each successive iteration yields terms of order 1/N2 and
PI-\,2 times the preceding terms.

5. Betatron Oscillations

If a particle of momentum pmoves in an equilibrium
orbit R, then we have by Eg. (4.3)

pc=eHp=eHR/fJ., (5.1)

where H is the magnitude of the magnetic field, so that

The magnetic field is thus given in terms of the co
ordinates Rand e.

If we differentiate Eq. (5.1) with respect to x, where
x is measured perpendicular to the orbit, we have

(4.11)

(4.12)

fJ.= 1+fg(N8),
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If the equilibrium orbits scale, then Il, 1], and E are
functions only of e. Thus 1l2n will be a function of e
only, and the betatron oscillations will also scale pro
vided k is constant. Accelerators with this property will
be referred to as accelerators which scale. For accele
rators which scale, we have

The field index is therefore

n=_(~)aH.
Il ax

Jp alnp
=--~-.

ax Jx

Making use of Eqs. (4.3), (4.6), and (4.7), we find

(5.4)

and
p= po (R/Ro)k+!,

II = H o(R/Ro)kj.L(8).

(5.14)

(5.15)

(5.5) 6. Approximate Solution for Betatron
Oscillations

In terms of the mean magnetic field H= pe/cR, we can
write k also as a mean field index:

where k is a parameter which measures the momentum
compaction:

d lnp
k=R---l.

dR
(5.6)

In this section we develop some approximate formulas
which give a useful general picture of the properties of
FFAG accelerators. If the betatron wavelengths are
long in comparison with the sector length (say at least
four sectors), then the smooth approximation equa
tions developed in thc appendix are applicable. The
"smooth" betatron oscillation equations hecome in this
case

(5.8) Vz = (j.L2n )AV+ ({j.L2n h2)AV.

The solutions of Eqs. (6.1) and (6.2) are

(5.9) X=A cosvx8+B ~invx8, (6.5)

(6.6)

(6.3)

(6.4)

(6.1)

(6.2)

(A.13) of the

Z=C cosvz8+D sinvz8.

d2X/d0Z
+VI

2X =0,

d2Z/d8z+vz
zZ=0,

where, by Eqs. (5.10), (5.11), and
appendix,

(5.7)

dZz "It

-+-z=O,
ds2 p2

_'(R)dI1k- - -.
H dR

The linearized equations for betatron oscillations about
an equilibrium orbit are7

dZx 1-n
-+--x=O,
ds2 p2

The character of the betatron oscillations is therefore
determined by the functions j.LZ(8,R) and

By making use of Eqs. (4.8) and (4.9) we can rewrite
Eq. (5.12) in the form

To these smooth solutions must be added a ripple which
can be computed from Eq. (A.7). It is clear that VI and
Vz are the numbers of radial and vertical betatron
wavelengths around thc circumference of the accele
rator. The approximate formulas (6.3) and (6.4) give
Vx and V z within about lO?{, provided that VI and Vz are
both less than }\'/4.

In order to avoid resonance buildup of betatron
oscillations it is necessary to avoid integral and half
integral values for VI and 'vz , and also to avoid integral
values for vx+vz•8 This implies that VI and Vz must be
the same for all orbits, or nearly so, and this is the
principal limiting condition on FFAG designs. In
accelerators which scale, VI and Vz are necessarily the
same for all orbits; this is the advantage in designs
which scale.

The relation betwccn betatron wavelengths and
machine parameters depcnds upon which term in Eq.
(5.13) predominates in giving alternating-gradient
focusing. In a radial-scctor FFAG accelerator with
s=() and with a largc number of sectors (say lV> 10),

(5.11)

(5.13)

(5.10)

(5.12)

where x and z are the deviations from the equilibrium
orbit in the radial and vertical directions. These become,
by Eqs. (4.2) and (4.3),

7 N. M. Blachman and F.. n. Courant, Rev. Sci. Instr. 20, 5')6
(1949), Eq. (15).

81'. ;\. Sturrock, St,lii" ,/lid f)vlz<llllic RlectroJ1 0f,tics (Cambridge
I)"iversity Press, Clillbrid~e. i')SS), Chap. 7.
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FIG. 6. Rectangular field flutter.

aperture, k, and hence :V, should be as large as prac
ticable. If we define a circumference factor C as the
ratio between mean and minimum radii of curvature of
the equilibrium orbit, then

It is desirable to minimize C, since for a given maximum
magnetic field, this yields the smallest accelerator
design. It is clear from Eq. (6.11), that for a given form
of g, the minimum circumference factor is obtained by
making (Jz as small, and (Jx as large as possible (or vice
versa, if k is to be negative).

Let us assume a rectangular field flutter, with mean
square value! :

(6.13)c= lJ.limax= 11+ fgUVe) Imax'

I 2 I

,
-q" a q" (2-q) ..

2 ..

/,-

(6.7)

'1/ is very nearly unity, and the second term in Eq. (5.13)
is small except near the edges of the magnets where it
gives rise to edge focusing effects. The edge focusing
comes from the term - (e!'1/) (OJ.ljae) in Eq. (5.12).
This term has a nonzero mean value,. part of which is
included in the J.l term in Eq. (5.13); thus Eqs. (6.7)
and (6.8) below include most of the mean focusing
effect due to edges in radial sector machines. We will
call the first term in Eq. (5.13) the "J.l term" and the
second, the "7J term." In a spiral-sector FFAG accele
rator, the alternating-gradient focusing comes pre
dominantly from the '1/ term. It may be noted that the
7J term includes the term (R/'1/)(oJ.ljaR) which appears
when the orbits do not scale. It is not hard to see that
in a conventional AG synchrotron l this is the dominant
alternating-gradient term.

Let us first consider a radial-sector FFAG accele
rator with a large number of sectors, and let us neglect
the '1/ term. If f j;Y«1, then 7J = 1 according to the
discussion in Sec. 4. Let us write J.l in the form given by
Eq. (4.11). Then Eqs. (6.3) and (6.4) yield, if we
substitute from Eq. (5.13), with '1/= 1,

where we have neglected a small term involving {g2} in
Eq. (6.8). The betatron oscillation advances in phase
by an angle

(J=2"Tr1l/1V, (6.9)

g(~)= [l~qr -q"Tr<~<q"Tr,

[
q 0Jl

=- 2(1-q) ,

q"Tr<~<2"Tr-q"Tr,

(I)

(II)

(6.14)

This function is plotted in Fig. 6. When ~=Ne lies
in regions labeled I, we say that e is in a positive half
sector; regions labeled II we call negative half-sectors.
We need to calculate

per sector. For stability,! (J should be less than "Tr, and
for the smooth approximation to be valid, (J must be
less than about "Tr/2. If we solve Eqs. (6.7) and (6.8) for
k and f in terms of (Jx and (Jz, we obtain

(6.10)

(6.15)

(6.16)

The quantity b is negligible for sufficiently large .Y.
By appropriate choice of (Jx and (Jz, k can be made

either positive or negative; i.e., in a radial-sector FFAG
synchrotron, with N large, the high-energy orbits may
be either on the outside or the inside of the donut. The
b-term, which is important when !V is small, is positive
and therefore favors machines with positive k, i.e., with
a given iV, !kl GIll he larger and f smaller if k>O. For
maximulll momentum compaction, i.e., minimum radial

If now

(6.19)
=-C, fJ7I"<:VA<2"Tr-q7r. (II)

(6.18)1,
V3K

7r(l-q)

V3K
C=1+-, or

7rq

K=f[(gl2)AvJl, (6.17)

is fixed by Eq. (6.11), then by Eq. (6.13), the circum
ference factor is

whichever is greater. The minimum value of C occurs
when q is chosen so that the two values of the right
member of Eq. (6.I8) are equal. We then have

J.l=1+fg(-,"E-)=C, -q7r<NC0<q"Tr, (I)

The radius of curvature, and consequently also the

(6.11)

(6.12)

4"Tr [o2+o-/-b]l

f= [2(gl2)Av]l !(Jx2-(J/+bl '

4"Tr2 r 4k f2
b=_[l+

o

(gn AV ]'
N2 2 ;\12

where
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We will neglect the second and higher order terms, and
will neglect also the oscillatory part of P./11. The 11 term
can be rewritten in the following way:

magnetic field, is constant in magnitude along the
equilibrium orbit and opposite in sign in the two half
sectors. The ratio of half-sector lengths is

(6.31)

(6.30)

(6.29)

(6.28)

1 dr
- -=cotl;.
r dB

...\i2q ;r,2

k+l=-,
47r2

t..=M/r=27r/(N tan!;).

.V2

F tan2!:=-(uz
2+u,2)-1.

47r2

gW=cos~, (6.32)

and then the circumference factor will be C= 1+ f
= 1.25.

If we take, as above, u.=7r/6, uz =1f/2, with f=t,
we obtain k+l=N2/16, t..=5.95N-2[1-14.4N-2]-I,
and tan!: = 1.05.\'[1-14.4N-2]-!.

square brackets and substitute in Eqs. (6.24) and (6.25),
to obtain

The radial separation between ridges (points of maxi
mum magnetic field), in units of r is therefore

Thus for a given choice of U z , U" and.lIT the ratio f/t.. is
fixed. The maximum allowable gap between the poles
of the magnet is proportional to t.. ; if the field flutter is
to be obtained by shaping the poles, without extra
forward windings, it can be shown (Sec. 13) that for
f/t.. fixed the maximum gap is about tt..r and is obtained
for f == t. Under these conditions, the field flutter may
be very nearly sinusoidal,

The reference curve 8=0, satisfies, in polar coordinates
rand 8, the equation

f2 tan2!:= (1'.1,2+1',2-1), (6.27)

where we have also neglected p. Note that, to this
order of approximation, formulas (6.24) and (6.27) are
independent of the form of the flutter function g(N8);
only the circumference factor Eq. (6.13) depends on
gOV8). We can rewrite these formulas in terms of the
phase shifts U per sector:

(6.25)

(6.21 )

(6.23)

(6.20)

(6.22)

(6.24)

l'=q/(1-q)= (C+1)/(C-1),

C= (1'+ 1)/ (1'-1) = [1 +tP]I.

« 1 011 )2)
v,~= -k+tf+2 - - .

11 08 A,

The first term on the right is large and oscillatory with
zero mean value, and the second is smaller but has a
positive mean value. We neglect the oscillatory part
of the second term, and substitute in Eqs. (6.3) and
(6.4), using (5.1:3) to obtain

and the circumference factor is

If we take u,=7r/6, ux =7r/2, b=O, and use the approxi
mate formulas (6.10) and (6.11), we obtain K=v'5,
l'= 1.31, C= i.5, f= 10.5, and k=V/36. It will be
shown in the next section by a more accurate calculation
that the minimum value of C where .V is large is about
5.

In a spiral-sector FFAG accelerator, !: is nearly 90°
and the 11 term in Eq. (5.13) is large. It is then possible
to use a much smaller flutter factor, so that the oscil
latory part of the p. term is small. We will again assume
that J.1. is given by Eq. (4.11) and will use the approxi
mation (4.18) for 11. If we expand Ih in a power series
in the second term of formula (4.18), we may calculate

7. Linear Stability for Radial Sectors

In order to get more accurate relations between the
parameters, we return to the betatron oscillation
equations (5.10) and (5.11). Making use of Eqs. (5.12),
(4.18), and (4.19), with 1:=0, we rewrite Eqs. (5.10)
and (5.11) for the case of a rectangular field flutter of
the form (6.19):

Note that the 7J term does not contribute in this approxi
mation to the radial focusing. If we take '1/ as given by
formula (4.18), we have

« 1 0'1/ )2)
~ oH Av

(6.26)

We will neglect the second and higher order terms ill

([2x
-±kCx=O
d82 '

d2z
-=t=kCz=O,
d(-)~

(7.1)

(7.2)
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where the upper signs apply in positive half-sectors,
and the lower, in negative half-sectors. The term
Eop.fa8 in Eq. (5.12) gives rise to terms in Eqs. (5.10)
and (5.11) which represent the focusing that occurs at
the sector edges, which we will neglect for the present.
These approximations are valid only when N»i, and
we have accordingly also neglected 1 in comparison
with n. When N is small, edge effects and higher order
terms in 1] must be taken into account. The oscillatory
terms in 1] will give rise to effects resulting from the fact
that neighboring equilibrium orbits are not everywhere
equidistant. For small N, edge effects turn out to in
crease the vertical focusing and to decrease the radial
focusing, so that considerably smaller values of the
flutter factor f may be used if k>O, without losing
vertical stability.

Let N8 0 = -q1r, N8 1=q1r, N8 2 = (2-q)1r. Then the
solutions of Eq. (7.1) within the positive and negative
half sectors separately yield the following matrix
relations between x and x' = dx/de.) at the points Go,

where

(
costf+ (kG)-l sintf+),

M+= _ (kG)! sintf+ costf+
(7.4)

(

COShtf_ (kG)-! Sinhtf_)

M_= (kG)! sinhtf- coshf- '

21rq 21r(I-q)
tf+=-(kG)!, tf (kC)l. (7.5)

X iY

We thus obtain

( X2) (XO) (7.6)
x/ =M xU' '

with

(
COStf+ coshtf_- sintf+ sinhtf_, (kG)-!(costf+ sinhtf_ - sintf+ COShVt_»).

111 = .i\,f_.i\,f+=
(kG)!(costf+ sinhtf_+sintf+ <.Oshtf_), costf+ coshtf_+sintf+ sinhtf_

(7.7)

"Ve can now calculate8

COS£Tx=t trace(M)= costY+ coshtf_, (7.8)

tf+= (2~) (~-)Jl!, Vt-= (2~) (_1)11!' (7.11)
.\ 1'-1 :\ 1'-1

MACHINE
CENTER

FIG. 7. Equilibriulll orbit notation for radial sectors
with straight sections.

is safe to go. (For the choice £Tx=1r/2, £Tz=1r/6, these
more exact formulas give 1'=1.29, C=7.9, which may
be compared with the approximate values 1.31, 7.5
obtained in the preceding section.)

A more general calculation, including straight
sections between magnets, and taking edge effects into
account, can be carried out in a similar way. We assume
that along an equilibrium orbit the magnetic fields have
equal and opposite constant values within the positive
and negative half-sectors, and that the positive and
negative half-sectors are separated by straight sections
where the field is zero; (see Fig. 7). Let the fractions of
orbit length within the positive and negative magnets
be ql and q2, respectively, and let the fraction of orbit

(7.9)

(7.12)

(7.10)

r=Vt+N-= 1.46, C=5.35.

In terms of the local field index

COS£Tz= costf_ coshtf+.

tt=k/C,

The theoretical minimum value of C is 4.45 for £Tx = 1r,
IIz=O. In order to keep the amplitude of betatron oscil
lations within reasonable bounds, the former choices of
II x and £Tz run about as close to the stability limits as it

within the magnets (we take It as positive here), and
the ratio I' of sector lengths [Eq. (6.20)J, we may
rewrite tf+ and tf-:

and in the same way,

Formulas (7.5), (7.8), (7.9), and (7.11) have been
written for k>O. However, they may also be used for
k <0, in which case it is convenient to regard C as
negative.

The smallest circumference factor is obtained by
choosing IIx as large as possible and £Tz as small as
possible (or vice versa). If we choose £Tx =31r/4, £Tz=1r/6.
we calculate from Egs. (7.8) and (7.9) that tf+= 1.32,
Vt-= 1.93. From Egs. (7.11) and (6.21), we have

1-47



1846 S Y M 0 N, K E R S T, JON E S, LAS LET T, AND T E R W ILL I G E R

length in each straight section be qo, so that

2qO+ql+q2= 1.

The angles fh and {32 shown in Fig. 7 are

{31=21fCql/N, (32=27rCqz/N.

The number of sectors is

so that the circumference factor is

(7.13)

(7.14)

(7.15)

The indices nl and n2 are the local field indices at the
centers of the positive and negative magnets:

n=k/(7JC), (7.20)
where

(
sin(7rCq2/N) )

7Jl=1-2qz 1------
Cqz sin (7r/N)

(
cos (rrCqz/N) )

-2qo 1 , (7.21)
(N/7r) sin(7r/N)

The angles cPl and cP2 shown in Fig. 7 are the edge angles
between the orbit and the normal to the magnet edges.
It is convenient to define

(7.22)

sin(7rCql/N) )

Cql sin(7r/N)

and

7J z=1-2q{1

'v.ie do not neglect 1 relative to n here. We do, however,
neglect variation of 7J within the magnets. The result is

(7.16)

0= 27rCqo/iV,

lfl={31(nl+l)l, lf2={3z(n2-1)1,

COSiTx = [1 + 28(tancPl+ tancP+!~?82 tancPl tancP2] COSlfl COShlf2
+[(nl+ 1)-I(tancPl+funcP2+8 tan2cPl+ 20 tan¢l tan¢2+02tan2¢1 tan¢2) - (nl+ 1)1(8+8z tan¢2)] sinlfl COShlf2
+[(n2-1)-I(tan¢1+tan¢2+8 tan2¢2+ 20 tan<pl tan¢2+82tan2¢2 tan¢I)+ (n2-1) 1(8+82tan¢l)] COSlfl sinhlf2
+K- (nl+ 1)I(n2-1)182- (nl+ 1)1(112-1)-1(1 +8 tan¢z)2+ (nl+ 1)-I(nz-1)1(1+8 tan¢I)2
+ (111+ 1)-I(n2-1)-I(tancPl+tan¢2+0 tancPl tan¢2)Z] sinlfl sinh,pz, (7.23)

COSiTz = [1- 28( tan¢l+tan¢2)+ 282tan¢1 tan¢2] COSlf4 COShlf3

+ [n2-1( - tan¢l- tan¢2+8 tan2¢2+ 28 tan¢l tan¢2-8z tan2¢2 tan¢l) - n21(8-82tan¢I)] sinlf4 COShlf3
+[nl-1( -tan¢1-tan¢2+8 tan2¢1+28 tan¢l tan¢2-82tan2¢1 tan¢2)+nl1(8-82tan¢2)] COSlf4 sinhlf3
+![ -n21nl102-n2Inl-l(1-8 tan¢1)2+n2-1nll(1-0 tan¢2)2
+n2-1nl-1( - tan¢l- tan¢2+8 tan¢l tan¢2)2] sinlf4 sinhlf3. (7.24)

8. Linear Stability for Spiral Sectors

For spiral-sector accelerators, the circumference
factor is close to unity, and minimizing C is no longer a .
major consideration. The ridge separation A is, how
ever, rather small, and if the gap between magnet poles
is to be kept as large as possible, it appears that the
field flutter in the· median plane must be at least
approximately sinusoidal. We will therefore assume a
field in the median plane of the form (2.1).

II = Ho(r/ro)k{l + 1sin[iVO- (l/w) In(r/ro)]}, (8.1)

(8.3)

where we have set

l/w=~V tanr=27r/A. (8.2)

reference circle of radius

rl = cp/[eH, (ro/rl)k],

one obtains substantially the following;

r"+[1+k+U/w) cosNO](r-rl) = lrl sinNO, (8.4)

z"-[k+U/w) cos.\·O]z=O. (8.5)

These equations suggest alternating-gradient focusing
of the type characterized by the Mathieu differential
equation, but the presence of the forcing term on the
right hand side of the equation for the radial motion
indicates that a forced oscillation will be expected and
will be given approximately by

The form of Eq. (8.1) is chosen so as to guarantee that
the accelerator scales.

The linearized equations for the betatron oscillations
in the field (8.1) can be obtained from the general
analysis of the first two sections, but it is perhaps more
illuminating to derive them directly. If one undertakes
to write the linear terms in the differential equations
characterizing the departure of the particle from a

1 . \. ()r-rl= ------rl sm. O. 8.6
V- (k+l)

Because of the presence of this forced motion, one
realizes that not only will the nonlinear terms in the
differential equations be large, but that a noticeable
influence upon the betatron oscillation wavelength can
result.
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In this way one obtains linearized equations, of which
the most signifIcant terms appear below:

It is appropriate, therefore, to perform an expansibn
about a more suitable reference curve by writing

0.27T
o

FIRST STABILITY REGION FOR
SMALL- AMPLITUDE 'OSCILLATORS
IN MARK V FFAG ACCELERATOR

k» I

(CALCULATED - LESS ACCURATE
FOR ORDINATES ABOVE It,)

0.5r---------r------..,---,

"';
CXl-:
d O"z=7T

0.87T

I 0.67T

O'---------L-----~:__--"

o 0.1 0.2
K/N 2

FIG. 8. Dependence of <1. and <1. within the stable region on
spiral-sector parameters for N» 1.

f
WN2

9. Nonlinear Effects

The preceding analysis of betatron oscillations has
been based on an expansion of the equations of motion
in powers of the displacement from the equilibrium
orbit, keeping only the linear terms. The small-ampli
tude betatron oscillations in x and z are then found to
satisfy linear differential equations with coefficients
periodic in the independent variable e.

In a perfectly constructed accelerator, the only
periodicity would be that associated with the iV-identical
sectors around the machine, and the period of the co
efficients would be 27rj;Y. In an actual accelerator, there
will be imperfections, so that the coeffIcients will be

k/i\'2 and f/1V2w. We accordingly plot curves of constant
rT. and rTz vs k/!P and f/A-2w. If we take rTz =7r/6 and
rT.=7r/2, with f= t, we obtain k=0.057J\T2, f/N2w=0.25,
and :\= 6.3N-2, which may be compared with the
approximate values k=0.062N2, f/N2W =0.265, and
:\=5.95;\7-2 obtained at the end of Sec. 6.

(8.8)

(8.9)

These equations have the form of an extended ]\fathieu
equation

d2u/dr2+(A+13 cos2r+C cos4r)u=0. (8.10)

P/w
2 J+5 cos2NO z=O.

lV2 - (k+ 1)

[
P/W2 f

x"+ k+ 1-}------+-- cosNO
N2- (k+ 1) w

P/w
2

]
+~ cos21VO x=O,

;\72- (k+l)

[
P/II,2 f

z"- k-~----+-cos;VO
.\'2- (k+1) W

'Laslctt, Snyder, and Hutchinson, "Tables for the deter
mination of stability boundarics and characteristics exponents for
a Hill's equation characterizing the Mark V FF:\G synchrotron."
l'didwcstern Univcrsities Rcsearch Association Notes, April 20,
1955 (unpublished).

The neglected terms in the coefficients A and C in Eq.
(8.10) as given by Eqs. (8.8) and (8.9) are of order
k2w2 times the main terms, so that for f = t, the error
in these coefficients is less than 2% over most of the
region of stability (Fig. 8). The neglected terms in the
coefficients 13 are of order t (f/ ]V2w )2 and Hf/ N2W )2
in Eqs. (8.8) and (8.9), respectively, so that the errots
will be less than 2% and 8%, respectively, over most
of the region of stability. The coefficient of the third
harmonic term (which has been omitted) is of order
Hfr\,2w)2 and Hf/N2w )2, respectively, times the
coefficient 13; since the third harmonic contributes to
rT an amount proportional to t the square of the co
efiicient, its contribution is completely negligible.

Tables of the characteristic exponent (rTl1l') of the
extended Mathieu equation (8.10) have been computed
on the ILLIAC, using a variational method.9 Values of
A are tabulated for a range of values of rT, 13, and C,
covering the significant portion of the first stability
region. Results for the l\hthieu equation C=O are
included. So far as we are aware, there are at present
no published tables of characteristic exponents for the
Mathieu equation within the stahili ty region.

In Fig. 8 we plot a stability diagram for a spiral
sector FFAG accelerator with k»1 computed from the
above formulas and tabulated solutions of Eq. (8.20).
If k»l, the coeflicients A, 13, and C depend only on
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strictly periodic with the period 211" in e, and approxi
mately periodic with period 211"/N. Associated with the
period 211"/N is the requirement that CTx and CTx must not
be integral or half-integral multiples of 211"; in practice
it appears that CT should be less than 11", since otherwise
the tolerances on magnet construction and alignment
become very severe. Associated with the period 211" is
the requirement that IIx and II. must not be integral or
half-integral if imperfection resonances are to be
avoided, and, in addition, if imperfections can couple
the x and z motions, "x+"z must not be an integer.

The study of the effects of nonlinear terms in the
equations of motion has not advanced nearly as far as
the study of the linearized equations. Approximate
analytic methods of treating nonlinear equations with
periodic coefficients have been developed by IV[oser, to

Sturrock,8 and Hagedorn.1I Their results can be sum
marized as follows: If the coefficients in the equations
have period 211" in (-), and liz, ". are the numbers of
betatron oscillations in one period 211", then resonances
can occur when

nx llz+tl.II.=any integer, for

ltz,tl.=O,1,2· . '. (9.1)
Let

(9.2)

Then if q= 1 or q=2, the motion is unstable even in
linear approximation. (This is the rule stated in the
preceding paragraph.) If q=3, then in general, the
effects of quadratic terms in the differential equations
are such as to make the motion unstable even at very
small amplitudes. If q=4, then the effects of cubic
terms may be to render the motion unstable, depending
on the form of the cubic (and linear) terms. If q>4,
then, in general, the motion is stable for sufficiently
small amplitudes of betatron oscillation. In any case,
if q~ 4, and if the equations of motion are nonlinear,
then there will be in general a limiting amplitude of
betatron oscillations beyond which the oscillations are
unstable at least in the sense that they leave the donut.

Numerical studies carried out on the ILLIAC at the
University of Illinois seem to confirm these conclusions.
It was also reported by the Brookhaven group12 that
experiments with the electron-analog alternating
gradient accelerator have confirmed these conclusions.

If we apply the above criteria to the sector periodicity
21f/N, then we must replace IIx and fl. in Eq. (9.1) by
CTx/27r and CT./27r, the number of betatron oscillations
per sector. We then conclude for example that values of
CTz or CT. near 27r/3 are to be avoided, as well as values
such that CTx+2CT, or CT.+2CTz is nearly 27r. We call these

10 ]. Moser, Nachr. Akad. Wiss. G6ttingen, Math.-physik. Kl.
rIa, No.6, 87 (1955). We are indebted to Dr. Moser for a very
helpful discussion of his results.

11 R. Hagedorn, CERN Report, CERN-PS/RH 9, November,
'1955 (unpublished).

12 Courant, Kassner, Raka, Smith, and Spiro, Phys. Rev. 100,
1269(A) (1955).

re'sonances with the periodicity of the structure itself
"sector resonances." We have indeed found in numerical
studies that the limiting amplitudes for betatron oscil
lations in spiral sector machines become very small when
CT approaches 27r/3.

If we apply the above criteria to the once-around
period 211", then we find that the values of IIx and II.

excluded by the above rules are as shown in Fig. 9. We
plot IIx horizontally and liz vertically. The lines labeled
q= 1, 2, 3, and 4 represent the values excluded by the
above rules. The lines q= 1 are integral resonances. The
lines q=2 are half-integral resonances (vertical and
horizontal) and sum resonances (diagonal). The lines
q=3, 4 are third and fourth integral resonances. It is
not yet altogether clear how serious the third and fourth
integral resonances are, since they arise only from non
linear imperfections in the machine. Experiments with
the electron analog at Brookhavenl2 seem to indicate
that these resonances must be excited by deliberately
inserted nonlinear imperfections in order to be detected.
This is not true of course of the CT = 211"/3 resonances
discussed in the preceding paragraph, which are reso
nances with the inherent periodicity of the structure.
It would at present seem wise to avoid all the excluded
lines on Fig. 9 if this can be done.

It should be pointed out that nonlinear terms in the
equations for the radial sector accelerator are not very
large, being not greater in order of magnitude than
nonlinear terms which arise in some conventional
alternating-gradient accelerators which have been
contemplated. However, the nonlinear terms which
arise when the sectors spiral are much larger and play
a: very important role in determining the character of

"z

Mz-I L-_-'-'-_'"--L-'--'-'''"'__-LJ---''-_.l-J._.-=I

Mx-I Mx M."'I

".-
INTEGRAL RESONANCES q = I

HALF- INTEGRAL RESONANCES q= 2

THIRD-INTEGRAL RESONANCES q= 3

FOURTH-INTEGRAL RESONANCES q= 4

FIG. 9. Linear and nonlinear resonances in an .\C
accelerator. M. and M, are integers.
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10. Momentum Content and Phase Stability

The momentum peR) is determined by integrating
Eq. (5.6):

the betatron oscillations. Numerical studies indicate
that although the motion in spiral-sector synchrotrons
exhibits marked nonlinear effects, the amplitude limits
are large enough to accommodate reasonable betatron
oscillations provided u is not close to 27f/3 (say Ux

<0.&).

FIG. 10. Frequency of revolution as a function of energy.

20168 12
E-Eo

Eo
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1.0 r '\ \.

"",
"' ..

.................-....- __ s K' 1
-------_1 _

(10.1)r
R k+1 ]

p= po exp i --dR.
Ro R

The angular velocity of a particle in an orbit R is

If k is independent of R, this reduces to the simple
relation (5.14). Thus momentum and energy are deter
mined as functions of the orbit size R. Since R is es
sentiallya mean radius of the orbit, the radial aperture
required for any given initial and final momentum can
be determined from Eq. (10.1). It is clear that for a
given momentum content, the radial aperture decreases
with increasing k. If k»1, then the radial aperture is
much less than R, and we have approximately, for
constant k,

RI-Ro~ ( 1 ) (Pi-.p.O)---- -- In -- .
R o k+1 po

de {3c pc2

w=-=-=-
dt R ER'

(10.2)

(10.3)

then for E<Et, dw/dE is positive, while for E> Et ,

dw/dE is negative. If particles are accelerated by radio
frequency voltages applied to one or more accelerating
gaps, then the theory of phase stability in FFAG
accelerators is similar to that for conventional cyclo
trons and synchrotrons.J3 When dw/dE is positive,
particles may execute stable synchrotron oscillations
about a phase on the rising side of the voltage wave at
the accelerating gap. When dw/dE is negative, the
stable phase is on the falling side of the voltage wave.
At E= E t , there is no phase stability. In order to
accelerate particles beyond the transition energy, it is
necessary to shift the relative phase at which the par
ticle arrives at the accelerating gap from the rising to
the falling side of the voltage wave.

In a cyclotron, the frequency of revolution, w/2,
must be the same for all energies, and Eq. (10.6) then
furnishes a relation between k and E:

where E is the total energy, including rest energy. By
squaring Eq. (10.3) and differentiating, we obtain

E dw

(R/E) (dE/dR)
(10.4)

(10.9)

In a cyclotron, k must increase with energy, and the
betatron oscillations therefore do not scale even when
the equilibrium orbits scale.

We may integrate this equation if k is constant to obtain

where WI is the angular frequency of revolution at any
particular energy E l . A graph of w/Wt is shown in Fig.
10, where Wt is the angular frequency at the transition
energy, and we have taken k=99. If we define the
transition energy

III. APPLICATIONS

11. FFAG Proton Synchrotrons

As an illustration of the application of the FFAG
principles to high-energy accelerator design, possible
parameters are given below for a radial-sector and a
spiral-sector synchrotron. Many of the considerations
governing choices of parameters are common to these
synchrotrons, and to pulsed-field alternating-gradient
synchrotrons,! e.g., resonances, alignment tolerances,
and gas scattering. It is anticipated that injection and
acceleration might be accomplished somewhat differ
ently than in pulsed-field synchrotrons of comparable
energy.

Whereas injection from a 50-l\'1ev proton linear ac
celerator is planned for 25-Bev pulsed-field accelerators,
a S-Mev Van de Graaf electrostatic generator might be

13 D. Bohl11 and L. Foldy, Phys. Rev. 70, 249 (1946); D. M.
Dennison and T. H. Berlin, Phys. Rev. 69, 542 (1946); R. Q.
Twiss and N. H. Frank, Rev. Sci. Instr. 20, I (1949).

(10.5)

(10.6)

(10.8)

(IO./)

l~ dw (k-1)E02-E2

w dE (El-Eo2)(k+1)

\Ve now differentiate the equation

El=p2i2+E02,

and use Eq. (5.6) to obtain
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used to inject into FFAG synchrotrons for the reasons
mentioned in the introduction. Electrostatic-generator
injection with FFAG synchrotrons would have the
advantages of higher pulse currents, greater simplicity,
lower cost, and better beam energy and size resolution
than are at present realized with proton linear ac
celerators. Although one-tum injection using a pulsed
inflector with a pulsed current of milliamperes is the
most obvious injection system, many-tum injection
may be used to give greater beam currents by scanning
the aperture with the injected beam up to the space
charge limit.

While the possibility of low-energy injection was
evident when FFAG accelerators were conceived, it was
also realized that it is usually uneconomical to use iron
at a low flux density and that large momentum content
in an FFAG accelerator requires much pole face area
working at a very low flux density. This suggested the
use of FFAG accelerators in succession with high flux
density in the iron and with regenerative beam ex
tractors used backward to inject 'particles from one
accelerator into the next at high energy. Such re
generative peeler systems for extraction have been used
for some time on betatrons and recently on cyclotrons;
time reversal of the orbits would allow the system to
be used for injection provided the injected beam can be
caused to move away from the magnetic perturbation
at the same time the excited oscillation in the beam is
damped. This would require very careful adjustment.
The feasibility of this sytem is being given extensive
theoretical study by Teng,t4 and by others at the
Argonne National Laboratory. Teng emphasizes that
the use of high-energy injection largely avoids the fre
quency modulation problem and the problems of con
trolling the shape of low magnetic fields needed for
low-energy injection. However, the radio-frequency
modulation problem has many interesting possibilities
of solution not available to pulsed-field accelerators.

The arbitrary frequency-verslIs-time program of
FFAG synchrotrons allows the use of a mechanical
modulation system with high-Q cavities. With the
high Q realized in unloaded cavities, the required
voltage gain per turn could be given the particles by
one cavity driven at reasonable power. l\'lodulation
could be accomplished by moving a diaphragm to tune
the cavity capacity. With such a system, model tests
indicate a frequency change of a factor of 3: 1 is prac
tical. Using 5-J\'Iev injection, a frequency change of
10: 1 is required to reach relatiyistic velocities. One
might then use one cavity operating as a self-excited
oscillator to accelerate particles from injectiori to about
50 Mev. The voltage on that cavity would then be
turned off as voltage on a second cavity is turned 011,

and acceleration continued with the second cavity. The
change-over could be triggered by frequency comparison
between cavities. The relative phases of the cavities

.. L. C. Teng, Phys. Rev. lOO, 1247 (1955).

could be controlled by a loose coupling between them.
(With the University of Michigan electron synchrotron
two-cavity rf system, it was observed that it was
possible to make the transition from one cavity to
another without an observable beam loss.) A third
cavity might be added and a second transition made if
desired, since it is observed that most of the energy is
given the particles after they have reached almost
constant velocity, c (see Fig. 10), and this third cavity
could be designed to provide very high voltage over a
small frequency range. Fine frequency adjustments
would be made with reactance-tube loading of the
cavities. With this rf system, it appears reasonable to
accelerate protons to 20 Bev with a repetition rate of
several per second.

While the above system is suggested on the basis of
experimental tests already in progress, it is realized
that other rf systems might prove more practical. Some
of these are:

1. Many ferrite-loaded, low-voltage, low-Q cavities
operated as tuned, driven amplifiers. Tuning would be
accomplished by biasing the ferrites with currents. This
is the system planned for the CERN and Brookhaven
pulsed AG synchrotrons.

2. The use of drift tubes or operation of one or more
entire magnet units as a drift tube on a high harmonic
of the particle rotational frequency. In this case tuning
over a wide frequency range appears difficult.

3. Several rf schemes have been proposed in which
many groups of particles of different energies are present
in the donut simultaneously. If any of these schemes
proves practicable, large increases in duty factor and
hence in beam output will become possible.

In alternating-gradient synchrotrons, phase stability
vanishes at a transition energy, E t , given by Eq. (10.8).
It is possible in the radial-sector FFAG designs to have
k large and negative. In this case there is no transition
energy, and high-energy orbits lie on the inner radius
of the machine. Negative-k designs appear to be not
practical with spiral sectors. Figure 11 illustrates

FFAGlk<O)

_---PFAG

RADIO
FREQUENCY

FFAG (k>O)

E,
ENERGY

FIG. 11. Radio-frequency program for pulsed-field AG
and FFAG synchrotrons.
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qualitatively the radio-frequency versus energy program
in a pulsed-field AG accelerator, and in comparable
FFAG accelerators with positive and negative k.

TABLE II. Physical dimensions of a radial sector accelerator.
Subscript 0 refers to maximum energy, subscript i refers to
injection.

TABLE I. Illustrative values of the parameters for a radial
sector accelerator.

dn 211" sinu
-= . (12.1)
n N(fl sinf! coshf2-f2 cosf! sinhf2)

1. E. D. Courant and H. S. Snyder, Internal Brookhaven
National Laboratory Report, June 1, 1953 (unpublished); G.
Luders, CERN reports CERN-PS/GL 4, GL6, GU, GL8, and
GL9 (unpublished); E. Crosbie, Argonne Accelerator Group,
Progress Report No.5, February 24, 1955 (unpublished).

For the above design figures, the tolerance on n is about
one percent. A closer tolerance might be held on n in
the fixed-field case than in the pulsed-field case since
all field adjustments are time-independent.

Misalignment of magnets in alternating-gradient
accelerators has been shown to give rise to large
deviations of equilibrium orbits.!5 In radial-sector
accelerators, the equilibrium orbit deviation for a given
rms sector misalignment may be shown!5 to be worse,
by approximately the ratio of circumference factors,
than in a conventional AG accelerator of the same
number of magnet units and comparable liz and liz. Here
the simplifying assumptions are made that misalign
ments occur for magnet units as a whole, and that they

(13.1)

(13.2)

E i = 5 Mev proton kinetic energy
Ti=95.0 m synchrotron radius

B.=200 gauss magnet guide field
Pi= 17.8 m radius of curvature
Zi = 15.0 cm vertical semiaperture
radial aperture
transition energy
vertical semiheight of injected beam
angular spread of injected beam
pressure in the vacuum chamber

IIz
2 = 1+k,

11,2= -k+ (J/W.V)2+~t,

E o=lO Bev
To=97.3 m

B o=20 000 gauss
po=18.2 m
Zo=3.0 cm

To-Ti=2.3 m
E,=12Bev
Zi=2,5 cm
Oi= ±O.OOI radian
p=5XI0-6 mm Hg

16 N. M. Blachman and E. D. Courant, Phys. Rev. 74, 140
(1948); 75, 315 (1949).

17 J. Seiden, Compt. rend. 237, 1075 (1953); D. W. Kerst, Phys.
Rev. 60,47 (1941); J.P. Blewett, Phys. Rev. 69, 87 (1946).

are random and independent. For the accelerator in this
example, an rms misalignment of the 128 magnets of
0.02 em would be expected to result in'a maximum
deviation of the equilibrium orbit of ±2.0 cm.

The effects of space charge and gas scattering have
been treated by Blachman and Courant!6 and othersP
In this example, an injected beam from a typical Van
de Graaf electrostatic accelerator would fill ± 10 em of
aperture after gas scattering. Adiabatic damping of
betatron oscillations as the momentum increases by a
factor of 100 during acceleration would then reduce
these oscillations to ± 1.0 em. At a reasonable rate of
acceleration (75 kilovolts per turn), 3X 10" protons per
pulse could be accepted.

The values of physical quantities consistent with the
parameters of Table I and the above considerations are
given in Table II.

Figure 12 illustrates in cross section a possible
method of constructing the magnets. Much of the large
change in field would be accomplished by back-winding
coils on the pole sufaces. Table III illustrates the
magnet parameters for the accelerator described above
in Tables I and II.

With the rf system described above, the repetition
rate is limited only by the rf voltage which can be
applied and by the rate of mechanical frequency
modulation attainable. Using this rf system with the
accelerator of this illustration, one to three pulses per
second of 3X 1011 ten-Bev protons appear attainable.

13. 20-Bev FFAG Proton Synchrotron
with Spiral Sectors

As an example of an accelerator made with a ring
magnet producing loci of maximum field which cross the
path of the particle at a small angle, we take a field of
the form (8.1). The motion for this case is treated in
Part II. Equations (6.24), (6.2i), and (6.31) show that
in the smooth approximation

(J, = 122.1 °
(J,= 22.0°
v, = 21.7
v,= 3.91

{1, = 15.00°
{12= 9.37°
0= 0.05°

4>,=4>,= 5.74°

N= 64n, =n,= 36
C= 5.35
k = 192.5

12. A IO-Bev FFAG Proton Synchrotron with
Radial Sectors

The following design for a high-energy proton syn
chrotron is intended to illustrate the features of the
radial-sector FFAG synchrotron. This design type is at
present the most completely understood of the FFAG
accelerators thus far suggested, although spiral sectors
certainly offer the possibility of more economical design.
From the expressions (7.23 and (7.24), values of U z and
U z may be found for a given choice of iV, n, {3!, (32, and o.
In Table I, typical values of the parameters are given
for a 64-sector radial-sector accelerator. For this
example we choose 10 Bev as the maximum proton
energy and 20 000 gauss as the magnetic field for the
equilibrium orbit of that energy. The limit on the
strength of the focusing, radially and vertically, is
set by the tolerances which must be placed on pa
rameters of the machine such as n to avoid resonances.
Since, if U z is kept constant, liz is roughly proportional
to the square root of n, weaker focusing relaxes these
tolerances. In cases where the simple expressions (7.8),
(7.9) hold, the tolerance on n for Llll=! is, by differ
entiating,
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FIG. 12. Cross section of radial-sector magnet and coils.

TABLE III. Magnet parameters characterizing a radial
sector accelerator.

radius, so that the radial separation of the ridges at the
outside edge is 25.3 em. This result is only approximate.

The accurate solution to the linearized equations can
be summarized in the form shown in Fig. 8 which
exhibits the "necktie" for the case of a magnetic field
of our prescribed form in the median plane. According
to this diagram, take 0",=0.6151r and uz=0.251r; then
1/wN2=0.303 and k/N2=0.075. If we choose N=33
sectors, we have: 11,= 10.15, liz = 4.15. Both values are
now in the middle of a different large square allowed by
the integral, half-integral, and third integral rules. (To
be in the center of the largest allowed squares, the
working point II" liz should be 0.15 units above integers
for both dimensions or 0.15 units below integers for both
dimensions.) If we again take 1=t, then w= 1/1320, so
"Aro = 23.8 em radial ridge separation.

At this point, consideration must be given to the
possible magnitude of 1 which can be achieved. The
shapes of magnetic potential surfaces which will produce
a flutter 1=t with k=150 are shown in Fig. 13. The

o'------:5:':o----:-:Io--::o----:-:15~O~----:2:':0-=-'0

RAOIAL COORDINATE

FIG. 13. Spiral-sector equipotentials for k= 150 and 1=0.25.
Ordinates and abscissas are in the same units.
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curves are loci of constant magnetic potential for
several different values of the potential. These curves
were determined by digital computation. They show
deep crevices developing in the surfaces or poles when
the ridge is about 0.13"A away from the median plane.
Apparently when the gap between ridges exceeds t of
the radial separation of the ridges, the crevices in the
surfaces occur. These crevices mean that a pole of
opposite polarity is needed in the crevices to produce
the required flutter when the gap is large. If we do not
want pole faces with these reverse poles embedded in
them, then the gap between ridges must not exceed one
fourth of the radial separation of the ridges. The same
result has been obtained analytically.

Figure 14 shows the calculated shape of the equi
potential surfaces for 1= t. The dependence of gap is
shown in Fig. 15 where G is the maximum gap at ridge
tops without forward windings. If we require that the
II'S be constant, 1/w must be constant. Thus we plot
G1/w vs 1 in Fig. 1. We see that the flutter 1 which
gives the maximum possible gap at the ridges, under

9650 tons
670 tons
112000 ampere turns
5.5 megawatts

Total weight of iron
Total weight of copper
Required current
Required magnet excitation ~ower

where w=A/21r and A is the radial separation between
adjacent ridges in units of the radius.

Parameters for a 20-Bev ring magnet will be derived
using this smooth-approximation result and the con
dition 0"= 21rll/N<1r, the stability limit for a Hill
equation. Later the alteration of these parameters
resulting from exact solution of the linearized differ
ential equation by the use of the Illiac digital computer
will be shown.

We can choose from many types of injectors-linear
accelerators of 50 Mev, cyclotrons, or, for much lower
energy, Van de Graaf electrostatic accelerators. For the
purpose of this example, suppose we choose an extreme
case in which the ring magnet is able to hold orbits of
5-Mev injected protons at its inside rim and orbits of
20-Bev protons at its outside rim. We can choose
k=82.5, ro=5000 em, where ro is the mean radius of
the high-energy orbit using 14000 gauss for the average
field strength at the orbit. This gives ri= 4688 em as the
mean radius of the 5-Mev orbit. A radial extent of the
magnet gap of approximately d=rO-ri=312 em is
needed. The ratio of the average field at the high
energy orbit to the average field at the low-energy orbit
is fio/ft=203.

Since k=82.5, 11,=9.15 radial betatron oscillations
around the machine according to the smooth approxi
mation. To remain within the stability limit for the
linearized differential equation with varying coefficients
we must have 211<N. Choose N=31 sectors or ridges
crossed in one passage around the machine. This gives
0",=0.611". We can then choose O"z=0.2681r, so that
liz = 4.15. This choice of liz and liz avoids the forbidden
lines on Fig. 9. The working point chosen is then in
one of the two largest squares available in (11"liz) space.
The ridge characteristics can now be found by the
second smooth approximation Eg. (13.2) which gives
1/w= 218 with the above values of X and k.

Thus if we take 1=5" then "A =0.00506 in units of the
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FIG. 15. Maximum gap, G, times (f/X), for fixed tune as a func
tion of j. The criterion of no crevice in the pole face is used. The
field variation in the orbital plane is sinusoidal.
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introduction of reverse poles between ridges where it is
most easily done, that is at the low-fIeld rim. In practice
this can be accomplished by running currents in two
directions between a few of the low-field ridges. Then
the iron surfaces may be separated farther to give an
increased vertical aperture. It seems reasonable that the
gap at the injection radius could be doubled this way.

A configuration of the ridges and coils which produces
the correct field shape is shown in Fig. 16 which shows
iron contours as magnetic equipotentials. The location
of current-carrying copper between the ridges is shown.
This current terminates some magnetic potential
surfaces, allowing the iron to be brought down to the
same gap magnitude at successive ridges. Since the
magnetic field decreases by the same factor between all
adjacent ridges, the amount of back-wound current in
the slot decreases by the same factor between slots.
Thus the slot at the high-field ridge carries the largest
number of back-wound ampere turns. The figure shows
how the gap at the injection radius might be doubled
by using forward and backward currents in the slot.
Such a magnet requires about 1.8 megawatts of power.

With this method of providing the field shaping, it
would be necessary to carry current over the ridges of
iron as they spiral outwardly. A way to do this is to have
the gap between ridge tops close a little as they spiral
outward to produce the field increasing as r k

, and then
to have the wires carrying current come back to the

FIG. 16. Spiral-sector magnetic structure. The insertion of
back-wound current carrying conductors allows the gap between
the poles to be about the same for all ridges.

i
0--"-----'1.6o1.6

2.8

Z/w

conditions of constant alternating-gradient focusing,
that is, constant j/w, is j=t, and the maximum gap is
G=0.275 in units of the ridge separation. The curves
show that flutter factors from 0.14 to 0.36, without
crevices in the poles, require that the gap be only 10%
less than the maximum possible gap. These analytical
results are similar to those from digital computation as
already mentioned.

For the example we are considering, we had Xro
= 21rW1'o= 23.8 cm radial separation between ridges at
ro. This means that if we choose G=0.275Xro, then
G=6.15 cm at the injection radius and 6.6 cm at the
high-energy radius.

To make the magnetic field 203 times larger at the
high-energy radius than at the injection radius, this gap
would have to be reduced by a factor of 203 unless
currents are distributed on the pole face. By placing
such windings between iron ridges, the gap can be kept
full size at all radii. Thus, by proper winding, G(r)
could always be about 0.275 times the ridge separation,

3.2

FIG. 14. Magnetic potentials, V=Z/W+ jsin(X/W) sin[H(Z/
W)], for k=O and j=0.25. Poles corresponding to V=l.1 have
the widest gap without crevices in the pole surface.

which is practically constant. However, it is not most
desirable to have the gap essentially constant at all
radii because the amplitude of betatron oscillations
decreases as p-l while the particle is being accelerated.
Thus if the momentum increases by a factor of '"'"'203,
then the space required for betatron oscillations de
creases by a factor of (200)1 or '"'"'14. Consequently it
would be best to have the gap at the injection radius
about 10 times larger than the gap at high energy and
it would be desirable to fill this large aperture with beam
at the injection time. Actually the gap at successive
energies should be big enough to accommodate not only
the decreasing betatron oscillations but also the
misalignment distortion of the equilibrium orbit. If we
maintain a gap as large as possible without the addition
of opposite poles between ridges, that is if we keep
G=O.275"Ar, then the aperture available actually in
creases slightly during acceleration due to the slight
increase in r. To reverse this gap variation without
decreasing the gap below about 6.2 em would require
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FIC:. lS. Floatini'; c<]uipotcntials which produce sinusoidal
field variation.
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F. L. Peterson and T. B. Elfe of the MURA technical
group.

An interesting observation which they made shows
that there is the possibility of relaxing the requirements
for a small gap in a spiral sector magnet. They were able
to increase 1greatly above the design figure of t without
closing the gap and without using reverse poles or deep
crevices between ridges. It was done merely by deviating
slightly from a simple sinusoidal field variation. A
value of 1,.....,0.38 was reached without a great harmonic
distortion of the field in the median plane. Further
studies of this possibility will be needed to show how
much the alternating-gradient term in Pz is increased
by the attainable field shapes. Any increase would allow
opening the gap more.

An important question must be answered before it is
known how large a gap is useful. As pointed out in Sec.
9, the motion of a particle in a magnetic field which
causes nonlinear restoring forces generally has a limit
to the amplitude for stable motion or an amplitude
limit beyond which the particle starts to oscillate about
a second closed equilibrium orbit in or outside the
accelerator. If oscillation about this second orbit takes
the particle out of the aperture, the particle is lost. In
the radial direction this limit can be as large as 0.1 to
0.3 of a ridge separation and in the axial direction it is
smaller. The example given does not have an especially
large limit because U x is near 27r/3. The increase of such
stability limits by suppression of some of the nonlinear
forces would make it worthwhile to open the gap
farther than 0.275 of the ridge separation because more
vertical space useful for betatron oscillations would
become available. For some vertical stability limits
observed with the digital computer, there would be no
value in opening the gap wider because the stability
limit is within the gap available. The sources of the
nonlinear effects are being studied with the purpose of
designing a spiral-sector system to make larger gaps
useful. In general, if the angle t is made smaller so the
oscillations do not cause a large variation in sector
length, the stability limit increases.

-n-rl-ri'rl~:f\1~GrM~nn
SMALL SLANT ALONG RIDGE

DECREASES FIELD SECTION
A-A

FIG. 17. Method of bringing conductors back across ridges
at straight sections.

beginning radius at the start of the next sector around
the magnet. Straight sections between sectors provide
the opportunity to bring the conductors back to the
same radius. Since the field changes by about 35% from
ridge to ridge, the gap would have to change by about
35% between the crests of ridges from one end of a
sector to the other. A less drastic change in gap along
ridges results if the sectors, which are about 32 feet long,
are subdivided say 3 times to form approximately 10
foot lengths with straight sections between. Then the
gap needs to vary only about 12% along a ridge top and
the wires between ridges can come back to the same
radius every 11 feet around the circumference. This is
shown in Fig. 17.

This brings up the problem of straight sections where
the magnet is separated and where the field is approxi
mately zero. If such cuts in the magnet are made along
approximately radial lines, the machine and the orbits
do not scale. Consequently u varies periodically as the
radius of the orbit grows. This problem is one of the
most important being studied by the MURA technical
group and there are indications that the distribution
of the straight sections, such as subdivision of sectors
into several parts as just mentioned, minimizes the
variation of u to a tolerable value with a useful length
of straight section.

There is another example of a method to attain the
desired field shape which simplifies some of the problems
and which has been studied in the form of magnetic
models by the MURA technical group. Such a structure
is shown in Fig. 18. The average radial dependence of
field (rk ) is produced by back-windings on iron poles
similar to those used in a radial-sector magnet. The
magnetic equipotential surfaces so formed are distorted
or kinked by some other means such as the presence of
iron rods having the same shape as the desired magnetic
equipotentials on the side toward the orbits. These rods
assume their magnetic potential from their positions in
the gap. Since the rods spiral from one radius to another,
they must be segmented with a few nonmagnetic
spacers such as brass washers to prevent magnetic
flux from traveling along the rod. Such ridges and the
proper fields were achieved in the models made by
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The most promlsmg method of decreasing rand
hence decreasing the nonlinearities so that the stability
limit is increased is to use magnets which produce a
large flutter, f. Two very promising cases of this type
follow:

One case has rectangular ridges of iron with the gap
between ridges i as big as the gap at the valleys. (See
Fig. 19.) Taking account of the fringing flux, we can
produce an f=V2(t::..H)rms/H=O.71 in the favorable
case of A=2 and D=9, where A and D are in units of
half-gaps. If we want f/w=330, as in the previous
example, then w=O.00215. This case gives a good size
for the injection aperture:

G= [4mvj(A +D)]X4688 cm= 11.1 em.

The circumference factor is less than (A +D)/ (A +iD)
= 2.3 which could be tolerated at the injection radius.
If we do not require that the equilibrium orbits scale,
then the ridge proportions can change and the circum
ference factor can be improved at the high-energy

FIG. 19. Rectangular spiral ridges. The distributed
back-winding is circumferential.

radius. For example, a gradual transition could be made
to A =9, D=8, and G=7 em, with the same f/w in
cluding fringing effects. The circumference factor,
including fringing effects, is then 1.38.

A structure which has many desirable features is a
separated spiral-sector magnet. By winding each spiral
ridge separately with a forward coil and with distributed
back-windings on the pole face (in the manner shown in
Fig. 12 for radial sector magnets), the ridges can be
spaced widely enough to bring the field down to ap
proximately zero between ridges; this increases f
greatly. If the field shape is that shown in Fig. 20,
which gives a circumference factor of 2, the flutter f is

. 1.28 and the gap can be about 30 em. The angle between
the sector edge and the orbit is large enough to allow a
large-amplitude betatron oscillation before the stability
limit is reached-possibly as much as 90-cm amplitude.
Sector dimensions are shown in Fig. 21.

The gap at the high-field mdius can he made much
less than 30 em in order to conserve power, but it is
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FIG. 20. Circumferential distribution of axial field for separated
spiral sectors, at 10 OOO-cm radius with 30-cnl gap.

highly desirable to keep this large gap at the low-energy
radius for injection purposes.

\:Vhile this structure requires a large circumference
(not all occupied by iron), it has many conveniences
compared to magnets already described. The fabrication
has simplifying features. The vacuum tube is more
easily constructed. Access to the beam for targets is
better. The sectors can be separated more where longer
straight sections are desired and scaling is still possible.
The nonlinear stability limit should be comfortably
large, permitting a large useful injection aperture.

14. FFAG Betatrons

The large momentum spread which can be held by
FFAG magnets allows a great increase in the acceptance
time of injected particles if betatron acceleration is
used.4 The injected particles may be accepted into
stable orbits in the dc magnet gap at the low-energy
radius all the time that the central magnetic flux is
rising; as the particles gain energy, they spiral toward
the high-field radius. After each particle orbit has
linked a certain change of flux, t::..,p, corresponding to an
increase in momentum to its final value, it reaches the
target (or ejector) radius. Charged particles continue
to arrive at the target as long as the flux continues to
rise beyond t::..,p. If t,,p is less than the maximum core
flux, ,po, useful injection and ejection may occur as much
as 25% of the time by cycling the core flux between
+,po and -,po. When sinusoidal core excitation is used,
the duty factor D (the fraction of time for useful

FiG. 21. Separaled spiral-seclor geoilletry. Each ridge
has its own \villdings.
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where w/27r is the frequency of revolution [Eq. (10.3)].
We have, therefore,

where q, is the flux in the betatron core. The rate of
increase in energy is therefore

In order to miss an injector structure, a certain mini
mum rate of acceleration (rate of rise of flux) at in
jection is required; this will reduce the duty factor in
practice.

Since the particle equilibrium orbit is not circular
and since its radius changes with acceleration, the
relationship between Aq, and the momentum increase
differs from that for conventional betatrons.

The voltage gain per revolution is, in Gaussian units,

energy storage, and therefore a much smaller condenser
bank and less ac power equipment.

Either the radial-sector or the spiral-sector type of
FFAG magnet could be used for electron betatron
acceleration up to a few hundred Mev, and the design
would be subject to the same considerations as dis
cussed above for synchrotrons. Since the core flux
change for a given particle momentum increase is
proportional to the particle period of revolution, the
smaller circumference of the spiral sector type is
doubly important for betatrons. In focusing magnets
designed for the betatron energy range, an 1\T of 10 to
30 appears more suitable than the higher N values
suggested for multi-Bev synchrotrons.

The output beam of electrons from an FFAG beta
tron would be nearly monoenergetic and spread over a
long time corresponding to the duty factor. Present
betatrons and synchrotrons achieve a lengthened output
beam pulse at the expense of energy homogeneity,
since the electrons are in a sinusoidally varying field at
essentially constant radius. This and the prospect of
beam currents approaching time-average values of
milliamperes makes this an attractive accelerator for
electrons from a few JHev to several hundred :Mev.

(14.2)

(14.1)

(14.3)

V= (1/c)(~/dt),

injection) is given as follows (see Fig. 22):

D=~COS-l[Aq, -1].
27r . q,o

and the required accelerating flux change is determined
by

dE (e)Rdp=-= - d¢,
w 27rC

27rcR
q,2-q,1=--(P2- Pt),

e
where

1 11'2R=-- Rdp.
h-Pt PI

If k is constant, we have, by Eq. (5.14),

R= R2(k+1) 1-_(Pt/ P2)(k+2)!(k+l)

k+2 1-(Pt/h)

(14.4)

(14.5)

(14.6)

15. FFAG Cyclotrons

To make semirelativistic particles revolve in a
cyclotron at constant frequency and in orbits that are
approximately circles, it is necessary to have the
average magnetic field increase with radius. In order to
avoid the resultant axial defocusing, alternating
gradient focusing may be employed. There are a number
of possible magnetic field configurations for such a
fixed-field alternating-gradient cyclotron. The first such
cyclotron was proposed by Thomas. 6 The Thomas
cyclotron is essentially a radial-sector FFAG machine
having three or more sectors with a roughly sinusoidal
field flutter. Thomas showed that such a machine has
stable orbits for energies up to a limit depending upon
the number of sectors'. A considerable amount of
experimental and theoretical work on the Thomas

With FFAG guide fields in the 20- to 300-Mev
energy range, the duty factor could be increased by
more than a factor of 104 over that in existing betatrons
and synchrotrons. The beam current increase would
probably be less because of space-charge effects at
injection.

In pulsed-field betatrons, large amounts of energy are
stored in the pulsed-guide field magnet gap, and
equipment capable of handling the large circulating
currents and voltages must be used. Tn FFAC betatrons,
only the accelerating core is pulsed, and it would be a
dosed iron circuit which would require much less
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cyclotron has been carried out at the University of
California, culminating in the successful construction
and operation of two electron models which accelerate
electrons up to half the speed of light.18 We will here
discuss briefly the general features of FFAG cyclotrons
with particular reference to spiral-sector configurations.

In Sec. 10, we have obtained a relation (10.9)
between the total energy E and the mean field index
k for a cyclotron, in which the frequency of revolution
is independent of energy. We have also the approximate
expressions developed in Sec. 7 relating k to the betatron
oscillation frequencies. For spiral sectors, the simple
approximate relation (6.24) holds:

(15.1)

According to Eq. (10.9), Vx is given directly in terms of
the energy by the relation

me'
l

FlO. 23. Working point diagram for a spiral-sector cyclotron.
F is the AG focusing parameter.

(15.3)

The focusing parameter F is determined, according to
Eqs. (6.24) and (6.25), by the relation

(15.6)

(15.4)

w/2Tr= [3c/21rR= c/21r'A,

where 21r'A is the wavelength of the radio-frequency
voltage required to drive the dees (we assume first
harmonic operation). We have therefore the following

In Sec. 6, we have noted that with spiral sectors, the
optimum flutter factor j is about t, for maximum
vertical aperture without extra forward pole-face
windings. With this value of j, the focusing parameter
F may be written, with the help of Eq. (6.26),

F= l6 (tan2s+t). (15.5)

In Fig. 23, we plot circles of constant F vs Vx and v•.
Vertical lines of constant k (hence constant E) are
marked in the figure. We show also lines representing
integral and half integral resonances (vx , v.=integer or
half-integer) and sum resonances (vx+v.= integer). As
the energy increases from Eo to E, the working point
(vx,v.) will trace out a curve connecting the line k=O
with the line K= (E/Eo)!-1. The form of this working
point curve will depend on the way F varies with radius.
In a practical magnet, F will almost necessarily be zero
at the center so that the curve will start near (v.= 1,
v.=O). Difficulties may be expected in accelerating
particles beyond a point where the working point crosses
any of the resonance lines, particularly integral reso
nances, or resonances involving the vertical motion
(since the vertical aperture is not large). It is clear from
Fig. 23 that the working point necessarily crosses a
half-integral radial resonance near E= Eo+tEo, and a
sum resonance and an integral radial resonance before
reaching E= 2Eo•

In order to get a picture of an FFAG cyclotron, we
note that the frequency of revolution of an ion in a
cyclotron is

(15.2)

It is clear that the orbits in such a cyclotron start at
the center at E=Eo with Vx= 1 (as in a conventional
cyclotron), and that as E increases, successive integral
and half-integral radial resonances are encountered at
energies which are approximately integral and half
integral multiples of Eo. If we regard the first integral
resonance as the limiting energy, then the maximum
kinetic energy is about one rest energy (actually some
what less, according to more accurate cakulations19). If
sufficiently high dee voltage is applied, and if magnetic
field errors are sufficiently small, it may be possible to
drive the particle energy through resonances fast
enough to avoid buildup of oscillations. In any case,
for stability, Vx must be less than tN, so that E can
never be greater than about fNEo. The predicted
existence (Sec. 9) of a strong third integral resonance at
CTx =21r/3, (vx =N/3), may set an even lower limit on
E for a given number of sectors N.

In a radial-sector configuration in which the number
of sectors is small (N <8), the alternating-gradient
focusing also comes primarily from the 7/ term in Eq.
(5.13), and consequently the relations (15.1) and (15.2)
are still roughly correct and the preceding considerations
are still qualitatively correct. In particular, this is true
of a Thomas cyclotron.

In a cyclotron in which the 7/ term in Eq. (5.13)
predominates, we see from Eqs. (6.24) and (6.25) that
the focusing depends on k and on the quantity

F=2«~ a~)2) +1F
7/ ae Av

18 D. L. Judd, Phys. Rev. 100, 1804(A) (1955); Pyle, Kelly,
Richardson, and Thornton, Phys. Rev. 100, 1804(A) (1955);
Heusinkveld, Jakobson, Ruby, Smith, and Wright, Phys. Rev.
100, 1804(A) (1955). We are indebted to Dr. Judd for a discussion
of the work done at Berkeley, which is described in University of
California Radiation Laboratory Reports No. 2344 and No. 2435
(unpublished).

19 D. S. Falk and T. A. Welton, Bull. Am. Phys. Soc. Ser. II,
I, 60 (1956).
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If we assume a sinusoidal field flutter, the function fJ. is

in Fig. 23 moves along the horizontal v,= ljVl, so that

If we neglect the scalloping of the equilibrium orbit,
we may replace R by the radius r, and substitute in
Eq. (6.30) to obtain the equation for a spiral ridge in
polar coordinates:

(15.13)

(15.14)

(15.12)
4R

tant· .
('A2-R2) I

Bo=4 sin-l(r/'A).

fJ.= l+t cos[N(B-Bo)],

and the magnetic field is given by

FIELD TROUGH

FIG. 24. Plan view of ridges in a 6-sector spiral-sector cyclotron.

The relations (15.6)-(15.10) are exact. In order to
determine the shape of the spiral ridges, we must solve
the equations for betatron oscillations. We can get a
rough idea of the ridge pattern from the approximate
relations (15.1), (15.4), and (15.5). If we combine these
formulas with (15.10), we obtain

relation between energy and radius:

E/Eo= 'AI ('11.2 - R2)!.

The momentum peR) is

p=mcR/('AL R2)I,

the mean magnetic field is

Fi = pc mc2/e

eR (V-R2)!'

and the mean field index [Eq. (1O.9)J is

k= R2/('AL R2).

(15.7)

(15.8)

(15.9)

(15.10)

mc2/e
IJ=HfJ.=--

('11.2- R2)1

X{I+t cos[NB~4,Vsin-l(r/'A)J). (15.15)

The number of sectors N is, to this approximation, still
arbitrary. If the output energy is to be E=2Eo, (about
I-Bev kinetic energy for protons), then v:r= 2 at the
output radius, and lV must be at least 4, for linear
stability of the betatron oscillations. In order to avoid
the third integral nonlinear resonance at 1T:r=21r/3, we
should probably take N = 6. In Fig. 24, we plot the
ridges and troughs given by Eq. (15.13) for a cyclotron
with six spiral sectors and an output energy E= 2Eo•
In Fig. 25, we plot E and H vs R for such a cyclotron.

ACKNOWLEDGMENTS

We wish to acknowledge many helpful discussions
with H. R. Crane, F. T. Cole, Nils Vogt-Nilsen, J. N.
Snyder, and other members of the Midwestern Uni
versities Research Association technical group.

16R2
tan2t=--+v,2-~.

'A2 - R2
(15.11)

APPENDIX A. THE SMOOTH APPROXIMATION

Let the alternating-gradient equation of motion 1Il

one dimension be written in the form
Let us now assume for example that the working point

(A.l)

where the force f(x,B) is periodic in Bwith period 21r/N.
We will assume that N»v, that is, that the betatron
wavelength is long compared with the sector length. It
is then reasonable to seek an approximate solution of
the form

x=X+HX,B), (A.2)

where the "smooth" oscillation X (B) satisfies an
equation of the form

o ~
o .1 .2 .3 .4 .5 .6 7 .8 .9 A

FIG. 25. Total energy and magnetic field as a function of radi~s

in a constant-frequency cyclotron. (Eo is the rest mass and 2...1. IS

the oscillator wavelength.)

(A.3)

independent of the sector periodicity, and the "ripple"
HX,B) is periodic in () with period 21r/iV and with zero
mean, for fixed X. We will assume that the ripple ~
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20 T. Sigurgiersson, CERN report, CERN-T/TS-1, December,
952; CERN-T/TS-3, May, 1953 (unpublished).

d2X/d82= (f)AV- UdXl)Av. (A.9)

If the force in Eq. (A.I) is linear in x,

(A.17)

(A. IS)

(A.16)

(A.H)

(A.12)

(A.14)

x=X+~,

z=Z+t.

~=h(X,Z,8),

t=g2(X,Z,8),

then Eq. (A.9) can be written as a linear equation

where X, Z satisfy

d2X/d82= (!)M+{!dx)AV+(g2!Z)A"

d2Z/d02= (g)Av+ U2KX)A,+ (g2KZ)A"

where averages are over 8 with X, Z fixed.
In practice, \ve have found that Eq. (A.13) gives

values of v or u( = 27rv/N) which are accurate to within
about 10% of [{g12)AV]t, provided that [(g12)AYJ!$N/4.
A few nonlinear cases have been studied, and solutions
of Eqs. (A.8) and (A.17) have yielded results in fair
agreement with more accurate calculations except near
stability boundaries. Stability boundaries where the
betatron wavelength becomes infinite are fairly ac
curately predicted by Eqs. (A.8) and (A.17) but the
(more interesting) stability boundaries due to sector
resonances when the betatron wavelength becomes a
small integral number of sectors are not predicted at
all by the smooth equations.

We have the approximate equations

v2= (g12)AV- (g)AV' (A.13)

The above results can be immediately generalized to
the two-dimensional case

where

and the approximate solution (A.2) then can be written
in the Floquet form

d2x/dffl.= !(x,z,8),

d2z/dffl.= g(x,z,O).

\Ve assume a solution of the form

(A.lO)f(x,8) = g(8)x,

(Essentially the same result has been obtained by
Sigurgiersson.20) To the solution of Eq. (A.8) is to be
added the ripple (A.7) to obtain an approximate
solution to Eq. (A.t). The second term on the right
in Eq. (A.S) can be integrated by parts and rewritten
in the form

~= h(X,O), (A.7)

in the notation introduced in definitions (4.16) and
(4.17). If we substitute the ripple (A.7) in Eq. (A.5),
we obtain, to first order in ~, the smooth approximation

and the derivatives dX/dO, d2X/dffl. are small in a sense
to be made more precise presently.

We substitute Eq. (A.2) in (A.1) to obtain

X"+~e8+2~x8X'+hxX'2+~xX"=!(X+~, 0), (A.4)

where primes deonote derivatives with respect to 0. We
now average over 0, keeping X, X', X" fixed, remember
ing that (~)AV=0, to obtain an equation corresponding
to (A.3):

d2X/d82= <l(X+~, O)"v. (A.S)

We subtract Eq. (A.S) from (AA):

~e8= (f(X+~,O)} '-2~X8X'-hxX'2- hX". (A.6)

We use the notation introduced in the definition (4.14).
It is easy to see that the last two terms are of order.
(O/27r)2 relative to the first term, and are therefore
negligible if N»v. The second term is only of order
a/7f relative to the first, but its effect on the smooth
equation (A.S) can be shown to cancel out to first order.
We therefore neglect the last three terms in Eq. (A.6)
and replace (f(X+~, O)} by (f(X,O)} , i.e., we assume
that U!x}«{f}. We can then integrate Eq. (A.6) to
obtain, as a first approximation to the ripple,
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Operation of a Spiral Sector Fixed Field
Alternating Gradient Accelerator*
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(Received September 26, 1957)

FIXED field alternating gradient particle focusing l

by a ring of sectors provides the possibility of
accelerating large currents of particles in direct current
magnets by the application of the alternating gradient
principle. There are two characteristically different
types of FFAG magnets-radial sector and spiral
sector. A successful radial sector model was constructed
by the group of MURA Universities in 1956.2 The radial
sector type requires some magnets to have a reversed
magnetic field to reverse the gradient with a conse
quently large circumference. This letter describes a
successfully operating spiral sector accelerator (see
Fig. 1) in which the magnetic field is unidirectional and
the alternation of the gradient is achieved by the edge
focusing of the spiral sectors. l This spiral type can have
a smaller circumference because the field is uni
directional.

Nonlinear focusing forces are prominent in FFAG
accelerators, because the average magnetic field varies
as ,.k where,. is the radius and k is a constant and because
the orbit crosses magnet edges at an angle other than
1r/2. The latter fact causes very strong quadratic
forces in the spiral sector type. For this reason the new
model was thoroughly tested before construction by
digital computers, the ILLIAC at Illinois and the
IBM 704 at MURA. Magnetic fields resulting from
iron and current configurations were determined by the
computers by solving the magnetic potential problem.
This problem is reducible to a two-dimensional problem
because the structures were chosen to scale propor
tionally with the radius. The fields were stored on a
mesh and the orbits of particles passing through these
fields were computed. Radial and axial betatron
oscillation frequencies and phase space stability limits
due to nonlinear forces were determined. A working
point was chosen sufficiently far from the difference
resonance, 2p.= Pr , to avoid axial oscillation growth
(p.=number of axial betatron oscillations per revolu
tion, p.=radial oscillations per revolution). The chosen

FIG. 1.

point was p.= 1.13 and p.= 1.40. Structural tolerances
were obtained by calculating the effects of displaced
sectors and sectors with erroneous k in the digital
computer runs. Errors of one millimeter in sector
positions had minor effects on the computed stability
limits. The magnet with 6 sectors and an injection
radius at 30.5 cm and a final radius of 55 cm was
constructed well within these tolerances. k was trimmed
by adding small coils to supply the magnetomotive
force lost by the finite iron permeability and not
taken into account in the computer tests. The radial
component of magnetic field in the orbital plane was
detected by an iron strip second harmonic generating
magnetometer. This component was brought below the
value equivalent to a. one millimeter axial displacement
of a sector (about 0.1 gauss) by adjusting coil positions
and by slight corrections 011 reluctance differences
between top and bottom poles.

An injector of the type used in betatrons directs its
focus into a inflector which turns the beam into the
equilibrium orbit. Electrons injected at 30 kev are
accelerated to '" 120 kev by action of a betatron
induction core. The values of p. and p. measured by a
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radio-frequency knock-out probe are 1.05 and 1.41,
respectively. Coils for tuning radial frequency by
changing k and for tuning axial frequency by changing
the dutter of the field are available for examining other
working points. Without these tuning coils energized
the backwinding on the magnet pole face produces
measured values of 0.7 for k and 1.02 for the dutter,
defined as f=V1(AB)rm.lB, averages being taken
around a circle. This measured dutter is less than the
design flutter and causes the lower value of p •• The angle
between the normal to the magnet edge and the radius
of the machine is 43°. The gap at the low-energy radius
was chosen to be 8 cm and the structure, including the
gap, scales up with the radius. This conservative choice
of param~ters provides structural simplicity. without

eliminating the nonlinearity difficulties which must be
faced in a spiral sector accelerator. Preliminary
estimates indicate that injection for four microseconds
gives 10' electrons accelerated to the target.

• This work was supported by the U. S. Atomic Energy Com
mission, The National Science Foundation, and The Office of
Naval Research.

t University of Illinois, Urbana, Illinois.
:t The Ohio State University, Columbus, Ohio.
§ Purdue University, Lafayette, Indiana.
/I Iowa State College, Institute for Atomic Research, Ames,

Iowa.
~ University of Tokyo, TOkyo, Japan.
1 Symon, Kerst, Jones, Laslett, and Terwilliger, Phys. Rev. 103,

1837 (1956).
J Cole, Haxby, Jones, Pruett, and Terwilliger, Rev. Sci. Instr.

28,403(1957).
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EXPERIENCE WITH A SPIRAL SECTOR FFAG ELECTRON ACCELERATOR

R. O. Haxby (*), L. J. Laslett (**), F. E. Mills, F. L. Peterson, E. M. Rowe and W. A. Wallenmeyer

Midwestern Universities Research Association, Madison, Wis. (***)

(presented by K. R. Symon)

I. INTRODUCTION

In fixed-field alternating gradient (FFAG) accel
erators 1-4), particles with a large range of momenta
can be accommodated simultaneously within an

.annular magnet of limited radial extent, thus provid
ing a desirable flexibility in the methods of accelerating
the particles and affording the promise of high beam
intensities. The spiral sector type is an attractive
form of FFAG accelerator, since a smaller circum
ference factor may be employed than is feasible with
the radial sector design and a significant economy
thus can be obtained in the construction. A six-sector
spiral ridge FFAG accelerator has been constructed
and successfully operated to accelerate electrons
from 35 to 180 keY kinetic energy 5.6). Acceleration
was by betatron action, supplemented by radio
frequency acceleration when desired. The design
was based on magnetostatic and orbit computa
tions (****), and the subsequent performance was
found to be in good accord with these computations.
The model permitted not only the acquisition of
design experience and the demonstration of predicted
stability regions, but also afforded the opportunity
of studying coupling and multi-particle effects not
investigated in detail theoretically.

The number of sectors (N) was selected as 6,
in the interests of a conservative design, and the
remaining basic parameters characterizing the model

then were selected on the basis of digital computa
tions pertaining to the magnetostatic problem and
to the orbit dynamics in the resultant magnetic
field. The inner radius of the accelerator was deter
mined by the need to accommodate the betatron
core and fo, convenience of access to ancillary
components, while the strength of the magnetic
field at that radius was dictated by the selection
of 35 keY as a convenient injection energy. The
maximum energy attainable by the model ("'" 180 keY)
was sufficiently greater than the transition energy
(155 keY) so that experience was obtained in the
use of radio-frequency programs suitable for travers
ing this possibly critical region.

II. DESIGN

A separated-sector magnet design was adopted
in the interests of simplicity and to achieve conveniently
a field with a large azimuthal variation such as would
be expected to affect favorably the non-linear stability
limits 4). Guard rings, effectively at zero magnetostatic
potential, further enhanced the field variation and,
secondarily, provided some additional shielding from
external magnetic fields present in the laboratory.
The character of the magnetic field which would
result from specific magnet structures of this type
(Fig. 1) was determined computationally by a relaxation

(*l On leave of absence from Purdue University, Lafayette, Indiana.
(**l Iowa State University, Ames, Iowa.

(***l Supported by the United States Atomic Energy Commission.
(****l The computations were primarily made by aid of the electronic digital computer of the Graduate College of the University

of Illinois (ILLIAC), corroborated and supplemented by later computations made with the IBM-704 computer in the MURA
Laboratory at Madison. The invaluable contributions to this work by J. N. Snyder and A. M. Sessler are gratefullyacknow
ledged, as is also the cooperation of J. P. Nash, R. E. Meagher, and others at the University of Illinois, who facilitated initiation
of this work.
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L,T
i POLE COIL
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~

Fig. 1 Cross section of magnet pole. t; = dn [.!..In.!:.. - NO]
[(I/W)2 +N2]'!2 Z w ra

and 'Yj = 2 -. Where r, 0, z are cylindrical co-
n r

ordinates, and w is the spatial period radially divided by 2.:'1:1'.
The pole profile in the t;, TJ -plane represents a section taken at
constant radius, but with unequal scale (actors in the azimuthal
and axial directions. The outline represents more truly a cross
section perpendicular to the spiral save that the general increase
of all linear dimensions with radius is not depicted. Azimuthal
distances at constant radius are given by mr/N times the
increment of t; and axial distances by mr[(1/w)2 +N'j1!2 times
the increment of 'Yj. For the present model I/w = 6.25 and these
distances become 1.0472 rLlt; and 0.7252 rLl'Yj, respectively.

for the model was, accordingly, that denoted by
point C on Fig. 2 (O'x = 0.46671:, O'y = 0.37571:),
situated a considerable distance above the 0'x = 20'J'

resonance. Here the stability region was found
to be at least as large as for point A and the axial
oscillation frequency was more acceptable; coupling
effects, moreover, were no longer apparent and the
sensitivity to misalignments (such as sector displace
ments) appeared to be much less pronounced. In
practice, the model was provided with tuning coils
to permit an experimental investigation of perf.:>rmance
for operation under other conditions, in order that
the effect of various resonance lines in the neighbour
hood of point C could be determined.

TABLE I
Parameters of the spiral sector model

The basic parameters of the model are given in
Table I and a general view of the assembled accel
erator is shown in Fig. 3. The brass vacuum chamber
was constructed as two hollow semi-circular annuli,
insulated from each other. so that the accelerating

6

27 Col

55 Col

3.8 cm
31 Col

52 Col

35 keY

Vallie

1.398
1.125

0.7
0.2 to 1.16

0.16
46"

1.087
0.57 to 1.60

N
k

Vy

l'x

Symhal

Number of sectors
Mean field index

k = (1'/(B)av)(i)<B)av/Cr)
design value
adjustable within the range

Spatial period, radia lly/2:71'
Spiral angle with radius

cot ~ = Nit'
Field flutter

.t~ff c= [2«B -- . B)av)')av/<B)'a.j"2
design value
adjustable within the range

Betatron oscillations per revolution
l' =, Na/2n
radial, design value
axial. design value

Yacuum chamher dim~r,sioils. interior:
inner radius 1'1

outer radius 1',

h~ight h
Injection radius r;
Detector radius, useful. maximum rr
Injection energy. nominal Ei
Final Energy E.r
atk=~0.7 124 keY
at k = 1.16 180 keY

Transition energy Et 155 keY
Revolution frequency, maximumft 62.45 Mc/s
Radial stability limit/I'. computed Ax" 0.11

(near the center of a radially-focusing region and when the
radial momentum has the value corresponding to the stable
fixed point. The radial motion at the limit of stability actually
covers a range :11'11' =, :::: 0.18 at this azimuth.)

Parameter

~ --,L-~ _

2;' 0; 'if

Fig.2 Location of operating points for which detailed com
putations were made. For these three points the phase changes
per sector of the betatron oscillations, G, were as follows:
A (0.597 n, 0.225 n), B (0.595 n. 0.129 n), C (0.466 n. 0.375 n).

procedure, wherein it was possible ., employ a
two-dimensional mesh 7) by taking advantage of the'
scaling feature of the field. The resultant magneto
static potential, suitably scaled, was then stored
in the computer memory for use in orbit computations.

Three operating points considered in the design
of the model are indicated on Fig. 2, where the
abscissa and ordinate (0'x' 0'y) of each point respectively
denote the phase change per sector of the radial
and axial betatron oscillations. Studies of orbit
dynamics for point A of Fig. 2 indicated strong
coupling of radial to axial motion, a behaviour
attributed to the proximity to the O'x = 20'y resonance.
The coupling was found to be less pronounced for
point B, but the radial stability limit was found
to be rather small (~r/25) and the value of O'y was
also undesirably low. The operation point chosen
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Fig. 3 View of the assembled spiral sector accelerator.
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voltages could be applied. A movable scintillation
detcctor and a current probe were provided for
detection and analysis of the accelerated beam. An
additional probe carried an offset molybdenum wire
which, by rotation abaut the probe axis, served
to measure the vertical location of the equilibrium
orbit, to indicate the amplitude of the axial oscilla
tions, and to limit these amplitudes when desired.
Various electrodes were also provided to permit
the application of auxiliary perturbing fields required
for some of the performance tests.

III. PERFORMANCE

A. Intensity survey

Following assembly of the model, and after careful
measurement and correction of the magnetic field,
a betatron-accelerated beam was immediately obtained.
Tests were then made to determine the betatron
oscillation frequencies and the variation of beam
intensity over the accessible portion of the vx , vy

stability region. The oscillation frequencies were
determined in this work by the method 8,9) of resonant
radio-frequency enhancement of the betatron oscilla
tions. The value of vy was found to vary significantly
with amplitude (axial or radial amplitude) and an
estimated I to 2 per cent inaccuracy arose from this
effect in the intensity survey. The betatron oscilla
tion frequencies observed in the model, without
current in the tuning coils, were close to the values
resulting from the digital computations (see above)
and a small current in the flutter-tuning coils sufficient
to raise !elf from 1.03 to its design value of 1.087 raised
vy from 1.026 to the predicted value of 1.12. The
resonance diagram which resulted from the intensity
survey, with low emission from the injector, is shown
in Fig. 4. A sizable region of maximum intensity
is seen to occur centered abaut the design point
and the importance of several resonances which
cross the accessible region is also apparent.

B. Stability limits

In measuring the radial stability limits in a fixed
field accelerator, one may examine the range of
energies throughout which particles can be captured
at the injection radius. On the supposition that the
minimum-energy particles are injected into an equi
librium orbit which just misses the injector and that

~.
2~l",0::-- ---1'5i'- -;2.0

L5

1.0

~1'--"--- ---
INTENSITY SCAL.E_ .3-'

_ .1-.3

~ .03-.1

.01-.03

.001-.01

Fig.4 Beam intensity as determined by the resonance survey
of the spiral sector model, using low emission from the injector.
+ denotes the design values for the oscillation frequencies and
is seen to be surrounded by a sizable region of high intensity.
The strong influence of several resonances is also evident, the
occasional slight departure of the resonance lines from the
positions of minimum intensity being believed chiefly ascribable
to the imprecise scaling of the field when substantial tuning
currents are applied.

the maximum-energy particles oscillate abaut an
equilibrium orbit which is situated a distance away
from the injector equal to the stability limit, a
measurement of this energy difference-or, equi
valently, of the variation in the time taken for accelera
tion-permits the stability limit to be calculated.

The calculation to convert the variation of the requir
ed acceleration time to the radial range of stable motion
at the injection radius requires use of the known
rate of acceleration (betatron voltage) and correc
tion for the adiabatic damping which occurs in the
course of acceleration (oc B-'/z). With either method
it must be recognized that the spatial stability limits
will vary with azimuth, due to the alternating-gradient
nature of the magnetic focusing.
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The axial stability limits may be measured directly
by use of the vertical-scanning probe mentioned
previously (Sect. II).

1) Results at the design point

A measurement of the radial stability limit by the
second of the methods described led to a value at
the azimuth of the injector (near the center of a
radially-defocusing region) given by ± 0.058 r, or
± 1.75 cm, for the design point. This limit corre
sponds approximately to ± 0.08 r at the azimuth
to which the entry in Table I pertains and is in
reasonable agreement with the computational value
reported there for operation in the absence of all
imperfections. The measured value for the axial
stability limit at the injector similarly was ± 0.045 r
This result is somewhat smaller than the maximum
amplitude which would be permitted by the internal
dimension of the vacuum chamber (± 0.061 r).

as would necessarily be expected if the magnetic
median plane were not quite centrally located within
the vacuum chamber, while the computational
study suggested a dynamical limit at the injector
somewhat greater than the available aperture.

2) Performance near the ax = 2ay resonance

0.022 r, or about 0.7 cm measured at the injector,
would engender axial displacements in excess of
0.06 r (1.9 cm) and so result in interception of the
beam by the chamber wall. If the wall were not
present, this physical limitation of course would
not occur and stable motion with axial amplitudes
up to about 0.1 r might then be considered possible.

Experimental measurement at the operating point
considered in the computations led to an effective
radial stability limit of 0.5 cm and, as was the case
for the design point, axial amplitudes in excess of
1.3 em were found. In more detailed measurements,
made with Vx C"'-' 1.46, the radial stability indeed
appeared definitely to decrease if the axial excursions
were limited by the vertical-scanning probe, the effect
being more pronounced when operating very close
to the resonance line (Fig. 5). The foregoing results
thus appear to substantiate the view that, in practice,
the growth of axial amplitude associated with opera
tion near the ax = 2ay difference resonance can
markedly curtail the region of stability and thereby
effect a pronounced loss of intensity.

em
2.0

3) Effect of misalignments

HEIGHT OF VERTICAL SCANNING PROBE
ABOVE MEDIAN PLANE

Fig. 5 Observed apparent radial stability limits (AR) as affected
by restricted axial motion, for operation near the V x = 2vy

resonance with Vx ~ 1.46. The number appended to an individual
curve denotes the value of 2vy --Vx '

, • , • '0.19

~
'0'1I

o ~,-o

./'
'~~-O.II
-'~

1.0

~ ...."""-.,'-.0:l ~o '>. ';-!"'-~.

-1.0 -0.'5 a 0:5 1:0 (m

To complement a portion of the computational
studies concerning the spiral sector model, the effects
of certain deliberately introduced imperfections were
investigated experimentally at the design point. By
decreasing the field strength in one entire sector
by 7 per cent, the radial and axial stability limits
appeared to become reduced by approximately
20 or 25 per cent, and a similar effect on the radial

Although, as indicated previously, (Sect. II),
the design of the model was deliberately chosen
to avoid the ax = 2ay resonance, there is an obvious
interest in experimental information concerning effects
attributable to this difference resonance in spiral
sector synchrotrons 10-12) to complement the analytic
studies of Walkinshaw 13) and others 14, 21). Unfor

tunately for this purpose, the accessible portion of
the resonance line was of rather limited extent (shown
on Fig. 4) and fell in a region where other important
resonances were also present. Observations of some
interest were made, however, near the ax = 2ay
resonance with Vx '"" 1.46 and the results were inter
preted in the light of computational results obtained
specifically for Vx = 1.25, vy = 0.62.

From the computations it appeared that the radial
motion, if present alone, would have very generous
stability limits, but, as is typical of performance on a
coupling resonance 10-12), a very small amount

of radial oscillation would be accompanied by a
marked (exponential) growth of axial oscillations
to quite large values. In the example studied it
was found that a radial amplitude in excess of about
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limit was seen when one sector was displaced axially
by 1 mm. It has recently appeared possible by analytic
means 15) to account reasonably well for some of
the results obtained in these perturbation studies.

C. Injection methods

The injector assembly provided for the spiral
sector model employed an electron gun unit which
directed a focused electron beam into a deflector
system. The deflection system, which provided a
15-degree deflection, permitted injection of a beam
2 mm wide X 9 mm high from a region directly
behind a grounded septum 0.1 mm thick. Although
the axial admittances 16, 17) of the injector and the
accelerator were reasonably well matched, the radial
admittance of the accelerator was some 90 times
that of the injector (18 mm x rad vs. 0.2 mm x rad)
and it accordingly was reasonable to consider multi
turn injection [see paragraph (b) below].

1) Short-pulse injection

(a) One method employed for injection undertook
to accelerate the electrons rapidly, but under condi
tions such that the amplitudes of the radial betatron
oscillations remained smaller than the radial width
of the beam due to energy spread. With an accelera
tion voltage of 150 VIturn, successful injection of
more than 1010 electrons was accomplished in a
4 JiS interval and the corresponding electron density
estimated as 3 x 106 cm- 3. It is noteworthy that
at operating points such that one of the oscillation
frequencies lies below a resonance by an amount
sufficiently small to preclude obtaining a beam at
low emission currents, use of higher emission has
been seen to permit a beam to be established. The
observation of phenomena such as this in the electron
model suggests that, with high emission currents
from the injector, limitations due to space-charge
forces can be encountered.

If one estimates the change of oscillation frequency
due to space-charge forces in the geometrically
simple case of a flat beam of uniform density 18),

neglecting alternating-gradient effects in the calcula
tion, one obtains as the limiting particle density

1
11 = ---2p2V316(v;)I, (P = vic, 'Y = Elmc 2

) (I)
4rrraRa

where ra denotes the "classical radius" of the
particle, Ra is the radius of the orbit, and c5(v;) denotes

the permissible decrease of the square of the oscilla
tion frequency. For comparison with the work
reported in the preceding paragraph, we note that
c5(v;)= - 0.2656 would carry the operating point
to the vy = 1 resonance and a change of about
- 0.2 might be considered sufficient to reach the
stop band associated with this integral resonance
(Fig. 4). For the injection conditions pertaining
to the model, then, Eq. (I) suggests a space-charge
limit of approximately 9 X 106 em- 3, or about
three times that inferred from the experiment reported
above.

(b) A second successful injection method did not
require acceleration of the electrons, but employed
an azimuthally localized, time dependent radial
electric field to perturb the equilibrium orbit. Under
suitable conditions the beam could then be moved
away from the injector adiabatically, by decreasing
the strength of the perturbation, and beam densities
of approximately one-sixth the estimated space-·
charge limit (Eq. (1) were realized.

2) Long-pulse injection

Because of the attractive possibility of achieving
high intensities by protracted injection into FFAG
betatrons 1-3), and because of the inherent interest
in space-charge problems, arrangements were made
to permit the injection of high intensity beams into
the electron model for time intervals typically 400 JiS
long at the peak of the accelerating voltage wave.

At the start of the injection process the beam
current is found virtually immediately to attain
a value, la, which is presumably limited by inter
electron space-charge forces and is controlled by
the nearest 100l'er-Iying resonance, as discussed above.
Subsequently, as ions are formed in the residual
chamber gas and begin to neutralize the mutual
electrostatic interactions of the electrons, a higher
current, I max ' can be reached and its value may
be considered as determined by the limited emission
from the injector. At still later times sufficient
neutralization can have occurred to move one of the
oscillation frequencies into the stopband associated
with the nearest higher-lying resonance and the
beam will then promptly be lost regeneratively
(Fig. 6). In substantiation of this suggested sequence
of events it was observed (i) that the rate of rise of
current from /a to I max ' and the value of /max

itself, each increase with the emission current and
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Fig.6 Typical oscillogram of beam current, measured at the
~arget..under conditions of high emission such that periodic
instability develops from charge neutralization.

(ii) the time interval before the beam disappears
is inversely proportional to the product of pressure
and emission. More directly, moreover, with high
emission it is observed by radio-frequency measure
ments of the betatron oscillation frequencies that
these frequencies indeed do decrease at first and later
rise, to values above those prevailing at low emission,
typically approaching a half-integral value (e.g.,
Vx = 1.5) at the time the beam is destroyed.

Following loss of the beam in the manner just
described, a definite time interval must elapse 
during which a fraction of the positive ions presum
ably migrate to the chamber walls - following which
the current Imax is suddenly established again.
As before, this current Imax lasts only for a time
before being destroyed and this process has been
observed to continue in a reproducible periodic
fashion as long as the emission and accelerating
voltage are both present.

Despite the interpretability of the aforementioned
phenomena when the relevant parameters are care
fully controlled, it must be reported, however, that
additional complex phenomena involving the collective
motion ofparticles evidently occur. Thus, for example,
a strong radio-frequency field was found to arise
from the beam. The frequencies of this radiation
were usually half-integral multiples of the electron
revolution frequency at the injection radius, but
the detailed characteristics depended markedly on the
operating point of the accelerator and the intensity
was particularly strong at the time when the beam
became destroyed. It is, moreover, of some interest
to note that, in one observation, it appeared that the
current which arrived at the target was bunched
at the revolution frequency of the electrons.

D. Studies of radio-frequency acceleration

In previous work 19) with an electron model of
a radial sector FFAG accelerator 9>, experience had
been obtained with particle-handling techniques
(as beam stacking 1, 2, 20» in a FFAG accelerator.
The objective of the radio-frequency acceleration
experiments, which we describe below, was specifi
cally to determine the frequency-modulation programs
which could be applied most successfully to accelerate
electrons through the transition energy. To imple
ment this investigation it was convenient to excite
the betatron core from a double-pulse power supply,
so that electrons could thereby be accelerated in
two stages and radio-frequency fields applied in
the interim.

The effectiveness of various frequency-modulation
programs was determined by the method used earlier
i.n similar studies 19) with a radial sector model 9).

Electrons are carried to an energy of about ll8 keY
- i.e., below the transition energy - by the first
betatron pulse and then subjected to the radio
frequency field prior to the onset of the second
betatron pulse. That fraction of the electrons which
in this way is successfully carried through the transition
energy will then arrive at the target before the second
betatron pulse is applied, while those electrons not
carried beyond the transition energy are brought
to the target somewhat later by this second pulse
and those not captured by the radio-frequency at
all appear at a still later time (Fig. 7). A frequency
program which overshot the transition frequency
in an appropriately controlled way was successful

Fig.7 Oscillographic records of (a) the beam received at the
det~ctor, ({3) the betatron' voltage, and (y) the envelope of the
radlo-fre~uency voltage in experiments designed to investigate
acceleration through the transition energy. The beam trace
indicates that a fraction of the electrons have been accelerated
successfully through the transition energy, to arrive at the
detector prior to the onset of the betatron pulse (P).
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in carrying about 60 per cent of the accelerated
electrons through the transition energy and on to
the target.

IV. CONCLUSION

The experience gained in the construction and
experimental work with the spiral sector model not
only has served to enhance our appreciation of
detailed problems associated with the design of
FFAG accelerators and to demonstrate the predictable
characteristics of a spiral sector machine, but has
also afforded valuable information concerning which
definitive results were not obtainable by analytic
or computational methods. The successful outcome
of the model program has resulted from the contribu
tions of many individuals who have devoted their
efforts to the MURA group at various times during

the past three years. It is impossible to acknowledge
these contributions individually here, but, in addi
tion to those of whom we have already made mention
in this paper, we would especially like to thank
Dr. F. T. Cole, of the State University of Iowa;
Mr. E. A. Day, of the General Atomic Division,
General Dynamics Corporation; Drs. H. J. Hausman
and C. E. Nielsen, of the Ohio State University;
Dr. T. Ohkawa, of the University of Tokyo; Mr.
D. S. Roiseland, of the University of Wisconsin;
Dr. R. Stump, of the University of Kansas; and,
most particularly, both Dr. D. W. Kerst, of General
Atomic, for his invaluable direction of the entire
design and constructional phases of the program,
and Dr. K. R. Symon, the Technical Director of the
MURA group, for his continued interest and help
in this work from its inception.
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I. MOTIVATION

In the design of circular accelerators it is often of
very great importance to inject efficiently if satisfactory
performance is to be achieved, and this aspect of the
design certainly warrants explicit attention in consi
deration of FFAG synchrotrons 1.3) intended for the
production of very high current beams 2,4,5). Many
of the considerations which apply to the injection
process also apply to certain extraction problems, since
what is basically involved is an orderly transfer of
phase space between regions exterior and interior to
the accelerator.

In the present paper we direct our attention to a
simplified problem which may be considered as the
idealization of a possible method for injection into a
fixed-field synchrotron, employing a secularly-changing
(decreasing) perturbation of the magnetic field but
without the intervention of acceleration mechanisms.
It may be mentioned, however, that the specific pro
blem considered here evidently constitutes a rather
realistic description, in reverse, of an attractive method
of beam extraction from a (three-sector) spiral ridge
cyclotron in which the aforementioned secular change
in effect is achieved by acceleration of the beam into
a region of modified magnetic field 6). With either
interpretation, a fundamental feature of the present
work is, as we shall see, that the essential non-linear
character of the equations of motion is exploited, the

(*j Iowa State University, Ames, Iowa.
(U) On leave from the University of Wisconsin, Madison, Wis.

e"*l SUPPOI ted hy the United States Atomic Energy Commission.

dominating non-linear resonance being specifically
that for which Ur , the phase shift per sector of the
radial betatron oscillations, approaches 2n/3 in this
case.

II. GENERAL DESCRIPTION OF METHOD

As is well known, the inherent non-linear character
of the equations for the betatron oscillations in
FFAG accelerators can impose very definite limits to
the amplitudes of stable oscillations. In cases such
that the phase change of the radial betatron oscilla
tions in one sector (u r ) is near 2nf3, the limitation is
primarily controlled by a quadratic term in the
equations of motion and the stability limits are then
typically indicated by the excursions of unstable equili
brium orbits having a period equal to three sectors.
The features of the radial betatron motion are conve
niently represented by phase-plots 1,2,7), employing

as axes the quantities x == (r-ro)/ro and p == dx/d8
with ro denoting a reference radius, on which the
motion of a particular partiCle is depicted once per
period of the magnet structure to form closed" inva
riant phase curves" in the stable region. The unstable
equilibrium orbits are then represented by fixed
points, through which passes the separatrix which
bounds the roughly triang~lbr region of stability

1-73



Advances in high-energy particle accelerators 39

Fig. 1 Phase plot. for s = 0 (mod n). of solutions to Eq. (5)
with v../N = 0.3 and B = 1.15.

(cf Fig. 1, in which conveniently scaled coordinates
are used) (*>.

In the case which will be of interest here we shall
impose a field perturbation, whose wavelength is
equal to three periods of the magnet structure, suitably
phased so as to " open up " the phase plot in the region
of one of the unstable fixed points. The invariant
curves which pass through the other two fixed points
then no longer intersect at the first fixed point and a
separate separatrix serves to define such stable area
as may still remain when the perturbation is not too
large (Fig. 2). A region of phase space is thus
created within which the phase points move through
substantially the entire region just outside the stable
area. If the stable region is now caused to grow, as
a result of decreasing the magnitude of the perturba
tion, phase points may be expected to be transferred
to the interior of the stable region with the same density
as initially is present outside.

It is attractive, then, to consider the application of
a perturbation which initially is more than sufficiently
large to cause the stable region to disappear completely
and which is steadily decreased to create a region of
stability which ultimately becomes that of the unper
turbed accelerator. By an appropriately located
injector, particles may now be caused to " flood" the
boundary region which surrounds the stable area as
it is created and one may expect thereby to fill this

area with a phase density equal to that available from
the injector. For efficient injection it would be desir
able, of course, to inject only into that region of phase
space from which particles will be captured. It would
be convenient, moreover, if this region which must be
covered by the injector were to behave in a sufficiently
orderly way as to obviate the need to change the
direction of the injected beam in accordance with an
elaborate program synchronized with the changing
strength of the magnetic-field perturbation. In some
cases, however, the area of phase space which the
injector can cover may be sufficiently great as not to
be a fundamental limitation, although the phase
density which it can provide should be used efficiently,
and in such cases a programmed scan would either be
unnecessary or, at worst, not critical.

To examine the performance which could be
achieved by this method in any particular case, a
natural initial step is the determination of the phase
plots associated with static perturbations represent
ative of the time-dependent perturbation which it is
intended to apply. Useful orientation in simple
cases can be obtained at this point by analytic means
although, of course, computer studies can be helpful.

Fig.2 Phase plot. for s = 0 (mod 3n), of solutions to Eq. (6) with
v.. /N = 0.3, B = 1.15, and }. = 0.006. The curves through the
upper and lower fixed points are seen to "open up" in the
neighborhood of the unstable fixed point situated at v =
= :- 0.44345. the stable region (shaded) has become smaller
than for A "" 0 (fig. 1). and the stable fixed poi nt has sh ifted to
v = 0.0838. The heavy arrow at A suggests a region from which
injected particles would flow to flood the boundaries of the
stable region.

(*> In this discussion we have tacitly assumed the :lxistence of the so called" invariant phase curves ", altho.ugh actually .over long
intervals of time the motion may be found to show a considerable departure from such regular motion and, similarly, the
boundary between" stable" and" unstable" regions becomes imprecisely defined N).
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Eq. (1) assumes the form

The type of perturbation which will be effective in
implementing injection by the method previously
described will be, in essence, a periodic variation of
the field strength along the equilibrium orbit, with a
period equal to the length of three magnet sectors.
We thus include the perturbation in the differential
equation by writing

d2~+4 [-;+~ sin2S] v- t ( 4
1

2) (cos2s)v 2
= 0 .

ds N wN wN
(4)

Although it is possible by a suitable transforma
tion 10, 11) to remove the alternating gradient feature
of the linear term, we do not believe it necessary to
make this transformation explicitly in the present
work but may consider the essential features of interest
here to be represented by use of the smooth approxi
mation equivalent of this coefficient 1,11). Therefore,
in what follows, we shall take the unperturbed radial
motion as represented adequately by

where A serves to measure the strength of the pertur
bation. Illustrations of coupled motion may be
obtained by considering the pair 9, 12)

One may then proceed with computations in which
the time-dependent perturbation is present, to deter
mine the regions of phase space from which particles
will be captured at various stages of the process. If
these regions can be caused to fall at locations acces
sible to an injector system, and if they neither shift
about violently nor show more than trivial filamenta
tion, then in principle the proposed method could be
said to be practicable. Similarly, such an orderly
transferral of phase space could be considered as
indicating the potential utility of the inverse process 6)

for beam extraction.

In the following sections we describe the results
obtained in some initial studies of this injection method,
the work so far having been confined to analysis and
computations (*) for equations chosen, for conve
nience, to be of a rather simple form, but which it is
believed should depict the essential features of more
exact equations representative of particle motion in a
spirally-ridged FFAG accelerator. Also, for reasons
of simplicity, the field perturbation is taken to fall
linearly to zero and to remain zero thereafter.

III. THE DIFFERENTIAL EQUATIONS EMPLOYED

In the theory of spirally-ridged FFAG accelerators,
the radial betatron motion about the stable equili
brium orbit may be conveniently represented by 9)

d
2
v (2Vr )2 B 2-+ - v--(cos2s)v = 0 .

ds 2 N 2

d
2
v (2V)2 B 2s_+ _r V--(COS2S)V 2 -ACOS- = 0

ds 2 N 2 3'

(5)

(6)

where u denotes the radial departure from the stable
equilibrium orbit, in units of the radius,

in terms of the parameters f, w, and N characterizing
the accelerator 2,9). By introducing the scaled variables

b =ljw, and

b1(O) = -(fjw2
) sin NO,

S = (Nj2)O+nj4

v = ujw

(2a)

(2b)

(3a)

(3b)

d
2
v (2V r )2 B 2 2 2s- + - v- - (COS 2s)(v - y ) - Acos - = 0

ds 2 N 2 3

d
2
y (2V)2

-2+ _z y+B(cos2s)vy = 0,
ds N

which are derivable from a Hamiltonian

it = p/+p{ +2 (~)\2+2(~Yy2_

B B 2s
--(cos 2s)v3 +-(cos 2s)vl-AV cos
623

(7a)

(7b)

(8)

(*) The computations were performed with the MURA IBM·704 computer, using programs prepared by J. N. Snyder, now at the
University of Illinois, and M. Storm, the present Head of the MURA Computer Section. We are indebted to Dr. Snyder,
Mr. Storm, and others associated with the Computer Section, for their invaluable help and continual cooperation during all
phases of the computer work.
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with y denoting the axial coordinate, in units of the
radius, and

It will be observed that as vr / N -+ 1/3 the stable
solutions to Eq. (5) will become increasingly limited
by the 2n/3 resonance, in which the betatron oscilla
tions experience a phase change of 2n/3 in progressing
through one magnet sector. Similarly, in progressing
through one period of the perturbed structure (i.e.
through three sectors) the corresponding phase change
would approach 2n and the stability limitation for
the solution to Eq. (6) could be regarded in this sense
as due to an integral resonance. In examining parti
cular examples of solutions to Eqs. (7a, b) we shall,
in what follows, specifically employ

IV. THE SOLUTIONS TO THE RADIAL EQUATION
FOR A STATIC PERTURBATION

The solution to Eq. (5)-i.e. of solutions to Eq. (6)
with A = O-can be estimated by use of the analytic
methods described by J. Moser 13) and the unstable
equilibrium orbits alternatively can be obtained
rather accurately by substitution of a trial solution
and use of harmonic balance (Table I) 14).

The direct application of the Moser procedure in
the case A ¥= 0 is more tedious, since the initial trans
formation required to eliminate the forcing term
- A cos 2s/3 introduces time-dependent AG terms into
the coefficient of v, but a similar, somewhat simplified,
analytic method can be applied conveniently and
moreover, the fixed points again can be estimated
quite well by use of harmonic balance (Table II) 15).

(lOd)o::; A ::; 0.023 .

and ). will assume values in the range

(9a)

(9b)

(lOa)

(lOb)

(lOe)

Pv == dv/ds

Py == dy/ds .

vr/N = 0.3

vz/ N = 0.0992

B = 1.15

TABLE I

Location of unstable fixed points for Eq. (5) at s = O. as obtained (i) by application of the
Moser method, through (vIN-1/3)'; (ii) by harmonic balance with terms of argument

2s13. 2s. and IOsI3; and (iii) computationally

Calc. by Calc. with Computational
Moser method trial function results

Point

11 Pv v p,- v Pv

I - 0.5132 0 - 0.5237 0 --- 0.5238 0
2 and 3 0.2256 ± 0.2667 0.2319 ,': 0.2783 0.2320 :±: 0.2789

TABLE II

Location of stable and unstable fixed points for Eq. (6) at s = 0, with A. = 0,006

Analytic calc. Calc. with Computational
trial function results

Point

v Pv v p" v P,-

Stable - 0.08362 0 - 0.083803 0 - 0.083802 0
I - 0.44855 0 - 0.44336 0 - 0.44345 0

2 and 3 0.2161 ± 0.2841 0.22451 ± 0.3023 0.22457 .J- 0.3030
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Fig. 3 Phase plot of solutions to Eq. (6), with the same values
for the coefficients as were used in Fig. 2 but pertaining to solu
tions at s = n/2 (mod 3n).

Fig. 5 Phase plot, for s = 0 (mod 3n), of solutions to Eq. (6)
with vrlN = 0.3 and B = 1.15 when A has the critical value
Ac = 0.01136. The point designated F.P. represents the con
fluent fixed point.

-0.4

-0.1

(l1a)
A

v (A) ~ -------:;
1 - 4/9 _ (2v

r
/ N)2

to s = n/2 (mod 3n). Firstly, it is found that, as
desired, the application of the perturbation (A > 0)
does open up the phase curves which originally
intersected at one of the unstable fixed points and,
secondly, that this fixed point and the stable fixed
point approach one another as the strength of the
perturbation is increased (Fig. 4), to result in the
complete disappearance of the stable region at a
critical strength of the perturbation, Ac = 0.01136
(Fig. 5).

It may be noted in passing that, for small A, the
locations of these two fixed points which lie on the
Pv = 0 axis when s = °(mod 3n) may be estimated
by 15)

CURVE FOR
STABLE
FIXED

. ",POINT

o 'k:-__---"o"".o:;"o5"----__~0.~0~10_____..c__'_A~-=0~.015

!'-A'=0.01l36

CURVE FOR
. "- UNSTABLE

~F1XED POINT

-0.3

-0.2

-0.5 (11 b)

for which the maximum value of A,

I, = v· [v-v2,0]. [4/9-(2v
r
/N)2] , (12)

v2 ,0

where V2,0 denotes the coordinate value of the
unstable fixed point when A = O. A parabolic fit,
tangent to the lines (lIa, b) at ). = 0, may be written

(l3b)

(13a)

Pc = .~ P2 . 0 .

is attained at

Fig.4 Coordinates of the stable and unstable fixed points
situated on the coordinate axis, for solutions of Eq. (6) with
vrlN = 0.3, B = 1.15, s = 0 (mod 3n) vs A. These two fixed
points are seen to approach one another as the strength of the
perturbation is increased, becoming coincident when A assumes
the critical value Ac = 0.01136.

The detailed characteristics of phase plots which are
obtained for any particular value of A depend, of
course, on the particular value of s (mod 3n)-or
of e (mod 6n/N)-to which they apply, but the
topological features are independent of s (compare
Figs. 2 and 3, which apply respectively to s = 0 and
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With v.IN = 0.3 and -V2,O~' 0.5238, Eqs. (13a, b)
suggest

A. Characteristics when only radial oscillations are

present.

V. INJECTION WITH A SECULARLY-DECREASING
PERTURBATION

which may be compared with the computational
results

Finally, we note that suitably injected particles
-e.g. with their initial phase points lying in the
region A of Fig. 2- will move so that their phase
points pass completely around the stable region which
is formed as the perturbation is being removed.
We may expect, therefore, that particles captured in
this way will fill the stable region with a phase density
equal to the maximum theoretically attainable.

We imagine the injector situated physically at radii
less than those of the stable region into which it is
desired to inject-say with v s - 0.55 at s = 0
(Fig. I)-to avoid any interference by the injector
with the captured beam. With an assumed particular
value for the rate of decrease of the perturbation, one
then seeks to find, by digital computations, the regions
of phase space within which particles may start, at
various initial values o[ A, to become captured within
the final stable region. The possible difficulties which
conceivably could be discovered in such a search
would be:

For an initial computational investigation it is
convenient to confine one's attention to motion in
the median plane (axial oscillations absent). One may
then commence by finding the range of momenta,
Pv' which, at v = -0.55 and for various representative
initial values of A, lead to capture into the stability
region. From such values other suitable initial condi
tions could be found by integration backwards in s,
to obtain a transformed set of points situated at
smaller radii, although with a three-sector accelerator
(or with injectors located at every third sector around
a larger accelerator) such a reverse transformation
should only be carried through a three-sector interval
in order to avoid the inclusion of points which would
encounter physical interference by the injector struc
ture. The region between these two lines in the radial
phase plane-i.e. between the line at v = -0.55 and
its transform through LIs = 3n-can then be explored
to find the boundaries of the regions suitable for
injection.

Such a computational survey of the radial phase
plane has been made for the case dAlds = - 0.002/3n =

= - 2.122 X 10- 4
, which corresponds to a lineardecrease

of the perturbation at a rate such that the strength
of the perturbation would decrease [rom its critical
value, itc ' to zero in the time taken, by the particle to
traverse 17 sectors of the unperturbed machine. The
results of this survey are summarized below.

For the initial value v = --0.55, the range of
" momenta", Pv' within which particles are captured
[or various initial values of it, are as shown in Fig. 6.
It is noted that the useful values o[ A extend consider-

(14a)

(14b)

(14a')

(L4b')

Ac = 0.01106

vc = -0.2619 ,

Ac = 0.01136

Vc = -0.2650.

Fig.6 Range of initial momenta. pvo. vs. the initial value. i.o•
of A. for capture of particles into the stable area of Fig. 1 when
the initial coordinate is Vo = -0.55. The results were obtained
computationally for solutions of Eq. (6) with the perturbation

decreased to zero at the rate dA = _ 0.002 .
d5 3:1:

(i) an appreciable fraction o[ the region of interest
might be found not to pass through regions to the
left of v=-O.55;

(ii) the location of the region with respect to mo
mentum, Pv. might vary strongly with the initial
value of ),;

(iii) the region in phase space might be found to be
seriously filamented ; and

(iv) the coupling between radial and axial motion
may be found to playa more dominant role than is
usually the case with stable motion, with a consequent
complexity of the four-dimentional phase space and
of its projections onto the radial and axial sub-spaces.

-0.2,-
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Fig. 7 Range of initial conditions for capture of particles into
the stable area of Fig. 1 when the initial strength of the perturba-

dA 0.002
tion is AD = 0.0165 and ds = -""3n' The boundary ab trans-

forms. after three sectors (LIs = 371:). to V = - 0.55.

ably beyond the critical value, Ac , since A will decrease
during the time the phase points of the particles
progress through the region wherein the stable area
is being established. As mentioned above, each such
range of values was then projected backward in s to
give a second locus of values, applicable three sectors
earlier (and for a value of A greater by 0.002). The
intermediate region of the phase plane, between
v = -0.55 and its transform, was then surveyed to
obtain results of which those portrayed in Fig. 7
are typical. For the particular case studied, filamen
tation of the "phase fluid" was almost entirely
absent throughout the entire phase area which was
mapped but in this way, although in a few cases the
computations appeared to show definite evidence of
an incipient filamentation developing along the lower
edge of the region (Fig. 8).

The areas of radial phase space which thus should
be covered by the injector were obtained from curves
of the type shown in Fig. 7. These areas, A(A),
have been plotted, vs. the initial value of }., in Fig. 9
and lead to the integrated result

fA(}.)d}. = 0.00046. (15)

(16)

i
---1-0.3

!

-0.7

,
I

-+0.2

i
!

1.4
~

-1.0 -0.8 I

~~~~R~ --. --.-;~"'~ I J-05
ENLARGEMENT OF ~W' -02

1"
AREA ENCLOSED IN ~" l' I.

DOTTED LINES ~ -I ~

~ I

A~">la .! -0.6

b/"~C -0.3
<'-.~y .I,

zr.-
- 1.5 -1.0 ·05· 0

, , ' nT' ~,~-;-'-~-~~T~

-j-O.I

If the injector is capable of delivering n particles per
unit area of radial phase space per unit time, the total
number of particles which thus could be successfully
injected by this means would be

n= fnA(}.)dt

= _n_ fA(A)dA
IdA/dtl

= wnN IdA~dSI f A(A)dA

n 6n
= - --0.00046

wN 0.002

n
=4.3-,

wN

where w = dO/dt denotes the angular velocity of the
particles in the accelerator. This result may be
compared with the maximum theoretically obtainable

Fig. 8 Detailed portion of diagram. similar to Fig. 7. for
capture of particles with AD = 0.0195. Particles with initial
values represented by circles are captured and those depicted by
the crossses are not. The boundary ab transforms after three
sectors to v = - 0.55. The points denoted by c and d represent
initial values which were found to lead to stable motion and thus
provide evidence of incipient filamentation.

ito.3

1

t°.4
,
;
!

~-0.5

J

j-O.6

I

/

-1.5 -1.0
--'---'I~'-~--~---,-'
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\

Fig.9 Area of phase space from which particles may be suc
cessfully injected into the stable area of Fig. 1, as a function of

dA 0.002
Ao, for ds = - 3n' The ordinates were obtained from

diagrams of the type illustrated in Fig. 7, in which one boundary
represented the locus of points which transform after three
sectors to v = - 0.55. From the date shown here, the result
JA (A) dA = 0.00046 was obtained.

this injection (or extraction) method. The exact
azimuth at which the injector might best be situated
might be adjusted, in practice, to achieve a convenient
match to the properties of the injector; it probably
would be convenient to select a location where the
usable values of Pv vary the least during the interval
that the secularly-changing perturbation is being
employed and for which the phase diagrams might
be similar to that shown in Fig. 10.

v--
-~r~---,---'l'f"--,-~-·.,-r-:'¥·--r-'--r °0.1

Fig. 10 Transformation of the shaded area depicted in Fig. 7
from s = 0 to S = 3nJ32, so that this region becomes more
centrally located with respect to p" = 0 (compare Figs. 2 and 3,
for which the corresponding values of s differ by n/2). The
segment a'b' of the boundary represents the transformation of
the portion denoted as ab on Fig. 7. In either case the shaded
region has an area estimated as 0.042 vp,,-units.

B. The effect of axial motion.

by direct injection, during a three-sector interval, into
the stable area without violation of Liouville's theorem,
namely

n(6n)n= ~ N . [Area of stable phase plot]

It is evident, from comparison of the results (16) and
(17), that excellent efficiency of injection into radial
phase space has been obtained from the region mapped
in this example, although with injection through more
than three sectors, or with more complicated diffe
rential equations, a more pronounced filamentation
of phase space might well develop to present practical
difficulties. The transfer of radial phase space from
outside the stable region to the interior appears to
be quite orderly in the case which we examined and
so encourages a continuation of the investigation of

= ~ (~) (0.223)

n
=4.2-.

roN
(17)

As in other accelerator investigations, the inclusion
of the additional, axial degree-of-freedom in the
present study introduces considerable complication
and requires a rather extended amount of compu
tation if a comprehensive picture is to be obtained.
The importance of including the axial motion in such
studies is clear, however, as has been emphasized by
Terwilliger in connection with a computational
investigation 16, 17) of a method which proved to
afford a promising means of beam extraction from a
spiral sector accelerator. Basically, this latter work
was concerned with the use of a pulsed localized field
bump which served to perturb the entire beam into a
region of strong d.c. magnetic field, whence it would
be bent down the spiral and out of the accelerator.
Terwilliger's investigation 16) of combined radial and
axial motion indicated considerable phase distortion
(and, effectively, loss of pha~e density) in the unper
turbed accelerator if one employed amplitudes com
parable with stability limits. Specifically, with a
beam for which the oscillation amplitudes were origin
ally about one-half as great as the stability limits, so
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that the coupling was not pronounced, and for which
the amplitudes each were further damped by a factor
of about 7 during the acceleration process, use of the
pulsed field was then found to permit orderly extrac
tion with high efficiency. The results whicJ:1 we are
able to cite at the present time in regard to the inclu
sion of axial motion in the problem reported here are
certainly not sufficiently complete to afford a compre
hensive picture-as we shall see, however, the preli
minary results which have already been obtained do
indicate that, as expected, the axial motion exerts a
marked effect on the performance and may detract
materially from the utility of the method if efficient
injection into the entire stability region of the accelerator
is required.

A search for the y-stability limit for solutions to
Eqs. (7a, b) in the absence of the perturbation indicated
that this limit lay between 0.72 and 0.85 if the ampli
tude of the radial motion was initially zero (i.e.
corresponding to the origin of the radial phase plot
shown in Fig. I). For larger amplitudes the per
missible initial axial amplitudes were somewhat
reduced, as shown in Table III.

TABLE III

Computational estimates of limiting axial amplitudes, with various
initial radial amplitudes, for solutions to Eqs. (7a, b) with A = 0

Pvo =PYO =0

Yo

Vo

IStable Unstable

0 0.72 0.85
-- 0.1 0.61 0.72
- 0.25 0.52 0.61

To illustrate the influence of axial motion on the
proposed injection method, we have made preliminary
computations for the case in which the initial strength
of the perturbations is )'0 = 0.0165 (and dAjds=
-0.002/3n) and for which Fig. 7 applies in the absence
of axial motion. The y-stability limits for Eqs.
(7a, b) were then sought for Vo = -0.55 and for
Vo = -0.85, in each case assigning to the initial
radial momentum, Pvo' a value near the center of the
previously permissible range of values. The results
of this search, summarized in Table IV, indicate
that the axial stability limits for these representative

cases were materially smaller than those shown In

Table TIL

TABLE IV
Computational estimates of limiting axial amplitudes, with
representative initial conditions for the radial motion, for
solutions to Eqs. (7a, b) with Ao = 0.0165 and dA/ds = -0.002/3:rr.

pvo = 0

Yo

Vo pvo

I
Stable Unstable

G -0.13625 0.31 0.37
~ 0.85 - 0.22 0.19 0.21

Guided by the results shown in Table IV, the range
of permissible values of Pvo' leading to stable motion,
was then examinaed at Vo = -0.55 and at Vo = -0.85
for several initial axial amplitudes. The results of
this survey are summarized in Table V.

TABLE V
Computational estimates of range of permissible radial momenta,
with representative initial radial and axial coordinates, for
solutions to Eqs. (7a, b) with Ao = 0.0165 and dA,!ds = -0.002/3:rr.

PYo = 0

pvo

Yo DO

Unstable I I I UnstableStable Stable

0 -0.55 - 0.0775 - 0.0800 - 0.1925 - 0.1950
0.19 - 0.09 - 0.10 - 0.19 ~ 0.20
0.22 - 0.09 - 0.10 - 0.19 - 0.20
0.26 - 0.10 - 0.11 - 0.19 - 0.20
0.31 - 0.12 - 0.13 - 0.19 - 0.20
0.37 - 0.14 - 0.15 - 0.20 - 0.21
0.44 ~ 0.18 - 0.19 - 0.21 - 0.22
0.52 - 0.22 - 0.23 - 0.24 - 0.25

------
0 - 0.85 - 0.190 - 0.195 - 0.245 - 0.250
0.19 - 0.21 - 0.22 ~ 0.25 --- 0.26
0.22 --- 0.22 0.23 0.26 - 0.27
0.26 0.23 - 0.24 - 0.27 0.28
0.31 0.25 - 0.26 0.28 - 0.29

It is clear that axial amplitudes much smaller than
those which appear in Table III result in a material
reduction of the useful range of Pvo' The larger
values of Yo listed in Table V are seen, moreover, to
be associated with values of Pvo differing from those
suitable for )'0 = 0, and injection with values of Yo as
large as those listed near the end of each section of
Table V may be of rather limited utility.
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VI. CONCLUSION

The particular injection method discussed in this
paper was found to permit efficient transfer of radial
phase space between regions exterior and interior to
the accelerator, although complications might be
expected ro arise if the physical limitation imposed
at the time the beam returns to the injector azimuth
were deferred for longer than the three sectors con
sidered here. The results of the method appear to
show a close resemblance to those which previously 6)

have indicated the potential utility of a similar pertur
bation for the efficient extraction of a beam from a
three-sector fixed-field accelerator.

The preliminary studies of the influence of substan
tial axial oscillation amplitudes on the particle behav
ior indicated that this influence was pronounced
and so might detract materially from the practicality
of the method unless additional considerations, such
as the limitation of axial amplitudes by the vacuum

chamber or the damping of oscillation amplitudes
prior to use of the method for ejection, served to
limit the axial amplitudes to values considerably less
than are dynamically stable in the absence of the
perturbation.

It is hoped that the method and results reported
here will prove suggestive of other possible methods of
utilizing a secularly-changing perturbation in conjunc
tion with the non-linear dynamical properties of the
orbits, including methods in which the perturbation
may have a greater period than that employed here
and so would interact with a machine resonance rather
than with an inherent sector resonance.

It is a pleasure to acknowledge the assistance of
Mr. Seymour J. Wolfson, a MURA summer visitor
from Wayne State University, in some of the algebraic
and numerical calculations connected with the analytic
phases of this investigation, and to thank Mr. Igor
Sviatoslavsky for assistance with some of the graphical
work.
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Resonant Beam Extraction from an A. G. Synchrotron*
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The resonant extraction method previously proposed for the normally constant gradient synchrotron has been
exten~ed to alternate gradient accelerators. It is found that perturbation field gradients which contain circular
functIOns of ar~ments 2v., ~v.+ 1, 2v.+2 are particularly effective in causing the radial betatron oscillations to
g~ow e~onentIally at a part~c~lar azimuthal position. The analytical procedure for predicting which perturbations
give optImum results, and digital computer calculations verifying these predictions, are presented.

n. THEORY

A. Basic Equations

The equation characterizing the radial betatron oscilla
tions may be taken to be of the form

particular resonance to. be employed may be based on
secondary considerations peculiar to the particular ac
celerator to which the method might be applied. However,
with the integral resonance, half the particles are driven
toward the outer radius at a particular azimuth while the
other half are driven toward the inner radius, so that at
most 50% of the particles can be extracted at one port.
In contrast, with the half-integral resonance, the particles
go alternately to large and small radii on successive
revolutions, so that in principle all the particles can be
extracted at one port. As in the case with the constant
gradient accelerators, the use of the n bump seems
desirable, since the perturbing windings then have very
little coupling from the main magnetic field of the ac
celerator. Basically, then, one visualizes driving the
accelerator to a nearby half-integral or integral resonance
and this stopband is then opened by a suitable perturbation
(see Fig. 1). The unstable oscillations grow exponentially,
predominantly at one particular azimuth in the accelerator.

Attention is directed to achieving radial instability,
it being presumed that axial stability can be maintained.
Throughout the paper the equations of motion are taken
as linear, and typically may be regarded as of the Hill
form. In the numerical examples the unperturbed
accelerator is considered to consist of l'ol identical A-G
sectors (full sectors) with .if= 48 and JI.= 7.5 or, alterna
tively, with .Y = 12 and JI.= 2.5. This illustrative material
will not include the complications of straight sections,
superperiods, or auxiliary lenses, it being felt that nothing
significant is lost in the exposition by omitting such
elaborations.

where the alternate gradient flutter is given by

02X+[p+mF (9)+X!(9)]x= 0,

o=d/de,
(1)

-7r/2l\' < (9, mod 27r/N) <7r/2N,

7r/2N < (9, mod 27r/N) <37r/2..:,\T,

F(9)=+1 for

F(9)==-1 for

I. INTRODUCTION

THE use o~ the half-integral resonance,1 JI..=!, to
effect rapId beam knockout, or extraction, from a

normally constant gradient synchrotron (or betatron) has
been previously published2 .3 and successfully applied to
the Iowa State University synchrotron and to the Allis
Chalmers betatrons. More recently a convenient analytic
description has been reported.4 The use of the analytical
approach to guide a broader investigation of resonant
extraction seems timely in view of the great enhancement
of utility and versatility which a successful method would
provide for alternate gradient accelerators now nearing
completion, or, which have been completed,s·6 In the
following sections an investigation of a resonant method
for alternate gradient synchrotrons is made.

It may be recalled that the method used with the
constant gradient synchrotron2- 4 employed an azimuthally
dependent perturbation of the field gradient (n bump) to
drive the operating point into the JI.=! unstable zone
(stopband), which opened up with a width proportional
to the perturbation strength and within which the solution
for the exponentially increasing betatron oscillations
attained its maximum value at one particular azimuth in
the accelerator regardless of the initial conditions of the
particular particle under investigation. This implies that,
in principle, the beam can be extracted on successive
revolutions with no spread in the angle tangent to the
equilibrium orbit, thus making the radial phase space of the
extracted beam zero. In the application to the alternate
gradient case, all these features are retained except that
the use of a half-integral, as distinct from an integral,
resonance does not seem essential and the selection of the

• Contribution No. 916. Work was performed in the Ames
Laboratory of the U. S. Atomic Energy Commission.

t Now in London with the Office of Naval Research
~ v. is the number of radial betatron oscillations per ~ircumference.

C. L. Hammer and A. J. Bureau, Rev. Sci. Instr. 26, 594 (1955).
: C. L. Hammer and A. J. Bureau, Rev. Sci. Instr. 26, 598 (1955).

C;. L. Hammer and L. J. Laslett, "Electron beam control in a con
ventIOnal synchrotron,'~ 2nd Intern. ConL Peaceful Uses Atomic
Energy Geneva 30, 151 (1958).

.. For example the Cornell I-Bev electron synchrotron or the
synchrotron planned by the Cambridge Design Study Group
M. Stanley Livingston, Director. '

~ V. V. Vladimirski et at., Proceedings of the CERN Symposium on
Hrgh Energy Accelerators and Pion Physics (UN Geneva 1956)
Vol. 1, p. 133. ' , ,

Reprinted by permission of the American Institute of Physics.
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(5)

1"1= (ml(2)-ml(1»)(2(2,v!a! 1,v»)-1

X(l,vlF!l,v)[a(l-a)]!, (101)

(7)

(8)

(11)f <l>N8= 1

mv m-

where D, is a normalization constant and

B,= 2mv1r-1[(N-T)2_p-av,/I)J-l,

C,= 2mv1r-1[ (N+T)2_p- av" (1)jl,

T2= av" (1)+ P+ (2mv1r-1)2{[(N- T)2- p-av" (1)J-l

+[(.V+T)2- p-av,,(I)J-l},

av"k=[T2-112J[1+4(II/N)2J-1, (9)

2(2mv1r-1)2= 112(N2- 112)2 (N2+ 112)-1. (10)

The centrifugal term p has been neglected. The quantities
m, 1", and <1>1 can be expanded in powers of the perturbation
strength \ according to

m=am(1)+ (1-a)m(2),

mk=mv+Xmlk+X2m2k+... [k= (1),(2)J,

I"=XI"I+X21"2+" "

<1>1 = Lk bkXv,.k+X Lk [CkXv,vk+ L~;<v(av,/)-ldv,/xv,lJ

+\2 Lk [ekXv,vk+ L~",v (av,l)-!jv,/Xv,lJ+· . "

m2k= - Ll L~;<v (k,lI: m{F+f; l,u)2(av,~I)-1

X(k,II:F,k,v)-l, (13)

FIG. 1. Stability
diagram.

for (T;'.V)<t. The quantity mv may be obtained from
Eq. (8) by setting T= II and av,vk=O. More approximate
equations for mvand av"k are given by

one obtains,13

where mel) and m(2), m(2»m(1), correspond to the values
of m at the edges of the stopband (see Fig. 1). Substituting
for these quantities in Eq. (1) and applying the orthogo
nality condition given by Eq. (5) and the normalization
condition,

reference 101,

13 It is assumed here that (1,1':/(0) i 2,1'\=0 so that nondegenerate
perturbation theory applies..-\lso, the algebra is simplified if one
recognizes that (l,v~a!2,u)=-(2,u!a!l,v) and (l,v!F(O):I,v)
=(2,v!F(O)!2,v), v;;<!(nNI2),n being any integer.

14 This equation identifies 1Il(2) with the even eigenfunctions which
may not be consistant with the assumption m(2»m(l). If an in
consistancy results, however, it can be removed by redefining k = (1)
as even and k =(2) as odd.

a2xv"k+[p+mvF(8)Jxvj= -av,hvj. (4)

The functions xvj are the eigenfunctions of Eq. (4)
which are associated with the eigenvalues avj. Choosing
the value of mv so that lO av,vk=O, ensures that xv,.k is
also the eigenfunction of Eq. (1) in the absence of the
perturbation with the eigenvalue m= my. As a con
sequence of Eq. (4),

(k,TII,u)-==f Xv"kXv ,.ld8=8k,18".,

and where the perturbation of strength \ has the form

f(8) = L~ ~~ cos(u8+8~). (2)

The magnitude of the unperturbed field gradient is there
fore given by m, and the constant p represents the usually
small "centrifugal focusing" term. It is seen that 8= 0
corresponds to the center of a radially focusing semisector.
The solutions to Eq. (1) have the Floquet form7

x=Ae~e<l>I+Be-~e<l>2, (3)

where J.I. is real for operation inside an unstable zone and
where <1>1 and <1>2 are periodic functions determined by the
structure mF(8) and the perturbation \f(8). It is clear
from Eq. (3) that for suitable values of 1", the ascending
exponential soon dominates the solution, so that the
betatron oscillations have the periodicity given by <1>1

regardless of the initial conditions. Therefore, the problem
reduces to that of determining f(8) so that <1>1 has the
periodicity and spatial dependence desired for beam
extraction from a particular accelerator and so that I" has
a value which permits the ascending exponential to
dominate.

It is convenient to solve Eq. (1) by usc of perturbation
theory,S with the complete set of functions, xv",9 as the
basis vectors where

reference 11. Excellent approximations12 for xv,/ and av"k
are given by

xvj= -D,{COs[T8+k-n/2J+B, cos[(N -T)8-k1r/2J

+C cos[(.V+T)8+k1r/2J), (6)

7 E. T. Whittaker and G. N. Watson, .1!odern Analysis (Cambridge
l'niversity Press, Cambridge, 1927), Sec. 19.4.

8 See, for example, Leonard 1. Schiff, QuantulIl J!eclianics (:\IcGraw
Hill Book Company, Inc., New York, 1955), ed. 2, Chap. VII.

9 The latin superscript refers to the parity of the eigenfunction and
takes the value (1) for odd and (2) for even. The subscript v refers
to the fact that a·v"k is chosen to give a particular value m, and the
subscript T refers to the fundamental frequency of oscillation in the
eigenfunction Xv, l.

10 It is assumed that m, is such that a",(I)=a",<2). This assumption
is valid as long as (vx/S) <j, which is the case for all accelerators.
In general, as long as TI.V;;<!t, a,.,(l)=a",(2).

11 The notation indicated by Eq. (5) will be used throughout.
Note that the subscript v has been suppressed (see reference 9).
Further, (k,T! g(O) :l,u)=fx" ,kg(O)x,.•ldO. The integration interval
is assumed over a full period of x" / .1 which these functions form a
complete orthonormal set. The interval 0 to 4". is sufficient for all
cases to be discussed.

121.. Jackson Laslett, ".-\pproximation of eigenvalues, and eiger
functions, by variational methods," :'vIL'R.-\ Notes (February I, 1955).
See also 1.. Jackson Laslett and C. 1.. Hammer, :\IL'R.-\ Report 445
(February 2, 1959).
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and

J.L2= {[16a(1-a)J-!(2,v ia 11,1')-I}{ (2a-l)J.L12

+ (2a-l)[am2(1)+ (1-a)m2(2)](1,v! F /1,1')

- 2J.LI Ll Lk Lu"v (-l)lb z(av.l)-ldv,/(I,v [a! k,u)

- LZ Lk Lu"v (-l)lb z(av.l)-ldv,uk

X (1,1' I[amI (1)+ (l-a)ml (2)]F+fl k,u)}, (15)

b1 = (a)!, (16)

b2= (l-a)!, (17)

Cl = - (l-a)!W, (18)

C2= (a)!lV, (19)

W = {[4a(l-a)J-![(ml (2L m1 (1»(1,1' IF 11,v)J-I)

X (J,L12+[am2(1)+ (1-a)m2(2)](1,v IF 11,1')

+ 2J.Ll Ll Lk Lu"v bz(av.l)-ldv.l(l,v Ia !k,u)

+ LZ Lk Lu"v bz(avj)--ldv.uk

X (1,1' 1[aml(I)+ (1-a)ml(2)JF+fl k,u), (20)

dv.l= 2J.Ll LZ b1(k,u Ia 11,1')
+ LZ bz{[aml(I)+ (1-a)ml(ZJJ(k,u: F 11,11 )

+(k,uifll,v)}, (u~v). (21)

The formulas for m2k, J,L2, W, and dv./ simplify greatly if
the additional restrictions

(k,vIFil,u)=(k,vlall,u)=O (v~u), (22)

are imposed. This does not limit the problem at hand
since the values of u for which Eq. (22) is not true give
rise to values of av.l sufficiently large that the omitted
terms are negligible. Thus,

ml= - LZ Lu... (k,v If Il,u)2(av.uZ)-I(k,v iF Ik,v)-I, (23)

J.L2{ (m2(2) -m2(I» (2(2,v! a 11,1'»-1

x (1,1' IF [l,v)[a(l-a)JI+ (2a-l)(J.LN4)

X [a(1-a)]-!(2,v! a 11,1')-I), (24)

W = Lk Lu"v (a v,uk)-I(l,v lfj k,u)(k,u IfI 2,v)
X (1,1' iF i1,1')-1 (ml (2) -ml (1»-1+ (ml (2) -ml (I»

X[a(l-a)]!(l,v IF [1,1' )8-1(2,1' 1 a i1,1')-2, (25)
and

dv,.k=LI bz(k,T ifil,v), (T~V) (26)

In summary, letting A= 1, one obtains

J,L= (m (2)_ m (I» (2(2,1' I a 11,1'»-1(1,1' 1F j 1,1' )[a(l-a)]!

+ (2a-l)(m(2L m (1»216-1(2,v ia i1,1')-3

X[a(1-a)]!(1,v[Fll,v)2, (27)

through second order and

<I>1 = (a)![Xv,v(l)+ WXv.v (2)+Lk Lu"v (av,/)-I

X (1,1' ifi k,u )Xv.lJ+ (1- a)![xv,v (2) - WXv,v(I)

+ Lk Lu"v (av.l)-1(2,v If Ik,u )Xv.l], (28)

through first order. Except for the second term in Eq.
(25), the square-bracketed terms of Eq. (28) are the
eigenfunctions associated with the m(I) and the m(2)
boundaries, respectively.

One sees from Eq. (28) and Eqs. (6) and (7) that the
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dominant term in <I>l is a circular function of frequency v.
Thus if v is integral, those particles whose displacements
x initially are such that A in Eq. (3) is positive will reach
their maximum displacement always towards the outer
radius of the accelerator (positive x) while those particles
with A less than zero will always reach their maxima
toward the inner radius. In contrast, if v is a half-odd
integer, the particles reach their maxima alternately
toward the inner and outer radius.

B. Form of the Perturbation

The perturbation f(O) is intended both to open the
stopband as economically as possible and to introduce
harmonics into the betatron oscillations such that the
orbits reach a maximum displacement at a particular
azimuth in the accelerator. As one sees from Eqs. (12),
(23), (27), and (28), to accomplish these purposes, one
need only consider the matrix elements (k,v f!I,T). To
obtain the frequencies that must be contained in f(O) it
is sufficient to approximate XV.Tk by the circular functions
of frequency T, which are the first terms of Eqs. (6) and
(7). In fact, this approximation is, in general, good to
order (vf.V), so that it is also adequate for most calcula
tional purposes. Thus, the matrix element becomes the
simple integral over the product of three circular functions,
giving

(k,vlf!I,T)

= 2-I~v+T cOS[OV+T- (k+l) (1l/2)J+ 2-1~lv-TI

XcoS[OIV_TI- (k-l)(71/2)(V-T): V-T i-IJ,

V~T, (29)

(k,v if! k,v)= 2-1~2v COS(02v- k?r)+ 2-1~0 cosoo. (30)

From Eq. (12) it is seen that the opening of the stopband
will occur to first order if (1,v!fil,v)~(2,vJ:2,v).

Inspection of Eq. (30) shows that only the b cos(2VO+02v)
term in the perturbation will accomplish this purpose.
While it is possible to find an f(O) to open the stopband in
second order using the condition

LZ (1,1' Ifi I,U)2~LZ (2,1' Ifi l,u)2,

given by Eq. (23) (recall ak.u(l) = ak.u(2», it would seem
from the standpoint of minimizing the magnitude of the
perturbation required that this case need not be considered.
However, for a particular accelerator, if it is not convenient
to use a perturbation which contains a 21' harmonic, it
may be necessary to examine the second-order effects
further. 15

To choose the perturbation so that the maximum
displacement occurs at a particular azimuth it is necessary
to separate the analysis into two parts, obtaining first
the harmonics required in the perturbation and second
the choice of the phase shifts ou. If the maximum is to

10 The opening of a stopband to second order in the perturbation
is considered in some detail by the authors in MlJRA Report 445
(February 2,1959).
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(33)

and

FIG. 2. Form of the function g(II).

where 'Yp=02.+p+(p'Po/II)+2'P0, p=±l, ±2, etc., for a
typical perturbation term ~2.+p COS[(211+p)0+02.+p]. For
convenience the higher-order terms

- W(l-a)! Lk L~;o" (a•. /)-1(1,IIVi k,(J')X •. ~k

(39)

2v+O'1t
a.

1= (811)-I(.fn+1).Y.

Because this equation cannot be satisfied for arbitrary
N and II, it would be desirable to include it in the design
specifications of the accelerator. However, since [a(1-a)J!
varies so slowly in the neighborhood of a=O.5, growth is
achieved for quite modest values of a. Thus Eq. (39) can
be relaxed sufficiently to include any .v and II. From
Eqs. (12) and (30) one sees that the assumption m(2»m(1)

is justified if one chooses

~2.<0, 02.=0. (40)

W(a)! Lk L~;o" (a.,~k)-1(2,1I[fl k,(J')X•. ~k

were added to Eq. (28) to derive the above result.l 6 The
maximum will occur at the azimuth 80 = ('Po/II) with the
dominant terms reinforcing the fundamental if one chooses

~2.+p=plpl-II~2.+pl, (36)

(.V'PO/ II) = 27rl; 1=1,2,3,''', (37)

02.+p= - (2'P0+p'Po/lI)
= -27r."Y-Il(2v+p). (38)

The condition expressed by Eq. (37) places the maxi
mum in the center of a radially focusing sector. Since
maximum growth for the betatron oscillations occurs for
a=0.5 [see Eq. (27)J one obtains the auxiliary condition
'1'0= (n+!-)7r, n= 1, 2,3, .. " from Eq. (3-1:). Imposing
this condition gives

AZ I~Llj" ''''''AW
"Iv 8. ~ (2v-Il"lv 8:2" (2 VtI)1I'lv

... 2.. a.; --=
g(81 I

v' HALF·ODD INTEGER

K sin 'Po = (a)LTV(l-a)!,

K cOS'Po= (l-a)!+ W (a)!, (34)

tan'Po= [a/ (l-a)J!+ (2a-1a)n;',

be enhanced at some 00 it would be desirable for the
perturbation to add to the unperturbed solution a function
(see Fig. 2)

g(O)=go cosII (0-00),

(2nll-1) (7r/211):::; (0-00), mod27r,

:::; (2nll+ 1) (7r/2 II) ,
=0, (2nll+1) (7r/211):::; (0-00), mod27r,

:::;[(2n+2)1I-1J(7r/211), (31)

where n is an even integer and II is the fundamental
frequency of the unperturbed solution. The Fourier
analysis of g(8) gives coefficients

g,=2go117r-1(1I2-r2)-1 cos(7rr/211}; r=l, 2,3, .... (32)

The dominant terms in the series can be ascertained from
the ratio

(g,/g.) = %-1 112(112- r2)-1 cos (7rT/211),

~O; r:::;311.

Since <PI already contains the dominant term of the
Fourier expansion as its fundamental, it is apparent from
Eq. (33) that the additional terms to be added should
contain harmonics close to II. Furthermore, since (g,/g.)
becomes more slowly varying for large II, more terms
will be needed for large II than for small P. On this basis,
and from Eqs. (28) and (29), one concludes that the
perturbation should include either harmonics 1, 2, or 3,
etc., or harmonics (211± 1), (211± 2), etc. However, one
observes that the coefficients g, have the same sign for
r:::; 311, whereas the coefficients of x•. / in <PI alternate in
sign [see Eqs. (9) and (29)J depending upon whetherr
is greater or less than II. Therefore, having frequencies
1,2 etc., or (211-1), (211-2), etc., in the perturbation is

...desirable since they introduce harmonics II± 1, 1I±2, etc.,
or (11-1,311-1), (11-2,311-2), etc., into the solution.
In the latter case, however, this distinction is academic
since the fact that a.,3.-l»a•.•-l makes the (311-p)
terms negligible.

The azimuthal position of the maximum displacement
can be obtained approximately by examining the maxi
mum of <PI alone, ignoring the exponential factor expf.L8,
and using the approximate formulas given by Eq. (6).
Thus, letting

one obtains

<PI"-' cosII (8- 'PO/II)
+ B. cos[ (.Y-II) (8- 'Po/11)+ (.V 'Po/ II)J
+c. cos[(.V+ II) (8- 'Po/II) + (.Y 'Po/II) J
+(2a.,.+p (1)-1~2.+p{COS[(II+p) (8- 'Po/ II )+ypJ

+ B.+pcos[(.V-1I-p)(8- 'PO/II) -'Yp+ (X 'Po/II)J
+C.+pcos[(.V+1I+p)(8- 'PO/II)

+'YP+('Y'Po/II)J}, (35)

C. Summary

In the previous sections it has been determined that a
field gradient perturbation of the type

-I ~2.: COS2118+Lp p!p I-II ~2.+p ICOS[(211+p)8+02.+pJ,
p= ± 1, ±2, etc., (-!1)

16 The normalization factor D, does not appear in Eq. (35) since
the use of the simpler functions in the matrix elements requires the
same constant for each of the eigenfunctions. The more sophisticated
treatment, however, gives the same results.
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TABLE 1. Coefficients of cosu(O- 'Po/.) in the function <1>1
for the perturbation given in Eq. (41). which are necessary to estimate the growth rate J.I. and the

function 4>1 are

(42)
Coefficient

v
N-v
N+v

tp
N-v+p
N+v+p
3v+p
N-3v+p
N+3.+p

will open the stopband associated with the radial frequency
II to first order and that the maximum displacement of
the betatron oscillations will occur in the center of only
one of the radial focusing sectors if the phase shifts
lh.+p are chosen in accordance with Eqs. (37) and (38)
and if !~2.+p I is chosen approximately in accordance with
the Fourier coefficients given in Eq. (33). The exact
number of terms required in the perturbation depends
upon the magnitude of II. In the following section two
examples are given; one involving 11= 7.5, .Y = 48 in which
four perturbation terms are required, and the other
involving 11= 2.5, N = 12, in which only two are necessary.

Simplified, approximate formulas for the matrix ele
ments, in addition to those given in Eqs. (29) and (30),

2
REVO~UTION . RE VOl IJIlONS

(a)

(1,111 F 11,11)= (2112/m.),

(2,1110 [1,11)=11.

Using these values one obtains for the perturbation
suggested in Eq. (41),

J.I.= (211)-1~2.[a(1-a)Ji[1+(8112)-1(2a-1)~2.J, (43)

and the coefficients for the harmonics in 4>1 shown~ in
Table I.

III. DIGITAL COMPUTATIONS

To verify that the perturbation suggested in Eq. (41)
gives the desired results, digital computations for the
solutions of Eq. (1) were made using the Iowa State
University "Cyclone" and the MURA IBM 704 com
puters. To simplify both the digital. and analytic
calculations, the small "centrifugal focusing" term p is
ignored and the function F(O) replaced by the first term
in its Fourier analysis, (4/11') cos.YO. This latter approxi
mation has been shown15 to make essentially no change
in the functions 4>1 or X•. uk and all the equations given in
the previous section remain valid.

The particular example chosen is for an accelerator
consisting of 48 full sectors operating near the 11= 7.5
resonance and being perturbed by an f(O) as given by
Eq. (41) for the two values p= 1,2. Thus the equations
of interest are

02.1'+[(4/1r)m'cos480- cos150+5.20 cos160

+10.17 cos(l70+1I'/2)Jx = 0, (44)

1.8C eXD e Jj
I2~5 N'48 I I i I. ~

06 /. M '" ~, )\ !' (\ "i !' J. 1/: ~\ I~\ (\ i1.1. \ 1'\ I', ,', :\ I' I 1\;';\ I!;\ ,\ i',j

o . ' i i ~J \ I \) \! " iii \ I \ Iii \.1 i I \ ,i , :I. j
0.6 ,) j' I W 'r "l V \ Y ~. ~ ~ \' 't Vi' ~
'1.2r ~ .I,,~

1.8Lf-~-~ _":::::_~----L~~-~-~-----c,:-L.:
o 10 20 30 40 50 60 70 80 90 100

NO Of SEcmRS TRAVERSED

TABLE II. Eigenfunctions and eigenvalues for the equation
i)2x•. l+ (4/1T-)m. cosNOx., .k= -a., .kX•.•k.

where the phase shifts have been chosen in accordance
with Eqs. (37), (38), and (39) with n= 11, l=36, and

02X7.5./+ (4/1I')m7.5 cos480X7.5,Tk = -a7.5,Tkx7.5.Tk
• (45)

o 0
14.34 14.58
30.37 30.97

322 409
330 452

385.48

Predicted by Eq. (10) and
Eq. (8) or Eq. (9)

384.74

Eigenvalues a.,,k
l' Digital

7.5 0
8.5 14.34
9.5 30.37

22.5 310.49
23.5 317.82

(b)

2 REV,", UT'ONS

.n
I REVOcUTION

(c)

Coefficients of circular functions in Xu, ,k

D, B, C,
l' Digital Predicted Digital Predicted Digital Predicted

7.5 1.394 1.394 0.1500 0.1496 0.07972 0.07967
8.5 1.392 1.393 0.1593 0.1588 0.07727 0.07723
9.5 1.390 1.391 0.1697 0.1691 0.07496 0.07490

22.5 1.1314 1.1318 0.7467 0.7477 0.05321 0.05280
23.5 1.0464 1.0461 0.9061 0.9082 0.05190 0.05131
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TABLE III. Coefficients of CO&T(fJ- 'l'o/v) in the function 4>,.

u Digital Predicted

7.5 1 1
40.5 0.148 0.150
55.5 0.0787 0.0797
8.5 (0.181 )(1.34) 0.181

39.5 (0.0282) (1.34) 0.0289
56.5 (0.0138) (1.34) 0.0140
9.5 0.155 0.167

38.5 0.0256 0.0278
57.5 0.0115 0.0123

A comparison between the digital and the analytic
calculations is shown in Tables II, III, and IV. In the
analytic calculations, the simplified expressions using
Eqs. (29), (30), and (42) are used throughout. In general
it is seen that the agreement is quite good. The dis
agreement shown in Table III by the multiplication
factor 1.34 arises primarily from a relatively large con
tribution to the function X7.6.8.S

k in 1>1 from the second
order terms which were ignored. These same terms
which enter in the third order in the value of J.l, account
for the disagreement shown in Table IV. The value of ex
cannot be predicted as well as the other quantities since
the additional assumption is made that the factor expJ.lO
does not affect the position of the maximum. The differ
ence in ex shown in Table IV corresponds to a shift in the
maximum of only 1.67°. Thus, the analytical approach,
as represented by the simplified formulas, serves as an
excellent guide to the digital calculations which must be
d~ne to extract a beam from a particular accelerator.

Graphs of the digital solution to Eq. (44) are shown
in Fig. 3(b). For comparison purposes, the solution in the
absence of the perturbation is given in Fig. 3(a). The
maxima at the sectors 0 and 96 and the minimum at
sector 48 have been enhanced as predicted by the theory.
The more complete interference shown in Fig. 3(c) is
accomplished through the additional perturbation term
21.65 cos200, which is chosen specifically to reduce the
maxima near sector 48 [see Fig. 3(b)]. The substantial
increase in the amplitude of the betatron oscillations
shown in Fig. 3 for each revolution plus the constructive
interference at the appropriate azimuth attests to the
usefulness of the resonance method of extraction. In
addition all the perturbation terms used in the example
are less than 6% of the normal A.G. flutter.

Fewer perturbations are necessary if the resonance used

TABLE IV. Eigenvalues mk , growth rate IJ., and the position a
within the stopband.

Digital Predicted

mU ) 378.21 378.39
m'·) 381.7~ 381.78

IJ. 0.0 0.031
a 07' 0."
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FIG. 4. Digital results comparing the effectiveness of a cos(fJ/2)
term in the solution. (a) N = 12, v=2.5, f(fJ) = - .25 cos5fJ+2.5 cos2fJi
(b) N =48. v= 7.5, f(fJ) = -cos15fJ+9.24 cosSfJ.

is a small integer or half-integer. To demonstrate this one
considers an accelerator with 12 full sectors operating
near the p= 2.5 resonance. In this case the differential
equation is

a2x+[(4/1T) (31.42) cos120-0.25 cos50+2.5 cos20]x=0.

The cos20 term in the perturbation introduces a cos(0/2)
term in the solution. The results are shown in Fig. -l(a).
For comparison purposes, the solution for the 48 sector
accelerator with p= 7.5 for the perturbation (-cos150
+9.24 cos80) is shown in Fig. 4(b). In this case it is the
cos80 term that introduces the cos(0/2) dependence of
the solution. One sees immediately that whereas the
solution for the p= 2.5 resonance is quite satisfactory, the
solution for the p= 7.5 resonance shows very little prefer
ence for one sector over the others.
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A six-sector spiral ridge FFAG accelerator has been constructed
and successfully operated to accelerate electrons from 35 to 180 kev
kinetic energy. Acceleration was by betatron action, supplemented
by radio-frequency acceleration when desired. The design was based
on magnetostatic and orbit computations performed with the Illiac
digital computer, and the subsequent performance was found to be
in good accord with these computations. Tuning coils permitted varia
tion of the basic parameters about the design values suggested by the
computations, so that an experimental investigation could be made
concerning the importance of nearby resonances. The theoretical
basis of the computational work and the specific results obtained are
first described, followed by a resume of the constructional features
and magnetostatic measurements. Tests with the operating model
are then reported, comprising a resonance survey, injection studies,
perturbation studies, and the use of radio-frequency acceleration.
The frequencies of radial and axial betatron oscillation at the nominal
operating point were, respectively, Vx = 1.40 and VV= 1.12, and the

1. INTRODUCTION

IN fixed field alternating gradient (FFAG) acceleratorsl.2

particles with a large range of momenta can be simul
taneously accommodated within an annular magnet of
limited radial extent, thus permitting a desirable flexi
bility in the methods of accelerating the particles and

* This work was supported by the U. S. Atomic Energy Commis
sion, the National Science Foundation, and the Office of Naval
Research.

t Present address: General Atomic Division of General Dynamics
Corporation, San Diego, California.

t The Ohio State University, Columbus, Ohio.
§ On leave from Purdue University, Lafayette, Indiana.
II Iowa State University, Ames Iowa.
~ On leave from the C'niversity of Tokyo, Tokyo, Japan.
** University of Illinois, urbana, Illinois.
1 K. R. Symon, D. W. Kerst, L. \\'. Jones, L. J. Laslett, and

K. lIf. Temilliger, Phys. Rev. 103, 183i (1956).
2 L. Jackson Laslett, Science 124, i81 (1956).
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resonance survey indicated this operating point to be centrally located
within a region of relatively large intensity which was bounded by the
resonances Vy= 1.0, Vx= 1.5, and (less markedly) 2vy-v.= 1. Injection
from a deflector structure with a thin septum permitted efficient in
jection to be achieved either by concomitant rapid acceleration of the
injected electrons or, alternatively, hy use of a time dependent radial
electric field applied as a perturbation. Experiments with a pro
tracted injection pulse permitted the observation of phenomena
attributable to space charge effects. A suitable frequency-modulation
schedule permitted successful acceleration of a substantial fraction
of stacked electrons through the transition energy. Appendices de
scribe a modulator, \\'ith negative feedback stabilization, to permit
protracted injection, a magnetometer, used in the magnetic field
measurements, and the essentials of Parzen's theory of perturba
tions, which was found to account satisfactorily for the results of the
perturbation experiments.

affording the promise of high beam intensities. The nature
and general theory of FFAG accelerators have been de
scribed previouslyl.~ and the operation of a radial sector
electron model reported.3 The spiral sector type is an
attractive alternative form of a FFAG accelerator, since
smaller circumference factors may be utilized than appear
feasible with the radial sector type and a significant
economy may thus be achieved in the magnet design.
Nonlinear features of the orbit dynamics, on the other
hand, would be expected to be materially more prominent
than for a comparable radial sector accelerator. The

present article describes the design, construction, and
operation of a mode! FFAG electron accelerator employing

3 F. T. Cole, R. O. ([a"by, L. \Y. Jones, C. H. Pruett, and K. M.
Temilliger, I{ev. Sci. Instr. 28, 403 (195i).
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spiral sectors,4 which was constructed to provide an em
pirical test of theoretical predictions, to contribute further
evidence of orbit stability over intervals longer than could
be examined computationally or under conditions in which
multiparticle effects are important, and to permit the
acquisition of experience with various acceleration methods
possible in accelerators of this type.

As in other FFAG designs the magnet was such as to
provide a field whose average value varies with radius as
rk, and use of logarithmically spiraled poles permitted
possible orbits of particles with different energies, or mo
menta, to be geometrically similar. A separated sector
design,2 employing separate spiral magnets, was used in
the interests of simplifying construction. JVlore signifi
cantly, a field with a large azimuthal variation was thereby
obtained, in an aperture not excessively limited, and larger
stability limits could be expected. The flutter, or azimuthal
variation of the field, was further enhanced by the use of
guard edges or "ears," of zero magnetostatic potential at
the edges of the spiral sectors. 6 Initially the model was
operated with betatron acceleration, although in later work
fairly extensive tests of radio-frequency acceleration
methods were undertaken.

The design of the spiral sector model was based, as dis
cussed in Sec. II, on computations performed with the
electronic digital computer of the Graduate College of the
University of Illinois (Illiac), corroborated and supple
mented later by some computations with an IBM-704
computer in the MURA Laboratory at J'dadison,
Wisconsin. Constructional work was begun in the Physics
Research Laboratory of the University of Illinois and
completed in :Madison, where magnetic field tests were
made, the model put into operation, and a beam im
mediately obtained.

With the number of sectors (N) selected as six, in the
interests of a conservative design which would permit
avoiding an excessive number of resonances, the remaining

4 Preliminary accounts of this model have been given in the follow
ing references: (a) D. W. Kerst et 01., Rev. Sci. Instr. 28, 970 (1957);
(b) L. J. Laslett, A. 1\'1. Sessler, and J. N. Snyder, Bull. Am. Phys.
Soc. 112, 337 (1957); (c) H. J. Hausman et ai., Bull. Am. Phys. Soc.
112,337 (1957); (d) R. O. Haxby et 01., Bull. Am. Phys. Soc. II 2,337
(1957); (e) D. W. Kerst and F. E. Mills, Bull. Am. Phys. Soc. II 2,
337 (1957); (f) R. Stump, B. Waldman, and \\'. A. \Vallenmeyer,
Bull. Am. Phys. Soc. 112,337 (1957); (g) F. L. Peterson and W. A.
Wallenmeyer, Bull. Am. Phys. Soc. n 3, 168 (1958); (h) F. E. Mills
and D. S. Roiseland, Bull. Am. Phys. Soc. II 3, 168 (1958); (i)
F. L. Peterson, Bull. Am. Phys. Soc. 113,331 (1958); and (j) R. O.
Haxby et 01., "Experience with a spiral sector FFAG electron accel
erator," Proceedings of the CERN Conference on High Energy Accel
erators and Instrumentation (European Organization for Nuclear
Research, Geneva, 1959), p. 75.

5 In addition to effecting a morc rapid dccrease of the magnetic
field at the edges of each sector, the ears provide additional shielding
from the magnetic field of thc carth, which is not entirely negligible
in comparison to the rather low ficld strengths cmployed in the elec
tron modcl. The influcnce of thc carth's field '\'as furthcr reduced by
usc of large compcnsation coils surrounding the accelerator, similar
to Helmholtz pairs, and with a hcxagonal shape cmploycd for the pair
intendcd to neutralizc the vertiml component.
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FIG. 1. Over-all view of the spiral sector model.

basic parameters characterizing the model were selected
by digital computations pertaining to the magnetostatic
problem and to the orbit dynamics in the resultant mag
netic field. The computational work included study of the
effect of misalignments and the values finally recommended
for the basic parameters were taken as central design
values about which adjustments could later be made to
determine empirically the effect of possible. harmful
resonances.

The inner radius of the accelerator was determined by
the need to accommodate the betatron core and for con
venience of access to various ancillary components, while
the associated injection energy (~35 kev) was dictated by
the specifications of the injector, which was originally
planned to be of the type used in the University of Illinois
80-l\1ev betatron. 6 From the field strength thus found to
be appropriate at the inner radius, and from the value of
the field index k suggested by the digital computations,
the maximum radius obtainable with readily available
forgings of Armco iron thus determined the maximum
energy which could be attained in the model (~180 kev).
With the dimensions selected in this way the model per
mitted study of beam behavior in the neighborhood of the
transition energy (155 kev), which was reached by par
ticles moving in orbits situated an adequate distance
within the outer wall of the vacuum chamber.

Figure 1 presents a general view of the accelerator. In
the following sections we review the theoretical and com
putational design studies, summarize the constructional
features and test program, and report the results of experi
ments made with the operating model to determine the
effects of resonances and the characteristics of various

acceleration methods.

6 D. W. Kerst et 01., Rev. Sci. Instr. 21, 462 (1950), especially
Fig. 12.
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Hz (r,4>,O) = -Ho(!'" fF(2. ln!... - N4», (1)
ro 10 ro

where G is a periodic function (of period 27f) with respect
to its first argument, r is the radial coordinate in a cylindri
cal coordinate system, and z is the vertical coordinate. If
we define a new function by the equation

n(~,7/) is periodic with the period unity with respect to ~

and it becomes evident that the fields can be expressed in
terms of the two variables ~ and 7/.

In terms of the function Qa,7/), Laplace's equation in
three dimensions reduces to the following partial differ
ential equation with two independent variables:

Qa,7/) = V/ Horo(r/ro)k+I, (3)

where

1 [ 1 r ]
~=-- -In- - N4> (4a)

27f 10 ro

[(l/W)2+:V2JI z
(4b)7/=

27f r

(2)(
r ) k+1 (1 r z )

V=·- G -In-- N4>,- ,
ro 10 ro r

any other radius. In the case that such scaling is main
tained, it is clear that the fields throughout the entire gap
can be characterized by the fields on a two-dimensional
surface (for example on a cylinder). Limiting our attention
then to scaling fields, we can reduce a three-dimensional
potential problem to a two-dimensional problem-namely,
to a problem which is quite tractable with present high
speed digital computers.

The median plane field [Hr (r,4>,O) =H4>(r,4>,O) =OJ in a
spiral sector, scaling accelerator can be written

where r is the radial coordinate, 4> is the azimuthal angle,
and F is a periodic function (period 2 7f) of average value
unity. The constant H o denotes the average magnetic field
at the reference radius roo The parameter k represents the
field index, the number of sectors is N, and the spiral ridge
makes an angle \= cot- I (Nw) with a radius vector.

From Eq. (1) the magnetic scalar potential V may be
written as

a2Q r 47f27]2 la2Q 47f(l/w) a2Q-+ 1+ -- 77
ae (1/w)2+1V2.a7/2 (l/w)2+N2 a~a7]

47f(k+ 1)/10 an 47r2(2k+ 1) an
+ -- 7]

(l/U)2+:\72 a~ (1/w)2+N2 a7/

47f2(k+ 1)2
+ Q=O, (5)

(l/w)2+N2

The general theory of fixed field accelerators, as well as
that specific to the spiral sector design, has been discussed
extensively elsewhere.1,2 IVIany of the approximate analytic
techniques which have been developed7 were of great value
in the preliminary theoretical design studies. This work,
however, is not essentially unique, whereas the methods
used to design this model are distinct from those used to
design any other particle accelerator in that, to the best of
our knowledge, this is the first time that a digital computer
,vas used to determine completely the essential parameters
of an accelerator by computation of the performance which
would result from various choices of magnet design.

There were two digital computer programs which were
essential to the design of the model. The first program
started "'ith any chosen magnet contour (provided only
that the pole "scales"1,2) and calculated the magnetostatic
potential at all points in the region between the poles. The
second program constituted a dynamics program, as differ
entiated from the aforementioned potential program, and
served to calculate the trajectory of a monoenergetic
particle in the fields resulting from the solution to the
potential problem. In effect, by use of these programs, it
was possible by digital computation to construct a large
number of poles and study in detail the resulting magnetic
fields or, more generally, to construct a large number of
accelerators and study the consequent particle dynamics.
It cannot be overemphasized that this is an essentially
exact procedure, save for possible long range dynamical
instabilities which would not be exhibited in digital com
puter runs corresponding to particle trajectories carried
through a few hundred revolutions or for possible many
particle effects such as the limitations due to space charge.
Thus, provided the accelerator was assembled according
to the specifications and tolerances obtained from the
computer, there could be no real doubt that the accelerator
would operate successfully.

The remainder of this section is devoted to a description
of the digital computer programs mentioned and to the
various calculations which were performed in order to
determine a suitable set of design parameters.

II. THEORY

A. The Potential Problem

Fixed field accelerators must be designed so that the
betatron oscillation frequencies are substantially inde
pendent of radius. This may be accomplished most directly
by having the orbits and the fields themselves simply
scaled replicas, possibly rotated, of the orbits and fields at

7 The linear orbit equations may be approximated by aid of the
"smooth approximation" (see reference 1, p. 1842) or by use of tabu
lated solutions to a Hill's equation (see reference 1, footnote 9).
Results for the nonlinear orbit equations may be approximated by
techniques developed independently by a number of workers [sec,
for example, L. J. Laslett and A. M. Sessler, l\lidll"estern Universities
Research Association Rep!. MURA-263 (1957, unpublished)].
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The program then proceeded with the integration until the
end of the sector, at which point the transformation

(8)

(9)

Yf=Yi- l1y

Pyf= Pui.

In order to study the effects of misalignments and field
imperfections for the purpose of obtaining tolerances for
construction of the model, the dynamics program was
arranged so that certain simple algebraic transformations
could be inserted periodically. Such transformations, which
are called "bumps," were of the following types:

(1) Axially-displaced secto; bump. At the entrance to
some chosen sector the following transformation was in
troduced to relate the initial values (Xi, etc.) of the orbit
variables to the values (x/, etc.) which result from appli
cation of the transformation

B. The Dynamics Program

The solution of the potential problem, 12 (or strictly 12/7/),
was stored in the fast memory of the Illiac computer as
t-words so that a mesh of up to 2000 points was available.
The fields which enter into the differential orbit equations
were computed from these stored values by differentiation
interpolation8 as needed during the course of the integra
tion of the dynamical equations. The field components
are given by

in which 12 is an odd function of 7/, vanishing at 7/=0, and
is periodic in ~ with the period unity. The potential prob
lem was accordingly solved with the Illiac digital computer
through application of a relaxation method to Eq. (5), the
input data being the parameters k, 1/w, lV, and the values
of 12 on a boundary curve. 8 For a typical problem, the com
putation time required to obtain 12 with sut11cient accuracy
for studies of particle dynanlics was of the order of 1 or
2 hr.

HO( r )k[ (12) 1 a(12) a(12)]
H r

= - -;; ro k; + 2mv a~ ; -7/a7/ ;

_Ho .i.V( r)k a (12)H",--- - 7/- - ,
ro 271" ro a~ 7/

(6a)

(6b)

(6c)

used introduced. This same bump was then used repeti
tively on each revolution.

(2) Radially-displaced sector bump. The transformation
used to simulate a radially displaced sector was identical
to that used for a vertical displacement, except that the
displacement was made in the x coordinate rather than in y.

(3) Rotated sector bump. At the entrance to a chosen
sector the transformation

and the dynamical equations, employing these field com
ponents, are

Xf= Xi- (7I"/N) (118)

pXf= PXi+ 118

Yf=Yi

Pyf= Pyi
(10)

in terms of the dependent variables y=z/ro and
x= (r-ro)/ro. 9

8 A more complete description of this computational method is
given by L. J. Laslett, l\fidwestern Universities Research Association
Rept. :MURA-99 (1956, unpublished). The nature of a more elaborate
program, subsequently prepared for an IBM-70.! computer, is sum
marized by 1. J. Laslett, Midwestern Universities Research Associa
tion Rept. J\fURA-221 (1957, unpublished). The technical difficulties
of constructing an efficient relaxation program which would fit the
capacities of the Illiac were by no means trivial, but are not discussed
here.

9 Actually the program worked \\-ith the variables Sand T, rather
than x and )', where S=ln (I +.1") and 1'=)'/(1+.1"). This procedure
avoided the use of a logarithm routine in the computational program
and thus provided memory capacity for a more detailed representation
of the field. For details concerning this feature, the interpolation and
differentiation algorisms (which are constructed to provide field com-

(11)
Yf=Yi

Pyf= Pyi.

As with the other bumps, this series of transformations was
repeated on each revolution of the particle.

was made. The transformation was then followed, at the
end of the sector, by

C. Computational Results

Figure 2 depicts the operating region of interest, in
terms of the quantities u x/7I"=2I1 x/1V and U y /7I"=2I1 y/N,
where II x and lI y denote the number of radial or axial beta
tron oscillations per revolution. The important intrinsic
resonances have been indicated on Fig. 2, as well as im
perfection resonances through third order. On the basis of
linear theory, and guided by the theory of imperfections
for the linear problem,I.3,7 three possible operating points

ponents which were continuous from one cell of the mesh to another),
'and for other details of the computational method see 1. J. Laslett,
Midwestern Universities Research Association Rept. MURA-99
(1956, unpublished). A description of a similar program subsequently
written for an I1L\f-70-t computer is given by L. ]. Laslett, i\Iid
western Universities Research :\ssociation Rept. ~IURA-222 (1957,
unpublished).

(7a)

(7b)

(7c)

(7d)

dx/d</> = (l+x)px(l_pxL py2)-!

dy/d</> = (l+x)py(l-p/- py2)-!

1
dp,jd</> = (1-pxL py2)-!+-(1+x)

IIo
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Ux/1C -

FIG. 2. Resonance diagram for N = 6. Three possible operating
points, for which detailed computations were made, are indicated by
the letters A, D, and C.

were selected for detailed study. For each of these operat
ing points, indicated on Fig. 2 by the letters A, B, and C,
a realistic pole profile and gap were selected and suitable
values of the parameters k and l/w determined compu
tationally to give the desired frequencies for small ampli
tude betatron oscillations. In Table I we list the parameters
which correspond to the three operating points and in
Fig. 3 we show a cross section, in the ~, 1] plane, of the pole
shape used for point C. It may be noted that a pole profile,
depicted in this way in the ~, 1] plane, represents a section
taken at constant r, but with unequal scale factors in the
azimuthal and axial directions. The outline represents
more truly a cross section perpendicular to the spiral, save
that the general increase of all linear dimensions with
radius is not depicted.

The results of a computational study of orbit dynamics
for the three operating points are summarized in Table II,
wherein we include some refined estimates of radial sta
bility limits determined with the MURA IBM-704 in
Madison. To ensure that the computations would not
ignore the possibility of strong coupling between radial
and axial motion at certain operating points, the Illiac
searches for radial stability limits were made with a small
initial axial displacement (yo= 10-5) in cases which other
wise would have been entirely free of axial motion, and
likewise, the subsequent IBM-704 studies of radial motion

'l t
I I
i I

J;~ ~
t ' 4-----+-2 I I f..---2

8
2 ----l!2l-2r' 2£2+-212-J

1:22 22""122'-

~Igj I r i
1, I MEDIAN PLANE ,

FIG. 3. Cross section of magnet pole, in the 1;, 'I plane, for operating
point C. The pole contour is periodi~ in the ,:ariable 1;, with I?eriod 1.
Azimuthal distanccs at constant radiUS are given by 2m"!N tUlles the
incremcnt of I; and axial distanccs by 21T1-[(1/1i')'+N2]-! timcs the
incremcnt of 'I. For thc prcsent structure I/w = 6.25 and these dis
tances become 1.0472 r !:II; and 0.7252 r !:I'I, rcspectively.
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included searches made with an initial axial displacement
which was about 12% of the corresponding axial stability
limit. Despite the relatively short duration of the indi
vidual computer runs for the estimation of stability limits,
the introduction of this modest amount of initial axial
motion led to substantially reduced, but it is believed more
realistic, radial limits for operation at points A and B. For
point C, however, the radial stability limits were found to
be substantially independent of the presence of such axial
motion. Although the data of Table II may be subject to
some sampling errors, a significant trend seems unmis
takable which served as a helpful guide in selection of a
suitable operating point for the model.

The radial stability limits for point A appeared unde
sirably low when even small amounts of axial motion were
present. This result, attributed to proximity to the l'x= 2l'y

resonance, motivated the investigation of point B, situated
somewhat further from this coupling resonance. As is seen
from Table II, the stability limits, although significantly
greater than for point A, were still rather small and, in
view of the low value of l'y associated with point B, the
usable volume of phase space was again regarded as un
desirably small.

Attention was therefore finally directed to point C, lying
a considerable distance above the l'x= 2l'y resonance. Here
the stability region was found to be materially greater
than for points A and B, and the axial oscillation frequency
was also comparatively large. Most important, moreover,
coupling effects were no longer apparent and the sensitivity
to misalignments did not appear to be pronounced.

On the basis of the Illiac computations included in
Table II, which incidentally were obtained with a total of
approximately 200 hr of computer time,lO it accordingly
was decided to proceed with the construction of the'model
at operating point C. It was, of course, planned to be able
to tune the model, but the central design parameters were
taken as those associated with point C. It is encouraging
to note that the subsequent performance of the model,

TABLE 1. Parameters for the three operating points
studied computationally.

Parameter Point A Point B Point C

k 1.62 1.65 0.70
1/10 6.65 6.00 6.25
N 6 6 6
jeff" 1.083 1.085 1.087
O"x 0.597 1r 0.5951r 0.4661r
O"y 0.225 1r 0.1291r 0.3751r
Px 1.791 1.785 1.398
Py 0.675 0.387 1.125

• f,1I denotes the effeclive /luller, defined as f,ll = [2 «H2) _(H)2)/(H)2J!
=[2«H _(f[»2)/(f[)2J!.

10 This estimate does not include code checking, various simplified
problems which were studied to test thc programs, or checks a! in
ternal consistency used to confirm that the results were substantially
indepcndent of ,ilesh size. Some tests of the elIect of mesh size are
dcscrilJcd in refercnce II.
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TABLE II. Summary of the dynamics studies for the three operating points A, B, and c.-

Point A Point B Point C
Length of Radial Axial Radial Axial Radial Axial

Perturbation individual run amp!.b amp!. amp!.b amp!. amp!.b amp!.

Unperturbed
30 sectors 0.088e 0.117e 0.106e

0.028d 0.052d 0.106d

80 sectors 0.029 0.033 0.036
Max amp!., stablee 0.073 0.072 0.075

Threshold
90 sectors, growth 0.032 0.049 0.092

no growth 0.027 0.031 0.074

Axially displaced sector
tly=0.00351 90 sectors 0.019d 0.029 0.036d 0.033 0.09ge,d 0.040

(L1z<:=1 mm)
tly =0.00702 0.019d 0.028 0.030° 0.035 O.077e,o 0.033

(tlz<:=2 mm)

Radially displaced sector
tlx=O.00351 90 sectors 0.026d 0.025 0.037° 0.032 0.100e. d 0.036

(t>:r<:=1 mm)
tlx = 0.00702 0.023° 0.020 0.034" 0.029 0.097e. d 0.036

(tlr<:=2 mm)

Rotated sector
L1l1=0.OOI5 90 sectors, unstable 0.032d 0.032 0.060d 0.034 0.126e;d 0.039

stable 0.023d 0.029 0.0420 0.030 0.100e,d 0.034
L1l1 =0.0060 unstable 0.0360 0,027 0.065d 0.030 0.104e,d 0.044

stable 0.023d 0.025 0.046d 0.028 O.078e. d 0.039

a The numbers in the body of the table give the magnitudes of the limiting amplitudes. for the free betatron oscillations. in units of the radius. Save where other
wise indicated. the amplitudes refer to the center of a radially focusing region. The threshold for y growth denotes the amplitude of radial oscillation above which
coupling results in a marked (exponential) increase in the amplitude of initially small axial oscillations. Approximate magnitudes of the various sector displacements
are given in millimeters for a nominal radius of 30 em.

b Amplitude to left of stable fixed point when pz has the ,'alue corresponding to the fixed point.
e With no axial amplitude present.
d \Vith a small amount of axial amplitude introduced initially.
e Amplitude at center of axially focusing region.

were found to be

TABLE III. The prominent Fourier components of the normalized
magnetic field for operating point C.

x/'" - 0.0211- 0.0290 sinlV8- 0.0071 cosN8

- 0.0011 cos2.V8 (12)

-0.0001 sin3N8-0.0002 cos3N8.

The elements of the matrix (~ ~) which serves to carry

the vector (x-x!, px-px!), characterizing a small ampli
tude betatron oscillation, through one sector also were
computed. These elements, as a function of the starting
point within the sector, are plotted in Fig. 5. The parame
ter (3, defined as 13/sinO", has been introduced by Courant
and Snyderl2 for convenience in treating the response of an

1 (normalized)
-0.1312
-0.0875
-0.0357
-0.0122

gm (the coeff. of cos27r1l1~)

1.084

1.0688
-0.0258

0.0742
-0.0087

Jm (the coefT. of sin27r11l0

o
1
2
3
4
Jere

111

reported in Sec. V, indicated that point C fell within a
region of maximum beam intensity.

Following initiation of construction of the model,
further digital computation was performed on the i\IURA
IBM-i04 at :Madison. This work proved to be completely
consistent with all the results as described, but, because
the pressure to obtain a satisfactory design point was no
longer present, the opportunity presented itself to obtain
a more complete description of the accelerator represented
by point C.u Some of these supplementary results are de

scribed as follows:

(1) Median-plane field. A Fourier analysis was obtained
for the magnetic field in the median plane, \\·ith the results

given in Table III.
(Z) Large amplitude radial oscillatiolls. .-\ phase plot for

large amplitude radial oscillations is illustrated in Fig. 4
for the model free of imperfections.

(3) Small amplitude radial oscillations. The small ampli
tude betatron oscillations occur about an equilibrium orbit
for which the major terms in its Fourier representation

II A more complete description of this work is given by L. J. Lasktt,
lVlidwestern Universities Research Association RepL XIURA-213
(1957, unpublished). J2 E. D. Courant and H. S. Snyder, Ann. Phys. 3, 1 (1958).
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FIG. 4. Phase plot of limiting amplitude stable radial motion,
obtained from computer results pertaining to No=O (mod. 2...). The
stable fixed point is designated by F. P. and the four unstable fixed
points by x.

orbit to scattering and other disturbances. For the present
structure {3:r; varies between about 0.43 and 1.29, as can be
seen from Fig. 6, and the value at the reference point used
in the earlier work (NO=O, mod. 271") is about 1.U.

4

-.3
3

N8-

FIG. 6. The paramcter (3L for propagation of small amplitude
radial oscillations through one sector of the model.

(4) Small amplitude axial oscillations. Corresponding
results for axial motion in the model are plotted in Figs. 7
and 8. The values of {3y at NO=O and NO=71" (mod. 271") are,
respectively, 0.62 and 1.40.

:Motivated by the unexpected comparative behavior of
three Illiac runs, 22 runs, each of 400 sectors duration,
were made with the IB.\1-704. None of these runs gave
evidence of instability and many gave reasonably definite
py vs y phase plots, of which some were characterized by
a rotation number close to 271"/5. The initial conditions for
the axial motion were varied over a considerable range
within the stability limits quoted in Table II, while the

1.5r----~--.----,---~--~__,

1.0 ---,------

0.51------;~~='-1

of----+----f--\---+-------j-r-"i

- 0.5f-------~/

-2.0

1

'

-2.5'---

-3.0~~
"2'

2.01.-----,-----,----,----

-1.0- -

-1.5 ---

N8--

FIG. 5. J\Jatrix elements characterizing propagation of small
amplitude radial oscillations throllp;h onc scctor of the model,as a
function of the starting point \\-ithin the sector.

FIG. 7. Matrix elemcnts charactcrizing propagation of small ampli
tude axial oscillations through one scctor of the model, as a function
of thc starting point within the sector.
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initial values for the radial motion were the coordinates of
the fixed point which characterizes the equilibrium orbit,u

A careful study I3 was made of the effect of k assuming
in one sector the value 0.8, while in the remaining sectors
it retained its design value 0.7. It was found that there
were no notable effects attributable to the decrease of
periodicity of the structure, but only a partial decrease of
the radial phase space available for stable oscillations
which was similar to the larger decrease found when k was
increased in all sectors.

III. CONSTRUCTION

A. Magnets

As mentioned previously, it was the intention that the
accelerator design should scale and accordingly that all
annular rings of the magnet should be similar, with the

40.6CM~

FIG. 9. Schematic drawing of one magnet sector.

l65cM

O.8I----or'---j-----+-----,\------i

OAI------!I-------f-----+------i

°o'--~~~rr.--~-----,krr~~----,3'"'7[=--~--'

2 2' ZIT

Ne-

FIG. 8. The parameter {3. for propagation of small amplitude
axial oscillations through one sector of the model.

dimensions increasing in direct proportion to the radius.
In addition the edges, and other equivalent points of each
magnet sector, should progress radially outward along a
logarithmic spiral which makes an angle t=cot- I (Nw)
=46 0 with a radius vector. With such a design, computa
tions made for one radius in the accelerator should be im
mediately applicable to other radii.

It was appropriate, therefore, to cut the magnet poles
from a surface having the correct conical angle to satisfy
the scaling requirements of the machine. The sectors were
made from forgings of Armco iron, It in. thick, from which
annular rings of 25 en inner radius and 61 cm outer radius'
were flame-cut. These annular rings were then placed upon
a template, pressed into the desired conical shape, and
subsequently annealed.

The individual magnet pole pieces were cut from the

13 L. J. LasJett, lvlidwestern Universities Research Association
Rept. IIIURA-2S7 (1957, unpuhlished).
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conical rings, mounted on a turntable, and machined to
the final conical surface. Grooves were machined in the
pole surfaces, near the sector edges, to carry the magnetiz
ing windings and tuning coils. The rim of iron remaining
beyond the coils could thus be regarded as remaining at
zero magnetostatic potential, thereby increasing the
effective flutter of the resultant magnetic field by effecting
a more abrupt falloff and serving to provide additional
shielding against external magnetic fields. The back leg
and pole faces of each magnet sector were finally assembled
on a jig and pinned by dowels in the final position. Figure 9
illustrates an assembled sector, prior to winding.

Since the magnet gap increases in direct proportion to
the radius and the magnetic field as rO. 7 , the magnetostatic
potential ofthe pole face must vary as rl. 7• It was therefore
necessary to use distributed pole-face windings. These were
so designed that a single layer of wire gave the requisite
field dependence if infinite pewleability were assumed for
the iron. Current densities in the wires were kept below
2000 amp/in.2, thus obviating the need for water cooling.
The coil configuration is shown in Fig. 10.

FIG. 10. Exploded view, showing one of the main ma~"et coils
above a magnet pole. The yoke, magnet pole, pole-face wi,di"~<, and
flutter-tuning coils are, reslwrl;vclv, denoted by a, b, c, and d.
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The main pole-face windings were formed of No.16
ForlT'ex-insulated wire and employed 110 turns on each
pole, of which 86 were distributed across the pole face, on
circular arcs concentric with the accelerator. The wires
crossing the pole were secured with polystyrene ce:~ent

into grooves machined i:l a Lucite form lin. thid" The
return copper bundles were then rigidly for:ned to fit into
the edge slots and were carefully mounted on the lilagnet
faces, using fish paper and varnished cambric for insulation.

To provide a desirable flexibility in the operation of the
model, both k-tuning coils and flutter-tuning coils were
provided for adjusting the operating point of the accel
erator. From an expansion of the desired magnetic held
through terms of first order in 11k,

one is led to a distribution of a single layer of supple:nental
pole-face windings adequate to produce a suitable change
in k with no more than a small nonscaling error. These dis
tributed windings were fabricated in the same way as the
main field coils. They were wound with 97 turns of No. 22
Formex-insulated wire, following a schedule similar to that
for the main coils, and the return copper bundles were also
buried in the edge slots. The flutter-tuning coils were
wound on thin Lucite strips which then were secured to
the guard edges of each pole so that the edges could be
adjusted to magnetostatic potentials different from zero.
During the installation of all the coils, the resistances were
continually monitored and great care taken to avoid short
circuits or grounds.

The main coils were all connected in series, so that they
carried the same current ('"'-'3.4 amp). The k~tuning coils
had their own series circuit with an adjustable current
supply and the flutter-tuning coils were similarly in series
with a separate control. Power for these currents was pro
vided by a stabilized Nobatron power supply. A. current
of ± 1 amp in the k-tuning coils produced a change in k of
±40%, and ± 1 amp in the flutter-tuning coils effected a
±30% change of the effective flutter. It should be noted,
however, that if both types of tuning coils are simulta
neously employed, a significant departure from the desired
scaling property of the magnetic field will result.

B. Vacuum Chamber and Detectors

(1) The Vacuum Chamber

The vacuum chamber was designed to permit utilization
of as much of the magnet gap as possible, this consideration
being of particular importance at the injection radius where
the largest oscillation amplitudes occur, and to afford a
flexibility which would permit modifications of the ex
perimcntalarrangements to be made readily. It ',-as neces
sary to provide at least one insulated gap across which ac
celerating voltages could be placed when required, and

several access ports for the insertion of probes and detectors
were considered desirable. For adequate beam lifetime,
ultinate pressures in the neighborhood of 10-6 mm Hg
were considered appropriate and an operating pressure of
2X 10-6 mm Hg was typical for most of the tests described
in the following sections.

The chamber, Fig. 11, was constructed as two hollow
se:l1icircular annuli, sealed together by means of a i-in.
flat rubber gasket compressed by insulated bolts. The
rubber gasket was located behind a metal shoulder, which
served to shield the insulating gasket from the beam and
assisted in assembly of the chamber. The inner and outer
chamber walls were formed by brass rings, i in. thick, to
which the top and bottom plates of !-in. brass were brazed
to form a chamber with an interior height of I! in. The top
and bottom exterior surfaces were chamfered, on the inner
portion, to fit closely between the magnet poles.

The chamber was pumped continuously through two of
eight 4-in. holes in the bottom plate, selection of the par
ticular holes to be used being determined by the desired
azimuthal location of the chamber with respect to the
magnet sectors. Two Consolidated Electrodynamics type
j\ICF-300 oil diffusion pumps, trapped by baffies which
were Freon-cooled to - 40°C, evacuated the chamber
through 4-in. gate valves. The forevacuum was provided
by a Welch type 1397 rotary pump which, by a suitable
system of ball-valves and use of ballast tanks, also served
as a roughing pump. Pressures in the high vacuum system

fIG. 11. Explodcd vicw of vacuum chamher. The current probe,
scintillation dctcctor, two vcrtical-scanning probes, plates for r-f
cxcitation of bctatron oscillations, and thc ionization gauge arc shown
schcmatically at a, b, c, d, and e.
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FIG. 12. Betatron core and
excitation windings.
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lower surfaces of the vacuum chamber. These electrodes
consisted of O.OlO-in. Mo, t in. wide, 2 in. long, separated
vertically by 1 in. They were electrically insulated, both
from each other and from the chamber wall, and, byexcit
ing them either in opposition or together, suitable vertical
or radial electric fields could be placed in resonance with
the corresponding betatron oscillations. An additional
electrode of /6-in. Cu, 6 in. long and n in. high, was also
provided to permit application of a radial electric field
near the injection radius.

I ~., I
CORE f\ 1\ r\ f\

VOLTAGE~~ ---------- ~~ ---

f-.jO.OOI",

FIG. 13. Circuit and waveforms for pulsed excitation
Qf betatron core.

C. Accelerating System

Betatron acceleration alone was used when the model
was first put into operation, and later supplemented the
radio-frequency fields employed in the series of experiments
described in Sec. VIII. The dimensions and windings of
the betatron core, which was constructed of 0..Q14-in.
transformer laminations, are illustrated in Fig. 12. The
four butt joints were surrounded, as shown, by separate
windings connected in parallel with the main distributed
windings and the resultant flux-forcing served to reduce
the leakage flux. Measurements made at the center of the
betatron-core window, before insertion of the vacuum
chamber, indicated a leakage flux-density of approximately
1 gauss and a residual field of about 1/7 gauss from the
core-the t-in. brass plates of the vacuum chamber would
be expected, of course, to effect a further reduction of
stray time-varying fields.

At the time the core was designed the final basic parame
ters of the model had not been selected and it was believed
desirable to provide an induction field of as much as 50
v/turn with continuous operation from a SOO-cps alter
nator. In practice, however, it proved convenient to
operate the core from a pulsed power supply, for which the
circuits and resultant waveforms are illustrated by Fig. 13.
By use of this circuit electrons could be accelerated in two
stages, first being carried to an intermediate radius and
then, after a short interval, further accelerated to the final

were measured with Consolidated Electrodynamics VG-IA
ionization gauges and forepressures by thermocouple
gauges. Gauges of the latter type also served to actuate
protective vacuum interlocks.

(2) Detectors

For direct detection and analysis of the accelerated
electron beam a scintillation detector was constructed for
insertion into the vacuum chamber. The scintillator proper
consisted of a I-in. diam cylinder of Sintilon plastic,
attached to the end of a brass tube which passed. through
an O-ring sliding seal at the vacuum chamber wall. The
scintillator was covered on its front surface by an evapo
rated aluminum layer which was lighttight and yet suffi
ciently thin to permit electrons to strike the plastic. Elec
trical pulses were then obtained from an RCA type 6342
photomultiplier situated at the end of the brass tube and
were either viewed directly on an oscilloscope or integrated
to give a signal indicative of the total beam striking the
scintillator.

In moving the scintillator radially within the vacuum
chamber, it necessarily crosses the spirals of the magnet
structure and in consequence presents a variable aspect to
the scalloped particle orbits. To avoid variations in the
geometrical acceptance it was therefore necessary to make
the front of the scintillator chisel-shaped.

A second detector consisted of a current probe,con
structed to provide an absolute measurement of beam
intensity. This probe was in the form of a Mo flag tin.
high, I in. wide, and 0.010 in. thick. Tests indicated that
secondary emission caused no detectable error in measure
ments made with this probe. An additional type of probe
carried an offset 0.040-in. 1\lo wire which, through rotation
of the probe, served to measure the vertical location of the
equilibrium orbit, to indicate the amplitudes of vertical
oscillations, and to limit these amplitudes when desirable.

For accurate measurement of the betatron oscillation
frequencies and of the revolution frequency in tests of the
operating model, it was planned to use destructive radio
frequency excitation of the betatron motion.3 ,14 For this
purpose a pair of plates was introduced near the upper and

14 C. L. Hammer, R. W. Pidd, and K. M. Terwilliger, Rev. Sci.
Instr. 26,555 (1955).
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FIG. 14. Block diagram of rfsystem.

energy. During this interval experiments on radio-fre
quency acceleration could be performed.

The radio-frequency system is illustrated by the block
diagram of Fig. 14. Since the required frequency change
was small for the radio-frequency experiments with the
model, a 6CL6 reactance tube was used to modulate the
6C4 oscillator. A 6CL6 gated buffer drove the 829-B final
stage, which was then coupled to one of the insulated gaps
of the vacuum chamber. Since at 60 .Mc the gap presents
a reactance of very low Q, it was feasible to connect it to
a tuning coil to provide a broadband resonant circuit. The
frequency-modulation function generator used to control
the reactance tube was sufficiently versatile to control,
independently, the initial radio-frequency program as well
as the program in the neighborhood of the transition l

energy.

D. Injector

Although it was possible to employ as an lnJector a
simple gun of the type customarily used for injection into
betatrons, 6 it was considered preferable in the model tests
to use an injection system with a very narrow septum so
that one could inject into a region as small' as several
millimeters. To avoid voltage limitations within the in
jector assembly it proved convenient to employ an aux
iliary deflector which permitted a septum as thin as 0.005
in. to direct the beam emerging from the injector.

The injector assembly is shown in Fig. 15. The electron
optics of the gun itself were determined by a rubber dam
method, leading to a design in which the focus was several
millimeters in front of the gun save for space-charge effects
which would displace this focus toward the deflector sys
tem. The deflector was constructed to bend the electrons
through 15 0

, so that they would emerge through a slit
0.080 in. wide and effectively 0.365 in. high. The electric
fields of the deflector were shielded by a box, of which the
O.OOS-in. septtlm formed the grounded wall, in order to
preclude disturbance of the electron orbits within the
accelerator. This deflector system provided a small amount
of radial focusing and substantially no vertical focusing.
When changing injectors, the mounting and alignment
provisions permitted a pretested assembly to be inserted
and a beam obtained within 20 min.
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Tests of the injector in a separate vacuum system indi
cated an emittance of 0.2 mm· rad horizontally (±1 mm,
±0.05 rad) and 2 mm·rad vertically (±5 mm, ±0.1 rad).
The emergent intensity, amounting to about t the total
emission from the tungsten filament, was typically 25 to
50 ma at operating conditions which would ensure a fila
ment life of at least 600 hr. The radial admittancell of the
accelerator at the point where the injector was located, as
determined by the digital computations for the design
point C, was expected to be 18 mm' rad (Fig. 4) and the
axial admittance (as limited by the vacuum chamber)
about 2.6 mm· rad, so that multiturn injection radially
warranted consideration. The injector was normally located
at the center of a vertically focusing sector, where the
envelope of vertical oscillation is greatest.

Two distinct pulse circuits were constructed for the in
jector, to permit operation with short or protracted pulses,
as desired. In the short pulse circuit an artificial delay line
was discharged, by a 5C22 hydrogen thyratron, through
the primary winding of a 7.5: 1 iron-cored oil-insulated
pulse transformer. The secondary of the transformer was
connected to the injector and used a bifilar winding to
provide power for the filament transformer. Resonant
charging of the delay line was provided through a choke
and high vacuum rectifier circuit. An inverse diode served
to clip overshoot and to prevent continuous conduction
by the thyratron. The output impedance of this pulse
supply was sufficiently low that variation of the load
through its entire range caused no measurable voltage
change. Pulses up to 40 kv in height and 4 fJ.sec duration
were available from this circuit, with a flat top which was

-----..

--~

-G O

-------------

. ,FIG. 15. In)ector assembly, with deflector. The cathode, shield,
InJe~tor hOUSing, deflector electrode, grounded septum, spherical
bearing surface, and a typical equilibrium orbit are, respectively,
shown at A, B, C, D, E, F, and G.
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achieved by careful adjustment of matching resistors
provided at the primary of the pulse transformer and by
adjustment of the lengths of the individual delay-line
sections.

The detailed construction of the modulator designed to
produce long pulses is described in Appendix 1. It could
provide pulses up to 45 kv in height and 1 msec duration,
with a rise time of 8 j.lsec. By negative feedback the output
was stabilized to 0.1%.

IV. MEASUREMENT AND CORRECTION
OF THE MAGNETIC FIELD

To ensure that the model would operate in the manner
suggested by the computational work, and to make it
effective for quantitative performance studies, it was
necessary to measure the magnetic field carefully through
out the entire aperture of the machine. The numerical
value and constancy of the field index k, the nature of the
azimuthal variation of the magnetic field, and the charac
ter of the median plane were examined. Adjustments were
then made so that magnetic fields could be obtained which
were substantially the same as those used in the orbit
computations. The measurements were made difficult by
the low value of the magnetic field, the maximum value
being 60 gauss, and by the complication of the spiral
geometry. In following an initial investigation, it was
found that the original magnet surfaces differed 2 or 3 mm
from a conical shape and would have required corrective
pole-face windings over the entire pole surface. Accord
ingly, the poles were carefully remachined before making
the final set of measurements and adjustments.

For most of the magnetic measurements small flip coils
about 1 cm in length and diameter were used. To -measure
k three coils were used in an arrangement similar to that
previously described.3 The coils were mounted on an arm
which was rotatable about the center of the accelerator
and could be changed in radius. The radial and azimuthal
positions were determined by suitable scales (to an accu
racy of a few tenths of a millimeter in radius and a few
tenths of a degree in azimuth). The end two coils were
equally spaced from the center coil and were located along
an axis, intersecting the axis of the center coil, which made
an angle of 46° with the radius so as to be tangent to the
central spiral locus of the magnet-sector (Fig. 16). The
three coils could be flipped simultaneously, through 180°,
about this axis.

The arrangement just described was only satisfactory
for measuring k along the central spiral of each magnet
(shown as a broken line in Fig. 16), since a large error
results in regions where the field varies rapidly at right
angles to the rotation axis and the error is greatly en
hanced if the magnetic axes of the coils do not intersect
this line accurately. Despite this limitation, however, the
results obtained with the aforementioned method were
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FIG. 16. Diagram of the null-reading flip coil arrangement used to

determine the field-gradient index of the magnets.

found to be adequate when taken in conjunction with
measurements of the average value of k by means to be
described later.

Preliminary measurements indicated a value of k which
was low and varied with radius. With the remachined poles
the addition of a suitable number of back-leg turns in series
with the main magnet windings made it possible to hold
k constant within 5% at low and intermediate radii-i.e.,
out to about 48 cm. In order to keep k constant at large
radii, it was found necessary to distribute the main forward
windings and the extra back-leg turns very carefully across
the inside surface of the back legs. It will be noted from
Fig. 9 that, for these larger radii, the region in which a good
field is desired is as close to the back legs as to the pole-face
windings.

Measurements of the magnetic field dependence on
azimuth were first made using a single flip coil (the center
coil of the three-coil arrangement), connected directly to
a General Electric fluxmeter. Some of the later measure
ments were taken with a peaker-strip magnetometer
(Appendix II), which was constructed and kindly made
available to us by Dr. Joseph Ballam of Michigan State
University. These measurements were analyzed in the
form of a Fourier series, using the IBM-704 computer.
The program calculated both the Fourier components of
the field and also the "effective flutter," fefl=[2«H2)
- (H)2)/ (H)2J!. From the average values of the field at
different radii, the average value of k could be computed.
From the components of the Fourier analysis it was pos
sible to determine which magnets had too large or too
small a field. It was found that the effective flutter was
slightly lower than desired, even when the vertical com
ponent of the earth's magnetic field was removed by means
of a large hexagonal Helmholtz coil pair placed around
the accelerator, but final adjustments of course could be
made by use of the Outter-tuning coils described in Sec.
lIlA. In addition to the hexagonal coil pair just mentioned,
a second set of coils was installed to remove the horizontal
component of the earth's fidd.
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In order to measure the horizontal component of field
in the geometric median plane of the model, a piece of
plate glass was carefully leveled and adjusted so that its
top surface was parallel to and below the geometric median
plane of the magnets. A peaker-strip magnetometer
(Appendix II), sensitive to small fields, was connected to
a zero-center meter and set on this glass plate so that its
axis was at the height of the median plane. By moving the
magnetometer about on this surface it was found that there
were fairly large and random horizontal fields of magni
tudes up to more than 1 gauss. Since the radial component
of the horizontal field was felt to be the more harmful,
attempts were made to reduce this as much as possible. To
this end the magnets were raised or lowered, and tipped,
and it was also necessary to wind turns properly positioned
about the poles of the magnets, forward on one pole and
backward on the other. In some cases it also was necessary
to provide "plaster" coils on the inside of the back legs of
the magnets. With these various adjustments it was pos
sible to reduce the horizontal field to a maximum of about
10 milligauss at all radii less than about 52 cm. Beyond
this radius, the many back-leg windings seemed to make
the attempt excessively difficult.

When the flutter coils were added to the edges of the
magnets, it was found necessary to adjust their feeder
windings carefully along the slots to reduce their effect on
the horizontal field. Careful adjustments were made until
the horizontal field was no more than 20 milligauss when
the coils were excited sufficiently to change the effective
flutter by ±40%.

V. RESONANCE SURVEY AND STABILITY LIMITS

A. Method Employed in Resonance Survey

A detailed measurement of the variation in beam in
tensity over a large part of the lI x , lI y stability region of the
model was made 4f.15.16 in order to study the effects of
various resonances on the operation of the accelerator. The
field index was varied within the range 0.20 to 1.16 by the
k-tuning coils (Sec. IlIA) and the flutter from 0.57 to 1.60
by the flutter-tuning coils. The measurements were chiefly
made at a radius of 37 cm, which was as close to the in
jection radius as it was possible to operate and still clearly
differentiate the accelerated beam from newly injected
electrons. The beam intensity was obtained from the inte
grated signal of the plastic scintillation detector (Sec.
IlIB2). During the intensity survey the injector filament
current was kept low and constant; likewise. the betatron
core voltage, the gas pressure, and the injection timing
were held fixed.

To correlate the measurements of beam intensity versus

15 R. Stump and B. Waldman, Midwcstern Univcrsitics Rcscarch
Association Rcpt. MURA-361 (1957, unpublished). .

16 W. A. \\'a!lcnmcver, Midwcstcrn Univcrsitics Rcscarch .\SSOCIa

tion Rept. J\IURA-407 (1958, unpublished).

TABLE IV. Determination of Vx and Vv from resonant radio frequencies
at the central operating point (tuning coils de-energized).

Measured Character
frequency of /0 Assignment

Result(Me) resonance (Me) /"//0. A' (j,,//o)

50.53 y, strong 49.25 1.025 Vu Vu -1.025
47.96 Y. strong 0.974 2-1111 1.026
27.48 y, medium 49.24 0.558 3 -(vz+vu) Vz +vu =2.442
21.76 y, strong 0.442 (vz +vu) -2 2.442
29.74 Y. medium 49.40 0.604 1-(vz-vu) 11% -VI/ =0.396
19.66 y, strong 0.399 V%-II11 0.399
49.27 49.27 1.000 1
70.23 x, very strong 49.43 1.426 Vz Vz = 1.426
28.63 x, very strong 49.43 0.581 2 -liz 1.419
20.80 x, very strong 0.422 JI:r-1 1.422
41.13 x, strong 49.26 0.835 2p.:r:-2 2vz =2.835
57.38 x. medium 1.163 4-2v.t: 2.837
46.40 x, medium 0.941 3 -2vv 2vu =2.059

Average 49.3 Vz =1.420
Vu = 1.026

tuning currents with the betatron-oscillation frequencies,
the method3.14 of radio-frequency resonant enhancement
of the betatron oscillations was employed. Enhancement
of the axial oscillations was detected by loss of beam due to
interception by the vertical-scanning probe (Sec. IIIB2)
or by the walls of the vacuum chamber, while enhancement
of the radial oscillations was identified by a shift in the
time of arrival of the beam at the detector. The frequencies
at which such resonances are observed are related to the
betatron-oscillation frequencies by a relation of the form3

(14)

where 10 is the revolution frequency of the particles and
p, q, and m are integers. The radio-frequency oscillator
used for these measurements covered a range from 12 to
74 .l\Ic, while the frequency of revolution at the 37 cm
radius varied from 42 to 58 Mc as the tuning was changed
within the range of interest. A typical set of frequency
measurements, assignments, and results is given in
Table IV. In order to make the correct assignments and
thus determine the oscillation frequencies, approximate
values for these frequencies of course should be known by
other means.

B. Results

The intensity survey as a function of the tuning currents
was taken in a series of runs where one of the tuning
currents was kept constant (generally that for the k-tuning
coils) and the other was varied over most of its range in
order to determine most of the maxima and minima of
intensity. A typical plot obtained by this procedure is
shown in Fig. 17. This plot shows the relative beam in
tensity measured by the scintillation detector as a function
of the current in the flutter-tuning coils for the case where
there was no current in the k-tuning coils. The experi
mentally measured flutter at three points is also indicated
on the abscissa. Values of the axial and radial betatron
oscillation frequencies are indicated above the curve, as
are also the locations of certain significant resonances. By
measuring the betatron-oscillation frequencies as a func-
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FIG. 17. Beam intensity as a function of the flutter-tuning current,
with no current in the k-tuning coils. The values of Vx and vv, as
measured by radio-frequency excitation of the betatron oscillations,
are indicated above the curve. Points where certain resonances were
crossed are also indicated.

of 1.12 (d. Fig. 17). A sizable region of maximum intensity
was found to occur centered about the design point in
Fig. 18. The resonance diagram indicates the importance
of several resonances in the region accessible by the tuning
controls. Although the computer studies summarized in
Table I suggested that the coupling resonance Jl x = 2J1y

could affect the intensity markedly in the neighborhood
of operating point A, the specific influence of this resonance
on beam intensity, when no misalignments were de
liberately introduced, was less clearly marked in the results
of the intensity survey illustrated by Fig. 18. An additional
investigation, reported in Sec. VE, was therefore directed
toward the examination of effects associated with operation
near the accessible portion of this resonance line.

D. Stability Limits

Experimental measurements were made of the axial and
radial stability limits at the design point of the model. At
a given working point there is a range of energies at which
electrons will be accepted into stable orbits in the accel
erator. If one assumes that the minimum energy particles
are injected onto an equilibrium orbit which just misses
the injector and that the maximum energy particles oscil
late about an equilibrium orbit which is situated a distance
from the injector corresponding to the radial stability limit,
it is possible to obtain a measurement of the radial stability
limit.

In one method it is convenient to apply a long pulse
(Appendix I) to the injector, modified to give a waveform

C. Discussion

Interpretation of the results just reported is subject to
some uncertainty due to incomplete control of the beta
tron-oscillation amplitudes. In the intensity survey the
injector and deflector potentials were adjusted for each
point so as to obtain maximum intensity and the ampli
tudes of the radial oscillations necessarily increased or de
creased with the injection energy. The amplitudes of the
axial oscillations, moreover, were limited during the in
tensity measurements only by the upper and lower walls
of the vacuum chamber. In the measurements of the beta
tron-oscillation frequencies by the radio-frequency reso
nance method, however, no quantitative attempt was
made to return to the injection conditions previously used
except that adjustments were again made to attain maxi
mum intensity. Also the axial amplitudes were here de
liberately limited, by the vertical-scanning probe, in the
interests of observing a sharp radio-frequency resonance
with the axial oscillations. The observed frequencies of the
betatron oscillations as a function of oscillation amplitude
are shown in Fig. 20 for the central operating point of the
model. It is seen that although the variation of Jl x with
amplitude is small, the variation of jill is considerable and
presents some uncertainty in the values determined for 1111

in the intensity survey (Fig. 18). It should also be men
tioned that the radio-frequency resonance method is diffi
cult when operation is near one of the intensity minima of
Fig. 18 and that reliance must be placed, in such cases, on
interpolation from results obtained in regions of good beam
intensity. This fact, the amplitude dependence of the
oscillation frequencies, and the nonscaling character of the
magnetic field when substantial tuning currents are applied
may account for the observation that the positions of the
resonance lines drawn on Fig. 18 do not coincide exactly
with the observed positions of n:iaimum intensity.

It may be noted that the betatron-oscillation frequencies
observed in the model (Table IV), without current in the
tuning coils, were close to the values resulting from the
digital computations4b ,1l ('rable I) and that a small current
in the flutter.tuning coils sull1cient to raisejerr to its design
value of 1.087 raised Jl y from 1.026 to the predicted value

tion of the tuning currents, interpolation graphs were
prepared which permitted the results of the intensity
survey to be replotted in terms of these frequencies. The
resonance diagram which resulted is shown in Fig. 18, in
which the increasing width of the resonances at points
further from the center of the diagram is chiefly attributed
to the increasing nonscaling of the field as the tuning
currents are increased (Sec. IlIA). An indication of the
degree to which the untuned fields satisfy the scaling con
dition is provided by Fig. 19, in which the measured fre
quencies are shown as a function of radius.
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FIG. 20. Measured variation of betatron oscillation frequencies
with amplitude, "'ithout tuning currents.

A measurement of the radial stability limit by the second
of the methods described led to a value at the azimuth of
the injector given by ± (O.058±O.006)r, or ± 1.75 em, for
the design point. This result corresponds to a limit of ap
proximately ±O.08r at the azimuth to which Table II
applies (d. Fig. 6) and is in reasonable agreement with the
value of approximately ±O.09r found computationally.
The measured value for the axial stability limit similarly
was ± (O.045±O.006)r. This result is somewhat smaller
than the maximum amplitude which would be permitted
by the internal dimension of the vacuum chamber, as
would necessarily be the case if the magnetic median plane
,,,ere not quite centrally located within the vacuum
chamber, while the computational result given in Table II
suggests a dynamical limit at the injector somewhat
greater than the available aperture.
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having a linearly falling portion and with the maximum
injector voltage set above the high voltage limit for in
jection of a beam into the accelerator. By suddenly drop
ping the deflector potential to zero at a time which is ad
justable with respect to the waveform applied to the
injector, the time interval over which injection occurs may
be measured. From the rate of decrease of the injector
voltage the acceptable energy range for injection may then
be computed and hence the corresponding radial displace
ments of the injected particles from their respective equi
librium orbits. In a second method a long rectangular
pulse which drops rapidly to zero (Appendix I) is applied
to the injector, so that injection occurs over a quite short
interval of time, and the time interval over which the ac
celerated beam is received at the target is measured. In
this case electrons injected with a higher energy, and
undergoing larger betatron oscillations, will arrive at the
target earlier than electrons injected onto an equilibrium
orbit which just misses the injector. From the known
properties of the accelerator, in particular the value of the
betatron accelerating voltage, the radial stability limit may
again be evaluated. The adiabatic damping of the radial
betatron oscillations must be taken into account, of course,
in this calculation.

Axial stability limits are conveniently obtained by use
of the vertical-scanning probe (Sec. IIIB2). For all these
measurements, where the injector, detector, and vertical
scanning probe were at different azimuthal and radial
locations, some adjustments had to be made to the meas
ured values so as to have the radial and axial limits refer
to the same value of ~. These adjustments could be made
with the aid of the curves of (3 vs NO (Sec. lIe; Figs. 6
and 8) for small amplitude oscillations, taking the beta
tron oscillation amplitude as proportional to (3!,J2 or by use
of similar computer information pertaining to larger am
plitude oscillations.

1.4

1.3

L-_~ ~ ~ ----'45

E. The Resonance Vx = 2vy

The design point for the model was deliberately chosen
(Sec. II) to be far from the difference resonance vx .= 2vy.

As noted in Fig. 18, however, it was possible with the
tuning controls to reach operating points in the vicinity
of this resonance line, although the accessible portion was
of somewhat limited extent and fell in a region where other
important resonances were also present. It is apparent
from Fig. 18 that the beam intensities in the neighborhood
of the V x = 2vy resonance are generally low, although no
pronounced decrease of beam intensity is unambiguously
attributable to this particular resonance. For this reason,
and because of the general interest in the V x = 2v" resonance,
additional information wa,; sought experimentally for cp
eration near thi,; resonance, with vx'''1.46, and the inter-

50454035

z) 1.2

fo 55

1.0

RADIUS (em)

FIG. 19. Measured values of the revolution frequency and the beta
tron oscillation frequcncics as a function of radius, "'ithout tuning
currents. If the scaling condition wcre satisflcd exactly, thc oscillation
frequencies Vx and Vy would bc indcpendcnt of radius.
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FIG. 21. Semilogarithmic plot illustrating growth of the amplitude
of axial oscillations for operation near the Vx= 2vv resonance, as ob
tained by digital computation with Vx= 1.25 and vy=0.62. The
number appended to each individual curve denotes the initial radial
displacement for that run. Y i denotes the semi-aperture of the vacuum
chamber at the injection radius.

pretation was guided by the results of digital computations
made specifically for the point P x = 1.25, p y =0.62.

From the computations it appeared that the radial
motion, if present alone, would have very generous sta
bility limits but, as is typical of performance on a coupling
resonance,17.18 a very small amount of radial oscillation
would be accompanied by a marked growth of the axial
oscillations. This growth of axial oscillation-amplitude is
shown in the semilogarithmic plot of Fig. 21, wherein it is
evident that a radial amplitude in excess of about 0.0221',
or about 0.7 cm measured at the injector, ,,·ill carry the
axial motion to amplitudes in excess of OJl6 r (1.9 cm) and
result in interception of the beam by the chamber wall. If
the wall \"ere not present, however, this physical limitation
would not occur and stable motion with axial amplitudes
up to about 0.1 r might then be considered possible.

Experimental measurement of the radial stability limit
at the operating point assumed in the computations, using
the methods dl:scribecl in Sec. VD, kd to an e(iective limit
of 0.51 em and, as was the case for the design point, axial
amplitudes in excess of 1.3 cm were found. In a more de
tailed set of measurements, made with P x '"'"'1.'+6, results
were obtained to suggest that the effective radial limit was
indeed decreased if the axial amrilitudes were restricted,

11 L. J. Lasletl and K. R. Symon, l'roceedillgs of tlie CTRN Sym
posiulII Oil lligli r;lIergy Accelerators Gild /'iOl~ l'II.\"Sics (Eur?pean
Orga.,izaliq;] for :\'uc1ear l{esearch, Geneva, 19.)(,), \"II!. l,y: 219:.

18 L. Jacks'"l Lasktt and A. "r. Sessler, :\hcl\\"cstern Cnl\'ersltles
Research Association Rept. MURA-263 (1957, unpublished).
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the effect becoming more pronounced when operating
close to the resonance line (Fig. 22). In summary, it is felt
that the empirical measurements, when recognition is
given to possible small departures of the magnetic median
plane from the mid-plane of the vacuum chamber, are con
sistent with the computational results and that the growth
of axial amplitude associated with operation ncar the
P x = 2p y coupling resonance can effect a pronounced loss of
intensity.

VI. INJECTION METHODS

A. General Considerations

It is impossible to trap particles in a static field, since
particles injected externally ultimately will re-emerge and
those injected from a source in the field eventually will
return to strike the source, The imposition of secularly
changing fields, the presence of gas-scattering, or the use
of time-varying fields arising from the particles themselves
therefore is essential fOf injection. It frequently may be
convenient, however, to analyze such injection methods
by a study of the equilibrium orbit and the oscillations
about it for a static field, followed by corrections for the
secular changes which are necessarily present. With this
procedure one can determine, for example, the time re
quired before a particle injected with particular initial
conditions from a source in the static field will return to
strike the injector. Attention can then be directed to
effecting a modification of the equilibrium orbit, or a
damping of the betatron oscillations, sutEcient to move the
orbits away from the deflector structure,

For efficient injection it is also necessary, of course, that
the injected particles be sufficiently limited in their initial
positions and directions that they can be contained within
the stable region of phase space for particles in the accel
erator. If the e:11ittance of the injector is substantially
smaller than the corresponding admittance of the accel
erator, however, it may then be profitable to inject many
turns successively. When many particles arc present, their

I
32.0

t= ,.0-,,0--=.0---,,----"----..,--. ... 0.19;;: I.S" . - - - -" ---;;-~--o---o---o-
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HEIGHT OF VERTICAL SCANNING PROBE
ABOVE NOMINAL MEDIAN PLANE. CM

FIG. 22. Observed apparent radial stability limits as a function of
the limitations imposed on the axial motion, for operation near the
v£=2vl/ resonance with v/~1.4(). The number appended to each indi
vidual curve denotes the value of 2vy- v£ for that curve.
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FIG. 23. PerturbatiDn of the equilibrium orbit by an azimuthally
localized radial electric field, illustrated for Vx= 1.40 with the un
perturbed equilibrium orbit drawn as a strai~ht line at,ld ignoring the
scalloping which arises from the aiternatlllg grachent structure.
Insert: Cross-sectional shape of electrode, intended to produce a
region of substantially constant field.

c. Long-Pulse Injection

One of the desirable possibilitiesl.2 for use of fixed-field
accelerators is that in which a large betatron core might
be employed in conjunction with a flxed-fleld magnet
structure in such a way that particles Illay be injected and
accelerated to the target or extractor with a duty cycle
approaching 30 or 40%. Use of the long-pulse modulator
(Appendix 1) permitted the injection of high intensity

amplitudes of oscillation, and they too would be removed
from the region of the injector as the perturbation was
turned off. DeSi)ite the objective that the perturbation be
removed adiahatically, it is .lCcessary, of course, that the

. radial motion of the equilibrium orbit in the neighborhood
of the injector be sur;~ciently rapid to preclude interception
of the beam by SO:l1e portion of the injector structure. If
the vertical admittance of the accelerator were considera
bly larger than the vertical e:nittance of the injector, the
injection structure could be displaced from the median
plane, the perturbation could be turned off more slowly,
and an improved utilization of phase space in this way
might be possible. In the spiral sector model, however,
the vertical emittance was not such as to permit such use
of the vertical' motion to assist in injection.

The perturbation was applied by a radial electric field,
from an electrode inserted into the vacuum chamber. The
electrode was shaped, as shown on Fig. 23, to produce a
field of fairly constant strength throughout a region of
several centimeters radial extent, and modulation pro
vided by discharge of a capacitor with a thyratron. When
injection with large amplitude betatron oscillations was
attempted, the electric field apparently effected a coupling
between radial and axial motion which resulted in beam
loss; the system otherwise appeared to work well, however,
permitting multiturn injection to be achieved and leading
to beam densities of approximately one-sixth the space
charge limit.

mutual interactions may cause a shift of the betatron
oscillation frequencies by such an amount that the effect
of one or more resonances (possibly due to imperfections)
is materially enhanced and thereby particles are lost from
the beam. The limit to beam density which results from
such space-charge effects will impose a less serious limit on
the total current which it is possible to contain within the
accelerator if the area utilized by the beam can be in
creased. An increase of the intensity of the injected beam
at the expense of increased energy spread may be a chimeri
cal gain, however, if beams ultimately are to be stacked by
a repetitive acceleration system. Similarly, arranging a
rapid energy change, in an effort to move the equilibrium
orbit away from the injector and to suppress space-charge
effects by increasing the beam area, may aug'TIent the
amplitude of the betatron oscillations appreciably and
somewhat reduce the effectiveness of this injection method.

B. Methods Employed with Short-Pulse Injection

In the spiral sector model one method of injection under
took to accelerate the electrons rapidly, but under condi
tions such that the amplitudes of the radial betatron
oscillations remained smaller than the radial width of the
beam due to energy spread. Under these circumstances, it
is to be' expected that the total number of particles suc
cessfully injected will be proportional to the radial width
of the beam and that this, in turn, will be proportional to
the energy gain per turn. With an acceleration voltage of
150 v/ turn, successful injection for a 4-J.!sec interval was
accomplished and led to individual beam pulses containing
in excess of 1010 electrons. The electron del:sity in this case
was estimated as 3X 106 cm-a, which may be compared
with the calculated limit19 of 107 cm-a at which space
charge effects would induce beam loss from the Py = 1
resonance.

A second method which was successfully applied to the
model did not require acceleration of the electrons but
employed an azimuthally localized time-dependent radial
electric field. This electric field, by producing a forced
oscillation, resulted in a perturbation of the equilibrium
orbit (Fig. 23). The injection conditions were chosen so
that, with the perturbation present, the betatron oscilla
tions of the accelerated electrons were of small amplitude.
By presuming that the strength of the perturbation is de
creased to zero adiabatically, the orbits of these electrons
will follow the changing equilibrium orbit with little
change of oscillation amplitude, thus, in efiect, being pulled
away from the injector structure. Electrons injected some
what later also can be accepted, with somewhat larger

19 L. Jackson Las1ctt, lVIidwestern Universities Research Association
Rep!. MURA-14 (1954, unpublished). Our present estimate is one
half the value which would follow from the formulas of this reference,
since in place of a toroidal beam we here consider a beam \I"hich is
significantly more extended radially than in the axial direction.
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FIG. 24. Oscillograms to illustrate phenomena observed with long
pulse injection: (a) betatron voltage; (b) injector voltage; (c) beam
current to target when the injector is operated at low emission; and
(d) beam current at high emission, showing effects attributable to
space-charge and positive-ion neutralization.

beams into the spiral sector model for times as long as the
SOO-cps flux-wave in the betatron core could accelerate
them and enabled a study to be made of ionization phe
nomena which would be unnoticeable with a short-pulse
injection system.

The accelerating voltage was provided by the positive
half of the sao-cps sinusoidal excitation of the betatron

core and usually amounted to about 20 v/tum. Electrons
could be accelerated thereby from the injection energy
(30 kev) to the target, situated at a 45 em radius (80 kev),
in approximately 80 J.Lsec. The equilibrium orbits of indi
vidual electrons thus moved outward at a rate of roughly
2X 105 em/sec during the course of acceleration. Injection
could be maintained for periods as long as several milli

seconds, but usually occupied only 400 J.Lsec at the peak of
the accelerating-voltage wave, during which time the ac
celerating voltage was comparatively constant. Injection
conditions otherwise were as described in Sec. IIID.

Space-charge forces limit the density of electrons at in-

jection to about 107 cm-3 (Sec. VIB).20 The injector can
supply more electrons than are required to reach this
density and in consequence we would expect that the fre
quencies of betatron oscillations would decrease signifi
cantly as a result of space charge, possibly to be limited
by the nearest lower resonance. In the course of time
during the injection pulse, ions formed by interaction of the
beam with the residual gas in the vacuum chamber should
collect in the beam and begin to neutralize the space
charge forces due to the electrons themselves. The initial
value of the potential well which acts to trap these ions is
of the order of several electron volts and this process may
be aided to some extent by the configuration of the applied
magnetic field. The ions would not, in general, gain enough
energy to escape the potential well of the beam and one
accordingly visualizes a sheet of charge, originally some 2
cm thick, whose density is limited initially by the space
charge forces at injection and within which ions are being
formed and trapped to neutralize these forces. It may be
supposed, finally, that the accumulated ion density will
serve to increase the frequencies of the electron betatron
oscillations, possibly until the stability limitations imposed
by the nearest resonance of higher frequency begin to affect
the beam.

When the injector is operated at low emission currents
with a good vacuum in the chamber, one observes a current
at the target such as that shown in Fig. 24(c). This current
is quite uniform with respect to time and only becomes
more intense when the betatron voltage is increased. The
current is proportional to the emission from the injector
and no effects of space charge or of ionization are observed.
As the emission from the injector is increased, however,
several more complicated phenomena are seen to occur. In
this case the output current presents a time dependence
shown in Fig. 24(d), of which the essential features are
sketched in Fig. 25. The time dependence is extremely re
producible from pulse to pulse, as is illustrated by the
several hundred pulses contributing to the oscillogram of
Fig. 24(d).

The initial current /0 (Fig. 2S) is found t6 be directly
proportional to emission when this latter current is small
and to reach a constant value at high emission currents.
At high currents, /0 is directly proportional to the betatron

'0 The change of the oscillation frequency v.= Nu./2tr may be esti
mated readily for the simplified case of a beam of uniform density in
a constant gradient field (d. reference 19, in which a toroidal beam is
considered). With the particle density denoted by n, for the electrons
of velocity Be, and by ni for the singly charged stationary positive
ions, one obtains

o(v.') = -4trroRo'iJ'(I-B')I[n,(I-{3')-lIi],

in which ro denotes the classical electron radius and Ro represents the
radius of the accelerator. It is seen that the space-charge effect of the
electron density is to decrease the oscillation frequency, by an amount
which depends on i-B' because of the partial cancellation of electro
static defocusing by magnetic focusing elTects, but that the accumu
lation of positive ions can reduce this decrease and ultimately lead
to a net increase of the oscillation frequency.
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VII. PERTURBATION STUDffiS

A. General Description

It was of interest to obtain experimental information
concerning the effects of misalignments on the operation
of the model to permit a comparison with computational
and analytic results and to provide information concerning
constructional tolerances for an accelerator of the spiral
type. Four types of perturbations were specifically studied
in turn: (1) The magnetic field in one of the six sectors was
reduced 7% by reducing the currents in the main field
coils which produced the excitation for that sector; (2) the

field index, k, in a sector was raised from 0.7 to 0.8 by ad
justment of the current in the k-tuning coils for that sector;
(3) a sector was raised by 1 mm with respect to the re
maining five sectors; and (4) a sector was rotated approxi
mately 2° about a pin on its inner radius. For each such
perturbation, measurements were made of, (1) the re
sultant radial and axial displacements of the equilibrium
orbit, (2) changes in the frequencies of radial and axial

betatron oscillations, and (3) changes in the radial and
axial stability limits.

which approached a half-integral resonance (e.g., II x = 1.5).
Once the operating point enters a stop-band and some
electrons become quickly lost, the ions remaining behind
may be expected to drive the operating point further into
the stop-band and the beam must necessarily be lost very
rapidly.

Although the foregoing explanation in terms of beam
neutralization by ionization of residual gas appears to
account for the phenomena described, additional phe
nomena involving the collective motion of particles un
doubtedly occur. Thus, for example, a strong rf electro
magnetic field was found to arise from the beam, with
frequencies which usually were half-integral multiples of
the electron revolution frequency at the injector radius.
The strength, frequency spectrum, and duration of this
electromagnetic field depended quite markedly on the
operating point of the accelerator. Since the intensity
usually was particularly strong just prior to the time at
which the beam was lost, the radiation may, at least in
part, have been due to coherent motion of the charges as
the operating point entered a stop-band. In one instance,
moreover, it appeared that the current which arrived at
the target was bunched at the revolution frequency of the
electrons.

T ---...

t SLOPE ill
FIG. 25. Sketch depicting the I !~~l dt

essential features of the beam !o.
current observed at high emis-
sion, as obtained from the os
cillogram of Fig. 24(d).

voltage-i.e., upon the rate of progression of the equi
librium orbits away from the injector-and is independent
of gas pressure, save for single-scattering losses estimable
by other means. The electron density corresponding to 10,

when calculated from dr/dt and the other known parame
ters of the accelerator, is approximately 2X 106 cm-3, so
that this limiting value of the output current evidently
may be related to the space-charge limit mentioned in
Sec. VIE.

Following attainment of the current value 10, but de
pending on the particular operating point chosen, the out
put current mayor may not undergo a further rise to reach
a plateau value, I max (Fig. 25). At a time T I the output
current drops to zero and is restored only after an interval
T d • At the time T 2 the current again drops to zero and from
then on the phenomenon reproduces itself in the manner
indicated. It is found that T I is inversely proportional to
the product of vacuum-chamber pressure. and emission
current, while the interval Td is generally slightly less than
the time required to accelerate electrons from the injector
to the target and appears to be relatively independent
of emission current. Evidently at time T I the sheet of
charge extending from the injector to the target becomes
unstable and is lost. Specifically it was found that when the
operating point lay just below an axial resonance a probe
situated above or below the beam would receive a large
amount of charge at the time T I , whereas when operating
just below a radial resonance a probe inserted ne,ar the
inner or outer radii would receive a burst of charge at T I .

The instability usually appeared to begin at the injection
radius and proceed outward to the target radius, taking
approximately 5 !J.sec to do so.

Since the slope d[/ dt (Fig. 25) and [max are each propor
tional to emission current and T I varies inversely with
pressure and emission, the phenomena appear attributable
to ionization of the gas in the vacuum chamber. The
initial space-charge limited current [0 can increase as ions
are formed and collected in the beam until the current
[max is reached, which may represent the maximum current
available from the injector. As additional ions arc col
lected, the oscillation frequencies increase to approach a
resonant value, whereupon, at T I , the beam is lost. Follow
ing this, after a suillcient number of ions have migrated to
the chamber walls, injected electrons may once again build
up a new sheet of charge, commencing at the injection

radius, and the phenomena then repeat themselves as long
as the emission and accelerating voltage are both present.
Radio-frequency measurements of the betatron oscillation
frequencies,3,!. made at various times during the accelera

tion process, confirmed that with high emission currents
the initial oscillation frequencies are 10\H'red, as expected,
and that at later times the fn:quencies increased to values
which were above those obtained with l(m emission and
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Perturbation Item Theorya Computer Experiment

Unperturbed v, 1.32 1.40 1.41
Vu I.1S \, 12 1.12

A, 0.097 :::8:ggg 0.OS8 ±0,OO6

Au 0.OS8 :::3:ggg 0,04S ±0.006

Field decreased ~vx O±O.OOI +0.006 ±0,003
7% in one sector ~vu -0.002 ±O.OOOS -(l,()06 ±O,OOS

"'A,/A, -0.18 ±O.OS -O.2S ±O.08
"'Au/Au -0.31 ±O.OS -0.22 ±O.08

Field index k tip); +0.01 ±O.OOI +0.011 ±0.003b

changed from .D.Vy -0,0\ ±O.OOI -O.OIS ±O,OOSb
0.7 to 0.8 in "'Ar/A, -0.20 ±0,08b

one sector "'Au/Au -0,23 ±0,08b

Axially dis- "'v, +0,001 ±0.004
placed sector llvy +0,002 ±0,006
(raised t 111m) 1l.4IjAJ: -0,20 ±O.IO

(." ",.4 y/A u -O,OS ±0.10

Rotated sector liv.z; +0.004 ±0.006
(approx. 2°) .a VII +0,003 ±0.007

"',I,/A, O,O±O.IS
.1.A,JA y O.O±O.lS

increasing amounts at larger radii within the perturbed
sector (d. Sec. lIlA). The effect of such a perturbation en
the equilibrium orbit appears21 to be essentially due to the
associated increase of the field strength at the radius of
interest. The shift of the radial position of the equilibrium
orbit as obtained experimentally at Ii. radius of 37 cm is
indicated by the points plotted in Fig. 26(b) together with
computational and analytic results obtained by considering
only the increased field strength within the perturbed
sector. Again, as expected, no vertical movement of the
equilibrium orbit was found to occur. The change in the
field strength at 37 cm as a result of the change in k is
about half that which was produced by the preceding field
perturbation and in the opposite sense. Changes in the
frequencies of the betatron oscillations and the stability
limits which were observed to occur from the perturbation
of k and the resulting field perturbation are summarized
in Table V. Also included are the results of computationsl3

made with the IBM-704 prior to operation of the model.
As noted previously (Sec. IIC), the main effect of this
perturbation appears to be a partial decrease of the phase
space available for stable oscillations similar to the larger
decrease found when k was increased in all sectors.

The vertical movement of a sector by 1 mm resulted in
an equilibrium orbit displaced from the median plane by
amounts shown in Fig. 26(c), and produced no detectable
change in the radial position. The effects on the betatron
oscillation frequencies and on the limiting stable ampli
tudes are summarized in Table V, together with computer
results obtained by means of t,he Illiac prior to construction
of the modeL

Clockwise rotation of a sector, through 20 about a verti
cal axis at its inner radius, will necessarily increase some
what the field strength at a given radius-in the present

TABLE V. Effect of perturbations on the oscillation frequencies
and stability limits at the design point.

a Theor~tical rc:->ults frolll .\ JlJll'lIc1ix II r.
b The experimenlal \'alu(':'i fur the perturbation in k also incluue the effect

uf the field being increased by about 3~'>o at the detectiun radius in the per~
turbed sector.
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B. Results of Perturbations at the Design Point

The radial displacement of the equilibrium orbit which
resulted from lowering the field by 7% in one of the sectors
is shown by the points in Fig. 26(a). The solid line of
Fig. 26(a) represents the displacement predicted by digital
computation with the IBM-704, using the measured values
of the magnetic field at a given radius together with the
design values for k and w, while the dotted line represents
the result predicted by Parzen21 from an analytic treatment
of this problem where the indicated shape is obtained from
the addition of a cos8 first harmonic term and a negative
cos28 second harmonic term. As expected, no significant
vertical movement of the equilibrium orbit arose from this
type of perturbation. As a result of this perturbation, the
frequencies and amplitudes of the betatron oscillations
were changed by the amounts listed in Table V.

A perturbation in which the field index k is raised from
0.7 to 0.8 in a sector has the effect of leaving the field un
changed at a radius of 25 cm but strengthens the field by

21 The results of an analytic treatment hv G. l'arzen of the effect
of perturbations in a spiral ridge accelerat()r are gi"en in .-\ppendix
III. The authors are very grateiul to Dr. l'arzen for his courtesy in
permitting this material to be included in the nr"sent naper.

FIG. 26. Effect of perturbations on the equilibrium orbit; (a) radial
displacement of the equilibrium orbit as a result of a i% field reduc
tion in one magnet sector; (b) radial displacement of the equilibrium
orbit as a res~lt of raising the field index k from O. ito 0,8 in one sector,
the effect belOg regarded as chiefly attributable to the 3.5% increase
o~ field at the detection radius of the perturbed sector; (c) axial
displacement of the equilibrium orbit as a result of raising one magnet
sector 1 mm; and (d) radial displacement of the equilibrium orbit as
a result of r~tating one sector 3;pproximately 10 about its front pin,
the effect ~elOg regarded as chiefly the result of the accompanying
2 to 2.5% lllCft;ase.of field at any given radius within the perturbed
s.ector. The solid hnes represent computational results, the dashed
hnes are based on the perturbation theory summarized in _-\ppendix
III, and the circles connected by a dotted line in (d) are the observed
displacements. Circles barred on top and bottom represent experi
mental results (a) and (b).
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tides through the transition energy. The magnet excitation
and the injector voltage were adjusted so that the transi
tion radius was 49 cm. This allowed electrons to be accel
erated through the transition to at least a 52 cm radius
before edge effects in the magnets reduced the beam. Figure
27 shows the energy and revolution frequency as a function
of radius under these operating conditions. The energy was
calculated on the basis of field measurements and the
known value k, while the frequency was measured by
radio-frequency excitation of betatron oscillations (Secs.
lIIB and \,)3.14 and by the more accurate method which we

now describe. The first of two successive betatron accelera
tion pulses (Sec. InC) was adjusted so that practically all
the electrons were taken out to the target. The remaining
electrons could be assumed to have extremely small beta
tron oscillations and could be observed striking the target
at the start of the second betatron pulse. In the interval
between these betatron pulses radio-frequency power was
applied to the vacuum chamber at a constant frequency
dose to the revolution frequency and tuned to bring these
electrons with small oscillation amplitudes onto the target,
possibly by exciting synchrotron oscillations. In this way
the frequency could be determined quite accurately as a
function of radius.

The transition energy for fixed-field alternating-gradient
accelerators is given by!

VIII. STUDIES OF RADIO-FREQUENCY ACCELERATION

case by about 2!%. The change in the equilibrium orbit
which results from this perturbation is shown in Fig. 26(d)
and is believed to arise primarily from the increase of field
strength associated with rotation of the sector. The changes
produced in the betatron oscillation frequencies and the
stability limits appear to be small.

C. Results Near the Vx = 2vy Resonance

To supplement the results just reported it was considered
of interest to obtain information concerning the effect of
perturbations applied to the model when operating in the
neighborhood of the difference resonance II x = 211y • Un
fortunately, as noted in Sec. V, the accessible portion of
this resonance line was of somewhat limited extent and
fell in a region where other important resonances were also
present. The computer results obtained for the operating
points A and B considered in Sec. lIC indicated that the
radial stability limits were very greatly reduced in the
neighborhood of the V x = 211 y resonance when even small
amounts of axial motion were introduced, and misalign
ments of course were found to effect a further reduction
of these stability limits. In practice, the pronounced ex
change of amplitude between radial and axial oscillations
which occurs when operating near a coupling resonance
presents a complication in making it difficult to distinguish
experimentally motions in these two degrees of freedom.

Two types of perturbations were studied at a point near
the II x = 211y resonance: (1) The magnetic field was lowered
by 5% in a sector, and (2) a sector was raised 1 mm. The
same measurements were maCle as at the design point. The
radial displacement of the equilibrium orbit which resulted
from lowering the magnetic field by 5% was about the
same as at the design point with the exception that the
negative cos28 part had less of an effect here, as expected.2!
The changes in the betatron oscillation frequencies and the
stability limits were less than the indeterminancies of the
measurements. The vertical displacement of a sector
caused a small vertical displacement of the equilibrium
orbit and no detectable radial displacement. The observed
changes in the betatron frequencies and stability limits
were again very smalL Computer studies made specifically
for II x = 1.25, vy =O.62 appeared to confirm the result that
little further reduction of the radial stability limit would
occur at this operating point with an axial sector displace
ment of 1 mm.

A. General Discussion

The objective of the radio-frequency acceleration ex
periments reported here for the spiral ridge model was to
determine empirically the frequency-modulation programs
which could most successfully be applied to accelerate par-
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FIG. 28. The parameter 0<1, to which the bucket area is proportional,
versus the parameter 1] of the Symon-Sessler theory (reference 22).

and al approaches zero as the revolution frequency 1 ap
proaches the transition frequency It, in the manner illus
trated by Fig. 28.

Typical buckets above and below the transition energy
are shown in Fig. 29. As a bucket approaches the transition
energy, the stable area approaches zero and, in passing to
operation above the transition energy, particles may be
expected to be deposited in a band lying just above the
transition energy in the TV, ¢ plane. If, however, the fre
quency is modulated nonadiahatically toa value slightly
greater than the transition frequency and then decreased,
it is possible to pick up some particles from this region and
accelerate them further. This procedure requires a care
fully scheduled program of frequency modulation so that,
in effect, the correct phase slip required to continue accel
eration above the transition energy is introduced.

22 K. R. S\'I110n and A. ~l. Sessler, Proceedings or IIIC CI'RX Sym
posium. .on 11 igh Hncrgy A ccelCl'ators and I'ion l'hysics (European
Organization for Nuclear Rescarch,Geneva, 1'156), vol. 1, p. 44.

The stable area in TV,¢ phase space, within which stable
synchrotron oscillations may occur, is termed a "bucket. "
For a given machine and a constant radiocfrequency volt
age, the bucket area is proportional to a quantity ai, which
is given by the Symon-Sessler theory22 in terms of a
parameter TJ. The latter quantity is proportional to 1-1/1t

3"
2

<P -

J.1r 0 Ii. 1t
2 2

w

--------------=--- -_.-

B. Experimental

In the experimental work¢s was normally between 11 °
and 55° when operating below the transition energy, with
I'correspondingly between 0.2 and 0.8; in going through
the transition energy, r has little meaning as defined by
Eg. (17) ; and, finally, in the operation above the transition
energy, ¢s typically approached the value 150°. The fre
quency-modulation program in the neighborhood of the
transition energy was then adjusted empirically to obtain
effectively the optimum phase slip and thereby achieve the
most efficient transfer of electrons to states of stable syn
chrotron motion above the transition energy.

The effectiveness of the various frequency-modulation
programs was determined by a method which paralleled
that used in similar studies23 with the radial sector mode1.3

FIG. 29, Regions of lV, '" phase space, sho\\'ing typical phase-stable
areas, or "huckets," (a) ahove and (h) helol\" thc transition energy.
The shadcd arcas represcnt the huckets and the curves indicate pos
sihle particle trajectories inW, '" space.
-----

2:, K. M. Terwilliger, L. \V. Jones, and C. H. l'ruett, Rev. Sci. Instr.
28, '187 (1957).

(16)

(17)

(18)

(19)

I'=sin¢s= V./V,

Vs =dl/dt/l dl/dE,

E

TJ1=l dE/j(E).
Eo

and the transition radius, in centimeters, by

r
t
=[E 0

2:;:: lOI/(2k+
2

),

and to note that

where Eo=electron rest energy III Mev, Et=transition
energy (including rest energy) in Mev, k=mean field
index, and H o is the average field in gauss at ro em.

In discussing radio-frequency acceleration methods,
reference is made to the electrical phase angle ¢ at which
a particle crosses the acceleration gap; the peak value V
of the voltage applied to the gap; the phase angle ¢. for
an equilibrium particle; and the gap voltage V. appearing
across the gap at the time of transit of the equilibrium par
ticle. It is convenient to introduce the quantity I', defined
by

where 1 denotes the revolution frequency of a particle in
the given magnetic field (Fig. 27).

The Symon-Sessler theory22 of radio-frequency accel
eration in fixed-field alternating-gradient accelerators
further employs the variable TV, shown to be canonically
conjugate to ¢, defined by

I-HI



1099 SPIRAL SECTOR ACCELERATOR

Figure 30 illustrates this method schematically. With
curve A no radio-frequency acceleration is provided, so
that electrons are accelerated by an initial betatron pulse
to an energy of about 118 kev and to a radius of 45.5 ell,
to remain at that radius for about 1230 fJ.sec before being
further accelerated by a second betatron pulse which
carries them to the scintillation detector at a radius of 52
cm. In the case depicted by curve B the radio-frequency
voltage is used to carry the electrons, which have been
stacked at the intermediate radius of 45.5 cm, up to the
transition energy and the voltage is then turned off. In this
case the electrons are once again brought to the detector
by the further acceleration provided by the second beta
tron pulse, but arrive 150 fJ.sec earlier than with curve A.
Finally, with curve C, the radio-frequency voltage is
applied in accordance with a frequency-modulation sched
ule intended to provide acceleration through the transition
energy and electrons successfully accelerated in this way
will appear at the detector at a time preceding onset of the
second betatron pulse.

Typical results of the method just described are illus
trated by the oscilloscope traces drawn in Fig. 31. The
upper trace of each pair shows the beam received at the
detector and the lower trace represents the rf voltage. In
actuality the first betatron pulse had dropped to zero by
the time the sweep started, but the second betatron pulse
appeared on the trace and the radio-frequency voltage,
when present, was also displayed. In the first pair of traces

~ Et
0<:14

>-
\.'J
a:
UJ
z
UJ

100
U
i=
UJ
z
~

45
2

oo!c----!:~-L--16---'2LO-I-L90-'lO-'--2LI2-0---l

TIME jJ sec -

FIG. 30. Particle energy and orbit radius vcrsus timc for
three acceleration programs.

FIG. 31. Oscillograms of (a) the beam received at the detector, ((3)
the betatron voltage, and ('Y) the envelope of the rf voltage in experi
ments designed to investigate acceleration through the transition
energy. The first pair of traces (a) correspond to curve A of Fig. 30,
for which no 'rf acceleration is employed. Traces (b) correspond to
curve B, with rf acceleration up to the transition energy. In (c), cor
responding to curve C, some of the stacked beam is seen to have been
successfully accelerated through the transition energy. In this figure
one horizontal division corresponds to 200 ",sec and, on the lower
member of each pair, one vertical division represents 5 v.

in Fig. 31 no radio-frequency voltage was used and the
single beam pulse shown represents the electrons accel
erated entirely by betatron action. In the second pair the
radio-frequency voltage served to carry about 60% of the
stacked electrons to the neighborhood of the transition
energy (155 kev) and these electrons gave rise to the earlier
of the two pulses shown. Finally, the third set of traces
illustrates the case in which some electrons were success
fully accelerated through the transition energy to arrive at
the detector prior to the onset of the second betatron
pulse, while others were dropped at the transition energy
and the remainder were not captured by the radio-fre
quency system at all. In the quantitative interpretation
of results such as those illustrated by Fig. 31 it must be
recognized that the true efficiency (50%) is somewhat less
than that indicated directly by the data (70%), since the
pressure in the vacuum chamber was of the order of 3X 10-6

mm Hg at the time the experiments were performed and
the consequent half-life of the beam due to gas scattering

was approximately 400 fJ.sec.
The adjustment of the frequency-modulation schedule

to obtain efficient traversal of the transition energy is, of
course, critical. 'This is illustrated by Fig. 32, in which
three frequency sclH:dules are shown, of which the second
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TABLE VI. Specifications for the long-pulse modulator.

Dr. R. Stump, of the University of Kansas. Assistance was
provided by G. F. Dell, of the Ohio State University;
C. Bernhardt, G. E. Bush, and E. C. Weinberg, of Purdue
University; C. W. Owen, D. S. Roiseland, D. Schroeder,
and M. G. Silbert, of the University of Wisconsin; and by
]. D. Hogan, E. S. Kennedy, ].l\1ulady, and C. A. Radmer,
of the MURA Laboratory.

The cooperation of Dr. Joseph Ballam of Michigan
State University in providing a field magnetometer was
very helpful in facilitating the magnetic measurements
and the contributions of Dr. E. S. Akeley, Dr. F. T. Cole,
Dr. G. Parzen, and Dr. K. R. Symon to the basic theory
are also gratefully acknowledged.

0.25%

Flatness
Rise
time

10-5 sec

Pulse
length

250 ma

Pulse
current

Pulse
amplitude

-45 kv

APPENDIX I. DESIGN OF THE LONG-PULSE
MODULATOR

For the studies of stability limits and space-charge
effects described in Secs. V and VI, it was necessary to
inject electrons into the accelerator for relatively long
periods of time. The long injection time and the required
constancy of injection energy demanded by the specifica
tions for the modulator (Table VI) precluded the use of
conventional delay line and pulse transformer techniques
for driving the injector. Fortunately, a power tetrode
capable of withstanding 50-kv plate potentials became
available at the time these experiments were being con
sidered, so that the use of a plate-loaded amplifier for
driving the injector appeared to be an attractive possi
bility. The problem then became one of constructing from
available components an amplifier with adequate fre
quency response and output capability. This appendix de
scribes briefly the design and performance of such an
amplifier.

The values of pulse amplitude, current, and duration
listed in Table \'1 represent, of course, maximum values
and are much greater than necessary for the present pur
pose. It was felt, however, that the amplifier should be
designed to make full use of the output stage. The char
acteristics of the output tube (Eimac type X556) are given
in Table VII.

A simplified circuit diagram of the amplifier output
stage is shown in Fig. 33, wherein C. denotes the parasitic
capacitance of the output circuit, including the injector,
and RL represents the resistive load presented by the in
jector. Becausc the output of the amplifier is to be a
moderately fast pulse at high potential, the choice of the
coupling capacitor is severely limited with respect to its ca
pacitance. The largest commercially available capacitance

f
Me

6211- ----- ft -----

62.15

62.25

62.35

(denoted B) gave an efficiency approximately five times
as great as with either of the other two.

We would like to express our indebtedness to the several
universities which, by granting leaves of absence, made it
possible for many of the authors to contribute to the
success of the model. We particularly appreciate the
cooperation of the Graduate College of the University of
Illinois in the arrangements permitting extensive use of
the Illiac computer, the willingness of the Physics Re
search Laboratory to assume the burdens of initial con
struction, and the assistance of the mechanical engineering
shop at the University of Illinois in making available a
large press for initial shaping of the magnet poles.

Invaluable assistance in programming the digital com
putations was provided by Dr. R. F. King, ~rrs. G. Belford,
and D. Hutchinson. Use of the computers was greatly
facilitated by the cooperation of Dr. ]. P. Nash and
Dr. R. E. ~reagher of the Digital Computer Laboratory,
by Jess Anderson who prepared the individual problems
for the computer, and by Melvin Storm who supervised
some of the later work with the IBl\I-70-! installation in
l\fadison.

Thc initial construction \vas implemented by the ad
ministrative assistance of ]. J. Cochrane and by the
work of T. B. Elfe. The final assembly and portions of
the tcst program received substantial contributions from
Dr. Carl E. Nielsen, of the Ohio State l"niversity, and
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FIG. 32. Frequency of rf oscillator versus time for three acceleration
programs leading to different efficiencies for traversal of the transition
energy. The efficiencies for curves A, B, and C were measured as 10,
50, and 10%, respectively.
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in the 50-kv range with reasonable physical size and elec
trical properties seems, in fact, to be about 0.1 J.lf. With the
output tube specified, the design of the amplifier then
must start with the coupling capacitor since it alone will
determine the flatness of the output pulse under the as
sumption that all other time constants ahead of the output
stage may be made long compared to 10-3 sec.

The injector operates in the emission-limited region and
consequently the expression

FIG. 33. Schematic circuit
of the output stage for the
long-pulse amplifier.

TABLE VII. Characteristics of Eimac type X556" po\\'er tetrode,

must pass through the tube. This requires that the output
tube be driven into the region of grid conduction. A

is exact. In taking Cc to be 0.1 J.lf, h to be 250 rna, and t:1t
to be 10-3 sec, t:1V is found to be 2.5 X 103 v and a 20-kv
output pulse of 1 msec duration thus would be expected to
drop by 12.5% as a result of the capacitative coupling. An
amplitude of 20 kv was chosen for this calculation because
it corresponds to the minimum pulse amplitude that will
be required of the amplifier and therefore gives the maxi
mum percentage drop for a given output current. More
over, even if it were possible to increase the size of Cc

without limit to obtain the required flatness of the ClUtput
pulse, there wiHbe variations in the output level due to
shifts in the 50-kv power supply, which is not regulated.
These latter variations might be as large as ±5% and
would appear in the output because the dynamic plate
impedance of the X556 tetrode is fairly low. It was con
sidered essential, therefore, to incorporate a feedback loop
to stabilize the gain of the amplifier and to decrease the
drop of the output pulse to the required 0.25%.

Before calculating the value of the loop gain ·I3A 0 neces
sary for the required degree of stability, the rest of the
amplifier must be considered. The output stage requires a
driving signal of at least 500 v peak from a low-impedance
source in order that it can conduct heavily during the rise
of the pulse. The heavy conduction is necessary to dis
charge the parasitic capacitance c., which was estimated
to be as high as 150J.lJ.lf. In order for this discharge to
occur in approximately 5 J.lsec for.a 45-ky pulse, a current
at least as large as that given by

24 Duncan MacRae, Jr., ·in 11aWltl/l. Tube A mplifiers, edited by
G, E. VaHey, Jr., andH. \Vall mann (NkGraw-Hill Book Company,
Inc., New York,I\I-l8), Massachusetts Institute of Technology Radi
ation Lahoratory Series, vol. 18, Chap. 9, p. 366, Eq. (45).

(22a)

(22b)I3A 0""'150.

1 1( 1 1)-'- -- _. :::;0.0025,
I3A o 2 0.67 1.33

whence

It can be seen that this value ofl3A 0 is considerably greater
than that necessary to reduce the 12.5% drop of the.output
pulse to the required 0.25%. It now remains only to pick
a reasonable closed-loop gain in order to calculate the re
quired over-aU gain of the amplifier. Taking the closed-loop
gain to be 103, the necessary over~all gain is then A o= 103

X1.5X102 =1.5XlO'. This value may seem excessive for
three stages until it is recalled that the transconductance
of the output stage is 6000 J.lmho. For a plate~load resist
ance of 50 HI this gives a gain of 300 for this stage alone
and the preceding two stages should be able to provide a
gain of 500 quite easily.

The seemingly arbitrary choice in the previous para
graph for the plate-load resistor in the output stage was
actually motivated by consideration of the power dissipa
tion in the output tube. It was expected that the duty
cycle for the amplifier might be as high asO.OJ. If 5 kv is
assumed as the plate voltage during the pulse and 250 w
as the maximum permissible plate dissipation, the pulse
plate current should be less than 1.7 amp. Since there is a
signi6cant contribution to plate dissipation during the
rise of current at the beginning of the pulse when heavy

cathode follower using a high powered tube such as a 3E29
dual beam power tube would be expected to prove satis
factory as a driver. It furthermore seems reasonable to
expect that a two-stage amplifier ahead of the cathode
follower then could supply the necessary 500- to 600-v
signal.

If the arbitrary assumption is made that the gains of
the first two amplifier stages and of the output stage may
change in the course of time by ± 10% due to aging of
components, power supply variations, etc., then the loop
gain will vary by ±33%. The cathode follower is not in
included in this estimate since it is a degenerative device.
The necessary value of loop gain I3A o would then follow
from the relation24

(20)

(21)

50 kv max
6 arnp max
5wmax
25 w max
250 lI'max
GOOO pmho
-450,'

t:1V = (h/Cc)t:1t

I p= C. (t:1V/ t:1t) = 1.2 amp

Dc plate voltage
Pulse cathode current
Av.erage control grid dissipation
Average screen grid dissipation
Average plate dissipation
Transconductance (estimated)b
Grid bias for 10'l'a anode currentc

a Now Eimac ty_pc Y -158.
b Screen I)otential =1 kv. anodecur-rcnt =1 ami).
c Anode potential =50 k.\',:;crecn Jlotential = t kv.
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FIG. 3LAmplifier circuit for the
long-pulse modulator.
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conduction at high plate potential takes place, it seemed
advisable to reduce the plate current to 1.25 amp and a
value of 50 kn accordingly was selected for the plate
resistor.

Figure 34 shows the circuit of the complete amplifier.
The design of all stages is conventional and will not be dis
cussed in any great detail. Feedback from the output is
obtained from a capacitive voltage divider with a ratio of
1000: 1. The first stage is a standard noninverting amplifier
with a gain of approximately 30. The second grid is used
as a feedback terminal. The second stage is biased un
symmetrically to obtain a large positive pulse of short rise
time. The cathode follower is of low impedance since it
must supply the grid current of the final stage as well as
drive a rather high parasitic capacitance. Small resistors
were included in the plate, grid, and cathode circuits of
of the cathode follower to serve as parasitic suppressors.
The direct coupling used in the last two stages serves two
purposes; First, it reduces the number of low frequency
phase-shifting networks in the loop and, second, it provides
a convenient method of adjusting the bias on the final
amplifier stage. The small capacitors in the cathode circuits
of the first and second stages and the RC series circuit to
ground from the plate of the first stage are networks re
quired for stabilization of the feedback ampli:iers.

The rr.easured perforn:ance of the ampliiier was rather
close to the original specifications (Table \"1). The closed
loop gain was 995 and the rise time was 8 fJ.sec. A 4-fJ.sec
rise ti:ne could be obtained, in fact, at the expense of a
single 5% overshoot. The flatness of the output pulse was
measured with a differential amplifier and oscilloscope.
For a I-msec 30-kv pulse applied to a 120-kn load the
voltage drop was less than 0.1%.

In summary, the modulator design reported here ap
peared to represent a straightforward method of generating
long pulses of moderate rise time with a good constancy of

amplitude at high voltage. There seem to be no complica
tions arising from the high voltages that cannot be circum
vented by the usual techniques. Faster rise and decay
times undoubtedly may be obtained at the expense of
pulse length as tubes with higher maximum plate current
became available. Again, however, feedback could be used
to reduce the value of coupling capacitance necessary for
good reproduction of the flat top of the pulse and this
would appear to be of some advantage since the cost of
increasing loop gain is much less than that of increasing
the size of the coupling capacitor. Since the modulator is
a linear amplifier, the output pulse is an accurate reproduc
tion of the input pulse subject to the limitations of fre
quency response. In some of the stability-limit measure
ments described in the text (Sees. VD, E) the input pulse,
which ordinarily was a square pulse of variable amplitude
derived from a multivibrator circuit, was shaped so as to
exhibit a region with a substantially linear and moderately
slow decrease of potential.

APPENDIX II. THE MAGNETOMETERS

The two magnetometers used in measuring the mag
netic field and locating the median plane were basically of
the same type. The operation of these instruments is based
on the fact that if one excites a transformer wound on a
ferromagnetic core with a sinusoidally varying current,
the magnetic feld within the core and hence the secondary
voltage may be represented by a series which involves only
the fundamental and odd-order hari'.10nics, provided the
hysteresis loop of the core is sym:iletrical about the origin.
If this symmetry is destroyed by the presence of a dc mag
netic field which displaces the hysteresis loop along the
lJ axis, even harmonics will appear in the output. The
ct'1'plitude of the even harmonic content of the output is,
to a first approximal ion, proportional to the superimposed
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27 G. l'arzen, :\Iidll'estern Universities Research Association Repts.
i\lUR.\-454, 451, 397 (1959, 1958, unpublished).

FIG. 35. Schematic diagram illustrating the principle
of the magnetometers.

The average radius of the equilibrium orbit R and the
momentum p are related by

(24a)

(24b)

(23b)

(23c)

Hcl = Bo(R/ro)k/b,

2
b= . (24c)

lzo+[hu2+8h[2(k+3/2)/N2]i

H,,(r) = - Bo(r/ro)kh",

13,,(r) = (n/w) In(r/ro)+a,,.

pickup transformer consisted of two 20-turn windings of
No. 40 B&S gauge Formvar-insulated wire wound directly
on a 1X to-mm strip of Mo permalloy, 0.5 mil thick. This
magnetometer was insensitive to transverse magnetic
fields as great as 200 gauss, while showing good sensitivity
for longitudinal fields of to-2 gauss. Because of the small
driving field, considerable care had to be exercised to keep
the pickup transformer out of longitudinal fields in excess
of 10 gauss. In practice, the magnetometer was not used
to determine the magnitude of the horizontal field in the
region of the median plane, but rather to implement ad
justments directed toward reduction of the radial com
ponent of magnetic field in this plane.

Hz = - {Ho(r)+2H1(r) cos[N8-131(r)]

+2H2(r) cos[2N8-132(r)]+···}, (23a)

APPENDIX III. PERTURBATION THEORY

In this appendix theoretical results for the linear orbit
properties and for effects of field perturbations will be
presented. No derivations of the results will be given here.

We will first give some results for the linear orbit prop
erties of a scaling FFAG accelerator. Somewhat more
general and accurate results, and their derivations are
available in ~IURA reportsY

We will write the magnetic field in the median plane as

where

p=eRHel/c,

where Hel the effective magnetic field is given by

de field. In principle, then, the magnitude of the super
imposed field may be obtained from the amplitude of
the second harmonic component. There are, however,
other considerations that enter in the practical application
of this method. For example, the shape and symmetry of
the hysteresis loop are very dependent on the mechanical
and magnetic history of the core. Also, since the mag
netometers used with the spiral sector model were required
to give good spatial resolution in an inhomogeneous field,
the active volume of the core had to be extremely small.
This latter requirement led to considerable difficulty with
heat dissipation in the primary winding, because it was
necessary that the core be driven into saturation in both
directions to avoid its taking a permanent "set."

As is understandable, the aforementioned problems
could not all be overcome conveniently in anyone instru
ment. Accordingly, two magnetometers were constructed
one for fairly large fields (1 to 300 gauss) and one for very
small fields ("'" 10-2 gauss). The magnetometer for "large"
fields incorporated a feedback circuit that energized a
quadrupole coil mounted coaxially with the core to ensure
that the core was never operated in a field of more than a
few tenths of a gauss and thus reduce the driving power
in the primary winding. This instrument \\"as essentially
a copy of the device described by Voelker and LeaviW5•26

and was used in mapping the vertical component of the
magnetic field in the region of the geometric median plane.
This magnetometer was entirely adequate for the use de
scribed, but suffered from two significant drawbacks which
made it unsuitable for finding the magnetic median plane.
The first such defect arose because the bias coil produced
a small but not negligible external magnetic field at dis
tances from the coil of as much as 3 cm (or half a gap
width at the injection radius) and it was initially feared
that in the magnet measurements (Sec. IV) the low field
ends of the magnets would be highly sensitive to external
fields. Secondly, since the bias current was supplied by
series vacuum tubes, the magnetometer could be used only
in fields of one polarity, for otherwise the core might
become saturated and thus take on a "set" which would
give an appreciable error when measuring small fields. The
situation just described could readily occur when making
measurements in the fringing-field region with large
currents in the flutter-tuning coils.

The "sensitive" magnetometer for measurement of weak
fields is shown schematically in Fig. 35. The oscillator
amplifier circuit operated at 3500 cps and incorporated
current feedback to stabilize the driving field. The reject
filter was included to keep the fundamental component of
the signal from overloading the tuned amplifier and thus
generating a spurious second-harmonic component. The

25 F. Voelker and M. 1\. Leavitt, University of California Radia
tion L~boratory Rept. UCRL-3084 (Berkeley, California, 1955,
unpubhshed).

26 F. Voelker, Electronics 31 (No. 11), 152 (l\!arch 14, 1958).
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TABLE VIII. A comparison of the theoretical and computer results
for the tune and beat factors of the spiral sector model.

We assume that the field perturbation tJ.H. is written as

B x is given by

This field perturbation will affect the equilibrium orbit and
the tune /I"" /ly. For the sake of simplicity, the results will
not be presented in the most general or accurate form that
has been obtained, but the results will be given for the par
ticular case of the spiral sector model and for perturbations
that were introduced into this model. The following results
should be accurate within about 20%.

The following assumptions will also be made. It will be
assumed that the field gradient is large, which for the spiral
sector machine means that 1/w»1. It will be assumed that
the perturbing field does not shift the tune appreciably,
that the unperturbed tune is not too close to the stop bands
introduced by the perturbation, and that neither /I", nor
/I" are close to t.iY.

We find the change in the equilibrium orbit. The effect
of the perturbation on the equilibrium orbit can be broken
down into two parts. There is the effect due to the har
monics of 11Hz for 11=0, ±N, ±2N···, and there is the
effect due to the harmonics for which n~O, ±N, ±2N· ".
These two effects are calculated separately and the effect
of the harmonics for n=O, ±N, ±2N is treated first.

Let us consider an orbit of the unperturbed field which
corresponds to the momentum p and the average radius R.
p and R are related by

00

tJ.Hz= - L tJ.Gn(r) exp(inO), (33)

(28)

Computer Theory

1Ix 1.40 1.32
VII 1.12 1.15
Bx 1.73 1.66
BII 1.51 1.41

1I,,2=2b2(M+h22+ ... )-bhok

+2b2hI
2(2/w2+ l/4)/iV2• (27)

The vertical tune 1Iy is given by

The beat factor B", which gives the ratio of the largest
amplitude of betatron oscillation to the smallest amplitude
as one goes around the machine is related to f3x by

The equilibrium orbit is gIven by r(O) = R[l+x(O)],
where

The beat factor for the vertical betatron oscillations By is
given by

x (0) = (2bh1/ N2) cos[NO-(1/w) In(R/ro) -0'1]. (25)

The radial tune /Ix is given by

whereHo, lIN are evaluated at r=R and the prime indicates
differentiation with respect to r.

The equilibrium orbit corresponding to the particle
momentum p is shifted by the amount RtJ.x, where R is the
average radius of the equilibrium orbit of the unperturbed
field.

We write tJ.x(O) in Fourier series form as

A comparison of the results given by the theory with
results found by numerical integration of the equations is
given in Table VIII for the tune and beat factors of the
spiral sector model.

We will now give some theoretical results for the effects
of field perturbations. No derivations of the results will be
given here.

We assume that the magnetic field in the median plane
for the unperturbed machine is written as

H z= - L Gn(r) exp(i110). (31)
n~O.±N ,±2N . ..

p=eRHel/c,

where Hel,. the effective field, is given by

(35a)

The harmonics Gn(r) may also be written as

Gn(r) = H,,(r) exp[-if3n(r)], (32)

tJ.x= L nl1Xn exp(inO).

The I1x" for 11=0, ±,Y, ±2N·· . are given by

(36)

where IInand f3n are real. The effect of the perturbation
on the median plane field is to change the field components
by the amount tJ.II z, I1H r, I1lI8. We will first treat the case
where only tJ.IIz~O. This is a particularly important case
as all deliberate perturbations like straigh t sect ions fall
into this case.

where

(tJ.Xo) 1 = _~[eRM1o+2(eR)2 £L
11",2 pc pc n>O n2

X (RH"'Mln+RMln'Hn+3Il,,Ml,.)l (37b)
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for n=±N, ±2N··· .

A somewhat simplified but useful expression for the
oscillatory part of the equilibrium orbit is given by

eR 1
.1x(O)=.A L ---.1G" exp(inO),

" pc 172
- V x

2
(39a)

We will now treat the general case where we have not
only a .1Hz but also a .1lIT and .1Heperturbations. Usually
such perturbations are accidental and the exact form of the
perturbation is not known. Also, the rand z motions are
now coupled. Instead of having an r tune and a z tune,
one now has two normal modes whose tunes we may still
label as /Ix and /l ysince one mode is predominantly r motion
and the other is predominantly z motion.

The equilibrium orbit corresponding to the particle
momentum is shifted by the amount R.1x and R.1y. The
radial shift is given by Eqs. (37) to (39). The vertical shift
is given by

lIN
+--- L [(R2Gs"+2RGs'+2G,)

172- /1,,22 8

XL' .11'",.11'_8 _ m ]. (37d)

In Egs. (37),
N

signifies a sum over s=O, ±ll', ±2N··· and

L'

signifies a sum over m but omitting m=O, ±.\', ±2.\'··· .
The .1xm for m~O, ±.Y, ±2.Y are given in the following.

We may note that the (.1X n)1 are due to the harmonics
.1Gn for which n= 0, ±.y ... and the (.1xn)~ are due to the
harmonics for which n~O, ±'y.... The Gn and LlGn are
to be evaluated at r= R.

For 17~O, ±N· .. we find

eR 1
.1y= -B- L --.1Gr ." exp(i170),

pc n n2-lIy2

(39b)

(40a)

(40b)

where

(38a)
eR

lv=-IRGN'+~GNI,
pc

(40c)

g.= _ eR(RG.'+~.),
pc 2

1 eR
x.=---G•.

S2 pc

(38b)

(38c)

(38d)

and we represent the perturbation .1H r as

The foregoing result for .1y holds if the perturbation does
not change the tune very much in the same manner as
was assumed in the case of a pure .1I! z perturbation.

We will now apply the foregoing theoretical results to
the various iicld perturbations that were introduced into
the spiral sector model.

Sector Bump

For the spiral sector model we may write the unper
turbed Ileld as

If== - BO(r/ri)kli(O,r), (42a)

Ii (O,r) = 'L"li n exp{[in:\"[O- (1/711.\') In(r/rl)J}, (42b

A bump that was applied to the radial sector model was
to decrease the tlcld in one sector by 7%. To apply the
results given above \I"e must first calculate the !:lG" due to
the perturbation. The LlG" are given by

(41)
1 I~~

!:J.G n =- dO exp( -inO)Mlz(r,O).
211" 0

Equation (38a) is not valid for n= ~X, and we 11nd for
the case n=!N,

where 'YN is the phase of the complex number gN.

The second term in Eq. (38a) i~ usually of the order of
10% of the first term and may be neglrct cd unless the Ilrst
term is absent.
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turbation for the 7% sector bump where !:J.h(O,r) is given byand the perturbation may be written as

!:J.Hz= - Bo(rjrl)k!:J.h(O,r) , (43) !:J.h(O,r) =!:J.k In(rjrl)h(O,r). (49)

where !:J.h is different from zero in only one sector and
reduces the field by 7% in that sector. An approximate
result for !:J.Gn, valid for n«N, is

(!:J.h)a.v being the average value of !:J.h over the sector where
it is not zero.

One may also note that for this unperturbed machine

(
r)k [ in r·](!:J.h)av

!:J.Gn=Bo - exp --In- --,
1'1 wN rl N

(44)

This !:J.k bump then shifts the equilibrium orbit in the
same way as a sector bump where the field is changed by
the fraction !:J.k In (Rjrl) where R is the radial distance to
the point of measurement.

Vertical Displacement Bump

In this bump a magnet was raised 1 mm. Raising a
magnet introduces a radial component !:J.Hr, in the mag
netic field in the median plane. !:J.Hr is given by

Ak Bump

In this bump, k was changed in one sector from k = O. 7
to k= 0.8. The value of the magnetic field was unchanged
at 1'= 25 cm and the measurements were made at 1'= 37 cm.

We can write the unperturbed field as

Using these results for !:J.Gn one now computes the shift
in the orbit and tune.

The change in the equilibrium orbit shown in Fig. 26
may be easily understood. Since the tune V",= 1.40, the
orbit shift is primarily due to the first and second har
monics of the perturbing field. The theoretical curve in
Fig. 26 only takes into account the first and second har
monics, and including the higher harmonics would have
improved the agreement with experiment. Equation (39)
was used to calculate the equilibrium orbit.

(SO)

(53)

(52)

aHzj!:J.Hr=-- !:J.z,
ar z=o

1 f211"
!:J.Gr,n = - - exp( -inO)!1Hr.

271" 0

+k[1+1COS(NO-~ 1<)]}.
We find !:J.Gr,n from

in the sector where the magnet is raised, and !:J.z is the dis
tance the magnet is raised.

If we write the unperturbed field as

Hz = -Bo(rjrlhh(O,r), (51a)

hIO,1') = 1+1 cos[NO- (ljw) In (rl1'l) ], (51b)
then

!:J.z (r) k { 1 . ( . 1 r )!:J.Hr=-Bo - - sin NO-- In-
r 1'1 W W 1'1

(45)

(46)

where k'=k+!:J.k and !:J.k=0.1 in one sector, !:J.k=O in the
other five sectors.

The field perturbation !1Hz=tt-Hz is then given by

(54c)

(54a)

(54b)

(

-Ut 1')
exp --In- ,

wN rl

j
alll- ""'Vlw.
a1' "V

An approximate result for !:J.Gr,n is

(47)

where 1'1 = 25 em, and the perturbed field as

H z= -Bo(rjrl)k'h(O,r),

where we have expanded in powers of !:J.k keeping just the
lowest term.

This perturbation !1Il z has the same form as the per-
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Theory of a High Dispersion Double Focusing Beta-Ray Spectrometer*

H. DAKIELt AND L. ].-\CKSON LASLETT

Institute for Atomic Research and Department of Physics, Iowa State Cni;'ersity, A mes, Iowa

(Received :\pril 25, 1960; and in final form, August 3, 19(0)

A "flat" high dispersion double focusing beta-ray spectrometer is proposed and results of computations are
presented. The high dispersion is achieved by making the electrons orbit around the field axis more than once.
The source and detector are displaced radially, in opposite directions, from the stationary circular orbit. A suitable
baffle is mounted between the source and detector to shield the detector against unwanted electrons. The electron
optical properties arc almost the same as for the tr\'2 spectrometer except that the dispersion is increased. Numerical

'results are presented for two instruments with focusing angles of 565.88° and 909.02°, with respective dispersions
of 21.5 and 50.6, to be compared ,,·jth a dispersion of 4 for the tr\'1 spectrometer.

I. INTRODUCTION

I N a beta-ray spectrometer with moderate dispcrsion,
high resolution requires a very narrow source which,

* Contribution Xo. 8~5. This \\"()rk was performed in the :\mes
Laboratory of the U. S. :\tomic Energ)' Commission.

t Present address: Max Planck Inslitute for :\uclear l'lwsics,
Heidelberg, Germany. The major portion or the preselll work was
performed ",hile t he author \\'as Oil lea \"c rrom 1he ~ [ax Pia Ilck
l:.lstitute.

furthermore, must be quite well adjusted. If one uses a
high dispersion, howcvcr, both disadvantages are greatly
reduced.

The need for a high dispcrsion has already been pointed
out and suitable magnetic ficlds have bcen described. 1

•
2 In

refcrence 1 a doublc focusing spectrometer was proposed,

I G. E. LCl'·\\"hitillg. Can. ]. PIws. 35, 570 (1957).
, II. Daniel, [{n·. Sci. l11s1r. 31,2·19 (1%0).
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FIG. 1. Electron bundle in the case 1= 3. Three orbits all in the
symmetry plane are shown: Ir=+0.04 and Ir= -0.04 (solid lines)
and Ir=O (dashed line). The shaded area represents the cross section
of the electron bundle for Ilr I~ 0.04. The electrons start at p = -0.2.

FIG. 2. Electron bundle in the case 1= 5. Three orbits all in the
symmetry plane are shOlm: Ir= +0.02 and Ir= -0.02 (solid lines)
and Ir=O (dashed line). The shaded area represents the cross section
of the electron bundle for Ilr I :::: 0.02. The electrons start at p = -0.2.

Equation (2) holds for the only practically important case

in which l denotes the number of axial oscillations per
radial oscillation. As in the 1TV'1. case3 there are two main
types of design, in which the aperture aberration is inde
pendent of Ir2 or, alternatively, of t}. In the former case
one has

3+7a+4{3 I+Sa+4{3
PI=-PO- tl tz2

3(1+a)2 (1+a)(I+Sa)

2 a+{3 a(1 +Sa)+2{3(1 +3a)
-- --po2+ ~02, (1)

31+a (1+a)(I+Sa)

2(1 +4{3+5a) 4{3
h=-~o- trtz---Po~o. (2)

(1+a) (1+5a) 1+5a

while in reference 2 a spectrometer with a curved exit slit
was proposed. In both cases the angle fh between source and
detector must be larger than 27r in order to obtain the de
sired high dispersion. If fh is larger than 21T, some electrons
of undesired momenta will reach the detector if there are
no special arrangements to stop these electrons. Lee
Whiting! estimates this background. If, however, the
source is displaced from the stationary circular orbit, it is
possible to shield the detector completely against these
unwanted electrons.2 In this case the detector is shifted by
about the same amount in the opposite direction. Figures 1
and 2 show two examples of such an arrangement.

It is the purpose of the present paper to give more de
tailed information about a high dispersion double focusing
spectrometer with a displaced source. In Sec. II some re
sults of a second-order perturbation calculation are sum
marized. Because of the magnitude of the requisite source
shift, however, which is not small, these results are not
sufficiently accurate to draw definite conclusions. Section
III gives the results of electronic computer calculations.

II. SECOND-ORDER TREATMENT

l= (-a)!/C1+a)!=odd integer,

{3= - (3+ 7a)/4,
and in the latter,

{3= - (1 +50')/4.

TABLE 1. Numerical results of the second-order theory.

(3)

(4)

(S)

3 K. Sieghahn, Beta- alld Ga.mma-Ray Spectroscopy, edited by K
Siegbahn (Intersdence Publishers, Inc., )Jew York, 1955), Chap. II'

I 0 -0.500 0.375
3 0 -0.900 0.875
5 0 -0.962 0.952

The notation of reference 2 will be used in the following
analysis. Assume for the moment that there is no source
shift, so po=O. Then the formula3 of reference 2 lead to the
following expressions for the image coordinates PI, h as
functions of the source coordinates po, ~o, the emission
angles t r, t z, and the field coetlicients a, {3:

I po {3 8. PI D a,/D b,

255.56 0 0 4.0 -0..133 -0.500
... 569.2\ a 0 20.0 -0.333 -0.500

917.82 0 0 52.0 -0.333 -0.500
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FIG. 3. Electron orbits ncar the
exit slit in the case 1=3. All orbits
shown are in the symmetry plane.

BETA-RAY SPECTROMETER

0.220

~

10.210

0.200

0.190

1227

respectively. Similarly, the aberration connected with the
source height is

High dispersion requires that a be close to - 1. The
coefficient of rr

2 in Eq. (7) is therefore much larger than
the coefficient of U in Eq. (6). For a given maximum
bundle diameter, however, the aberrations given by Eqs.
(6) apd (7) are nearly equal. This has been discussed in

The remaining aperture aberrations are then

2
tipI=--rz2

1+5a

and

1 2
tiPl = a2Dr r

2= -- --r/,
31+a

tipl=b2~02=-tU.

Finally, the dispersion D is given by

D=2/(1+a).

(6)

(7)

(8)

(9)

greater detail by Lee-\Vhiting. l For a spectrometer employ
ing a source shift, the high transmission requirement favors
strongly the type characterized by Eq. (5). Therefore, only
this type will be treated in the remainder of this paper.
Note that po does not appear in Eqs. (6) through (9).
Finally it should be noted that, according to Eq. (3) of
reference 2, there is no first- or second-order shift in (it in
the case po~O. Numerical results of the second-order
theory are given in Table 1.

III. COMPUTER CALCULATIONS

Because of the large source shift necessary to combine
high dispersion and medium transmission in an arrange
ment like that of Figs. 1 or 2, it was decided to perform
computer calculations which, automatically, included
higher-order terms not taken into account in the analysis
of Sec. II. The second-order theory of Sec. II served as a
guide in this work.

The general procedure for the numerical calculations was
to determine the electron orbits as a function of the angle

0.190

0.210

FIG. 4. Electron orbits near the
exit slit in the case 1=5. All orbits
shown are in the symmetry plane.

~ 0.220

I
0.200
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TABLE II. Field coefficients and results of the computer calculations.

3
5

Po

-0.2
-0.2

-0.898
-0.961

0.875
0.952

-0.895
-0.961

0.880
0.953

565.88 0

909.Q20

Po

0.2063
0.2077

D

21.5
50.6

-0.350
-0.308

-0.612
-0.580

O. This was done with an electronic computer and the re
sults of these computations were then evaluated by hand.
The orbits were determined with the J\1URA IB.i\I-704
computer by use of the Ill-Tempered Five Program.4 The
step length was chosen to be 4°. Linear interpolation was
used between two steps when evaluating the data. In order
to obtain a point on the exit slit two orbits were used, both
with ~z=O: ~r= +~/I) and r r= -rr(I), where r r(l) denotes
a selected value for the magnitude of the angle rr. Other
orbits were chosen to determine the aberrations connected
with axial aperture, source height, electron momentum,
and combinations of these quantities with each other and
with the radial aperture. Before starting computations
pertaining to the present problem, the procedure was
checked for the 7rV2- spectrometer, which exhibits almost
perfect focusing in rz and for which there is an elaborate
theory available5 for comparison.

Computations were performed for 1= 3 and 1= 5, Eq. (3),
with the source shift held constant at Po = - 0.2. Table II
contains the values selected for the field coefficients, 0:, f3,
1', and o. These values were previously determined by
exploratory computations so as to give, approximately,
first-order double focusing and small axial-aperture aberra
tion. The higher-order field coefficients were taken to be
zero. Figures 3 and 4 show some orbits near the exit slit in
the cases 1=3 and 1=5, respectively. The intersections of
two orbits with rr= +~r(1) and r r= - r r(1) describe a curve
for different r/1) values which is almost a straight line
but is not perpendicular to the circle p=const, for rr(1) not
too large. The angle between this focal line and the circle
p=const is found to be 76° in the case for which 1=3 and
5.5° in the case 1=5. Obviously it is most advantageous to
make the exit slit follow this focal line and this has been
assumed, in the following, when calculating the resolution.

4 Elizabeth Z. Chapman, Midwestern Universities Research Asso
ciation Rept. MURA-457, Ill-Tempered Five Program 220 (1959,
unpublished). The authors are indebted to Mrs. Chapman for her
work in constructing this versatile program, which "'as well adapted
for performing the computations reported here.

'G. E. Lee-Whiting and E. A. Taylor, Can. J. Phys. 35, 1 (1957).
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The computational results have been analyzed in terms
of a2, b2, and D of Eqs. (7) through (9) and are summarized
in Table II. There is almost perfect double focusing and, as
expected for a spectrometer with f3 given by Eq. (5), only
a negligible rz2 dependence of Pl. At large values of L, of
course, higher-order terms contribute, but for 1= 3 and
rz=0.305 one still has D.PI/D= -5.4XlO-\ and for 1=5
and rz=0.253 one has D.Pl/D= -1.05 X 10-4•

When comparing the proposed high dispersion spec
trometer with the 7rVl type, it is seen that they have almost
the same electron-optical properties except for the dis
persion. This means that, for a given transmission, resolu
tion, and apparatus size, one may use a source which is
wider and higher by about a factor of D/4 than the source
in the 7rVl spectrometer. To the same extent the source
positioning is less critical. Table III gives rough estimates

TABLE III. Typical data for a spectrometer with
a 20 cm mean radius roo

Total source Total source
w height ,yidth 7J

3 0.4% Scm 2 mm ~0.12%

5 0.15% 4cm 1 mm ~O.O25%

of the expected efficiency at the listed values of solid angle
and source dimensions. The quantity w is the fractional
solid angle selected by the entrance slit and 7J is the total
width of the resolution curve at half~maximum.The radius
ro of the stationary circular orbit has been taken to be
20 cm, which implies an instrument of only moderate size.
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Coupling Resonances in Spiral Sector Accelerators*

L. J. LASLETTt AND A. M. SESSLERt
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(Received May 18, 1961; and in final form, August 9, 1961)

Theoretical and computational results are presented to illustrate the behavior of single particle motion in spiral
sector FFAG accelerators of small flutter factor when operated in the neighborhood of vertical-radial coupling
resonances. The theoretical analysis proceeds from the approximation in which the radial motion is determined
without consideration of the vertical motion, and this solution is then inserted into the linearized equation for the
vertical motion. The resulting generalized Hill equation is analyzed by a variational technique which yields both
the bands of instability of the vertical motion and the exponential rate of growth within these zones. This mathe
matical analysis is confirmed by a computational study of the Hill equation used in the theoretical analysis.
Extensive computational results are presented of the actual particle motion near coupling resonances for a choice
of parameters characteristic of both full-scale accelerators and models. Attention is concentrated on defining the
regions of instability and determining the rate of vertical growth, both of which are seen to be in semiquantitative
agreement with the theoretical analysis.

I. INTRODUCTION

T HIS paper is concerned with certain phenomena
pertaining to particle motion with two degrees. of

freedom in a spiral sector accelerator. Briefly, the behavior
to which we direct our attention is an exponential growth
of the amplitude of axial 'oscillations, from very small
initial amplitudes, when the structure is such that the
oscillation frequencies lie in the neighborhood of certain
"coupling resonances." This ley growth" appears to be
the more rapid the greater the amplitude of the radial
motion, above a certain threshold, and more pronounced
when the operating point is near the resonance in question.
For certain of the resonances, the exponential growth
may be found ultimately to terminate, at relatively large
y amplitudes, if the amplitude of the radial oscillation is
not too great. Despite the possible termination, or "turn
over," of the exponential growth in certain cases,! it is
suggested that it deserves serious recognition by the accel
erator designer due to the possibility that this growth may
lead to ultimate instability through the mechanism of other
inherent or imperfection resonances.

The studies of this paper have been confined to FFAG
accelerators with spiral sectors,2,3 which is an attractive
form of a FFAG accelerator, since smaller circumference
factors may be utilized than appear feasible with the
alternative radial sector design. Considerable effort has

*This work was supported by the National Science Founda
tion, the Office of Naval Research, and the U. S. Atomic Energy
Commission.

t Department of Physics and Institute for Atomic Research, Iowa
State University, Ames, Iowa. Present address: Division of Research,
U. S. Atomic Energy Commission, Washington 25, D. C.

t The Ohio State University, Columbus, Ohio. Present address:
Lawrence Radiation Laboratory, University of California, Berkeley 4,
California.

1 Theoretical analysis of a single nonlinear resonance has sug
gested that, ultimately, turn over may be expected for the case of a
difference resonance [d. references 12 and 13, and R. Hagedorn, Pro
ceedings of the CERN Symposium on High Energy Accelerators and
Pion Physics, Geneva, 1956 (CERN, Geneva, 1956), Vol. 1, p. 293].

2 K. R. Symon, D. W. Kerst, L. W. Jones, L. J. Laslett, and K. M.
Terwilliger, Phys. Rev. 103, 1837 (1956).

3 L. Jackson Laslett, Science 124, 781 (1956).

been expended by the MURA Group in successfully con
structing and operating a spiral sector electron model,4
while spiral sector cyclotrons are now in operation or
under construction in a large number of laboratories. Thus,
the results of this study may be of direct interest to a
number of groups, but more importantly, the authors
would like to emphasize that both the computational and
theoretical approaches should have wide applicability to
the study of many particle-handling devices.

The contents of this paper have appeared during the last
five years in a number of unpublished MURA Reports5- 9 ;

but only here, for the first time, will be found a compre
hensive description of the phenomena.

A. Theoretical Analysis

In the theoretical work, attention is directed to appro
priate coupling terms in the differential equation fo: the
vertical amplitude y which are linear in the depe.ldent
variable y but involve the radial coordinate u, measured
with respect to the stable equilibrium orbit.2 Suitable
solutions of an approximate differential equation for u,
obtained on the supposition that y=O, are introduced
into the coupling terms of the y equation to obtain a linear
differential equation for y with coefficients involving both
the period of the structure and that of the radial oscilla
tions. This introduction in a non-Hamiltonian way of
what is taken in effect to be a prescribed u motion was.

4 D. W. Kerst, E. A. Day, H. J. Hausman, R. O. Haxby, L. J.
Laslett, F. E. Mills, T. Ohkawa, F. L. Peterson, E. M. Rowe, A. M.
Sessler, J. N. Snyder, and W. A. Wallenmeyer, Rev. Sci. Instr. 31,
1076 (1960).

6 L. Jackson Laslett and A. M. Sessler, Midwestern Universities
Research Association Report MURA-263 (1957, unpublished).

6 L. Jackson Laslett, Midwestern Universities Research Associa
tion Report MURA-320 (1957, unpublished).

7 Roger E. Mills, Midwestern Universities Research Association
Report MURA-319 (1957, unpublished).

8 A. M. Sessler, Midwestern Universities Research Association
Report MURA-S96 (1961, unpublished).

9 C. A. Lassettre, Midwestern Universities Research Association
Report MURA-595 (1961, unpublished).

Reprinted by permission of the American Institute of Physics.
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and the notation is that of reference 2. The y equation
governing the axial motion is taken to be

where Xf represents the forced motion resulting in the
(periodic) equilibrium orbit. The free radial oscillation
satisfies the following approximate differential equation:

J J
u"+[ax+bx cosNO]u=-- sinNO u2+- cosNO u3, (1.2)

2w? 6w3

where

(1.7)

B. Computational Studies

The results of the theoretical analysis are summarized
in Sec. III F, and the subsequent sections of the paper are
devoted to computational studies designed to test these
predictions. This work falls into two classes, first a com-

and

These equations restrict the theoretical analysis to a special
class of FFAG accelerators, namely those which employ a
sinusoidally varying median plane field with a small flutter
factor (typically f~0.25). The methods used are more
general, of course, but all specific results will only be
applicable to this case.

By changing variables, we may simplify the above
equations; namely, let

T=!NO, p=u/w, y;=y/w, X= f/wN2, (1.8)

in which case Eqs. (1.2) and (1.5) become

d2p/dr2+4[(ax/ N2)+X COS2T]p

= -2X sin2T p2+jX COS2T p3 (1.9)

J
~- sinNO u3y, (1.5)

6w4

and

where

J J
y"+[ay+by cosNO]y=- sinNO uy-- cosNO u2y

w2 2w3

d2y;/dT2+4[ (ay/ N2)~X COS2T]Y;
=4X sin2T py;-2X COS2T p2y;_jX sin2T p3Y;. (1.10)

Since the small amplitude "tune" lTxo and lTyO [betatron fre
quency phase change per sector2 (IT = 27f"v/ N, where v is the
number of betatron wavelengths about the circumference)]
may be used to eliminate ax/ N2 and ay/ N2, it can be seen
that all results are simply a function of the linear tune
lTxo, lTyO and the parameter Xwhich may be thought of as a
measure of the nonlinearities whose presence creates the
coupling resonance. In particular, the y motion can be
characterized by lTxo, lTyO, X, and the amplitude of the
x motion, A, expressed in units of l/w.

The theoretical analysis is carried out in Sec. III, where
five distinct resonances are treated. Before that, we must
develop approximate solutions to the nonlinear radial
equation and a method of determining the regions of in
stability of the linear Hill equation which determines the
y motion. These mathematical preliminaries are carried
out in Sec. II. Although the methods are standard, this
particular mathematical procedure may be of interest in
that it should be useful in the analysis of the behavior of a
variety of particle-handling devices.

(1.1)X=Xf+ U,

originally suggested by W. Walkinshawlo and appears to be
entirely defensible when the y amplitudes are as small as
those obtaining in the greater part of the present work.
Since coupling terms are actually also present in the differ
ential equation for u, it must be acknowledged that the
development of a large amplitude y oscillation will "react
back" on the u motion, but this is generally a small effect
unless the y motion has grown to exceedingly large ampli
tudes, and is ignored in the remainder of this paper so
that the results strictly are only applicable to y growth
in its initial stages where the amplitude is small.

Subsequently, considerable attention has been given to
these problems by Parzenll employing perturbation
methods similar to those applied in solid-state physics, and
by Symon and co-workers,12 using the mathematical
methods developed by Moser.13 These techniques are
capable of reproducing the results of this paper as well as
predicting aspects of the phenomenon of "turnover," but
the mathematical methods are more involved than those
employed in this paper.

The differential equations used in the theoretical analysis
are taken from the analysis of ColeI4 which is appropriate
to a FFAG accelerator with a pure sinusoidal variation of
the median plane field. Only the coefficients which are
dominant for small values of the flutter f are retained. The
radial displacement (in units of a convenient reference
radius) is written

10 W. Walkinshaw, "A spiral ridged bevatron," A.E.R.E. Report,
Harwell (1956, unpublished).

11 G. Parzen, Midwestern Universities Research Association Report
MURA-217 (1957, unpublished); G. Parzen, Midwestern Universities
Research Association Report MURA-250 (1957, unpublished).

U H. Meier and K. R. Symon, Proceedings of the CERN Sym
pOoium on High-Energy Accelerators, Geneva, 1959 (CERN, Geneva,
1959), p. 253.

13 ]. Moser, Nachr. Akad. Wiss. Gottingen, Math.-physik. K!. IIa,
No. 6,87 (1955); ]. Moser, Commun. Pure and App!. Math. 8,409
(1955).

14 F. T. Cole, Midwestern Universities Research Association Report
MURA-95 (1955, unpublished). The change in sign of bi corrects an
inadvertent error in this report.

p p
ax=k+1~ '"'-'k+1~--, (1.3)

2w2[N2~(k+1)] 2wW2

bx= f/w, (1.4)

1-126



COUPLING RESONANCES 1237

II. MATHEMATICAL PRELIMINARIES

where, in terms of the matrix

(2.9)

(2.5)

(2.3)

(2.4)

(2.7)

(2.1)

y=Ao+A l cosNO.

y"+[a+b cosNOJy=O.

a~N2j4-bj2,

B 2j B l~bj (4N2).

(3) At the third stability boundary, again near a=N2j4
but corresponding to sel, we take

y=Cl sinNOj2+C2sin3NOj2. (2.8)

In this case, one obtains

a~N2j4+bj2,

C2jCl~bj(4N2).

For b small, one then obtains

a~ -b2j(2N2),

AljAo~bjN2,

which are, of course, the initial terms of well-known series
expansions.22

(2) At the second stability boundary, near a=N2j -! and
corresponding to eel, we take

At stability boundaries, the differential equation admits a
periodic solution such that, formally,

"smooth approximation" method which is described in
reference 5, but not included in this paper.

A. Estimation of Stability Boundaries
for a Mathieu Equation

y=Bl cosNOj2+B2cos3NOj2 (2.6)

as the trial function. One then obtains in a similar manner

To orient our analysis of Sec. II C, we outline here a
variational method for determining the first few stability
boundaries of the Mathieu equation

biNof t[y'L (a+b cOSNO)y2JdO=0. (2.2)
o

(1) At the first stability boundary, corresponding22 to
eeo and for which a=O when b=O, a suitable trial func~

tion is

(4) At the fourth stability boundary, near a=N2 and
corresponding to se2, a suitable trial function may be

22 Notation of E. T. Whittaker and G. N. Watson, M adem Analysis
(Cambridge University Press, New York, 1927), Sec. 19.3. These
authors use 16q in place of our coefficient b and take N = 2.

Insertion of this trial function into the integral and setting
the partial derivatives of the result (taken with respect
to A 0, A 1) equal to zero leads to simultaneous linear homo
geneous algebraic equations, which for a nontrivial solution
require

(1.12)

(1.11)

-c A-D B2
~=-B, 'TJ=--B, ~=-.

sin2
(T sin2

(T sin2
(T

putational study of the simplified equations15 used in the
theoretical analysis [essentially Eqs. (1.9) and (LlO)J,
and secondly a computational study of the exact equations
of motion of a particle in a spiral sector accelerator.I6-2l

The computational study of the equations used in the
theoretical analysis is given in Sec. IV, while Sec. V is
devoted to the computational study of the equations
governing a particle in an actual accelerator. These equa
tions-involving as they do many more effects than are in
cluded in the simplified equations-lead to a poorer agree
ment with the theoretical analysis. The agreement is
nevertheless sufficiently good to allow the use of the
theoretical formulas as a guide in the design and analysis
of accelerator behavior.

Analysis of the results was aided by computing, once per
sector, the quantity K y , which is the square root of a
quadratic form which remains invariant for linear un
coupled motion. This quantity was taken to be

which carries a particle through successive sectors from
one homologous point to the next,

The coefficients ~, 'TJ, ~, as well as the oscillation frequencies,
were determined by preliminary short small-amplitude
runs. Physically, for linear uncoupled motion, K y repre
sents the maximum value which y can attain at those
homologous points for which the invariant K y applies and
so represents the amplitude of the motion at such.points.

In this section, certain mathematical properties of Eqs.
(1.2) and (1.5) will be established. The results of this
analysis are summarized in Sec. II E, and the reader who is
willing to assume these results may skip to that section and
then continue with the theoretical analysis of Sec. III.

Many of these results may be obtained by an alternative

16 J. N. Snyder, Midwestern Universities Research Association
Report MURA-237 (1957, unpublished).

16 L. Jackson Laslett, Midwestern Universities Research Associa
tion Report MURA-75 (1955, unpublished).

17 L. D. Fosdick, Midwestern Universities Research Association
Report MURA-226 (1957, unpublished).

18 L. D. Fosdick, Midwestern Universities Research Association
Report MURA-241 (1957, unpublished).

19 L. Jackson Laslett and J. N. Snyder, Midwestern Universities
Research Association Report MURA-222 (1957, unpublished).

20 J. N. Snyder, Midwestern Universities Research Association
Report MURA-231 (1957, unpublished).

21 E. Z. Chapman, Midwestern Universities Research Association
Report MURA-457 (1959, unpublished).
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(2.24)

(2.23)

(2.19)

(2.20)

oft[y'2- (a+b cosNO)2]ydO=O,

B1",," (bj2N2) [1+(2vjN)]A 1,

C1",," (bj2N2)[1- (2vjN)]A 1,

and

Approximate solution of these equations gives

(vLa)A 1 -(bj2)B1 -(bj2)C1 =0
-(bj2)A 1+[(N-v)La]B1 =0 (2.22)
-(bj2)A 1 +[(N+V)2_ a]C1=0.

with the integral now covering a sufficient number of
periods of the cosine coefficient that the periodicity of the
solution in this interval may be exploited. Seeking a solu
tion whose variation with 0 is roughly that of cosvO or sinvO,
effective trial functions are

y=A 1 cosvO+B1 cos(N-v)8+C1 cos(N+v)O

or
y=A 2sinvO+B2sin(N-v)O+C2sin(N+v)O. (2.21)

We proceed to a solution of the problem by use of these
trial functions under the supposition that v is small in com
parison to N, results containing this limitation being suit
able for the present purposes.24

The first of the trial functions, when adjusted to make
the integral stationary, leads to the simultaneous equations

seeking an approximate representation of the Floquet
solutions and an estimate of the characteristic oscillation
frequency. A simplification results if one imagines that the
characteristic period of the solution and the period of the
coefficient cosNO are commensurate in some (possibly
large) interval and that the Floquet solution is accordingly
periodic in this interval.

By the foregoing ruse we then again write

(2.10)

(2.13)

(2.12)

(2.11)

y=Eo+E1 cosNO+E2cos2NO

a"""N2+5b2j(12N2),

EojE 1 """ -bj(2a) """ -bj (2N2) ,

E2j E 1",,"bj[2(4N2_ a)]",," bj (6N2).

to obtain

a""" NLb2j(12N2),

D2j D1""" bj(6N2).

(5) At the other stability boundary near a= N2, one may
employ the trial function

taken of the form

y= D1 sinN8+D2 sin2NO.

One obtains in this case

It is of interest to note, from the results of this and the
preceding subsection, that the stability boundaries are not
symmetrically located about a=N2.

Series expansions for all these various stability bound
aries are, as has been noted, given in published texts.22 .23

(6) A case involving a special Hill equation may also be
considered here because of certain similarities to (4) and
(5) above. The equation

y"+[a+13 coswO+y cos2wO]y=0, (2.14)

with {3 and 'Y considered small, will exhibit a narrow zone
of instability for a near w2• When {3=0, the equation is of
the form considered in subsections (2) and (3) (with 2w
corresponding to N) and the width of the unstable region
will be proportional to 'Y; when 'Y = 0, the resonance in
question is that considered in subsections (4) and (5)
(with w=N) and the width will be proportional to {32.

The corresponding result for the general case ({3 and 'Y
both different from zero) may be obtained for circum
stances in which 132 and 'Yare of the same order of magni
tude. The variational statement

(2.16)

of!{y'2_[a+{3 coswO+'Y coS2WO]y2}dO=0 (2.15)

is used, with the trial functions

y=D1 sinwO+D2sin2wO,

y=Eo+E1 coswO+E2cos2wO.

One then finds that instability will occur when a-w2 lies
between

-{32j(12w2)+'Yj2 and 5{32j(12w2)-'Yj2. (2.17)

B. Approximate Solution of a Mathieu Equation

We are again concerned with the Mathieu equation

y"+[a+b cosNO]y=O, (2.18)

23 N. W. McLachlan, Theory and Application of Mathieu Functions
(Clarendon Press, Oxford, England, 1947), Sees. 4.90-4.91.

this last relation being in agreement with the "smooth
approximation" result.2

The second trial function, involving sine terms, leads
similarly to

(v2-a)A2 +(bj2)B2 - (bj2)C2 =0,
(bj2)A 2 +[(N-v)La]B2 =0, (2.25)

- (bj2)A 2 +[(N+V)2_ a]C2=0,

with approximate solutions identical in form to those for
the cosine series, save for a change in sign for B2• Thus,
although the procedure employed is formally similar to
that which can be used to find stability boundaries (d. Sec.

24 This problem has been extensively studied, and the reader is
referred to the following references for more accurate solutions. L.
Jackson Laslett and A. M. Sessler, Midwestern Universities Research
Association Report MURA-252 (1957, unpublished); R. E. Mills.
Midwestern Universities Research Association Report MURA-340
(1957, unpublished); G. Parzen, Midwestern Universities Research
Association Report MURA-397 (1958,unpublished).
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II A), the relations connecting v, a, and b are identical for
the two cases considered here and we may write the
general approximate solution as an arbitrary linear com
bination of the two solutions

A1[cosvO+(b/N2) cosNO cosvO+2bv/N3 sinNOsinvO] (2.26)

and

to yield

and

b+e/2
PI""'--[1+1/P]B1

2p2V",2

b±e/2
P2"",--[1-ljp]B1

2p2V",2

(2.33)

(2.34)

A2[sinvO+ (b/N2) cosNO sinvO-2bv/N3 sinNO cosvO] ;(2.27)
as the dominant coefficients supplementing B 1 in Eq. (2.32).
Furthermore, one obtains, if the upper sign is used,

VIZ:

y=Ay[sin(vO+e)+ (b/N2) sin(vO+e) cosNO

- (2bv/N3) cos(vO+e) sinNO], (2.28)
with

(2.35)

If the lower sign is used, one obtains instead
(2.29)

A detailed comparison of the approximate solution with a
small-amplitude numerical solution of the exact (axial)
equation of motion may be found in reference 5, where it is
seen that for v/N "",o.1 the approximate solution is accurate
to a few percent.

(2.36)

Since, by the results of Sec. II B, vyo2=a+b2/(2N2)
represents the square of the frequency of the y oscillations
for the case e=d=O, we may conveniently write

y= C1 sinv xO/2+· .. +QI sin(2p-1)vx8/2

+Q2 sin(2p+ 1)vx8/2+· . '. (2.39)

for the lower sign.
(1b) A second stability limit to the differential equation

is similarly obtained in the same neighborhood by use of
the trial function

for the lower sign.
The associated stability limits derived in subsections

(1a) and (1b) for Eq. (2.30) may thus be summarized as
follows:

(2.40)

(2.41)

(2.37)

b-e/2
QI"'" ---[1+ ljp]CI,

2p2V",2

bOCfe/2
Q2"",--[1-1/p]C1,

2p2V",2

In this case, one finds

with the relation

VYOL (v",/2)2"", be/ (2N2)+d/2,

for the upper sign, and

VYOL (V",/2)2"", v",be/ (2N3)+d/2 (2.42)

(Vx!2)2_ VY02"", be/ (2N2)+d/2,

for the upper sign, and

(v",/2)L VY02"", v:r;be/ (2N3)+d/2, (2.38)

IV",L (2VYO)2/ "'" 2/ be/N2+d /, (2.43)

when the upper sign is taken, and

Ivx
L (2VYO)21 "'" 2/vxbe/N3+d I (2.44)

when the lower sign applies.

We then proceed to determine, in turn, stability bound
aries near

C. Stability Limits for a Hill Equation

We are concerned here with the differential equation

y"+[a+b cosNO+ (e/2) cos(N-v",)O

± (e/2) cos(N+v",)8+d cosv",O]y = 0, (2.30)

where we presume that p=N/v", may be regarded as a
rational number and the coefficients e and d are regarded
as small. For the work to follow, the differential equation
is replaced by the variational statement

v",=2vyo, v",+2vyo=N, and 2v",+2vyo=N.

(1a) The location of the first stability limit of interest
here is determined by aid of the trial function

y=B1cosvx8/2+B2cos3vx8/2

+R1cos(2p-3)v",O/2+P1cos(2p-1)v",O/2

+P2cos (2p+ 1)vx8/2+R2cos(2p+3)vx8/2, (2.32)

although, as will be seen, inclusion of the terms with
coefficients B 2, R 1, and R 2 is unnecessary for the accuracy
desired here. Insertion of this trial solution into the
integral and formation of the appropriate derivatives leads
to a complicated set of simultaneous equations. (See
reference 5 for details.) Neglecting terms of second and
higher order in e and d, and terms of order d/ (2p2V",2) and
d/2N2 compared to unity, these equations may be solved

oJHy'2_[a+b cospvxO+(e/2) cos(p-1)v",O

± (e/2) cos(p+1)v",O+d COSV",O]y2} dO = 0. (2.31)
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or

or

± (e/2) cos(2q-1)vofJ+d cos(q-1)vofJJy2}dfJ=° (2.46)

(2.54)

(2.55)

(2.57)

(2.59)
P, 2~ _ (e

2
)(s3) [a2-al]2

max ~ (se')(es') 4

Ce" (fJ)±Ss"(fJ)±2p,[Ce'(fJ)±Ss'(fJ)J

+[.u.2+ f(a,fJ)J[Ce (fJ) ±Ss(fJ)J = 0.

The eigensolutions satisfy

e"+ f(al,fJ)e=O, s"+ f(a2,fJ)s=0,

C[p,2+ a- alJ(e2)+2p,S(es')= °
2p,C(se')+S[.u.2+a- a2J(s2) = 0,

where ( ) denotes that the average value is taken. An ap
proximate solution of the resulting determinantal equa-
tion yields •

(a-al) (a2-a)(e2)(s2)
p,2"" - . (2.58)

4(se')(es')

If the parameter "a" lies midway between the two eigen
values al and a2, the lapse rate will thereby be maximized,

The coefficients of the even and odd functions in this
approximate identity may be related by multiplying
through by e(fJ) and by s(fJ) in turn and integrating, making
use of the orthogonality of the (periodic) eigenfunctions
which correspond to the two distinct eigenvalues al and a2.
In this way, one obtains

and al and a2 are eigenvalues corresponding to the stability
boundaries of the problem. Thus,

±2p,[Ce'(fJ)±Ss'(fJ) J+C[p,2+a - al]c(fJ)

±S[.u.2+a- a2Js(fJ) = 0. (2.56)

for a= (al+a2)/2.
The foregoing expressions for p,2 may readily be applied

to estimate the lapse rates associated with the resonances
which form the subject of this report, employing the
estimates for their respective stability boundaries derived
in Sec. II C. For the eigenfunctions e(fJ) and s(fJ), it is
convenient merely to take the cosine and sine functions
which constitute the dominant terms of the trial functions
employed in estimating the stability boundaries.

E. Summary of Mathematical Results

We have established, in Sec. II, the following results,
which are organized according to the section in which they
have been established.

(2.48)

(2.49)

(2.50)

(2.51)

(2a) An additional zone of instability occurs near
v,:+2vyo=N. We write for convenience N=qvo and
v.,= (q-1)vo, where vo=N- V x' The equations

y"+[a+b cosqvoO+ (e/2) cosvofJ

± (e/2) cos(2q-1)vofJ+d cos(q-1)vofJJy=0 (2.45)

are then solved approximately by the trial function

y=El cosvofJ/2+Tl cos(2q-1)vofJ/2

+ T2cos(2q+ 1)vofJ/2. (2.47)

The following conditions are found to apply [for either
sign of the coefficient of cos(2q-1)vofJJ:

T l"" [(b+d)/ (2q2v02)JEl,

T2"" [b/ (2 q2v02)JEl,

and, again noting vy02=a+b2/(2N2),

(1'0/2)2- VY02"" e/4+bd/ (2N2).

(2b) A similar result, with a reversal in sign of the
entire right-hand side of the equation, can be obtained for
the companion stability boundary if sine functions are
used in place of cosine functions in the trial solution. We
accordingly write

D. Estimate of the Characteristic Exponent in
the Unstable Region of a Hill Equation

oJt{y'2- [a+b cosqvofJ+ (e/2) cosvofJ

An approximate expression may be derived for the
characteristic exponent p" which characterizes the lapse
rate of an exponentially-growing solution in the unstable
region of a Hill equation. For this purpose, we follow a
procedure analogous to that described by McLachlanY

We denote the even and odd characteristic solutions at
the associated stability boundaries by e(fJ) and s(fJ), re
spectively. The solutions near the vertex of the zone of in
stability may then be written approximately as

in place of representing the Floquet factor within the
bracket by expansion in a complete orthogonal set of
functions. Substitution of this solution into the differential
equation

yields

y= e±1'8[Ce(fJ)±Ss(fJ)J

y"+ f(a,fJ)y=Q

(2.52)

(2.53)

A. Estimation of Stability Boundaries
for a Mathieu Equation

(1) For the Mathieu equation

y"+[a+b cosNfJJy=O,

regions of instability are

(2.1)
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III. THEORETICAL ANALYSIS

The solution to the u equation is then given by the results
of Sec. II B as

u"+[ax+U/w) cosNO]u=O, (3.1a)

y"+[ay - U/w) cosNO- U/w2)(sinNO)u]y=O. (3.1b)

(2.58)

(2.59)

(a-al) (a2-a)(c2)(s2)

4(sc')(cs')

(c
2
)(S2) [a2-a1]2.

(sc')(cs') 4

is given in terms of the eigenvalues al,a2 and eigenfunc
tions c(O), s(O) associated with the boundaries of the un
stable region

u=A[sinvxO+_f- sinvxO cosNO
WN2

In this section we shall use the results of the previous
section to analyze the behavior in the region of various
coupling resonances. The various cases are treated in turn,
and the results summarized in Sec. III F.

A. The O'x = 20'y Resonance

For the analysis of axial motion as affected by the rela
tively strong coupling resonance which prevails when U x

lies in the neighborhood of 2uyo, it is sufficient to charac
terize the radial motion by a linear equation in u and to
represent the coupling by inclusion of the term of the form
uy in the axial equation. The equations considered then are

are found associated with zones of instability as follows:

a<-b2/(2N2), from Eq. (2.5);

N2/4-b/2<a<N2/4+b/2,

from Eqs. (2.7) and (2.9); (2.60)

N2_b2/ (12N2) <a<N2+5b2/ (12N2),

from Eqs. (2.11) and (2.13).

(2) For the Hill equation

y"+[a+13 coswO+y cos2wO]y=0, (2.14)

B. A pproximate Solution of a Mathieu Equation

For the Mathieu equation

y"+[a+b cosNO]y=O, (2.18)

we take the solution to be, when v/N is small,

y=A y [sin(vO+e)+(b/N2) sin(vO+e) cosNO

- (2bv/N3) cos(vO+e) sinNO], (2.28)

a region of instability exists for a between

with

C. Stability Limitsfor a Hill Equation

Stability limits for the equation

y"+[a+b cosNO+(c/2) cos(N-vx)O

± (c/2) cos(N+vx)O+d cosvxO]y= 0 (2.30)

when the upper sign is taken;

Ivx2- (2VYO)21 ~21 (vxbc/N3)+dl, (2.44)

for either sign of the term which involves cos(N+vx)O.
(3) If Vx is replaced by 2vx in this last result, the equation

y"+[a+b cosNO+ (c/2) cos(N-2vx)O

±(c/2) cos(N+2vx)O+d cos2vxO]y=0 (2.61)

when the lower sign is taken.

(3.2)fv x
]-2- cosvxOsinNO ,

WN3

Aj2vx ]
+-- cosvxO y=O. (3.3)

w3N3

r
Af

y"+ ay-(j/w) cosNO--sinvxOsinNO
w2

where we have dropped the phase shift for convenience.
Substitution of this expression for u into the y equation
and neglect of terms in 2NO then leads to

(2.51)

(2.43)

(2)

(1)

has a zone of instability defined by

(2.62)

D. Estimate of the Characteristic Exponent
in the Unstable Region o/a Hill Equation

Summary: The lapse rate, II. nepers/rad, characterizing
unstable solutions of the differential equation

This equation is of the form of that considered in the
first part of Sec. II C1 with the lower sign, viz.,

y"+[a+b cosNO+c sinvxsinNO+d cosvxO]y=O, (3.4)

for which the stability boundaries are given by

(3.5)

With the identification

y"+ f(a,O)y=O (2.53) b= - f/w, c= - Af/w2, d=Afvx/w3N3, (3.6)

1-131



1242 L. ]. LASLETT AND A. M. SESSLER

volving cosvxO in this last equation is of relatively small
effect and hence that it would have been sufficient to make
the substitution u=A sinvxO in the original y equation.

We now refer to the results of Sec. II C, and in particular
to Eq. (2.30) with stability limits as given by Eq. (2.51).
We identify b= - f/w, e= -Af/W2 [taking the lower sign
in Eq. (2.30)J, and d=Af2v",/W3JV3. Note that the term in
2bd/JV2 is negligible compared to e in Eq. (2.51), so that
we find

(3.9)

the stability boundaries accordingly are given by

Iv.,2- (2vYo?l= 4(f2V./W3JV3) IA I (3.7)

and the "threshold" amplitude for radial motion, above
which y growth may occur, correspondingly by

An estimate for the lapse-rate characterizing expo
nential growth in the unstable region is likewise obtainable
directly from Eq. (2.58), Sec. II D

(a- at) (a2- a)(e2)(s2)
J.l2= .

4(se')(es')

I(JV-v",)L (2VYO)2/ """ lei
= (j/w2

) IA I,
with the threshold amplitude then being explicitly

IA Ithr= (w2/ I) I(N - V",)2- (2VYO)21

(3.13)

Since the differences of "a" are identical to differences VY02
and, for the present purpose, the functions e and s may
be taken as proportional to the cosine and sine of vxO/2,

J.l= {[VY02- (Vyo)n[ (VYO)22- VY02J/v,.?}!

(3.10)

An estimate of the lapse-rate for y growth in the unstable
region is again given by Eq. (2.58) with e and snow
represented by circular functions of argument (N - v",)/2.
Accordingly

J.l={ (4~2A+[VYOL(JV~v"'r])

x( 4~2A-[VY02- (JV~v~r J) / (JV-V",)2}

I 1 (AL Athr2)~
= 0.682- decades/sector. (3.15)

wJV21-v",/JV w

In particular the maximum lapse-rate, for a given ampli
tude A, is given by

(
I )2(A2_ A thr2)!

= 2.73 - decades/sector.
WN2 w

B. The 0'",+20'y=2".; Resonance

An analytic treatment of small-amplitude axial motion
in the case that ()""'+ 2ey lies in the neighborhood of 21T may
be based on the same differential equation as employed
for discussion of the fT,,= 2fTy resonance, namely

I 2A
J.lmax=2.73(--) - decades/sector.

WJV2 W

[
AI

y" + ay- Cf/w) cosNO-- sinv",O siniYO
w2

Af2v", ]
+--cosv"O y=O.

U/3N3

(3.11)

(3.12)

The maximum J.l, for a given amplitude A, is

I 1 A
J.lmax=0.682- - decades/sector. (3.16)

wN21-v",/JV w

It is noted that for a sum resonance, such as the one con
sidered here, v", and Vy cannot both be arbitrarily small in
comparison to JV.

C. The O'x = O'y Resonance

A narrow zone of instability would be expected to arise
from "a fTxo = fTyO resonance, in analogy to the second zone of
instability for Mathieu's equation. Since, however, the
resonance is second order in its dependence on the u ampli
tude A ,25 a consistent analysis of the problem requires con
sideration of (i) possible contributions from the u2y term
in the y equation and (ii) supplementary terms, propor
tional to A 2, which will enter in uy when a solution to the
nonlinear u equation is attempted. These features com
plicate the analytic work considerably, so we here under
take an approximate treatment, taking f/WJV2 and vx

2/JV2

In the present application it will be seen that the term in-
25 To emphasize the second-order nature of this resonance, it pre

ferably should be designated 2lTx = 2lTYo.
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PA2 j2 (AV.. )-2

1
---cos2v..O+-- 1--cosv..O y=O (3.24)

8w4N2 2w2N2 w.Y

to be small and employing for convenience at one point
the "smooth-approximation" method.2 [Curiously, reten
tion of the u2y term appears to affect noticeably the inter
mediate steps of the analysis but not, in the present
approximation, the final result.] An analysis which does
not employ the "smooth approximation" has been made
and shown to lead to the same results as the treatment
given here.

The equations with which we commence are, from Eqs.
, (1.2) and (1.5),

u"+ [a..+ l/w cosNO]u= -Hl/w2) sinNO u2, (3.17)

y"+[au- l/wcosNO]y= (j/w2) sinNO uy

- (j/2w3) cosNO u2y. (3.18)

The solution of the u equation is now taken to be of the
form previously taken from Sec. II B for use in analyzing
the uxo=2uyo resonance (Sec. III A), but supplemented by
additional terms, proportional to A 2, obtained therefrom
by a perturbation procedure,

the form

PA2 j ( A )]--- cos2v,,8-- cos JlTO-- sinv,,8 y=O,
8w4N2 w W _

with the "smooth-approximation equivalent"2

or, recalling that vi is negligible compared to N2,

lA2 j2v..A
y"+{ VY02+---+2-- cosvIO

8w4.Y2 w3l\'3

(3.23)

and

(3.25)
PA2 }

--- cos2v,,8 y=O.
8w4J1T2

The stability boundaries near v..= VYO for this last
equation may now be obtained by appeal to the results of
Sec. II A 6 in which the Eq. (2.14) was considered.

We set

w= v" {3= 2j2v"A/w3N3
(3.26)

a= VY02+ (j2A2/8w4JIT2) ')'= - j2A2/8w4JIT2

and obtain from Eq. (2.17)

wL {32/ (12w2)+')'/2 ~a~w2+5{32/ (12w2)-')'/2

_~ PA2 ~VY02_V ..2~_~ PA2_~(~)2(A)2
16 w4N2 16 w4N2 4 WN2 W

wJIT2 (V,,2_ VY02)l
[A 2[=4w----

f N

=2~[(:r-(u:O)T (3.28)

the terms which arise from {32 being neglected since they
involve an additional factor [1/ (WN2)]2.

This approximate result for estimating the stability
boundaries associated with the U .. """UYO resonance suggests
a relatively narrow zone of instability whose width is pro
portional to the square of the radial amplitude and which
will be found exclusively for values of UYO below u". More
over, there thus appear to be two "threshold" amplitudes
(for specified v", Vyo), an upper limit

(3.19)

(3.20)

(3.21)

fA2 [
+-- sinNO-cos2v,,8 sinNO

4w2N2

v.. ]
+~ sin2v..OcosNO .

l
' f

u= A sinv..O+-- sinv,,8 cosNO
WN2

jv.. ]-2-- cosv..OsinNO
WN3

For the purpose at hand we also take, then,

U2""'A2[sin2v..O+2~ sin2v,,8 cosNO
WN2

jv.. ]-4-- sinv,,8 cosv,,8 sinNO .
WN3

In forming the coupling terms, we drop terms involving the
sine or cosine of 2NO to obtain

1 fA2[ j j ]
=--- sin2v,,8cosNO+-----cos2v,,8 . (3.22)

2 w3 2wN2 2wN2

f j[ jv"A
- sinNO u"""- A sinv..OsinNO--- cosv,,8
w2 w2 WN3

The differential equation for y now becomes expressible in
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and the more pertinent lower limit

WN2 (v,}-VY02)!
IAll = (4/YJ)w----

f N

(j/W2)(sinNO)u:

f fA2 fA2
- sinNOu=----- cos2vJJ.
w2 ,8w4N2 8w4N2

(3.33)

decades/sector. (3.30)

(3.36)

(3.35)

this result involving A squared, as was also the case for the
2O'x =2O'yo resonance treated in Sec. III C.

The threshold amplitude is correspondingly

In this last relation, VY02 refers to the square of the y fre
quency when the coefficients c and d vanish; it differs,
however, only by terms of order (f2/w2N2)(A/W)2 from the
square of the y frequency for A =0. The factor 2bd/N2,
moreover, is less than c by a factor of order [f/(WN2)J2.
Regarding f/(wN2) as small in comparison to unity, we
are thus led to the result which would have been obtained
if only the term HfA2/W3) cos2vJJ cosNO in the u2term had
been retained,

f (A)2I(N- 2vx)2- (2VYO)2! ~- - ,
4w w

f (A)2a= ay+terms of order -- - ,
w2N~ W

b= - ~ . [ 1+terms of order(~Yl

f (A)2d is of order-- - .
w2N2 W

C=_~(A)2,
4w w

where

This equation is of the form considered in Sec. II C [see
Eqs. (2.61) and (2.62)J, for which the stability boundaries

are represented by I 2bdj

I(N - 2vx)2- (2VYO)2! = c+ N2 .

and

With the foregoing expressions for the u-dependent
terms, the differential equation for axial motion becomes

y"+[a+b cosNO+c cos2vJJ cosNO

+d cos2vJJJy=0, (3.34)

(3.31)

(3.29)WN2[(O')2 (O'YO)2]!
= (2/YJ)Wj : - --;; .

(
f )2 N(A)2JJ.max=0.085 -- - - decades/sector.

WN2 VX W

The maximum lapse-rate, for a given amplitude A, is then
estimated to be

The lapse-rate which characterizes exponential growth
in the unstable region may be estimated from the result
of Sec. II D, noting that the functions c and s are now
primarily represented by cosine and sine functions of vJJ,
and is conveniently expressed in terms of the threshold
amplitude AI,

D. The 2ax +2ay=2?t Resonance

In an analysis of the resonance to be expected when
2O'x+2O'yo is close to 21r, the obvious term to invoke in the
y equation is the u2y term. It is necessary, however, also to
consider the double-frequency (2v x) terms which can enter
the term in uy by virtue of supplementary terms in u
obtainable by a perturbation solution of the nonlinear u
equation. It will appear that the direct contribution from
the u2y term nonetheless definitely dominates.

The solution of the u equation is taken to be that em
ployed previously in Sec. III C, namely Eq. (3.19). In
forming -!(f/w) (cosNO)u2, the term of major importance
in exciting the resonance of present interest is HfA2/W3)
cos2vJJ cosNO, although the following terms might all be
kept in mind:

(3.37)
f fA2 fA2

-- cosNO u2=-- cosNO+- cos2vJJ cosNO
2w3 4w3 4w3

fA2 fA2
---+-- cos2vJJ+ . . . . (3.32)

4w4N2 4w4N2

Likewise; the following terms might be noted to arise from

=2W[W;21 (1-:r-(0':0) 21r
An estimate of the lapse-rate for the axial amplitude in

the unstable region is given by Eq. (2.58) with c and s
represented by circular functions of argument (N-2v x)/2.
Accordingly,
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~={ (~:3+[VYOL(: -VXYJ)

X(:~ -[VYOL(:-Vxy])/ (N-2vx)2r
f 1 (A4_ Athr4)!

=0.17- decades/sector. (3.38)
wN2 1-2vx/N w2

Athr=2w(3W;)ll(1-::y- (U:O)T,
while use of Sec. II D yields for the lapse-rate

~=00284(~) 1 [(A)6_(Athr)6]'
. WN2 1-3vx/N W W

decades/sector,

(3.43)

(3.44)

The maximum 11-, for a given amplitude A, is then

f 1 (A)2
~max=O.17-- - decades/sector,

wN21-2vx/N W
(3.39)

and a maximum lapse-rate for a given amplitude A of

1) 1 A 3
~ma;x= 0.0284 -- -

(WN2 1-3vx/N( W)

with a quadratic dependence on A. decades/sector. (3.45)

E. The 3ux +2uy=27C Resonance

Examination of this fifth-order resonance is complicated
by the need for an appropriate solution of the nonlinear
radial equation. The resonance will be driven by terms in
the y equation of frequencies 3vx, 3vx±N, 3vx±2N, "',
and we keep only the dominant first three terms.

Solving the u equation [Eq. (1.2)J by perturbation
theory and, dropping terms of order (vxlN)2 and [1/ (WN2) J2
compared to unity,. we obtain

A similar analysis could be made for the 3ux-2uy =27l'
difference resonance, but operating points in the neighbor
hood of this resonance line are considered to be of lesser
interest for the design of FFAG accelerators and no
computational results have been sought for such points.

F. Summary of the Theoretical Results

We have established in Sec. III the following results,
which are organized according to the section in which
they have been established.

U=A[sinv.o+~ sinv.o COSNB_2(~)IIZ cosv.osinNB]
WN2 WN2 N

f
A2 [ 4vx 1+-- sinNB-sinNB cos2vxB+-· cosNB sin2vxB

4w2N2 N

where certain secular terms have been dropped, and corre
spondingly, Vz is the frequency associated with amplitude
A rather than zero amplitude. (See reference 8 for a de
tailed derivation.) If this solution is inserted into the y
equation [Eq. (1.5)J and terms of frequency 3vx and
3vx±Nare retained, we obtain

(3.8)

(3.14)

(3.11)

f 1 (A2-Athi)1
~=O.682---------

wN21-vx/N W

B. The ux+2uy=27l' Resonance

f )2 A
~max=2.73(-- - decades/sector.

WN2. W

1 (WN2)2 NI (ux)2 (UYO)2j
[A Ithr=16 f liz -;; - 2--; ,

A. The o:x= 2uy Resonance

(
f )2 (A2- Ath?)l

~=2.73 _. decades/sector, (3.10)
WN2 W(3.40)fA3 [ 6l1 x ]

+--- sin3vxB cosNB-- cos3vxB sinlVB ,
48w3N2 N

[
f fA3(7vx)

y"+ ay-- cosNB+-- -- cos3vxB
W w5N3 16

The threshold is consequently given by
(3.28)

C. The Uz=Uy Resonance

(
WN

2)[(UX)2 (UYO)2]'IA 2 1=2w - - - - ,
f 7l' 7l'

f 1 A
~ma;x=O.682- - decades/sector. (3.16)

wN21-vxlN W

decades/sector, (3.15)
(3.41)

(3.42)

fA3 sin3vx SinNB]
------y=O,

24w4

which, upon comparison with Eqs. (2.30) and (2.51), yields

fA3
I (N-3vx)L(2vYO)2[ =-.

24w4
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decades/sector,

f )2
N

(A)2Mmax=O.085(- - - decades/sector.
WN2 v", W

D. The 2<T",+2<Ty =27r Resonance

j Althr=2w(W;)!1(1-:r-c:O)T,
f 1 (A4_ A thr4)!

M=0.17--------
wN21-2v",jN w2

decades/sector,

f 1 (A)2Mmax=0.17-- - decades/sector.
wN21-2v",jN w

(3.29)

(3.30)

(3.31)

(3.37)

(3.38)

(3.39)

in the theoretical analysis. A more detailed description of
this work can be found in reference 7, and the authors are
indebted to Mr. Roger Mills for permission to use his
results in this section. It will be seen that the agreement
between the theoretical results and the computations is
reasonably good; and the reader who is willing to accept
these results may turn to the computational studies of the
equations governing particle motion in an actual accel
erator, as are described in Sec. V.

The various resonances studied in Sec. III will be treated
in turn, with the exception of the high-order resonance
3<T",+2<T1I=21l' which was not subject to the study of this
section.

A. The 0'",= 20'y Resonance

1. Equations

The theoretical treatment of this resonance (Sec. III A)
employs the linear equation for the vertical motion

y"+[a+b cosNO+c sinv",O sinNO+d cosv,,8]y=O (4.1)

with the resonance boundaries given (Sec. II C) by

In this section we shall describe certain computational
studies which were made of the simplified equations used

decades/sector.

(4.2)

(4.3)7rlbC dlJ.l.max=- -+- nepers/sector.
N N3 v",

and a maximum lapse-rate obtained as in Sec. III A to be

The mathematical study was undertaken by identi
fying the parameters of Eq. (4.1) as

a=all , b= - f/w, c= -Axf/w2, d=A",v",P/(w3N3), (4.4)

and then choosing V",= 1, W= 1/20, f = 1/4, and N = 5 or 8,
as would be characteristic of a model-size accelerator. The
value of a was chosen so as to vary VYO through the reso
nance, while the amplitude A", in effect was adjusted by
the independent variable c.

2. Results

Figure 1 shows the portions of the stability diagrams for
this resonance, and the theoretical boundaries. It can be
seen that the resonance as described by the computer tends
to "bend" toward lower values of VYO as c increases. How
ever, when c$ 1, the agreement is fairly good.

Because of the "bending," it would be expected that
lapse-rate comparisons between theory and the output at
the same VYO would be rather poor. Perhaps though, it is
possible to compare the maximum theoretical and ob
served lapse-rates at a given value of c, and thus at least

(3.44)

(3.43)

(3.45)

FIG. 1. Resonance
boundaries in the region
of u.=2uy, both theo
retically predicted and
according to computa
tions employing the sim
plified equations used in
the theoretical analysis.

.55.50

1.5 ---+--r-j

2.C

The Ox =20y Resonance
- From Computer Output
---- E$~imated From Computer Output
---Theoretical Resonance Boundaries

N·S N'B

decades/sector,

E. The 3<T",+2<T1I =27r Resonance

IV. COMPUTATIONAL STUDIES OF THE
SIMPLIFIED EQUATIONS

__ (
3WN2)lJ ( 3<T"')

2
(<T YO)2j!A thr -2w -- 1-:-- - - ,

f 27r 7r

( f) 1 [(A)6 (Athr) 6

J
lM=00284 - - - -

WN2 1-3v",/N W W

Mmax=O.0284(~) 1 (A)3
WN2 1-3v",jN W
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FIG. 2. Resonance boundaries in the region of ux+2uu=2,:, both
theoretically predicted and according to. computat~ons employmg the
simplified equations used in the theoretIcal analySIS.

~
,
I

I

)
I
1

3.45 3.50 3.$

"'1'0

The d'x+2Ify =2T1 Resonance
- Curves From Computer Output
---Theoretical Resonance Boundaries

N'5 NoB

o''----,~-*=----,~---'
1.95 2.00 2.05

0.2~1---+---\\-+-I'---_+__-1

0.6t--1-I+---t----tH---l

c
0.4t--,-\l---+----H-_+__-1

0 0 0
N=5 0.5 0.0251 0.0283

1.0 0.0503 0.0540

0 0 0

N=8 1.00 0.0077 0.0079
1.43 0.0110 0.0125
1.83 0.0140 0.0153

/Lmax (nepers/sector)
Theoret Obs

get an upper limit on the lapse-rate. This comparison is
shown in Table I, where it can be seen that the agreement
is fairly good even when the "bending" has become
pronounced.

TABLE I. Comparison between computational results employing
simplified equations and theoretical predictions for the maxim~m

lapse-rate, in the neighborhood of the U x=2uu resonance, as a functIOn
of the coupling parameter c.

(4.5)

with the following conditions on the coefficients:

TABLE II. Comparison between computational results employing
simplified equations and theoretical predictbns for the maximum
lapse-rate, in the neighborhood of the ux+2uy=27l' resonance, as a
function of the coupling parameter c.

(4.9)

(4.10)(
e3vx ) J+ c--- cosvx!;I+d cos2v.o y=O.
2gN3

b= -e2/(2g),

(c/vx)2«/dl, (4.8)

[e3/(2gN3)]2«/dl·

It can be seen that, by making the identifications

b= -f/w, c= j2vxA/(w3N3), d= - j2A2/(8w4N2),

e= - fA/w2, g= fA 2/ (2w3) ,

and employing the fact that A/w«l, Eq. (4.7) is identical
with Eq. (3.23); the latter formed the basis for the analysis
of the ITx=ITy resonance. That the inequalities of Eq. (4.8)
are satisfied by the substitution of Eq. (4.9) may be
easily seen to only require [f/(WN2)]2<1.

Analysis now proceeds by "smooth approximation", as
was employed following Eq. (3.23), Sec. III C, to yield

The second resonance yields the same results except for
the substitution of 2vx for Vx and hence does not require a
separate mathematical check.

The numerical study proceeded as in the previous sec
tion, with the variable c taken as the independent variable
and the coefficients evaluated in terms of the same accel
erator parameters.

B. The O'x+20'y=27C Resonance and the
20'x+20'y=27C Resonance

1. Equations

The theoretical treatment of these resonances employs
the linear equation [Eq. (4.1)J with resonance boundaries
for the first resonance given (Sec. II C 3) by

(2VYO)2= (N-vx)2- (c+2bd/N2),

(2VYO)2= (N-vx)2+(c+2bd/N2).

2. Results

Figure 2 gives a comparison of the predicted and ob
served resonances, which is seen to be quite good. The
maximum lapse-rates are compared in Table II.

The maximum lapse-rate may be found as in Sec. III B,
and is

1rlc+2bd/N2[
IJ.max= nepers/sector. (4.6)

2N(N- vx)

C. The O'x=Uy Resonance

1. Equations

The mathematical methods employed in the study of this
resonance (Sec. III C) may be checked by starting with
the equation

y"+[ay-d+b cosNO+c cosv,,8+d cos2v,,8

+e sinv,,8 sinNO+g sin2v,,8 cosNOJy=O, (4.7)

/Lmax (nepers/sector)
Theoret Obs

0 0 0
N=5 0.5 0.0393 0.0566

1 0.0785 0.0976

0 0 0
N=8 0.5 0.0140 0.0148

1 0.0281 0.0292
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. TA~LE III. C?mparison betwe~n computat!onal results employing
sImplified equatIOns and theoretical preductions for the maximum

-lapse-rate, in the neighborhood of the U.=Uu resonance as a function
of the coupling parameter c. '

Employing the relation vYo2~ay+b2/2N2=ay+e'*/8g2N2,

and the results of Sec. II A 6 [Eq. (2.17)J, we obtain
[after use of Eq. (4.8)Jfor instability the condition

I'max (nepers/sector)
c Theoret Obs

0 0
FIG. 4. Schematic graph

0 illustrating y growth near
0.3 0.000141 0.000138 u.=2uu· The parameters
0.5 0.000392 0.000512 for this operating point are
1 0.00157 0.00165 k=0.668, 1/w= 19.6, f t,
2 0.00628 0.0130 and N = 5, resulting in u./7r

=0.5400 and uu/1r=0.2365.

0]1 0 0 High frequency, small- am-

0.5 0.000096 0.00006 plitude components of K u

1 0.00038 0.00040 have been smoothed out.

2 0.00153 0.00169

N=8

N=5

2. Results

The numerical studies employed Eq. (4.7) with the
identifications of Eq. (4.9) and the choice of parameters
used in Sec. IV A. It can be seen that the inequalities are
in fact satisfied, and the results are exhibited in Table III
and Fig. 3.

v. COMPUTATIONAL STUDIES OF THE ACTUAL
ACCELERATOR EQUATIONS

In this section we will describe some of the computa
tional studies made of motion in spiral sector FFAG acce1-

This may be seen to agree with Eq. (3.27)
Eq. (4.9).

The maximum lapse rate is given by

?rldl
J.l.max=-- nepers/sector.

2vxN

Point 1/w k u./1r uu/1r

1 896.0 26.52 0.2693 0.1106
2 901.3 26.32 0.2675 0.1170
3 906.6 26.12 0.2667 0.1232
4 910.2 25.99 0.2662 0.1271
5 913.7 25.85 02664 01309
6 9173 25.72 0.2654 0.1347
7 920.8 25.59 0.2650 0.1382
8 924.4 25.45 0.2644 0.1420
9 927.9 25.32 0.2643 0.1454

erators operated in the region of coupling resonances. A
more detailed description of this work may be found in
references 5, 6, and 9, and the authors are indebted to
Mr. C. A. Lassettre for permission to use his results in this
section. The various resonances studied will be treated in
order, with most of the results exhibited in graphical and
tabular form.

In all of these studies, "runs" were made in which the
computer was used to integrate the coupled equations of
motion subject to the initial conditions uo' = yo' = 0, while
uo was varied, and yo taken to be very small. The small
amplitude tunes were usually determined by auxiliary
runs which were also used to determine the coefficients in
the "y invariant" K y (recall the discussion in Sec. I). The
resulting K y was plotted as a function of the number of
sectors traversed, and a typical set of such runs is indi
cated in Fig. 4. In this figure we have smoothed K y so as
to remove small amplitude and wavelength fluctuations of
the order of a few sectors. From these graphs, the ampli
tude of radial motion for which y growth is initiated may be
determined,26 as well as the lapse-rate of the motion in the

TABLE IV. Computational parameters used in the studies of the
ux=2uu resonance, and the resulting tunes. For this study N=40
and j=t, with a sinusoidal median plane field.

(4.12)

(4.11)

after use of

FIG. 3. Resonance bound
aries in the region of u. = uu,
both theoretically predicted
and according to computa
tions employing the sim
plified equations used in the
theoretical analysis.

.
"\
~\ \
\\,

{

V'?+id
VY02 lies between and

vl+td.

1.011----+----..l,\-\\

2.0

0.5,1---+---\1

The d'x =Ify Resonance
- From Co""uter Output
---Theoretical Resonance Boundaries

N·5 N 8

1.5il-----Jo\,---'l�_

C

O,!=---=':-----,J.
.98 .99 1.00 .995 1.00

~

26 This may usually be done most accurately by determining the
lapse-rate for various u amplitudes, and then plotting the lapse-rate
against the radial amplitude and extrapolating to zero rate of growth.
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0.8681
0.8627
0.8575
0.8523
0.8474
0.8426
0.8379
0.8333
0.8288
0.8245

0.3066
0.3064
0.3041
0.3043
0.3014
0.3017
0.3018
0.3021
0.3025
0.3031

k

30
30
30
30
30
30
30
30
30
30

l/w

2395
2390
2385
2380
2375
2370
2365
2360
2355
2350

1
2
3
4
5
6
7
8
9

10

Point

TABLE VI. Computational parameters used in the studies of the
0'.+20'y=2,.. resonance,and the resulting "tunes." For this study
N = 40 and f = i, with a sinusoidal median plane field./1

/

6

2

5

The (x=2 d'y Resonance

\~ -Theoretical Curve
9 \ ---Estimated-

\ Computational Results
b /. 2
8\ 0 Computational- /

\ Thresholds 3h

'* /\ ~
/

~65J}
~ I.

o-0'::-::.0-=-4---'---_70.0=2::-'-,O'~0::-..L...-::o.702:::--'--0::c!l4~..J

0'.- 20'y
,..

FIG. 5. A comparison between theoretical and computational studies
in the neighborhood of 0'.=20'y. The graph shows the amplitude of
radial motion at which y growth starts, as a function of "tune."

region of growth. Finally, plots are made of radial ampli
tude for initiation of y growth as a function of "tune."

It will be realized that the computational study of a
resonance, especially as a function of machine parameters,
is an extremely lengthy (and consequently expensive)
process. Studies were limited to two ranges of parameters:
models (typically with k=0.7, 1/w=20, j=t, N=5), and
full-scale accelerators (typically with k=26, 1/w=900,
j=t, N=40). The comparison between theory and experi
ment is a sensitive function of flutter-being good only for
small j (the modifications of the basic equations are severe
for j not small compared to unity), but is only slightly im
proved as N is increased. This is presumably because the
nonscaling terms (which are ignored in the analysis, and
decrease in importance as N increases) are not the major
source of error.

A. The 11x = 211y Resonance

The threshold amplitudes found in a computational
study of the 0'x= 20'y resonance in large accelerators, are

TABLE V. A comparison between theoretical and computational
results for the lapse-rate in the neighborhood of the 0'. = 20'y resonance,
The points refer to Table IV.

depicted in Fig. S, where the semiquantitative agreement
between the theoretical predictions and the computational
results may be seen. The results for model size accelerators
are similar.5

The parameters used in the computation are listed in
Table IV. The comparison between computed and theo
retical lapse-rates for full-size accelerators is presented in
Table V.

B. The I1x +2I1y =27e Resonance

Figure 6 summarizes the computational studies in large
size accelerators. The parameters are listed in Table VI.

Comparison between computational and theoretical re
sults for the lapse-rate are presented in Table VII. Similar
results have been obtained for model size accelerators,5 but
are not included here.

C. The I1x =l1y Resonance

The parameters of the computational studies are listed
in Table VIII, while the computational results are de
picted on Fig. 7. In Table IX we have compared the com
putational results with theory, for a few characteristic
points.

With regard to the lapse-rate, we consider point 4 with
U= -0.000306. The lapse-rate calculated from the theo-

0'.-20'y J.Lobs .LLtheoret

uoX 10' (decades/sector)
6,..

The (Xt2(Y=21'f Resonance
0.0335 -10 0.0552 0.0438 5 -Theoretical Curve

Point 2 - 8 0.0634 0.0268 ---Estimated Computational Results
- 6 0.0167 0.0132

4 10 o Computational Threshold
"0.0120 -10 0.0544 0.0493 A'105
'o~ /10.0427 0.0390 38 " /fPoint 4 - 6 0.0304 0.0286 08

" y
- 4 0.0195 0.0176 2 '0.

7'-
-0.0040 -10 0.0499 0.0511

- 8 0.0386 0.0408
Point 6 - 6 0.0287 0.0304 0

-4 0.0188 0.0198 1.96 1.98 204

-0.0196 -10 0.0464 0.0490
- 8 0.0358 0.0375 FIG. 6. A companson between theoretical and computational

Point 8 - 6 0.0231 0.0250 studies in the neighborhood of 0'.+20'y=2,... The graph shows the
- 4 0.0095 0.0085 amplitude of radial motion at which y growth starts, as a function

of "tune."
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J.lOb8 JLtheoret

uoX105 (decades/sector)

-10.0 0.0959 0.0694
9.0 0.0853 0.0619
8.0 0.0760 0.0544
7.0 0.0638 0.0467
6.0 0.0532 0.0389
5.0 0.0437 0.0307

- 4.0 0.0300 0.0218
- 3.0 0.0149 0.0107

-10.0 0.0929 0.0709
- 9.0 0.0822 0.0638
- 8.0 0.0739 0.0566
- .7.0 0.0635 0.0494
- 6.0 0.0550 0.0422
- 5.0 0.0453 0.0350
- 4.0 0.0347 0.0278
- 3.0 0.0243 0.0204
- 2.0 0.0147 0.0127

-10.0 0.0912 0.0706
9.0 0.0818 0.0635
8.0 0.0727 0.0565
7.0 0.0625 0.0494
6.0 0.0538 0.0423
5.0 0.0444 0.0352
4.0 0.0336 0.0280
3.0 0.0248 0.0209
2.0 0.0163 0.0136
1.0 0.0070 0.0060

-10.0 0.0862 0.0691
9.0 0.0766 0.0620
8.0 0.0682 0.0548
7.0 0.0580 0.0476
6.0 0.0502 0.0403
5.0 0.0408 0.0329
4.0 0.0292 0.0253
3.0 0.0201 0.0172
2.0 0.0086 0.0071

Point k uxo/11' UYo/11'

1 81.7 0.3854 0.3564
2 80.4 0.3826 0.3577

3 79.1 0.3798 0.3629

4 77.8 0.376g 0.366,
5 76.5 0.3741 0.369,
6 75.85 0.3727 0.371 0

7 75.2 0.371a 0.3728

TABLE VII. A comparison between theoretical and computational
results for the lapse-rate in the neighborhood of the ux+2u.=211'
resonance. The points refer to Table VI.

TABLE VIII. For the study of the ux=u. resonance N =40, j= t,
l/w=2500, and k was chosen as indicated in the table. The resulting
"tunes" are also tabulated.

2.0089

Point 7

1.9776

Point 5

2.0318

1.9962

Point 4

Point 2

theoretical expectation. On the assumption that for a
smaller flutter the agreement would be improved, extensive
computations were undertaken for an accelerator with
1=1. The increased agreement with theory more than
justified this expectation, although the agreement when
1=1 is still not as good as for the lower order resonances.

Parameters are listed in Table XII, and the results
presented in Fig. 9.

In Table XIII are presented the results for the lapse-rate,
as well as a comparison with the theoretical predictions.

-ODIO 0

fr-~
-0.020-0.030

1250

-u.,
xlcr2

0,4

035

0.30

025
0
3

FIG. 7. Altitude chart of lapse-rate in the neighborhood of ux=u.
for u""0.3h. In this study, j=i, N=50, the median plane field is
sinusoidal, l/w = 2500, and k is given in Table VIII. In this graph the
horizontal axis was shifted slightly to make the ~o= 0 vertex of the
unstable zone coincide with an abscissa of zero. This was necessary in
view of small systematic errors in the computational determination
of the "tune." One notch is 0.005 decades/sector.

retical estimate using the observed value of A 1, is 0.01576

decades/sector and the observed lapse-rate for this case
is 0.0125 decades/sector.

We were surprised that an early computational search
for the 2CT",= 2CT y resonance with parameters characteristic
of models (N = 5) failed to reveal its presence. It may be
that the search was misdirected because, as we now find,
the zone of instability is associated with values of CTy con
siderably less than CT"'; when the machine size becomes small,
however, our basic equations are a less accurate description
of the motion and the characteristics of a narrow resonance
may depart significantly from the description in this report.

The Q'"x =G'y Resonance

0.1 -Theoretical Curve
I Computational Results-Growt a 0.

0.10 0 Computational Results-No G 6 \ I

--- Estimated Canputational ThresholdS \ I

0.05 I Notch =0.005 Decade / Sector

020

E. The 30'",+20'y =2?C Resonance

Computational studies6 of this resonance, for an accel
erator with 1""" 1, indicated that the width of resonance
varied with amplitude as expected theoretically, but with
a numerical coefficient differing by a factor of ten from the

D. The 20'",+20'y=2?C Resonance

In Table X are listed the parameters used in the compu
tational study of this resonance, while Fig. 8 displays the
results.

In Table XI we compare lapse-rates for two character
istic points.

It can be seen that for the higher order resonances the
agreement between theory and computational results is
decidedly poorer than for the lower order resonances. Pre
sumably, this is due to the interaction between the lower
order resonances and the one under study-an effect
ignored in the theoretical analysis.
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TABLE IX. For three of the points of Table VIII, a comparison is
given between the theoretical and computed threshold amplitudes
for y growth.

The 3<fx+2<ry=2Tf Resonance

4

TABLE X. Computational parameters used in the studies of the
2<Tx+2<Ty= 271" resonance, and the resulting "tunes." For this study
N=40, and j=t, with a sinusoidal median plane field.

In addition to the resonances reported here, for which
positive evidence of y growth was obtained, operating
points near 2<Txo",,3<TYo and others near 3<Txo+<TYo""211' were
also studied. These latter resonances (for which the
coefficient of <TyO is odd) showed no evidence of y growth,
in agreement with theoretical expectations.

VI. DISCUSSION

3

o Computational

Results -No6-0
-Theoretical Curve

---Estimated -
Computational Results

O\-....,.,:f::---;±,-----",';:,----~""--=~--'1.988 1.994 2.0 2.006 2.012

~

FlG. 9. A comparison between theoretical and computational studies
in the neighborhood of 3<Tx+2<Ty=27r. The graph shows the amplitude
of radial motion at which y growth starts, as a function of "tune".

0.00021
0.00017
0.00011

IA 11 theoret

0.00028
0.00023
0.00018

UYO uxo

-0.0169
-0.0108
-0.0047

3
4
5

Point

.uobs JLtheoret

uoX10' (decades/sector)

-2.0 0.0537 0.0149
-1.8 0.0415 0.0120
-1.6 0.0302 0.0093
-1.4 0.0206 0.0068
-1.2 0.0134 0.0046
-1.0 0.0074 0.0023

-2.0 0.0555 0.0147
-1.8 0.0439 0.0118
-1.6 0.0334 0.0091
-1.4 0.0241 0.0067
-1.2 0.0170 0.0045

Point 1/w k <Tx/7r <Ty/7r

1 1695 69.2 0.4463 0.3387
2 1692 69.0 0.4447 0.3378
3 1688 68.7 0.4436 0.3369
4 1686 68.5 0.4438 0.3366
5 1684 68.3 0.4431 0.3363
6 1682 68.2 0.4425 0.3356
7 1678 67.9 0.4416 0.3347
8 1671 67.3 0.4414 0.3334
9 1664 66.7 0.4404 0.3320

9

8

Point

TABLE XI. A comparison between theoretical and computational
results for the lapse-rate in the neighborhood of the 2<Tx+2<Ty=27r
resonance. The points refer to Table X.

view of (i) the data inaccuracies associated with deter
mining the small-amplitude oscillation frequencies and
extrapolated thresholds, (ii) the approximations inherent

in the analytic work. We would like to infer, therefore,
that the equations presented in this report afford a
semiquantitative account of the resonances considered,

TABLE XII. Computational parameters used in the studies of the
3<Tx+2<Ty=271" resonance, and the resulting "tunes." For this study
N = 40 and j = t, with a sinusoidal median plane field.

The 2ox+2oy=2if Resonance

-Theoretical Curve
--- Estimated Ccrnputational Results
x Computational Results-Growth
o Computational Results-

No Growth

er- .....
II " ,

o
10

2

4

3

A-IO

O~,----_ ....",,~_~ """_-J
1.93 1.98 2.0 2.03 . 2.08

. 2dXfj2DY

Point l/w k <Tx/7r <TY/7r

1 2241 27.03 0.2982 0.7552
2 2233 26.72 0.2945 0.7516
3 2225 26.40 0.2915 0.7471
4 2217 26.09 0.2877 0.7431
5 2207 25.70 0.2890 0.7382
6 2196 25.31 0.2858 0.7328
7 2188 25.00 0.2809 0.7290
8 2180 24.69 0.2780 0.7252
9 2172 24.38 0.2752 0.7215

10 2157 23.81 0.2685 0.7146
11 2142 23.23 0.2611 0.7079

For the resonances treated in the present report, the
computational results and the theoretical estimates are in
fair agreement-generally within a factor of two. This
agreement may be considered satisfactory at this stage in

FIG. 8. A comparison between theoretical and computational studies
in the neighborhood of 2<Tx+2<Ty=27r. The graph shows the amplitude
of radial motion at which y growth starts, as a function of "tune".
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TABLE XIII. A comparison between theoretical and computational
results for the lapse-rate in the neighborhood of the 30"x+20".=211"
resonance. The points refer to Table XII.

when the median plane field has a sinusoidal variation
characterized by a modest flutter factor (f""t, or smaller).

As was pointed out in the Introduction, the viewpoint
taken in the analysis has been that a prescribed u oscillation
is assumed for the radial motion and is introduced into a
linear differential equation for y which is taken to charac
terize the axial oscillations. If large axial amplitudes are
built up, the radial motion will certainly be affected, how
ever, and the amplitude of radial oscillations has then been
seen to decrease noticeably in certain cases.

It is of interest to extend this investigation, possibly
with a more refined theoretical approach, to cases in which
the flutter factor f is large (so that additional terms, which
here could be considered negligible, become important)
and to cases in which a significant harmonic content is
present in the magnetic field (as for separated-sector
structures). Theoretical efforts in this direction by Parzenll

have had considerable success.
Interpretation of the "leveling off" which the y growth

may exhibit (d. Fig. 4) is beyond the scope of this work,
but considerable progress in this direction has been made
by Symon and co-workers12 using the methods of Moser.13

The danger that y growth arising from a difference reso
nance (which might be innocuous in itself, as is predicted

Point

3

6

8

J-tobs }Ltheoret

uoX104 (decades/sector)

-5.0 0.0659 0.0333
-4.5 0.0474 0.0234
-4.0 0.0294 0.0150
-3.5 0.0136 0.0072

-4.0 0.0312 0.0164
-3.8 0.0261 0.0138
-3.6 0.0197 0.0114
-3.4 0.0158 0.0091
-3.2 0.0120 0.0070

-3.5 0.0195 0.0108
-3.3 0.0159 0.0089
-3.1 0.0128 0.0072

-4.5 0.0462 0.0219
-4.0 0.0302 0.0142
-3.5 0.0151 0.0073

by the theory) would aggravate the effects of other reso
nances is a subject needing further study. A brief report of
such a study of the IY x =2lYy resonance, correlated with ob
servational experience acquired with a FFAG model has
been reported elsewhere.4

Computations directed to a study of "turnover",12
suggest questions concerning the ultimate stability of
particles whose axial motion is subject to growth and
exhibits turnover. The repeated rise and fall of y amplitude
in such cases appears to conceal an ultimate instability
which is observable only if undesirably protracted runs
are made.

The phenomena discussed here of course have their
analogues in "machine resonances," which may be en
gendered when misalignments are present. It would be
desirable ultimately also to obtain a semiquantitative
understanding of the corresponding effects produced by
such imperfections, both in regard to their ability to excite
machine resonances and with respect to their effect on the
true stability or instability of orbits strongly affected by
some inherent sector resonance. It may be noted that one
can expect to encounter certain imperfection resonances
whose analogous sector resonances are absent by virtue of
median-plane symmetry, since in the presence of mis
alignments symmetry about the "median-plane" need no
longer obtain.
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5.3.1. Introduction

applications of high-energy radiation. The desired high energies ate impart
ed to such particles by means of particle accelerators, of which the chief
types are (J) the linear accelerator, (2) the betatron, (3) the microtron,
(4) the cyclotron, (5) the synchrocyclotron, and (6) the synchrotron. A
connected discussion of several types of high-energy accelerators has b~en

given by Livingood (1961) and Bruck (1966), and principles and techniques
applicable to the design of synchrotrons and linear accelerators have been
presented in detail by Livingston and Blewett (1962). Green and Courant
(1959) have extensively reviewed specific proton synchrotrons, and Judd
(1958) has given a broad discussion of several significant new concepts in
accelerator design.

The prindples of alternating-gradient focusing, frequently termed
"strong focusing," can be applied advantageously to the design of accelera
tors of each of the aforementioned types, and only through the use of these
principles has it proven practicable to design synchrotrons for the produc
tion of particles with energies of tens of GeV.l In this chapter we treat
chiefly the application of strong focusing to high-energy synchrotrons, but
many of the principles find a parallel application to other types of particle
accelerators.

A. NATURE AND LIMITATIONS OF CONVENTIONAL SYNCHROTRONS

The synchrotron, in its most elementary form, employs a magnetic field
throughout an annularly shaped region in order to guide and to focus the
particles as they gain energy within the vacuum chamber of this accelerator.
Energy is added to the particles by radio-frequency (rf) fields, applied to
one or more drift-tube structures or developed within resonant cavities.
The strength of the magnetic field is caused to rise during the acceleration,
either by application of a pulsed wave form or by resonant excitation of the
magnet circuit, so as to maintain a constant equilibrium-orbit radius for
particles of increasing energy and momentum. The frequency of the rf
fields increases concurrently in direct proportion to the angular velocity
of the accelerated particles. Stability of energy oscillations about the energy

High-energy particles are used for research in nuclear and elementary
particle physics, for tracer production, and for industrial and biomedical

Reprinted by permission of the Academic
Focusing of Charged Particles, Albert
Academic Press, Inc., Florida (1967),
Copyright 1967 by Academic Press, Inc.

Press, from
Septier, Ed.,
pp. 355 -420.

1 1 GeV = 10' eV. The highest energy weak-focusing proton synchrotrons in existence
are the lO-GeV "synchrophasotron" at the Joint Institute for Nuclear Research, Dubna,
U.S.S.R., and the 12.5-GeV "Zero-Gradient Synchrotron" at the Argonne National
Laboratory, Lemont, Illinois. The latter accelerator actually is designed so that a uni
form field is produced within the eight sectors that constitute the guide magnet ("zero
gradient"), and supplemental focusing is introduced by "edge focusing" that results from
the provision of slanting edges at the ends of each of these octant blocks.
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and the frequencies of small-amplitude radial and axial oscillations about the
equilibrium orbit then are given in units of the orbital frequency by (Kerst
and Serber, 1941)

respectively. It is seen that the requirement of stability with respect to mo
tion in both transverse dimensions requires that 0 < n < 1 and, hence,
that .Qr and Qt. be less than unity. An angular spread, ± b8, of a beam
injected onto the equilibrium orbit, or an angular deflection resulting from
a field error or similar misalignment, thus can lead to sinusoidal oscillations
of an amplitude as great as

that is appropriate to t[~e frequency of the accelerattng system at any in
stant results from the principle of phase stability discovered independently
by Veksler (1944a, b, 1945) and McMillan (1945). An accurately program
med relationship between the rf frequency and the instantaneous strength'
of the magnetic guide field can be obviated by the use of a "phase lock"
system that enables the accelerated groups of particles to control the rf
system (Green and Courant, 1959, pp. 289-293).

A synchrotron is of the "constant-gradient" type if the focusing character
of the field is the same at all azimuthal positions around the accelerator.
The radial variation of the magnetic field normal to the median plane, at
points in the neighborhood of a circular equilibrium orbit of radius R, is
conveniently characterized in such a case by the "field index"

(Sa)

(5b)

In contrast, in a similar accelerator that employs the principles of alternat
ing-gradient focusing (to be described in Section 5.3.3), a Qvalue some eight
times greater can be practically realized. Despite the presence of a flutter
Jactor in the free-oscillation amplitudes that arises from the kinematical
orbit characteristics in an alternating-gradient structure and that typically
may be approximately 1.5, the necessary aperture to be provided to accom
modate these oscillations of the injected beam will be reduced to 40-50%
of the vabe previously found.

A second important characteristic of an accelerator, which also affects
directly the aperture required, the magnet dimensions, and hence the cost
of construction and operation, is its ability to accommodate simultaneously
particles of appreciably different momenta. Momentum variations not
only occur because of the "synchrotron" oscillations in energy and phase
that arise from the action of the rf fields, but also because such variations
are present in the initially injected particles. The radial shift due to a pre
scribed fractional momentum deviation, i5p/po in a constant-gradient syn
chrotron is given directly by

br=~ bp
1 -- n Po

R bp
---

Q,2 Po

A = (Y/7T.)1l2Rli2Q-1I2

= (2 X 10-5 )112(100)112(0.6)-1'4

= 0.05 meter

imately 0.61/2, the semiaperture allowance required to accommodate the
free oscillations of this group of particles would be2

(3)

(1)

(2a)

(2b)

A = (R/Q) oe

R dB
n= -Ii dR

Qr = Jr/Jo = (I - n)1I2

Q" == Ju/Jo = (n )1/2

....
I....
~
~

More explicitly, an aperture of linear half width A could accommodate a
beam whose emittance in position-angle phase space for one transverse
degree of freedom is limited to an elliptical region of area

Y = 7C or Of) = 7CQA2/R (4)

and, since I - n or Qr2 cannot be large in such an accelerator, the aperture
needed to accommodate a given energy spread may be undesirably great.
Thus, for op/p = 2 X 10-3, R = 100 m, and Q,2 = 0.4, we obtain the
quite large radial excursion

br = 0.5 meter

It is informative to consider the implications of Eq. (4) with respect to
single-turn injection of a group of particles into a constant-gradient syn
chrotron. Thus, for example, if one planned to inject a beam that occupied,
in the phase space of one transverse dimension, an area of (2 X 1O-5);r

radian· meter into an accelerator of 100-m radius and for which Q is approx-

For an alternating-gradient synchrotron Eq. (5b) represents a good ap
proximation to the mean deviation of the closed orbit, although again a

2 Such an emittance might contain a substantial portion of the beam from a well
designed and well aligned 50-MeV proton linear accelerator (AGS Staff, 1961).
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flutter factor of 1.3 or greater will be present. Use of alternating-gradient
focusing accordingly would afford a means for reducing the radial excur
sions due to momentum errors to about 2% of the value found for this ex
ample of a constant-gradient accelerator, and this property of the alternat
ing-gradient technique maybe regarded as its outstanding advantage in
this application.

and defocusing magnetic lenses to produce a net focusing action may be
visualized by considering the optical analogue of a series of lenses (Fig. 1).
It is evident that a given trajectory will on the whole be a greater dist~nce

from the optic axis in the regions occupied by positive lenses, and hence
may experience a net focusing under the action of the lens sequence.

5.3.2. Use of Alternating-Gradient Focusing
F o F o F o F o F o F o F

"""I

"""...
CJl

The initial impetus to the present extensive use of alternating-gradient
principles in the design of particle accelerators now operating or being
planned arose from results of a, study reported by Courant et al. (1952),
of the Brookhaven National Laboratory, although application of similar
principles had previously been proposed independently in a patent issued
to Christofilos (1950). A constructive proposal to employ azimuthally
varying fields in the design of cw (unmodulated) cyclotrons was made,
however, as early as 1938 by Thomas (1938) and the analysis of Thomas
was extended shortly thereafter by Schiff (1938), but the application of this
work was not reported until the latter part of the 1.950's (Pyle et al., 1955;
Kelly et al., 1956; Heyn and Khoe, 1958). The "racetrack synchrotron"
(Crane, 1946a, b), in which field-free "straight sections" were introduced,
of course in principle involved a departure from the use of focusing that
was strictly constant all along the particle orbit. Although~his modification
resulted in the occurrence of some additional potentially dangerous resonant
relationships between the values of Qr and Qv (Blackman and Courant,
1949), the initial racetrack synchrotron remained a weak-focusing accel
erator in that Qr and Qv were both less than unity. Concepts closely akin
to those later employed in alternating-gradient theory also appeared in
the work of Le Couteur (1951) in analyzing orbit dynamics in the regener
ative deflector proposed by Tuck and Teng (1951) for the resonant extrac
tion of particle beams from a drcular accelerator such as the synchrotron.

5.3.3. Principles of Alternating-Gradient Focusing

As was shown by Courant et al. (1952), the limitations of a constant
gradient type of focusing can be removed if the field index is caused to vary
with azimuthal position in a suitable manner so as to alternate between large
positive and negative values. The ability of a periodic sequence of focusing

FIG. 1. Optical analogue of alternating-gradient focusing, showing a ray traversing a
periodic sequence of focusing (F) and defocusing (D) lenses.

It remains to be discussed, however, what values of Qr and Qv in practice
can be attained in this way, and what improvements in orbit characteristics
can th~reby be achieved. In the simplest application to a circular accelera
tor, the strong alternating lens action is provided by the spatial variation
of the magnetic field that also serves to guide the particles on a circular
orbit. A sequence of alternating-gradient lenses can be usefully introduced,
however, to provide focusing action in a linear accelerator (or for beam
transport generally), without introducing any bending in the trajectory of
a particle moving along the axis of the system, and such separate magnetic
lenses also have played an important role for the adjustment of orbit char
acteristics in cyclic accelerators and in the design of so-called "separated
function" accelerators or storage rings. Examples of such separated-func
tion devices have been described by Amman et al. (1964) and by Ferger
et al. (1964). Analogously, one can obtain alternating-gradient focusing
action by means of suitably shaped electric fields, as was done in the "elec
tron analogue" (Brookhaven Staff, 1955), constructed at the Brookhaven
National Laboratory in preparation for work on a large proton synchro
tron, and as has been proposed (Paul and Steinwedel, 1953; Taubert,
1957) for mass-spectrometry applications.

A. EQUATIONS OF MOTION

In analyzing orbit characteristics in a circular accelerator it is convenient
to develop the equations for the trajectories by expansion about a closed
equilibrium orbit, of circumference Co and local curvature I!eo, for a refer
ence particle of momentum Po. Distance along this curve will be denoted by
s, and Ro = Co!27t represents the effective radius of this equilibrium orbit.



For simplicity in the discussion we shall assume that the equilibrium orbit
is planar, and employ n(s) = - «(lo!Bo) (dBldr) to characterize the focusing
that is provided by the spatial variation of the magnetic field [cf. Eq. (I )].
For particle momenta and field strengths that are constant or only slowly
varying with time, the linear differential equations for the radial and verti
cal (axial) transverse displacements (x and y, respectively) for a particle of
momentum p = Po + CJP then are3

of particles in an alternating-gradient synchrotron will be characterized by
an equation of the form

5.3 FOClJS1."G 1:" CIRCL:LAR PARTICLE ACCELERATORS

d ( dX) l-n(s) op
di Po dS + eo2(s) pox = eo(s)

d ( dy ) n(s)
dS Po CiS + eo2(s) PoY = 0

361

(6a)

(6b)

362

or equivalently by

and
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d ( dX)ds PodS + PoKx(s)x = 0

dpx
di = - PoKxCs)x

dx
Px = POdi'

(7)

(8a)

(8b)

and by analogous equations for motion in the axial degree of freedom.
The first-order equations (8a) and (8b) are derivable from a Hamiltonian
function

5 The result of Liouville's theorem applied to the x, Px phase space for the uncoupled
radial motion is related to the constancy of Po times the Wronskian of solutions to Eq. (7).

II The edge focusing that is produced by magnet blocks whose end faces are oblique to
the equilibrium orbit would, in effect, be represented by such lenses.

with Px and x constituting canonically conjugate variables that will be sub
ject to Liouville's theorem (Judd, 1958, p. 193 ff.; Courant and Snyder,
1958, p. 45 ff.).5

Aside from possible slow secular variations, the focusing coefficient Kx
(and the corresponding coefficient KlI) will be strictly a periodic function
of s with a basic period equal to the circumference Co . In practice a strong
focusing synchrotron will be designed so that ideally-in the absence of
constructional errors, misalignments, and similar perturbations-the period
of Kx and KlI will be a substantial submultiple N of Co . Also in its simplest
form [for example, as presented by Courant et al. (1952)], n vs s will be
described by a rectangular graph, of period CoiN, in which the positive
and negative values may be of equal magnitude and cover equal intervals
of s. Small regions devoid of focusing may occur periodically as field-free
intervals between the magnet blocks, and additional lenses likl!wise may
be introduced for correction or control at intervals of the magnet sttucture.6

The functions Kx(s) and KlI(s) then will have a similar piecewise constant
form, and, for I n I'> 1, Kx(s) ~ - K lI(s).

""'"I

""'"...
~

As Adams (1953) has pointed out, however, it should be noted that the fo
cusing coefficient which a strictly linear field presents to particles with a
momentum different from Po will not be identical to that for an equilibrium
particle (an effect that for relatively small variations of momentum may be
represented by neff ex: lip for In' '> I)-this effect, not represented by
the linearized equations (6a) and (6b), in practice may be compensated
by the inclusion of sextupole lenses in the sequence of magnetic elements
that constitute the accelerator.4

It follows from Eqs. (6a) and (6b) that the free transverse oscillations

3 In static magnetic fields (in which the energy and mechanical momentum of an in
dividual particle remain constant), the spatial differential equations for the trajectories
may be obtained conveniently from the principle of least action,

~ J(p + eA) . ds = 0 ,

where A denotes the vector potential from which the magnetic field is derived. The pos
sibility of linear coupling between the two transverse degrees of freedom normally
would arise in practice only through the agency of misalignments or similar imperfec
tions; such effects are not included in the equations presented in this subsection, but
are extensively treated, for example, in Sect. 4c of an excellent monograph by CQurant
and Snyder (1958) on ,he theory of alternating-gradient synchrotrons.

• It will be noted that, in the case of a circular accelerator with no azimuthal variation
of n, solution of Eqs. (6a) and (6b) will lead to simple-harmonic transverse oscillations of

frequencies ~;;fo and Vh/o in agreement with the expressions cited previously for
Qr and Qv in such a case [Eqs. (2a, b)], and the equilibrium-orbit radius will change by
~x = [Qo/(I - n)](!jp/po) for off-momentum particles [as stated in Eq. (Sa)]. Equations
(6a) and (6b) also indicate that the transverse free-oscillation amplitudes of a particle
whose momentum is caused to change in a magnetic field of graduaily increa;ing strength
will vary as (Qo/Po)l/2; that is, the amplitudes will experience an adiabatic damping in
versel)' proportional to the square root of the magnetic field strength.

H( .)~ 1 2 1 k'()2X,Px' s - T-Px + 2PO'~x s x
Po

(9)
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.
Although the analysis of orbit characteristics is particularly direct, and

most closely applicable to actual accelerators, for the case in which Kx(s)
and Ky(s) are piecewise constant, some general results may be obtained
without restriction to this particular functional form. We consider for this
purpose the equation

W = V1~' - V2Vl'

in which W denotes the (constant) Wronskian

V1(S), v2(s). In matrix notation8 with primes denoting dlds,

(14)

[ ~, 1~13)
,,(S,),:(S);'(S')~'~S) ) .

v1(SO)V2 (S)-V2(SO)~1 (s)
W

(

' 1'2'(50)1'1(S) - v/ (SO)1'2(S)

[~, L= V2'(soh'(S):/(So)V2'(S)

(10)
d2x
ds2 + K.,(s)x = 0

B. GENERAL CHARACTERISTICS OF THE SOLUTION

that describes the free oscillations when we ignore the possible slow varia
tion ofPo in Eq. (7). Equation (10) has the form of Hill's equation, for which
by Floquet's the,xem (Whittaker and Watson, 1927, pp. 412-413),7 a com
plete solution is

and the determinant of the matrix will be seen to be unity. For an adv<:rhce
through one period of the structure

x = C1exp(.us) <1>(s) + C2 exp(- ps) 'P(s) (11) (

' v v ' - A2V2V/11.1 1 2

W
x \ = V/V2'( x' I ,.+c.'N (A, - A')Jj7

(A - A)~)2 1 W X

A2V1V2' -:'_~lV2V1' ( x' ) So

(15)

where <P(s) and 'P(s) are periodic in s with the period L = CoiN of K.,(s).
There thus exists a fundamental set of solutions, Vl(S) and v2(s), such that

where i'l = exp(.uL) and i'2 = exp(- I~L). The characteristic factors, Al
and A2 , constitute a reciprocal pair-in addition, with Kx(s) real, they ei
ther will be both real or will be a complex conjugate pair of absolute value
unity.

The propagation of a particle trajectory through the accelerator structure
can be conveniently expressed in terms of the fundamental set of solutions,

(l6c)

(16a)

(16b)

(16d)

with VI , V2 , and their derivatives evaluated at So . It is noted that the trace
of the matrix appearing in Eq. (15) is the invariant J'l + )'2 and its absolute
value will be less than 2 if and only jf the characteristic factors are complex.
In addition, denoting the matrix in Eq. (15) by M, it follows that9

dMll-d!.- = M l 2(so)Kx(so) + M 21(SO)
S ' ,o·

dMl ,2
-d-- = M 22(SO) - M 1 l(SO)s ' ,,0

dM2,1
-'-d- = [M22(SO) - Mll(SO)]Kx(so)

So . t ,

dM2 ,2 (-d- = - [Ml 2 so)Kx(so) + M 2 l(SO)]
So ' . ,

(12a)

(12b)Y2(S + L) = A2Y2(S)

Vl(S + L) = i'lV1(S)

and

...
I...
~

• Since, for a given solution, the values cf x and x' at successive values of s are related
by a sequence of linear algebraic transformations, it will be seen that matrix algebra
will be applicable.

9 Equations 06a-d) may be established directly, using Eq. (0) and the periodicity
of K:x:(s), by developing the first-order relation

,
7 In the special case that p is zero or has an imaginary value such that exp (uCoiN) = ± 1,

one solution to Eq, (10) will be truly periodic and a second solution may be represented
by a periodic function plus s times this first solution. We use the symbol It here to denote
the characteristic exponent, as indicated in Eq. (1), and we shall employ (1 to represent
- i,IL = - ipCo/N; in much of the published work on alternating-gradient accelerators,
however, both p. and (1 are used to denote this latter quantity. In the interest of brevity,
we omit in these paragraphs the use of subscripts", or v that strictly should be appended
to II, (1, and similar quantities [such as the matrix M and the functions a, P, y introduced
subsequently in Eqs. (24a-<:)] in order to distinguish between the properties of the free
oscillations in the two transverse degrees of freedom.

(- K",~So)"S
i5S) (MI,I(SO) M I,2(SO) )

1 M 2,bo) M 2,2(SO)

= (M1,1(S.O) + oMI,1 M I,2(SO) + (51\1,,2 )

M 2)so) + oM2,1 M 2,2(so) + oM2,2 ( - K.:<~o)OS ~s )
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1. Phase-Amplitude Variables

The relations expressed by Eqs. (13) and (15) can be expressed conve
niently in terms of solutions to Eq. (10) expressed in a "phase-amplitude"
form that was introduced by Courant and Snyder (1958) and that has been
widely employed in the analysis of alternating-gradient accelerators. Since
we shall be concerned with the representation of stable solutions to Eq. (10),
we shall employ the quantity

It in turn follows from Eqs. (10) and (16 a-d) that the quadratic form By noting from Eq. (21 a) that ljJ' must be periodic, it is also seen that one
may write

and the invariant quantity cos a is one half the trace of M. The relations
(16 a-d) imply. that

(26)

(23)

(22)

(24c)

(24b)

(24a)

fJ sin a ]
cos a - a sin a '

S
ljJ = a- + Xes)

L

a = - ww'
1

fJ=w 2 =7

1 + a
2

_ ~l_ + W'2
Y = -fJ- - w2

M = [ cos a + ~ sin a
- ysma

[2 = [8x'2 + 2 axx' + yx2] sin a

Similarly, the invariant quadratic form of Eq. (17) becomes

a' = Kz ' fJ - y (25a)

fJ' = - 2a (25b)

and

y' = 2Kx· a (25c)

in which a, 11, and yare periodic functions of So given by

where xes) is periodic (period L).

The matrix M of Eq. (15) now may be written as

(17).

(18)

(20a)

(19a)

(20b)

(19b)

a = - i,uCo/N

= - i/-lL

• V
I In...:.!

ljJ = 2"' VI

(
2 )112

W exp(± iljJ) = Tw V

l

(~)I/2I W V2

J2 = MI,2X'2 + (MI,I - M 2,2)XX' - M 2,IX2

one finds that the expressions

and

in preference to f-l. By defining

W = (~ V~2r2

remains invariant throughout the motion of any given particle.

~
I
~

~
00

provide a form in which the fundamental set of solutions may be expressed.
The amplitude function, w(s), is a periodic function of s with the period

L of Kx(s), and the phase function, Ip(S), will increase by a in this interval.
It follows that w2 ljJ' is a constant with the normalization of w so chosen
that and affords a useful representation of the matrix that serves to propagate

particle trajectories from So through m periods of the accelerator structure.
The general matrix that appears in Eq. (13) may also be expressed in terms
of wand w', determined at the points s and so, and the difference 1jJ(s)
- 1jJ(so) between the phase function at these two points.

It is evident from Eqs. (17) or (26) that x and x' for any given particle

The form ofM given in Eq. (23) is convenient in that

W
2lf" = 1 ,

and w satisfies the differential equation

w" + Kx(s)w - ~ =, 0
w3

(2Ia)

(21 b)

Mm = [ cos ma ~ a sin ma
- ysmma

fJ sin ma ]
cos ma - a sin ma

(27)
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. increases by L = CoiN and by iVa =-~ 2;rQx for a complete circuit of the ac
celerator.

An alternative transformation for eliminating the s-dependence in the
differential equation for one of the transverse degrees of freedom employs
a "scaling" of both the dependent and independent variables (cf. Celurant
and Snyder, 1958, p. 18),

trajectory will describe an ellipse if plotted for homologous points of the
accelerator, since the coefficients a, (3, and y assume identical values at
points separated by "n integral number of periods. The area of this ellipse
in x, x' space (I/po times the area of the corresponding ellipse in x, pz phase
space), or of such an ellipse at any point along the trajectory, is ;rJ2/sin a. At
any given s the maximum value of x for a point on this ellipse is (fJjsin a)1f2 I,
with (3 evaluated at s, and x would not exceed (fJ max/sin a)1/2 I at any point
along the orbit. The aperture allowance that must be provided to accom
modate the free oscillations of a particle beam of specified emittance thus
will be directly related to the maximum value of (3(s) for the transverse
degree of freedom under consideration. [Note, from Eq. (25b), that (3(s)
has its maximum and minimum values at points for which exes) = 0.] so that Eq. (10) becomes

_I x
17 = vIP

fs ds
7p = (3

(31a)

(3lb)

The solutions Yj thus will be simple-harmonic in the variable 7p, with the
argument of the circular functions increasing by a in a single period and by
Na = 2nQx in an entire revolution. Transformations related to those just
presented can be of value iri extending the analysis of alternating-gradient
systems to situations in which nonlinear restoring forces are present.

I...I.C

2. Angle-Action Variables

The s-dependence of the focusing coefficient, Kx(s), in Eq. (10) may be
formally eliminated by a canonical transformation to "angle-action varia
bles" (!p, J) through use of the generating function (Goldstein, 1950)

F(x, J; s) = [sin-1 (2,1;)1/2 - X] J + 2~ (2(3J - X
2

)l!2 - ~ x 2
• (28)

1 [d2Yj
](33/2 dlp2 + 17 = 0 (32)

10 It is seen that J is 1/(2 sin a) times the invariant J2 of Eq. (26).

The angle variable 1[, thus is a linear function of s, increasing by a when s

The new variables are, in terms of x and X',l0

with the neW Hamiltonian function

In the application of alternating-gradient principles to the design of high
energy synchrotrons, the most practical and most common form for the func
tion n(s)is such that this quantity alternates, in equal intervals of s, between
large positive and negative values of equal magnitude, provided we ignore
the presence of shorter field-free sections n(s) = 0 between the individual
magnet blocks. The coefficients kxes) and Ky(s) then each have the form of
a rectangula- w.J.ve, aprl will alternate between values of equal magnitude
if we neglect the difference between I - n(s) and - n(s). The stability re
gions for solutions to su(;h an equation were derived in an early paper by
van cler Pol and Strutt (1928) and in the previously cited work of Courant
et al. (1952).

Since the particle trajectories are describable by simple circufar or hyper
bolic functions within the individual regions of constant n(s), individual ma
trices are readily formed to represem the traversal of any portion of such a
region, and the matrix M that characterizes traversal of a full period may
be obtained by matrix multiplication. One thus finds, with s measured from
the center of an interval wherein there is positive focusing for the degree of

C. SOLUTIONS FOR PIECEWISE-CONSTANT FOCUSING FACTOR

(29a)

(29c)

(30b)

(29b)

• (30a)
a

!p = TS + const

so J is constant.J' = _ anaT = 0,

J = t [,Bx'2 + 2axx' + yx2
]

!p = tan-
1
(ax: ,Bx' ) - X ,

an a so
!p' = aJ = T'

_ a
H(!p, J;s) = L J.

and

Then



5.3 FOCUSING I"i CIRCULAR PARTICLE ACCELERATORS 369 370 L. JACKSON LASLETT

The condition for the stability of particle orbits in the assumed periodic
structure is given from Eq. (33a) by the condition I cos a I < 1,11 and
Eq. (33a) permits computation of the oscillation frequencies (Qx = Na/2;-r;) .
or of the lapse rate (p = iNa/Co) for orbits in a specific accelerator struc
ture. A graph of a vs : n j!'2/N, as given by Eq. (33a), is shown in Fig. 2
for the first (and by far the most useful) zone of stability. This zone corre
sponds to 0 < a < n and occurs for In I < 0.3562 N2. The value a = n/2
occurs for In !/N2 = 1/4.12 For small values of a,an expansion of Eq.
(33a) leads to the approximate relation

(33c)

freedom under consideration, elements of M such that

4

2

3 MIJ<{'
bl'"zC\l

0.4

\ No- 13mo'
2-". Po

0.2 0.3
Inl
~-N

0.1

1.0, I Ii' i ,5

0.8

0.4

t 0.6

bit>

The average value of <fJjeo)-l will be equal to Naj2n, the number of
oscillations per circumference [see Eq. (3lb)], but fl will vary significantly
as s advances through one period. The maximum value of fl, expressed in
units of (2njNa)eo, is depicted on Fig. 2. It is evident that flnmx will become
nearly 50% greater than (2njNa)eo for a = nj4, and very much greater
values of (Naj2n) <fJmaxjeo) occur in regions of the diagram that are closer
to the upper boundary of the first stability region. The variation of jJ with s,
as given by Eq. (33c), and the corresponding variations of CI. and II', are
illustrated in Fig. 3 for a case in which a = 49° (n In 11I2/N = 1.,2).

FIG. 2. Plot of the phase advance per period, in units of n, and of the maximum value
of f3, in units of 2n'JoINa, vs In liN' for the first stability zone of an alternating-gradient
synchrotron (I n ! '?> 1).

(34)

(33:1)

Co < ( d Co) < 3Co
4N _s mo N - 4N

(33b)

Co ( Co) Co- - < s mod - < ---
4N - N - 4Nsin a

sin a

sin a

I n 11 2. I n 1
112 • I n 1112 I n 11I2Scosh 77: -- sm 77: --- + smh 77:-- cos 2 ---

N N N .eo

! n ;1/2. I n 1
112

. I n 1
112

( n s )cosn-'-'-smhn--+smn--cosh2InI1l2 - --
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~ •~~ [I 477:-1 (_ n )2
n V3 N2 + 315 N2 + ... ]

/ n 1
112

( n s )sinn---sinh 2 [ n 1112 - --
N . N eo

sma

= eo
In [1/2

fl=~!n [112

. I n 11/2 . : n /1I2S
smh ;-r; --pr- sm 2---

CI. = eo

I n 11 '2 , n 1112
cos a = cosh n --- cos 77: '----N . N

~
I
~

{Jl
Q

11 A more detailed analysis, covering the case of unequal values of In I in the focusing
and defocusing regions and including the presence of straight sections, has been outlined
by Livingood (1961, Sect. 12.3).

1. It is of interest to note that jf Kis) had been replaced by (4n/rr) cos Nsf'!", which
represents the first term in a Fourier development of our assumed piecewise-constant
function, the first stability region for the resultant Mathieu equation would occur for

In I < 0.3566 N', a = ~!2 would result for In I near 0.251 N', and aln would be approx
imately 1.8006! n liN' for small values of a. These values have been obtained from
numerical tables relating to the Mathieu function (Belford et al., 1957; National Bureau
of Standards, 1951). The use of a Mathieu equation to represent, to a good degree of
approximation, the transverse oscillations of particles in an alternating-gradient synchro
tron has been noted by Meixner and Schiifke (1954, pp. 338-343).
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We mentioned earlier (Section 5.3.1, A) the advantage of a synchrotron
design that permits an aperture of modest dimensions to accommodate the
momentum variations of the particle,> that are to be accelerated. Not only
will such momentum variations be present initially as a result of an energy

FIG. 3. Plot of the functions a(s), f3Js), and 'p(s) within one period of an alternating
gradient synchrotron for which :r !n1tN~ = 1.2 (0" = 49°), commencin~ at the center
of a focllsing region. The symbols f, D, and f at the top of the diagram denote the
portions of the plot that correspond to half of a focusing interval, a defocusing interval,
and half of the fol1owing focusing interval.

spread in the injected beam, but the "phase oscillations" of individual parti
cles under the action of the radio-frequency acceleration system also will
necessarily be accompanied by corresponding oscillations of the particle
momentum. In order to examine the character and. magnitude of the in
fluence that momentum variations will have on the closed orbit, we refer
to the inhomogeneous equation for the radial motion [cf. Eq. (6a), with
Kx (5) written for (1 - n)/eo2 and Po treated as substantially constant]

[

n In 11/2 ( n 5 ) . Jsin cosh! n 11/2 .- --
= _1_ 2 . 2N ' N eo _ I ~

In I nlnl1/2 . nlnl1/2 . nlnl 1/ 2 ;rlnI1 / 2 Po
cosh 2N Sill 2N - smh 2N cos~

where 5 is measured from the center of a focusing region. The maximum
value of X is given by

Co . ( Co) 3Co-<5 mod-- <-
4N - N - 4N '

(35a)

(35b)

[

. nlnl1/2 ]
X/eo I smh 2N

bp/PoL~= TnT 2 nlnl1/2. nlnl1l2 • ;rlnII/2 nlnl1l2 +1
~osh2N sm 2N - smh 2N cos~

Co (. Co) Co--<5 mod- <--
4N - N - 4N

(35) by joining simple solutions for the focusing and defocusing regions.
For 111 1 ~> 1, one obtains (cf. Livingood, 1961, pp. 208-213)

I 7( In 11/
2

5 JI sinh --- cos I n 1112 -

~ = _1_ 2 2N Qo + I bp
eo ! 11 I l nlnl1/2 . 7(ln11l2 . 7(ln:I!2 :Tlnl1/~ Pocosh--- sm-- - smh-- cos--

2N 2N 2N 2N

5,

D

...
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may be verified to bt: a periodic solution of Eq. (35).

13 The expression

up I IS f3112(S) 13112(7:) [ 0" ]
X(s) = - ---- - ----- cos 'I'(s) - 1jJ(r:) - - dr:

Po 2 sin 0"/2 s-C./N Qu 2

The periodic solution to Eq. (35) of course can be expressed generally
through use of the solutions to the corresponding homogeneous equation,13
but the piecewise-constant character of Kx (5) for an alternating-gradient
accelerator makes it straightforward to find the periodic solution to Eq.

(35c)
4 N I
n I n 1

3/ 2 n 1 n 11/2 n I n 1
1/2

coth ___ - cot-:::-:-::

I <X)a.v/eo
T == bp/po

and the average value by (see Note I, Section 5.3.6)

The reciprocals of the quantities given by Eqs. (35b) and (35c) are plot
ted, in units of Qx2

, in Fig. 4 for values of (f lying in the first stability zone
(0 < (f < n). It is seen that <X)av/eo does not exceed (I/Qx2 )(bp/po) by more
than about 20% for values of (f less than n/2, but that Xmax will become
about 30% greater than <X)av when (f is close to n12. The fact that X/eo
is roughly of the magnitude of (ljQx2) (bpjpo) directly indicates, however,
the ability of an alternating-gradient structure, by virtue of its higher Qx,

(35)
d2x
ds

2
+ Kx(s)x = ~ bp

eo P;;
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(j/Tr~

oL-- I I I I

o 0.2 0.4 0.6 0.8 1.0

(36a)

(36b)

dZx [I dB] dy-. - K (s)x - G(s) +- - -- y - H(s) -'- = 0
dsZ x 2 ds ds

d
2
y [I dH] T dx-. ...:- K (s)y - G(s) - - - x +- R(s) - = 0

ds z y 2 ds ds

where H(s) is e'po times whatever longitudinal magnetic field may be pre
sent along the orbit and the factors containing G(s) represent e!po times
the coefficients of a "skew quadrupole field" (oriented at an angle of 45°
to the quadrupole component of the normal focusing field of the magnets).
Canonically conjugate momenta, \vhich include the appropriate transverse
components of a vector potential, could be taken to be

tions [analogous to Eq. (10)] for motion in a Ma;,well field are of the form

/
8p/po

0,2 [x/Po] mo,

i---r-.-t
I I 8p/po

1.0 K --'- /' O~ (X)AY!PO

0.2

0.4

0.6

0.8

1/ = M 1,2PZ2!P02 +- (MI,I - M 2,2)XPX!Po - M 2,lX2

+- (MI ,4 +- M a,2)PZPy!P02 +- (Ma,1 - M 2,4)'\Py!Po

+ (MI,a - M 4,2)YPX!P - (M4,l +- M 2,a)xy

+- lVfa,4P/!P02 +- (Ma,a - M 4,4)YPy!Po - M 4,ay2 (37)

As in the case of uncoupled motion, any solution to Eqs. (36a, b) is
expressible as a linear homogeneous algebraic function of the initial condi
tions-a relation that may be represented by a matrix that transforms a
four-component vector (for example, with components x, pz , y, and py)

from So to s. The matrix for a transformation from So to So +- Co!N, in partic
ular, would be composed of two-by-two matrices [similar to the one shown
in Eq. (23)] situated on the principal diagonal in the uncoupled case, and
the stability of the coupled motion would be determined by the nature of
the characteristic values (}.l, ... )'4) of the four-by-four matrix when the
coupling effects are included. A quadratic invariant form, analogous to
the quantity J2 defined by Eq. (17), is

....
I....

U"l
N

FIG. 4. Graphs illustrating the relation between closed-orbit amplitude and momentum
error, as a function of al.', for an alternating-gradient synchrotron.

to contain particles with a markedly greater momentum spread than could
be accommodated by a constant-gradient structure of the same radial
aperture.

In the realistic design of an alternating-gradient accelerator, certain fea
tures may be introduced that will cause the linear differential equations of
motion to assume a more complicated detailed form than has been treated
in the examples presented above, but much of the general analysis will still
apply. The introduction of special straight sections at a small number of
locations around the accelerator will reduce the basic periodicity of the mag
net structure, and the presence of misalignments or other errors results in a
structure with a fundamental period that is strictly equal to the circumfer
ence of the machine. If we disregard these latter effects (to which we give
further attention in a subsequent subsection, E), then the presence of gaps
between magnet blocks, the introduction of correcting lenses or correction
windings, and the possible edge focusing from end faces on the magnet
blocks that are oblique to the equilibrium orbit al1 constitute features to
which the methods just described are readily adaptable.

D. EFFECT OF COUPU"'G

[
dx 1 ]pz =Po - - -H(s)y
ds 2

[
dy I ]

PII = Po CiS +- 2 H(s)x

(36c)

(36d)

In addition to the effects mentioned, there may also be linear periodic
terms that couple the two transverse degrees of freedom, x and y. The dif
ferential equations will still be Hamiltonian in this case, however, with the
linear equations derivable from a quadratic form. If forcing terms are ab
sent, so that the differential equations are homogeneous, the coupled equu.-

For any two solutions, designated by subscripts i and j,

Ui,j = XiPxj - YiPYj - XjPz i - )'jPYi = constant (independent of s), (38)

as may be shown directly from the differential equations. If the solutions
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In the absence of coupling, the invariant Ie is a simple linear combination
of two invariant' quadratic expressions of the form indicated by Eqs. (26):

The selection of suitable parameters for an alternating-gradient synch
rotron involves consideration of many factors. Great importance normally
is attached to achieving a design in which the aperture required to aceom.:.
modate the beam will be small, since slight increases in the vertical dimen
sion of the magnet gap can greatly increase the cost of a large machine.
The necessary aperture dimensions will be determined not only by the param
eters of the magnet structure itself, and by the stability of its foundations,
but also by the characteristics of ancillary equipment that forms a part of
the entire accelerator facility. Thus, in particular, the energy and emittance
of the injector can have an important effect on the choice of other parame
ters, and the specifications of the injector therefore should be included as
variables in a careful cost optimization.

Since the magnet ring in practice is built from a large number of in
dividual blocks, gaps (typically of the order of I m in length) may con
veniently be provided between these blocks to accommodate correcting
lenses and other items of ancillary equipment. If focusing and, defocusing
magnets are combined in a single block, with gaps situated at points of
mirror symmetry between focusing and defocusing regions, the basic con
figuration is denoted FOFDOD. [Such a configuration was selected for the
CERN proton synchrotron in Geneva, in which 1.6-m gaps are normally

E. SELECTION OF PARAMETERS AND MAGNET CONFIGURATION

and, for stable motion in each of the individual degrees of freedom, each
of the square brackets will be positive definite. Under such circumstances
Ie2 will then constitute a quadratic form of definite sign if sin ax and sin 0'1/

are each positive or are each negative, whereas it will be a difference of
two positive definite forms if these factors have opposite signs. Although
the detailed structure of I/ will be slightly modified when a small amount
of coupling is present, it will be expected to remain a quadratic form of
definite sign near a difference resonance (where sin o"x ~ sin 0"1/) and the
particle motion would then remain stable.14 Near a sum resonance (where
sin O"x ~ - sin O'y ), on the other hand, it would be possible for the solutions
to grow without limit. The magnitudes of the individual quadratic forms may
be taken as indicative of the amplitudes of x and y motion (proportional
to areas in x, pz and y, py space) if the coupling is weak, and operation near
a difference resonance can lead to a pronounced interchapge of amplitude
between the x and y oscillations.

(40)

(39a)

(39b)

I
• A*

I

.J
AI

(c)(b)

ax 2= a
y

is close to an integer
~

cos ax • cos o'y ;

Ie2 = [/3zp://Po2 + 2Clzxpxlpo + I'zx 2
] sin ax

, r R 21 2...L 2 1 + ~]'T /YyPy Po , ClyYPy Po I'yr sm 0'1/

(0)

that is, only if

are taken, in particular, to be characteristic solutions (associated respec
tively with characteristic factors I. i and i.), then for any i there will be a.i
such that Ui,j oj::. 0 [since a particular solution, representable as a linear
combination of the characteristic solutions, certainly could be chosen with
initial conditions such that this quantity does not vanish]. The invariance
of Ui,j, if applied for values of s one period apart, then requires that
I'/j = I for such a pair of characteristic solutions. Thus not only are the
four characteristic factors such that their product is unity, but they may be
grouped into reciprocal pairs. In addition, of course, complex values will
occur in complex conjugate pairs.

For uncoupled motion that is stable in both degrees of freedom, the four
characteristic values will occur in complex conjugate pairs and all will lie
on the unit circle in the complex plane (Fig. 5 a). If the introduction of
a small (infinitesimal) amount of coupling were to have the effect of shift
ing these values, subject to the conditions just ,mentioned, off the unit
circle (Fig. 5c)-so that the coupled motion would be unstable-it therefore
would be necessary that the characteristic values for the uncoupled x and y
equations be (infinitesimally) close (Fig. 5b). Thus a coupling instability
will occur in such cases only ifItilY.l

FIG. 5. Location, with respect to the unit circle in the complex plane, of the characteristic
factors for coupled motion: (a) For stable motion when the coupling is absent; (b) for
stable motion near a coupling resonance; (c) for unstable coupled motion.

U A complete derivation of this result has been presented by Courant and Snyder
(1958, p. 27 fr.), and references are cited to earlier perturbation treatments of the problem.
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employed, and the provision of 10 special 3-m gaps at lO-block intervals
results in a structure comprising 10 superperiods.] An alternative arrange
ment, denoted FODO, situates the gaps between magnets of opposite
type. The latter arrangement in principle has the advantage of producing
a greater phase advance for a given field gradient, since the lens actions
of adjacent F and D regions in the FOFDOD configuration partially an
nul one another because of their proximity. The FOFDOD arrangement
has the advantage, however, of permitting quadrupole lenses to be situated
at mid-F and mid-D points, thereby providing a means for independent
control of Qx and Qy, and this same arrangement has also been found to
make more feasible the realization of long straight sections of the type
proposed by Collins (Section 5.3.3, F). It is definitely desirable to provide
some straight sections of a length considerably greater than that normally
introduced betwec'n the magnet blocks, in order to accommodate radio
frequency acceleration stations and to facilitate injection and extraction
of the beam.

The detailed determination of a suitable field index requires, of course,
that the design and spacing of the magnet blocks be explicitly considered.

~ Because of fringing, the "gradient length" of an individual magnet in typical
~ cases may be about 4 cm greater than the physical length of, the block it

self, and the "bending length" may exceed the physical length by as much
as 12 em; a corresponding adjustment of n (for example, an increase of 1
or 2 per cent) accordingly will be required in the magnet design because
of these effects. The integrated field also may be found to have a nonlinear
variation with radius, and such a characteristic will contribute to the var
iation of Q with momentum at any stage of the acceleration cycle. To cor
rect and control such variations it is prudent to supplement the quadrupole
corrections (that can be provided by pole-face windings and individual
quadrupole lenses) with sextupole and octupole fields. Skew quadrupoles
(quadrupole lenses whose axes are rotated by 45° from the orientation of
the units used for adjusting Qx and Qy) are desirable to eliminate coupling
between radial and axial oscillations that may result from stray fields, and
auxiliary steering magnets may also provide useful corrections and assist
in injection or extraction of the beam.

1. Influence of Misalignments

In recent years the possibility of attaining beam currents of substantial
size (for example, 0.1-1 A) within a high-energy accelerator has come to
have some bearing on the choice of aperture dimensions (or of injection
energy), since the space-charge forces that act on such a beam arise in part

from image charges and currents whose effect is reduced if the aperture
dimensions are increased (Laslett, 1963). A major, if not dominant, factor
in determining the parameters that affect the aperture, however, normally
proves to be the accuracy with which the magnet blocks can be positioned
and their alignment maintained. Quantitative analysis of the effects that posi~
tional errors will have on the particle orbits is somewhat specific to the sur
vey and support system that is planned, since possible correlations between
the errors of individual magnet blocks will be of importance. For consider
ing the general application of present technology to the construction of
accelerators for higher energy, however, one may regard a or In I/N2 as
fixed and suppose that closed-orbit deviations approximately proportional

to VN times the root-mean-square alignment error could be expected.
Important contributions to the closed-orbit error could also arise from
perturbations of the magnetic field due to remanence, eddy currents, and
stray fields from magnetized supports or equipment in the neighborhood
of the accelerator. These, latter effects can be kept from dominating, how
ever, if the injection energy is sufficiently high that the accelerator is not re
quired to operate with flux densities below a few hundred gauss at the orbit.
If the quality of the injected beam, as specified by the emittance of the injec
tor, is also assumed to be 'given, the corresponding linear aperture dimen
sions would be proportional to (R/Q)l/2, or to (R/N)1/2 for a constant value
of a. Achievement of an optimum balance between this factor and the aper
ture to be provided for closed-orbit displacements thus would appear to
require values of N, and hence of Q, to be so selected for accelerators of
similar configuration that they would be proportional to the square root
of the orbit radius, that is to the square root of the final energy of the syn
chrotron.

As a rough approximation, we might suppose that a semiaperture allow

ance of 7VN£ typically would be required to accommodate, with a factor
of safety, a variety of alignment errors having a root-mean-square value 8

(see Note II, Section 5.3.6). With 8 not exceeding 10-4 m, this allowance

then becomes ± 0.7 X 1O-3VNm. Also, with single-turn injection of a
high-energy beam occupying an area of 10-6 7( radian· meter in phase
space, with Q;;;; N/8 (corresponding to a = n/4), and with a flutter factor
fJrnax<I/fJ>av;;;; 1.5, the additional aperture required to accommodate the
beam oscillations would be

± [(fJrnax<I/fJ>av) (Y/n) (2n/a) (R/N)]112
8><

= ± [1.5 X 10-6 X R/N]1/2 = ± 0.0035 (R/N)1I2
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for a focusing segment of an alternating-gradient structure with I 11 I~ I,
and to

erence to the inhomogeneous Eq. (6a), it may be seen that a matrix of the
type indicated in Eq. (13) then becomes extended to the 3 x 3 form

Alternatively, the misalignment of any particular magnet block (or of
other components of the structure) may be represented in a similar way

(42e)

(42c)

(42d)

(42b)

(42a)

n ( In11/2)_"'_0 1 - cos _I- Lls
1111 ei'

1 . I11 11/ 2
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-- smh--L1s
eo eo

o

and

for the end points of this interval, where

and

for a defocusing segment. By constructing from such matrices the 3 X 3
matrix (M) for a period of the structure, the values of X and X' for the pe
riodic solution (relative to the orbit of the "equilibrium particle" with mo
mentum Po) are obtained as

X = M1,3 + M1~i (jp
2(1 - cos 0') Po

Detailed orbit characteristics of specific accelerator designs frequently
are obtained most conveniently by means of digital computation, either by
direct integration of the differential equations or (more efficiently, when the
linear character of the equations permits) through the appropriate multipli
cation of matrices that characterize simple portions of the focusing system.
The simplest computations of this type would employ 2 x 2 matrices that
act on the vector (x, prPxfds) or on (y, Podyfds), and this technique could
be directly extended to the use' of 4 x 4 matrices to describe motion with
linear coupling.

In the study of uncoupled motion in one degree of freedom it at times
has proven convenient, however, to employ 3 x 3 matrices in order to in
vestigate the orbit characteristics for particles with different values of the
momentum, and such matrices alternatively can be applied to determine the
closed-orbit response to a sequence of magnet misalignments. For the first
of these applications, such 3 X 3 matri~s would be designed to act on a
vector whose third component is op or, more commonly, (Jp!po. From ref-

2. Computational Aids

Under these circumstances, then. one would expect that an optimum value

of N would lie in the neighborhood of N = 5\.IR: for R in meters. Corre
spondingly, for a ~ :T 4, • II i = 0.1346 N2 ~ 3.4 Rand (l/Bo) (dBldx)
;;:;; 3.4 m-1•

It is interesting to note that proton synchiOtrons now operating at ener
gies near 30 GeV and accelerators that are being planned for the attainment
of energies in the 20D-1000 GeV range all employ values of (1IBo) (dBldx)
close to 3 or 4 m- 1• Such values of the relative field gradient permit the
realization of an efficient magnet design. The 30-GeV accelerators were
intended, however, to accept beams injected from a 50-MeV linear accelera
tor of markedly greater emittance (AGS Staff, 1961) than that assumed in
the present discussion, and a correspondingly greater.allowance also was
provided in these pioneering machines to accommodate mechanical mis
alignments. Accordingly, the apertures proposed for new multihundred GeV
accelerators in fact are not increased by the fourth root of the radius ratio
(as would follow from the analysis indicated here) but actually have di
mensions slightly smaller than in the present machines. In principle it thus
appears desirable, as Sands (1961) and his colleagues have emphasized, to
inject into the larger synchrotrons at energies in the multi-GeV range and
to consider the use of one or more "booster synchrotrons" in cascade for
this purpose.

....
I....
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through the use of a matrix whose 1,3 element represents the amount by
which the end of this magnet is displaced with respect to the adjacent
end of the following magnet, the 2,3 element is the slope of the magnet
block with respect to the slope of the following component, and the 3,3
element equals unity. Such a matrix, operating on a vector (x, X', 1),
introduces the proper discontinuities to describe the trajectory relative to
the centerline of the perturbed structure, evaluated at points immediately
following the discontinuity. The closed-orbit deviations again will be
given in terms of the matrix constructed for a complete period (that now
will constitute a complete revolution) by expressions that correspond to
Eqs. (42a, b).

A modification to the 3 X 3 matrix employed to represent the radial mo
tion of a particle with a momentum Po + ~P has been recently suggested by
Courant (1964), with the object of generating directly the additional length
(LI/) of the paths that such particles describe. In this proposed method the
matrix would operate on a four-element vector that has components x,
Po(dxlds), LI/, and ~p-or, more simply, the components x, dx/ds, LI/, and
~p/Po. In the latter case, the first-order relation

fLlS [ 1 ~P ( I n 1
112

.) X o 1 n I
f/2

-- cosh--s - 1 + -cosh--s
o 1 n I Po eo eo eo

1 ,. I n 1
112

]+ In 1112 X o smh e;;- s ds
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112

)
I n 1112 sm e;;- Js -r r;T X o I - cos e;;- L1s
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112

)
+ r;T Po .Js - In II/2
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112

)In 1112 smh e;;- LIs + r;T Xo cosh e;;- Js - 1

I up (eo . I n 1
112

)+ -I-I - "--11/2 smh-- .1s - L15
n Po ! n . eo

and, in particular, evaluate the momentum compaction factor directly by

(45)

(44)

N:Jl/Co
up/Po~

(
X) (X)x' x'

(M) 0 = .Jl

up/Po ~p/Po

15 The position of the beam within the accelerator aperture can be determined by means
of electrostatic or magnetic pick-up devices called "difference electrodes." The provision
of several such pick-up units, for each transverse degree of freedom, per oscillation wave-

3. Machine Resonances

The detailed selection of parameters for an alternating-gradient synchro
tron will be determined not only with the object of achieving a desirable value
of a and suitable properties of such functions as fJ(s) that characterize the
unperturbed structure, but also so as to avoid harmful effects from so-called
"machine resonances." We have already seen that in a strictly periodic
structure we must avoid values of ax and ay that are multiples of 7'(, as well
as sum resonances for which ax + ay is a multiple of 27'(. In an accelerator
with misalignments, the true period of the structure becomes a complete
circumference, and analogous restrictions therefore apply to Nax and to
Nay. Linear resonances thus occur in general.for integral and half-integral
values of Qxand Qy, and for values such that Qx + Qy is an integer. Mis
alignments and field errors that act to produce an inhomogeneous term in
the orbit equations, but do not materially influence Kx or Ky , lead specif
ically to large excursions of the closed orbit in the neighborhood of an in
tegral resonance and thus, in effect, contribute to the widths of the integral
stop bands. These stop bands, in practice, are normally found to be more
prominent than those that develop at half-integral values of Q. Because of
these machine resonances, values selected for Qx and for Qy normally are
close to an integer plus or minus one quarter, and quadr'upole lenses are
commonly provided to permit adjustment and control of these quantities
throughout the operating cycle of the accelerator.l5

for focusing and defocusing regions, gives directly the elements of an addi
tional row (with the diagonal element equal to unity and the new column
elements zero) that may be inserted into the 3 X 3 matrix to form a 4 X 4
matrix capable of transforming "J/. By multiplication of such matrices to
obtain a matrix (M) characteristic of a period of the structure, one then may
derive the closed-orbit characteristics from the equations represented by

(43c)

(43a)

(43b)

In 1112

- s
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) X o- - 1 - cos--s + -cos
o In I Po eo eo
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f
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If we neglect the geometrical length of the quadrupole lenses, the transfer
matrix for such a Collins straight section is

The straight section is seen then to be matched to the impedance ellipse of
the magnet structure and introduces a phase advance of () in the free oscilla
tions. The maximum value of L 2 is obtained by choosing

the matrix (46) may be expressed in the form

(MTkollins = (COS 0 - Iex I sin 0
- y sin 0

(46)

(48a)

(47a)

(47b)

(48b)

2L1 + L 2 - L/L2/P).
I + L 2/F - L 1L2/P

fl sin 0 )
cos 0 + Iex I sin 0

F=~
y

2L1ex2

L 2 = I + L
l

2y2

(
1 - L 2IF-·L 1L 2/F2

- L2/P

Ij = cos-1 I - Ll 2y 2 = sin-l __2_L..:.1y,----_
I + L 12y 2 I + L 12y 2

where

(MTkollins =

By choosing

and

F. INTRODUCTION OF LO:-;G, STRAIGHT SECTIONS

The introduction of straight sections or other special features at equally.
spaced but infrequent intervals will increase the fundamental period of a
perfectly constructed magnet ring from CoIN to CoIN', where N' denotes
the total number of "super periods" of which the structure is comprised.
Accordingly, unless the modifications to the basic structure are introduced
in a well-matched way, one may expect prominent resonances to develop
when QxlN' or QylN' is an integer or half integer [and, if coupling is present,
when (Qx + Qy)/N' is an integer]. Such resonances therefore should be
avoided in the selection of parameters.

A relatively simple method of introducing a long, straight section in a
matched way (when (jp =--= 0) has been suggested by Collins (1961) and af
fords a means of obtaining an unobstructed region whose length is approxi
mately a free-oscillation wavelength divided by 2n. Similar concepts have
been discussed by Holt and Newns (1961), of the Liverpool-Manchester
Glasgow Electron Accelerator Project (" NINA," at Daresbury, Cheshire).
The arrangement of Collins employs a field-free region of length L 1 , a fo
cusing quadrupole lens of focal length F, a (longer) field-free region of
length L 2 , a defocusing quadrupole of focal length - F, and a final field-free
region of length L 1 (Fig. 6). This sequence of elements is inserted into the
regular magnet lattice between defocusing and focusing magnet units so
that, by suitable adjustment of the parameters,the orbit characteristics may
be matched simultaneously for both transverse degrees of freedom.

...
I...

(Jl
-:l

Since fl will be approximately 2neo/Na at the boundary between focusing
and defocusing regions and I ex I typically is close to 2 at such points, L 2 will
be about equal to 1/2n times an oscillation wavelength and the shorter
field-free regions (L I ) each will be approximately one quarter of L 2 •

It. should be noted, however, that within the Collins section, in the neigh
borhood of the focusing quadrupole, fl will attain a value that is close to
twice the value that it has at the endpoints of this structure. It thus will
become materially greater than flmax within the normal magnet structure,

OF ODo F

o I I 0
~LI~ L2 .t-LI~

I I

FIG. 6. Sequence of elements in a Collins straight section. QF and QD denote, respec
tively, focusing and defocusing quadrupole lenses. The elements D and F represent de
focusing and focusing magnet elements in the preceding and following normal portions
of the accelerator.

length is desirable in order to permit a thorough diagnosis to be made of an imperfectly
aligned beam and to guide the corrective measures that may be taken. The frequencies
of the free oscillations similarly may be measured through the use of radial or vertical
radio-frequency "knock-out"' fields by a technique that first was described in"connection
with operation of the race-track synchrotron at the University of Michigan (Hammer ef

al., 1955).

so that

and

L I = l/y

fl
L 2 = ex

2
L 1 = ex

2/y = I + l/ex2

o = nl2

(49a)

(49b)

(49c)
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and a sufficiently large aperture must be provided within the straight section
to accommodate this increase. This type of straight section also leads to
radial excursions of the closed orbit for particles whose momentum differs
from Po that are 1.7-2 times as great as would occur in a simple alternating
gradient magnet.

The use of such straight sections (or of others of greater complexity that
can be designed to suppress the mismatch for off-momentum particles and
to provide longer field-free regions than can be realized with the Collins
design) is attractive in affording room for radio-frequency acceleration
structures, for work with internal targets, and for injection or extraction
of the particle beam. Rapid beam extraction has been accomplished, with
high efficiency, by means of rapidly pulsed kicker magnets that deflect a
desired portion of the beam into bending magnets situated further "down
stream" (Bertolotto et al., 1964). For slow extraction, particularly desirable
for counter experiments with an external beam, the beam may be caused
to experience a radial resonance. As various portions of the beam become
subjected to this resonant condition, or as the oscillations of particles with
small initial amplitudes become large, the trajectories "lock in" to a mode
that is characterized by a definite phase angle with respect to the perturba
tion, and the radial displacement increases sufficiently during successive
revolutions that the beam can enter the channel of a septum magnet (Ham
mer and Bureau, 1955; Hammer and Laslett, 1958, 1961; Hereward, 1964).

5.3.4. Basic Parameters of Existing High-Energy Alternating-Gradient
Accelerators

Basic design parameters of several alternating-gradient synchrotrons
designed for the production of protons or electrons with energies in the
multi-GeV range are listed in Table 1. Intensities are not cited for these
accelerators, since this important parameter of an accelerator is sensitive
to many details of the design and frequently increases markedly as operat
ing experience is acquired. Linear accelerators are most frequently employ
ed, in place of electrostatic generators, as injectors for the higher-energy
alternating-gradient synchrotrons, but the 1.2-GeV alternating-gradient
electron synchrotron at the University of Lund, Sweden (where R ;;::::: 5.3 m,
eo = 3.65 m, N = 8, and I n I ;;::::: 1I) successfully employs a microtron
with a hot-cathode source for the injection of a well-defined 6-MeV beam
into this accelerator (Wernholm, 1964). Figure 7 shows a portion of the
magnet ring and supporting concrete beam, together with a section of a

magnet block, for the 6-GeV alternating-gradient electron synchrotron in
Hamburg, Germany, for which the dedication ceremonies took place in
November, 1964.

- ~,.
"~-~.~--.,.'""<""'" _.~

FIG. 7. (a) A portion of the magnet ring and supporting beam of the 6-GeV Deutsches
Elektronen-Synchrotron (DESY) that was completed in Hamburg, Germany, in 1964.
(b) Cross section of a magnet block for the DESY accelerator. [Courtesy of Professor
Willibald K. Jentschke, Director, Deutsches-Elektronen-Synchrotron and II Institut fUr
Experimentalphysik, Hamburg.]

As is apparent from the data given in Table I, the high-energy alternat
ing-gradient accelerators are of such a size as to warrant very careful at
tention to optimization of design and to critical engineering details. Provi
sions for efficient use of the facility must be carefully planned, and the
accelerator should be adaptable to future unforeseen experimental needs.

The magnet power required for the individual accelerators listed in Table I
is in the range of 1-100 Mw. This excitation power can be supplied in
pulsed form, by use of ignitrons or solid-state devices, from motor-generator
sets with fly-wheel energy storage. Continuous excitation to produce a
current whose \',,"ave form is that of a biased sinusoid has proven feasible,
by use of a resonant condenser and ring-choke arrangement, for magnets
with a power consumption of 1-2 Mw. [Initial plans for the application



6SI-I

.... 0" .... 0<:VJp~o,<:o-,
_. (D M- - 0 VI

Vl

~. ~. (D e:. e; ~ '0 ~
~'

- I

W

OVJ .... OO::rO::r

'11:~:(~~1t1~<\;~~'1;1' ."

=' ° ><: _. _ .....
o ~.;tl Q. 0.. 8" ~, III

,
0
n

1-t')f"""f"(DM-cr" C"D
tn

c::

::r nlll O '1>ll)'<:0. f"""f" "..,.. C. f""+ ~ l"'1" (JJ

~

ll)::r() 0 ::rl:l
lll

(D

'/,

3
0

111=' .... :- 3

C

'0 =' _. ....

1·~, " 'UlmS' 3 0" £,:g ~.g ....

~4+~", / "~! ;, '/,

CIQlllo .... -"'oO

,...,

(JQ ::r ° V1 ......
..., ~ ~ (1) ~ 2) =: ~

('.;

;;:;

~ .... 0.. _. ;:l ':-' 0 Vol

i)

Vi' -;;:- c: 5. 0.. :E ;:l 6

c:

...... 0 () _. 0.. '""'> °

.'r.!i;' ' 1",
:;.

o ° <: ° _ .....

.;;, f J..... I

:A ri 0.. 0.: p&] <

i "'<d. (

;<l

ll)0..0"c:,<: ... c:~

~ ~_;;'-Ui.:.tl-~·!t,}'-:.!i$.:i.ll;;'.. ,> !...-~ '.....'t, j

'"

.... c:'<:ll)..!-::ro°

:!1

, { l,~ i
;p-

() - _. ° =' po

;<l

~0;'3~c()", p

. . ij\~~~.,,., ~

::!

~""'(l)~,...,..Vl'<&,

:--'

\4;
n

° ;:r _. (JQ .... ° 0 0

t'"

;l _. ;?, ~ § 0 -. g
C?

I'T1

..-::s""1r-t'fJl.......,~V>
~

;p-

'0 ;:+. 0 ,.. ro' '0 '" S.

n

o _. 0.. ,.. ;:l c: '0 (Jq

n

S' e:. ;:; 2....... Vi" c

m
t'"

.-t- <: M- vr (!) (1) ~'"O

1"1

VJ _. ;tl 0.. 0 ....

;<l

e:. 0 _. ° VJ 0_. ,.. ::l ;:l () '0 ....

>

='roo .... vro-g§

-i
0

.... o-.::r ::E ....

;<l

;:r-'IllO&gVJ~

VJ

i::l:I ~ Ill" ° ::l() - ..: VJ () .... n () ()
::;. i::l:I ~ ~ () III 0 ::r
()'-'c-o .... ::l ....c: 0,..00..0
;:;.·~~~=..3'" :t
"::lo" .... o.. I:>lo

Vol

o..-o_t:ri=,

<Xl

0"0"° .... 0 V> "

-..1

c: .... ll) .... 0...... '<: ri _. 0.. 0" ° 0..

~ :1'

3f"""f"PJ::Jr-*n~~

',...};"; -d.,." _•.• :••_ ""'.,~J.,' ">;"<'./" ; d:-.- :>.~\L~,'

::r ~ C(CI 0 .... !4 _.c: ° 0 ~ _. (JQ

::;''0 .... >-is r.'ir~-. .... ::r °
'2. 0 S· Vi' 7 =' 0.. 0..(l> I

TABLE I

MAJOR DESIGN PARAMETERS OF ALTERNATING-GRADIENT SYNCHROTRONS FOR ENERGIES OF SEVERAL GeV OR AnOVE
w
00
00

Proton synchrotrons CERN, Geneva, Brookhaven, I.T.E.P., Serpukov,
Switzerland New York Moscow, USSR USSR

---------------_._---_..• ----------------------_.~-~~--_.-

Maximum energy (kinetic) 28 33 7.3 60-70 GeV
Injection energy 50 50" 3.8 100 MeV
Radius, Co/2n: 100.00 128.44 39.98 236.13 m
Radius of curvature 70.08 85.37 31 194.12 m
N 50 60 56b 48<1
k = (l/Bo)(dB/dx) 4.1 4.2 14.8c 2.3 m-1

Q 6.25 8.75 12.75 9.7
Magnet weight, with coils (approx.) 3,500 4,000 2,700 20,700 tonnes r
Vacuum chamber ....

width 14 15 11 17e ;p-
cm (1

height 7 7 8 11.5 cm ?":
VJ
0
~::

Electron synchrotrons CEA, Cambridge, DESY, Hamburg, Physical Inst., Yerevan, NINA, Daresbury, t'"
Massachusetts, USA Germany Armenia, USSR England :;.

Vl
r-
m

Maximum energy (kinetic) 6 6 6 4.0-5.5 GeV
-i
>-l

Injection energy 28' 40 50 40 MeV
Radius, Co/2n: 36.0 50.42 34.49 35.0937 m
Radius of curvature 26.4 31.70 25.25 20.7697 m
N 24 24 24 20
k = (l/Bo)(dB/dx) 3.4 2.2 4.55 2.22, 2.28 m-1

Q 6.4 6.25 5.38 5.25 -
Magnet weight, with coils (approx.) 310 650 425 380 tonnes
Vacuum chamber

width 13.4 F: 14.4; D: 9.2 12.0 F: 13e D: 9" em
height 3.9 F: 4.5; D: 8.0 4.2 ~7 cm

a Plan to replace by 500..MeV injector.
C Employs a neutral pole. <I 12 superperiods.
• Useful width. 'B:.;pe ~o obtain 40-50 MeV injector.

b 14 superperiods, containing seven C-magnet~ and one
quadrupole in a FODO sequence designed to eliminate
the transition energy by raising it to 18.3 GeV (kinetic).
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feed points would be desirable in the design of larger accelerators of this
type.

The main magnet units of alternating-gradient accelerators require par
ticularly careful design and close manufacturing control if good perfor-'
mance is to be realized with the relatively small apertures that result from
cost optimization. The contour of the magnetic poles is basically hyperbolic
in the central region, with modifications at each side of the gap, in order to
achieve in the median plane the desired linear variation of magnetic field
with radius. The use of H magnets (yokes on each side of the aperture) or
the introduction of neutral poles can be attractive as a means for obtaining
a magnet design that is inherently more efficient, but a C-type magnet is
usually preferred in order to facilitate access to the central-field region.

To reduce distortions arising from eddy currents and from remanence,
the magnet blocks are frequently constructed from laminations of thin
(......, 1 mm) silicon steel, cut with precision dies. These laminations can
advantageously be shuffled before stacking to insure that steel sheets from
the various heats, rollings, and annealing processes in their manufacture
are distributed among the magnet units. The effect of residual variations
between the individual magnet blocks can be reduced, moreover, by ar
ranging these units in a sequence that introduces these variations with a
high periodicity.

Deterioration of the field shape as a result of saturation can be forestalled
by a favorable design of the core and yoke of the magnet, by the introduction
of suitably located holes in the top and bottom yokes near the cQrners of
the coils (as developed by M. H. Foss for the H magnets of the 12.5-GeV
zero-gradient accelerator and reported by the Argonne National Laboratory
Staff, 1964), and by use of crenelated poles (Bruck, et al., 1956; Princeton
University Staff, 1959). The use of superconducting materials to achieve
field strengths markedly in excess of those attainable with iron or steel,
with corresponding reductions of dimensions and. magnet power, would
appear to present especially grave difficulties in a pulsed accelerator, and
a substantial reduction of size would result in appreciable inconvenience in
the use of the magnet as an accelerator component. [The possibility of using
superconducting surfaces to shape a magnetic field (del Castillo, 1963,
1965) may be mentioned, however, for its possible application to the fixed
field alternating-gradient type of accelerator (Section 5.3.5).] Distortions
of the field due to eddy currents, including currents induced in the excitation
coils and in a metal vacuum chamber (for example, in a chamber with 2-mm
walls, formed from material with a specific resistivity of 100 pD-cm) must
be reduced to an acceptable level at the time of injection. Such low-field

distortions, the effect of remanence, space-charge phenomena, and the de
sirability of introducing a high quality (low admittance) beam all favor high
energy injection into the synchrotron ring. Further details concerning the
design and construction of alternating-gradient proton synchrotrons are
included in the comprehensive review of Green and Courant (1959).

5.3.5. Fixed-Field Alternating-Gradient Accelerators

An interesting, and useful, application of alternating-gradient focusing
nlethods occurs in the fixed-field alternating-gradient (FFAG) type ofaccel
erator, wherein the magnetic fields that guide and focus the accelerated
particles are constant with respect to time but have an azimuthal variation
that gives rise to alternating-gradient focusing (Symon et al., 1956; Laslett,
1956).16 An important form of FFAG accelerator is similar to the more con
ventional type of synchrotron, in that a magnetic field is provided only with
in an annular region. The similar use of azimuthally varying fields in the
design of cyclotrons intended to produce continuous beams affords, how
ever, a means of meeting the otherwise conflicting requirements of axial sta
bility and isochronism for relativistic particles. Related applications may
also be found in the development of separated-sector microtrons and in
betatron design.

In the annular form of an FFAG accelerator, the strength of the mag
netic field increases rapidly (ex: r k ) with radius. The azimuthal variations of
this field overcompensate the axial defocusing that otherwise would result,
and produce a strong-focusing action in this transverse degree of freedom.
Particles with a wide range of momentum can be accommodated simulta
ne9usly in such a field, so that there is an opportunity for great flexibility
in the acceleration techniques and other particle-handling procedures in an
accelerator of this type. The design thus offers the technical convenience of
requiring a magnetic field that is constant with respect to time, it may per
mit the designer to realize more rapid cycling rates for the acceleration (with
a correspon1ing increase of the average beam intensity), and it presents the
opportunity to build up ("stack") intense beams that can be stored within
the accelerator. Various types of FFAG design have been proposed, and
their theoretical and technological problems extensively analyzed, by mem
bers of the Midwestern Universities Research Association.

16 Similar design concepts, in at least one form, had been presented earlier by T. Oh
kawa at a meeting of the Physical Society of Japan (1953) and also were considered by

L. J. Haworth apd H. Snyder of the Brookhaven National Laboratory.
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A. RADIAL-SECTOR DESIG:\, WITH R[\EI~SED FIELDS

A simple form of FFAG accelerator is the reversed-field typ.::, in which
the direction of the magnetic field is caused to reverse from one magnet.
sector to the next. The sector boundaries are formed by geometrical planes
that extend radially from the axis of the accelerator, and the length of the
reversed-field sectors (or the strength of the reversed field) then normally
would be chosen to be less than for the sectors of positive field in order that
a closed orbit may be formed without requiring an excessively great circum
ference. Because of the strong radial increase of field strength and the al
ternating sense of the curvature of the equilibrium orbit, there will 1;Je a
marked alternation in the sign and magnitude of the local focusing index

In I = keo/R. This alternation of the focusing action within the individual
magnet sectors, with some contribution from the edge focusing that results
from the equilibrium orbit crossing the sector boundaries obliquely, 'can
result in a net strong-focusing effect on the beam. Model accelerators of
this type have been built (Cole et al., 1957), and have operated in the man
ner expected from prior analysis, but the design is such that the circumfer
ence may be some 5 times that required for a constant-field device and the
magnet consequently must be undesirably massive.

B. SPIRALLY RIDGED DESIG:\

cal, and harmful resor:ances may be avoided at all energies by a suitable
choice of parameters.

The characteristics of the transverse oscillations of particles in a spirally
ridged accelerator lend themselves to analytic examination most readily
if the periodic variation is expressible by a simple sine function and if the
amplitude of this variation is not large. We then consider the particle mo
tion in a median-plane field of the form

By = - B1(R/R})lc {I + fsin [ In(~Ro) - NO]} (50)

with f small in comparison to unity (for example f < 1/4); quantitative
examination of orbits in fields that failto meet these simplifyingconditions
may be obtained conveniently by digital computations, but will generally

exhibit qualitative characteristics similar to those that can be derived from
use of Eq. (50).

1. Analysis of Equations of Motion

The closed equilibrium orbit in the spiral-sector field of Eq. (50) departs
from a circle by an amount that affects significantly the character of the
oscillations about this orbit. For a particle of magnetic rigidity pole, the
equilibrium orbit may be approximately expressed by

It is immediately apparent that, in conformity with Eq. (SIb), the momen
tum-compaction factor in the assumed scaling field is

for investigation of the transverse oscillations it is appropriate to expand
the equations of motion about the solution given by Eq. (5Ia).

If. we initially retain only terms that are linear in the departure from the

To avoid the large circumference required for a reversed-field FFAG ac
celerator, it is advantageous to provide a field variation such that the field is
alternately high and low along spiral curves that the particles will cross.
Specifically, the field is taken as proportional to Rk times a periodic
function of (l/w) In (RjR1)-NO, where 0 denotes the azimuthal angle.
With the period of this function taken as 2n, N denotes the number of pe
riods (or full sectors) per circumference and the periodic function is con
stant along curves that make an angle t~m-l(l/Nw) with the radius. A field
variation of this form retains the important scaling property that is also
satisfied in the reversed-field design; that is, possible orbits of particles of
different momenta are scaled replicas of each other, with SUCJl geometrically
similar orbits shifted azinluthally with respect to one another in the spirally
ridged designY Because of this property, the essential characteristics of
the transverse oscillations of particles with different energies will be identi-

where

Req = Ro [ 1 - N2 _ {k + I) sin Ne]

R
o

= R} . (~)l/(lc+l)
eB1R1

;=k+I;

(5Ia)

(SIb)

(5Ic)

17 It will be observed that the relative azimuthal displacement of geometrically similar
orbits for particles of difierent momenta in a scaling field presents complications if it
is desired to introduce field-free straight sections whose boundaries extend radially from

the central axis of the accelerator-see, for example, Cole and Morton (1959, pp. 31-37).
The spiral angle facilitates, however, the extraction of a beam that is circulating in the
direction of the spiral.
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equilibrium orbit and neglect terms of order (f/wN)2, the equations of mo
tion are of the form

d2u
df)2 + (ax + bx cos NfJ)u = 0

where

u

d2v
dfj2 -T- (ay + by cos Nf)v - 0

R - Req

Ro

(52a)

(52b)

(53a)

or, more accurately, by well-known series expansions (Whittaker and Wat~

son, 1927, Section 19.3, Ex. 2; McLachlan, 1947, Sections 4.90-4.91) for
the first characteristic values of the Mathieu equation.

Equations (55a, b) are of good accuracy throughout the present range' of
interest for the parameters if 2Q/N:::; 1/3, and for values of 2Q/N as great
as 2/3 if I b I < N2/4. More accurate values for the boundaries and oscilla
tion frequencies for the first region of stable solutions to Eqs. (52a, b) are
listed in Table II (from Belford et al., 1957; National Bureau of Standards,
1951) and are illustrated by Fig. 8. A stability diagram for the two degrees
of freedom represented by Eqs. (52a) and (52b) is shown in Fig. 9.

for k/N2 and f/wN2 small in comparison to unity. The boundaries of the
first stability zone for solutions to Eqs. (52a, b) may be similarly approxi
mated by the stability condition (Laslett and Sessler, 1961, Sect. IIa)

1.00.540 _

N2
o

t
4lbl
7

1.0

It is informative to examine the physical origin of the several terms that
contribute to the result expressed by Eq. (55b). The results of such an anal
ysis (Laslett, 1961) suggest an interpretation that is summari?ed below
for terms that arise in the coefficient of v in Eq. (52 b). This coefficient may
be written

2.0.""'<'<"C<e::e::::::' i. i i, I

K = eR02 [- (VIV) x B] . ey ,

Po Y

2. Physical Origin of Axial Focusing

Fig. 8. Diagram showing the relation between the coefficients of Eqs. (52a) or (52b)
for various values of the oscillation frequency. Curves are given for increments of 0.1
in the quantity 2QIN = aln.

(55a)

(55b)

(54c)

(54a)

(54d)

(54b)

(53b)

Q/ ~ (L)2wN - k

y
v = Ro

I (f/W)2
ax ~ k + 1 -"2 N2 _ (A

1 (f/w)2
ay ~ - k + 2" N2 - (k + 1)

fb--x = w

f
bll~ -w

and

The frequencies of small-amplitude transverse oscillations may be obtained
for the Mathieu equations (52a, b) by numerical integration (Belford
et al., 1957) or estimated by approximate formulas (Symon et al., 1956,
Appendix A; Laslett and Sessler, 1961, Eq. (2.24» that are valid when
f/wN2 is small. The approximate formulas lead to

Q 2 bx
2

x ~ ax + 2N2

~k+l

IQ\
~

b2
_ 2N2 < a < N2 _ Ib I4 2

(56)
with Po = e I BoRo I and with the guide field (By) negative for positively
charged particles. Also we may assume k ~ N2.
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TABLE II

STABILITY BOUNDARIES AND VALUES OF 2Q/N FOR SOLUTIONS TO EQs. (52a) OR (52b)

4b
0 ±0.2 ± 0.4 ± 0.6 ±0.8 ± 1.0 ± 1.2 ±1.4 ± 1.6 ± 1.8 ± 2.0N2'

------
4a

0 -0.004995 -0.019913 -0.044566 -0.078649 -0.121766 -0.173445 -0.233169 -0.300393 -0.374564 -0.455139N2 for Q = 0:

--"_.'- ------_._-_ ....._-_._------_._---- ... _- - -- ._ .. ----_.-.-~

411
Va/III's o./2Q/NN2

0.4 -,- - --, ._-- -_.. - -- , - 0.29529,1
0.3 - -. '- - - --. - - 0.022Bg6 0.3JIB22 0.51JX20

---0.2 - - --- - -- - - 0.204739 0.372B17 0.523586 0.700020
0.15 - .---- -~'- 0.166996 0.326529 0.461670 0.606491 0.1.:09354

--0.12 - - - - -- 0.044613 0.252886 0.382727 0.509724 0.655910 0.907<)<)4
--0.09 - _. - - - 0.189606 0.317003 0.432744 0.555508 0.706B20
-0.06 - - - - 0.1420B4 0.264945 0.370904 0.47B689 0.599985 0.761485
--0.03 - - - 0.123432 0.229781 0.323667 0.418648 0.521836 0.644024 0.824726

0 0 '0.070850 0.142551 0.216059 0.292566 0.373744 0.462249 0.563066 0.688564 0.915909
0.03 0.173205 0.187553 0.225760 0.279688 0.344378 0.418350 0.502904 0.603071 0.734854
0.06 0.244949 0.255622 0.285758 0.331479 0.389651 0.459144 0.541413 0.642470 0.784973
0.09 0.300000 0.309063 0.335254 0.376367 0.430487 0.497137 0.578370 0.681903 0.843572
0.12 0.346410 0.354556 0.378399 0.416607 0.468086 0.533008 0.614259 0.722151 0.931173
0.15 0.387298 0.394858 0.417174 0.453456 0.503214 0.567255 0.649518 0.764339
0.2 0.447214 0.454188 0.474973 0.509361 0.557654 0.621757 0.708125 0.845489
0.3 0.547723 0.554252 0.573974 0.607483 0.656567 0.726441 0.837583
0.4 0.6:12456 0.639073 0.659316 0.694701 0.749493 0.838962
0.5 0.707107 0.714238 0.736433 0.776983 0.847508

4a N
0.470654 0.358271 0.243912 O. 127656 0.009578 -- 0.110249]\;2 forQ =T: 1.000000 0.898766 0.795124 0.689166 0.580981
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The radial oscillations are characterized by a value of Qx2 that is close to
k + 1, so it then follows that

to y - (1 - fJ2)-1i2. A simple differentiation then shows that the value of k
at any radius is19

in an isochronous cyclotron. The scaling condition that was introduced for
annular fixed-field accelerators in which isochronism was not required
canno~ be maintained if Eq. (57) is to be satisfied, but Eq. (58) indicates the
possibility of achieving a design in which Qx remains bounded by the inte:
gral values 1 and 2 as the kinetic energy of the particles increases from zero
to a value in the neighborhood of M oc2• A precise analysis of particle dy
namics in fields that are suitable fot isochronous cyclotrons is too detailed
for presentation here; an early analysis was given by Dunn et al. (1956),
a comprehensive review of cyclotron technology has been presented by
Cohen (1959), and an excellent resume of both the theory and design
principles for sector-focused cyclotrons has been given by Richardson
(1965).

With k > 0, some form of azimuthal variation of field strength is required
to provide axial focusing. As has been noted eatlier, one obtains

...
I...

Q'I
.a:.

(fJ) /2 cos2NO = (12/2) (1 + cos 2NO) due to - VrB~ _: (Vr/Re)
[a( - By)/aO] y.

The several terms listed above contribute to the value of Q/ as follows:

(1, a) - k, the normal value of Q/ in a constant-gradient accel
erator;

(1, fJ) (1/2)(f2/w2N2
), by an approximation of the alternating-gradient

focusing that arises from radial fields attributable to the spiral ridges;

(2, a) (1/2) (f2/W2N2), from the constant component of force that
arises from the additional radial fields experienced by particles that cross
the spiral ridges on a noncircular equilibrium orbit; and

(2, fJ) /2/2, from the constant component of force that arises from
azimuthal components of magnetic field, in a configuration such that Bv
varies with e, that act on the radial component of velocity for particles
whose equilibrium orbit is noncircular.

Disregarding the term /2/2, that quantitatively is of little importance in a
spirally ridged accelerator, the terms listed are seen to combine to give the
result expressed by Eq. (55b). It is noteworthy, however, that only one of
the terms (namely, 1, fJ) truly arises from an alternating-gradient focusing
action. The last two of the terms listed (2, fL, fJ) have their physical origin
in the noncircularity of the equilibrium orbit, and their effect thus corre
sponds to that noted by Thomas (1938) in his paper that suggested the appli
cation of radial ridges to a cyclotron field.

C. ApPLICATION TO THE CYCLOTRON, MICROTRON, AND BETATRO~

R dB
k=:- -

B dR

= y2 - 1

Qx;;::; y

Qy = [(j2/2) - k]1I2

(57)

(58)

(59)

1. Cyclotron with Azimuthally Varying Field

It is evident that the use of azimuthally varying fields, with or without
spiral ridges, affords a means of maintaining isochronism and stability for
particles accelerated in a cyclotron.l8 An azimuthal variation of the field
will iead to a significant scalloping of the particle orbits, but, to the extent
that the revolution time of a particle is not greatly affected by the noncir
cularity of the orbits, one may readily derive the radial variation of magnetic
field that is required to insure isochronism. In this case, fJ = Vic must be
proportional to radius and the average field strength will be proportional

18 Th.::: conflicting character of the requiremel'ts for isochronism and stability in a con
ventional cyclotron was noted by Bethe and Rose (I937) and by Rose (1938). Cf also
the eKperimental work reported by Wilson (1938).

with "Thomas focusing," and more modest values of/will suffice if spiral
f9cusing is introduced. 20 The Thomas design (Thomas, 1938; Schiff, 1938;
Judd, 1955) received an initial experimental test in two electron models
(Pyle et al., 1955; Kelly et al., 1956), and both radially and spirally ridged
cyclotrons have since come into successful operation for the acceleration of

19 Alternatively, one may note that the momentum compacfon is given directly by
; = k + 1 and the condition of isochronism (CiT = 0) requires ~ = (" (refer to Note I),

so that Eq. (57) then follows immediately.

20 An ingenious radial-ridge design was adopted for a three-sector cyclotron built
at the Karlsruhe Nuclear Research Center (Leopoldshafen, Germany) to provide a
continuous beam of 50-MeV deuterons. The large value of f required in this case was
realized by locating three radio-frequency electrodes in the regions where the magnet
gap is large and driving them together at the third harmonic~of the orbital frequency
(Steimel and Lerbs, 1959; Steimel, 1963).
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TABLE HI

ApPROXIMATE SPECIFICATIONS OF THE LRL AND OAK RIDGE ISOCHRONOUS CYCLOTRONS

hole on the axis of the magnet pole, as has been done on the 3-sector radial
ridge cyclotron at the University of Birmingham (Cox et at., 1962).

The acceleration of negative ions requires good vacuum conditions ~nd

the use of somewhat lower field strengths than otherwise would normally
be selected, in order to avoid premature dissociation of a substantial frac
tion of the ions [see resume by Judd (1962)]. The acceleration of polarized
protons and deuterons-injected as atomic beams and ionized at the cen
ter of the accelerator-has proven feasible in constant-field cyclotrons,
provided that refrigerated surfaces maintain the vapor pressure of water
at a sufficiently low value to avoid excessive background from nonpolarized
protons (cf. Dick et at., 1963; Thirion, 1963; and references cited therein).
There is a corresponding interest in the possibility of accelerating such
polarized particles in cyclotrons (or other circular accelerators) with azi
muthally varying fields (Cox et at., 1962; Luccio et at., 1962), and this in
terest has motivated an examination of.the possibly significant enhancement
of depolarization through the agency of unavoidable energy-dependent
resonances (that can occur between the precession frequency and the fre
quency of Some oscillatory component of the field felt by the particle). Sev
eral analyses have been made of this potential depolarizing mechanism (cf.
Khoe and Teng, 1963, and earlier work cited therein) and suggest that a
reasonable rate of acceleration in a sector-focused cyclotron will preserve
the greater part of the initial polarization.

Table III lists a few of the published characteristics of the "88-inch"

semirelativistic beams of positively charged ions.21 An electron model of
an eight-sector "1'..1('2 cyclotron" (Livingston and Martin, 1964) has suc
cessfully demonstrated the ability to obtain a beam whose kinetic energy is
close to the rest energy of the particles and then to extract this beam effi
ciently through the excitation of the "8/4 essential resonqnce" that occurs
for Qx = 2. Theoretical and experimental work also has been directed
(Haddock et al., 1964) to the design of a negative-ion cyclotron from which
proton beams of variablc energy up to 625 MeV could be efficiently extract
ed magnetically following charge stripping of the negative ions in their
passage through thin carbon foils.

The selection of parameters for sector-focused cyclotrons and detailed
determination of their engineering design have come to constitute an im
portant field of specialization in accelerator technology (Howard, 1959;
Siegbahn and Howard, 1962; Howard and Vogt-Nilsen, 1963). Twenty
six isochronous cyclotrons have been listed by Howard and Vogt-Nilsen
(1963) as in operation or under construction in the spring of 1963. With
suitable designs, energy variation may be achieved over a wide range,
a change to a new type of particle can be accomplished rapidly, and beams

';"" of good emittance may be extracted efficiently. In determining the desired
~ variation of magnetic field strength with radius it may be demable to forego
Ul

precise isochronism and to give special attention to the central region where
the size of the gap prevents reliance on flutter focusing. Thus, in the three
sector "88-inch" cyclotron at the Lawrence Radiation Laboratory in Ber
keley (California), for which the pole diameter is 224 em and the minimum
internal magnet gap is 19 em, the flutter focusing becomes effective only
for radii greater than about 19 em and electric focusing is effective only
within a 7.6 em radius (Watson, 1962). The use of trimming coils in various
configurations is helpful to control and to correct the spatial variation of
the magnetic field. "Ion pullers" and "beam clippers" can assist in obtain
ing from the internal ion source a beam whose initial conditions are suitably
defined for subsequent extraction from the cyclotron (Willax and Garren,
1962). An alternative method of injection introduces the beam through a

2' An extensive series of papers on the theory and design of cyclotrons with azimuthally
varying fielqs will be found in the Proceedings of the International Conference 011 High
Energy Accelerators, Dubna, USSR, 1963 (Atomizdat, Moscow, USSR, 1964) and in
earlier publications cited therein. For collections of papers specifically concerned with
detailed problems in the design, construction, and use of cyclotrons with azimuthally
varying fields, see the proceedings of the 1959, 1962, and 1963 international conferences
on sector-focused cyclotrons (edited respectively by Howard, Siegbahn and Howard, and
Howard and Vogt-Nilsen).

Characteristic

Maximum particle energies

Pole diameter
Minimum gap
Average field at rmax
Sectors
Maximum spiral angle
Magnet weight
Magnet power
R-f electrodes
kVjturn (max.)

LRL, Oak Ridge,
Berkeley Tennessee

j 59 p -75 p
65 d ......40d MeV

BOa ......80 a

224 193 ern
19 19 cm
17 17 kG

3 3
55 30 deg

260 190 tonne
1000 2000 kw

One, 1800 dee One, 180° dee
140 200 kV
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2. Microtron

c
4>f

1-

Attainment of
fuil energy

Injection at
low energy

A

been tested in electron models as one means of accelerating particles in
FFAG machines (Cole et al., 1957) and design studies have indicated the
possibility of realizing high performance electron accelerators based on
these methods.

FrG. 10. Time dependence of magnetic flux for betatron acceleration of particles in
a FFAG field, indicating the possibility of achieving a high du~y factor. L1([> denotes the
change of flux that is required to accelerat<;: a given particle from its initial to its final
energy. Particles injected during the interval AS (for example, at 1) will attain full energy
during the time interval Be (for example, a~ 2) as a result of acceleration produced by
the action of LI ([>.

0&
<J

1------------------

An annular FFAG field, with a value of k sufficiently great that particles
with a large range of momentum may be simultaneously held by this field,
affords a means of providing a beam with a very high duty factor by use
of betatron acceleration. The accelerating electric fields would be generated
in such a case by the change of flux in a large separate magnetic core. If the
excitation of the core is such that the total flux change is approximately
twice that required to accelerate particles to the full energy that the guide
field can accommodate, particles injected during the first quarter cycle of
increasing flux will be accelerated to full energy and produce an intense beam
with a duty factor approaching 25% (Fig. 10). Betatron acceleration has

3. FFAG Betatron

Cjct o
The microtron (Veksler, 1945) or "electron synsHro-tron" normally em-

ploys a spatially constant dc magnetic field,22 and achieves vertical focusing
only through the provision of a region of slightly increased' magnetic field
in the immediate region of the radio-frequency cavity (Redhead et al.,
1950; Aitken et al., 1961) or by virtue of the focusing action of the rffields
within this cavity (Bell, 1953; Reich, 1960). A modification that promises
to afford a flexibility in the design that could be advantageous in several
respects is that in which separated sectors, or sectors of unequal field
strength, are employed to guide the particles on the orbits to be described
between successive transits of the rf cavity. In such a separated-sector design
there then may be the opportunity to introduce a desirable amount of edge
focusing at the sector boundaries, and the incorporation of spiral bound
aries may deserve consideration. Although the dynamics of particles in a
microtron are strictly not describable by differential equations with simple
periodic coefficients, some of the analytical methods employed for the anal
ysis of alternating-gradient accelerators will be applicable. The utility of
microtrons employing separated sectors (Moroz, 1956, 1957, 1958) h~s been
discussed in a general article by Rober~s (1958), and an electron accelerator
of this type has been successfully operated (Brannen et al., 1960; Brannen
and Froelich, 1961; Froelich, 1962) at the University of Western Ontario
(London, Ontario, Canada).

22 For a general discussion of the microtron (and of other particle accelerators), see
for example, Kollath (1955), or Kolomeosky and Lebedev (\966).

and 76-inch (ORIC) isochronoU5 cyclotrons that have been operating
respectively since 1961 and 1962 at the Lawrence Radiation Laboratory in
Berkeley (Kelly, 1962: Grunder and Selph, 1963) and at the Oak Ridge
National Laboratory (Tennessee). Each of these cyclotrons permits the
final particle energy to be Yaried and can accelerate various ionic species.
The LRL radio-frequency system covers the range from 16.5 MHz to one··
third this value, thus permitting a transfer to third-harmonic operation
without leaving a gap in the energy range of the accelerator. Similarly the
ORIC system is continuously tunable from 22.1 to 7.3 MHz. The first of
these cyclotrons was designed primarily as a deuteron accelerator. The
usable radius of the ORIC is about 80% as great as that available in the
88-inch cyclotron, and the limiting energies for deuterons and alpha par
ticles for this reason are correspondingly smaller. The limiting oscillator
frequency of 16.5 MHz similarly restricts proton energies (at an extraction
radius of 100 cm) to 59 MeV in the LRL machine.

...
I...

0'1
0'1
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indicating the pronounced limitation of stable amplitude that is imposed by
the quadratic term of Eq. (60a) when Qx is close to N/3.

FIG. II. Phase curves depicting the radial motion in a spirally ridged FFAG accelerator.
The curves were constructed from points computed for the parameters N = 40, k = 128,
f = 0.25, I/w = 2112, and the corresponding small-amplitude oscillation frequency is
such that (1", = 0.647;,:. For larger amplitudes the frequency departs from this value, and
at the limiting amplitude for stable motion (1", attains the value 271/3 that is characteristic
of the unstable equilibrium orbit associated with this nonlinear resonance. The stable
equilibrium orbit is represented by the point at the center of the diagram, and the unstable
orbit by the three "unstable fixed points" depicted by solid dots on the figure.

(61a)

(61b)
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l. Limiting Amplitude When Qx is Close to NI3

The limiting amplitude for a simple nonlinear resonance may be conve
niently estimated through use of an approximate solution of a suitable form
for which the coefficients are adjusted to achieve a harmonic balance of the
terms in the differential equation. Thus a useful estimate of the radial stabil
ity limit that results from the quadratic term in Eq. (60a) may be obtained
very simply by replacing the coefficient of u by Qx2 and employing a trial
solution of the form u = A sin NO13. One thus obtains (Laslett and Sessler,
1956) the approximate result

Nonlinear terms in the equations that govern the motion of particles in
a circular accelerator may infiuence the orbits significantly in some situations,
particularly through the mechanism of nonlinear resonances that can im
pair the stability of the motion. Such nonlinear effects deserve particular
attention in analysis of FFAG accelerators, since the character of the fields
in this type of accelerator is inherently such that appreciable nonlinear terms
necessarily will be present.

In the spirally ridged FFAG design considered earlier, consideration of
nonlinear phenomena requires that Eqs. (52 a,b) be supplemented by the
inclusion of additional terms (Cole, 1956):

~~ + (ax + bx cos NO)u + 2~2 (sin NO) (u 2
- v2

)

- 6~3 (cos NO) (u3 - 3uv2
) = 0 (60a)

d2 y f . f.
d02 + (ay + by cos NO)v - ~ (sm NO) uv + 2w3 (cos AO) zh = 0 (60b)

It will be noted that Eqs. (60a, b) are derivable from a Hamiltonian and
that only terms linear in v have been included. A simple scaling of these
equations will show that, if u and v are expressed in units of w, the properties
of the solutions are expressible in terms of the phase advance per sector
(ax and ay ) of solutions to the uncoupled linearized equations and a param:
eter A= flwN 2 that measures the strength of the nonlinearities (Laslett
and Sessler, 1961).

Inspection of Eq. (60a), with y set equal to zero, suggests that the quad
ratic term can lead to a resonant action when Qx is near NI3 (ax near
2n13). Solutions to the linearized equation will contain terms of frequency
Qx, N =F Qx, . " ; u2 sin NO will have a strong component of frequency
N - 2Qx; and this term can represent a resonant driving function if
Qx ~ N13. By virtue of such action by low-order nonlinear resonances,
phase diagrams that depict the radial oscillations (when constructed for
successive homologous points in the stmcture) become markedly distorted
from simple elliptical curves, and a separatrix then can occur to represent
a limiting amplitude beyond which the oscillations effectively are unstable.
At the amplitude corresponding to the boundary of stable motion, there
will be a periodic solution (for example, with a fundamental frequency rep
resented by NOl3 for the Qx = NI3 resonance) that is represented on the
phase diagram by unstable fixed points (Fig. I I).

D. NONLINEAR RESONANCES

....
I....

0'1
.....:a
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Systematic approaches to the analysis of nonlinear equations with peri
odic coef11cients have been given by Moser (1955a, b, 1956) and by Stur
rock (1955, 1958a, b). Since it has been seen possible by a suitable transfor
mation [Eqs. (31a, b)] to remove the alternating-gradient character of the
coefficient of u, it will suffice for present purposes to illustrate a procedure
similar to that of Moser by its application (for the Qx;;;;' N/3 resonance)
to the equation

d2
r; • (2Q )2 1

dljJ2 T N r; -+- 2 (sin 2ljJ)r;2 = 0 (62)

Jo = 8Gr/8yo = J
1
+ .l (N/Q)3/2J3i2 [ cos(Yo - 2ljJ)

32 1 1 - Q/N

+ cos(Yo + 2ljJ) _ cos(3yo + 2ljJ) ]
1 + Q/N 1 + 3Q/N

Yl = 8G
1
/8J

1
= Yo + .l (N/Q)3/2J1I2 [3 sin(yo - 2ljJ)

64 1 1 - Q/N

+ 3 sin(Yo + 2ljJ) _ sin(3yo + 2ljJ) ]
1 + Q/N 1 + 3Q/N

(65b)

(65c)

that is derivable from the Hamiltonian

1 1 (2Q )2 1.H = - p2 -+- - - r;2 + - (SID 2ljJ)r;3
2 '2 N 6

(63)

1
HI = (2Q/N)J1 - 48 (N/Q)3/2Jr/2cos(3Yl - 2ljJ)

+ 2;48 (N/Q)3JI
2

[ 1 ~Q~~N2 - I +13Q/N ] (65d)

It will be the purpose to transform the variables (r;, P) in such a way that
the ljJ dependence is removed from the cubic term in H; the resultant Ha
miltonian, through terms of this order (and including ljJ-independent terms
of the next higher order), may then be taken as an approximate constant of

::: the motion from which invariant phase curves can b~ co~structedand fixed
~ points determined. This technique in principle can be extended (Moser,

1955a) to displace the If'-dependence to terms of increasingly high order in
the dependent variable.

We shall employ a series of canonical transformations (Goldstein, 1950),
defined by generating functions Go, GI , and G2, to transform the conjugate
variables and their associated Hamiltonian functions successively from
(1], P) to (Yo, Jo), (YI' J I ), and (Y2, J2):

in which only terms independent of ljJ and of Yl have been retained in the
coefficient of J12.

+ 2~48 (N/Q)3J2
2

[ 1 ~Q~~N2 - 1 + ~Q/N] (66d)

again with ljJ-dependent terms omitted from the coefficient of J22.

The detailed algebraic steps required in the transformations (64a) et
seq. have not been shown, but the effect of these transformations is apparent.
The first transformation results in a Hamiltonian that would be a constant
of the motion if no nonlinear terms had been present in Eq. (62)-that is,
if only quadratic terms had been present in the Hamiltonian shown in Eq.
(63). The second transformation was so chosen as to remove from the Ha
miltonian all ljJ-dependent terms in the coefficient of Ji /2 save that associat
ed with the resonance Q/N,....., 1/3. The third transformation removes this
remaining ljJ-dependence from the cubic (J~/2) term.

Without pursuing the analysis further, the Hamiltonian shown in Eq.
(66d) may be taken as an approximate constant of the motion and the in-

(66c)

(66a)

(66b)

3. G2(YI ,J2) = J2 • (Yl - ~ ljJ)

J1 = aG2/8Yl = J2

2
Y2 = aG2/aJ2 = Yl- TljJ

'H = - (2 - 2
Q

) J _.l (N/Q)3/2J3/2 cos 3y
2 3 N 2 48 2 2

(65a)

(64a)

(64b)

(64c)

(64d)

1. Go(1], Yo) = (Q/N) 172 cot Yo

P = aGo/ar) = (2Q/N)17 cot Yo

Jo = - aGo/ay = (Q/N)r/ csc2yo

Ho = (2Q/N)Jo + 4
1
8 (N/Q)3/2J~/2

x [3 cos (Yo - 2,p) - 3 cos (Yo + 2,p)

+ cos Oyo + 21jJ) - cos (3yo - 21jJ)].

2 G ( J) = J _.l (rv/Q)3'2J3!2 [3 sin(yo - 21jJ)
. I Yo, I lYO 96 1 1 I - Q/N

3 sin(yo + 21jJ) _ sin(3yo + 21p) ]
+ 1 + Q/N 1 + 3Q/N
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it is seen that, for operation close to the resonance, the displacement of
the unstable equilibrium orbit at 1p = 0 (mod 71:) attains the magnitude

since QIN::: 1/3 and x::: 1 [Eg. (67c)]; for 1p = =t= 71:14 (mod 71:), however,
a similar analysis leads to the amplitude

verse transformations employed to obtain equations for the "invariant phase
curves" of a P, 17-diagram. Other charactc!ristics of the motion, such as the
variation of the oscillation frequency with amplitude, may similarly be
determined (Laslett, 1959).

Of particular interest in defining the limits of stability are the three un
stable fixed points, for which the Hamiltonian is stationary. From Eq.
(66d), this condition is satisfied when

32 I Q I IDiSPII~~o = V3 Ii - 3 (70a)

Y2 = - 71:13, 77:13, or 71:

J 1/2 _ ( 1 Q) (Q)3/2
2 -64:>c --- -

3 N N

(67a)

(67b) ,
AmPII = 64 I Q 1 I

r--n/4 3 Ii - 3 (70b)

for the coordinates of the three unstable fixed points. From Eg. (68a)

The inverse transformation to the original variables (P, r;), although tedious,
is straightforward. For a phase diagram pertaining to !p == 0 (mod 71:) one
obtains

r;=0

(
I Q) (Q)2P = - 128 3 - N N x

x {I - [1 _(~/N)2- 1+ ~QIN] (-} - ~ ),,}

2. Analysis of Coupling Resonances

Analytic methods analogous to that just presented for the Qx = NI3
resonance can be applied to other essential resonances in one degree of
freedom, to the effect of forcing terms that can result in effects attributable
to a machine resonance (perturbation of period Co), and to coupling reso
nances.23 The effects ofcoupling, due to a sum or difference resonance, have
been examined computationally and analyzed by a technique similar to
that of Moser (1955a) by Meier and Symon (1959). In this latter work the
coupling term in the Hamiltonian was taken to be proportional to uv2 • L1(NO)
where L1(NO) is it periodic delta function of period 271:1N, since the computa
tional work could then employ a sequence of simple linear and nonlinear
algebraic transformations that made it feasible to perform individual com
putational runs extending through as many as 106 sectors.

Of particular interest is the character of orbits that are influenced by
sum or difference resonances. Because of such coupling resonances, an ini
tially small amplitude of axial oscillation may experience a pronounced
growth, provided the amplitude of the radial oscillations is above a certain
threshold value. This threshold will be low, and the rate ofgrowth correspond
ingly large, if the oscillation frequencies are close to values th~t satisfy a
resonance relation [gxQx + gyQy = g or gN (for machine resonances or
'essential resonances, respectively), where gx, gy, and g are integers (of
small absolute value) and with gy even if there exists a symmetry plane that
excludes odd powers of y from the Hamiltonian.] Although the axial growth

23 The effect of a perturbation whose wavelength is equal to three periods of the magnet
structure has been reported by Laslett and Symon (1959).

in agreement with the approximate result suggested for this case by Eq.
(61a) of the text.

(69a)

(69b)

(68b)

(68a)

(67c)

(67d)

(1 + 4~)1/2 - 1 • 1 _ g+2g2 _ 5g3+14 g4 _ •..

(1 Q ) [ 6Q IN 1]
= 2 3 - N 1 - (QIN)2 - 1 + 3QIN

17 = ± 32V3(~ -~) (~):>c3 N ,N

x {l- [1 _(~/N)2 - I+~QIN] (~ - ~) x}

P=64(~ - ~)(~rx

x {I + [1 _~~/N)2+ 1,+ ~QIN] (~ - ~ )x}
and

:>c

g

and

where

....
I....
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The threshold amplitude for radial motion, above which growth of the
axial amplitude will occur, thus becomes

(76a)

(76b)

(75a)

(75b)

(74a)

(14b)

I Qx2 - (2Qy)2 I . 2 i bvC.>,Qx/N3 + dy I

= 4 J2 Qx I A I
WI N3

w3N3

I A Itbr = 4PQx I Qx2 - (2Qy)2J

I A~tbr = 1~ ( :N2 f2 (;ftl (;r-(2;y rl

(
f )2 I A I(py) lllax = 271: WN2 -w nepers/sector

with a maximum value

or

Similarly, the growth rate when this threshold is exceeded may be estimated
(Laslett and Sessler, 1961) as

(
f )2 (A2 - A 2)112

Py = 271: WN2 ... thr nepers/s~ctor,

attributable to a single difference resonance in principle may be bounded,
it could lead to orbit excursions that are undesirable in practice and may in
fact result in loss of particles through an enhanced action of other reso
nances (Meier and Symon, 1959).

Estimates of the threshold for axial growth, and of the initial growth
rate to be expected if this threshold is exceeded, may be obtained conve
niently by regarding the axial motion as governed by a linear differential
equation in which the coefficients have been modified by the substitution of
a prescribed radial oscillation in the coupling terms. This introduction of a
specified radial motion in a non-Hamiltonian manner was suggested by
Walkinshaw (1956); the technique has been applied (Laslett and Sessler,
1961) with considerable success to the analysis of several coupling resonances
that are expected to be significant in a spirally ridged FFAG accelerator,
and appears to be entirely justifiable for the rather small axial amplitudes
that this type of accelerator normally can accept.

To apply this technique to the prominent Qx == 2Qy resonance in par
ticular, one retains in Eq. (60b) the coupling term that is proportional to
uv, and substitutes for II an approximate solution to the linear equation for
the radial motion [Eq. (52a)]:

u • A [sin QiJ + ll~2 sin Q/J cos NO - 2 ~;;3 cos Q/J sin NO] (71)

joooo<
I

joooo<

.....:a=
The resulting differential equation for v then becomes E. ApPLICATION OF FFAG PRINCIPLES TO ANNULAR ACCELERATORS

~;~ + [ay + by cos NO + cy sin QxO sin NO + d.u cos QiJ]v = 0 (72)

where ay and by are given by Eqs. (54b) and (54d), respectively,

Cy = - Af/w2, (73a)

and

dy = AJ2Qx/W3N3 (73b)

Electron models of annular FFAG accelerators have been 'constructed
(Cole et a/., 1957; Kerst et a/., 1960; MURA Staff, 1959, 1961b; Curtis et a/.,
1964), and have been operated both with betatron and synchrotron accel
eration. Larger accelerators of this type are of interest because of their-flex
ible duty factor, and because of the resultant potentiality of providing in
tense beams and the ability of building up very strong circulating currents
within the accelerator. High intensities, if not precluded by unanticipated
instabilities arising from collective effects, would be advantageous in experi
mental investigation of fundamental processes of low cross sectiOn that are

Equation (72) may be regarded as a Hill equation if we :mppose (artifi
cially) that N/Qx is rational, and it will have unstable solut,ons in regions
whose boundaries can be found conveniently by a variational method
(Laslett and Sessler, 1961)24:

into

(} J t{(dv/dO)2 - [a" + b" cos NO + c" sin Q",O sin NO + d" cos Q",(i]v2} dv = 0

leads to

24 Insertion of a trial function

v= Bl cos Q/J/2 + Pi cos (N - Q",/2)O -+- P2 cos (N + Q:rJ2)1J

PI,2/Bl ~ !(b" ± c,,/2)(l ± Q",/N)/N2

and to a stability boundary that has been cited in the text. The second boundary to the
zone of instability is similarly given by use of sine functions in the trial expression for v.
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significant in the study of elementary-particle physics, for the production
of high quality secondary beams, and to permit the use of colliding beams
to achieve center-of-mass energies greatly in excess of those that result
when a beam strikes a stationary target.25

The Midwestern Universities Research Association staff has completed
designs for spirally ridged FFAG proton accelerators with maximum ener
gies of 10 GeV (cl MURA Staff, 1961a) and 12.5 GeV, and recently prepared
a similar analysis for a 500-MeV machine of this type that could serve as a
high-intensity injector in a cascade-synchrotron facility (Snowdon, 1964).
Table IV presents the major design parameters of these proposed facilities.

TABLE IV

MAJOR DESIGN PARAMETERS
FOR HIGH-INTeNSITY FFAG PROTON ACCELERATORS (AFTER M.U.R.A.)

The magnet design employs radial blocks, to which are bolted spirally
oriented poles that are provided with individual excitation coils. A non
energized "zero pole" is located between each pair of spiral poles in order
to increase the effectiye flutter ('" I) that can be produced in the magnetic
field. Induced radioactivity and radiation damage can present problems in
the maintenance of high-energy accelerators of this type, or of any other
that is designed to achieve high intensity. Efficient beam-handling tech
niques, especially for extraction of the high-energy beam, and the selection
of suitable construction materials therefore should be regarded as highly
important features of the design.

5.3.6. Notes

Note I

...
I...

-..I...

Maximum energy (kinetic)
Injection energy
Radius (Co/2:n)
N
k = (e/B) (dB/de)
l/w

Q"
QlI

Aperture
radial"
axial f

Magnet weight (total)
Magnet-excitation power

a For O.5-GeV equilibrium orbit.
b For 1O.0-GeV equilibrium orbit.
c For 12.5-GeV equilibrium orbit.
<l Number of superperiods is ltN
• Region of good field

0.500
20
6.858 a

16 d

8.2
75

3.211
2.256

1.346
5.08
2.54 u

410
3.4

10.0
200
72.0 b

48 d

85
536

9.78
6.29

2.75
19
10 A

15000
31.5

f Within chamber
u At R = 6.934 m
A At R = 72.1 m
i At R = 88.75 m

12.5 GeV
200 MeV
88.6 c m
48 d

85
548

9.78
6.29

3.42 m
15.2 cm at inject.
7.6 i cm

22000 ton (metric)
47.2 Mw

The quantity g is commonly termed the "momentum compaction factor"
in the literature and is frequently denoted by a or Ija. Since the time for a
particle to complete one revolution around the accelerator is given in terms
of its speed and its average orbit radius by

T = 27l'(Qo + <X)av)/V,

bT/T = <X)av/(}o - bV/Vo = [1/g - (E/moc2)-2J(op/Po);

The quantity J/g - (E/rnoc2)-2, accordingly, will enter as a factor in deter
mining the frequency of phase oscillations. If g > 1, as is the case for al
ternating-gradient synchrotrons of the type considered here,. there will be a

"transition energy," ET = V[moc2, above which the equilibrium phase
angles possible for stable phase oscillations are no longer less than n/2
but become greater than n/2. An expansion of Eq. (35c) leads to

g • (71:2 /12) (n/N)2[1 + (w/2520) (n/N2)2 + ...]

so that, through use of Eq. (34), we obtain

g • Qx2[1 + (w/40) (nfN2)2J-l = Qi[l + 3ax
2/40J-1

'5 At highly relativistic energies, the reaction energy that is available in the center-of
mass system when a particle of rest energy Moc' and total energy £1 strikes a similar sta
tionary particle is £cm ;:::; [2£I(Moc')]'/', whereas two colliding beams of particles with
energy £ make available an energy of 2£. This latter energy thus is equivalent to that
obtained by a beam of energy £1 =2E'jMoc' directed against a stationary target. A
"two-way" design (MURA Staff, 1959, 1961b; Curtis et af., 1964) for a FFAG accelerator
represents one means by which colliding beams of sufficient intensity might be achieved,
but recent interest in the construction of a facility for colliding proton beams has been

for small ax. It is noted that replacement of Eq. (35) by the nonalteinating
gradient equation cf!x/ds2 + (Q//e02)x = (I/eo) (bp/po), for which the

directed toward the use of separated-function alternating-gradient "storage rings,"
into which particles could be injected from an accelerator such as the CERN 28-GeV
proton synchrotron (Hereward et aI., 1961; Johnsen et af., 1964; Schnell, 1964; Fischer,
1964;. Ferger et af., 1964).
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same transverse-oscillation frequency would apply, would lead directly to
~ = Qx2

• ~ will tend toward zero as the (Jx c= 0 stability boundary is approach
ed, but it appears infeasible to attain negative momentum compaction
within the first zone of stability for the free radial oscillations (0 < ax < rr)

in a conventional alternating-gradient accelerator. By use of reversed fields
in a fraction of the magnets, however, a noncircular equilibrium orbit will
result for particles with the nominal momentum Po , and it has been found
possible to achieve in this way a very large momentum compaction factor
(and so obtain a very high transition energy, that may be placed above the
maximum energy of the accelerator). Reversed fields were proposed for
this purpose by Vladimirskij and Tarasov, and the method has been used
with the 7-GeV "synchrophasotron" at the Institute for Theoretical and
Experimental Physics in Moscow-for parameters and dis::ussion of the
design of this accelerator see Vladimirskij (1959).

Note II

where bk,j is unity for j = k and zero otherwise; similar deviations arise at
the centers of the other focusing regions, that are situated between two
monuments.

If the independent surveying measurements have a common standard
deviation, Ch, the standard deviation of any particular Xk that results from
these uncorrelated errors blt j is -

{
.If [ .II ( 8Xk ) (8(br j ) )]2}1!2

(Xk)rms = E1 j~1 8(brj) 8(blt
j
) ch

The value of this sum may be readily approximated when Q is close (but
not equal) to an integer H (so that I Q - H I~ M), since the effect of
this single harmonic then will dominate in the orbit response. The Fourier
amplitudes of the monument displacement that results from a single sur
veying error and of the closed-orbit response to the movement of a single
monument are, for this harmonic,

The more tedious evaluation of the exact sum has been carried through
by Smith (1964), with the result

( _ 1 (M/2 3!2 fJ Ix)rms - - ) -R I . Q I Chn SIll rr

respectively. Then

nH
sin2---xT

(for H~M)

2rrQ
sin M

2nQ 2nH
cos-- - cos -'-

M M

2 f3 sin2 nH/M
-nS IQ-HI

4 f3
A 2 = MS

A
_ 1 2 nH

1- M CSC M

(X)rms ~ (M/2)3/2(A1A 2)Ch

_ 1 (M/2)1 12 f3 1- n ' S I Q - HI Ch

_ 1 (M/2)3!2 f3 1
- n 2 Ii. " Q - HI Ch

and

The magnet structure will be assumed ;~o be such that there is an integral
number, m = N/M, of periods between aojacent monuments and each mon
ument will be assumed to be at a point of symmetry where ex = 0 and
f3 = f3 max' If each magnet block is then positioned with respect to the two
nearest monuments, the deviations of the closed orbit (from the center line
of the magnet blocks) at the monument locations are

As an example of one source of closed-orbit deviation for which provision
would be made in selecting the radial aperture of the accelerator, we con
sider a surveying system based on M monuments that nominally are equally
spaced within the magnet enclosure. The assumed surveying procedure will
involve (1) measurement of the inter-monument separations (S) and (2)
measurement of the perpendiculars (It;) dropped from monuments M i to
the straight lines connecting monuments M;-1 and M i +1 • When M is large,
the radial position of the monuments is determined primarily through these
latter measurements. A least-squares analysis of the appropriate difference
equations leads to a radial error in the position of the jth monument, ex
pressed relative to the mean radius, thaUs given in terms of errors bh; in
the individual quantities hi by (Laslett and Smith, 1966)

brj = 6~ i [M2 '- 1 - 6M I j - i I + 6 I .i - i 1
2]oh j

'=1

fJ sin2 nQ/M .'; [ tan :rQ ] ( Ik - jl)
Xk = 2 -S -'-Q- L; 1 - Q/M (jk,j cos I - 2 -M :rQ (5rj

SID n j~1 tan :r

....
I....

......
t-)
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Although the closed-orbit deviation at any particular observation point
may be expected to have a probability distribution that is Gaussian, and
will be strongly correlated with the deviations at other observation points,
the probability distribution for ; x Imax in each member of an ensemble of
accelerators should be considered in selecting the amount of aperture that
is to be provided to accommodate the orbit distortions that result from er
rors such as have been considered here. To insure that the aperture will ac
commodate these deviations all around the accelerator with a high degree

of probability (> 98%), a semiaperture allowance of 2-Y2(x)rms has been
proposed (Courant and Snyder, 1958) and independent Monte-Carlo com
putations suggest the advisability of increasing this estimate by an additional
20% (Keil, 1965; Laslett, 1965). One thus obtains a desirable semiaperture
allowance of

± gM3/2.l 1 E
n R I sin nQ I h

= ± g M3/2 f3<l/f3>av E
n Q I sin nQ I h

_ I 2.4 f3<l/f3>av Vii
- :I a m3/ 2 I sin nQ I Eh •

If m = 2, a = n 14, f3 <II(J>av = 1.57, and sin nQ = 1Iv'2, this last result

suggests a contribution of 2.4VNEh to the required semiaperture. Since this
analysis illustrates the effect of only one source of closed-orbit deviation,
and other constructional errors may lead to somewhat greater effects, the

value 7VNEh adopted in the text may be considered reasonably represen
tative of the semiaperture allowance that should be made to accommodate
all such errors.
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and
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1. Introduction:

As a sequel to the January 9 meeting of the Mid-West Technical
Group, Dr. Kerst suggested that it would be desirable to record
equations which have been used in discussion of space-charge
effects and to exhibit some of the grave consequences suggested
by use of these equations. The present report is in compliance
with this suggestion, but is written with the following reservations
in mind.

(i) Concentration of attention on space-charge effects, which
will be most prominent at low energy, should not cause one to
overlook other phenomena,1,2 not readily analyzed, which may play
important roles at injection.

(ii) Analysis of space-charge effects on the basis of an
assumed form for the charge distribution may be seriously in
error if the particles of the group considered can execute oscilla
tions which result in a distribution differing from that assumed. j

It is suggested, however, that application of the present
formulas to a group of particles moving non-coherently will provide
an approximate indication of dangerous values for design para
meters.

2. Statement of Formulas:

A. Effective Change of "n", Rudimentary Derivation--

For a beam of constant charge density ~ throughout a
cross-sectional area of constant radius ~ , the total charge 2 is

A

( 1)

where Ro represents the orbit radius.
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2

The net defocusing electric and magnetic force experienced, as
a result of the space-charge, by a particle within the beam at a
distance y from the axis, is

F 5 • C. - *0 - f' 0 v
2

) Yf

-....!....- (1_p2) Yf
2Eo

_ qe~1_p2)y, in "rationalized" (MKS) units. (2)
41£' Eo~~Ro

The focusing and defocusing forces produced by the magnetic field
of the accelerator are

F - n evBoy
Z - Ro

E a2y
- n Tr-:""""2- ,

Ro
2

ET~2Y(l-n) ,
Ro

or (3a)

(3b)

(4)

• 16nlq

16nl

with ET representing the total energy of the particle.

The force indicated in equation (2) is thus equivalent to a
reduction of n in the equation of axial motion, and an increase
in n in the radial equation, by

2_ qeRo l-P"
41l'2E42~ ;

o r T

4'(2 E A 2 2 E 3
- 0'"' 8 T-,- ::--z

e Ro Eo

= (Eo/e )volts
600hms

. (a)
Ionl .

(5 )

(a)

~o =
[-(-41l'-X-10---7-~-H/-M-C-M-/-se-c"""2] faradjM -

1
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3

If this analysis is accepted, it can be seen that the result of
the space-charge is equivalent to effecting a translation of the
operating point at right angles to the diagonal of the "necktie"
diagram.

For comparison with similar results stated elsewhere, it is
also of interest to write the associated "current"

i • q (t9c/circumference)

= (Eo/e)volts (1..)2 3(ET)3 -16nl
600hms Ro P Eo

amperes. (6)

B. Comparison with Previous Results --

Equation (5) is consistent with a non-relativistic result
given by Kerst4 for a conventional betatron, if we identify I&nl
with the limiting tolerance (l-n) for radial stability. Again
in application to a conventional synchrotron, Judd5 considers
unequal radial and axial focusing and derives the aperture
requirements for a beam of elli~tical cross-section. His results
also agree with our equagion (5) in the case n = l-n = 1/2 =l&n' .
Similarly, J. P. Blewett has also considered an elliptical beam
in a conventional betatron with n = 3/4 and Ro = 0.833 Meter.
Finally, Barden1 originated the equation (5) in the form cited
here and has suggested considering its application to an alternate
gradient accelerator in terms of the permissible variation of n.

C. Estimate of a Tolerable 16nl --

In application of equation (5) to an alternate-gradient
ator, Barden7 originally suggested that one require

2
I &n I < 0.006 Ns ,

acceler-

where Ns represents the number of magnet sectors. This suggested
limitation was possibly motivated by the observation that the
overall width of the necktie diagram, projected ont~ the nl or n2axIs, corresponds approximately to l&n' =0.03 Ns ' Thus a
variation of about the amount suggested by Barden would carry the
operation point from the diagonal almost half-way towards the
edge of the stable region.

In view, however, of the present concern about integral and
half-integral resonances (as well as sum resonances), it appears
more prudent to allow variations of n only within one of the
small diamonds situated along the diagonal of the necktie diagram.
Since the characteristic solutions for the particle trajectories
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involve a factor exp(+ik) for traversal of a sector pair, the
separation of integraL resonances corresponds to

= 21C
Ns/2 '

or (8a)

lcS(cos k)l (8b)

similarly, movement from the center of a small dia~g~d, bounded
by integral and half-integral resonances, half way\ 1 towards
the edge corresponds to

orlhkl - 1t'/4 ,
Ns/2

U(cos k)1 = (1t/4) sin k
Ns /2

(9a)

(9b)

With the
in sectors of

cos k : cos

index n alternating
equal length,

21Tn l
l

/ 2

between nl and n2 = -m-

nl - m 2rrnll/2

2 IJ2 1/2
sin

nl m Ns

(10)

21t'n l / 2
+ sin ......;.,.....N--

s

&n = -8m.. and in the neighborhood of
I

For variations such that
the diagonal ..

{

'it [. 21{n1/2 21(n1/2
&(cos k) = 1/2 cos N sinh N

n N . s s
s

cosh 2lrn1/21+ l sin 21(n1/2 sinh 2"N
1

/
2
}SnJ .

Ns J n Ns s
(11)

A conservative limit to the acceptable I&nl thus appears to be

(nl / 2/2) sin k

1/2 1/2sin2rrn sinh2~n
Ns Ns

(b)To afford some latitude for other possible variations of the acceler
ator characteristics .. as would arise for ixample from remanence.
It may also be noted that .. as J. B. Adams ~ has pointed out .. pa~~
withh momiotum different fr9m the equilib~i~m momentum are presented
wit a C1 fferent n value t,.sn,~no·AP/Po).
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(13a)

5

Accordingly~ near the center of the necktie where nl / 2/Ns ~ 0.25~
sin k ';!! 1 and

I t' nl n1/2/2 0 0 1/2
o ~ cosh ~72 + (47~) sInh ~72 = • 919 n = 0.0230 Ns ;

similarly at an operation point for which nl / 2/Ns ~ 0.1778, sin k
~ 0.671 and

(n
l
/ 2/2) 0.671 = 0 078 nl / 2 = 0.0138 Ns '

4.314 . (13b)

The above criteria suggest~ as a typical tolerance in an
accelerator with n in the range of 400 to 500,

I~nl ':::::t 1.8.

Livingston9 appears to have considered a similar approach to
the problem of estimating space-charge limitations.

3. Numerical Results:

In application of equation (5) to estimate the beam which can
be held in an alternate-gradient synchrotron at the time of injection,
two alternative view-points may be considered. If one considers
that the injected beam spirals inward,lO,ll due to the rising
magnetic field, equation (5) may be considered as giving the
maximum charge per turn and ~ might be taken as one-half of the
pitch required for the spiral to clear the inflector comfortablY;(C)
in this case the acceptable injection current is the limiting charge
per turn divided by the period of revolution and the total charge
is the charge per turn times the number of turns accepted. If, on
the other hand, the details of the injection process are ignored,
equation (5) might be regarded as giving the total possible charge,
with ~ representing the useful semi-aperture of the accelerator,
and the acceptable injection current would be this charge divided
by the estimated duration of the useful injection interval. In
either case, the expected useful beam from the accelerator will be
no more than about one-half of that successfully injected, due to
(for example) incomplete capture into the synchrotron phase.

In estimating the manner in which the acceptable injection
currents will depend on injection energy, one must take account
(In the non-relativistic case) of the energy dependence of the
period of revolution. The bunching action of a R.F. linear
accelerator has been sug~e!ted12 as aggravating the space-charge
effects~ but it appears I , 3 that a slight inherent energy
inhomogeneity suffices to smooth out the charge distribution
within a distance less than one circumference.

(c) Supposedly this pitch would be at least twice the beam radius
plus the radial thickness of the deflecting electrode.
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A numericalexaT~le of space-charge limitations has been
given by J. B. Adams in connection with a proposed CERN
accelerator design. Adams states his conclusions in terms of
maximum current, which is presumably i = q(~c/circumference).
With n = 392, we expect I&nl~ 3 to carry the operating point to
near the edge of a diamond. (d) If, following Adams, we take
~ = 0.4 cm-rthe radius of the injected beam), Ro = 8600 cm,

Kinetic Energy = 50 Mev, and p = 0.314, we find from equation (6)
that

i = 1.2 x 10-3 ·\~n\ amperes

constitutes a limiting current (for one-turn injection) similar to
the 3 rna cited by Adams.

We give below a table of permissible values, calculated ()
from equation (5), for a circular accelerator of 8650 cm radius e
and with the permissible I&nl limited to 1.8. Kinetic
energies for proton injection of 4 Mev and 50 Mev are considered.
In addition, we first consider an injected beam of 0.3 cm radius,
spiraling inward so that injection continues for six turns; secondly
we consider a total beam of 4.0 cm radius, without regard to the
details of the injection process. It is noted that the estimated
acceptable injection currents for 50 Mev injection are about 45
times those for 4 Mev (proportional non-relativistically to the
three-halves power of the kinetic energy).

4. Conclusions:

From the foregoing examples it is clear that space-charge may
seriously limit the beam currents in certain of the accelerator
designs presently under consideration. It is important, therefore,
to be as certain as ~ossible concerning the following pointsj

(i) Is the conventional analysis presented here valid?
(ii) Are the integral and half-integral resonances so important

that space-charge should not be permitted to displace
the operating point across such resonances?9

(iii) If the present analysis is considered adequate, is it
best to associate A with ~he radial width of the
proposed injected beam,~,l with the pitch of the
spirallO,ll described by the injected beam, or with
the semi-aperture of the accelerator?

The advantage of injection at high energy is apparent, if the
injector supply can deliver the currents desired. It would be
unfortunate to have an injector system incapable of delivering
the desired currents, but it would also be frustrating to have
designed an accelerator which could not accept the injection
(aJ or see diagram VI of Adams' paper. 14

(e)Such a radius would permit, for examp~e, attainment of 25 Gev
in a field of 10,000 gauss (1 weber!M ).
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EXAMPLES OF ESTIMATED SPACE-CHARGE LIMITATIONS

RO = 8650 cm, "nl = 1.8

I00w

~ = 0.3 cm ~ = 4.0 cm

Kinetic Revolution Charge Charge Partic1esl
1 {rna), Particles,

Energy i assuming Tqtal if assumingp Period RevolutIon (rna) 6 Rev. Charge inject
of j-lsec (coulombs) (coulombs) 50~ ,poulombs) for 50~

Protons capture 1 Rev 6 Rev
capture

50 Mev 0.311 5.76 7.1 x 10-9 1.2 42 x 10-9 13 x 1010 26x 10-6 220 36 3.9 x 1012

4 Mev o.09~ 19.7 5.3 x 10-10 0.027 3.2 x 10-9 1.0 x 1010 9.4 x 10-8 4.8 0.80 0.3 x 1012

The computed acceptable charge is rather considerably greater for electrons (which one could
easily inject at high energy from a linear accelerator of the Stanford type) than for protons of
the same energy. For injection energies which are relativistic for electrons and non
relativistic for protons, the ratio qelectrons/qprotons appears to be apprOXimately

,Total Electron Energy)3
2 (Proton Kinetic Energy) (Electron Rest Energy)2 '

or about 5000 for 50 Mev injection.
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5.

8

currents which it was planned to attain. Attention should beglven,
moreover, to the avoidance of R.F. voltages which would bunch
the beam to an extent that space-charge would cause the beam to
expand beyond the bounds of the effective aperture. The space
charge effects appear to be considerably less serious in comparable
electron accelerators.
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MURA nOTES
L. Jackson Laslett
1 February 1955

APPROXIMATION OF EIGENVALUES, AIID EIGENFUNOTIONS, BY VARIATIOm METHODS

1. Motivation

In consideration of various accelerator designs employing the
alternate-gradient principle, one is often faced with the problem of
determining the values of the design parameters at the limits of stability.
If one knows the general character of the solution to the differential
equation at such points one may substitute a suitable simple trial function
(or simple trial functions), containing adjustable parameters, into the
associated variation problem and readily determine the eigenvalues with
considerable accuracy.l It is the purpose of the present note (i) to
illustrate the use of vaxiational methods in a simple boundary-value
problem where the dependent variable is fixed at the boundaries, (ii) to
apply a similar technique to the Mathieu equation. for which the eigen
solutions are periodic, and finally (iii) to point out the applicability
of the method to a problem arising in connection with the analysis of a
Mk. VFFAG accelerator.

2. Example Concerning! Boundary-Value Problem in which the Dependent Variable
is Fixed at the Boundaries

We consider the differential equation

y" + 'A y = 0, with y(,:tl) = 0 •

The simplest solution to this problem is kno~m to be of the form.
n n2

Y1 = cos'2x and is obtained when 'A = 1j:'"" •

The above problem is equivalent to the isoperimetric variation problem
in which we seek a function, such that y(,:tl) =0, for which

;
1 ..1 2

& yl2 dx = 0, subject to j y dx = const. (say 1) ~
-1 -1

that is, introducing the Lagrange multiplier -'A, Euler's equation for

5 ! 1 (y1 2 _ 'A y2) dx = 0
-1

is our original differential equation y" + 'Ay = 0 •

A trial solution (even in x), satisfying the boundary conditions,
mq be taken of the form

y = (1 - x2)(~ + a2 x2) ,

for WhiCh;l 2 8 16 2 16 'X2 88 16) 2
-1 (yl - 'Ay2)dx = ("3-15).) al + (15 - t65A)~a2 + (105" 315). &2 •

The latter expression will be stationary when

(136 - ~'A) ~ + (~~ - 1355).) a2 = 0

(16 ~) (176.E.. ) =
15 - 105A ~ + 105 - 315A a2 0
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We accordingly find that A must be given by

;\2 - 28;\ + 63 = O.

of which the lesser root is A =14 - (133)1/2 = 2:467437 and. ~ = -0.22075.
TT2 ~

This value of A may be compared with 1+ = 2.467401100022 .•. ; the inclusion
of additional parameters in the trial function would permi t further improve
ment of the estimated value. [The use of three constants (~, a

2
, a

3
) has been

reported (Buck) to give ;\ = 2.467401108 J
It may be noted that with the trial solution normalized so that our auxiliary

( l_..? ~l 2
integral (in this case"_l y-dx) ,is unity, the value obtained for)_lY' dx

m~ be shown to be cur value of A and will be greater than the exact eigenvalue.

The equivalent variation problems for other differential equations with
other types of boundary conditions are pre~ented in Courant-Hilbert2• Ch. IV,
Sect. 5. esp. p.182. One may further note that, in particular, with
J of the form

ffX2
J = jXJ. F(x. y, y') dx ,

oJ = ~F oy x2 _ J!1X2r .E:..( ~F ) - fl]8 dx·
1y l Xl ~ - dx ";y' .lJy Y ,

accordingly if :;, is independent of x or periodic (period x2 - xl) in x,
boundary conditions requiring y to be periodic (period x

2
- ~) result in

the variation problem again reducing to the problem governed by Euler's
equation

d P'F JF
dx (p yl) - 7J y = 0 .

3. Character of the Eigcnsolutions of ~ Mathieu Equation

At the stabili ty boundaries for the Mathieu equfl.tion,
2

.!..l + (a + l6qcos 2x) '1 = 0,
dx2

the characteristic bounded solutions are periodic, ''lith period 'IT or 2'IT.

When q= 0, the periodic solutions are, of course,

1 cos x
sin x

cos 2x
sin 2x

cos 3x
sin 3x ...

the Mathieu functions which reduce to these foms when q~O ' are
designated (notation of vfuittaker and Watson3)

ceo(x,q) cel (x,q) oe
2

(x,q) ce
3

(x,q)

se
l

(:s, q) se
2

(x, q) se
3

(x, q) ..• ,

the functions in the first line being even functions of x and those in
the second line odd functions.
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The stability boundaries arp. given in series form for the first few
cases3 and are also listed in tables4 ; coefficient~for the Fourier expan
sion of the eigenfunctions are likewise available3. • The stability
boundaries are graphed in Fig. 1 and the character of the solutions illus
trated in the accompanying Table I. The solutions of the table are arranged
in the same orde~ as the ~2antities appear on the gra~h. The quatities
beo ' bOlt bel' ••• are tabulated as functions of s = 2116 ql in ref.4 ,as
are the coefficients in" Fourier expansions of the even functions Seo'
Sel' ••• a.nd of the odd functions Sal' 592' •••: for q < 0, these functions
give the desired solutions if we set s = 2( -lGq), while, for q:> O. we
set s = 2(16q) and replace the argument by x ':j: ff/2 •

4. Approximation, .El Variational Methods, .2! Eigenvalues and Eigenfunctions
for Mathieu Equation

The first eigenvalues of ~~thieu's equation (given by beo' bol , bel' b02)
may be approximated by a procedure paralleling that employed in the example
of Section 2. We consider, in this connection, the variation problem for
the :t:.~~ of the eigenfunctions

S
2'TT 2 2 2

5 (y' - ay - 16 q yeas 2x) dx = 0
o

into which we introduce periodic trial solutions.

(i) For the first stability boundary we employ trial solutions, even in x
and of period 'IT. of the form

Ao + ~ cos 2x + A2 cos 4x +

If only two terms are retained, the integral becomes

This expression is stationary if

- 2a Ao - 16 q ~ = 0

-16q Ao + (4 - a) A:L = 0 ;

and gives us a relation from which one obtains a good first estimate of the
first stability boundary:

(16q)2 = 2a(a- 4).

We thus obtain, for the first stability boundary, /
/

21 2
a ,,; -2!(l+ 32q2)l 2- 1 7, A-/A'; (1+32~) -1 and,

- - -'1. 0 q

by way of example, if 16 q = .:t4 ,

a ,; -1.464 AllAo . .:t 0.732 (the sign being that of q).

@he second root for "a" is 2/Jl+ 32q2)l/2 +1] or, in this example,

5~464 with ~/Ao ~ :F2.·tJ2.]
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TABLE I

CHARACTER OF EIGENSOLUTIONS m MATHIEU EQUATION

C1

a
'0 I TT TT I 21T 2TT

beo (32q) - 16q bOl <32q) - 16q : bel (32q) - 16q b02(32q) - 16q be2 (32q) - 16q

3Tr ; 311

b0
3

(32Q) - 16q ibe3(32q) - 16q

1.0 sin x cos x
- 0.3260 cos 2x - 0.0785 sin 3x . - 0.0930 cos 3x
+ 0.0138 cos 4x + 0.0022 sin 5x . + 0.0027 cos 5x

cos 3x sin 3x

se
3

ce
3 I

\Jl

(From S03) (From se3' I

sin3x cos 3x

ce3 se3
- 0.1972 cos x - 0.3140 sin x
+ cos 3x + sin 3x
+ 0.1269 cos 5x + 0.1288 sin 5x

sin 2x cos 2x

se2 ce2

(From se2 ) (From Se
2

)

sin 2x cos 2x

se2 1 ce2
sin 2x - 0~3866

+ 0.1639 sin 4x + COS 2x
+ 0.0102 sin 6x + 0.1870 cos 4x

se
1

ce
1

cos x sin x

sel I ce1I

(From Sal) (From Se1 )

;

sinx cos x

ceo

1

ceo

(From Sea)

1 .0 cos x sin x
+ O.7570cos 2x + 0.195300s Jx: • + 0.3104 sin 3x
+ 0.0370cos 4x + 0.0148 cos 5x : + 0.0275 sin 5x

1.0 cos x sin x
+ 0.3260cos 2x + 0.0785cos 3x : + 0.0930 sin 3x
+ 0.• 013S cos 4x + 0.0022cos 5x : + 0.0027 sin 5x

1

16 q

4.0

1.367

0
=-I-\0 16q- -_.

0

1.367

-4.0 I 1.0 sin x . cos x sin 2x 0.3866 0.1972 sin x: 0 :3140 cos x
- 0.7570cos2x - 0.1953sin3x:- 0.3104cos3x - 0.1639sin4x + cos2x + sin}x . + coax
+ 0.0870 cos 4x + 0.0148 sin 5x . + 0.0275 cos 5x + 0.0102 sin 6x - 0.IS70 cos 4x - 0.1269 sin 5x ~ 0.1288 cos 5x

a beo (/32q!>

- 116ql
b01 (132ql )

- 116~

bel (132ql)

- 116q l
",'- .. '.', .... ,.- .. -.. -.--

b02 <!32ql>
- 116ql I

_..._.. _- ---- -- ..!. _.

be2 ( 132ql)

- .il~~.L.

bo3( !32ql)

- 116~1 ..

be
3

(132q/)

- 1J.6~
'H •
o 1=1

"Cl 0
o~
.r! Q)
J.t tUl
Q) .r!
p.,J"'l

11 zn 21T 11 11 21T zn
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If we refine our approximation by including three parameters in
the trial function, the integral becomes

2tfEaAo
2 -16qAo~ + (2-~)~2 -SqA:1.A2 + (S-~)A22.1.

'''e thus obtain the sim'll taneous equations

-2aAo
-16 qA +o

we thus obtain for the

a = -1.51365'

- 16q~ = 0

(4 - a) ~ - 8 q A
2

= 0

-S q ~ + (16 - a)A
2

= O·

first stability boundary (for 16 q =.:t4 )

~/Ao = .:to.756S2' A2/Ao = +0.0864

and a second solution

a == +5.176.

We thus are obte,ining what a,ppears to be a good approximation to the
first eigenv'alue and. its associated solution as well as a reasonable e~timate5
of the value and solution corresponding to ce2 • The correct values are

First solution: a = -1:51396, ~/Ao = =0.7570. AiAo = +0.0870;
. + .

Second solution: ,a = 5.17266. ~/Ao =+2.5863. A2/~ =-0.1870 .

The fir~t stability limit ~aY'7of course, be alternatively estimated
by use of"the SID 00 th approxination; in this WB..Y we find a = - 32 q? ,
which represents a good approximation to the correct value \-lhen q is
sma.~.l (as is seen. by expansion of our first restil t or by reference to the
series given on p.4n of ref .3) and gives the numericaJ. vaJ.ue -2 for
16 q = .±4 •

(ii) One may proceed similarly to locate the second stability boundary
and to examine the character of the associated eigensolutions. In this case
(when q 70) we employ trial solutions (with period 2TT ) of the form

F1 cos x + ]2 cos 3x + B
3

cos 5x + ••.•

Retaining three terms. the integral becomes

21T[(~-4q-~)B12 - 8qB1B2 + (~-~)B22 - 8qB2B
3

+ (~-~)B32]

and leads to the equations

= 0

= 0

o •

(1 - 8q - a)B
1

-8q]
1

- 8qB
2

+ (9 - a.)B2 - 8q B
3

- 8qB
2

+ (25 - a):3
3

=

The location of the first stability boundary of tl~ present type is then
estimated to be. when 16 q = 4 •

a = - 1:39066 t with B2/Bl = 0.19533 and B3/"I\ = 0.014803
4

The correct vaJ.ues are
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= 0

= 0

= 4 ,

°2/°1 = 0.30213 •

-7-

(iii) Proceeding to the next stability limit. one assumes trial solutions
(again of period 2n ) of the form

01 sin x + 02 sin 3x + 03 sin 5x + ••••

Since we are concerned only with this problem as an illustration, we
keep merely two terms here to obtain

2nr(1 + 4q - !)O 2 - 3qO ° + (.2 - !)C 2]
-2 21 12 222

for the integral.

We then obtain the equations

(1 + gq - a)Ol - gq 02

- gq 01 + (9 - a)02

wi th the solution of interest, for 16 q

a = 6 - (13)1/2 = 2.3944,

The correct values are4

a = 2.37 92 •

(13 - !)D 27
2 2-

(iv) The fourth tj~e of stability limit is investigated by aid of the trial
function (period n)

Dl sin 2x + D
2

sin 4x + D
3

sin 6x .+ •••

Again we retain only two terms to obtain

2n[(2 - ~)I12 - gqDl D2 +

for the integral.

We then obtain the equations

(4 - a) D:t - 13 q D2 = 0

- Sq D:L + (16 - a) D2 = o.

with the solution of interest, for 16 q =4.

a = 10 - (40)1/2 = 3.6754' TJ2/Dl = 0.1623.
4The correct values are

a = 3.6722.
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5. Application of Variation Methods to ! Problem arising in ! Mk. V FFAG

8 .
In the analysis of the oscillations about a soalloped orbit. as

for a Mk.V FFAG aocelerator. one obtains differential equations of the form

d2~ + {~ -10 [0 cos2t + c cos(4t-lo8)]1 y = O.
dt J

or

~:~ + fa ... Co cos 2t -10 0 cos 8 cos4t - c sinB Sin4t]J y = O.

In a typical case.
... .

b = -1.3672. c = .:!:0.2462 • and 8 = 0.0331 radian.

It is desired to determine va~ues of the parameter "a« at those stability
limi ts which lie near zero.

(i) Since 6 is small it may be expected that a good estimate of the stability
boundaries may. in fact. be obtainable by setting 8 = 0 and using trial
solutions

Ao ... A2 cos 2t -10 A4 cos 4t for one boundary

and ~ cos t -10 A
3

cos 3t (in the case the upper sign for "b" is taken)
at the other boundary.

In these respective caGes. proceding by methods similar to those used
before, one finds the determanental equations

b 0-- --
2 2

-2a -b -c

-b 4 c b
0 and- a - - -- =

b 2 2
-0

2
16-a

1 - a
b
2

b c--2 2

9 - a
= 0 .

The first determanenta1 equation leads to the first boundary location
(when b andc have the values indicated)

a = - 0.234
29 for c > 0 •

a. = - 0.21545 for c < 0 •

The values obta.ined in general from this first determanental equation approach.
when b and c are small, the valuegiven by the smooth approximation7 :

b2 c 2
a ~ -(8 -10 32)

but. in third order (order of b 2c). appear to permit a slightly more negative
value of "a" when the maximum posi tive excursions of the cos 2t and cos 4t
terms add in phase. For the values of band c assumed here the smooth
a.pproximation gives a '¥ - 0.2355.

The second determanental equation leads to the second stability boundary
estimated to be given by

a ,; 0~242l for c} O.

a ~ 0.2804 for c< 0 •
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(1i) If we do not neglect 5 in the given problem, it then appears appro
priate to take trial functions of a more general form. although the deter
manental equation will be found to factor into two equations, corresponding
to eigensolutions of periods Tf and 2Tf •

We accordingly take as a trial function

y = Ao +. A:J. cos t + A2 cos 2t + A
3

cos 3t + .At+ cos 4t

+ 131 sin t + 132 sin 2t + 13
3

sin 3t + ~ sin4t t

for which the integral which is to take on a stationary value is

211C- a Ao
2

- bAoA2 - c cos 8 Ao.At+ + c sin 8 Aol\

+ (1. -!. - ~)A..2 + (_£ -£cos~)A..A + '£sin8 A..13
2 2 '+ -"]. 2 2 -1. 3 2 -J. 3

+ (2 _!. - :;'C08 8)A 2 - ~A~. + '£sin8 A13
2 '+ 2 2 2~ 2 2 2

+ (2 - !)A 2 + £ sin 5 A13 + (13 _ !)A•.2
2 2 3 2 3 1 2 -~

(1 a b) 2 (b c )
+ "2 - "2 + 1+:B1 + -'2 +"2 cos 8 B1:83
+ (2 - ! + ~ cos 5 )B 2 - ~B B.

2 '+ 2 2 2-4

+ (2 - !):8 2 + (8 - !)'R..2 7
2 2 3 2 -Lj. - •

The resulting determanental equation may be factored to read

-2a -b -c cos & 0 c sin &

-b 4-a-£cos& -b!2 c
02 "2 sin &

-c cos & -b!2 16- a 0 0 x

0 ~sin 5 0 4 - a+£cos & -b!22
c sin 8 0 0 -b!2 16- a

b b c 0 ~sin5l-a--
2

- - cos 8
2 2

b c 9 ~sin 8 0---- cos8 - a
2 2 o ..b b c =

0 ~ cos8 1 - a+- -- + -cos8
2 2 2

c
0

b c 9 -"2 sin 8 -- + -cos 8 a2 2

and is seen to reduce to the previous result if & is set equal to zero.
Vanishing of the first determanent would permit one to obtain ratios of
non-vanishing coefficients Aot A

2
, ~, B

2
, ~~, corresponding to a solution

of period TT t and the vanishing of the second permit an independent similar
determination of ~, A

3
, B

1
, 3

3
, corresponding to a solution of period 2TT •
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With regard to the 5 x 5 d.etermanent, it has been noted that it
will factor when 8 = 0 to give the earlier result. If 8 +O. the
determanent may be expanded as a sum of 3 x 3 minors and their asso
ciated 2 x 2 cofactors to g~ve a correction of order c282 to the
original 3x 3 determanent. In addition. it is to be noted that the
original 3 x 3 determanent is itself modified by a term of order c8 2 ;
a rough numerical check seems to indicate that this latter effect is
somewhat the greater and would result (as might be expected) in
bringing together the estimates of the first stability boundary far
the two cases b~O. ~'1ith the present value of 8. however, the
change of "a" is believed to be small -- perhaps of the order of
~O.003 -- and a direct revaluation has not been undertaken.

~:li th regard to the 4 x 4 determanent associated with the next
st~bility limit a similar situation is seen to a~ly. Expansion in
a series of products of 2 x 2 determanents and adjustment of the
original determancnt to take account of cos 8 +1 is seen once again
to introduce corrections of the order of 8 2 •

6. Approximate Association of Parameters in Mathieu Equation

with the Value of a-- --
It appears possible, with a bit more algebraic complexity. to

employ variational methods to relate the paraneters of the Mathieu
equation to values of a a\.,ay from the stability boundaries. To
this end we note that. as pointed out by Courant and Snyder !J;nC-lrfl.
stable solutions to equations of the form considered here may be
written in the form

x ( t ) = w(t) e.:t i q\ (t ) •

where ¢(t) = ¥t + st'(t) •

w(t) and ~(t) are real functions. each periodic with

the period T of the coefficients in our differential equation. and

a is a real constant.

In connection with the differential equation

d2y- + (a + b cos 2t) y = O.
dt2

we accordingly express solutions in the form

y = w(t) e.:ti [; + '!(t)]

with w and t/' each periodic with period TT • Ue then consider the
Yariational problem

TT

8f[~w,2 -~b(cos2thi+~(;+tj,)2w2 ]dt = O.
o

TT

with J ~w
2

dt = 1.
o
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\'1i th the introduction of the Lagrange multiplier -a, we
then obtain

".

8r ~ L-WI 2 - a w2 - b ( cos 2t) w2 ... (~ ... y; I )
2

w2] dt = 0 ,
~o

with the restriction that the average value of ~I shall vanish.

From this variational statement we then obtain the differential equations
a , 2

w" + [a + b co s 2t] w - (;:; + II ) w = 0

(~ + ~') w2 = const. •

which are the differential equations governing the periodic functions
w and y,; from which the solutions to our original differential equation
may be constructed.

If, to proceed in a simple way. we take the trial functions

w = Ao + ~ cos 2t

~' = B cos 2t ,

the integral becomes

'll n 2 2 ~2'2 _2Al - M o - a "2

~te accordingly obtain the simultaneous equations
a 2 2

fb + 2;B] ~/-;2a + 2(-) + B 7A + = 0
- 'll - 0

Fb + 2 fl. B7 A 0' 2 ¢ 2+ [!+ + (Ti) - a + B] ~ = 0
- 'll - 0

0.0

2
+ i ~2]B + 2~ Ao~ = 0

It is desired to determine values of the parameters such that the
solution of these simultaneous equations does not require the
coefficients Ao' ~' and B to vanish.

By ,,,ay of example, we take q =.0.09 or b = l6q = 1.44 and
cosa =0.6 or 0'=0.9273=0.295l7'TT.

The simultaneous equations then become

@.17425 - 2a + B2_7 Ao + C:'l.44 + 0.59033B] Al = 0

[-;1:44 + 0.59033]] Ao + [4.087125 - a + ~B2]~ = 0

CA: + ¢~2]B .... 0.59033Ao ~ = 0 •

The algebraic complexity of these equations suggests that a solution be
obtained by trial. ~e find in this way

a = -0.17564 (~/Ao = 0.3624 ' B = -0.1948 ) •

This result may be compared with that obtained by constructing a graph for
cos 0' by numerical integra,tion and adjustment to the known stability
boundaries -- viz. a:: - 0.180 .
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APPLICATION OF WALKINSHAW'S EQUATION TO THE 2~= 6 RESONANCE
~ k

L. Jackson Laslett*

Midwestern Universities Research Association t

A method of analysis which appears to account for the behavior of

the axial motion, in the presence of appreciable radial oscillation, has

been developed by Walkinshaw, [W. Walkinshaw, "A Spiral Ridged Beva-

tron," A.E.R.E., Harwell (1956)]. The differential equation character-

izing the axial motion is treated as linear, but contains a coefficient

which involves the radial motion. As is well-know, the forced radial

motion enhances the A-G focusing which appears in the axial equation -

now, however, the additional effect of the free radial betatron oscilla-

tions is also included in the axial equation. The super-position of the

comparatively-long-wavelength radial oscillations on the forced motion

in effect modulates the smooth-approximation coefficient in the axial

equation, to yield a Mathieu equation with a coefficient having the

period of the radial motion. Under "resonant" conditions, which will be

seen to include the case of interest here, this equation may have

unstable solutions and, in such cases, the characteristic exponent of

the golution appears to compare reasonably in magnitude with the lapse-

rate characterizing the exponential growth of the ILLIAC solutions of

the "Feckless Five" equations.

*At the University of Illinois, on leave from Iowa State College.

tAssisted by the National Science Foundation, the Office of Naval
Research, and the Atomic Energy Commission.
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Walkinshaw's analysis pertains to differential equations which, in

the MURA notation [f.ex., LJL(MURA)-5], are taken to be of the form

X"+-(-4.+I)X :. -1 51 1'\, (x./v- - Ne)

'a /I + (-,{ - (fitS )c.os (XII.]" - N e) ] ~ ="

[cf. LJL MORA Notes 6-22 Oct. 1956, Sec. 6, for y/w « 1]. A solution

for the radial motion, representing a free oscillation of amplitude A

superposed on the forced motion, is taken of the form

where

x = A t:. os. ( .Jx. e ... t) - ( -fISt") S 1\0\ fJl d. 8 ,

.n. ~ N +- A (.J./c.J") SI~(V~ e +6) ~Y\Dl VI' "":"("+1)'11.

This solution is substituted into the axial equation to yield, after

some approximation (and a shift of the origin of ewhich we introduce

for convenience),

LA "'t' [- i. + j ~ (I -to :2. A.)~. e 0 ~ ..)>c e )~ '<\ = 0
-d to$" N" t.r N IJ

It is noted that, when A - 0, this equation reduces to that given by the

smooth approximation - we accordingly write

to obtain an equation of the Mathieu type with a coefficient of period 21r}J~

in e. By the transformation

form

2 t, we have the standard

+

1-202



3

with a coefficient of period1T in the independent variable t.

A solution of the Mathieu equation

d t
':1, f' la + tr U>S ~{1~ :t 0

elf. 1.

,

for b small but not zero, will exhibit instability when the coefficient

a is equal or close to the square of an integer. In the present appli-

cation stop-bands may thus be expected at operating points such that

m, the broad band of instability at 2 JY/Jx - 1 (or 25'YI

~x - 1) being of chief interest in connection with the work presented

here. It appears, moreover, possible to employ the Mathieu equation to

account semi-quantitatively for (i) the range of b, and hence of the

amplitude of free radial oscillation, which may be permitted when the

oscillation frequencies depart by a specified amount from the resonant

condition, and (ii) the lapse-rate found to characterize the growth of

the axial motion when the. radial oscillations exceed this limit.

The numerical application of the Mathieu equation to specific prob-

lems of stability or instability may be accomplished by reference to

ILLIAC solutions for the stability boundaries or for the characteristic

exponent characterizing the solution.

(i) A useful estimate of he expected restrictions on the radial motion

may be obtained, however, by appeal to the fact that near a - 1, b - 0

the stability boundaries can be represented rather well by the condition
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We find in this way the following estimate for the limiting amplitude:

--
Ie-,/2")' - i I

I .1..Jca - Vx l t cu· '15: - I «1

It may be noted that this result, although expressed in terms ofJx and

J'a ' concerns an inherent sector resonance which arises when ztry/(5"x -

1.

(ii) An estimate of the lapse-rate characterizing unstable solutions

near a - 1, b - 0 may, moreover, be made by taking

O.6S
N--

{(~r- [( 1,).,)'- ,)K'X/J,:

~(~f:j)' - [~vi- VK') / VA '
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A convenient alternative form for this last result is

nepers/sector

decades/sector.

Results obtained with the ILLIAC, for 5-sector machines with

model-like parameters such that 0.51T'<D""xo < 0.61T' and 0.211" <6""yo <

0.41r, appear fairly close to these estimates. In all the ILLIAC runs

the radial amplitudes were measured, however, near the center of a

focusing region, at N8 - 0 (Mod. 2~ ), where the amplitudes of he non-

sinusoidal A-G oscillations can exceed those corresponding to the smooth

approximation representation of the motion. By way of example we

present here the results for an accelerator for which

In this case the ~scillation frequencies are such that

~o = o. S 3 i I 11'" ..),.,0 # L3l17

..;~o =. 0.7/4

and the limiting amplitude for x appeared to be some 0.0075 units to the

left of the stable fixed point (N& - 0, mod. 21r). For these machine
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parameters the equation for A, yields

A,
So 0 ..

l. 3 ~ 7 [ ( L 06 )" - IJ=(-:1.0. g2)'

:: 500 Xi 1.'1«.&7 x. ().1:23'

Ci 0 :2. 5'

- .0092, the observed limiting amplitude at N9 - 0 (Mod. 211') thus being

within 20% of this estimate.

With respect to the lapse-rate, we continue this example by considera-

tion of the case A - 0.0225. Then JA'".. A,~" - 0.02035, and one expects

,..- 3a. 17/ (1. 0 .f2) (0.0203S)
6-~S •

in close agreement with the value 0.055 decades/sector found from the

ILLIAC work.

[For this case the coefficients in the Mathieu equation are a - 1.12, b

- 0.604, for which an independent extrapolation of coarse tables extend-

ing to a > 1 suggests ~ - 0.107 nepers/sector - 0.046

decades/sector.]
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LECTURE AT MADISON, WISCONSIN - 20 JUNE 1956

CALCULATIONS CONCERNING PARTICLE MOTION
IN SPIRALLY-RIDGED AND SEPARATED-SECTOR

FFAG ACCELERATORS

L. Jackson Laslett

MURA

(On leave from Iowa State College)

I. INTRODUCTION

The subject with which I shall be concerned today is the particle
motion in a Fixed-Field accelerator of the spirally-ridged type,l
including computational preparations for examination of the separated
sector variety, but with no reference to acceleration processes.

To define the problem, the starting point in analysis of the
spirally-ridged structure is the assumed median-plane field, which we
prescribe. In contrast, the separated-sector machine, or even certain
slightly-modified spiral sector machines, make the specification of the
pole contour more natural. If the pole contour is specified, one has
the preliminary problem of determining the fields (or the magnetostatic
potential) which they produce, while with the median-plane field
prescribed at the start one must find the fields at other points and the
location of equipotential surfaces along which the poles may be located.

It may be noted that, perhaps through lack of ingenuity, we have
not attempted to start with a system of orbits and then endeavored to
find a Maxwell field which would give rise to the prescribed orbits. We
have, however, always imposed a scaling requirement in a sufficiently
strict sense that not only are the number of radial and axial betatron
oscillations around the machine independent of particle energy, but the
orbits for different energy particles are themselves geometrically simi
lar.

The basic idea in these structures is that the average field around
the machine shall vary with radius as r k , with k sufficiently great as
to give an adequately large momentum content, and that stability will be
provided by the A-G action which arises from having the field alterna
tively higher and lower than average along spiral curves which all
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particles must cross. The most general type of median-plane field which
is considered is, then,

l3~o - <B>(~r'I'+_~ (... SIJ< .... [.e.:.~.) -HPj

+ ~~ cos +Yt. [
4 ::. - N f; ] ]

•

Powel1 2 has shown how such a field may be developed for points out of
the median-plane, to give the various field components, the vector
potential components, or the magnetostatic scalar potential. For these
various quantities Powell's development is quite similar in form and. is
expressed in terms of the dimensionless parameters

x=

where rl is chosen so that, for the particle momentum under considera
tion, x will be small. Then the scalar potential, for example, is writ
ten

where re~ursion relations are given by Powell for the coefficients. It
is noted that the definition of x is based on use of a cylindrical coor
dinate system; it may be pointed out that Dr. Akeley has suggested that
reference to a system of spherical coordinates may have certain advan
tages and has written a report on this topic. This series of Powell's
has formed the basis of a computer program--the "Potentate"--whereby the
height (y) of a specified equipotential (,) may be found digitally as a
function of Band x. By a quite similar program--the so-called "MKV
Stormesh Leader"--values proportional to

1/J /, J.+I
T /(I-t-X)

't1 Ir 11-X)
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may be obtained.

II. PROGRAMS FOR COMPUTING TRAJECTORIES3

For the computation of trajectories in the spiral ridge accelerator
no direct use has been made so far of Powell's expansion, although it
has assisted in providing the base for some new programs which may come
into use soon. What has already been done computationally has been with
two programs which I shall now discuss--

First, the "Ridge Runner", based on exact equations for motion in the
median plane, and, second, what was supposed to have been an interim
program for combined radial and axial motion, the so-called "Feckless
Five". In these two programs the prescribed median plane field is taken
to be of the form4

,

no harmonic components being admissible.

1. Ridge Runner4a

The differential equations for the Ridge Runner program are written
quite readily, since the fields, and hence the forces, may be explicitly
formulated immediately. The equations are written as first order equa
tions, in terms of the canonically conjugate variables

I

--
x

,"
X ,

and are integrated by the Runge-Kutta procedure. Computation takes
0.37 sec/RK, or, with 32 RK/sector, about 12 sec/sector plus punching
time.

2. Feckless Five4b

For inclusion of axial motion in the computations attention must
first be given to the development of the field out of the median-plane.
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One wishes, in fact, to obtain the vector potential, in order that the
equations of motion (which involve the velocity-dependent v xB forces)
may be strictly Hamiltonian in character. The systematic development of
the vector potential has been treated in reports by Dr. AkeleyS about a
year and a half ago--the process is strictly an infinite one, involving
the repeated application of the V operator to vector quantities, and
becomes rather elaborate if carried out properly in cylindrical coordi
nates. In setting up the "Feckless Five" equations this type of
development was kept in mind--the view was taken, however, thatcurva
ture effects of the sort which distinguish a cylindrical coordinate sys
tem from a Cartesian one could be regarded as small corrections which
need not be included exactly and that the dominant y-dependence would be
given by hyperbolic functions of an argument close to y/w. In this way
an approximate vector potential with components Ay and Az was contrived,
from which a set of exactly-Hamiltonian equations was derived with the
dependent variables x, y,

x
I + X

,

One supposes that the variables x and y themselves will be small,
but that ~ and Y may be comparable with unity.

w w

This program requires 0.71 sec/RK-step, or, with 32 RK/sector,
about 23 sec/sector plus punching time.

The program is to be regarded as an approximate one, whose accuracy
is expected to be good for large-scale machines but not as great for
models where curvature effects playa more pronounced role.

The Feckless Five program is seen to be substantially half as fast
as the Ridge Runner and it would be nice if we had some equivalent
transformation which could be used to carry the particle rapidly through
sector after sector in studies which require continued computations
through a large number of sectors.

3. Overwrites:

Available for use with these programs are various embellishments or
"overwrites". Thus the Ridge Runner may be adapted to permit the intro
duction of an algebraic transformation to simulate passage of a particle
through a straight section. The Feckless Five may be supplemented by an
overwrite which gives once or twice a sector the square root of the qua
dratic forms which remain invariant in the linear approximation:
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and Ky similarly.

In addition, as we shall illustrate later, it is possible to introduce
various kinds of "bumps" into the Feckless Five program, to simulate
certain misalignments.

4. Small Five: 2

It has been hoped that the Feckless Five will be replaced by the
proposed "Small Five" program, in which a more systematic development of
the magnetic field would be employed, based on Powell's series, and with
which it would be possible to study cases in which a limited number of
harmonic components would be present in the field. Programming of the
Small Five was begun and then interrupted in the interest of other work
considered to be more pressing--it is hoped, however, that work on the
Small Five will be recommenced and this program completed.

5. Stormesh: 6

Since the first of the calendar year it has become increasingly
apparent that one is unnecessarily and undesirably restricting oneself
by confining attention to fields which in the median-plane are strictly
sinusoidal or which are even restricted to a very limited number of har
monics. This recognition was reinforced by the result of some simple
field-surveys,7 made by solving Laplace's two-dimensional equation on a
"50 x 50" Cartesian not (49 units x 14 units), and by the increased
interest which the separated-sector type of structure appears to war
rant. It seemed important therefore to bring into operation a double
program, which (i) would commence with the contour of the pole boundary,
on which the magnetostatic potential would be considered as given, and
solve Laplace's equation for the space between this boundary and the
median-plane, and then (ii) would permit investigation of particle tra
jectories in this potential field. It was felt that mesh-storage would
be the most practicable approach and that storage should be confined to
the fast-memory of the ILLIAC, when solving the dynamical problems, in
the interests of achieving reasonable speed. It was further recognized
that considerable simplification would result in the potential problem
and a considerable reduction of the subsequent storage requirements if
advantage were taken from the start of the scaling property of the
field. The desire to economize to the utmost in storage suggested that
the computational programs be planned in terms of the scalar potential,
despite the impossibility of strictly Hamiltonian equations of motion
when using fields derived from a somewhat-in-exact scaler potential.

The scaling character of the field can be seen by reference to
Powell's expansion, cited previously. It has evident from this develop
ment that "VIc IT X) '+I. has the same value at all points for which
both y/(l + x) and p::: ::b,tltV ... N€1> have the same values.
Also, with y/(l + x) consta~, 1L' /O+><)-A-n is periodic inp with
period 2".-. The potential, with its scaling factor (l +x) k + 1 is thus
conveniently expressed in terms of two independent variables which we
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take to be

S S t"r: l .e-.;+x1 Ne]
~:: [,.,.. ("'" II) '~ ~

:J..". LU'" /.,.. ~

'1V -:. ~ (/+- '1<) ~+I...n.. (S J -z, ) ,

with Jl periodic in ~ with period unity.

This last equation may be alternatively interpreted (i) as refer-
ring 1{J I( It- x )"1'1 to the value at a suitable point in the 9 = 0
plane or (ii) relating it to the value at a suitable point in the
cylinder x = O. By virtue of this relationship, Laplace's equation for
this scaling field may be reduced to a second order differential equa
tion for.n with only two independent variables (! and"l ). The mag
netic fields, moreover, may be obtained from.n. and hence storage on a
two-dimensional net will suffice. For most efficient storage it was
felt appropriate to store a quantity proportional to Jt/~ , since this
quantity will be more nearly constant than.n. itself and a greater
number of significant figures would be retained. The field-strengths
which enter into the (First-order) differential equations of motion are
then to be obtained by First-order differentiation of .n./'1 ' interpo
lation and interpolation-differentiation being necessary because these
quantities are stored on a net. To insure continuity in the differen
tial equations it was then felt desirable to use an interpolation for
mula which would exhibit a continuous derivative upon crossing from the
region covered by one cell to that covered by an adjacent cell. Such an
interpolation Formula, being the only reasonable one of its type extend
ing through ~3 and based on four values of the function, is used
throughout in preference to Bessel's more conventional but only
slightly-different form.

This formula is:

1\ (to + te.-l)::: '<.1\, r (1-c.c.1/}. + ~ t.\(,-l.\)(-!\1.+A, .. l\o·I\.,)

in contrast to Bessel's form:
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The quantity ..n./~.n./ta>o
some 2000 mesh points as 13 binary
written in terms of coordinates

7

is stored for each of as many as
bits. The differential equations are

s = ~ (J+)() 1= 1+X

to avoid the complications of a logarithm routine in the program,
although print-out is performed in terms of the more-familiar variables
x, y, px, and py.

The part of this program which seeks a solution to the p.d. equ.
for 1). is termed the "SCAPOCYL" and the dynamics portion, the "Stor
mesh". Trouble-shooting of the first portion and testing of the second
is currently in progress. The speed of the Stormesh program has been
found to be intermediate between that of the Ridge Runner and that of
the Feckless Five.

III. COMPUTATIONAL RESULTS

By use of the Ridge Runner and Feckless Five programs, surveys have
been made of the particle motion in spirally-ridged structures.
Although the larger portion of this work was with parameters charac
teristic of models, the general features of the results no doubt apply
also to large-scale machines.

1. Radial Motion8

The results of computation pertaining to motion with one degree of
freedom are appropriately and conveniently represented by means of phase
plots, depicting on invariant curves the position and associated momen
tum of a particle as it progresses through successive "sectors" (periods
of the structure) from one homologous point to another. Such studies
provide information concerning the location of "fixed-points",
corresponding to an equilibrium orbit; the phase-change of the betatron
oscillation per sector ( ); the displacement associated with trajectory
directions different from that of the equilibrium orbit; and the extent
of the region within which stable motion is possible. The characteris
tics of small-amplitude motion found in this way agree well, for the
sinusoidal fields, with the analytic work to be discussed later. At
large amplitudes, unstable fixed points--representing an unstable
equilibrium orbit--make their appearance. Associated with the unstable
fixed-points one finds a separatrix, constituting an effective stability
limit, which in the majority of cases the ILLIAC results depict as a
sharp boundary and outside of which it is frequently possible to draw
the initial portions of what appears to be invariant curves for the
unstable motion.
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With regard to stability the requirement for a strictly linear sys
tem is that the condition

<1r

be satisfied for operation in the first stability zone. Due to the
non-linear character of the oscillations in a spirally-ridge FFAG, how
ever, it is not surprising that for such structures the permissible
amplitude of oscillation is much curtailed if ~ lies near ~'-I 3 or
~~/~. In fact Dr. Christian at Los Alamos has made computations which

show the amplitude limit to be reduced, although not to zero, for
t5" '= ",orr/ S If the small-amplitude tS" is in the neighborhood of

t~/3 , ~will at first change only slowly but then quite near the sta-
bility boundary will rapidly approach 2.'IT I '3 # and three
unstable fixed-points will appear. These correspond to an unstable
equilibrium orbit which repeats after progress through three sectors.
Similarly, near 1Tr/~, four unstable fixed-points may be expected to
develop. When the machine parameters are such that tS" is essentially
midway between the values 'ltrJ3 and "2..T'I'I'I ' a comparatively large stable
region is found and the apparent limit of stability is defined by a
separatrix which may be associated with a larger number of unstable
Fixed-points, 7 such points being found in one example. In special
cases rather elaborate island-structure is seen to develop within the
main stability region. In some cases the phase curves near the stabil
ity boundary do not appear well defined and the location of the stabil
ity boundary can not be fixed with high precision.

A case with one of the largest radial-amplitude limits for machines
with model-like parameters has a 5 x near I.flr/7. In this case .. =0, g
'tr:2~,Q fl: -t Nil> S ,and the "ears" of the phase-plot (at NE)= 0,
mod. ~) extend to x =~ 0.09; similarly for a case currently of consid
erable interest in connection with freezing the parameters of the Illi
nois spiral-sector model k = 0.74, l/w = 23.7, f = 1/4, N = 5,
( lr)(. = 0, S 63 '1l" ), and the ears extend beyond x 0.06. I t has
been noted that, for reasons which will be suggested later, if F is
increased and l/w concurrently decreased to maintain a similar e- ,the

y
amplitude limit may be made substantially greater--for comparison ~ith
this last example, the case .. =0,7'1 ~:: S,tIf~"5 f =- I
N =S' ( .... ,.,:, ()Xo'lL O. sa" "7f) led to a material change in the shape of the
phase-plot but to a radial amplitude limit some 2.5 times that found in
the earlier case. A similar result for the limit of stable axial motion
would not be unexpected.

2. Axial Motion: 9

Introduction of axial motion into a study of spiral-sector
accelerators produces complications for all but the smallest-amplitude
oscillations, since in general there is coupling between this motion and
that occurring in the radial direction. For small-amplitude axial
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motion one can find the tr and the various matrix elements which
y

characterize linear oscilla~ions. For large-amplitude axial motion one
can undertake an experimental survey to determine how large an initial
y-amplitude can be tolerated if the motion is to "hold on" (i.e., not
exceed the limits of the computer, which are normally given by ~< 3.l4r)
for some arbitrary number of sectors (e.g., 80 sectors). By way of
example, one finds in this manner for the first of the model-like struc-
tures cited earlier ( ...... e-e.8 -t:;. ::'2.~ f:'4' N =S- ) an axial
amplitude limit close to y = 0.014; this limit applies to locations such
that N8 = 0 (mod. 21r), near the center of an axially defocusing region,
and has associated with it amplitude limits which become almost twice as
large at intermediate points. As with the radial motion, the limiting
amplitude is curtailed if the operating point approaches such "resonant"
values as ~~/a . Analysis of such resonances has been given by
Moser,lO Hagedorn, 11 Sturrock,12 and others.

3. Motion in Two Degrees of Freedom:

With motion in two degrees of freedom one can make searches with a
wide variety of initial conditions to determine emperical stability lim
its. Beyond this, however, it is difficult to proceed systematically.
As a result of a suggestion by Sturrock,13a,b it was hoped that investi
gation of motion in two 2egrees2of freedom could be systemitized by use
of the quadratic forms K and K , mentioned earlier, which remain
invarient on the basis ot lineat theory. We were led to expect that
plots of Ky vs Kx would depict the point which represents a single tra
jectory moving on a portion of a conic curve and that regions of stabil
ity or instability could be distinguished. From a limited number of
results obtained to-date·, it appears that the expectation is an over
simplification--the values of Kx and Ky scatter sufficiently that a true
curve is not defined, the nature of a curve near which the points lie
appears sometimes to be elliptical and sometimes hyperbolic, and the
regions of stability or instability are not readily apparent. It may be
that further work along these lines is merited, however. A possible
refinement of this technique would involve the plotting of running aver
ages of Kx and of Ky , averaged over possibly 20 values in the interests
of smoothness; in addition, one could consider use of more elaborate
algebraic forms,13a in place of Kx and Ky themselves, between which sim
ple relationships may be expected to apply.

4. Coupling Resonances:

Evidence of apparent instability appears for operating points in
the neighborhood of certain "coupling resonances", notably:

~~ ::. ~ 5"~

~ -t 2 <!"'a - 2:tr

'2 <!"x T :2. 15'",) - '2.'lT-
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In such cases one finds a exponential growth of y-amplitude, con
veniently represented by semi-logarithmic plot of Ky vs. the number of
sectors traversed, which may begin with very small initial y-amplitudes
(or even in the "noise" of the computer) and extends over many orders of
magnitude. The y-growth appears to be the more rapid the greater the
amplitude of the radial motion, above a certain threshold, and the more
pronounced the closer one is to the resonance in question. This
phenomenon has so far been studied in greatest detail for the
Cl~; 2~~ resonance. If the initial radial amplitude is not too

great, the exponential growth may be seen eventually to terminate rather
suddenly (For example, near y = 0.01 or y = 0.02 in some typical cases
involving model-like parameters) and to change to an exponential
decrease for a time. This decrease may then be followed by an interval
characterized by an exponential growth. When one is very close to the

eo = 2~ resonance, so that the y-growth occurs for even a rather small
x ~

amplitude of the radial oscillation, it is possible to see from the com
puted values of Kx and Ky that as the axial amplitude increases there is
some decrease of the amplitude of the radial oscillation. Because of
the cessation of growth at axial amplitudes not far from those at which
violent instability might be expected to occur, it is questionable
whether machine operation would be satisfactory under such conditions-
in such cases the majority of the particles would be expected to find
themselves near the outer limits of the beam from time-to-time and
misalignments may be expected to reap a heavy toll in such cases. These
matters are being further explored computationally at the present time
and theoretical progress has been made with respect to those aspect~ of
the phenomena which concern the initial exponential growth.

5. Studies of Misalignments:

Some computational investigations of the effects of various "bumps"
have been made before making a final commitment concerning the parame
ters of the Illinois spiral sector model. The results obtained will be
reported in a factual way, little theory being available for organiza
tion of the results, and the work will be seen to represent no more than
a coarse survey of the effects which certain misalignments can cause in
a specific case. The slowness of such computational work is a real han
dicap, which arises in part from the misalignments being a property of
the machine-as-a-whole and the consequent necessity of going through a
number of sectors to traverse one period of the perturbed structure. It
may, moreover, be noted that, as Symon and Christian have emphasized,
certain types of bumps may excite certain potentially dangerous reso
nances only indirectly; hence, unless a suitable, and perhaps unrealis
tic, perturbation is selected, a resultant instability may develop so
slowly as to pass unnoticed in a run of reasonable duration. It would
be of considerable convenience in such work to have at hand the most
general transformation required to represent the effects of harmful
misalignments and a knowledge of the manner in which the parameters of
such transformation are related to the magnitudes of the constructional
misalignments which the transformation represents.
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The work reported here pertained primarily to an operating point
chosen to be clear of the ~x = 2~y resonance, to lie betweene-x = ~/4

(For which J ~ = sly ) and the half-integer resonance VI('::' !»/~ and
to fall below ,,~.: i The nearby inherent resonance ~ tI' ~+ C"~ '= ~'lr

had not been found harmful in a machine free of
imperfections. The nearest other imperfection resonances, aside from
difference resonances, were those for which '!> J ~ + V)C ::I If and
~ J ~= ~ The parameters of the machine selected for most of the

studies (denoted "d") were:

=- 2~. 7

for which

In studying certain bumps, neighboring operating points were also
included. The computations were performed by aid of various overwrites,
applicable to the Feckless Five master program.

Results

(i) Bumps Absent:

In the absence of bumps, radial motion was stable in machine "d"

for an X-displacement{ ~: ~~; from the stable fixed point, and the ears

of the phase plot extended beyond:r .06. Similarly an initial y
displacement of ± .011 appeared to be stable. These displacements refer
to points for which N8 = 0, Mod. 21f.

(ii) Momentum Bumps:

As a first attempt at the introduction of bumps, the combination
was introduced once a revolution. The

permissible amplitude of the radial phase plot appeared to be reduced by
a factor of about 2.

RESONANCES IN NEIGHBORHOOD OF "d".
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RESONANCES IN NEIGHBORHOOD OF "d".

(iii) Coordinate-Dependent Momentum Bumps:

In this series of runs a few different combinations of momentum
bumps ( A PM , A r" ) were abruptly introduced into the computations
once every 5 sectors--i.e., once per revolution. In one case the combi
nation

- . co!»" -.:2. X ... 2. x l _ IOX.s

A loa = .,.. .000 SO -. 2 ~ ,

For which the Jacobian of the transformation is unity, was employed. In
this case the stable region of the radial phase plot was very materially
reduced, each dimension of the plot being reduced by a factor estimated
as close to 3. With the signs of the x-dependent terms reversed, the
decrease of each dimension was similarly by a factor close to two.

(iv) Radically-Displaced Sector:

In this series a displacement, A~ ,was introduced for an inter-
val ,,1r IN to simulate a radially-displaced sector. Various phases
for introduction of the bump were investigated, as well as various mag-
nitudes of AX In this case a reduction of the stable region, of the
radial phase plot, by a factor of 2 seemed to result from a displace
ment, A~ , lying between 0.0021 and 0.0063. Thus, with the smaller
bump, motion with an initial x lying .0250 to the left of the fixed
point was stable regardless of the phase of the bump while motion with
an initial x lying .0375 to the left was stable in none of the cases
studied; with the larger bump, an initial x lying .0250 to the left of
the fixed point led to instability in most cases.

(v) Axially-Displaced Sector:

With an axially-displaced sector there resulted a very noticeable
increase in the frequency of axial betatron oscillations, an increase
which varied predominantly as the square of the sector displacement
A~. Because of the proximity of the integer resonance J~ =1
it was felt appropriate to suppose that in actual practice suitable tun
ing controls would be employed to restore the operating point to its
desired location despite the presence of unavoidable misalignments. For
this reason the work to be reported here is concerned with a structnre
(denoted "e") for which

N= S- ;
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in the absence of any sector-displacement

J~ = o. B 3.'1

but with a displacement {A. 'ell:: .o03S""D for one sector

.J'4 -=. o. g"1 q 1

The axially displaced sector, A y = -.00350, was found to effect a
reduction of the stable x-amplitude by a factor of 2 and the y-amplitude
by a factor of 3.

(vi) Tilted Sector:

In this series a tilted sector was simulated by introducing, once
per revolution, two bumps, (4~ I 1 .A r,,) _",.t (Aca I" 4ft 2.)' at points one
sector apart. Specifically, "'aal.A.~IIAf.,.=--f.I>~1IAP'~"+i.'" A reduc
tion of the stable amplitudes of radial and axial motion by a factor of
nearly 2 was found to occur when Ac.a, = -.00350.

(vii) Parameter-Shift:

0.25 ;

0.2533996 .

f

In this series the parameter l/w was changed for an interval
corresponding to one sector and a concurrent change was made in f in an
effort to allow for the increased spatial modulation of the field which
would be expected to result if the ridges of a spiral sector accelerator
were separated. Work has been confined to the case in which one sector
of accelerator "dU was modified as follows:

Unperturbed Sectors: l/w 23.7,

Perturbed Sectors: l/ws 23.07423

In this case little reduction of the stable region appeared to result,
although a radial phase plot of a nearly-limiting amplitude run appeared
to be a bit more ragged than for the unperturbed case.

In summary, it is seen that displacements which correspond to about
1 mm, when rl = 300 mm, under a number of circumstances can cause a
serious reduction of the stability region.

IV. ANALYTIC WORK PERTAINING TO UNPERTURBED STRUCTURES

1. The Equilibrium Orbit:

One of the distinctive features of the spirally-ridged accelerator
is that the equilibrium orbit is not circular. 4 If one expands the
equations which govern the motion in the median plane about a reference
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circle, a forcing term makes its appearance and leads to a scalloped
equilibrium orbit. The departure from a circle is, in fact, close to a
sinusoid, given by4

.
=

-f
S/J1 N 9

and has been determined with greater accuracy by Judd14 and by Cole. 1S

2. The Small-Amplitude Betatron Oscillations:

The character of small-amplitude betatron oscillations must be
obtained by expansion of the equations of motion about the equilibrium
orbit and leads to frequencies materially differe~6 from those which
would be obtained by ignoring the effect of the forcing term. Qualita
tively this is to be expected, since the field gradient is in a sense to
favor radial focusing over a smaller interval of 0 if one examines the
gradient in the neighborhood of the scalloped orbit instead of along a
circular path.

We will not undertake here to discuss development of the equations
for betatron oscillations on the basis of Symon's unified theory of FFAG
machines,17 but shall outline a more specific approach developed with
increasing degrees of completeness by myself,4 by JUdd,14,18 and by
Cole. 1S From the prescribed median plane field, vector potential com
ponents are developed and employed in a space-like Lagrangian from
which, by the principle of least action, the differential equations for
the trajectories may be derived directly:19

I!..(x,y;x' ,y' ;8) p ds/dO + e A d'S/dEl

prl [(i + x)2 + x,2 + y,2

+ erl [(1 + x)AS + x' Ar + y' Az]

A change of variable is then made (u = x - xf) to modify the Lagrangian
so as to eliminate the forced motion, and the differential equations
which result from the modified Lagrangian are then taken as the equa
tions governing the betatron oscillations. In this way the coefficients
of the linearized equations, applying to small-amplitude motion, are
obtained and the major non-linear terms also may be noted.

The linear equations are of the Hill form and, if relatively small
terms are ignored, are substantially of the form

u lt
..,. (ax + bx cos NS + cx cos 2NS)u 0,
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and similarly for the y-equation. For orientation, it is helpful to
note the frequencies which the smooth approximation20 gives for the
solutions to these equations. Ignoring the relatively small contribu
tion from the term involving c cos 2N8, one obtains

b 2

.Jx
2 - + 1 xa

2" N2x

2 lJ +
1 (f/w)2· [(k + 1) _ ! (f/w)

2 N2 _ (k + 2" N
2

· k + 1=

Jy 2
,."

[- k + !
. (f/w) 2

1)] +
1 (f/w)2

2 N2 - (k + 2"
N

2

· k + (;N)2=

It is thus seen that the frequency of the free radial oscillations is
substantially determined by the exponent k characterizing the radial
increase of average field strength, so that k = 1 must be positive, and
that axial stability may simultaneously be obtained if the enhanced A-G
term, (f/wN) 2 , is sufficiently large to dominate -k.

More exact information concerning the solutions of the Hill equa
tion, with the term c cos 2NO retained, may be obtained by use of
tables pertaining to this equation and which were calculated by aid of
the ILLIAC digital computer. The first set of tables was prepared by a
variational method which is believed to be quite accurate at the stabil
ity limits, ~ = 0 or TT, and also for the smaller values of (1' in gen
eral. The most satisfactory form in which to use these results is by
recourse to the graphs which accompany the tables. A second set of
finer-mesh tables has been subsequently prepared for the Hill equation
by direct integration of the differential equation. These tables, which
have been duplicated and are about to be distributed, give cos~,

. s lnc5'
~/~, and selected values of a quantlty (---,--) proportional to the

square of the amplitude function and from which the Roquet solutions in
the phase-amplitude form can be obtained. In each of these tables an
independent variable is used such that the argument of the cosine func
tions is 2t, and multiples thereof.

By use of the foregoing theory, and by aid of the available tables
or graphs, the first stability region may be plotted in terms of machine
parameters. The basic variables, when k » 1, are k/N2 and f/( wN2).
The result of direct integration of the equations of motion, by use of
the Ridge Runner or Feckless Five programs, yield results which for
small-amplitude motion are consistent with the predictions of the
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analytic theory.

3. The Limiting Stable Amplitudes:

(i) The stability-limit for radial oscillations:

In a large fraction of cases the limit of stability for the radial
motion is characterized by the appearance of three fixed points. For
such cases a convenient approximate formula may be developed by recourse
to a differential equation in which the important non-linear term is
taken from Cole's report: 15

u" + (a + b cos Ne)u f 2
- (sin N8) u
2w

2

One may attempt the solution of this equation by substitution of the
trial solution u = A sin(NO/3) and application of harmonic balance.
One may alternatively replace the differential equation by an equivalent
variational statement and then employ the same type of trial solution as
before. Finally one may employ a variational procedure of the type out
lined by Sturrock. 13 These various methods appear to agree in giving
for the limiting amplitude the expression

It is noted that the character of the trial function taken in this work
was extremely simple; the formula appears, however, to give estimates in
good accord with the Ridge Runner stability limits in both model-like
and full-scale machines for which the nearest resonance is that for
which crx = 2nj3. It may be noted that, since the betatron frequencies
are essentially determined by k/N2 and f/(wN2), a desirable increase
of stable amplitude might be expected if f and w were each increased
by the same factor. Dr. Sessler has extended this formula in an attempt
to take account of fields containing higher-order Fourier components.

(ii) The Stability Limit for Axial Oscillations:

In considering the stability limit for axial motion, it has been
pointed out that larger amplitudes of axial oscillation cause the parti
cle to sample fields of a necessarily greater flutter-factor. The
flutter-factor of a simple sinusoidal variation increases approximately
by the factor Cosh(y/w) for points out of the median plane. The
suggestion has then been advanced that the effect of this increased
flutter in the field is to "tune" the oscillation frequency towards the
next higher resonance and that instability will result when this
resonant value is reached. On the basis of this simple, and perhaps not
entirely true, idea, one may proceed to write
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fAf

N
2 2Jy w

k

With f f
o

<Y>eff
Cosh--

w

Af

and AV
Y

If we write <y2>
close to the value

A2/2 and consider C-y to be below but fairly
21T/3 ,

4
w

()YJ
"Ii

Since J Y is presumed close to N/3 (i. e., l5' y close to 211"/3), this
result may be expressed in the simpler form

~ ff' N
2

w
2 I ~ _ry ·

A "/3 f ~ 3 11"

22~

O.8
N

; V~-~

Comparison of this equation with Feckless Five results suggests that the
formula may over-estimate the permissible amplitude but that within a
factor of about 4 it gives a correct estimate in a variety of cases.
Again, the desirability of increasing f and w together by the same
factor is suggested. Sessler has undertaken to extend this formula, by
the same type of reasoning, to cases in which higher-order Fourier com
ponents are present in the field.

4. y-Growth:

We shall discuss here analytical work relevant to the exponential
growth of axial amplitude observed in the neighborhood of certain
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resonances, with particular emphasis on the x 2 Y resonance.

(i) Walkinshaw's approach:

In a recent memorandum, Walkinshaw2l has pointed out that the dif
ferential equation for axial motion, although properly treated as linear
in y for small amplitudes, contains a coefficient which involves the
radial motion. Just as the forced radial motion is known, as we have
seen, to affect the axial focusing, so the presence of an appreciable
amplitude of radial oscillation may be expected to affect the axial
motion under suitable circumstances. The view is taken that the super
position of the comparatively-long-wavelength radial oscillations on the
forced motion in effect modulates the smooth-approximation coefficient
in the axial equation, to yield a Mathieu equation with a coefficient
having the period of the radial motion. Under "resonant" conditions,
which appear to include the caselrx = 2dry ' the equation may have
unstable solutions.

Walkinshaw commences with the basic differential equations (in our
notation):

x" + (k + l)x -f sin(~ - N8)
w

y" + [-k - ~cos(~ - N8)] y 0

A solution for the radial motion, representing a free oscillation of
amplitude A superimposed on the forced motion, is taken of the form:

x xli + x
f

with Xes A sin(J 8 + C(,)
x

_ (f/N2)(1
x ' -2 x~C'

x
f w N) sin(N8 - -W)

and .J x = .fk + 1 «N •

This solution is then introduced into the axial equation and, after some
approximation, gives

y' , + [-k +
1 f2 x(f>' -2
-2 ----22 (1 - wN)

w N

f x(a Jw cos(N8 -~) Y o .

At this point the attempt is made to eliminate the cosine term by appli
cation of the "smooth approximation", in effect replacing the N which
usually appears by N - x~'/w:
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[
f2 xe.' -2]

+ -k + w2N2 ( 1 - wN) y a

or
f2 2f

2
x{!.' ]

y" + [-k + 22 + 3 3 Y
wNw N

a .

It is noted that the terms within the square brack2t and which do not
contain x~' are just those which normally give.J by the smooth

Yo
approximation. Hence, with this substitution and replacement of x~' by
AJxcos(VxQ + ~), one obtains

2 2A f2 J ]
y" +f.J + 33xcos(Jx8+0() y=O

l Yo w N

This Mathieu equation may be put into standard form by the change of
independent variable

to obtain

+ a

with a coefficient whose period is fr in the independent variable ~ .
Such a Mathieu equation will exhibit instability when the constant term
in the coefficient is equal or close to the square of an integer -- in
particular, there is a fairly broad band of instability near

corresponding to V = 2V . This instability will be expected to extend
x y

over a wider range of valSes of~ the greater is A, the amplitude of
y

the radial betatron oscillation; s~milarly, for a fixed value of 2J II
y VX

and within the unstable zone, the lapse rate characterizing the grow~h
of the axial amplitude will be the greater the larger the radial oscil
lations. The predictions of this theory, both with respect to the
threshold at which instability sets in and with respect to the lapse
rate in the unstable region, appear to be in good accord with the
results of the ILLIAC computations.

(ii) An Alternative Approach:

Despite the success of Walkinshaw's ingenious and successful
account of the t5'x = 2d'y resonance, it was felt that the metrlod involved
some uncertainties, especially in the first application of the "smooth
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approximation", which were difficult to rationalize. It was thought
desirable to develop an alternative, and perhaps more general, method
which would be applicable to other resonances and which would be based
in a straight forward way on the differential equations developed by
cole. IS

If we regard the amplitude of the betatron oscillations themselves,
taken with respect to the closed equilibrium orbit, as small, they may
be supposed adequately represented by the linear differential equation

u" + [ax + bx cos N~Ju 0

with

a
x

and

b f/w
x

A suitable solution to this equation may be sought conveniently by a
variational method in a variety of ways. A method which we shall employ
again imagines that the frequency of the oscillation and the basic fre
quency of the structure are commensurate in a sufficiently large inter
val and, hence, that the solution may be regarded as "periodic" in such
an interval. Such a periodic solution might normally be thought to
correspond to a stability boundary, but in the present instance we find
that there are two periodic solutions and the zone of instability which
one might imagine to be present is of zero width.

We write, then, the variational statement

&f~ [u' 2 - (ax + bx cos N8) u
2

] dQ 0

as equivalent to the differential equation.

A trial solution of the form

u A cos J 8 + B cos (.J + N)B + C cos ( .J - N) 8

may be introduced into the integral, the integration performed, and the
resultant algebraic expression adjusted to be stationary by proper
selection of the frequency J and proper proportioning of the coeffi
cients A, B, C. One finds in this way

,.;
= a

x
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b
B

,., x
(1 - 2J/N) A

2N2

b
C ~

x
(1 + 2J/N) A.

2N
2

Thus the value found for J in this approximation is concordant with the
result of the smooth approximation and we have the approximate solution
for u:

[cos.) e
b

bx 2,J 1x
(1 - 2J/N) cos(.J + N)Qou A +

2N2 + -2(1~)cos(J -N)8
2N

A [cos Je
b 2b .)

N8J.x
cos J e cosNS + -+ sin J8 sin+

N
2

N

Likewise, if a trial function employing sine functions had been
employed, a similar result would have been obtained:

u A [sin Ve
b 2b J

+ ~ sinJ e cos NS - -+ cosJ e sin Ne] .
N N

We accordingly take the general solution to be:

u
b

+ x sin(J fJ +e )cos NS
N2 x

+ f
2

sin(J S + E:) cos N8
wN x

2f.)
- x cos (J 8 +")

wN3 x
sin Nfl1

f
The complete radial motion is x = - -- sin N8 + u and is found to agree

N
2

with Walkinshaw's form when the latter is expanded.

For study of the y-motion near the ~x = 2~y resonance we again
refer to Cole's report15 to write the linear equation in y:
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where

a =
y

- (k + 1)]

and

b = - f/w
Y

b ~ (f/w
2

) sinNQ
5

to sufficient accuracy for the present purpose.

We then substitute our solution u into this equation, ignoring terms
in 2N8 and dropping the phase-shift ~ as a matter of convenience, to
obtain

y' , + [a + b cos NEJY Y
Af
2"
w

sin cos .Jx61 y o

y" +

This equation is of the form

[
a + b cos NEJ + 1:.2Cy cos(N -J )8 _1:.c cos(N +J )8

y y x 2y x

with and by as before,

with - Af/w2 , and

with dy

The equation may be case in the form of a variational statement and sta-
bility boundaries sought by the use of trial functions

B cos ~ + P
l

), 1{- J?,
9 004- P

2
2N+ J'tf (}

Yl cos cos
:l- '- ~

Y2 C sin ~ + Ql
. :J.N-.J.c. B + Q2

sin :JoN "'*"'" B

'"
s~n :L :z.

One finds in this way that the stability ~oundaries in the neighborhood
of.J = 2.J (where V 2 ~ a + b:l / (2N) corresponds to solutions of

x Yo Yo Y y
the y-equat~on when A = 0) are given by
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This result is in agreement with the location of the stability boun
daries of the "equivalent" Mathieu equation originally suggested by
Walkinshaw.

Continuation of the analysis of our equation, along lines indicated for
the Mathieu equation by McLachlan, 22 moreover leads to lapse rates in
the unstable zone which agree with the values implied by Walkinshaw's
equation and which appear to be in reasonable accord with the ILLIAC
results.

(iii) Other Resonances:

We have applied our methods to the examination of other resonances
where y-growth may occur. It appears possible in this way to account
for the behavior at the resonance (J" + 2lJ = 21r and at 2tr + 26" 21T.

x Y x Y2
In this latter case one should consider not only the term ~clO u y in

the y-equation but also the double frequency (2v x ) terms which can enter
the term bSuy by use of supplementary terms in u obtained by a per
turbation solution of the non-linear u~equation. It appears, however,

that the direct contribution from ~clO u
2

y definitely dominates.

In the neighborhood of the possible ~x =~y resonance, the ILLIAC
results have revealed no y-growth. Our analysis, differing in detail
from Walkinshaw's, indicates that instability leading to y-growth would
occur over a quite restricted range of radial amplitudes and that the
lapse rate within this narrow zone of instability would be so small as
to be far beneath notice.
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AXIAL-AMPLITUDE LIMITATIONS
EFFECTED BY cT x + 2 fry = 2 n

L. Jackson Laslett*
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Madison 5, Wisconsin
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ABSTRACT

Evidence, based on Feckless Five computations, is presented

appearing to support Parzen' s suggestion that the fT x .,. 2 IT' ;: 2 1C
y

resonance, rather than tTy -= 21r/3, is responsible for the limit

of stable y-amplitude in spirally-ridged accelerations free of

imperfections. The computations covered a small number of

structures with k :: 0.2, f :. 1/4, and N -::: 5, for which IT'x was in

the ne ighborhood of it /2.

1. Introduction:

The question has been raised by Parzen (Madison summer
1

session) whether the stable limit of y-amplitude observed in

Feckless Fivt runs with tr x near 0.6/t is attributable to the

(Tx + 2ry ':' 2 n: resonance rather than to 0- y '= 2 %/3. Be

cause of the importance of this question in connection with the
3

design of spirally-ridged (or separated-sector) FFAG accelerators,

a quick computational examination was made to distinquish between

the two possibilities. The ccm~utations were performed by aid of

the Feckless Five ILLIAC Program. The results of this study are sum-

marized below and, although unfortunately carried out with ~ undesir

ably close to7<Q'2, appear to substantiate Parzen's proposition.

*On leave from Iowa State College.

~Assisted by the National Science Foundation, the Office of Naval
Research, and the Atomic Energy Commission
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2. Results:

The parameters and characteristics of the structures studied

are summariz,ed in Table I. The results of 80-sector searches

for the axial stability limit are also included in the table. In

all cases the x-motion was started substantially on the fixed

point. Figures 1 and 2 depict the y-stability limit, expressed
1in terms of the initial value yeO) with y(O) == O,as a function

of '/w and of tryITt .
3. Conclu5 ion:

The results of this brief survey appear to substantiate

,Parzen's suggestion that the trx + 2 try : 2'1'& resonance, rather

than try :' 2lt/3, is responsible for the limitation of stable

axial motion in this region of the working diagram for a structure

free of misaliqnments~ It is expected that this matter will re

ceive further study. It may be of interest to mention in closing

that it has been conjectured that generally, in structures free

os misalignments, resonances of the form

p o-x+ q IT ': r(21C)y

are significant only if q is even.

4. References:

(p,q,r - integers)

1. F. T. Cole, L. J. Laslett, and J. N. Snyder, Bull. Amer.
Phys. Soc., Sere II, #4, Paper G5 (April 26, 1956).

2. L. J. Laslett,MURA Report LJL(MURA)-5 (July 30, 1955),
Appendix II.

3a. D. W. Kerst, et al., Bull. Amer. Phys. Soc. 30, #1,
Paper D5 (January~7, 1955).

b. K. R. Symon, et al., ftFixed Field Alternating Gradient
Particle Accelerators" (to be published in The physical Review).

c. Pop. Mech. 106, #1, P. 94 (July 1956).
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TA.BLE I

EXAMINATION OF 80-SECTOR AXIAL STABILITY LIMIT
IN THE NEIGHBORHOOD OF try ~ 27£/3 ANDo-x -I- 2 try =- 27l:

.. k == 0.2 f := 1/4 N.::; !)

J-
Small-Ampl. Freqs. Last Unstable First Stable Run

Run Initial Yo Max. ,yl Max. IYI ';(i fJ",w r",o /7'( "Y./~ ~.I11+1fD/1E Initial Yo N8::0 ",.J"l1t 1/I#~ 1l' ",114 Z ?t +.
29.69 0.4782 0.626 1. 730 0.00!)30 0.00460 0.00!)!)648 0.0126041 _.002400 .... O!)4863

30.49 0.4309 0.650 1. 781 0.00460 0.00400 0.0052!)6!) 0.0126207 _.002409 _.054863.
31.00 0.4811 0.666 1.812 0.00348 0.00300 0.0035865 0.0089536 -.002415 ,....054905

31.5243 0.4830 0.682 1.847 0.00264 0.00230 0.0028005 0.0073961 -.002421 1-. 054921

32.2167 0.4851 0.702 1.889 0.00174 0.00150 0.0018110 0.0052916 _.0024285 _.054940

32.9091 0.4871 0.729 1.945 0.00087 0.00075 0.0009169 0.0029405 _.002432 _.05495cs

33.5555 0.4891 0.753 1.995 (t;;;t, O. 000375 ) ---- ---- _.002443 ".054973

34.7676 0.4930 0.805 2.103 0.00150 0.00132 0.0016944 0.0077997 _.002560 "".05499t15
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~URA NOTES

MURA #23

May-June, 1954

L. Jackson Laslett
Iowa State College

The following notes deal (i) with the possible supplementary damping
of oscillations in a synchrotron, (ii) with the energy tolerance required
at injection, and (iii) with certain aspects of coherent radiation. These
provisional notes do not represent a complete analysis of these subjects,
but were begun in preparation for the May 22-23 meeting of the technical
group and to a small extent reflect the discussion at that meeting.

1. DAMPING OF OSCILLATIONS

1. Introduction:

At recent meetings of the technical group attention has been given
to the possibility of damping synchrotron oscillations, through the use
of a radio-frequency E.M.F. per turn which varies across the radial ap
erture of the accelerator. l This possibility has also received attention
by the Princeton group2 and in an early Berkeley report3 recently called
to the writer's attention. Since it appears from the analysis that one
may expect an undamping of betatron oscillations if the synchrotron os
cillations are damped in this way, the arguments are outlined hereunder
(i) as a r~view, (ii) as a challenge to devise (if possible) an acceptqble
damping mechanism, (iii) as an indication of the tolerances required in
cavity construction, and (iv) with the thought that in some accelerators
some additional damping of one of the oscillations may be desirable, even
at the expense of a certain undamping of the other.

2. The Phase-Eguation:

The equation governing the phase oscillations may be obtained in
a manner suggested by the work of Twiss and Frank,4 recently reviewed by
Livingood,5 by writing the equations for a general particle and for the
synchronous particle as follows: 6

We consider the E.M.F. per turn to vary in a substantially linear manner
across the useful aperture of the accelerator

E, Ii F. - '10 (I - C7" n ~) 5' Y) ~ I
'S

where A r '" r - r 5 •

Introducing the vector potential of the guide field erA = {f!.lu.x)z. /:;.IT],
e Vo

cl~ (pI'" ~ erA) =:ur (1. - o-n%;-)sin i
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By subtraction:

1+(PSt"'$~)" ~~ ( (=-V"-) ~'('f S ,2,.'" sin ¢ - Sin 1s ) - cr-r'l ;2..'TT - sin ¢
rs

. where W o represents .:2..'i/ for a hypothetical particle
period of revolution

moving on the radius r~ wi th the speed of light.

In the traversal of several cavities (or of a single cavity several
times), we write in the usual notation,

and obtain:

1t (.~ ¢) = - ~o.2~ :~ (sin¢ - ~i~ ¢,) to 0..:;
which is of the form:

. .
- A (s i r) , - 5 in '$) 't' a., ~ In ? )

with

f!... (M~) =
~:t::

~M- s- -)-1 A = \.A) 0

This result appea~s concordant with the non-relativistic eq. (15) of
ref. 3 for a convehtional synchrotron in which ~ increases linearly
with time, where

c
UJ =:.o

Cln = _ eh:= 1

a.-:: .-i
::L-'f""I

f:= .:!.
~-'(')

__:1-""::--__ -"1
1.. 4- s::..1....

.2lrr 5 1;s/'e s .--. 0

1 w,., e\l. .. e.VeJ' "" .. (DlE/cH-)s (cJ..r/d-t)"
---- ~ .;.il"1 ~ :::::.:!:=- ~ -::;::r ~Ir'\ "'S ;:>

E's 13.2Tf 5 E~ l3- _" f3.2 Es Fs

The conclusions of ref. 3 concerning the damping of the resultant
motion will thus be found to be consistent with ours for this case,
as will also the results stated for the extreme relativistic situation.

3. Solution of the Phase Equation:

To facilitate solution of the phase equation we replace sin ~
by ~Ln ~s in the damping term and, rather than proceed directly with
the differential equation, note that the motion may be derived from a
Lagrangian
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and

where u(l) .. cos ¢ + ¢ ~i"., ¢r:,'

The motion accordingly may be characterized by the Hamiltonian

H =: fH [ex? (sin ¢s.Jffcit: /)]P;2. - A [E.><P (-sin tlsf~ tii J
)] [£/(Ji)-U{~s)]

.
with the canonically conjugate momentum f = H ffixp (-5/1') ¢sj~d-t)J,p ~

In adiabatic changes of the roughly periodic motion, the invariance

of the action integral insures that Prn~)(' (¢ - ¢s)ma,.,)C remains constant:

thus .n. MC-e><p (-sin rI.;J~ eLt I~ (~ - 'Is )..2tmo.-X

= (AM C.o~ tis) t/~Le.xp (-s/n 15 f ~d-~ ')] (? - ~s)~ 0-><

remains constant, or

(/ -Is ),.".,a..)' oC (A t-1 cos ;6$) - ,/JI e..>tp [?,/~){s/I') ¢s )J~ d.:t ') ..

The factor (AM cos ~ s r '1'1 represents the customary damping of
synchrotron phase oscillations and leads to the familiar Eo -I/~ damping
at energies such that Y is substantially constant. It is of interest,
therefore, to estimate the exponential factor which is introduced by the
variation of E.M.F. with radius.

a. a.0'r") eV
- 50'''' ~'S. .. - --=- w -;;-!!;:" ~i'f'l ~"'- =- -a..O"n
H ~l:$ " .... ., "'...

(1/fJ.)(Sil'1 ¢~ )fft dt'.: - (a..a-n/:t) tn!!. I

f;

r: . /,. ,fa /1 ( -o..O"n/:2;
Q. X fL{I/:z.)l5/Yi I~)J H cit..J =' r.f.lf,·) in agreement with the

results of ref. 3 when

) ~.11_ 0- do
= (P.f.IF,' - ;z.. ct.,-=- 1-n )ern::: - f) and

::. (f'~ / ~. ) -,.2. .4 "'"" l-fl_cC_t--.-:--~,.--_",""":,",,:""---:-_
. t. for an alternate-gradient

synchrotron operated near the center of the stability diagram.

In a typical example an increase of momentum from that corresponding to
an injection energy of 50 Mev (pc = 0.31 Gev) to an energy in the neigh
borh~od of a transition energy such that pc = 9.70 Gev then leads to
the ~dditional damping factor

-1(;,1-/-0- (. -~,4cr
(q. 10/0. 31) = 3/,.2) )
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or approximately 0.18 for ~= I/~,t. It is noted that the sense of
the damping is unaffect~d by flipping the phase at the transition energy.

It appears from the foregoing that, from the standpoint of the
synchrotron oscillations, this damping mechanism would be desirable in
reducing the difficulties associated with traversal of the transition
energy, since the increase of amplitude resulting from an inexactly
timed change of phase would start from a lower level of amplitude. It
is necessary, however, to consider the effect of this mechanism on the
radial betatron oscillations.

4. Associated bui~-uE of Betatron Oscillations:

It appears that consideration should be given to two ways in
which the mechanism suggested may influence the magnitude of the radial
betatron oscillations. The first of these1 involves the e[v~8-l

forces arising from the magnetic flux-leakage within the cavity, and
presumably ~ similar radial impulse would be expected in case a reson
ator with an oblique gap were employed. The second effect3 is that
resulting from the abrupt change in the equilibrium orbit at each tra
versal of the acceleration cavity. We proceed to consider these effects
in turn.

5. Evaluation of Impulse from Leakage Flux-Densit~:

Writing the E.M.F. per cavity as V, C' -"""" ~r J. :s\", Ch~g,1::)J

we have

VI cr n S i Y) (h ~"', !- ) :. f r 'b (r; if) oA 9
r s

V, !l:.Q., O? rJ :. -ft --"8(~9)J.e
\","'-'5 ("5 -

integrated through
the cavity.

It is realized. that the R.F. electric and magnetic fields must constitute
a self-consistent solution to Maxwell's equations and that difficulties
could in fact arise if one attempted to achieve an E.M.F. which over an
exte"',ded rE::1:'on were strictly independent of the path. The statements
made herein appear to be satisfactory, however, for an E.M.F. of the form
assumed, and considerations based on curl'M C 15 suggest that neglecting
.the ""M- Hso implied by a spatially constant E.M. Fe affects the amplitude
tJ,r- ~ AiJ r'by an amount negligible (5 to 30 percent in a typical case)
in comparison with the term _a. (.~;-) c.o~ If considered later.

We thus obtain ,for the impulse

J -' J":l.d.5 dot
APt' ::: F d.t e ""'''""

= ~J'Bal~ =
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:: _ (eV, )crn c..oS ¢
mhw s rs
e.v,

:: _ ~ ~n co'<i ~

:: .1- A (dr ) - _ e Vi ~ c.oS ¢ :;; _ <a VI Q::..!:l c.,os <1 s
Vs &.t - ~ h (3~Es h

= - (ilE I) i02. c,t" I = - (.dP1) d;'r) t/
'~~ I: S h 5 r $ S

If this impulse were the only mechanism affecting the betatron
oscillations, it would be reasonable to consider the use of cavities
in pairs, spaced by a half-wavelength of the radial betatron oscillations.
The maximum extra relative displacement which would then be expected
to arise in this way between the members of a cavity-pair would not exceed

..<. (~_.) \ A (j.Cr/r~) I.: ~.l- (~) c:r-h c..-tn ,J ,
r"s I dE:? "$ P ~ 'f's

(The factor 2 is that estimated by Courant, Livingston, and Snyder8 to
allow for th~ non-sinusoidal character of the oscillations in an A.G.S.)

cavities in all, each excited to a similar R.F. level,

h ~~c (a.ce.. ~ime. )c
or substantially

equalsC
L\E'i )

01" ~!J.c S

[ rL]
;2.:/ir 1 ~-

5 ;4.11'1'"& (£E-)
--",-o--"t,1""':".e:--=--- <j.t S

c y s

in addition we may take ~/rs = :,;./..rn radians and

211'rs [i +~ J c..-tl"\ ~s

C • acceleration time

obtain

from a single
cavity.

Typically, with n =400, he = h = 16, acceleration from an injection
energy of 50 Mev (kinetic) t~ a final energy of 25 Gey, and a rise-time
of one second,

which is
with any

~ )( 3000 ;lIT )( gte·5o)(. 1.3 ')I,:er
\ (., )< \ la '3 ')( \OS ><. \

: 0 .. I ~ 0- oJ:.', or "~'!..._c...t' 0"'"")

considerably less than unity (for the harmonic number assumed)
r93sonable choice of a,

The impulse from the leakage field of such cavities also will
imply an accumulative displacement in the case of particles for which
the betatron wavelength is not exactly twice the separation of a
cavity-pair. For estimating this effect we presume that through care
ful control of the magnet perfor;ance n is not permitted to wander
more than from the center of a small stability diamond half-way to the

TI'/;.4
ed'~'.~. We accordingly consider 18\(,.( .. ~ 'I:. frn ,0(' lonl: o/:J.-rn;
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from traversal of a se£~or-pair spaced by A i~A A

It. 1\.1 ~ (d 0j"S~) and typically It. 7\\ .=~ \ 8 K1= ?>~('~
('5 d. K. N~

n ~~ \r(':~IJ ~ ~ A (.d.ir:r'~)) :: ~-r (::~)5 (7"~

_ ifr; ~'TTr'S (', +~ ]c.t:" 4S's
- hy'c c:r c .a.e<Z4-~er~~{o ..... b',m-e-

= Trx,.JOQ ;l..n)( 8',",50')(. t ,3 x 6
J ~.,.:. I&:>'3 ,.. loff x I

MURA #23

The increase of amplitud~ per revolution would,

at the worst, be ~ tim~s-·th~ above result
2-

and after several r~v~lutions might be about

2.62 times larger still, if we stay away from

resonances by no less than th~ amount suggested.

We accordingly write

n rf:lr \ 1 ~ 4. I nIt·s mc~"JOv'l'ra.LL ~ (7"

~Lv

2T1rs [, t-;2'i1'rs ~_,=-tn~
C ,:AC\.~ l(... Ler:'1..-t"\C!"n \-:. ,",to, ~

._ O. \\ 0-, -.(!O'C"" C'n ...-._ e'l(::'-"'''';'.\'':'=''' c.c::'Ins,o.;~c.~"~:-cl-

(h·~ Iii, 5'"0 01 •. ,; i("1~e.c.""c""'" I ~.tc...)(

With cr sOmBwhat l~&s- than unity, this result does not appear to be
excessive in a magnet whO'se radial semi .. aperture is comparable with ::!:. rs.{"

6. The Grc~th. of Oscillations from stee-wise Shifts of Equilibrium Orbits.

It has be-efl·-pointed aut in the Berkeley report3 to which reference
has been made earlier that in traversal of a R.F. cavity the instantaneous
equilibrium orbit is sudeterrly displaced by an amount

Wit'l this displacement there is associated an increase of the square of
the relative amplitude x~ of the betatron oscillations which, for sin
usoids, would amount to
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where ~ is the pha5~ of the oscillation at the time of traversal.
If we take over this expression as roughly indicative of the behaviour
in an A.GoS., we not~ that

and hence thera r..es.ults a-growth of amplitude on this account:

x c£ r 0.. (T I'}I/~
n -

The growth-factor so found for the betatron oscillations is thus as
rapid as t~e attenuatio~ fc~tcr found in section 3 for the synchrotron
oscillations.

The effect just d~5eribed appears definitely to detract from
the utility of a system""in which the E.M. F. decreases as one moves
radially outward across th~ apertureo In some circumstances, how
ever, the radial betatron oscillations may be of somewhat secondary
importance to t~e synchrotron oscillations -- in such a situation
consideration might be 9-iven to the use of cavities for which 0-
is such that the eff~ct in qu~stion is just sufficient to cancel the
customary !/vp adiabat-ic damping of the betatron oscillations:

er< I/~.g ~ O·:J~

As has be':>!) ::-e.mark.ed at the May 22-23 meeting of the mid-west tech
nical group, however, a more adequate treatment of these effects would
consider the betatron and synchrotron motions together in a general
unified analysis.

It may be noted that Kerst has pointed out lO that a betatron
inherently involves an induced E.M.F. which increases with radius.
Although "g~p5" may in a sense be present, due to the shielding effect
of the cond1lcting sections of the vacuum chamber wall, phase stability
is not involved and the effect on the betatron oscillations may be
beneficial.

7. Possible Statistical Growth of Induced Betatron-Oscillation Amplitude:

In section 6 it was indicated that, when ~ = 0, the betatron oscil
lation amplitude changes upon traversal of a cavity by

0 ....
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Although as previously stated, the values of cos ~ may be presumed to
average to zero, there could conceivably be random variations of n such
that the values of <f/ are distributed in a substantially random way sta
tistically. In such a case we have a situation similar to the projection
of a two-dimensional "ramdom walk" problem and may Wl'.L te for -J cavity
traversals

=
0-;·;.1ci

::z-

Integrating,
,,/ /\
'-\-'

f-

a.:;;' AE 1 J i ,- i E t' t . - i ~~
c._l~h -E -c r'\h c +

J-/E o L. 0 0

o..~ ~~ei (
~ T f:,. _ Eo .po (' E" - Eo << E,,)

~-;,.r5 [, +#r;] E~
G·(G\.=~.t:im-e..) Ef-Eo

ej 11:0

(ci/Eo )~-1. -

E~» f .. )

Ef }Eo

;.(, " IO<~

50 )(, I ':' U>

=

0- c C,
1/')

\""1(.... .,...

0-015" ,

In the case of the electron synchrotron described in an earlier
report. ll we similarly write

0...2. L;,. E .A
oJ.-----

:<..E;

. .~

' ... / .! ,.~

\.~)
o . gq;l., >( I;:) &:J

$0 x ,of&>

-~o . rrq:<- )( 10

=

0.4$5
h I/~c.

:: O. 08
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8. Operation with a Single Cavity:

The effec~~ considered in the preceding sections do not appear
to preclude 0~2r3:ion of d high-energy proton synchrotron with a single
cavity~ since even with random phases we find from the results of page 8

that n«wxt"Y"'):)'::Z ;;: O,oG:> when h c.. = 1; due to the non-sinusoidal char

acter of the o,~clllations, we might consider that this result could be as
great a~ a little cver twice the value found there -- say 0.14.

In a single traversal of such a cavity

I l.F: Iv In.A>(rr,1 =- I·Ltl P 5 coS t

= 0.00.21'

Again, due to the non-sinusoidal character of the oscillations we may
better write

nI,ixnol ~ 0.001,

II. REQUISITE ENERGY TOLERANCE AT INJECTION

1. Moti\fation~

The question has been raised concerning the requisite energy
tolerances at lnjection and whether there exists a disparity between
the Linac requirements as ~~ecified at Brookhaven and those currently
co~ceived in the mid-west group a~~ elsewhere.

2. Acceptance into Stable Synchrotron Oscillations:

One approach to this problem has been given by K. Johnsenl2 in
the CERN proton-synchrotron lectures. In this approach the requirement
considered has been that the initial momentum spread shall be no greater
than that acceptalle into synchrotron phase oscillations. For the case
of no f7:~C]:. 2r.Cy er:=-or Johnsen cites [cL his eq. (3)] the resul t
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which is consistent with eq. (16) of a report6 by the present writer
if III in this latter equation is regarded as substantially unity.13

ror the similar acce~erators considered in the CERN and MAC reports
we list the following parameters and find

CERN (October 1953) LJL(MAC)-3

Inj. Energy~ Kinetic
" "Total

50
0.99
0.314

25 1

23.1 x 103
b3 sed on B =3~2 KG/sec

50 Mev
0.99 Gev
0.314

0.88
18.7 x 103 ev

radian
(38)

t:>.p/p +1.73 x 10-2/hl / 2
-= ±0.28 x 10-2

AE
E" K i"

+ 0.56 x 10-2 + 0.55 x 10-2

The~e results ~~y be compared with what would then be a satisfactory
expected performance of the linac, as reported by L. H. Johnston: 14

-=:. ,So .... c·.;.::., l'1ev j

Note added in proof~

The Brookhaven Accelerator
Development Division minutes (#57)
of their March 16~ 1954 meeting
suggest the requirement
+1/2% in energy, +10- 3 radian, and- . -
a width of 1/2 inch.

The momentum spread t~~~13ted above appears to constitute
2

the basis of
the CERN jesign specifications [j>.6 of the CERN report IJ. For the
Brookhaven rlesign a higher harmonic number may be under consideration
-- the foregoing examp le with the harmonic number change~ to . 88 would
lead to

~p- '" + c. !C~ )( 10-:.'-

3. Avoidance of Resonances:

Th8 change in effective n due to momentum error should for
safety be no greater than that which will displace the operation point
fran ";:he center of a small diamond p bounded by 21T - and '11 -resonances,
half-way to the edge. The momentum spread which is tolerable on this
acount has been esti!:".;jt8d earlier6 as +0.20/...,rrr for operation near
the center of the "necktie diagram" (",-= '1"1/2) ~ or +0.31/6for a point
sit 11ateci on ~he diagona i but closer to the origin T t:r = 0.3'iT ). For a
field index (0) in the neighborhood of 400, these considerations
ne< ~ssitate 3 'tolerance of about +1 per cent in momentum or +2 percent
in '~i.:ergy and are evidently less demanding than the requirements dis-
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cussed previously cf. Fig. 9A~ p. 111 of the CERN report12 and the
accompanying disc~ssion by ~ms (Sect. 111-4, esp. p. l02)

4. Clearance af Infle.cto.r Electrode:

An additional and more severe limitation of the tolerable energy
spread may arise if the beam is obliged to clear the electrode of an
electrostatic inflector structure as it spirals inward during the in
jection interval. It should be· noted that such an arrangement pres~nts,

possibly, serious difficultie·~·inmachines of the types presently under
consideration, due to the very small pitch of the spiral in the presence
of a linearly-rising magnetic field -- about 0.6 mm per turn. If it is
intended to inject at the start of the injection interval particles whose
trajectories have initially the scolloped appearance of the repetitive
orbits illust~ated by Courant, Livingston, and Snyder [ref. 8, Fig. 17,
it may be not~ that for some particles an excess momentum will requlre
the superposition of a betatron oscillation (of an initially negative
sign) OI' amplitude (6.39/n) (Ap/p) • In the course of a revolution, this
betatron motion may come to represent a positive displacement at the
inflector location. The racial error from this effect can then amount to

.QJ: _ ') (." sq A""'
- ""'-' >< -- --..!:-r n f

and would restrict the permissible excess momentum to

With, for example, L:- r
r = 86.50 M as before,

~
p

D. li'

c K "

- 0.6 mm = 0.6 x 10-3 M, n = 400, and
we thus find the comparatively severe limitation

4- 0 c.:> o'&> >< 10-3 3= 0 ?.;;;J. ><: 10-
;';, x ~.3Cj ifG. c<,:'

The discussion of this section presumably leads only to a rough estimate
of the desired energy toler~~ce when an inflector is used -- to obtain a
more definitive idea of the requirements it would seem appropriate to study
in some detail the individual trajectories of representative particles
injected with various amounts of momentum- and angular-error at various
times within the injection intervaL

III. COHERENT RADIATION

1. Introduction~

Since there has been within the 'mid-west group some expression of
interest in the construction of a circular electron accelerf~or, the atten
tion of the Technical Group was directed to a recent report by Nodvick
and Saxon nOn the Suppression of Coherent Radiation by Electrons in a
Synchrotron". Since some general discussion of coherent radiation resulted
at the May 22-23 meeting, the following comments are appended for whatever
interest and reference value they may have. The mathematical notes are
somewhat crude but may have the merit of affording a simple feel for the
phenomenon.
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2. Rough FormulBtion of Form~Factor for Coherent Radiation:

If the power radiated non-coherently is po(w) ~w per electron,
the coherent radiation power from a small bunch of N electrons charac
terized by a symmetrical distribution density p is

where

00 :J.-
-p = N;;J.- J [F ((,..)~ ?". (G::» cL...."

Q

JrC)()a-eos ~cL)(

l' p ex) cJ..x

3. List of Fox~~Factors:

We consid.e.J:.._the following..fonn-fact.s:

(i) For a uniform bunch of lengtht,
s i '() h. c.v

F == . ~e-

~
.;2.6

(ii) For a Guassian bunch, of width L between lie points:

f =- e.xpL- (~:7~.

(iii) For a group of particles moving with S.H.Mo and with
amplitudes uniformly distributed from 0 to LIZ: In this case

J.,/~

p{><) oC J c/..s! (s2_x,2):J./~ = cosh -1 ~
)(

L/.;2..

P = ;;' L.,~ J cosh -:1. ix C05 ~>< cl><

o i.

= ~ J ~O .. L -1 .1.. L c.Jy,1, ... n i c.-o '" ~ Oly.
o

4. Introduction of the Incoherent Spectral Distribution, Po (w):

If, for the low-frequency radiation important in the c,herent
effects, we write

-Po (w) '" K w :t /3 )
the coherent radiation in the cases considered becomes

(i) For a uniform bunch,.

:;.TT' I<N.2 (S:-) 4/3
Y(::L)" /3 r (!i,/J) ).J
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statvolts/turn

(ii) For a Gaussian bunch,

7 (;.) = 3T' (f) \<, \\)2 (~) '+/:3

= ;<;.71 1< N2. (-=t) 4 /3

(iii) For S.H.M. oscillations with uniformly-distributed
amplitudes the integration is more complex, but it appears safe to take

The factor of 6 represents a (pessimistic) estimate of the integral

(~).<. (~)i.//3 ;: 1./3 d-z. L/icoS"h -1. (.; ), CelS %y ely].2 ..
o 0

5. Resultant Formulas for the Coherent Radiation:

From eq.. (II.2o.} of a paper by Schwinger16 we find (E» Eo>

(3) 7/~ T' (5) e:J. (R) 1/3 t/3-Po (CoJ) d..W:r. .21'1 ~""R Co ~ ct.w ) o~

(s)7Iri (£) e. Q, (R) 1./3
k = ::2.1"1 l' "3 '""R c ) e,S.LA. 'oe.iY)~ ......~e~·

We then find

(i) for a uniform bunch
2/3 IV;;' Q.:<" (.8..) 4/3'"Pc I) = .2'iT (3) R ~ ,

The E.M.F. loss per turn is, accordingly,

V (I) = ;l. n (3)~/3 "ff (~) ti/3

vo~ts/turn

volts/turn,

with e still in e.s.u.
and R in em.

This result may also be expressed as a "radiation resistance":

V
(Nt-)";":' =

(,,7.rr)~ (3):..13 (.B..)J.J/.3
C2, .... statohms

'T"l'~ (.v'!'R) 1-//3 ohms, in agreement with a 17= \~O ~ result stated by Schwinger.
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volts/turn, again with
e in e.s.u. and R in cm.

(ii.) For a Gaussian bunch '0 " "I
I / ";£...2. rv,2.e. -- (i< )"1 :3

-p (~)~ J.j (3) G [r (-3")] R -C

in agreement with eq_ (2.0.) of a paper by Schiff. 18

V(2) = ~ 'j / I~ [(7 (;)].z ¥ (~) ';'/3

.., .• 1 .3 t1g /~) ~/3= ","", (..·7 if 10 '" l. ...

statvolts/turn

(lii) For the S.H.M. case with distributed amplitudes we estimate

V(3) .~ t,.><, 103 tV: (;li.) ~/3 VOlts/tur~n' with e and R
,.. ..., ... the same units

as before.

6 • NULle.r:i.C 31.. Ex.amp 1e s ~

"'s' volts
/. turn

lO'l x 1/.,; x 10 -10

s:IA./ x /0-3

IV :::=- /0 II

R - 3J/~O C. Yn J

o.~ I

J .3
'XIO X

LIT< ...

then V(3) 9:'

By way of an exampl&~ first consider a single bunch of electrons
for which

If~ on the other hand,

N - 3 x lOll per bunch,

R = 700 cm, and

L/R = 0.037, <.i~, might be expected with operation
in a high harmonic,

then V (:5) ~ ~ x 10 3 x 3 x 10" X _1~ ..?<._'_C:_~_;~_
'7 ~).J

For comparison, the incoherent loss, for electron-energies of
10 Gev and 2 Gev correspond in these respective cases to~

\/ J./.. g )< 10' 10 (I 0 000) 4 _ /
. ",,:;:;,.:. 4C:?n 5140 0,5"1 - 17 x IO~ v +urn;

v·I ncoy,;.

I - IC! ,J
il H.t ')( 10 (;;'CCO_)~ =

'700 0,5"1

7. Effect of Shielding:

The coherent radiation, which 1s of relatlvely long wavelength,
may be reduced considerably by suitable shielding. By use of a suitably
modified Green's function, Schwinger19 has considered the case of a uni
form bunch between infinite parallel conducting shields, of separation a,
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and obtained a shielding factor (1/2)(1/3)1/6 (a/R}(R/L)2/3, for L> a.
Saxon has reviewed the d~rivation of this factor, which he considers may
assume the value 0~071 in a typical case (R/a = 50, L/R =0.04), to in
clude an estimate of the shielding effect for parallel conducting sheets
of finite width.
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I. INTRODUCTION

The Mark V or "spiral ridge" FFAG accelerator is a version, origi

nally proposed by Kerst,I,2 of the fixed-field class of A-G machines.

In this design the general fk increase of field with radius is modified,

to produce alternate gradient focusing with no marked increase of cir

cumference, by introducing a spatial ripple into the guide field so that

the particles encounter regions in which the local "n" and restoring

forces alternate. This is achieved by constructing a field which, in

comparison with the average field at a given radius, is alternately

higher and lower along oblique curves which all particles must cross.

In practice such a field would be attained by the use of spiral ridges

on the pole surfaces, supplemented, when required, by similarly disposed

current-carrying conductors.

It is the purpose of this report to derive analytically information

concerning the particle motion in the Mark V accelerator and, in Appen

dices, to record some techniques useful for further study of the motion

by aid of the ILLIAC digital computer.

II. THE MAGNETIC FIELD

A. Form Assumed in the Median Plane:

Without the use of poles excessively close to the median plane, the

type of variation of magnetic field which is most readily realizable is

sinusoidal. To obtain a field which would subject the particles io

.alternate focusing forces, it was originally conceived that the field

prescribed in the median plane be of the form

LJL.MURA.5
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In order that the field scale, however, in such a way that the essential

features of its effect on all particles be the same,3 it appears desir-

able to make the quantitatively minor modification of adopting the form

with w constant. This revised form for the median plane field will be

the basis for the remainder of this report. The momentum compaction is

then clearly given by

From these expressions it is seen that N is the number of spiral-

ling ridges passed over by a particle in going around the machine once

in the 0 direction. f is the fractional flutter, in the magnetic field,

due to the ridges. Finally, if the radial width of the annulus is small

in comparison to the outer radius, r o , 1\ = 2"'''' = 21l"row is substan-

tially the radial separation of the ridges. The angle by which the

ridges spiral out from a reference circle is of the order NW and in

practice will be quite small. The exponent k is taken to be positive.

It will be convenient in what follows to work with dimensionless

quantities defined as follows:

LJL.MURA.5
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the median plane field may then be written

B. Development of Vector Potential:

To obtain the differential equations governing the particle motion

it is desirable to characterize the magnetic field by a vector poten-

tial, which should be at least approximately compatible with the

prescribed median plane field and with Maxwell's equations, in order

that the resulting equations be rigorously Hamiltonian and the solutions

thus satisfy Lieuville's theorem. In attempting to write suitable

expansions for components of the field and vector potential, one may be

guided by the consideration that x and y will themselves be quite small

but that x/wand y/w may, in cases of practical interest, be comparable

with unity. In the work described in the body of this report terms

involving powers of these latter quantities will be retained so far as

practicable, but no more than quite limited accuracy may be expected for

values of x or y nearly as large as w. kx and ky, however, will be

typically rather small ( 0.1). Also Nx and Ny are normally less than

kx and kyo

We undertake an expansion of the median plane field, through cubic

terms in x, to obtain

LJL.MURA.5
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where

5

P 1 2 1 3
1 k [ x - -x + -x a

er
l

(l+x) . 1 + f sine 2 w 3 - N8»

I - f .I'" N8,

Likewise, for use in what follows ,

(l+x)B = - PI [B + B x + B x + B 2 B 3]
. zo erl 0 1 1 2x + 3x ,

where

B /- f $/'l N8
o
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= (J.+lj(.J.XI-,)
6 ~l

J{
_~"'31'.1

... ... cosN9
~14"

We now seek a vector potential such that Ar and Az vanish at z = 0

(in general, the components A~ and Ar will be even functions of z or y

with Ar involving only y2 and higher even powers of y, while Az will be

an odd function). Then in the median plane AS must satisfy4

leading to the possible solution

~ (l+x) Aeo or

- 1 + f.'" "'Ii

_ A(~+,j{"-,J

2

f
"-1- -31i, .L [_ ~ -I- A(,(..,)'/.,J)s", NQl

+ f~" ,;..., 'os H9 -+- 2.'1 '-I" J
~., ~

-I + lSI'" NQ

where

C
l -B

0

C
2

B
l

=--2

C
3

B2
=--3

C4

B
3

=-4
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C2- Cl -I;,.,. f (-2~ C~"e -+- -A;' ",.. HS)

At 21+• .,. f [- t1 CoJ.Nf) -+(-~,+ ~~l'+J)
C3 - C2 + Cl , 3~ u 6

S'Il\NfJ]

To develop the vector potential for points not in the median plane

we employ a gauge in which div A = 0 and note that, in the notation of

E. S. Akeley,4

Likewise

A
z

LJL.MURA.5
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In this way we find

- ~ 1.. [(D,-+ .2. D:l. ) + (-.2.D I + :l. D,2 of 6 D 3. + '0, ') )(.

I ,

LD,/)( + (-2D,I.t-D,') xJc~/'+- D, ~2[)2 ~~

[

' lit. I I 1 ]

-~ D. l(' ~ (- O. +1),)x + lD. -D,,+ DJ ) x.J

and

~ 3 (( , 1 ,,' II/ ]
+ 7 - DI + 2. D'a, ) .... (~D, .. '-I D" + ~ D. T D, ))( J

primes denoting differentiation with respect to e. These components of

the vector potential represent expansions through fourth order in x or

y and, as a check, can be verified to satisfy

:=0

through third order.
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III. THE EQUATIONS OF MOTION

A. "Lagrangian" for Use in Principle of Least Action:

The differential equations governing the particle trajectories in

the aforementioned magnetic field may be conveniently obtained from the

principle of least action by use of the "space Lagrangian"

+

.1. ( , 1. ,....) 2-
f )( +'a

+ f [(I+x)A e + x'A.,. + 'a'Aj!J

{ 2 2 2prl (l+x) + x' + y'

4 2., ,
,.,. ..L )( + ~oc: 1+ )( -i':1 Ii"X

(x,y;x' ,y' ;8)

,\. ,'I. \. 1.1
_ J..~T~ _...L/I('+c..') += + 2. I+X 'l \,. 0 )(

{ D:l( 'X ~. j. {[- D,'x + (ll, ~ 1l,')X'h

[
I ') L\. 3 }' \. ~ '"+ -'0, +2D" -:- ~ +C,)(+Ct.X .... C1X-tCqX

-+[( D,+2Pa) + (- DI.j..qD~-f~ 0 J'" D,")}(

+- (D, - J:) \0 + 'I D.3 + 12. D'i - DI " +- D...") )( a.

[ 3 D I - 6D'l t- 12. D1 .,.11.j D':I - '2. DI"+ Lt D2." 1} ,

in which we have treated x' and y' as of the same order as x and y

despite the fact that these derivatives may be expected to be some N

times greater than the dependent variables themselves.

The Euler-Lagrange equations, if applied to the Lagrangian of the

preceding paragraph, lead to differential equations for the motion which

might be susceptible to solution by digital computations,S but which are

not in a form most suitable for analytic study. The equation for the

radial motion, in particular, is marked by the presence of a forcing

LJL.MURA.5

1-265



10

term f sinNO derived from the term (l+Cl)x in the Lagrangian: It can,

in fact, be shown that the magnitude of the (periodic) response to this

forcing term is sufficient (~- f/N2) that non-linear terms in the dif-

ferential equations affect significantly the character of small ampli-

tude betatron oscillations. 6 ,7 It is desirable, therefore, to undertake

a change of dependent variable such that the forcing term is suppressed

and the resulting equations, if then linearized, may be used to provide

an analytic basis for determining the character of small-amplitude free

oscillations.

The Lagrangian as written is in a form somewhat inconvenient for

the analytical work to follow because of the presence o~ terms arising

from centrifugal effects. Since the first derivative terms which result

in the differential equations are in practice small for excursions of

the order of the forced motion (at least in the case of "full-scale"

high-energy accelerators), it is expedient to simplify the Lagrangian in

such a way that the troublesome terms are removed but with the remaining

terms of the differential equation modified only slightly. We accord-

ingly continue by use of the following Lagrangian, which yields dif-

ferential equations free from terms involving first derivatives of the

dependent variables and, in the remaining terms of the equations, modi-

fies only slightly the original terms involving y2, xy, xy2, x 2y, xy3,

and x4 :
'l l

X' + 'a'
'-

t- X
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[) "- ~

IT

with £,. C I

"• '3 2"7 D
Ft = ,D, - Da - 7t.P.J - 6.D,., - --',.

B. The Forced Motion:

"- D,
2.t(

With the aim of separating out the major effect of the forced

oscillations we now introduce the new dependent variable u by the sub-

stitution

x Kl sin NO + K
2

cos NO + u

a numerical integration for a particular example having suggested that

the forced motion is in fact close to sinusoidal. The resulting Lagran-

+ [FD 1- 1=", ( /(, $'''' 'Ie +- 1<". C os ",e) ;- f''l ( K. Sf" t-./e t

[ r, of 2 t" ( K,1"II N8 + K~ (oj' AlB) ~~ t.
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of which we shall be chiefly interested in terms of second or lower

order in the variables u, y.

This Lagrangian leads to a residual forcing term in the equation

to f (- ~Ul" N~ + (-i1'~) !.1 ...tI~l

[1<1 .J,,,,...,e ~ t< L e:..crt N e] "-
of" f:.f .. f(- ! col Nil.. (- f.:,. • -\') ... Nil)](1< .....tJ8 .. l<o.<.."e'l

l
- -R. J to (((- i \. + ...L~\ co! N8 1'" ( -~" 't"fl) SI" N&))

~ 6; ~~ ,~'J J

"( K, $'''' NfJ + 1<a,.Cct N9)

for the u-motion given by .

1+ (N"'+,) ( &(, ~'''I tJG> t- K\.. c..os. N B) .,.. ...If- [E ,1'" 2. E z.( \(.31 ",W e + l< 1. c:.oS ~e )
+3'£?(K,S'~N&~I(,\Coswe)2. + lfE'i(l<, S,,,NS T ~\".COSNt))]

~ 1- (N\'f.\)(t<,,,,"'t\I&-t \(\,.c.o~Ne)

-r ~ { - f i".f s ,\0 N 0 l' [-(i+ '1)

and is to be suppressed by suitable choice of the constants P1/P, Kl'

and K2. It appears from this development that a measure of the adequacy

of the analysis is afforded by the degree to which the values found for

Kl/w and K2/w are small in comparison to unity.

The forcing term contains the following Fourier-components, which

may be made to vanish:

Constant Term: 1+ ~' [-Ii-if ~1<'--\fa:K." ~(l:.'+ k.')
1'" t f 8 \(, ( 1<,1.+ k~"') 1" i f C K. (1<,2.+ Kt.'")] r
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where

ol = - <£+2) f3
1

= - -
w

k
2

b
k 1 k

2
a = -2 c=--+-

w 2w2 2

A
k

3
B

k
2

1
C

k k
3

-6 --+- =-- +-
2w 6w3 2w2 6

We have attempted to find solutions which make these coefficients vanish

when the machine parameters lie within what may be considered the normal

range of values. In this way we find:

I
-NL-f-i.·tI) rH~r'

;/~

•
:;:;;;

f
J

or very nearly zero, and

The forced motion is thus represented approximately by:

Xforced

f so, !'If)

x'
forced

Nf 2

[C~$ N8 +- 1(:' ft,-) SII'I N8]
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accordingly, at 0 = 0, the "fixed points" are given by

~

-{-(f)
x'

fixed == N{

and the amplitude of the forced motion is given approximately by the

magnitude of the coefficient - Nt _ ~k+1)

The validity of these results is expected, as noted previously, to be

f/wmeasured by the degree to which K1/w or 2 is small in com-
N - (k+1)

parison to unity.

C. Character of Small-Amplitude Betatron Oscillations:

For small-amplitude oscillations about the equilibrium orbit, the

governing differential equations will be of the form

u ' I + F u °u

y' I + F Y °
Y

On the basis of the Lagrangian of the previous sub-section, the spring

factors which determine the frequencies of the oscillations are respec-

P1 - p
tively (neglecting p ,K2 , and powers of Kl above the first):

to
so. NB

E3 sinNO ~

- (I/~)
N"-- rJ+I)

-1 - 2 E2 - 6 Kl

~ ./J. 4- J -t-.:f:- co~ N e
ltV

F
u
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"l.

(f;c..r ) .3 "''' 2.N e
N"J.-('If+,)

_ ..:I:. c.oS N8
I.4S

The linearized equations representing small-amplitude betatron

oscillations are seen to be of the Hill type. Some aids for the solu-

tion of these equations -- especially for the determination of stability

boundaries and the characteristic exponents (~u and try) of the motion -

are noted in Appendix III. As Kerst has pointed out,8 useful orienta-

tion is readily provided, however, by application of the "smooth approx-

imation" technique introduced by Symon. 9 If the normally-small contri-

butions from the cos 2NO terms are ignored and if k+l is neglected in

comparison to N2, the smooth approximation leads to differential equa-

tions of the form

u" + V~ u 0

y" + V~ y 0

'l.
2-

t+1 i (-!;;) ~ -t +G!N)where VIC.
.-

>::. 1<+ , ell1eJ.
1-

to 1:- (!rN)oJ\.· - -i .,. f~) +, =

It is thus seen that the frequency of the free radial oscillations is
•

substantially determined by the exponent characterizing the radial
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increase of average field strength, while axial stability may be

obtained concurrently if (w
f

N)2 is sufficiently large to dominate-k.

It will be noted that these features of the betatron motion differ

markedly from the performance which would be expected on the basis of an

expansion about a circular reference orbit while ignoring the presence

of the forced oscillations. This situation can be understood physi-

cally6,7 by reference to a diagram on which are drawn contours of con-

stant magnetic field strength in the median plane, with the expected

equilibrium orbit superposed (Fig. 1). One notes that the field gra-

dient is in a sense to favor radial focusing over a smaller interval of

8 if one examines the gradient in the neighborhood of the scalloped

curve than if one merely examined it along a line of constant radius.

IV. ILLIAC STUDIES OF THE PARTICLE MOTION

Although the results of the foregoing analytical work are believed

to describe reasonably well the general character of particle motion in

typical Mark V machines, it is clearly desirable to study the motion in

representative structure of this type by means of digital computation.

Such a program not only would provide a useful check on the analytical

results and provide information concerning structures for which the

approximations which we have introduced are invalid, but can take

account of the inherently non-linear character of the dynamical equa-

tions and provide accurate information concerning stability regions.

Work directed toward these ends is listed below:

(i) Exact differential equations governing the motion in the

median plane have been prepared for use with the ILLIAC ("Ridge Runner"•

program) .

LJL.MURA.5
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(ii) Relatively simple, approximate differential equations for

the three-dimensional motion have been prepared, attempting to take

account of the fact that x/wand y/w may be large (comparable with

unity), but supposing that variables x and y themselves will be small

("Feckless Five" program).

(iii) More accurate, but somewhat more elaborate, differential

equations for the three-dimensional motion have also been set up by

Vogt-Nilsen, based on recent vector-potential developments4 of E. S.

Akeley ("Feckful Five" program).lO These computer programs are being

directed toward a comprehensive study of the particle dynamics in Mark V

machines, chiefly through the efforts of the Illinois group.

In Appendices I and II to follow we outline the development of the

equations listed as (i) and (ii) above. In Appendix III we describe

some techniques which have been applied for obtaining information con

cerning solutions to the· Hill equation developed in Section IV of this

report. In Appendix IV we make some numerical comparisons, in certain

examples, between results obtained from the analytic theory and from the

ILLIAC computer. As Appendix V we present a stability diagram computed

from the analytic theory.
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APPENDIX I

EXACT DIFFERENTIAL EQUATIONS FOR MOTION IN THE MEDIAN PLANE

For the accurate exploration of the character of particle motion in

the median plane of the Mark V accelerator, and for aid in checking

results obtained by other methods, exact differential equations govern-

ing this motion were prepared in a form suitable for ILLIAC computation.

It is clear that this is possible, since the field -- and hence the

nature of the forces -- is prescribed in the median plane. The resul-

tant program has been termed the "Ridge Runner."

For z identically zero, the equation of motion is 11

With r = rl (l+x) ,

+

(

X'

(['+X) 2. -t X ,I ) I+- 'l(

+
en

p
('t-x)B~

We let
x' x' (l+x)

Px
Px or

../0 i-K)l + ,I.
~' flo~ - l(

k NO N~ + h. (ro/r l )and put eB (rl/r ) r
l Pl 'o 0

to obtain the simultaneous first order differential equations

P I

X

LJL.MURA.5

1-276



x' = (/7- X) Px
y1- PIC2.

•
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[These equations are clearly in Hamiltonian form, since

ox'/dx = -OPx'I~ Px' the "Hamiltonian" being

1-/ ce - (",-X) ..; 1- P,c" .e;' I ~( 1+ X) B~ ul."

- -( I+oX)"; 1- p;- to t 10+ )()".,.,{I +Iso, [t;~ (I+)() - N;]} ax

in which the second term represents the contribution - ~ ~ A from the
p r l 0

vector potential.] For automatic digital computation, r
l

may be taken

so that PI = P (for convenience).
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APPENDIX II

APPROXIMATE DIFFERENTIAL EQUATIONS OF MOTION

In the attempt to permit relatively simple exploration of three-

dimensional Mark V motion with the ILLIAC, relatively simple differen-

tial equations of motion have been formulated. The intention was to

retain the dominant influence of the quantityx/w, which is not neces-

sarily small in comparison to unity, but to make approximations con-

sistent with the supposition that z and kx will be small in most cases

of interest. The resulting program is termed the "Feckless Five".

We employ the notation

r - r l zx = y -
r l

r
l

0 tan-l [(k+l)w) sec 0

[
2 2 2. :1 1/21 - (k + k + 1 - N)w - ~2(k+l)wJ

The field in the median plane is taken to be

Bzo

LJL.MURA.5
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in which we regard the last term as a small correction.

If the vector potential in the median plane is taken to have a 8-

component only, we employ the relation

(l+x) Bzo - tx [l~X AOo ]

to obtain ~~

_.L (I+K)Ae .:.. (1+ X) _
PI • ...+~

or -..!:.
PI

.1.)(

f~ ~_ CcC(~ -NB+S)
sec 1:

JS-c r X
1

c.c:;;.r(N8+C) .
-7' 0 6,.J

For developing the vector potential at points not necessarily in

the median plane, we note

and apply the methods4 used previously in Section lIB to obtain

_ ~(HlC)A8 ~ Qr'j()~t\_ .-A ~t(I+)C)""\' ....'"(4·2.) .~I/ (tt)()~-f.
PI -i-r~ 1- '2.~

-1"" e.tl+I))C( eQ<~ - N9+S) CoS.~ Co, h '\ ,
S'(,~ $'" (~ - N8+' ) s\... ~ * ~I ... ~~ 1

( -&-I)c
_ It ~ ~ Nf...r "\ ~ Sl~ (~ .. N& +~) •

"'P.a- SCC' \ a -oJ

LJL.MURA.5

1-279



.e. •
- j'J\ A., = 0
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(being of order wy2) .

The equations of motion are now obtained by use of these vector

potential components in the Lagrangianll

2 2
• x' + y' e [ 1 ·= 1 + x + 2 (l+x) + P (l+x)AO + y' Az (since we take Ar 0)

or the Hamiltonian

e
p (l+x) AO

-(l+x) [1
e 2

P 2 + (p - - A) ]x Y P z
2

e
p (l+x) AO

One thus obtains, if Pl is set equal to p:

x'

y'

P I

X

(l+x) P
x

(l+x) A

LJL.MURA.5
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where

A Nf w (k-l)x sin(~ _ NO + £) .
Py + seco yew u

It is believed that solutions of these equations for certain cases,

involving motion in the median plane only, have been in good agreement

with solutions of the exact equations of the "Ridge Runner" program.

More accurate, and more elaborate, differential equations for the three

dimensional motion have been in preparation by N. Vogt-Nilsen,lO guided

byE. S. Akeley's treatment4 of the vector potential.
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APPENDIX III

VARIATIONAL METHOD FOR DETERMINING STABILITY BOUNDARIES

AND CHARACTERISTIC EXPONENTS FOR THE HILL EQUATION

By the change of variable NO = 2~, the Hill equation encountered

in the body of this report may be put into the standard form:

d2y
---2 + (A + B cos 21r+ C cos 4~)Y O.
d't"

Information relating the coefficients of this equation at the stability

boundaries may be obtained conveniently by variational methods, since

the equation then has a periodic solution. By considering the "isoper-

imetric" problem

C J1l"o f!2 y/2 - (B 2"" C 4,,")y2]U l cos ,,+ cos " d't" = o

with A playing the role of the Lagrange multiplier, we arrive at the

result

A ::.

By use of trial solutions

Y 1 + 2P cos 2 r + 2Q cos 4't" +

LJL.MURA.5
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cos'L+ U cos 3"(+ Vcos 5'(+

the expression to be minimized may be put into an algebraic form

appropriate to the cr= 0 or cr= ~ boundaries, respectively. This form

is suited to rapid solution by a high-speed digital computerl2 -- by the

minor modification of leaving the normalization of the trial functions

unspecified, the same general technique may be used to provide simul-

taneous homogeneous linear equations suitable for solution with a desk

computer. 13

With a bit more algebraic complexity similar methods may be applied

to estimate the relation between the parameters of the differential

equation and values of ~ away from the stability boundaries. For this

purpose one notes that on the basis of the Floquet theory, as Courant

and Snyder have pointedout,14 solutions may be written in the "phase-

amplitude" form

Y('L)

where, in the stable case, w('t"') and 'P ('["') are real periodic functions

with the period (11") of the equation and L is a real constant equal to

~/~. One then considers the variational statement

11" I [ 2 2 2{2" w' -(B cos 21"+ C cos 4i::)w + (L+\I") w d"'t"' = 0

o

WL.MURA.5
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to obtain

11=
1T! f [t4' ,3._ ( B Cot :lor -t- C ~o.r 4'7")w\1" (L+!P '/,,.va.] e:;{7;

/.". .1- t.V' ofT
• .2. .

n.,,"
By use of trial functions

w 1 + 2P cos 2'r + 2Q cos 4'T + ... ,

1" 2R cos 2't" + 28 cos 4't"+ ... ,

the expression to be minimized again assumes an algebraic form which, by

aid of high-speed computation, can give estimates of the value of A

associated with specified values of B, C, and L = ~/~.

The foregoing methods have been used in ILLIAC computations to pro

vide tab1es15 giving the estimated values of A for values of the

remaining parameters in the range

L: a (0.1) 1.0

B: a (0.2) 5.0

C: -2.5 (0.5) 2.5

together with the values found for the coefficients of the trial func-

tions. For convenient use, and because the estimates of A are some-

what inaccurate for values of L close to but less than unity, supp1e-

mentary graphs16 have been prepared from these data giving (i) A vs.

cosO for various values of Band C and (ii) A vs. B for various values

of C and 0

LJL.MURA.5
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As has been remarked, the foregoing methods appear to suffer some-

what in regard to accuracy for values of L near but less than unity,

although very close agreement with known values for the stability limits

is found in those cases for which comparison can be made. It is

believed that close to the = ~ limit the form assumed for the trial

function which represents 1IJ 6 is not favorable. It may, therefore-, be

appropriate to mention a modification17 of the variational procedure

which might be useful if more accurate results should be desired for

other applications. In this modification the single trial function w is

-employed, use being made of the identity w2(L+~ /) = K
2

, a constant.

Specifically,

~L == r:r

Since, as has been noted,

or

A -
a ) ~

IV' - (B CoS' 2.'r +- C cos 'f 7: t.J" +

<"",>
( /..+ ljJ'I'..,.' >)

"h-r l/1'\. ,

we obtain the equivalent result

[
<4)'" >-<(B cos 2"l:" + C coS "IT') W '>

< i.V* I. >
For convenience one may make the change of variable

2
v = w

LJL.MURA.5
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to obtain

A=

..,., In. •

These expressions are conveniently homogeneous of degree zero in their

respective trial functions. The trial functions should be non-zero,

continuous, have a continuous derivative, be periodic with the period n,

and (in the case considered here) be even about 0 and n/2. By virtue of

the property last mentioned, the averaging need then be taken only over

the interval 0 to n/2. A limited number of hand-computed exampled with

simple trial functions indicate that this modified procedure will give

good results, even for values of L near unity, although in practice

some of the integrations associated with the averaging process may have

to be performed numerically.

If the trial function v is taken to be of the form

v 1 + 2Pl cos 2'L+ 2P2 cos4't" ... ,

we thus obtain

In tabulating the results of a minimization procedure based on this

method, it would be desirable to include the value of<l/v), since an

III 1/2 h h [v<1 ~1/2. fl" d .estimate of l/(L +T') ,w ic equals L v/J ,~s use u ~n JU g~ng

the amplitude resulting from scattering and for determining the dis-

placement of the equilibrium orbit due to misalignments.

LJL.MURA.5
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APPENDIX IV

NUMERICAL COMPARISON WITH ILLIAC RESULTS

In the table which follows we give comparisons between the results

obtained for radial motion with the I~LIAC, using the exact equations of

motion, and the corresponding values predicted by the equations of this

report.

The theoretical equations used for estimation of the fixed points

are

x'
fixed

----:::-__N_f ~ F

N2 - (k + 1) xfixed

For comparison with known results in one case, we take the predicted

amplitude (about the fixed point) for the forced oscillation as

f

N
2

- (k + 1)

The phase shift,er , experienced by the small-amplitude radial
u

betatron oscillations in traversing one period is given by the smooth

approximation as

211"~
(ju N

For a more reliable estimate, we determine the coefficients A, B, and C

in the standard Hill equation
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d
2

u
-2 + (A + B cos 2t" + C cos 4't')u 0
d1:"

using the relations

A

B

C ,

and then interpolate au from the graphs mentioned in Appendix III.

As one measure of the extent to which one might expect in advance

accurate results from the theory. we list the quantity 2 f/w • which
N - (k+l)

should be small in comparison to unity.

It should also be mentioned that the examples given do not neces-

sarily represent practicable combinations of machine parameters, the

first example being in fact axially unstable and others having possibly

undesirably large values for (J .
u

LJL.MURA.5

1-288



COMPARISON WITH ILLIAC RESULTS

Machine Parameters Fixed Points Forced Amplitude

k' =
f/w x A

k k+1 f 1/w N
2

Theor. Observed Theoretical Observed B
N -(k+1) x' C

75 76 0.25 167 27 0.064 -0.000043 -0.00004 0.4097 0.651f
-0.01034 -0.0104 0.2291 0.651f 0.651f

0.0073

75 76 0.25 1047 27 0.401 -0.000043 -0.00004 0.1291 0.651f
-0.01034 -0.0108 1.4372 0.821f 0.791f

Approx. 0.2879-IN 299 300 0.25 4000 52 0.416 -0.0000116 -0.0000144 0.000104 0.0000987 0.137QC
\C -0.00541 -0.00564 1.118

0.307

150 151 0.25 2094 37 0.430 -0.000023 -0.00004 0.1125 0.661f
-0.0076 -0.0079 1.53 0.9h 0.861f·

Approx. 0.3287



34

APPENDIX V

DIAGRAM OF STABILITY REGION

The first stability region has been plotted (Fig. 2) as a function

of machine parameters on the basis of the theory presented in this

report and assisted by the graphs16 describing the character of solu-

tions to the Hill equation. The basic variables are k/N2 and f/(w~~,

for k >~ 1, and the computed results are expected to apply for small-

amplitude betatron oscillations most accurately when the ordinates are

small in comparison to unity ( say f 2 < ~). Amore accurate plot of
wN

this character could be prepared, if required, by use of ILLIAC solu-

tions of more accurate equations of motion.
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LJL(MURA)~5~ Sequel
1 August' 1955

PARTICLE MOTION

IN THE

MARK V FFAG

[The following material is intended to represent an abbre=
viated presentation containing the essential elements of the
material in Sections II B & III A,B, C of LJL{MURA)-5 J

Expansion of the Magnetic Field3

We proceed on the supposition that there is interest
r

in examining the particle motion under conditions such that

k~1.., N2<.1£.. 3 and ..2S ~ 1,
w w w

this last ineqUa~ being consistent with the results to

be obtained if 2 < 1 and if attention is confined
wN

to small=amplitude betatron oscillations about the (non=

circular) equilibrium orbit o

The prescribed median= plane field may be expanded

- f(l~ ~:2 ) SinNG]

= -~1{[1- [SinNG] t I! r f (~cOsNG ~kSinNQ~ x
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f( k=1/2 Nf"I tr....l...- k(k-1)lr w cos ~ L2W2 - 2 J

a ~ 0

and will be ignored sin~e it
can only interact with the
velocity components xi oryU
and does not contain -w in its
coefficient"

The magnetic field components off the median plane may

be written by aid of series expansions consistent with the

vanishing of the curl and divergence (cylindrical coordinates)

[.Q! 0 LJL(MAC )=4, with

~ :: 0

IJ. ~ ~fSinNG 1~ = l..[~COSNG 1"'--1 sinNG7
(-.I 3 w 'w2 :J
~ ~ 0 c § 0

. n ~ =k + fC: ; cosNG t kSinNG~ g

Bz :: -:~1{ l!- -f sinN~ +[kt f~ cosNQ -kSinNQ~ x

t -{C~ cosNQ +-~ SinNQ] (x
2 ~ y2j

B ::-2Ja~fkt,e(1:. cosNG = ksinNG) l y t(~COSNG
r er L J w :J w

1

Bg :: :;1{ rfycosNQ t··,J

For subsequent use we then take~ to this order 9
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The Equations of Motiong

The equations of motion are given rigorously bY~LJL{MAC)=

4, Sect o 2J g

d~ ~(ltX)2 ~'x'2 t y'2];;-vt1+X)2\:'~ r y'2

t- :~ [(1 +x) B. - Y' Ht;)]
~r yU ::t- = erl [(1 t x) BX' = XU Bl"'] 0

dll tv (1 tx )2 t x'2 t Y'J- P ~

These equations of motion will be reasonably~well duplicated

(if x u2 and yu2 <. <. 1 and if B
Q

is igno~ed) by the difle:="=

ential equations resulting from the Lagrangian

~:: x u2 t yu2 (I}
~ - tXt 1/2 x2 i ~(X~Y9Q)~

2
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if and

We thus find it possible to work with a simple Lagrangian or

Hamiltonian system~ selecting

r" :1ft 1tfSinN~ x tl/{-(kt2) tf ( -~ cosNQ

t (k t 2 )SinNQ'i! x2 t 1/2 ~1 f<;cOSNQ -kSir.R~ y2

t -f[~ cosNQ r ~2 SinN':] <3xy2 - x3>] ·
For convenience we shall select r l so that PI ~ po

The Forced Motiong

Because of the presence of a forced oscillation in the

x-motion, we undertake to study the free oscillations by

suppressing the forcing term through a suitable change of

dependent variable o

formation

We select for this purpose the trans=

x :: K
O

t Kl sinNG T K
2

cosN G T' u..~

a numerical integration in a particular case having suggested

that the forced motion is close to sinusoidal; we shal1~ in

fact, find that of the three coefficients introduced in this

transformation, the coefficient K1 plays the dominant role o

The Lagrangianth~n becomes effectively (dropping terms
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which depend only on G)g

t terms of order uy2 and u3
0

The forcing term extracted from this Lagrangian has the main

Fourier components

f kt2 f
Constant termg =(kt1)KO t 2 K1 = -2w K

2
'

Coeff. of sin NQ, f t [N2-(kt1j l).".~ -& Ki t{ (kt2)K2 , and

Coefro Q£ cos NGg = ..f.Ko =f~ Ki t [N2 = (kt2[) K2 ,

in which we have neglected additional terms of second or

higher order in the quantities Ko~Kl~ K2 and which prove to

be comparatively small o

For values of the machine parameters lying in the range

of interest~ these Fourier components can be caused to vanish
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by sel'ecting the constants to have va.lues given approximately

as follows 8 f
K

l
:!

(OZ)2N2 _
(k t 1) t ~ wN

"'-J f- 0-
N2

- (k t 1)
,

KO
.:. k+2 ..f. K1- kt1 2

"" ....1/2(~2 and is fairly- small ~

K2 is very small, being 9f the order
"'=' -' k Kf ":: k j 3
~ 4- -; N2 ..,. 4-wN6 0

The .forced motion is thus represented approximately byg

xforced

I
xforced

£- r-2------ sinNG 9

N = (k t 1)

cosNG~

and the "fixed points GU , evaluated at 9 :;: 0 q are given by

9, (L )2
0 __ .Ji£1/2 XU =x .... .... .... = 6

fixed N ~ fixed N2 ~. (k t1)

is given approx,=
r

= 0

N2 = (k t 1)

In closing this section it may be re-emphasized that th6

Likewise, the amplitude of the forced motion

imately by the magnitude of the coefficient

f i i t IK i j,orego ng analys s will not be expeeted 0 apply unless, Il.-fll,:,

6 f/wor ' 7 is small in comparison to unitYo
]12 "" (k r 1)
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Character of Small~Amplitude Betatron Oscillationsg

For small=amplitude oscillations about the equilibri~

orbit, the governing differential equations will be of the

form:

U" l' Fuu =0

yft t F? =0

On the basis of the Lagrangian indicated previously ~ the

spring factors which determine the frequencies of the free

oscillations are respectively~

Fu = k t 1 t f( ~ cosNG =(k t 2)sinNG) tfcst cosNQ

r~2 sinNQ) CK
O t K1sinNG t K~os NQ)

tV f' fK1 2
:: k t 1-t-; cos NQ t w2 sin NO

:: [(k r 1)t fK1l q.,.-f cos NG = i~ dOS 2NO
2w2 w 2w-

~ r(k t 1) =1/2 (f/w) 2 Jt2' cos rYQ
L N2 =(k+l w

( f /w)2t 1/2 po cos 2NQ 9
N2 =(k t 1)

Fy ~ ....k tf(=-$ cosNQ t ksinNQ) =f<¥ cosNG t~2sinNO)

(KO+K1 sinNQ t K2cos NO)

~ =k = f cosNG = ..fKl sin2NG
w 2w

[ fKl:J f f K1:: =k = = - cos NO t ~ cos 2NG
2w2 w 2~
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( f/w)2 T+1/2 - 2 J = - cos NO
N - (k +1) w

( f/w) 2

1/2 cos 2NO
N2 =(k rl)

in which we have rejected small out~of-phase terms o

These linearized equations representing small~amplitude

betatron oscillations are seen to be·of the Hill type~ Some

approximate tables have been constructed to aid in the

solution of these differential equations o As Kerst has

pointed out, however, useful orientation is readily provided

by application of the "smooth approximationit technique intro=

duced by Symono If the nomally "" small contributions from

the cos 2NQ terms are ignored and if k t 1 is neglected

(for convenience) in comparison to N2~ the smooth approxi

mation leads to differential equations of the form

where

u" t v2 u = 0-u

y" "\ v2y ';: O~
Y

k t 1 = 1/2 ( T)2 t 1/2 ( F )2
wN wN

= k + 1

= k r 1/2 ( .-IN)2 +1/2 (f. )2
w wN

( '£")2wN =k o

It is thus seen that the frequency of the frae K9dial oscil1a=

tions is substantially determined by the exponent characterizing
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the radial increase of average field~strength9 while axial
f

stability may be obtained concurrently if (~ir)2 is

sufficiently large to dominate ~ k. The nature of the

restoring forces, and hence the magnitudes of the oscillation

frequencies, when recognition is taken of the scalloped

equilibrium orbit, differ markedly from what would be expected

from an expansion about a circular reference orbit with the

effect of the forcing terms ignored 0

LoJackson Las1ett

Iowas State College
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lIURA-LJL (6)

ADDENDUM - August 12, 1955

The following calculated coordinates may be of use

although a more accurate story would be given by a remaping

based on ILLIAC solutions of more accurate equations of
.....

motion. For large values of the orginate (values of f/wN~

near the top of the diagram ~ say 7 1/3)~ my theory may

overestimate o-H a bit.

c::r""H o

2
Values of kiN

0.2 7/ 0.41/ 0.6 7f" 1,,0 71

f/wN2=0 0 0.01

0.1 0 0.007(~

0.2 0 0 0 009

0.3 -0.0006rn 0.0098

0.4 -0. 0009(?) 0 •0086

0.'5 -0.006(?) 0.009

0.04

0.038

0.038

0.034

0,,030

0.028

0.09

000875

0.082

0.072

00064

0.054

001,55 0.205'

0 0 135 0 0 169

00114,' 0 0:138

0 0 094 0 0 110

oc:::rv
--~----------------------_.__._--.,

f/wN2=O 0

0.1 0.010

0.2 0.040

0.3 0.091

0,,4 0.167

0.5 0 0 280

~0.01

o

0.030

0.082

0.159

0 0 269

-0.04

=0 0 028

+0 0003

0 0056

0.134

0,,244

=0 0 09

=0,078

0,,043

+0.018

00100

00210

=0016

O ., 9/
=> JoJ.· C·

-0 0 04-9

+0 0 0'+6
,.. :0, ."

Uo.l.,O ....
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ABSTRACT~ The nature and interpretation of the invariant

quadratic forms are reviewed and means for determin-

ing the coefficients are outlined. Computation of

such quadratic forms can be helpful in following

the secular growth of "amplitude" in certain

cases involving co0pling resonances.
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(2 )

1. The solutions of the linear equation (forced motion absent)

/' + F( 9} x = o~

with F(~) periodic with period T, may be conveniently expressed

M:.JRA·206

Here A9 B9 C, D are periodic functions of e (period T) such that

p~ 10 1 (constancy of the Wronskin)

dA = BF + C dB = D - Ade CI9

dC = (D - A)F dD = -(BF + C) (Appendix A)de M

1/2 Trace ~ 1/2 (A + D) = cos ~ I an invariant.

2. The qU.-:.r,tity

J-

2 = -Cx'2 + (A - D) -;( X I + B x' 2

constitutes ~n invariant of the motion. (Appendix B)

ir par~icular it is of interest to construct from this the two

qU..:lr.t 1 iies
" /"If ""' ~ ~ '-,

",,"~F 0-
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( 3 )

'lnd

at homoLogous

points o
2 .

The firs1" of t>hese gi'Jes the invariant R which is 141 times

the are'j of the ellipse described by the phase,",point (x 9 x I )

pLoi'f,el cd homologous points; the second gives the quantity K

representing the maximum displacement for the particular set of

homologous points chosen.

30 Wr ... i 1n9

R
2

=. ax.. 2 +), xx' + A:- x' Y'"

and
2 =J 2

+1/xl +1 /y

K x x

i he coefficients may be expressed in terms of

the e:lipse descrlbed by the phase-point

(Aopendix C)'

C ::.

c

w~'· h

the parameters of
Ix 9 x=y)

z/=I

-/

root selected to be positive if the
t!:-rrrtit.r ~ quadrants 9 and converselyo
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(4) MURA~206

4. Alternative 1y? of course ~ the coeff ic ients a 9 b 1 c 9J ?"., 9J
may be computed from the matrix elements A~B9C,D by aid of

two one-sector runs between successive homologous points of the

type of interest.
I

Thus, most simplY9 if a run is commenced with y = 0,

A =

c =
•

and a run commenced with y = O~

B = jl/fj/

D= :I,;;:,
(If F( (:)) possesses ~mm~j:;J~~Y about the reference point,

~:2
A =: D =: cos v & -C = ~ The matrix elements and cos cr-

~
may then be obtained, if desired d through the use of formulas

pertaining to two runs each of length T/2.)

5. The square root of a quadratic form 9 such as R, may be evaluated

by a convenient construction:

/C- 32.. If 2.= ,-c~J '\- ~ + :; C, C:J. (L~ (}.,.,)?< fJ +.-G ~ ~ l' ~
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,.-) .,.,c. I ....-e~
=~ Z' ~

,y( .
~'iI'j, ex. -~··I'" (X - c;( I ct.. ...c:,..-e.,t J •

3
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APPENDIX A -- Proof of the differential relations for A, B, C, D:

To first order we expand
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(7 )

APPENDIX B ~" Proof of the invariance of I:

B / ;;.<; /).- cancel by virtue of the
1/ r

the relation x = - r;( ,

to~
2

Differentiation of the expression given for I leads

+- ::<;:;(;)'-1':.2. 8 .y I?< 1/

r'" I ;,~...

-+ 11 ,r

elI'l-: _ ~ C ;x A::.. I t- (iI-.lJ Xx- I'"

d ~ _ C IX';' r (4: D/) X.:?<::. I

/ 2
The terms (A - D) x and

,
re'tat-ion B = D - A. Employing

~ I I 1 ) / j,- I 1:-, ....)) :z
dO = (-2 G +4 - /) - ~tr: .xx - LC .,.. ~(/;-h .:s

which "3nishes by virtue of the rel.ation
/ I

/1=-D = BF +C

C I~ (p-/)) F".
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2 2
APPENDIX C =." The interpret"1t ion of Rand K ~

2 ;( /flc...;( l

2 0 The quantity K is 10 /iJ:L and hence is invariant for any
10

parT,icular set of homologous points.

xmlJ../ occurs w/)(?11 -1:= - '7. >( ~t>,1;, ,{.!y
k"- =(J- 'I"1j )Y;'v ~,x~~x

3 0 The m3,ximum amplitude at l!lY point along a gi;ien orbit. may be

expressed in terms of K at some reference point 9 or in terms of
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CONCERNING THE y-GROWTH PHENOMENON

EXHIBITED BY ALGEBRAIC TRANSFORMATIONS
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ABSTRACT:

Hamiltonian algebraic transformations which can

leaq to extensive exponential y-growth are discussed

in regard to the threshold for y-growth. Computational

examples are given.
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1. Motivation:

As is well known, non-linear coupling between the radial and

axial motipn in particle accelerators can lead to extensive ex

ponential growth of the axial oscillations. The y-growth appears to

be more rapid the further the x-amplitude is above a critical

threshold value and the threshold becomes zero as a resonant relation

between the radial and axial frequencies is approached. The amplitudes

resulting from y-growth may differ sufficiently from those prevail-

ing originally that instability is soon seen to develop, but in other

cases the y-growth is found to "turn-over ll and stability, for at least

a limited interval of time, appears indicated.

Certain aspects of these phenomena have been studied both

analytically and computationally. The computations may be based

either on differential equations which represent closely those which

govern particle motion in an actual accelerator or they may employ

idealized differential equations which, it is supposed, contain

the essential significant features of the exact equations. In

either case, however, the computational time required for the

integration of any particular problem is sufficiently great as

normally to preclude carrying a single computation beyond a few

hundred Ilsectors" -- i.e., through perhaps 100 oscillations.

It appears noteworthy that the y-growth and turn-over found

by integration of differential equations for an AG (alternating

gradient) accelerator may be replicated fairly closely by a suitable

non-AG problem and that, in the latter case, the particle does not

appear to enter during the computation all regions of phase-~pace

which are energetically available to it. Since some of the particles
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which the computations thus indicate as "stable", in the equivalent

non-AG structure under consideration, have sufficient energy to

become unstable by traversal of a pass in the potential-energy surface,

there is some interest in the ultimate fate of such particles.

Because of the interest in more extended computations, atten

tion is directed to the use of algebraic transformations, which may

be performed with a speed perhaps two ord~rs of magnitude greater

than typical for solution of differential equations. Although a

close equivalence between the differential equations and some specific

transformation may be difficult to establish definit~ely, it appears

possible to find transformations which describe well the general

features of the solutions found computationally for the differential

equations of interest.

We consider in this report a particular type of algebraic

transformations which may be representative of motion influenced

by the a-x = 2 cry resonance. The scaling features and threshold

for y-growth are discussed. Examples of computations through 1200

sectors, performed by the ALGYTEE program are also given.

2. Statement of the Algebraic Transformation Under Consideration:,

We consider here a transformation in which the coupling is

provided by the addition of y2 terms to the equations for x, ~x

and by the addition of xy terms to the equations for y,~ y:

;;(/1.= 4.lf "4- 1 r k;r -r",n-I r(>.lz)(J-,,/k"j) in~,

~"'- "- --eJ! ?<4L -I ... <4 fl"'n _I ~P. I:J.X";y /.-tj. )~:_1
/l1. "- al /n., +" fllt'-f r A "'II_I 'Yn-/
-f1n ' ~ 1"" +- ~ 1';"" + /l {1~1-?)7f/l., -y.n- I
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and the
/

a'J .J.rJ -::. /
~1 diJ-

coupling terms selected to have coefficients which depend on a

single parameter ~ to insure that the transformation be Hamil-

/

0..7
with

-<:.,~

tonian* (as adjudged from the bracket expressions).

If, for simplicity, we wish the diagonal members of the

linear part of the x, -fx transformation to be equal and likewise

for the y'~y transformation (corresponding to the situation in

which the amplitude functions for the associated Floquet solutions

are stationary at the point of reference), we may put

and (2)

reads

( 3)

* The equations actually iterated on the computer in ALGYTEE runs
10-18 were strictly not Hamiltonian, but would become so by a
trivial (non-canonical) transformation such that the y and I'
values employed by the computer be each multiplied by the scare
factor -J.- A to obtain the corresponding canonical quantities.

-..c3 fi"'-t
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This transformation is seen to be of the same form as (1)

())~ It / ~ x.- now playing the role of /\), with symmetry in the

diagonal elements of the linear portion. By suitably choosing

d\.. x and Ov y' the off-diagonal elements may also be made equal

save for sign specifically, identifying (1/2Xax + dx ) = cos ~

and (1/2X ay + dy ) = cos 1<.' , we choose

(4)

This conveniently simple form for the transformation is thus seen

to be inherently as general as the original form (1) and will serve

as the basis of the analysis to follow.

3. Analysis Concerning the Onset of V-Growth:

A. Method:

If we direct our attention to cases in which the axial-ampli

tude is initially very small, we may analyze the transformation

equations in the spirit of Walkinshaw. The Y ~terms are accordingly

ignored in the recursion relations for the radial motion, whereupon

the radial motion becomes represented by linear difference equations

whose solution may be entered as a prescribed function of n into the

axial equations. It is recognized, of course, that this procedure

destroys the Hamiltonian form of the equations treated and precludes

drawing in this way any inferences concerning the eventual character

1-317



MURA-246
Internal

of the motion when Y may have grown to large amplitudes.

Proceeding to ignore the y.t term in the I and 1X: equations,

the solution for the radial motion becomes

Zn~~n~)Io +~71V)£O'
This solution, when inserted into the remaining (axial) equations,

then gives .

y;;, {t;,... i\' T 71 'l!'-' ('I -I) "V)r, +- (,.,;,. (n -I) -v) I?r;j} r:.-t~~)"'YY/-I

7?11 =- [-p,;... ?i+ )~ '1(/!e.v (n -1)'1.,):%. +-~ rn -I Jv)11:olJ Y" _I+-~ -,.r)"%-I)
which, it may be noted, is a transformation with determinant unity.

The two equations just written may, for the present purposes, be

conveniently replaced by a second-order recursion relation involving

only the quantities Yd' :
'(., -§..{C- "1().J A'IJ~ nv)xo + (.a;,. nv)"'i~ Y,; +- ~ _/:; O.

Since th. expression within the square brackets may be interpreted

as the radial displacement, it is natural to replace it by A cos ~v~G),

in which A represents the amplitude of the (prescribed) radial

motion and in which the phase-shift 6 may be ignored for reasons

of convenience. We accordingly direct our attention to the equation

Yr,4-I-[;Cb-1(+';tIt~n-v]Yn-r ~_I= a

B. Solution for Threshold by Use of Corresponding Differential
Equation~

It is informative to note that, if ~ and "A'A are taken as

small, the equation just obtained at the end of the preceding sub-

section may be nicely approximated by a Mathieu differential

equation of a type similar to that encountered in other treatments

of y-growth. We note that
d~Y V V_ ,- \/ - 2 IV) +- ,J;\-Icl

n
~ = 1,.,+} 'I
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I

+ [:. (;-~7f)-AA~ tJn) Y~ 0

~

Aj~vn] y=.o

obtain
J2Y
dn ~

d:l.y +[-K~
dn~

with vn ~ .zr',

4-[(7/-

and

or,

The stability boundaries pertinent to the cr x = 20iy resonance

( -r/ = 2~) are then, for 4 ~/A/V 2 small, of course given approxi-

mately by

or

In terms of the quantities involved in our original transformation

( I) ,

amplitude of x = A/~x

=~4 >/ / v~- (:l~)'J-/

c. Threshold of Difference Equations:

It would be a more consistant procedure to derive directly

the stability limits for the difference equations, without recourse

to any allegedly-similar differential equation. It appears that this

may be done by a variational method which closely parallels the method

whereby we have elsewhere estimated stability limits for diverse

Hill equations.

We imagine that ~ is commensurate with the interval covered

by the transformation, in that a whole number of radial oscillations
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will fit into some whole number of transformation intervals, For

convenience, then, we write

1;}= m (a..'1Y~ with 1JI'1'I In te.lj""'.5 (f evtn).

By employing the concept that periodic solutions of the difference

equations correspond to stability boundaries, we then consider

}j-+I -L:7w~"1( ~A;A (~-i .2;~)J '4 + Y;-I ~ 0

wi th . \/. \/IJ +-p - T1 ·
(Solutions conforming to the aforementioned boundary condition are

thus periodic in the interval Ll n '=?, )
The recursion equations written above are those which formally

result from minimizing* the expression

S:: ~ y, + y, 'G. +- • • • -I- 0'-1 ~. f 'rj Yj'.j-I ~ · · + ~-'- ~_,+ ~-I r;,
- ±u.~"1'\ +4AJ~,t;

-~ [a~ K J-A t,t CN..J !b ;?!.J Y; "'-
l r; ;';; ~1h'it'))7 v ~

-'fL2~.~~~A~l~? '.}f;J..

_± f<. c.- "t -I '4/,4e-.- r;. :;.; 'It')J~. :L.. ~

/ ;; .z In '7t)\ 1 V :;,
-f5~'1(+/'IJ~(((J-!) -:;;- J 'J-I"

The connection between '?\ , v and A at the stability boundaries

can then be sought by the introduction of suitable trlal solutions

into i>, For the purpose of this report it may be sufficient to

~consider, in turn, the simple forms

Yi ~ J3, ~;' -n;
* A rigorous development of this method might better regard the

"minimization" as causing a sum to be stationary subject to an
auxiliary (isoperimetric) condition. The use of a Lagrange
multiplier should then result in the equations with which we
are concerned here,
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• . '1fmz..-
~1-,

?
of solutions appropriate in the

and, alternatively

'1;' =- C,
which represent the dominant terms

neighborhood of the ~x = 2~y resonance.

With the first of these trial solutions, ~ becomes given by

(f/)£=-!-t ~Y -~~ 7(--# ~AJ1?;~

and is "stationary" (for 8;=t: 0) when

A _ L ~ 1l:.!!!- --~ --Xl,.
/1 ;}I L'--' ~ )

or

and

similarly, with the second trial solution,

(Y1') t ~ i± Ao4- 7( -{ 44-' '!t? -f All] C, 2-

t1~ f £~ ~- ~ '1r; 1.
Recalling that ff~/f =V/2, we thus find the stability boundaries

to be approximately located at

1/ -: !r /~?( -~(Vh)/
'= -!r /~ ~ (V/'!)-~~(1( k) /J

A

=. L./~ ~ (,;/4 )-~ :L("1l12)/' "
ampli tude of "X /'

With ~ small one notes that this result for the threshold

reduces to that obtained from consideration of a differential equa

tion (cited at the end of sub-section B):

ampli tude of '7 ,.-...,--

* In terms of the quanti ties cos 7/ and cos ~ most directly available
from the original transformation, this result may be written
perhaps most conveniently for calculation as

amplitude of x =-{-/1' +-~..J - ~ 7( I.
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4. Estimate of Lapse-Rate~

An estimate for the lapse-rate to be expected when the initial

radial amplitude is above threshold may be readily obtained by

reference to the differential equatlon cited in Section 38. The

general procedure for obtaining such an estimate has been outlined by

McLachlan 0'Theory and Application of Mathieu Functions" (Claredon

Press, Oxford, 1947), Sects. 4.90 - 4.91~ and has been applied in

previous discussions of y-growth.

In this way the lapse-rate associated with the Mathieu equation

cited is found to be

( A '/7"":~)i,4 :t_ A ~
-/ J, f"_

nepers per uni t increment of "7;; ,

or
J

1", -/,4 ~- A ~hr,
In terms of the amplitude "a"

nepers per iteration.

for our initial variable "x", the

corresponding lapse-rate is

or

nepers per iteration

0. .2/115 (-;'/7/) ~~a:Al"' decades per iteration.

A procedure parallel to that outlined by McLachlan, if applied

to the difference equations, suggests a lapse rate which, when

small, is

f-~ (7J/~ 1it.t-a..~~V'. nepers per iteration

or
'). - -

o./~!S 7~(zI/..:~.)Ja~a.t . decades per iteration.
tA""

This formula, which for V small reduces to the result found for the

differential equation, is presumably preferable for predicting the

lapse-rate developed by the transformation.

1-322



MURA-246
Internal

For hand calculations we write

A ...)a'l. - a~ltr~
Lapse-Rate:~~==~====~

-I4U-~-v)
.: 0,' S355 ~ ..[«. ~-A ~>(',

r1- ~..y

nepers per iteration

decades per iteration.

5. Generating Function:

The transformation (4) may be written

Z~ -:-~"t/)In-I -t-~ v) 7i n ~

~ ==-(~~-r/)X 1+~-tJ)1J.., -C1.'/~)(~~)r;,-,n-' n- '/ A-YI

y;,:: (uv '1f) Yn-I +(~ ~)7yV1

1C :: (~~) Yn-I -I- ~~)-PYn -?!I(~7()Xn-1 Yn-I.
Yfl-I

These relations may be derived from a generating function

W(&nJ 'PYnj Zn-IJ Yn-)
:;. f (A/Yt -V)Xn~1 -t {<u~ v)XI}_/~J] -14~ .,,/)11n iJv

2-
- (A ~)~ ';f)~_I Y;.I

+4 (ta~ -;I() Yn~ +-(~*) ~-I '-;;Yn -rJ: (ti,-- ~ )?Yn~

~ =- ~ IN'/)-PYI1

PYn_,:::JW/J Yn-I "
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It is possible that this generating function will be found

of use in the further application of dynamical theory to trans

formations reduceable to the form represented by equations (4).

6. The Inverse Transformation:

The inverse of transformation (4) is found to be

A"_I ::: (~'f/):Zn - (~v) 15: 17

(~~~)
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1Z
n

-1 : (~t -v)IY) +- ~ -v) -;;." - (;,,/~~ ;r)[(~ ~)~- (~)f)t(Y1]

\/ ::. ~~) Yn -~ -:x) PYn
1h - /

1Yn-1 ~ ~ ~) YII + ~ *) FYn
-w"""- '1()jJe- v)X" -(,..;". 1/) PxJt1c>v 1() Yn- f..:. 7\ ) pyJ.

As with the forward transformation, this inverse transformation is

again a rational algebraic transformation of degree not exceeding

two. It would appear that transformations of this degree could

be synthesized so that a closer slmilarity of form would obtain

between the direct and inverse forms.

7. Computational Example:

A. Discussion:

A transformation equivalent in form to (4) has been run on

the I.B.M.-704 computer by aid of the ALGYTEE program. Denoting the

variables employed by the computer as~, ~ , ~ , and ~ ,

the equatlons directly iterated (Runs 10-18) were
:t.

..0::: -. /2R 1- I +;. 7~'/ ~ -r , 1193'17,f f ~'J_I
/;'7 /11 ''1-1 ;;;.

5 /'1/ -./~~~ _,t}()8tR&df~_1
--0 = -, (p /1') -I '12,,-1
~

.ATA ::. • 7'1~ + 2 -!PtJ &.. +. /8 ;;-1 ~/I-/
"::t: ~ I'}-I • J..11-1

-j:) =- _,. /7i~_I +-,. 7;.'~ -}-. 22 :Jv~1 ~_I ..
I ~ n-In

These equations may be put into the form (1) ~see footnote,

section 2~ by the substitution (change of scale)'

I}= -;(;' 2/j' =j/'//~ iS~Y
tA' ~ ~ I¥j =t !fJ' / J,. l.j.5' ~ i;

to become of the Hamiltonian form: ~
:Kn ::r -./:J. 8 '71)-/ -I- /. 7 ~y 1~ ",_1 of. :< 6/IP ~11-1

-fJ;r;. ::: - .5(, 'I ~1') ... 1 - ,. / a! ~'Kn _I - ,. 0 /9Z } ~n - /
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:. • '1'1 '#n -I --r .2.. ~bd '1rYA _I ..,.. , 7; Xn _1 jl1-1

-=.. -. /'1'1 ',,-1 +, 7'; t/~ _I -1-, ::l:L2 ?Cn -I ~ ;, -I J

;1 -:: • 78~ ~ v ::. -.I:2.J, ttlk/ A<kv it' =- , 7f.

From the results of Section 3C we expect the threshold x

amplitude for this problem to be

d,-thr. ::. ~.~1 j;. '1'1_ -I t? '13;]
=0- ¥/ .

The computational results to be reported suggest

doe-hr, ::. O,3g8'~ ().31

for this transformation, affording what may be regarded as a

satisfactory check of the theory. (The approximate theoretical

result, obtained from a differential equation in the limiting

case of small '?(, is IJ(t/'~. = O. Lf55 ,in somewhat poorer agreement

with the computational result.)

Likewise, for the lapse-rate, the results at the end of

Section 4 suggest
o. /S 355 )t o. ttg~ ~" •
,I . a -It IV decades per iteration
, d. 8 '12" t-IJ r.

or decades per iteration

(to employ the computational result for the threshold amplitude).

We tabulate below the lapse-rates calculated from this last formula

and the corresponding values observed from the computations. It

may be noted that the form of the theoretical equation suggests

that the sguare of the lapse-rate will grow linearly with a2 , for

values of a )7 aiAr. ' a prediction which appears to be substantiated

by the computations. The theoretical and computational results for

d(~~)/da2 are, respectively, 0 0 016 and 0.014 (decades/iteration)2.
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0.0116

0.055

0.084

0.11

0.012

0.059

0.09

0.12

from Theory From IBM Computations
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Lapse-Rate (decades per iteration)
'X- o J~() -d·fi1r./ Calc.

-0.4 0.01

-0.6 0.21

-0.8 0.41

-1.0 0.61

B. Method:

The computer printed;;, + ' If, , and !~ after 16, 17,

18, 19, and 20 iterations, after 36, 37, 38, 39, and 40 iterations,

etc. through 1200 iterations for each of 9 runs. In each run,

~o = 1.0 x 10-4 , ~ = 0, and f-* = O. The initial values of

/ for the several runs were -0.1, -0.2, -0.3, -0.4, -0.6, -0.8,

-1.0, -1.2, and -1.4. An artificial limit of 64.0 was imposed on

all quantities. As shown on the accompanying semi-logarithmic plot,

the first three runs showed no evidence of~ -growth, the next two

grew exponentially for three or four decades and then "turned over"

to perform apparently stable oscillations of ~-amplitude, while the

remaining four runs appeared unstable. In constructing the plot,

the amplitude was estimated simply as the maximum ~ appearing in

each group of five consecutive printed iterations.

Graphs depicting the lapse-rate, as obtained from the afore-

mentioned plot, are also shown.
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CORRECTION - ·To MURA-246 (Int.)

"CONCERNING THE y-GROWTH PHENOMENON

EXHIBITED BY ALGEBRAIC TRANSFOR MATIONS"

1. We have detected a slight numerical error in the calculations to an example given

in Section 7A of MURA-246 (Int.). On p. 13, the expected lapse-rate should read

0.15355 x O. 78 I a 2 - a 2 decades per iterationthr.
VI. 128

or 0.11277 -Va2 - 0.1505 decades per iteration when the computational result

for the threshold amplitude is employed.

2. The theoretical and computational results for d Cf 2) /d(a2) accordingly are

0.013 and 0.014 (decades/iteration)2, respectively.

Lapse-Rate (decades per iteration)
from Theory From ffiM Computations

3. The table on p. 14 should read

%0 I:x.o - a.~r.1
Calc.

- 0.4 0.01

- 0.6 0.21

- 0,8 0.41 IIii
- 1. 0 0.61 II

iI

O. ,011

0,052

0.079

0.104

0.0116

0,055

0.084

0.11

4. Similar results, giving a computational value of d(p 2) / d(a 2) just slightly greater

than the theoretical value, have also been obtained in subsequent computations with

a similar transformation for which cOSV = -0.125, cos"]( = 0,75, and'" = 1.

L, Jackson Laslett
March 25, 1957
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MIDWESTERN UNIVERSITIES RESEARCH ASSOCIATION *
2203 University Avenue - Madison, Wisconsin
SUPPLEMENTAL NOTE CONCERNING

THE ALGEBRAIC TRANSFORMATIONS OF MURA - 246 (Int.)

Lo Jackson Laslett**

March 18, 1957

ABSTRACT:

It is., shown that the algebraic transformations of

MURA - 246 (Int. ) may be written in a form which

more directly shows symmetry between the form

of the forward and inverse transformation.

* Supported by Contract AEC #AT (11-1)-384

** On leave from Iowa State College, Ames, Iowa
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1. In MURA-246 (Int. ) the writer introduced and discussed second'degree algebraic

transformations, capable of exhibiting y-growth, which were evidently able to

represent certain features of the differential equations previously used to represent

particle motion in FFAG accelerators. In Section 6 of that report the inverse trans-

formation was presented and it was noted to be of a form superficially somewhat

different from the original forward transformation. It is the purpose of the present

note to indicate that this disparity of form is more apparent than real.

2. A simple change of variables given by a linear transformation of the form

( UrJ4) X
J

+ (~~) /lj
/JAj -~;&) L -r (~~) ~i
Vj' == (~~) 0' 1- ~(o) tyi
J~, = - (.Au-< 0) '(;' + (CA-J 6) ~J'

when introduced"into transformation (4) .of MURA-246 (Int.), converts the latter

into

Un - (C-tH -V-)Pn - I T (~(.~( r)fA n - 1

f- r~,;./;;-;?)f!QH 5) 1/;,., -~ Y)/'v;,-J 2

P __~ r)~,,_, T (Qr-J r)A,,_1
I "'h

i- 1-
1

(.h-d (~ f Ii)f(U;-~ ~) -r;:-I
2 ~"" /( Ll

_ (~7\)1Ii: -/ 1- ?t~.~ *)h-I
r ~ ,--,~(k: ~) jjCr~),tLI-F;P/i<.JjjCb<i)V;:.-;(sI'~fv;

- 2 -
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and the inverse transformation becomes

t(11_1 == (CN -tr)u~ - (~ 7i)}~#1 - ~' ::::[CM(kr-o)v:r -~{(ktO)!1/J2-

.?A,,_, = {...;., vil/;, +(CH r) It A _ j' :;~[C<d(Krll)7f;, -.-4';' eX'r~) f1l-]"-

r;-, = (~k)v;,- (~K}It/it -
_ A'-::::: [ C4«tH;8) u,. -~(rr4~;;["",(M) Vi. - s,~(m) I'tr':.J

~71;; ==-~ it)11;; .,. (CH tr)1'11;,

- A'-:::.~ [c#(rn.e)v;, -~(v-r iJ)'~Jf.t(Kfl') lIh -,I~(Kf~)/11'.)
3. We accordingly may emphasis the symmetry between direct and inverse trans-

formations of the type under consideration by choosing/.: - %and t =~ tl.:z .
One than obtains

fAJ1 == ( CM 1/)U h - I +- ~~ v)!U J-l - I

t- (~/z.)~~t7tJ[jC<H */:')11;;_I f- (Aw 1<f,.)/11;,"/ ] 2-

fUI1 =- -~~Ut1-/ + (CA-J V-)/« j,.-/

-;- (/Yz){~ vp)[j~~)V;-/ f(~ ~)!~ -I]'
-v; = (C<H"k)V;.1 f-~t1fv;-, . -

+/~1(j~1!~o/L)C/(,.I -t~ 1I7~)~~_,] fGH. 1(/;)1/;.1 tf'~kjJ/?tr~

fo/; := -~ K)1IA. 1 t-(Ctrl"k)!V-~./ . J
+-/< (C# KA)!CH 7r/.J.)~./i~ "?';)/tt~ -Jg~~/.t)v;, OI-t(A(A-{. f(p)fI;. I

and

fA h - I = (CtH 11"") {)", - (!~ v-)!,u~ z

+f%)~ -V/z}[(Crl X/<.}f/;, -(~ ~)j:4rJ

f-tlJ-o - I == (~-1;1.1A +{~ ri /1 ~
- f'h}{~Vll.)IiCA< I(~)(J;; - ~;fj.2)111;,] 2
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11;;-1 =(~k)~ -P1()!~

~~ K/o/fje-.P!J.}e,,,-~ 1/j.J/'''',}ff~ J(/__)l'k -(4": >tt")/"0<]

!~-J =~ -K)1I;; +(~~))V*;,
-~ {CH ~1le- "fI/.2~"{~ 1/j.l)J1'JflC# 0/..) 11;;' -~ ;'(/~)f-tJ;.]

M-li~ -= ~)~~)
It is evident that, in this form, the inverse transformation differs from the direct

only by a reversal of sign of 11, 1<.. , and ~

4. It is perhaps worth noting that, according to the foregoing transformation,

and

(~1(/~r;_J f ~ 1<!~f-tl;_J = (("NIf/:L)r; - (A~ ~1.2)11/;, .
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MIDWESTERN UNIVERSITIES RESEARCH ASSOCIATION +
2203 University Avenue - Madison, Wisconsin

STABILITY LIMIT IN SPIRAL SECTOR STRUCTURES NEAR

L. J. Laslett* and A. M. Sessler**

March 18, 1957

Renewed interest in the "handy formulas", stimulated by the possibility of applying

them to the study of imperfection resonances, may make the following simple derivation

of a stability limit near (];. =d::!! of general interest.
if

We start with the equation describing motion about the forced orbit in a spiral sector

accelerator, p. 2 ..L £J C.H N (i .$

II f-ft t Z
P tJH /V~~ = );- y 1. ,/~ IV~ -r 6 t.)] ?b

/A ..L. ~ of / - + t{, ~ OJ
/ ..... \ I :L w ZN2. /tu

where only the dominant terms have been retained. 1

or:

where

In the neighborhood of U~ = :; 'iT we may keep only the resonant terms,
"I

II ..,,.;. I fJ AI.s
fl + I/'j.~ = "6 %/ O-d /v ~
y?,~ is the x-tune, and approximately:

)/1- l =- J -t I
A trial function is now employed and solution is obtained by the method of harmonic

balance.

Let

+Supported by Contract AEC #AT (11-1)-384

;:< On leave from Iowa State College, Ames, Iowa

** Ohio State University, Columbus, Ohio

1
F. T. Cole MURA Report #95
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by harmonic balance:

(11,/_*J lip (~e 1- ~ -

( y;. Z _ -ttL) > 0 f :: ()

( 'V1-~ - .d
L

\ < 0 E = 'ff
/6 J:<. I

and in either case. M.2. _ / l._ N'I / l/2
'12.,'- 1Ii 16/l_J'I~",J ~r.~_ Ii.

&k n - r Vi- /6 J

It might be remarked that this method is the very same as that used previously

to obtain the stability limit near

This result is, of course, the same as that obtained by Parzen by his more

sophisticated techniques. 3

2
L. J. Laslett and A. M. Sessler, MURA Notes, 6/1/ f:i:>.

3G. Parzen, Non- Linear Resonances in Alternating Gradient Accelerators, MURA-2CO
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MIDWESTERN UNIVERSITIES RESEARCH ASSOCIATION+

2203 University Avenue, Madison, Wisconsin

APPROXIMA TE SOLUTIONS TO THE MATHIEU EQUATION

L. Jackson Laslett* and A. M. Sessler**

April 10, 1957

ABSTRACT: Floquet solutions and the coefficients of a trigonometric

series representing such solutions were obtained com-

putationally for the Mathieu equation

t1'~ (,4 + B CI>-d ~ t)# =. 0
for representative cases with B = 1. 5 or 1. 0 and

o <u <'if. Algebraic formulas, in good agreement

with the computational results, are given for the important

coefficients in the series expansion.

+ Supported by Contract AEC NAT (11-1)-384

* On leave of absence from Iowa State College, Ames, Iowa

** Ohio State University
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I. INTRODUCTION

For analytic work concerning the motion of particles in a cyclic accelerator,

as in the study of imperfections when 2"; has values near an integer, solutions to

the Mathieu equation may be required which remain accurate when cr is near <ft' .

Results which appear to describe such solutions adequately are presented here,

for convenient reference in future work, although it is recognized that essentially

the same problem has received considerable attention previously by other workers:-
6

motivated either by accelerator problems or by an interest in solid-state physics.

The present report consists of two parts: Firstly, the Floquet solution of

the Mathieu equation is obtained in representative cases and analysized in a

series of cosine functions by means of digital computation (MURA 1. B. M.

"DUCK-ANSWER" and "FORANAL" programs). The adequacy of retaining only

a limited number of terms in this expansion is examined. Secondly, algebraic

expressions for the coefficients in such an expansion are obtained by harmonic

balance and compared with the coefficients given by digital computation.

The differential equation with which we shall be concerned throughout the report

is written
II [j + ~r8CtrlNtJ~::{))

with N =2 and with representative valles of the constants considered to be

B = 1. 0 or 1. 5

(1)

A such that o<a-<f'JC.
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Expansion of the even Floquet solution (flo = I .I:to ~ 0 ) in the form

:J= 1-~ v/+ ;t;,[J:..~(InN-7J).t -I- j", -e-(;nN-I--v)tJ

=j. -en 1/i. +Z '({WI r JWl)~mNt -tA:I vt +-(I;,-J;n~mNe~vt7
Insl L( ](2b)

is specifically treated, from which the general solution may be written by replacing

~ t with -Yt + E:
1= 7.~ (vt+£)

+ "?:Jt. -e«[(/nN-v)-t - €) -I-1M «<g", Nt 1J),e r €.J} (2c)

Note that, with N=2,. ~ represents (jIff. In terms of this notation it may also

be noted that the matrix which carries the solution ( 117") between ,i:: 0 and

.(/111

H201

•
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II. COMPUTATIONAL RESULTS:

A series of DUCK-ANSWER solutions to the equation 1/~(A+B.GC1)..t)~=~

were obtained with B = 1. 5 and with B = O. Values of A were chosen which were

intended to lead to values of u!Uclose to simple rational fractions in the range

between 0 and 1. From the computational solutions, t1" =::. 1'1,,:2- -= <4ScT (and)

hence} a'j1< ) could be determined} as could also the re/maining matrix-elements

M12 and MZ1' These results are summarized in the accompanying table.

Taking as a guide the nearest simple rational fraction which would serve to

represent o11t in each case, an interval of t was found within which the solution

was substantially periodic. The solution within such an interval was then sub-

jected to Fourier analysis} by the FORANAL program, to yield the coefficients

of a cosine series representing the solution, The coefficients so obtained are

given in tabular form below and serve as the basis for the curves denoted

"Digital" on the graphs appended to this report.

From the results of these computations - - considered representative of

particle motion in a spirally-ridged FFAG accelerator with sinusoidally varying

median-plane field - - it appears that the coefficients 7.z. and certainly ,I; are

quite small. One measure of the adequacy of the previous coefficients to de8"

cribe the solution is provided by a comparison} given in tabular form be]o'l{

(for the case B = 1. 5 and ()=- tJ·tfSO/'Tt), of the actual solution with that computed

from a limited number of coefficients. A more sensitive test, which may be

relevant only in certain applications, is a comparison of the actual computed

matrix element M12 with that given by retaining only the first few terms of the

series. The result of such a comparison, for a few representative cases, is
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also tabulated below. The conclusion may be drawn that the retention of 4 or 5

terms (through h or, possibly, through %2-) affords a quite good representation

of the Floquet solution in the cases considered. In the following section, there-

fore, we direct our attention to formulating alg ebraic expressions suitable for

calculating the relative coefficients ;:~. . - --

III. ALGEBRAIC EVALUATION OF COEFFICIENTS:

We seek the even solution of

in the approximate form

(1)

}o MH.,;t
.,.t<»f(tI-v)t r /' ~(NrY)~

rh 0:' (:J1'I-1t -r- jz. ~(~N.f v)t
(2)

By application of harmonic balance the following set of five algebraic equations

is obtained:
/I - -iJ 2. -;- (~~) (;:; r G,) = 0

[A -(N-7J)JF;r(~)(I t-,c0 = 0

[11 -(N -; VJ1G'+(~)(/ + (J.~)

[I1-(.2N- tI}JFl. f(%) 0

[ A -(.2N" v)j GJ. -f- ('%) G,

1-341
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where F I, Z and Gl, Z denote respectively /" ~. and :tf, z10 .
From these simultaneous equations it follows that

(4)

provided the frequency satisfies

,
V ::: /I +

+

(5)

It is noted that in some applications, when -J«", equation (5) and the first two of
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equations (4) may be replaced by

2. $ J.

1/ ;::::: IJ -f ;2. N ~

{; . _.B~~1;0 == ;l#{fi/-.,i. v)

(6)

equatiomof this latter form having been employed previously5 for the study of

resonances in spirally-ridged accelerators when 1l is small.

The use of equations (4) in analytic work does not appear significantly more

troublesome than use of equations (6) if the value of A associated with ,,) is

known from tables 7, 8 or available from orientation runs with the digital computer.

The accuracy of equations (4), as contrasted with that of the simpler relations

1:/ § a..B ~
(6) 7'/= [fl. N( /'I-~vJ] and d~/)=f}d(N r :1 yJ] ,"indicated by the comparison with

results of digital computation given by the graphs appended to this report. (In

calculating values of the coefficients used to construct these graphs, values of V

associated with the parameters A and B were obtained from the digital com-

putations.) It appears, moreover, that numerical solution of equation (5) for

Y in terms of the parameters A, B, and N will yield values in a~reement with

those obtained by digital computation to engineering accuracy, or to better than

O. 2 percent for values of cr as high as O. 93 r;r .

Commencing with recursion relations which are basically those employed in

the present report, to the number of terms retained, Slater6 obtains algebraic

expressions for the coefficients Ii: J (fL' in terms of Band a'/1t alone. Possibly

because of the steps taken to eliminate the parameters A, however, convergence
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difficulties seem to be encountered when (j is near 'ZT
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LINEAR EQUATIONS ,FOR WHICH FLOQUET SOLUTIONS OBTAINED

"(J + (A + B cos 2 C )1 ~ 0

Run Nos. Param.§.. Matrix Elements rT/1'C 1t

DUCK FOR- E A M21 M12
Ml1=M22

-ANS. ANAL = cos a- From cos <T Nominal

779 30 1.5 .1782 - .010 328 4.1584 -.978 291 · 933 557 14/15
780 34 .1648 -.027 410 4.2329 -.940 199 .889 362 8/9
781 37 .1514 -.043 702 4.3085 -.900 950 .857 129 6/7
782 38 .1216 -.076 968 4.4800 -.809 434 .800 226 4/5
783 39 .0904 -.107 163 4.6646 -.707 195 .750 040 3/4
784 40 .0327 -.149 384 5. 0202 -.500 067 .666 691 2/3
785 41 -.0352 -.173 818 5.4628 -.224 636 · 572 119 4/7
786 42 ~ 0850 -.172270 5.8048 +.0004918 .499 843 1/2 '
787 43 -. 1470 -.144 598 6.2520 ' .309 801 · 399 737 2/5
788 44 -.1823 -.114 921 6. 5175 .501 004 .332 964 1/3
789 45 -.2170 -.075 130 6.7864 .700 1005 .253 139 1/4
790 46 -.2330 -.053 061 6.9131 .795 7284 .207 088 1/5 t

779 50 1.0 .450 -.028 369 2. 3618 -.965 918 .916 658 11'112
780 54 .430 -.054 616 2.4415 -.930 942 .881 012 8/9 t
781 57 I .411 -.078 378 2. 5188 -.895 869 .853 446 6/7 -r
782 58 I .368 -.127/,1:621 2.6993 -.809 637 .800 336 4/5
783 59 .323 -.171 786 2.8967 -.708 788 .750 758 3/4
784 60 .244 -. ~28 507 3.2654 -.503814 .668 070 2/3
785 61 .180 -. l52 125 3. 5856 -.309 811 .600 266 3/5
786 62 .092 -.246 364 4.0590 \..001 2994 .499 586 1/2
787 63 .017 -.201 068 4.4945 . 310 321 · 399 563 2/5
788 64 -.025 -.157 353 4. 7518 .502 2775 .332 496 1/3
789 65 -.065 -.102 323 5.0062 .698 389 .253 901 1/4
790 66 -.086 -.067 892 5. 1435 .806 719 .201 241 1/5

* With N =2,

t Approx.
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=1° ~ y + Z (J:.. f-I"')~ Mltr C4'1yt +(~-j;;l;~/71
/'1":./ t.J1'JI.. ~'110 ,/

FOR- NOM-
/,ANAL INAL !jD j, ;: ?~ .h

NO. 11

30 14/15 .5000 .4173 .0446 .0340 N .002. t IN.002 t
34 8/9 .5260 .3903 .04835 . 0308 3 .00152 .0009
37 6/7 .5449 .3726 . 0516 6 . 02880 .00164 .00082
38 4/5 . 57446 .34116 .05599 .02533 .00183 .00070
39 3/4 .59808 .31626 .06023 . 02269 .00201 .00062
40 2/3 .63147 .27953 .06715 .01896 .00232 .00050
41 4/7 .6616 .2445 .0749 .01555 .00267 .00038
42 l/Z .6796 . ZZ266 .08082 .01356 .00299 .00034
43 Z/5 I .6988 .1968 .08918 .01128 .00344 .00027
44 1/3 I . 7404 . 1596 . 0834 .010 .006 """'- M~
45 1/4

I
.721 .167 .103 .0087 .0042 N.0002

46 1/5t .73 .16 .11 .008 .004 - - -

50 11/12 .5488 .3942 1"'1. 035f !"OJ. 022 l
54 8/9 t .5850 .3794 .0373 .0208 .0009 .0005
57 6/71" .60 .35 .049 .02 75 - - - - -
58 4/5 .6363 .3038 .04262 .01538 .00093 .00028
59 3/4 .665 .2733 . 0459 .0133 .0010 .0002
60 Z/3 .7034 .2323 .0512 .0106 .00114 . 00015
61 3/5 .7272 .2067 .05534 .00908 . 00131 I - -
62 1/2 .7534 .1763 .0613 3 .00728 .00153 I . 00013
63 Z/5 .7716 .1530 . 0673 7 .00593 . 00175 .000lD
64 1/3 .780 .1402 .07155 .00524 .00192 1'ooJ.000l
65 1/4 .793 .127 .077 .00441 .00206 - -
66 1/5 .795 .120 .0809 .00410 .00228 - -

I
I

Unnormalized FORANAL
Coefficients For "1:; 10 ~ yr +

t-

* In general .Jt may be replaced by V 1"+ Go

t Approx.

Est. (not fm. Foranal)
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COMPARISON OF CALCULATED AND TRUE EVEN FLOQUET SOLUTION

FOR MATHIEU EQUATION

WITH B =1. 5 and U =- 0·"2 if 1(

-tIfT Calculated 1? True if
(Sectors) /:I{!. ~ f~ ~ ~,) . {f{!I., Ju 1, .J f ..} Duck-Ans Run 780

0 .9647 .9955 1. 0000
1/8 .8683 .8788 .8800
1/4 .6226 .5991 .5989
3/8 .3173 .2907 .2938
1/2 .0152 .0206 .0213
5/8 -.2755 -.2452 -.2470
3/4 -.5592 -.5438 -.5420
7/8 -. 7961 -.8158 -.8146
1 -.9065 -. 9355 -. 9379

1·1/8 -8367 -.8361 -.8357
1-1/4 -.6112 -: 5822 -.5808
1-3/8 -.3208 -.3406 -.3030
1-1/2 -.0437 -.0591 -.0597
1-5/8 .2006 .1703 .1718
1-3/4 .4281 _4228 .4210
1-7/8 .6276 .6543 .6523

2 .7390 .7625 .7636
21/8 .7030 .6925 .6915
2-1/4 " 5259 .4951 .4932
2-3/8 .2855 .2750 .2761
2-1/2 .0670 .0905 .0910
25/8 -.1015 -.0748 -.0781
2 3/4 -.2455 -.2508 -.2496
2-7/8 - 3834 -. 4138 -.4119

3 -.4824 -.4977 - . 491H
3 -1/8 -.4851 -.4653 -.4646
3 1/4 -.3773 -.3483 -.3466
3 3/8 -.2158 -.2158 -. 2161
3-1/2 -.0821 -.1111 -. 1114
3-5/8 -.0099 -.0297 -.0288
3-3/4 .0332 .0485 .0484
3-7/8 .0930 .1233 .1222

4 .1675 .1729 .1729
41/8 .2086 .1820 .1820
4,1/4 .1831 .1595 .1586
4-3/8 .1201 .1307 .1302
4-1/2 .0874 .0874 .1185
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CALCULATED AND COMPUTED MATRIX-ELEMENT M 12..

I /'1,'1.
Duck-Ans. Foranal

B 11 Calc. fm. Calc. fm. Calc. tm. l"rom 1. B. M,
Run No. Run No. 3 Terms 4 Terms 5 Terms Computations

780 34 1.5 . 889362 1. 8878 4.3391 3.9684 4.2329

781 37 .857129 2.2272 4.4057 4.0819 4. 3085

789 I 45 .253139 5. 7592 7.9081 6.6296 6. 7864

I

780 54 1.0 .881012 1. 8442 2.7978 2.7111 2.4415

788 64 .332496 4.4561 4.9766 4. 7577 4. 7518

789 65 .253901 4.6595 5.2460 4.9400 5.0062

i
790 I 66 .201241 4.8153 5.5416 5.0963 5.1435

I
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THE NON-LINEAR COUPLING RESONANCE 2~ - JJ
x

'= 1

**L. Jackson Laslett

January 2, 1959

ABSTRACT

Computational results, obtained with the DUCK-ANSWER program

and pertaining to the 2 Vy - Vx :: 1 resonance, are reported for two examples

of coupled Hamiltonian different i a 1 equations. Each of the examples contains

a term involving x . y (with a periodic coefficient) in the y-equation. The

width of the resonance appears in each case to be roughly proportional to the

first power of the x-amplitude. Results are also presented to show the effect,

on the y-motion, of traversing the 2Yy - « == 1 resonance, at various rates.

A rough analytic examination of the second set of equations is also

given. Comparians with the computational results suggest the theory to be

semi-quantitatively valid.

*AEC Research and Development Report. Research supported by the Atomic
Energy Commission, Contract No. AT (11-1) 3840

>:<>.'<nepartment of Physics and Institute Dr Atomic Research, Iowa State College,
Ames, Iowa.
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1. MOTIVATION:

The character of the solutions to non-linear coupled differential equations,

for oscillation frequencies in the neighborhood of certain non-linear coupling

resonances, has been reported previously in a number of MURA reports 1t and

by members of the Harwell group. 2 Recently there has been interest in the

2 V y - Vx ~ 1 resonance, since (i) the proposed operating point for the ANL

12. 5 Gev accelerator 3 lies close to this resonance and (ii) it may be necessary

to traverse this resonance when employing the Hammer- Bureau method4, 5 of

beam extraction from a conventional betatron or synchrotron.

Two systems of coupled differential equations have, accordingly, been

studied by means of the MURA IBM 704 DUCK-ANSWER 6 computational pro-

gram. Although neither of these systems may represent closely the physical

situations mentioned above, it was felt that the results would be of interest as

illustrative of effects attributable to the 2 2/y - .2{ =:·1 resonance. Attention

has been focused on the growth of y-amplitude (axial-amplitude) rather than on

the possible eventual "turn-over II of the y- growth, axial limitations of aperture

frequently making turn-over of somewhat secondary interest. To simplify the

study, only those non-linear terms were introduced which would be required

to give a Hamiltonian system of equations capable of responding directly to the

resonance in question and first-derivative terms were omitted.

A guide to the magnitude of the y-oscillation amplitude was obtained by

computing the quantity7

1<.7= r/+(Sy/~~,)f:Jfe.
which should be an invariant for small-amplitude oscillations.

TReferences are given in Section VI.
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II, THE EQUATIONS STUDIED-

The equations employed in this study were the following:

SET L

d 2x/d8 2 + (0.536- L 8 cos 8 8 - 0,075 cos 8) x = - (0.025 cos 8) y2

d 2y/d8 2 + (-160 S2 + L 2 cos 8 9 + 0.050 cos 9) Y = -2 (0.025 cos 9) x 0 Y ,

which wereput into a form suitable for use of the DUCK-ANSWER program by

the transformation 4 9 = '7: :
2 2 6~d x/d'r = 10 (-0.00335 + 0.01125 cos 2't + 0.00046875 cos~) x

+ (-0.0015625 cos ~i) y2

d 2y/d'I 2 =10 (S2 - 0.0075 cos 21: - 0.0003125 cos ~r)y

61:+ 2 (-0.0015625 cos M) x . y .

The constant coefficient S2 was adjusted to obtain small-amplitude y-oscillation

frequencies located as desired in the neighborhood of the 2 V - 2J = 1Y x

resonance.

SET II.

d 2x/d92 + (-2.5 Sl - 0.063 cos 9) x = (-0.0825 -0.105 cos 9) (x2 _ y2)

d 2y/d9 2 1- (-2,5 S2 + 0.063 cos 8) Y = 2 (0.0825 + 0,105 cos 8) x y,

which were transformed by the substitution 8 = 2't' to obtain the working

equations:

d 2x/d't'2:: 10 (51 + 0.0252 cos 2"t ) x + (-0,33 - 0.42 cos 2't) (x 2 - y2)

d 2Y/d't 2 0:: 10 (S2 - 0.0252 cos 21:) y + 2 (0.33 + 0.42 cos 2"C) x' y.

In this case the constant coefficients Sl and S2 were adjusted together, i:1.

concordance with the relation Sl + S2 :: -0.4036, to obtain desired operating

points in the neighborhood of the 2 V y - 2{ = 1 resonance,
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In connection with this set of equations it was also of interest to traverse

the resonance "dynamically"--i. e., during the course of a run. This could be

accomplished by introdu~ing, in effect, ~ secular change in the coefficients S1

and S2' Specifically, the factors S1 + 0.0252 cos 2rr and S2 - 0.0252 cos 2't in the

last equations were then supplemented, respectively, by

4't rr( 41:' 7f
B 1 cos ~6384 + T) and B 2 cos (16384 + T) ,

where the coefficients B 1 and B 2 are related to the rate-of-change of the

"field-index, "n, substantially by

B 1~ - 3300 dn/dEl and B2 ";5 + 3300 dn/dEl.

The location of the working points, in relation to the 2 V - V = 1
Y x

resonance line, for these two sets of equations is indicated in Fig. 1. Infer-

ences drawn from the computational results for the amount of non-linearity

introduced in these equations may, of course, be re-interpreted for other

magnitudes of non-linearity (of the same form) by "scaling" the dependent

variables--i. e., by use of the transformation x = ol..X, Y = o<..Y, which has the

effect of increasing the relative amount of non-linearity by the factor ex..

III. RESULTS FOR THE EQUATIONS OF SET I:

A. The Oscillation Frequencies:

The frequencies of small-amplitude oscillations' were determined for

the equations of Set II (for various values of the parameter S2) by preliminary

orientation runs in which the non-linear (coupling) terms were suppressed.

The results are shown below in Table 1.
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TABLE I

Oscillation Frequencies for Equations of Set I.

~ = 0.7483

S2 - 160 S2 2)) - 2Jy x

-0.005235 0,8376 1.0938

-0.005075 0.8120 1. 0664

-0.004995 0.7992 1. 0515
-0.004915 0.7864 1.0379

-0.004835 0.7736 1.0235
-0.004755 0.7608 1. 0090

-0.004675 0.7480 0.9943

-0.004595 0.7352 0.9796

-0.004515 0.7224 0.9646

-0.004355 0.6968 0.9344

-0.004195 0.6712 0.9036

B. The Examination of y-Growth:

For each of the frequencies listed in Table I, runs were made with a

small initial y-amplitude (0.001) and various initial x-amplitudes, in an

effort to find y-growth characteristic of the coupling resonance. When such

growth was observed, '~he lapse- rate" denoting the rate of exponential growth

was measurable from a semi-logarithmic plot of Ky vs t /1f and could be

conveniently expressed as decades per .c.r( =rr. Since L:::: 4 8, the lapse-

rate so determined may also be regarded as expressed in "decades per

octant. It

The results of these runs are summarized in Table II and portrayed

in the form of an altitude chart in Fig. 2. In the figure each notch corresponds
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to a lapse-rate of 0.005 decades per octant As mentioned in Section II,

the results could be re-interpreted for other strengths of the non-linearity

by suitable scaling of the dependent variables.

TABLE II

Lapse-Rate for' Equations of Set 1

Lapse-rates are given in decades per octant

2{=:0,7483

S2 12l) -u Xo
I y )\ 7.0 4.4 2.2 0.7

-0.005235 L 094 [Thr ob- fac tor 5,8
I,

·I
-0.005075 I 1.066 0.010 1 Throb-factor 4. 3~

-0.004995 I L 052 0.0062

-0.004915 I 1,038 0.0028t
I

-0.004835 I 1.024 0.0141 0.0089 I 0.0043 II i
-0.004755 I 1.009 0.0143

,
0.0048 I,,

I I I

-0.004675
I j II 0.994 0.0144 0.0091 0.0048 0I
t 'I )
I

I-0,,004595
I

0.980 4 0.0136 j 0.003
, \

-0.004515 · O. 865 0.0123 0.0065 i 0
II I, , I

-0.004355 i 0,934 0.0071 5
i J

0 I· ! I

I
I !

I
I i

-0.004195 0.904 0 i l,
1-. --

IV. RESULTS FOR THE EQUATIO~SOF SET II:

A. ResultE wi.th no Secular Change

As with the equations of Set I lh:" frequencies of small-amplitude

oscillations were determined for the P4Llations of Set II by short orientation

runs with the non-linear terms suppre.:3sed. With the non-Imear terms
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present a search was made to fwd y- growth, again using a small initial

y-amplitude (0.00001) and various initial x-amplitudes. When ,Y-growth

was seen to be present, it was followed through a few decades-- in every

case through more than one decade save for those runs with X o equal to

0.01 or to O. 005--and the lapse-rate determined. For the equations of

Set II, in which 8 :~ 27:;. the lapse-rate is conveniently expressed in

decades per ~:r -T( or, equivalently J as decades per revolution.

The results, giving the lapse-rate for various values of the

parameters Sl and S2 together with the associated frequencies for small-

amplitude oscillations, are listed in Table III. The lapse-rates are also

shown in Fig. 3 in the form of an alt'tude chart, with each notch corres-

ponding to a lapse-rate of 0.02 decades per revolution.

B. Results with Secular Change:

As remarked in Section II, the motion characterized by the equations

of Set II could be caused to traverse the 2 v.y 
4t'duction of the terms B 1 or 2 cos ~38-4-- +

2)= 1 resonance by intro
x

f), with B l :: - B 2· These

terms, in effect, are equivalent to a SlOW (substantially linear) secular change

of the coefficients Sl and S2 and pr ..,iuce a change of the small-amplitude

oscillation frequencies simulating a .I; c:.ear change of the field-index, n:

dn / d e;:oc q 2 ! 3300 .

The values of Sl and S2 actually u;,,:'J throughout this series were -0.1618

and -0.2418, respectively, corre~;l>'j[1gto initial oscillation frequencies

V x = 0.6334 and V y : 0.7765. v/itL .2 .~_ - V
x

;:c 0,9196 [Table III].
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TABLE

OSCILLATION FREQUENCIES AND LAPSE-RATES FOR EQUATIONS OF SET II
Lanse- ~ales are wen in decades per revolullon 81+S,>: -0. 403G

S :)2 ~ -Jy 2J1, -l! X o
1 0.50 0.25 0.10 0.050 0.025 0.010 0.005- - - -

0.1618 ·-0.2418 0.6334 0.7765 0.9196
throb-facie;'

0.1525 -0.2511 0.()143 0.7914 0.9685 2.5 or 2.6

0.1505 I-O. 2 5:~ 1 0.6101 0.7946 O. q7 91 0.0175
I I i hr?b I

1-0.2541 II 0.6080
- actor I I

0.1495 0.7962 I 0.9844 2.5

I
I Ii -0.2551

I
0.6058 I 0.9896 0.00860.1485 I 0.7977 0.0287 I,

I

! I I
o 1475 -0.2561 O. 6037 I O. 798:3 0.9948 0.0141 Ii I
0.1470 -0.2566 0.6027 0.8001 0.9975 0.0052

10.000:180.1465 -0.2571 o 6016 0.8009 1 .0001 0.0306 0.0156 0.0062 0.0031 0.0016 0. 00062

0.1460 -0.2576 0.6005 I0 801'7 1.0028 0.0046 I
0.1455 -0.2581 0.5994 0.8024 1 .0054 0.0127

.
0.1445 -0.2591 0.5972 0.8040 1 0107 0.0241 0.0044

o 143~ -0 2601 0.5950 0.8055 1.0160 0

0.1425 -0.2611 0.5928 0.807i 1.0213 0

0.1408 -0.2628 0.5891 0.8097 1. 0304

0.1405 -0.2631 0.5884 0.8102 1.0320 0

0.1268 -0.2768 0.5561 0.8311 1 .1061.
0.1233 -0.2803 0.5469 0.8364 1.1258

0.1198 -0.2838 0.5370 0.8416 1.1462

0.1124 -0.2912 0.5000 0.8525 2.2050
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In aU the runs made employing this secular change of parameters, the

initial y- amplitude was, as before: taken as quite small (0. 00001), It would

be expected that the factor by Nhich the y-amplitude is increased by traversal

of the resonance would depend in a somewhat accidental way upon the phase with

which the oscillations enter the region of instability--in most of the work re-

ported here the initial amplitude of x-oscillation was obt ained by taking

Xo ::: O. 50, Pxo =[dx/d 7:] 0 :-; 0 or Xo .~ 0.. Pxo'"' O. 51 (each corresponding

to an initial amplitude 0.50), or by Xo ;;:: 0.25, Pxo = 0 or Xo = 0, PXo = 0.255

(corresponding to an initial amplitude 0.25). The rates of secular change

which were employed are listed in Table IV,

TABLE IV

Values of the Coefficients B1 and B2,
Introduced to Represent a Secular Change of Frequency,
and the Corresponding Rate-of-Change of Field- Index .

B 1 B 2 Approx. dn/de

-0.0990 0.0990 0.000 030

-0.1452 0.1452 0.000 044

-0.2145 0.2145 0.000 065

-0.3168 0.3168 0.000 096

-0.462 0.462 0.000140

-0.66 0.66 0.000 200

-0.99 0.99 0.000 300

The results of such runs are shown in Figs. 4-.10. Although traversal

of the resonance 2]) - U ::: 1 is seen to have a material effect on the
y x

amplitude of the y-oscillations, normally increasing the amplitude by a sub-
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stantial factor 0 the magnitude of the effect is seen to depend considerably

upon the phase (of the x-oscillations in this case) at the start of the run and

in some cases a decrease of y- amplitude is seen to result l!igS. 9 and 10J .

In some of the runs, specifically those with the more rapid secular changes,

the computations continued for a sufficient number of revolutions to carry

the operating point to the neighborhood of OX ..il())x =1/2)--in such cases,

of course, the x-motion would be expected to experience instability and,

through coupling with the y-motion, exert a pronounced influence on the

latter. In an auxiliary investigation, 8 however, no resonances leading to

y-growth were detected in the interval between 2 V y - Vx = 1 and V x = 1/2

for the simple equations of Set II (as was to be expected).

Since, as noted above, the effect on the y-amplitude of traversing the

coupling resonance will necessarily depend markedly upon the initial phases

of the oscillatory motion, the results depicted in Fig. 7 [B1 ::: -0.3168,

B2 = O. 3168; dn/ de ~0.000 096] were supplemented by sixty additional runs

to give what it was hoped would be a representative selection of initial phases

for both the x- and the y-motion. As before, the initial values corresponded

to an initial x-~r:!l:p~itllde of either 0.50 or 0.25, From the results of this

survey (summarized in Appendix 1), it was felt that the following factors

represent a fair estimate of the amount of growth which may be obtained with

this rate of traversal of the 2 V y ::: Vx ;-: 1 resonance kt:, Fig. 13):

For an initial x-amplitude of O. 50, growth by a factor 18

or 1. 25 decade;

For an initial x-amplitude of 0.25, growth by a factor 3, 3

or 0, 52 decade,
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V. APPROXIMATE ANALYTIC TREATMENT:

A, The Case of No Secular Change:

It may be of interest to attempt an analytic treatment of the equations

of Set II along the lines previously employed9 in examination of other coupling

resonances, although the accuracy of such theoretical results may suffer in

the present instance because the oscillation frequencies are sufficiently high

that both OX and (J"""y lie rather close to'71. The method10 basically

assumes the x-motion to be prescribed, unaffected by coupling with the

relatively small y-motion, and this solution when substituted into the y-equa-

tion thus gives a differential equation linear in the single dependent variable y.

Since we are here attempting no more than an approximate treatment of

the 2 Vy - V
x

= 1 resonance, it apparently is sufficient to employ a simplified

form of the y-equation

d
2
y +[-;)2 + (d/2) (cos S) x) y ::: 0,

dS 2 Y

where d ::: - 0 0 42 in the computations reported above (Section IV). If a simple

representation of the x-motion,

is now employed, one obtains

::~ +[V~ t (Ax d/2) (cos Vx 9) (cos 9)] Y " 0

or

d2 [2 J~ + V + (Ax d/4) cos (l + 2Jx ) S + (Ax d/4) cos (l - Vx ) S y = O.
dS Y

For purposes of studying the 2Vy - 2.{::: 1 resonance, we may ignore the

last term in the coefficient of y and consider the simple Mathieu equation
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(1.) This last equation has, as is well known, the stability boundaries

[Cf. Ref. 9, Appendix IB, C]:

(
Axd

- -Z-

leading to a full-width for the resonance which may be conveniently expressed

as

Numerically, for the problem at hand, this becomes

w = 0.42 A
"3":2 x

:: 0.131Ax '

where W denotes the full-width of the resonance in units of 2 V y - V
x

'

We may compare this theoretical Nidth with that estimated from the

computational results of Section IV A, as is done in Table V below.

TABLE V

Comparison of the Theoretical and Computational

Width for the Resonance 2}) - V :::: 1y x

The Table gives the widths in units of 2~ - Vx

d = -0.42 Ux .-.J O. 6016, V y ~ 0.8008

Ax 0.50 0.25 0.10

Wtheor. 0.066 0.033 0.013

Wobs' 0.051
I

0.029 0.012

(2.) The lapse-rate characterizing y-growth in the unstable region

1-364



MURA-44::l

may also be estimated for the Mathieu equation cited earlier, by reference

to methods used previously [cf. Ref. 9, Appendix IVJ One obtains

4 q2 nepers Iradian of e ,11~ ill -vii - At1r. _1 / W2 _
;-- 8 1 + iJx 4

where q denotes 2 Vy - 2{ - 1 and Athr . the threshold
amplitude,

.AMax . :: I ~ I
1 +V x

:: nepers/radian of e .

If, for convenience, we convert these results to decades per revolution

(through multiplication by 21(log e ::: 2.72875) and insert the appropriate

constants for the problem at hand (when required), we obtain

and

N 0 089 ,IA 2 A 2 ,:" O. 68 F:.W 2 - 4 q2~::. X - thr.- ~ ~ decades/revolution of e

~ax. c= 0.089 Ax == 0.68 W decades/revolution of e .

The formula for A M may be compared with the computationalax.

results, summarized in Table III, for 2 Vy -V
x

= 1. 0001, which corresponds

closely to the resonant condition and for which the lapse-rates attain nearly

their maximum values. This comparison is given in Table VI.

TABLE VI

Comparison of Theoretical and Observed Lapse-Rates.

Lapse-rates are given in decades/revolution.

8 1 :: -0.1465, 8 2 :: -0.2571 Vx := 0.6016, Vy := O. 8009, 2~ -l{:: UX01

Ax 0.50 0.25 I O. 10 0.050 0.025 0.010 0.005

~ Calculated 0.045 0.022 I0.0089 0.0045 0.0022 0.0009 0.0004
from Ay

..lA, Calculated 0.035 0.020 0.0082
from Wobs .

.-A'o~s • 0.0306 0.0156 0.0062 0.0031 0.0016 0.0006 0.0004
fr~m om-u er
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From the comparisons shown Ne infer that the simple theory outlined

in this section appears to provide a semi-quantitative account of the effects

of the resonance, in the absence of secular change, although the widths for

the resonance and the associated lapse-rates appear to be somewhat greater

than observed from the computational results.

B. Effect of Traversal of Resonance:

It is tempting to employ the foregoing theoretical results to estimate

the possible increase of y-amplitude when traversing the 2 Vy - V
x

= 1

resonance. The results of such an attempt certainly cannot be expected to

be of high accuracy, in part because of the approximate character of the

preceding analysis and in part because of a certain amount of adiabatic

amplitude-change (which we shall ignore) before reaching the resonance,

but perhaps primarily because the situation with secular change is in a

sense different and the net effect upon the y- motion will certainly (as we

have seen) depend markedly on the ptases of the respective oscillations,

From the results of the preceding sub- section, we estimate the

growth of y-amplitude which can result from traversal of the 2 V y - Zlx =1

resonance to be, if the ascending exponential solution dominates,

Growth de
nepers .. with the integral taken
through the resonance

1 (W!2 -/W2 _
4q

2 dq

JW / 2

w2

TdCiT
I CiS \

nepers,
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where, as before, q denotes 2~ - V
x

- 1. From the observed dependence

of Vx and Vy on the parameters SI or S2 (Table II!)., and from the rate at

which the coefficients B 1 and B2 in effect modify SI and S2' one finds for the

equations of Set II (with Bl "" -B2),

}
dq(.-..J 5.3 , I
de := 8f92 B 1

and

Growth = tf 8192
5:3 nepers

303.5
W2

-- fBJ nepers

132
W2

decades,=
IBl)

W being the full- width of the resonance, for the x-amplitude under considera-

tion, measured in units of 2 Vy - 2{.

In particular, for the case B 1 ::: -0.3168, B2 ..:: 0.3168,

Growth :::: 416 W2 decades.

If we employ the observed widths of the resonance (Table V) for the x-amplitudes

0.50 and 0.25, VIe then expect

For Xo :-: 0050, Growth of 1. 08 decades (factor 12);

For X o :: 0025, Growth of O. 35 decades (factor 2 02)0

Uf the theoretical values of W were employed, the expected growth would

be somewhat larger--L 81 and 0045 decades, or factors of 65 and 2 08,

respectively] As noted in Section IV B .. the corresponding figures estimated

from actual computational runs (32 runs for each x-amplitude) were

For x o :-: 0050, Growth of 1.25 decades (factor 18);

For Xo :-: 0.25, Growth of 0, 52 decades (factor 303),
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be detected for the equations of Set II in the interval between 2 Vy - 2{ =1

and Vx = 1/2, the initial x-amplitude was determined by taking X o = O. 50

and, as before, the value Yo :-:: 10- 5 was employed. The values used for the

constants SI, S2' and estimates of the corresponding small-amplitude

oscillation frequencies are listed below [SI + S2 .c: -0.4036].

S1 S2 Vx(est. ) V y (esL

-0.1380 -,0.2656 0.583 0.814
-0.1355 -0.2681 0.577 0.818
-0.1330 -0.2706 0.571 0.822

-0.1305 -0.2731 0.575 0.825 5
-0.1280 -0.2756 0.559 0.829
-0.1255 -0.:.'781 0.553 0.833

-0. 1230 -0.2806 O. 546 0.837
-0.1205 -0.2831 0.539 0.,840 5
-0.1180 -0.2856 0.531 0.844

-0.1155 -0.2881 0.52 3 0.848
-0. 1130 -0.2906 0.51 0 0.852
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As expected, with the coupling terms employed in the equations of Set II,

no evidence of any coupling resonance was seen in this interval. For the

two runs for which the coefficients were those listed in the last two lines of

the preceding Table, however, x-instability for the x-amplitude employed

(0.50) rapidly became apparent, attributable to the proximity to the

~ =7T (14 = 1/2) resonance (Figs. 11 and 12).

9Esp. L. Jackson Laslett and A. M. Sessler, MURA-263 (May 6, 1957).

10The procedure in principle thus parallels that suggested by W. Walkinshaw

for analysis of the 2 V y - Vx = 0 resonance--W. Walkinshaw, "A Spiral

Ridged Bevatron, " A. E. R. E., Harwell (1956).
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Data ;~ .. ustra~ing GrcN"r' :n T:-a,'e-sa2 of Re"or:ar.ce

dn.'d8 . a 000 096

- IAx] 0 3O
-

(.irowt~ Factor Geom,
Xo PXo

\: Pv For ~uccessive \!Iaxlma and Minima Mean of
° .0

Middle TIM:After Traversing Resonance Factors-
.5 0 ,00001 0 ' 7 6 I) 7 8,920 15,646 9,703 11.81).

,354 .361 10 838 5.774 9 .. 706 6.135 7.49
0 51 3. 146 1.661 2.709 1 769 2 12

- 354 . 361 7. 1)37 3.774 6.475 4.249 4.94
-.5 0 18 72.5 9 598 16 635 9 694 4.00
-.354 -,361 22 034 11 883 19.607 11. 970 15 26

0 -.51 23 547 12.456 20. HW 1::S.902 15,85
.354 -.361 Z3.390 11.906 20.104 12,619 15,47

.5 0 .00000 il01 0000 11899 23.6C6 11 823 20 911 12,965 15,79

.354 .361 23 937 12 762 n.408 13.533 16.53
0 .51 ] 8 128 9.586 14.962 10 585 11,98
354 361 10.203 5.084 8,800 5.753 6 69

.5 0 0 378 o 183 0.32.5 0.235 0.24
-.354 -.361 7 5:52 4.016 6 708 4. 121 5. 19

0 -,51 . 14 729 7.826 12 671 8 713 9.96

I.354 - 361
,

:j22 6'11 539 19.47611 12 238 14.99

, "
.5 0 0 ;,0000 16999!h5 724 7.927 13 917 8.638 10. 50
,354 361 f

1
123 303 12 424 20,849 13. 178 16. 09

I i0 . 51 , ;23 '165 12 468 20> 14: 13 760 15 85
-.354 361 I I 11a J.82 1l.056 19.161 12.517 14 55I

5 0 i IjJ 8 1:34 i) .301 16 108 9.388 12.24- , 1

11 10
,

- 354 - 361 I 980 '5 916 9.7 7 3 5 969 7 60
0 -. 51 I

: .; 3 044 1621 2 639 1 810 2.07i !l
.354 -.361 I ')04 4. 36~ 7 331I I: 8

4.656 5.66
l ,

.5 0 .00000 7101 I 0000 119 P~ j! 2 136 1.06R 1 883 1.178 1 42
I I'

354 361 Ii 8 469 4 519 7. 622 4 816 '5 87,
0 .')1 ! i: j 4 636 7 7c)6 12. 5')8 8 265 9. 87i I; ') . I

-.354 . 361 I
;;"" .l

.I g- 10. .')70 18.300 11 961 13. 91 !
-.5 0 I

11
26 109 13.425 23 24'5 13.547 17 67~ I

-.354 - 361 ! I .? 3 184 12.523 20 63) 12. 587
1

16 07 I0 -.51
,

;']8 088 9 %0 15 494 10 67') 17
I! 1(j 4°7

l12
I'354 -,361 5 346 8.025 5.681 I 6 95 jll ..___._____
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r
IAxl .": 0.25

Growth Factor Geom.

PXo Yo For Successive Maxima and Minima Mean ofXo PYo Middle 1\\0
After Traversing Resonance Factors

.25 0 .00001 0 3,899 2,759 3.681 2.843 3.187

.177 .1805 4.010 2.857 3.745 2.945 3.271
0 .255 3.615 2,497 3.291 2.590 2.867

-.177 .1805 2.625 1. 851 2.459 1.949 2. 133
-.25 0 1. 338 0.922 1.234 0.960 1. 067
-.177 -. 1805 0.561 0.419 0.541 0.436 0.476

0 -.255 2.045 1. 478 1. 917 1. 510 1. 683
.177 -.1805 3, 280 2.293 2.988 2.409 2.618

.25 0 .00000 7101 .0000 11999 2.031 1.402 1. 877 1.510 1. 622

.177 . 1805 3.285 2.348 3.070 2.412 2685
0 .255 3.969 2.802 ·3.667 2.846 3.205

-.177 .1805 4.074 2.840 3.774 3.020 3.274
-.25 0 3.579 2.491 3.314 2.601 2.873
-.177 -.1805 2. 591 1. 808 2.395 1.823 2.081

0 -.255 1.310 0.905 1. 191 0.945 1. 038.
177 -.1805 0.526 0.381 0.513 0.405 0.442

.25 0 0 ~ 0000 16999 1. 331 0.921 1. 229 0.934 1. 064

.177 .1805 O. 590 0.442 0.567 0.455 0.501
0 .255 1. 999 1.461 1. 915 1.472 1.673

-.177 .1805 3.259 2.255 2. 986 2.409 2.595
-.25 0 3.975 2.761 3.669 2.881 3. 183
-.177 -.1805 4.007 2.863 3. 754 2.843 3. 278+-

0 -.255 3. 565 2.491 3.285 2.607 2.861
.177 -.1805 2.686 1. 833 2.435 1.953 2.113 ,

. ~5 0 .00000 7101 0000 11999 3.568 2.529 3.361 2.569 2.915

. 177 .1805 2. 584 1. 810 2.406 1.885 2.087

I0 .255 1. 341 0.908 1.204 0.980 1.046
-.177 .1805 0.314 0.491 0.369 0.483 0.426
-.25 0 2.025 1.440 1.900 1. 493 1. 654 I
-.177 -.1805 3.204 2.325 3.052 2.322 2.664 I

I
0 -.255 3.931 2.753 3.626 2.892 3.159 •I

.177 -. 1805 4.153 2.849 3.768 3.038 3.276 I
j
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Fig. 5. Variation of y-amplitude during traversal of resonance.
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Fig. 7. Var.iation of y-amplitude during aversal of resonance.
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Fig. 8. Variation of y-amplitude durint.,. raversal of resonance.

B,=-o.f6Z B2 =o.%Z
do/de = 0.000 /IH)

".o,.,,~/
'f1-D ./ ;-'

"

'J ...../

, /"
./"

i
'_.J'

~ .. ...~.",.,..r-'-'."""""'"""" .,/"-'" ._-_..

-.. ---"" ,,\ r...... / , .... " \

" ~.

"

.~
..,_ ..-..•.

?
'J
~

~
9.,

C) / I ",
o~... :,o·
"',,~ /'

I '\+0 " -- o3:.~
,~ , # /

, ..- ,. '1-°,,/', _., ./
~ - .

~.;;... --, .....------- , " ..~_. --_.~ -' ..... --::=-..... '....-._"-7"~ _..

... I
\ .- ",.,

t

-II
10

-5
10

K~

...
I

W
-...J
"C

-6
10 0 70 \ 80

e/z.. = 't"/1t
90 too



Fig. 9. Variation of y-amplitude during trav jal of resonance.
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Fig. 10. Variation of y-amplitude - .iring traversal of resonance. B,;;: -0.!)9 B
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ABSTRACT

The characteristics of orbits in the median plane of a spiral orbit

spect~ometerare briefly examined from the viewpoint of phase -pl01 s ~;imilar

to those used in accelerator theory. The characteristics of the spiral orbit

spectrometer may be suggestive of injection methods which would prove useful

in accelerator design.
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Ie INTRODUCTION

The ingenious spiral orbit spectrometer has been described 1-7;t"and

1,3-5 8,9
analyzed in a series of published papers and its experiment.al use reported

+for the study of~ meson decay. The instrument employs an axially-symmet.ric

magnetic field characterlzed by a vector potential (A~ g) having a stationary

value at a radius (r.;) such that Br at that radius is equal to the magnetic

rigidity of the particles. Particles with this magnetic rigidity, or momentum,

emitted from a source on the axis then describe orbits which approach (asymptot-

ically) a circle of radius r a while particles of lower momentum do not reach

this radius and particles of larger momentum cross the circle quickly. The

field-configuration thus appears well suited for the selection. with good resoluhon

and large solid angle, of particles of the selected momentum -,~ particularly if

a directional detector is used.

Although a source on the axis may not be realized exattly m practice and

the particles which are emitted with initial conditions suitable for approaching

the circle of convergence thus (even assuming the mechanical momentum to be

correct) in a sense constitute a set of measure zero, the orbit charac.t.eristics may

be of interest (beyond the spectrometer application) in suggesting effective means

for injection into particle accelerators. The spectrometer characteristics have

been calculated in some detail in the references cited (esp. ref. 3), but it may

be useful here to describe the radial motion (in the median plane) briefly in a

way which parallels the viewpoint frequently adopted for the examinatlOn of orbHs

1" References are given in Section IV.
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in particle accelerators. Radial phase-plane plots may then be examined)

in analogy with the procedure used in accelerator design. The magnetic field,

as a function of radius. is normally bell-shaped and axial focusing may be

expected Gee, F. ex., eq. (43) of ref. 3 J
II. THE ORBITS IN THE MEDIAN PLANE

Employing polar coordinates (r, B) the trajectories in the median plane

may be obtained from the "space Lagrangian" (principle of Least Action)

L ::::~2 + r,2 + e r A(r) Gmu or MKSJ (1)

P

where A(r) represents the vector potential, e and p the charge and mechanical

momentum of the particle, and a prime denotes differentiation with respect

to 8. It is convenient to normalize the argument of the vector potential so

that it may be expressed in terms of a normalized function a(-?,-) as follows:

A(r) :::: - ..lh.. a (r / r 0)'
e

where a(l ) , . 1

and at (1) =o.

(2)

(3a)

(3b)

[jhUS at x= r/ r 0 ::.: 1 the vector potential is stationary and. at this point,

IBrl :: jpo/ el; hence a possible orbit of a particle with mechanical momentum

~ is the circle r ::: r 0]
We thus write

L :::-(;.2 + r,2 1 r a(r/ r o )
1 + !

1
1 +~

x a(x)} (4)

where x; r/ro andE' :p/po - 1. One may then employ in what follows the
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(5)

(6b)

(6c)

From the Lagrangian (5) one obtains

P ,." R ::: x' 1/x2 + x,2 ::= r' /1r2 + r,2 = cosCt, or (6a)
ax

Xi = Px/£p2

-(":-.;z = x;.,{2 + x,2 = r/..,{.2 + r,2 = sino<...,

where tJ... denotes the angle between the direction of motion and the radius

vector;

pi_ + JL = xl!x2 + x,2
a x

The corresponding Hamiltonian is

71- _. Px l - ~

... -xfl.- p2 + 1 x a(x) ,
1 +€

1 ~a(x)J.
~x

(7 )

(8 )

and will be a constant of the motion. Again from 'J:I. the equations for the

trajectory may be obtained:

X I ._ 111: :: Px/-/t _p2
~p

pi ._ _ ~ H ::11-p2 

dX

as before.

1
1 +E

a fe a(x)J '
dX

(9a)

(9b)

The geometrical interpretation of P, the canonical momentum conjugate

to x, as the cosine of the angle between the direction of motion and the radius

vector is noted; one also sees f!.rom (9b]]that one can have p identically zero

(x' =0, corresponding to motion on a circle) at x::l forE~.~O, sincef~x[x a(x.M::::1

::1.
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For a specific illustration of the features of the trajectories, as described

by the foregoiJ1.g equations, one may consider a bell-shaped magnetic field for

which the vector potential has the simple form

a(x) ~~ 2x
1 + xZ , (10)

fo r which, as desired, a(l) := 1 and a'(l) := 0, The general nature of the

median-plane magnetic field, B, implied by this vector potential is indicated

in Table L

TABLE I

CHARACTER OF MAGNETIC FIELD DESCRIBED BY a (x) :0: 2 x I ( 1 + x 2 )

Radius Field Field Times Radius

x. -(er / p ) B -(e/po)rB = - x[jerolpo) BJo 0

0 4 0

O. 2955 9774 3. 382 9758 1.

1 1 1

It is noted it-a', the radii. represented by each of the las~ two Urc.es of this table

correspord to pcssible circular motion of a particle with mechanical

momer-tum Po'

The invariant phase curves, in the x, P-plane, are given bY';/.-:::' constant.

With a(x} as given. by eq. (10), such phase curves are illustrated
10

in Fig. 1

forE .': 0 ~p:: po)' It is noted that the axis of the spec·xometer (x ::: 0)

corresponds toN!'=-: 0 and that the curve7/.:-= 0 passes throligh the po1.rJt (1, 0), so

that parti.cles emitted from the axis with p = Po may approach the circle r :-, r o '

albeit requiring a logarithmically infinite time (as we shall see) to reach thi.s

radius. The dotted lines in Fig. 1 which connect branches of p:Pase curves for
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which h >0 evidently corre spond to retrograde motion, for which the motion

in time is backward in e and ii - p 2 = sinol should be taken as negative.

( \\0/
\ I /

---+--
I

The situation for particles of somewhat larger momentum (E>0 )

is illustrated in Fig. 2 and for particles of momentum smaller than Po

(€ <0 ) is shown in Fig. 3.

III. CORRELATION OF PHASE POINTS WITH e OR t

The progress of the motion along the phase curves, such as those shown

in Fig. 1, may be indicated by noting values of e along such a curve. The

progress of e is given by

X
~e = / dx

Xlx,

=/£-rt dx (11)

X,
[ef eq. (15) of ref. fl, where P(x) is given in terms of the parameter 11- by

eq. (8). Near the circle of convergence (1, 0) forE =0 and 71- = 0 the quantity

P approaches zero in such a way that e becomes infinite as x approaches

unity; thus, for€ = 0 andt/= 0,
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p _. 1 - x2

1 + xl

8 ,:X) - 9 (01 J~ 2 dx
o 1 - x 2

Jr. 1
-1

(12)._. + x - 2 tanh x.-
1 - x

Fer olher phase curves the progress of 9 may perhaps be most conveniently

found by numerical integration, aided by analytic integration of asymptotic forms

applicable in the neighborhood of P =O.

The progress may also be noted in terms of time, by noting

,6 .... =.ro.fX dx
v P .

Xl

Again forE -' 0 and#c:: O. a logarithmic infinity is obtamed in approaching the

point c.L 0 I: specifically with the form of field considered here and forE =0,

11: 0
.f

)(

fIx) . qO) - r o J 1 + x
2 dx

v 1 - xl
X,

- r o [b 1 + x - xJ = r o [2 tanh- 1
x - 0. (13 )

v 1 - x v

In Fig. 4 the curves 71= 0 and 11= -.025 of Fig. 1 (E = 0) have been

approxima.~ely labeled with values of 9, fixing arbitrarily the relative positions

of the points 0 ::: 0 on the two curves. As 9. the independent variable of our

formulr.d.on. increases. phase points located between these two curves will pro-

gre 58 as ir:.d::ca:ed and one may expect the area occupied by such points to be

conserVf:~d.. The progress of points with time, however. may be of somewhat

greater interes": and in Fig. 5 an attempt is made to attach time labels to the

curves7¥-:::- 0 a.r"d;l,..,~. 025 of Fig. 1. It does not appear that the region occupied
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by points in an x. P phase plot, when observed at a time common to all such

part.icles, should be conserved. From Fig. 5 it is at any rate apparant that a

cer';;ain accumulation of points in the neighborhood of the equilibrium circle

(x :;;. 1.) is obi;ai.ne d.
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by use of HamiHon's principle), and the distinction between observation of
phase points projected in the r, Pr-plane at a common S or at a common time,
is illustrated by the following artificial example:

Consider the Hamiltonian

H (ix, B; Px.Pg.: t) =
2

1 (PS + 1 Px ).
x 2

For this Hamiltoman the equations of motion in time are, of course,

= 0, or Ps = const. ;

,
Ps = - aH

. 4S

• oH/a Ps
e ..-

.- 1
x

x - 'QH/ ~ Px

.~ Px /x ;

Px = - aH
l?Jx

1
2

= Ps + Px
2

xl

= Hand H = const.
x

From these equations it follows that the derivatives with respect to S are

Xl .. P
X

p' "" H ,x with solutions Px = Px + H€l
o

x = x + p S + 1 HS 2,
o xo 2

and the functional determinant, 2) (x, px)/?J (xo ' Pxo >' with the partIal derivatives

1

evaluated with S held constant is, of course, unity,
ax 'OPX

a (Xi px) aXo axo
=a(xo ' p ) - ~ 3 pxxo ~ __

uPx ~Po u Xo

The 1;ime, t, is given in terms of S by

dt ... x d g
2

.. {xo + Px S + 1 HS ) dS,
o 2

2
t - to :0;; (xo S + 1 Px S +

2 0

1-393
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In concordance with Judd's observations, the equations for Xl andp~

may be obtained by writing

1-!-(x, t: Px' - H; 13

2
= -xH + 1 Px

2
from which

ax ~llf= Px dPX = III = H

de aPx ae '(}x

d t =Ef= x a(-H) =-£..1i= 0

1 13 q( -H) a 13 ~t

as before.

If, for simplicity, we consider the particular solutions for which H = 0,

X :: Xo + Px 13 ,
o

13 =: -xo +fxo2
+ 2pxo (t - to) .' x =R + 2pxo (t - to) .

PXo

If we form the functional determinant d(x. px) / a(xo' pxo) from these solutions,

performing the partial differentiation with t held fixed, we obtain

ax ~Px Xo
a(x, px) (}xo axo .,sZ 0

= Xo + 2pxo (t - to>
'-J. (xo' pXo) - () x ~Px t - to ::

'dPxo a PXo
~~ + 2px (t - to> 1

0

this expression clearly will not in general be equal to unity.
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The writer is indebted to Dr. B. C. Carlson and Dr. F. T. Cole for

helpful ger.eral discussions concerning such specialized phase plots and in

particular for ~emarks leading to the following summary:

Ths examp:le i~Justrates a general situation of some interest. If one

takes a group of particles governed by a Hamiltonian and projects the region

occupied by Hiese particles on a subspace of the total phase space, the area

occupied by these particles on this subspace mayor may not be constant as

the motion develops, depending on the way in which the initial conditions of

the particle are chosen.

Consider a system of two degrees of freedom governed by the

Hamiltonian H i:r, Pr.; e, Pe; t>, where H is independent of e, as in the

examp~e above. Then Pe is a constant of the motion and if we consider

a group of part.ic~es with the same Pe' but different values of rand Pr

and observe the progress of the system in time, the area projected on the

r _. p plane by 1:he particles will be constant in time, since effectively
r

H ::: H {r Pr tj. Geometrically, all the phase space points representing

the particles lie at all times on the hyperplane Pe =const. normal to the

r - Pr plane in the four-dimensional phase space.

;f, however" as a second example we choose a group of initial

conditions with the same H and differing values of Pe, the functional

dependence of H (r o Pr; t) varies from particle to particle, so that all

partic:es are not governed by the same Hamiltonian. Area in the r - Pr

p) ane is not conserved in time.
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The same problem can be viewed with 8 as independent variable;

the "Hd.m~:.toniantI is -P8 ,-; h (r, Pr; t, - H; 8). If H is independent of t,

it is a conE3tcint of t.he motion, and plays the same role as Pa did when H

was the HamLtonjan. A group of particles with the same H, but different

values of Pe (as in the second example) will have the same Hamiltonian

h (r,o Pr .. e.:il governing the motion and the area in the r - Pr plane will be

constant in e. It goes almost without saying that Liouville's Theorem,

wh.~cb is concerned with the total phase space volume, is conserved in all

cases.
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2203 University Avenue, Madison, Wisconsin

CONCERNING THE z}/N~ 1/3 RESONANCE, 1

APPLICA TION OF A VARIATIONAL PROCEDURE AND OF THE

MOSER METHOD TO THE EQUATION

2

::; + (
2
:) v + ~ (sin 2 t) v

2 ~ 0

....... .Jt,.

L. Jackson Laslett"''l

April 13, 1959

ABSTRACT

As an introduction to certain non-linear dynamical problems in which

the 1/3-resonar:ce plays a dominant role,

d
2

v (2 Y) 2 1--- + v + -
dt2 N 2

the stability boundary for the equation

(sin 2 t) v 2 -' 0

has been studied analytically and by digital computation, 1[se of a rslatbely

simple trial function in a variational procedure or with harmolllc balance is

shown to lead to simultaneous algebraic equations, for the coeffici'~nts in the

trial function, whose solution affords a good estimate of the unstable fixed

points, Application of the Moser method of solution is also carried through

in detail, to include terms of the order (z) /N - 1/3)2, and the results com-

pared with computer data for various values of VtN

",
;'AEC Research and Development Report Research supported by the Atomic
Energy Commission, Contract No. AEC A T(11-1)- 384,

';'*Department of Physics and Institute for Atomic Research, Iowa Stat-= College.
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A. MOTIVATION

Simple applications of a variational method or of harmonic balance

have been used previouslyl :\" to obtain "handy formulas" to indicate the

stability limits for certain non-linear differential equations, with periodic

coefficients, ocarring in the theory of cyclic acceleratorso The applica

bility of the method described by Moser2 has also been recognized and it

may be noted that this latter method affords the opportunity of obtaining

more detailed information concerning the solutions, since the previous

methods are most simply applicable to the special problem of determining

the unstable equilibrium solution, whose period is a multiple of that for the

periodic coefficients in the differential equationo

Work currently in progress 3 concerning the possible practicality of

injection into FFAG accelerators with a "field bump" deliberately introduced,

with a period which is some integral multiple of the basic period of the un-

perturbed structure, has made it desirable to re-examine the analytic methods,

in comparison with computational results, and to attempt to obtain analytic

formulas of accuracy adequate to provide quantitatively useful orientation for
•

detailed computational studies.

In the present report we develop analytic methods, which are compared

with computational results, for solutions--particularly at the stability limit--

to a simple type of differential equation for which the stability limit is deter-

mined by the one-third resonance(MN~l /3), The application of these methods

in the present case has been felt to be fruitful and later reports may make use

of similar methods in more complicated situations 0

*References are given in Section E.
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B. THE DIFFERENTIAL EQUATION EMPLOYED

In the theory of spirally-ridged FFAG accelerators the radial betatron

motion, about the stable equilibrium orbit, may be convenienty represented by4

(1)

where u denotes the departure from the stable equilibrium orbit, in units

of the radius,

b ~ f/w, and

By introducing the scaled variables

t = (N I 2) 9 ,

v = 4 f u--,
wN2 w

eqn. (1) assumes the form

(2a)

(2b)

(3a)

(3b)

(4)

Although it is possible by a suitable transformation to remove the

alternating-gradient feature of the linear term, 5 it is frequently convenient,

in the interests of simplicity, to replace 6 the A-G coefficient by (27,/ IN)2.

The equation which results is, then,

(5)

It is this equation with which we shall work in the present report, being

concerned in particular with the limiting-amplitude solution, governed by

the one-third resonance ( 11 IN -+ 113). Results of a variational solution

(or equivalently, of harmonic balance) and of application of the Moser pro-

cedure will be presented in Sections C and D, respectively, and compared

with computational results.
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Illustrative machine parameters might be
•

,." I <"Vf :~ 1/4, N = 33, k:: 79, 1 w =1252,

for which

k/N2 = 0.0729, f :;: 0.2875,
wN2

and, from the approximate equations of motion, the frequencies of the

small-amplitude (A-G) radial and axial oscillations are respectively such

that

2v x4=t:rx hr = 0.5994, 2.,) IN: tr 17T =0.1983;
Y Y

in some of the work to follow the case 2...,) x /N =0.6 will be specifically

considered.

C. THE VARIATIONAL METHOD

1. Analytic Development

The unstable equilibrium orbit, or the associated "fixed points"

characterizing the limiting-amplitude solution of eqn. (5),

may be sought by insertion of a trial function of suitable form into the

variational statement

(5)

S [«dv Idt)2) - (2,) IN)2 <v 2 >- (1/3) ( v 3 sin 2 t)] = O. (6)

We shall employ here the relatively simple three-term trial function

v= Al sin 2 t/3 + A 2 sin 2 t + A 3 sin 10 t/3,

in which the form of the last two terms may be suggested by insertion of

the first term into the differential equation (5) and considerations of

harmonic balance.

1-406
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By insertion of the trial function (7) into the variational statement (6),

or by harmonic balance in the differential equation (5), the following three

simultaneous non-linear algebraic equations ~re obtained:

[~_ (2~)2]Al + 1 AZ 1 1 1 0 (8a)- 1 - '2 A1A 2 + 4 A1A 3 - "4 AzA 3
.-

8

[ 4 _ (~) 2 ] A2 _ 1 2 ~AZ 1 _ .! A Z 0 (8b)-A - 4 A 1A 3 -4 1 8 2 4 3

[ 1~0
_ ( 2 : /J A 3 1.. A

2
- 1 1

(8c)+ 4 A 1A 2 - "2 AzA 3 = O.8 1

A systematic solution of eqns. (8a-c) in ascending powers of ( :: (4/9) - (Z ';/N)2

may be obtained, but for operation an appreciable distance away from the

V/N ~ 1/3 resonance--i. e., when E is not very small--it may be con-

sidered more satisfactory to solve these equations numerically.

For the case 2 71 /N = O. 6, a direct numerical solution of eqns, (8a-c)

leads to the values

Al _. - 0.5751 517

A 2 = + 0.0229 394

A 3 :: - 0.0041 574 '

so that the approximate solution

v= - 0.5751 517 sin 2 t/3 + 0.OZ29 394 sin Z t

- 0.0041 574 sin 10 t/3, (9a)

dv/dt ........ -0.3834345 cos 2 t/3 + 0.0458 788 cos 2 t

- 0.0138 58 cos· 10 t/3 (9b)

is obtained.
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An algebraic solution of eqns. (8a c-c) in ascending powers of E: == 4/9 - (2-,//N)2 leads to

the series

Al :: - 8 E [ 1 - 2 (: + ~)~

- 4

c;

+ 4(E-+~ + _2_)f 2
p 2 PQ Q2

( 652 + 292 +~+.!..2-). 3
p3 p 2Q PQ2 Q3 E

.... 4 (14912 +8294 + 2808 t 577 +~) E 4 + ....'
p 4 p 3Q p2Q2 PQ3 Q4 J (10a)

...
~
00

A2= 16 E 2 [1 _/1- 6 +2.)€t(326 +100 't~\~1_.11864+785 +188 +~)€ 3 + ...J
(p Q p2 PQ Q2~ ". p 3 p2Q PQ2 Q3 (lOb)

where

A3 = - 8E 2 [ 1 _ 4 (~+~)f +lJ (~+~t~)f2._¥1i234+ 744.,. 219+ 28 )E 31- ... (l0c)
Q p Q p2 PQ Q2 \- p3 p2Q PQ2 Q3

E == : _( 2;/ )2

P= 4- (2i)2

Q =1~O _(2 ~ )2
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In the case considered previously, in which 2 -,) IN ::: O. 6, so that

E = 19 1225 ::: 0.08444"', the series (lOa-c) appear to converge rather

slowly. Evaluation of the terms listed would suggest

" -0.6755 555 [1 - 0.2013 012 + 0.0774 000

- 0.0379 715 + 0.0209 305 + .. J

~ -0.6755 555 x 0.8590 578 ~ -0.5803 413,

A 2 :: + 0.0313 445 [1 - 0.3947 478 of- 0.1945 985 - 0.1074 831 + .. J
~ + 0.0313 445 x 0.6923 676 :0: + 0.0217 019,

A 3 ,- - 0.0053 061 [ 1 - 0.3098 062 + 0.1414 688 - 0.0755 171 + ..J
"'"::= - 0.0053 061 x 0.7561 455 ::: - 0.0040 122.

As was just mentioned, it is seen that the convergence of the expressions

for A1, A 2, and A
3

is quite slow in this example, each term being roughly

minus 50 or 55 percent of the term before it, and only about two-figure

accuracy is obtained* for the solution of the algebraic equations in this

case without extension of the series to include terms beyond those shown

here. The convergence, of course, would be markedly better if one were,

say, one-third as far from the resonant frequency as was the case in the

example considered here.

It may be noted in passing that retention of only the leading term in

A1 leads to

Ampl. of v ~ 8 re' :: 81 (4/9) - (21.1 IN)2\ '

or

Ampl. of u ~ (2 w2 N2 /f) I (4/9) - (2 V IN)2\

= (8 w2 If) I (N 13)2 - V 2 I '
in agreement with the "handy formula" previously cited. 1

*Cf. the results of the numerical solution which led to eqns. (9a, b).
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2 Computational Results

(a) The coefficients of the tria: function: For compa:-ison with the

solution (9a, b) which was found in sub-section 1 by a variationa: method,

the unstable equilibrium solution (period A t .~ 1r /3) of eqno (5! was found

computationally for 2 7J IN ~ 0,6 by means of the DUCK-ANSWER program7

and subjected to Fourier analysis by aid of the FORANAL program, 8 The

result of this computational work is given below:

v ~ - 00575116 sin 2 t / 3 + 0,022944 sin 2 t

- 0 0 0041 59 sin 10 t/3 + 000001 82 sin 14 t/3

- 0 00000 19 sin 6 t + 0 00,

dv/dt- - 00383411 cos 2 t/3 + 0,0458 88 cos 2 t

- 0,0138 65 cos 10 t/3 + 0.0008 51 cos 14 t/3

- 00 0001 16 cos 6 t + . o. 0

(12a)

(12b)

It is seen that the coefficients found for the first three terms of v and dv /dt

check quite closely the results obtained by hand calculation in sub- section 1

[eqnso (9a, b)] and that the remaining coefficients are relatively small,

(b) Coordinates of fixed points; The predicted coordinates of the un

3"stable fixed points for t=,O (modo'" ), or alternatively for t -:: -4- (mod. ""),

may be obtained by substitution of these values into the expressions of eqns,

(9a, b)o The results in the first case, then, refer to solutions of

d 2v/d t 2 + (2 -zI /N)2 v + (1/2)(sin 2 t) v 2 ~ 0 at t = 0, modo 7f ,

and in the second case to

d 2v/d 1;"2 + (2 7.I/N)2 v - (1/2) (cos 2 T) v 2 ~,O at To: t - 31f /4 =0, mod.7f

which are examples for which computer information has been obt ainedo

The results are summarized in Table L The agreement betw\~en the resul"!:s of

eqns. (9a, b) and the computational values is seen to be q11ite good in these examples,
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TABLE I

COORDINATES OF UNSTABLE FIXED POINTS, AS CALCULATED

FROM EQNS. (9a, b) AND AS OBTAINED FROM COMPUTER RESULTS

From Eqns. (9a, b) From Computer*
t

v dvldt v dvldt

0, 0 - 0.3514 0 - 0.3506

mod. 7f' + 0.4945 0.2445 + 0.4943 0.2440- -
311" 14, - 0.6022 0 - 0.6024 0

mod.7f 0.2667 - 0.2668 + 0.3207+ O. 3201

D. THE MOSER PROCEDURE

1. Outline of Method

The differential equation (5), with which we are concerned in the

present report, may be derived from the Hamiltonian

H ~ (1/2) p2 + (1/2) (2 '1.//N)2 v 2 + (1/6), (sin 2 t) v 3 , (13)

with p :; dv /dt. It is the purpose of the work to transform the variables

(v, p) in such a way that the time-dependence is removed from the cubic

term in H; the resultant Hamiltonian through terms of this order (and in-

eluding the time- independent part of the terms of next higher order) may

*In much of the computational work the variables actually employed were

viI. 15 and (dv/dt)/1. 15, representing respectively u/w and (2/N)(du/d9)/w
4 f

when wN 2 = 1. 15. To avoid complexity. however, the results are presented

here in terms of the variable v which is employed in the analysis of the pre

sent report.
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then be taken as an approximate constant of the motion, from which invariant

phase curves can be constructed and values of fixed points determined.

The work first will be outlined in terms of complex variables (j ,~
o 0

~ ,r; ) of the sort introduced by Moser, 2 and secondly will be carried out
I .,:),

in a way which may be somewhat simpler for the present purposes; using

quantities akin to angle-action variables. The use of these two methods may

be of some inherent interest and serves to check the algebraic work,

2. Use of.$ ,j Variables

(a) The forward transformations: Commencing with the Hamiltonian

(13), which is expressed in terms of v, p, and t, a first transformation

is made to variablesA ,;{ which are complex conjugate quantities (with

v and p real) but which are to be regarded as independent for the purposes

of Hamiltonian theory, with);o playing the role of a coordinate and ~

representing the canonically-conjugate momentum. ~ and~ are de-

fined in terms of v and p as follows:

:>0= ( .,) IN)
'/2

[v
i N

pJ+ 2V (14a)

:>0= (-V INT2 [v
iN

pJ ' (14b)- --2'])

and, correspondingly,

1/2. [ - ]
v = (1 12) (N I 2J ) jo +j

Vz _0

p = - i (.,) IN) [)" -J0 ] .

It is noted that the functional determinant is

(14c)

(14d)

= - i J (15)

but that one can write
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p dv := + i ($0 d :io ) + perfect differential; (16)

hence, although the transformation from v, p to Jf) ,3" is strictly not

canonical, the pair J,o ' 3
0

may be regarded as canonically-conjugate

in association with the Hamiltonian

.fl.,::: - i H (17a)
3)z

- - i (2 V IN)~i - (i/48) (N I zJ) (sin 2 t) (J
D

+3
0

)3. (l7b)

A canonical transformation from ~d ,.$0 to j, 'i is now per-

-
formed by means of a generating function F 1 ($0 ' J, ). The generating

function is so chosen as to remove from the Hamiltonian all time-dependence

in the cubic term, save that associated with the resonance "ZJ IN ~ 1 13,

the coefficients of the transformation thus remaining finite as the resonance

is approached; supplementary fourth-order terms are also included in the

generating function in order that, to the order that the work is carried, the

new variables~ , j, conveniently will be complex conjugates. 9 The

generating function selected is 11. ~ ~ Z..J
F, (J,(JJj) =j(J J, - (,,' /J-/g) (,J/-z)) Z[~o~ + jl i + ib ~ ~ +~ ~ ]

3 l/ 0 I -, I 1. t> I :3 I ¥

+(1J,,52)(1/j,)) [fa ~ t-~):5, <{J;,2.·fr~~~ t- -m;~ ]1
(18)

where ~Q are taken as periodic solutions of the differential equations

i (dlo Idt) + 3 (2 -z) IN)1
0

_ (1 12) e - 2 it = 0

i (df, Idt) of- (2 V IN)l, + (3/2) (e 2 it _ e- 2 it) ,- 0

i (d£ Idt) - (2 1J IN)12. + (312) (e 2 it _ e- 2 it) = 0
1-

i (d~3 Idt) - 3 (2 -z)IN)l + (1/2) e 2 it = 0,
3

namely

(19a)

(19b)

(19c)

(l9d)
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(20a)

and where

::t 3 2it· 3 e-2it
':1:, ::: 4[ 1 - -V IN] e + 4 [ 1 + V IN]

3 2 it. 3 2 . t ;r;)<! -= n 1 + z) INJ e .". 4 ( 1 _ z) IN] e - 1 :;::-r,
2.

(20b)

(20e)

(20d)

and

(23)



with primes denoting differentiation with respect to t. It is now necessary.

of course, to solve eqns. (22a, b) algebraically with sufficient accuracy

3
_ e-2 it ~ ]

I

that eqn. (23) for J\ may be expressed explicitly in terms of the new

variables !j ,:z;
I .;),

The algebraic steps leading to the expression of f1; in terms of

~, ' g, a.re detailed in Appendix A, with the result

- 3/2.r 3-l1.; c :-i (2 -V IN) ~ ~ -(1 196)(NItJ ) Le2 it /J
, I 2. ~
i. 3 ~-

- 0\. 2048 (N I V) ~ 1I
"I -1

where

- VIN 1
<II. = 6 1 - (1JIN)2 - 1 + 3:zJ/N

(24)

(25)

and where we have only retained in the quartic term that part which involves
2 2-

!:J. 'f1 and which is independent of t. 10
I ~,

It is now convenient to introduce variables 0 and J, to play the

roles of coordinate and momentum, defined as

o ~ +;-k (~ /~,)
-

J ~ ~ ~,

so that, correspondingly,

~ ._. J I/J. e -iJ'

j- 1/2- i ~
.A J e .

I

In this case the functional determinant is

and

j d j, ... - i J d ~ + 1: dJ

.. - i J d ~ + perfect differential,
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so the new variables tf , J may be referred to the Hamiltonian

(30)

It is noted that the functional determinant of the over-all transformation

from v, p to ?I ." J is

~
~-

so that the pair

4(x, J)
~(~, ~)

f/ , J may be regarded as canonically related to the

(31 )

original pair v, p.

From the expression (24) for Jl, and the relation (30) which

connects HI with A, ' we immediately find

3/:1- .3/2-
HI c: (2V/N)J - (1/48) (N/-z) J sin(3~-2t)

+ (0(. /2048) (N / -zJ )3 J2 (32)

-
A final canonical transformation to variables ?f, j, defined by

the generating function

- .3:. t)
.3 '

(33)

leads to

J = OF2Ia>f - J

r =~~/qj =: t - yt
and

By a sequence of transformations between the pairs of variables
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we are thus led to a Hamiltonian HZ [eqn (35)] from the first two terms

of which the independent variable t has been entirely removed and in the

last term of which we have retained the t-independent part }~ The retention

of the last term in this form is believed to be desirable, since it can exert

a significant influence on the J -dependence (or amplitude-dependence) of

the oscillation frequency. 10 To the degree of approximation consider8d

here, then, we take HZ in the form expressed by eqn (35) to be a constant

of the motion. In this spirit invariant phase curves of the problem are

determined.

(b) The separatrix: The assumed constancy of HZ means that for

any particular value of t and points homologous thereto (t taken modulo"'),

the quantity

- (~ -~) J
N

1
--

48

..3h.,

(~) J~:'" sin (30'" - Z t) + 01... IN) 3 JZ _
Z048 CZI

HZ (36)

is constant If we introduce for convenience the scaled quantities

"'!.A little reflection will show that only that part of the quartic terms in J2..
I

which have been retained in (Z4) make a t- independent contribution to the

final HZ'
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(37a)

and

x 1
HZ

(37b)

(38)

A- (Z/3 - 2 -zJ /N)o'

_. (Z _ Z -z}) [6 -vIN - 1 J*
~ N 1 - (z//N)2 1 + 3 -VIN ,

eqn. (36) assumes the more concise form

Z 3 )~ 4 7/J +) sin (3 (f - 2 t) - (9r./8~ :=I' .

The fixed points for the motion, in particular, are characterized by

expression (38) being stationary with respect to '(f and) . For the un

stable fixed points associated with the separatrix between stable and un-

stable regions, we take '0 as having values for which'*'*

(37c)

sin (3 '11 - Z t) ::: - 1

[(I ~ - 7r 16 + 2 t/3, mod. 2 7r 13J

(39a)

(39b)

, near ZI 3, of the quadratic equation

- 2 ~ 0 :

and) to be the root) I

(9 "). I Z» Z +

J I ~ __Y::l_-_+~4:3=\~' _-_1__

;,~F- A +2~2_5~3+ 14,A 4 ...J

(40)

(41a)

(41b)

*For VIN ::: 0.3, r:I\.:= 1.451706, ~:." 0.0967804, and (9/8)""',,0.108878.

**With this choice of sign for sin (3 ¥ - 2 tL the value Of} which we

select is positive.
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In the work to follow it will be convenient to employ a quantity) normally

:A:
near unity, . which we denote as 1,

~I~ ~51
/-1-+-4-).- - 1

2")..

• 1 - '" + 2 ).. 2 - 5 -,... 3 + 14" 4 _ ... ,

"being defined by eqn. (37c). The associated value of X is**

(42a)

(42b)

(42c)

(2 - };/ ) 14

7,''' (3 - 7I
.2

(43a)

(43b)

(43c)

Associated with this value of 'X there is a value of J ,which we

denote bY)z. and which is normally roughly JI 12, which corresponds

to setting sin (3;1 - 2 tj ,':': + 1 in eqn. (38); if we write 7 J- ."': ~ 3;)..
n I ***in analogy to eqn. (42a), ("2. will be roughly 1 2.

In summary, then

I/~ .r~
J = 64 (1 13 - -z) IN) ( -zJ IN) 7 (44)

8 e»n. (37afl; points on a particular phase curve specified by its value

of 'K , are then obtained by use of values of ?I and J which are mutually

consistent with 7< through eqn. (36) or (38), evaluation of the correspond-

-
ing value s of A ,'$, , and finally proceeding back through the trans-

*For cJ IN := 0.3,

** - }For v IN .~ O. 3,

formations to obtain the associated values of v and p. Without continuation

J.", 0.61225 and ~,~ 0.918374.
)

it ~~ 0.130049.
I

*** I ~For 7J iN ;~ 0.3, the value /:z.. corresponding to r-., ::: 0.130049 is
)~ '" 0.31570 and '7 ~ "" O. 471~5.
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of the analysis beyond the transformations described here, it is pointless

to express the results to terms beyond those which are second order in the

<' quantity (l /3 - -zJ IN).

We give below, in Table It such values of ~ ,X ' for the two

types of locations considered in the examples of Section C 2 b, namely

t ~ 0 (mod. 71 ) and t " 3"" /4 (mod. 7r ).

(c) The reverse transformation to the original variables: For evalua-

tion of 3'0 ,Jo ' and hence of v, p, we now make use of the transforma-

tion equations previously exhibited. Since, by eqns. (14a, b), the quantities

required for evaluating v and p are explicitly ~o +)'D and ~o - So ,
respectively, we make use of eqn. (A4) of Appendix A,

~o 't' ~ :::.~ +~ +- (~/'1g XN/v)Jll.[(-3 p.() +1 )!54.+- (-~~ +;L~ ) j S
, I 4.;}.' I

+ (- i:t +~~) 5, ], (45)

obtained by subtraction of eqns. (Al) and (A2). It is a matter then of

straight-forward algebra to evaluate~ I I I I l"fO~ the value of t which is

of interest, to evaluate.:J;o + j., from the previously written}!" ,:J,
~. g. I those listed in Table II), and thus determine v, p. The results, for

the cases to which Table II pertains, are given in Table III.

l'

In-t:ercept

Separatrix

f.~
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TABLE II

VALUES OF j, AND];, CORRESPONDING TO THE SEPARATRIX OF

EQUATION (5) FOR t == 0 (mod.?r) AND FOR t = 3 7T /4 (mod. 7T )

The first lines apply to the unstable fixed points; the last line refers to the intercept of the'
separatrix with the symmetry axis of the v> P diagram.

For t = 0, mod.-". For t.= 3 7; / 4, mod. 11"

J Cf' _.-
:>, ~J .!f" ::!J1.

), 7T 2t ..3/4- J'/.z. 3/z. .va.
- -+--- 32«(3-ti)(l- v)(lL) '71 32(YJ - i)(~ - ~)(W~I 32 (1 -7"3i){l- ~)(L)~ 32(1+-13 i)(l-]LX V) 7

6 3 3 N N _ 3 N N 1 3 N N ,

_ 571 t2t 1 7J.:J/z.. 3/1.. 3/;l. 3,.{
-.32(7'3 _. i)(- -. V)(_) /1 -32(-h"t-i)(l- ~XU) ~I 32(1 +-13 i)(l_:JL)(.1L)~ 32 (1 - -13 i)(l-.:J!..)(~) I

6 3 3 N N 3 N N 3 N N", 3 N N I

. 1 V Xz) ) ¥z-
3h 3/z.

1 -)x.- V) 3/:1-7f +~! 64 i (l _ 7.1)( V) ? - 64(l- :!!-Y.-V) ~.. 64 1 (- - - - 1, - 64( 3 - N N ~I2 3 3 N N 3 N N ' 3 N N ,

~~
1 -zJ.,) J/~

J/l. J/.. 1 ~JJ. .3/,
- f.,..2 3

t
64 i ("3 - "N)( N) '7~ - 64i(~ ~ ~)(;)/~ 64(~ -~)(i1) to- 64(3 - ~ N) 72-
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TAb~i: III

VALUES OF v AND p CORRESPONDING TO THE SEPARATRIX

OF EQUATION (5) FOR t = 0 (mod. TC) AND FOR t = 3 '1l/4 (mod. 'IT)

The first lines in each group give the coordinates of the unstable fixed points; the last line
refers to the intercept of the separatrix on the axis of symmetry.

t v p

o

t = 0,
mod.T( [ ~I 2f ( )J;- 32 Vi 1 z) V 1 2 1 1 _ 71 6 1 V j[ -t 10 1 1 _ V- 6- -NX~)l'l, -~ _tPIN2 -1+3VJ~ Nj~1 ~3-*XN~711 ~ - V2/N2'\i-3z)IN) 3" N~'

2 t-128.!..- 1J _ 2 _ 1 1 _ V
(3 ~Yt. G_/J/N2 ~(i ~T/J

I~
N
N

o

t=37(/4, II 32/.!.- 1)\( v)Yl [ J 10 -UN t 1 V.!.-_.1L.' YlJ
mod. 'It \.3 -N)\N" -(, t li -7J/N2 l.t3iJj"ij\3 Nt (,

64/.!.- tJ\f ~)1l ~J 2 ";1 N - ~(.!.- ill 11 ]
- \.3 -NA,.-N7(T'ti - 1J2-IN2 1T3VINj~ -NJ I

64(.!.- V\IJL)Yl ~ { 2 t}JN . 1 V1 .J2.\y,]
\3 -N}\.N, -ltt 1 -V2/N2 -~\3 - N}'l?,

1286 V)71J)2." ~./ 2 _~l_JL)Y)J
\3-WfFl -~[ li -V2/N2 H3VIN}..3 N . u.

1~4i3(.!.-_1LVJll2. 111- 2 VIN - 1 'J/.!.-_1lJ J
. 3 N7\N") ~'l 1 - if IN2 1.,. 3 ~Nk3 N)"'I.,

o

o

Since the foregoing results have not been carried consistently beyond terms of order(!- - .u..)~ , it may be

consIdered sufficient to replace the coefficients of(~ - ¥) in the lastterm of the correction facto~s by the value which

these coefficients assume as VI N .-, 113. Thus the correction factor for the value of v given in the first line of

Table III might be consistently written as [}. - (7/4)(1/3 - -z)IN~. Indeed, since 1l.,~1 -/\ ~ 1 - (7/2)(1/3 - VIN),

the factor 'Yl. outsIde the square bracket might be replaced by unity and a composite correction factor
[1 - (21 14)(1 13 _.1IN) employed in this case. * Although this contention cannot be gainsaid, we elect, however to leave

our results in the form summarized in Table III, being guided, in part, by some computational results pertaining

to the case t = 0, mod. 'f( [Sect. D 4].

*Also Yb.~ (1/2)(1 - 570.../8).
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3. Use of Quantities Akin to Angle-Action Variables

(a) The forward transformations: We commence again with the

Hamiltonian of eqn. (13),

H = (1/2) p2 + (1/2) (2 vIN)2 y2 + (1/6) (sin 2 t) y3 J (13)

and make a series of canonical transformations from the conjugate pair

v, P to ~ J J o ; 2(, J J 1 ; and t~ J J 2' The first transformation

is defined by the generating function

so that

p = ~ Go I ~ y = (2 7.J IN) y ctn ~

J o = - 0 Gol a¥'= (-V IN) y2 csc2~

thus

(47)

(48a)

(48b)

ctn ~ N .L
= 2V y

(49a)

1 ( N) 2 21 ( N
2 V)J o = 2 "TV. p +

'/4 1/-:1. . J
y = (NIV) J o sin ¥o

'/1.. I/,."
P = 2 (-U IN) J 0 cos ><,

and the new Hamiltonian is

= H

(49b)

(49c)

(49d)

..3/~ 3/:4.-
= 2 (z) IN) Jo + (1/6) (NI-z) ) J o sin3 ~ sin 2 t

J/.l 3/.2-
= 2 ('2,) IN) J o + (1/48) (NI-v) J o @cos (~ - 2 t)

- 3 cos (~ +~) + cos (3 i + 2 t) - cos (3 i.. - 2 t.il ~
o 0 (50)
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In analogy to the procedure followed in Section D 2 in formulating

-
the transformation from ~a ,ja to :5, ' ~ I , we now introduce

a second generating function

so that

(

J o = f)Gl/~y;,

J/~ 3/;l.f (..../=J + (l/32)(Nlv) J cos ~o-2 t) +
1 1 1 - 7J/N

~ = aGIl d J 1

= i+ (1 164)(N Iv~4 J 112-!; sin( ~- 2 t)+
o 1 C 1 - -z) IN

and

cos (~+ 2 t) _ cos (3 ~+ 2 t)] (52a)
1 + V IN 1 + 3 "iJ IN

3 sin( 10+ 2 t) _ sin(3 ~ + 2 t) J (52b)
1 + -v IN 1 + 3 :z; IN '

1 ] (54)
1 + 3 -VIN '

K I = Ko + 'f} GIl a t

_ K + (l/48)(NI-zJ11.z.. J 3/2..( 3 cos(i,- 2t) +3cos( ~+ 2t) _ cos(3 ~+ 2t)1(53)
- 0 leI - v IN I + -v IN 1 + 3 "iJ IN j

The new Hamiltonian, K l' can be expressed in terms of the new

variables ~ , J I without much difficulty bppendix B], with the result

lis. 3/1- _./
Kl=2(,)IN)Jl-(1/48)(NI.,) Jl cos(3~ -2t)

+ (I 12048) (N I.,) )3 J 2 r 6 -z) /N
ILi _-p 2 /N 2

in which we have retained lO only terms independent of t and of 0{ in

the term involving J l
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It now only remains to introduce a third generating function,

=

G 2 ( i, > Jz) ~ J 2 (~
2- "3 t) ,

which effects the transformation

J 1 .., a Gz/qJ; - J 2

~= dG 2 /-;;.J 2 ;r; 2
= t

3

with

= K 1 + & G 21a t

2
K1 - "3 J Z

_ J 3/L liz. .J
(Z/3 - 2 -vIN) J 2 - (1/48) (NI....,) J 2 cos 3~7...

+ (0<.. 12048) (N I 7.J)3 J i '
where, as previously,

(55)

(56a)

(56b)

(57)

1

1 + 3 -V IN
[cr. eqn. (Z52l

and t-dependent terms have been omitted 10 from the term involving J f
This final Hamiltonian KZ, as expressed by eqn. (57) and which we

shall take to be substantially a constant of the motion, is seen to be identical

in form to the Hamiltonian HZ of eqn. (35), as developed in Section D 2

save that the sine function is here fortuitously replaced by the cosine. It

remains to perform with the present variables the reverse transforrm. tions

required to carry particular values of ~ , J 2 back to the original

quantities v, p--both the forward transformation and the reverse trans-

formation which follows, however, appear to be somewhat simpler alge

braically than the corresponding steps required with the J ' ~
variables.
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(b, The separatrix: To initiate the reverse tranSbrmation in this

case., we shall focus our attention as before ~ection D 2 iJ on the par

ticular salient points of the separatrix:*

For the Fixed Points

"""/3 + Z t/3,

- "tI /3 + 2 t/3,

?r + 2 t/3,

'/:z. .3/.,.
with J 1 :: 64 (1/3 - -z) /N)(V IN) 1, (58)

For the Intercept of the Separatrix

liz. _ J I 3~
with J 1 :: 64 (1/3 - -V/N) (V/N) 7",,' (59)

(c) The reverse transformation to the original variables: For evalua-

tion of the original variables v, p one notes from eqns. (49c, d) that the

quantities explicitly required are sin ~ and cos ~ ' in addition to Jo'h..

To the degree of accuracy with which we are concerned in the present

work, it is sufficient for this purpose to refer to eqn. (52b) and write

sin ~ ; sin ~

~ sin ~

and

cos tc ,; cos 21,

~ cos ~

- (cos'r/ ) (~ - ~ )

_ cos y', (li ~ 11'2.f; sin(?/' - 2 t) +3sin( i + 2 t) _ sin(3 ~.+ 2 t)1
64 'lJJJ 1 t: 1 - V IN 1 + -zj IN 1 + 377 IN J

(60a)

+ (sin ~ ) ( '( - i )
sin l J (N~.3A. II~Fsin( ~ - 2 t) sine 'I. + 2 t) sin(3 'i., + 2 t)] .

+ "" J 3 +3 ' -64 21: 1 1 - V /N 1 +- -z.J IN ~1-·+----:="3--v--;"""1/~N~ ~

(60b)

*Because of the presence of cos 3 t_ in eqn. (57), in contrast to the pres

ence of sin 3 t in eqn. (35), the values of 12. which are of interest here
may be related to the corresponding values of "i" by ~ '" i' + 1i.. /2, or,
similarly,;y' ",y + .." / 2, This distinction between If''a., and r of course
could have been avoided by introduction of a phase shift in the generating
function G 2 .
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liz.
while obtaining J 0 by fu eqn. (52a)]

J J,I~ ~ J ,/~ ~ + ...!... (N \~ ""fs (t, - 2 t) +cos (/1. + 2 t) _ cos (3 ll'/ + 2 t)ll. (60 )
o 1 11

64 til 1 1 - V IN 1 + ;,; IN 1 + 3 -z) IN :Jj' c

Thus for t = 0 and ~ = :t. ?r 13, eqns. (60a-c) give

sin ~ = + {3 [1 _ 3 (...!... _ll)n 7
- 2 1 _ -]ll IN2 3 N (!.f

cos ~ = -21 [1 + __-=9~~_
1 - 7J 2/N2 (-}- -H-)~/J '

and

~ ( _J 34 [J 2. - 64 ...!... -.::.itt- '.:;L 1 1
o - 3 N)(Nj 1, t1_;) 2/N2

+ 1 ~(...!..._~)~]
1 + 3 ?J IN J 3 N 7{, '

so that, by eqns. (49c, d), the fixed point coordinates

v - + 3273/...!..._1L)1!.JL)7, fi j 2 - 1 )(-...!...- :1L)hJ- - r3 N rN I r r1 _..; 2 IN2 1 + 3 -,) IN 3 N II

are obtained. Similarly for the next case in the list (58), with t = 0 and

'I, = ')r ,

sin ~ = 0

so that

v = 0

p - _ 128 ('1 _.:.L)(21.)2 fi J 2 - 1 '(1 -JL)n]
- 3" N N ~ r Ii - )) 2 IN2 1 + 3 -z) IN J 3" N II I

In this same way one finds complete agreement with all the results listed

in Table III.
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(d) The unstable equilibrium orbit: The procedure just followed can,

of course, be employed in general to provide, as a function of t, the equa-

tion of the unstable equilibrium orbit, which is represented (mod. tr ) by

fixed points as listed in sub-section (b).

For the unstable equilibrium orbits, in particular, the Hamiltonian

equations which follow from K2 [eqn. (578 permit Y", and J 2 to be

constant, with, let us say,

~ ~ [ ]and J 2 = 64 (1 I 3 - iJ IN) ( V IN) 7, c f. (b) .

Then

2 t+-3
(61a)

= "tr + 2 t
--r

IIJ.. I/z..
J1 = J 2

3/...
[.cf. eqns. (58)] .= 64 (1 13 - V IN) (-z) IN) 1,

By making use of eqns. (60a-c), in conjunction with eqn. (49c), the

equation for the unstable equilibrium orbit, v(t), is then found to be

(61b)

v(t) =-64(1.- y)(-.tJ)nfirA!- sin 2t/3 + 4 (-z) IN)sin2t _( 1 _ 1 ~. lOt]
3 N"" N It 3 1 - N 1 -;; 2/NZ 1 +"i/fN 1+3-z)fNr

ln
3

(-}-1f)1.], (62)

through quantities of the order of (l 13 - -z.) IN)2. The expression (62) is

seen to contain circular functions of argument 2 t/3, 2 t, and 10 t/3, as

was the case for the trial function (7) employed in the variational treatment

of Section C. By substitution of particular values of t, the specific values

of v for the fixed points listed in Table III may be obtained.
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It may be noted, however, that differentiation of (62), which results in

=dv/dt = - 128 ('2..- -z.J)(_I_ -J)n£~s~_[cos 2 tl3 +12 (7l/N) cos 2 t
P 3 N 3 N t, r 3 1 - -z}/N 1 - 71 2 /N 2

- 5(1 /.,; IN - 1 + /,.; IN)COS 1~ V(4 -]~hl' (63)

does not lead exactly to the specific forms listed in Table III, although the

forms become coincident through (113 - -U IN)2 When(J:. -1l) is expanded as
2 3 N

(*) [1 + 3 (1 13 - ""2J IN». An expression for p may be obtained directly

from eqn. (49d) of course, just as eqn. (62) was obtained from eqn. (49c), with

the result

128{2..-Jlv.J1)2/1 {"'cos~+[-cos 2,t/3 _ 4 cos 2 t
3 Ni{'N (I 3 I-vIN 1-"7J2/N2

+( 1 +iJ IN + 1 + 13 V IN) cos 1~ tl4- - t)1l (64)
.... )

from which the "momenta" for the fixed point s listed in Table III follow for

the special cases.

4. Computational Results

(a) The unstable equilibrium orbit: To establish a connection with

Section C, in which the results of the variational method were presented,

we note first that for V IN = O. 3 eqn. (62) leads to the unstable equilib-

rium orbit as given by

v (t) =-0.56206 sin 2 tl3 + 0.02373 sin 2 t - 0.00437 sin 10 tl3 , (65)

while the alternative forms for p ~qn. (63), obtained by differentiation

of eqn. (62), or e qn. (64), obtained directly from o'-:t., , J 2J are

_ dv

P =ill 0.37470 cos 2 t/3 + 0.04745 cos 2 t - 0.01457 cos 10 tl3 (66)
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or

p = - 0.36808 cos 2 t/3 + 0.04745 cos 2 t - 0.01399 cos 10 t/3 . (67)

These expressions may be compared with the Fourier analysis of computer

results for this case, as given by eqns. (l2a, b) of Section C 2. There is,

of course, no fundamental basE for choosing between formulas (66) and (67)

since, as noted previously, eqns. (63) and (64) are identical through terms

in (113 - -zJ IN)2. It is in any event clear that the present results differ by

a few percent from the computer results for z.J IN = O. 3.

(b)The fixed points: The results presented in Table III for the unstable

fixed points at t =0 (mod. '7r ) and at t = 3 ?r I 4 (mod. '7r) have been sub

jected to computational checks for 7J IN =0.3 and for -zJ IN = 0.3275.

Computational data pertaining to the fixed points at t =0 (mod,""') have also

been obtained for a series of values of -V IN, ranging from 0.30 to 0.36,

in order to exhibit the dependence of the accuracy on the proximity to the

JI IN ~ 113 resonance. We present these results below, to be followed

in the suceeding sub-section by data for -zJIN = 0.3 which pertain to the

"intercept" of the separatrix on the symmetry axis of the phase diagrams.

The coordinates of the fixed points, as calculated by the expressions

listed in Table III, are compared with computer results for -;) IN = O. 3

in Table IV. The agreement with the computer results is seen to be poorer

in TableIV than was obtained by the variational method summarized in

Table I for -zJ IN = 0.3.
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TABLE IV

COORDINATES OF UNSTABLE FIXED POINTS,

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III

AND AS OBTAINED FROM COMPUTER RESULTS

z}IN = 0.3

t From expressions of Table III From Computer
v p v p

0, 0 - 0.33461 0 - 0.3506

mOd.7r + 0.48297 0.23849 + 0.4943 0.2440- -
3 7f I 4, - 0.59015 0 - 0.6024 0

mod.?r 0.25949 + 0.30665 0.2668 + O. 3207

To illustrate results applying to operation nearer the iJIN -t 113

resonance, the coordinates of the fixed points, as calculated by the ex-

pressions listed in Table III, are similarly compared in Table V with com-

puter results for -zJ IN = 0.3275.

TABLE V

COORDINATES OF UNSTABLE FIXED POINTS,

AS CALCULATED FROM THE EXPRESSIONS OF TABLE III

AND AS OBTAINED FROM COMPUTER RESULTS

7J IN = 0.3275

t
From expressions of Table III From Computer

v p v p

0, 0 - 0.07778 0 - 0.07793.
mod.1r + O. 10284 0.04191 + O. 10295 0,04195- -
311' 14, - 0.120095 0 - 0.12021 0

mod.1r 0.05854 ':F 0.06812 0.05861 + 0.06825
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As is to be expected, the agreement in this case, with -zJ IN = 0.3275,

is considerably better than for the case 7J IN = 0> 3 for which the results

were described previously in Table IV.

As was mentioned earlier, it is of interest to examine the analytic

results, in comparison with computer data, for various values of V IN.

The results of such a comparison, for t = 0 (mod. It ) and -J IN in the

range 0.30 to O. 36 are summarized below in Table VI, * in which the

formulas used to obtain the theoretical results are those of Table III. The

data are presented graphically in Figs. 1 through 3, and the percentage of

error in the theoretical results is shown in Fig. 4.

A detailed numerical examination of the computer data summarized

in Table VI (forming, for example, such quantities as

and

1

VIN - 1/3

for the various values of -z) IN employed and noting that these quantities

respectively approach· 714 and 21 14 as V IN ~ 113)suggests that the

theory has, in fact, been carried correctly through terms of second order

in ;) IN - 1/3. The correctness of this conclusion may, in fact, be

immediately apparent from the second order dependence of the relative

error on 7J IN - 113 in the graphs of Fig. 4.
*1 am indebted to Mr. Igor Sviatoslavsky for assistance in performing sorre
of the calculations necessary in the processing of these data.
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TAB VI

COORDINATES OF UNSTABLE FIXED POINTS,
AS CALCULATED FROM THE EXPRESSIONS OF TABLE III AND AS OBTAINED FROM COMPUTER RESULTS

t ::. ° (mod. 77 )

-VIN
Fixed Point on Symmetry Axis Fixed Points to ri~ht and left of Symmetry Axis

p p I':rror ±y ±y t;rror p p "rror
~ormula computer " formula computer % formula computer %

0.300 -0.33461 -0.35065 -4.57 ±0.48297 :t-0.49430 -2.29 + 0.23849 ... 0.24398 -2.25

0.305 -0.29897 -0.30971 -3.47 ±0.42445 ±0.43205 -1.76 + 0.20384 1"'0.20731 -1.67

0.310 -0.25895 -0.26554 -2.48 ±0.36171 ±0.36638 -1.27 -1-0.16850 +0.17049 -1.17

0.315 -0.21416 -0.21768 -1.62 :to.29439 ±0.29689 -0.84 -+' 0.13262 +0.13361 -0.74

0.320 -0.16408 -0.16558 -0.91 ±0.22202 j:0.22310 -0.48 +-0.09639 +0.09678 -0.40

0.3225 -0.13688 -0.13774 -0.62 ±0.18379 ±0.18440 -0.33 +0.07822 +0.07843 -0.27

0.325 -0.10815 -0.10856 -0.38 :1::0.14409 ;%0.14439 -0.21 +0.06004 +0.06014 -0.16

,
0.3275 . -0.07778 -0.07793 -0.20 .IO.10284 ±0.10295 -0.11 + 0.04191 0+0.04195 -0.08

0.33 -0.04568 -0.04571 -0.08 -,to. 05994 ±0.05997 -0.05 +0.02386 -+ O. 02387 -0.04

0.3325 -0.01174 -0.01176 -- - ±0.01529 :to. 01531 --- -+- 0.00594 +0.00595 ---
.

0.340 -r0.10237 + 0.1 0269 -0.30 ±0.13038 ±0.13060 -0.17 -0.04649 -0.04654 -0.10

0.345 +0.19025 +0.19226 -1.04 ±0.23878 .:r0.24027 -0.62 -0.07963 -0.07987 -0.31

0.350 +0.28943 -r0.29655 -2.40 :r0.35808 zO.36341 -1.47 -0.11 042 -0.11106 -0.57

0.355 +0.40211 -r0.42186 -4.68 to.49047 ±0.50549 -2.97 -0.13781 -0.13883 -0.74

0.360 +0.53130 +0.58071 -8.51 ±-0.63906 ±0.67734 -5.65 -0.1603 -0.16070 <'-0.25)
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(c) The intercept: The intercept of the separatrix on the symmetry

ax:s, for which formulas have been given in Table III, is somewhat more

tedious to determine computationally than the location of the fixed points.

Computational estimates of the intercept have been obtained, however,

for V/N = 0.3 at t = 0 (mod.")r ) and at t = 3 7T/4 (mod. '?t). The

comparison of the theoretical and computational intercepts for these cases

is given in Table VII.

TABLE VII

LOCATION OF THE INTERCEPT ON THE AXIS OF SYMMETRY, -;};N= 0.3

t LOCATION OF INTERCEPT Relative Error
(mod. ?") From Table III From Computer 0/0

0 p =
0.1886 0.191 2

v =
3"'/4 0.3024 O. 308 2
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APPENDIX A

EXPRESSION OF.fl EXPLICITLY IN TERMS OF 9, 3.
I J, I

An iterative solution of eqn. (22b) far 5. ( ~ , ~ )leads to
o J/ -// &

5. =.2, + (i/48) (NI z)J/&[i>, 5/ + 2, ~2. g f + 3';3 ~ ]
o I I .::;, G _, ~.3

- (1/1152) (NI z) )3 [(~;~ 1p,) ~3 + (3l, ~2.+ 2. "(jJ'J)~/~ 1" (3 ~, /J3 or ;,j;l, .,.3{t')~~ +(3~;./'I7fJ~)~

,..5, + (i/48)(NI 7.J )3/2. [ ~, $,2 -+- ~ ~z. 3, g, + 3 ~J ~Z.1 J.

+ (1/1152) (NI z})3 [((.3/2.) t I~ -(1/2.) j;,'J;J+-((r/~) (Pe,P,-(,/-;.)fP, tP1.)3,~{i;i)t~ -(f1,)l;z.)~.5" (AI)

in which the cubic term has been simplified by elimination of ~ ,'" through use of eqns. (2b-e). Solution

- -
of eqn. (22a) for.3: (3', ,.2 )similarly gives

I ~

~ .5. -(i/48) (NI z) )~2.[3~o3.~ .,. 2. i ~ ! + i ~ ]
.::;" , I' I ... :/, z. .~

T(1/1152) (NI V)3 [(3;~ i>,+ 1./ lpo)$3+(,t ~+- '/+3 7A)5.~-t(9PorA +-ZI,~.,.Z'l~~! +(3t4p/1)~

=~ -(i/48) (NI z) )3~[3i, $,2.+ 2 i.5, ~ -r/, rJ I , j

.t(1/1152) (NI V)3 [((3/2,) ~o<p,-('h.)~ e;~2..! +(c.,/2)rjof3-(~)if$,1+(r3/1-)J,~-('1:h)~2.)J, . (A2)

It may be noted that, since Pz ... P, * and ~ = ~ * [ eqns. (20c, d)] , eqns. (AI, 2) are consistent

with the statement that !5, ,~ form a complex conjugate pair to this order.

Forming the product of eqns. (AI, 2) then leads, through fourth order terms, to

.5;1 = 3,J+ (i/48)(NI V/":l. [-3;o~3 -A3,LJ, +1.3,~of- 3~ ~~) it. _~_~
~ (1/768) (N/ V )3[~p,3,1+-1/- ~o~~5/i-t('1lotri~J.K1 r'1~~g;$ +J~~g,] . (A3)

In addition
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- - Z:l3.[ r J) (,p;' I ,1 - _2-5o r ..f'o =5,+~ + (i/41)(N/tJ) r-3~o t1'1 -=1 +r-Z~/+-Z.I'1.)~/~ r(-/z, +-3i3)~

+- terms of third order;

so that 2. J

(301-30l:. $/ to 3$,"! + 3~ ~ + ~
1-{l/II.XN/rJ//1.[r-3i ri)3;"r (-I. fa rZt.JB;~ t-(-3i-3~+3P;-3j~!{-~j,+,,j)~1-1(~+'i~)~ j,

Finally, the expression for d F] / ;; t, which appears as a function ~,~ in eqn. (23), assumes

the form

(A4)

(A5)

I~
CM
-..J

;)F/.dt ==
.J. ~7

- (i/48) (N/z) ("M'5/r~~2.1 +t'~~ +-t'~ J J-

+ (l/2304) (N/ V )3[{3Ial+Z ~/)5,'1t- e".t'14 +?I,/~ -rZ ~')~ 3;
2 J #

+-(9l~3 -I ~~M +-~'i +;?¢:).r~ .,((~~+zi.'i+Z1A~~~&J:~+Z'{).J.7
~ ~ ~~ ~

- (i/48) (N/V )JP.[¢c'3;J+i'3,2j; t-J!'J: 3; -+- t; ~] -i<-

-r- (l /]536) (N/ V )3[ri,if;, -i rf,)~'/.;.z(~'i.-irl')5/~i(1Jf~riJr-i~'-3l ~)~i?r
-t zij,~ -!f,I;J$, ( ~-(~i-¢z,~')%;J (A 6 )

in terms of the variables .s: ' ~
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.•ccordingly, the Hamiltonian £1.., becomes

..n.., =no + d F', I;; t

'"' - i (~V/N)~~f') - (1/.,,) (N/V) 3/2. (e '2, it _ e-2.c·t) (30 +~)3 1" tl0/#t

:= - i (2. 7J/N)~!

ri Po' + '(lJIN)Po + (I/z.)(e 'Lit - e -';.c,t ) ] 3;3
3J..) +[i~/+z(z¥N)i +(J/z.)(e2.it_ e -z.d) ]~~

I N '/'" , I _2

- 'Ii (v) *[il. - Z.(V/N)!z. +(.3/z.) (eMf - e-Uf
) ].5, );

+[ i~/ -I, (z)/N)~3 'I'(I/2.)(~2.ii- - <:_ait)J{

(
[/1; -1-' (uN)/6 +( 'I2-)(e ","t_ e -1.it)] It '\ 'I

[i~'+2 (v/N)l +(*)[e'2.it_e-2.it)]~ - (1'~.3l- ~)(ezit _e.-zit))~

(Z[ii; of' (zJ/tI)t + (~)(e2.~t_e-1.it)]j~ ) .3-

+ ~Z,[i 4'~ -Z(7J/N)~z. +-(Jj2.)(eut-~-:l-lt)]i -(4i
o
-IJ{e2.,t_ e -2Jit) ~ 3;

•
3[ii' +' {V/N)1a +(~)(~Z.i.t _~-ZL~] ~

_J-
Io

(Ji..} < (+[i/" i"Z(ZJ/N)~ 1-(3/z.)(c~·t-e-Z"J~
153 V + -[i.pi -Z(z)/N)~-t"(3/2.)((.;.it_e.~it)J~

.3L"p; -b (7J/N)~ +( '/z)(e2.it·-~-2.'9Jpo-(3h,)(i.,.~-Pz, _~~~,t_e-;J.i).
( zL/#;' + Z(z)/N)~ +(3/L)(C2.i.t"-c-U~J~ ) --3

+ l- 2D~/- b(V/N)~ +('h.) (e~it_e-Zd)J~ - (i, - 3.t)~Zd _e-2.it) .5;.f

(
[il~ - Z {V/N)¢z +-{3Jz)(ez,il-e.-li9]~ ':\ -'#

. f - [i /; _b(V/N)~ + (112,)(~ z,( e -1.i9]i -(~)(4. _3~)(e.ut_e.-2.i.~)~
'-

,
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which, by virtue of eqns. (19a-d), reduces to~'

.....
I
~
(,H
100

-D-/ = -i. (;;, -,)/N)~~ - (1/'1t.) (N/zJ//2, [ e Zit ~/ - e -2-d ~$)

(
[-3~(eZit -e -u+) ~i (zezLt -e -Zit)] 5/

+ [-t,i (el-ii: _~-l-it) -i- 2..A (~el.it_e-Zit)] ~3!

_ .3 \ .; [-3fo (e/-i.t-Ze:2.~~-3f, (et-·-t_e.-?Ji.t)

- -!-- ('jj.VO " ] z-_Z
301~ IJ I +-3~z. (e2. ..t_e-1.i.t)f3~(Z~2.Lt_e-:ut) 05

f [.z!A (~zit - 2 e-ZL-t) -/-b $.- (e Zit -e _~d.)'73', 5.3
I _~ 'J , "I

+ [-A, (e ut _Ze-Zii
) +-3 !A (eZit_e-:ut)J ~ <I

With respect to the quartic terms, use will be made in particular l 0 of that part of the coefficient

h -'
of g; j; which is independent of t - -this specific contribution to fl./ is

(A7)

as is readily found by use of eqns. (20a-d) for the functions

i

2048 (~l [6 V/N
1 - (V/N)2

1 • ] ~,'-f
Po ' P, '~r. ,and i>3

"'It was to effect this specific reduction of the cubic term that the quantities ~o' ... 4 were required

to satisfy eqrs. (l9a-d)_
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APPENDIX B

EXPRESSION OF K1 EXPLICITLY IN TERMS OF Y;. J 1

The Hamiltonian K1 as given by eqn. (53). with Ko represented by eqn. (50) and the dynamical

variables by eqns. (52a. b), may be expressed

K1 =2 n)/N) J
1

+-(1/48) (N/V)'P J/"Zrcos (I'; - 2t)..,.3 cos (6+ 2 t)
1 - D/N 1..,.. IN

-3 cos (3 ,'+" 2 t) ]
1 -r 3 V/N

....
I
~
~
Q

+ (1/48) (N/-,)S/'bLJ
l
3!2,,-t(3/64) (N/V)'tI"J 2 [cos (~ - 2 t) + cos (t,.,..2 t) _ cos (3(;-t2 t) l1x

1 1 - 1)/N l..,..1)/N 1+ 3V/N)

• [ 3 cos ( 1" - 2 t) - 3 cos (Yo'" 2 0+ cos (3 4+ 2 0 - cos (3 to - 2 t) }

+ (1/48) (N/.,) )3j2,J3/~[_ 3 cos ( ~ - 2 t) 3 cos ( ~-t- 2 t) _ cos (3 t,-r 2 t)1
1 1 - iI/N t- 1 + 1J /N 1 + 3 1) /N

-+3 cos (~+ 2 t)
- , . _ 3 cos (3 Yo .... 2 t) 1. (-:L)

1 -to 3 iI /N ] N

+ 3 cos (~ - 2 t) - 3 cos ( ~+ 2 t) + cos (3 , ~ 2 t) - cos (3 ~ - 2 t)

.::::.2(V/N)J1-t" (l/48XN/Z»3/2 J3/2f [3 cos ( Yo - 2 t)1 1 - 1J/N

-3 cos ( ~ - 2 t)
I -=tJII'I "'3

cos ('tot 2 t)
I+- -U/N

cos (3 ~ + 2 t)
I of' 3 7JIN

3 1 3 1 1 1
_ I 3/2 212 1 - 11/ N - 2 1 t V/ N -"2 --:'1-t"~3--:f)""/;-:-N~

+ (1/1024)(N/v) J 1
plus terms of argument

4 t, 2 ~ , 4 fa ' 6 ~ , 2 ~;t 4 t, 4 'fc> ± 4 t, 6' + 4 t (Bl)
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By the nature of the transformation, as determined by the selected generating function G
1

, the coefficient

3/2
of J 1 is such that a considerable cancellation is seen to be possible. Those terms in the coefficient of

J 1
2

which involve t andl or ~ wiE be ignored, since, to the order to which the analysis is to be carri ed~

they will not contribute t--independent ~erms to the Hamiltonian which results from the final transformation 0

10

I .... 3

1

VIN ].

I......-

In view of the remarks just made, K 1 is taken to be effectively

K 1 = 2 Cz)IN) J1 - (1/48) (NI z})3/ 2 J 1
3/2 cos (3 ~ - 2 t)

+(112048) (NI-,)3 J2 [6 VIN - 1 ]
1 1 - '7Y-/N2 1 i" 3 V/N

Since~ eqn. (52b>] the variable ~ differs from ~ by terms of order J 11/2, we may expect that

substitution for ~ in the second term of eqn. (B2) will contribute additional terms to the coefficient of

J 12; this substitution. however, will not introduce terms other than thos e of the form which already have

been ignored in the coefficient of J 1
2 and we therefore write, finally.

K1 -=- 2 (V/N) J 1 - (1/48) (NI -z)3/?:ri/2cOS(3 ~ - 2 t)

+ (1/2048) (N1 V )3 J 2 [ 6 VI N
1 1 _ V 2 /N2

The last factor appearing in the J 1
2 term will be recognized as the parameter denoted by rJ.., in the

text [eqn. (25) J .

(B2)

(B3)
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v + (2 7Jf y + -2

1 [L bm sin 2 m t ] v 2 .- 0
dt 2 N m '":: 1
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ABSTRACT

As a continuation of an 'earlier report pertaining to the z)/N ---t 1/3

resonance, the stability boundary for the equation

::; +e~l y + ; L~1 b m sin 2 m t ] y2 - 0

has been studied analyticaLy and (for b 1 ~ 1, b 3 ='= 3/4. b S ' 1/2) by digital

computation, A rel.atively simple trial function,

v:;;: 2; [Am sin (2 m - 4/3) t + Bm sin 2 m t + Cm sin (2 m + 4/3)t
m:;; 1

is employed in a variational procedure or with harmonic balance to obtain

an estimate of the unstable equilibrium (perbdic;sol.ution and associated

fixed points. Application of the Moser method of solution is a1.SO carried

through, to inc~ude terms of order (z)/K - 11 3}2, Tn.e results are compared

with computational data for 1JIN -: 0.3267, 0,33, 0.3367, and 0.34,

,!:-
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Energy Commission, Contract No. AEC A T/l1-1}- 384,

*J:<Department of Physics and Institute for AtomIc Researct .. Iowa State College.
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A. MOTIVA'TION

In a previous report, 1* hereinafter designated as I, a study was made

of the differential equation

d
2

v + (2 VIN)2 v + (1/2) (sin 2 t) v 2 = 0,
dt 2

(1)

with particular attention to the limiting-amplitude solution governed by the

one-third resonance (zAN -H 13). As was pointed out in I, if the coefficient

of the linear term in (l) had not been constant but involved a periodic function

of the independent variable t, it would be possible 2 to remove this t-depend-

ence by a suitable transbrmation. Such a transformation, however, has the

effect that the quadratic term becomes more complicated than in eqn. (1).

As an extension of the results of I, we therefore consider in the present re-

port the equation

+ (2 VIN)2 v + (1/2) [L b m sin 2 m I]
m:-:1

2v =0, (2)

with b 1+O.

As before, 1 results of a variational solution and of application of the

Moser procedure 3 will be presented and compared with computational results.

In particular we shall be concerned with the limiting-amplitude solution

governed by the one-third resonance, and undertake to carry the analysis

consistently through terms of order (VIN - 113)2.

)lcReferences are given in Section E.
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B. THE VARIATIONAL METHOD

The unstable equilibrium orbit, or the associated "fixed points"

characterizing the limiting-amplitude solution of eqn. (2),

d
2

v + (2 V/N)2 v + (1/2) [L b m sin 2 m t] v 2 ::': 00'
dt 2 m::;: 1

may be soughtO by insertion of a suitable trial function into the variational

statement

b [ t..(dv/dt)
2>- (2 z)IN)2 ( v 2>- (1/3) ml;1 bm ( v 3 sin 2 m t >} = O. (3)

We shall employ here. the trial function

V ,0: A 1 sin 2 t / 3 + B 1 sin 2 t + C1 sin 10 t / 3

+ m0z[Am sin (2 m - 4/3) t+ B m sin 2 m t+ Cm sin (2 m + 4/3) t]. (4

in which the first term is the dominant one and the remaining terms are then

of a form suggested by considerations of harmonic balance.

In the substitution of the trial function (4) into the variational statement (3),

only those terms need be retained which will contribute terms of order no

higher than (V/N - 1/3)2 to the solution--to this accuracy it is then sufficient

to retain (cubic) terms in ( v 3 sin 2 m t> which involve Al squared or cubed.

With this approximation the variational statement (3) then becomes ( on multi-

plication of (3) by 72):

16 [1 - 9 (z}/N)2]Al + 16 [9 - 9 (,V/N)2] B 1
2 + 16 [25 - 9 (z)/N)2]cl

+ 16 mLJ[<3 m - 2)2 - 9 (VIN)2] A;' +[(3 m)2 - 9(zJlN)2] B;' +[<3 m + 2)2

• - 9 (zJIN)2]C~

+ 9 b 1 [A 1
3

/ 3 - 2 AlB1 + A 1
2

C 11

-+- 9~ 2 b m [Al (Am - 2 B m + Cm )} to be stationary. (5)
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By performing the appropriate differentiations of the algebraic form (5) the

simultaneous algebraic equations for the coefficients of the trial function are

then obtained directly:

32 [1 - 9 (1AN)2J Al + 9 b1[A1
2

- 4A1 B 1 + 2 Al c1l
+ 18 L: bm Al (Am - 2 B m + Cm) .- 0 (6a)

m~~ 2

32 [9 - 9 (tJ/N)2]B 1 - 18 b 1 A 1
2 :;-: 0 (6b)

32 [25 - 9 (tJ/N)2] C1 + 9 b 1 Af :: 0 (6c)

32 [(3 m - 2)2 - 9 (V/N)2] Am + 9 bm At :: 0 (6d)

32 [(3 m)2 - 9 Cz)/N)2] Bm - 18 bm A1
2

:; 0 m ~2 (6e)

32 [(3 m + 2)2 - 9 (,)/N)2] Cm + 9 b m At = 0 • (6f)

In solution of eqns. (6a-f), one may first express Bl' C 1' Am'

in terms of Al by means of eqns. (6b-f) and substitute the results into eqn, (6a)

to obtain an equation involving the unknown Al alone. An approximate solution

of this last-named equation.. valid through terms of order (z)/N - 1/3)2, may

then be obtained and the remaining coefficients (B l' C l' Am' ... ) determined

[Appendix AJ. We thus find

64 .. ) [ [+ ~ ~bm~2 9 m
2

- 5 J z)}AI=: - 3 b 1 (1 /3 - 1.//N) 1 - 8 1 ~ b 1 (1 / 3 - / N) (7a
m=2 1 (m2 -1)(9m2 -

32 _ 1 2
B 1 =hi" (1/3 - V/N) (7b)

C 1 ~ -3
1
:

1
(1/3 - V/N)2 (7c)

A - -~ bm /b1 (1/3 - V/N)2 (7d)
m - 3 bl (m - 1) (3 m - 1)

B
m

= 256 bm /bl (1/3 - U/N)2 m ~ 2 (7e)
b1 9 m 2 - 1

C 128 bm /bl (1/3 - z}/N)2 (7f)
m ::: - 3 b 1 (m + 1) (3 m + 1)
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These coefficients, when employed in the trial function (4). provide us. with

an approximate representation of the unstable equilibrium orbit in the form

of a trigonometric series.

From the foregoing results for the unstable equilibrium orbit, the

coordinates of the fixed points may be obtained, as desired. Thus, at t =0,

one finds

v :: 0 (8a)

(8b)

From the experience reported previously in I (Section C of reference 1)

it may be expected that the accuracy of these results, being c~rried only

through second order terms, will be somewhat limited unless.! - z) Iis
3 N

small; reasonable accuracy might be expected, however, if f ~ - -fl-I were,

say, as small as 0.01. A comparison of the analytic results with digital com-

putations will be presented later in this report (Sect, D). We turn next to the

applications of the analytic method of Moser to eqn. (2),

C. THE MOSER PROCEDURE

1. The Forward Transformations

In this section we undertake to treat eqn. (2) by the Moser procedure, 3

in a manner paralleling that presented in Sect. D 3 of I. 1 Our basic equation,
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eqn. (2), follows from the Hamiltonian

H =(liZ) pZ + (liZ) (Z VIN)Z vZ + (1/6) [£;1 b m sin Z m t] v 3, (9)

which we now subject to a series of canonical transformations designed to

eliminate the t-dependence from the cubic term in (9).

We commence by employing the generating function

so that

p = dGol ~ v = (2 ~N) v ctn Yo

J o = - dGol d~ = (VIN) v 2 csc
2 ~

thus

v _ N P
ctn 4 0 - 2fl -;-

1 l N _1 2 + 1.[2 V) v 2
J 0 = "2 \"2V1 p 2 \: N '

v = (Nlz){!~ Jo'/~ sin Yo

p = 2 (zJIN)'/~ J;/'-- cos Yo

and the new Hamiltonian is

(10)

(lla)

(llb)

(12a)

(12b)

(12c)

(12d)

= H

= 2 (VIN) J o + (1 I 6)(N I .,})3/1.. J~1- sin3 to ~ bm sin 2 m t
m=1

= 2 ( -;)IN) Jo
_ll'Z. 3f1; \' [3 cos (Yo - 2 m t) -3 cos(Yo + 2 m tj+ (1 I 48)(N IV} J o W b m

m = 1 + cos (3 Yo + 2 m t) - cos (3(0 - 2 m t) ,

(13)

with Yo and J o constituting respectively the new coordinate and momentum.
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We now select as a second generating function

sin (3 (0 + 2 m t)

. m + 3 DIN

(14)

J
1

) =1 J~INf•
Y0

3Yi b 1 ~ __----':::......,...._ Y v-sin ( ~ - 2 t) sin (,0 + 2 t) sin (3 I'0 + 2 t)
+ 3 - ----.=;.-r-----4

1 - U/N 1 + 1./IN 1 + 3 7N
+9'61': J 1

sin (Yo - 2 m t) + 3 sin ( Yo + 2 m t)
m - DIN m + illN

+Lb
_ sin (3 Yo - 2 m I) _

m=2 m - 3 iJ/ N

so that

[
COS(Yo- 2t) cos(~+ 2t) cos(3'(0+ 2t)1

1 - DIN + 1 + VIN - 1 + 3 1)IN J
cos (yo - 2 m t) + cos (~ + 2 m t)

m - 1)IN m + DIN

_ cos (3~ - 2 m t) _ cos(3 Yo + 2 m t)

m - 3 DIN m + 3 N

(15a)

b
1

r~ sin( Yo - 2 t) + 3 sin( Yo + 2 t) _ sin(3~ + 2 tJr 1 - vlN 1 + 7JIN 1 + 3 iJlN ]

sin (Yo - 2 m t) 3 sin (16 + 2 m t)
3 +

+Lb m m - 7JIN m + 1JIN
m=2 _ sin (3 to - 2 m t) _ sin (3 ~ + 2 m t)

m - 3 1JIN m + 3 7JIN
t

(15b)

and

b
1

[_ 3 cos«(o - 2 t) + 3 cos(I"o + 2 t) _ cos(3~ +

1 - VIN 1 + V/N 1 + 3

_ 3 cos (~ - 2 m t) + 3 cos (~ + 2 m t)

1 - VlmN 1 + t/lmN

+ ~~m + cos (3 Yo - 2 m I) _ cos (3 y" + 2 m I)

1 - 3 1JImN 1 + 3 illmN

(16)
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it is now in order, of course, to express the new Hamiltonian, K1, explicitly

in terms of Y1 and J l' As a first step" substitution of J o ' as given by

eqn. (15a), into Ko' as given by eqn. (13), results (after considerable sim-

plification) in eqn. (l6) assuming the following form, through terms of order

Jl

Y in eqn. (17)
o

+ terms which are neither constant, nor involve
circular functions of an argument which is a
multiple of 3 y - 2 t

o

+ ~ bmbm + 2 [. 1 1]cos 2 (3 r: - 2 t)LJ 2 .. J - .j 0
m::1 b l m+3V/N m+2-3lJ11N

It can be seen that the introduction of Yl in place of

need not change the form of this result, since the substitution, based on

eqn. (l5b), which is involved in expressing cos (3 Yo - 2 t) in terms of Yl

does not introduce into the J f term any terms of the form which we have

elected to retain. It may moreover be noted that there is little point to re-

taining the last term in eqn. (17), involving the cross products bm bm + 2 '

since. to this order, 3 VIN may here be set equal to unity with the result

that the term in question vanishes. In this spirit, and in the interest of

simplicity, we therefore write

(l8)
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where

1

1 + 3 z)IN

....m~2"...-_ -9_1_1J-':2~/-N":"'"2 -~ (19)

[cf. eqn. (25) of I] and in which t-dependentterms have deliberately been

omitted from the J; term of K
1

.

For the final transformation we now. as in I. introduce the third

generating function

which effects the transformation

J 1 = dG2 / 'd'f1
:: J 2

Y2 dG21 ~ J 2 Yl
2

,- := - .... t
3

with

(20)

(21a)

(21b)

and in which 0(" is given by eqn. (19). K2• which. as written, is independent

of t, is now to be regarded as substantially a constant of the motion.

2. The Separatrix and Fixed Points

The expression (22) for K2, which we take to be a constant of the

motion,is virtually ident'cal in form to eqn. (57) of I [Section D 3 of refer

ence 1] and the succeeding step thus will parallel the corresponding work
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2

in I, save that the values of J 2 (::: J 1) will contain a factor I/b
1

and :;1'_

is to be interpreted in the manner of eqn. (19).

The fixed points, corresponding to the unstable equilibrium orbit,

are characterized by K
2

being stationary; i. e., by

cos 3 1
2

- - 1

1
2

= ±.. 7113, /[(

~ = + 7£13 + 2t/3, 1T+ 2t/3

(23a)

(23b)

(23c)

and

where

~1

= J I/'U = ~ (I _ 7J) ItJ)J/'Ln
2 b 1 t 3 N eN (l

-I.} + 80(. (f /3 - z)/N)' - 1
= 4 ()I., (l 3 - iJIN)

= 1 - 2 ()(., (113 - VIN) + .•• •

(24)

(25a)

(25b)

•

Other points on the separatrix are determined by eqn. (22). with K
2

given

• the value [implied by eqns. (23a) and (24)J

K Z = - :1:: (~jn-K1
3

3. The Inverse Transformation

To obtain an expression for the unstable equilibrium orbit in terms

(26)

of the original dependent variable, v, we perform the inverse transformation

from Yl' J I' making use of eqn. (24) and (say) setting 11 = 1f+ 2 t 13

[cr. eqn. (23C>j. We thus write

J lIt. ~ J '/"L [1 _b 1 m\3f~J '/~. R] (27a)
o 1 n\lll 1

sin to ~ sin ~ - (cos ""11) (~ - Yo)

~ sin ~ + b l ~:s Yl (fll J:ft.. S (Z7b)
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and

cos to ,; cos

- cos . S, (27c)

where

R:! cos 4 t/3 + cos 8 t/3 cos 4 t
1 - iAN 1 + DIN 1 + 3 ilIN

cos (2/3) (3 m - 1) t cos (2/3) (3 m + 1) t
m - 7)IN + m + 1JIN

cos 2 (m - 1) t cos 2 em + 1) t
m - 3 iJIN . - m + i/IN

(27d)

and

3 sin4t/3
S =. - 1 - VIN + 3 sin 8 t/3

1 + 7)/N
sin 4 t
1 + 3 V7N

_ 3 sin (2/3) (3 m - 1) t + 3 sin (2/3) (3 m + 1) t
m - iJIN m + PIN

+
sin 2 (m - 1) t

m - 3 illN
sin 2 (m + 1) t

m + 3 VIN

(27e)

sin 2 t/3 +4( Z);N)sin 2 t -f 1 ~
1 - UN 1 - z)2/ N 2 \1 + 'ZAN -1+3Zl!N) sin lOti

.
I

m + ~ illN) sin (2 13)(3 m +

(28a)

(in -1UN - m - \ il/N) sin (2/3)(3 m - 2) t

\' b + 4 ( 7JIN) sin 2 m t
i..A. b1 m 2 - - J2./N 2
m=2 V-
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similarly [cf. eqn. {l2d)J

_ J 1~ '/t.
p =2 (VIN) 3

0
cos y

o

= - 2 (zJIN) 'liJt ~ -(i -~) 11 . RJ [ cos 2 t/3 - G-}) '11 ~in~) s]
cos 2 t/3

4 m cos 2 ill t

m 2 _ J2IN2

J(28b)

~os2t/3_4coS2t\+( I I I _\cosIOtl
\i - DIN I -iJ IN?') \1 +UN 1 + 3iJ1Nj

(m - \lIN + m - i iI/N) cos (2/3) (3 m - 2)t

~bm

L, bi
=2

+(m /1J/N + m +1 3 iJ/N)COS (2/3) (3 m + 2)tl
For comparison with the results of Section B, we may first examine

the coefficient of sin 2 t I 3 in the expression for v shown in eqn. (28a),

making certain simplifications consistent with retention of terms through

those of order (1- ffJ. This coefficient is

Al =- :: (-~ - ~)f~h [1 - 11~3 iJt~N 11]
~ _64 (1.. -~l 6~) [1 - Ii 0<. + 1 \ (1. _-z))]
- b 1 . 3 N/ Nj \.. 1 - iI/N/ 3 N

~ -:~ (i - ~X~) [1- (2 ~ + %) (i -~)]

~ - ;~1 G-~) [1 - (2 f¥- + ~J (i -~]

(29a)

(29b)

(29c)

(29d)

and, with

,J ; 714 + 4~ (bm )2 9m
2-5

10'1; £...J b (9 m 2 - 1) (m? - 1)
m=2 1

[cf. eqn. (19)], (30)
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9 m
2

- 5 l(! - ZJ)\t
(m2 _ 1)(9 m 2 _ I) 3 N~, (2ge)

in agreement with the expression given as eqn. (7a). A similar reduction

of the coefficient of cos 2 t I 3 in the expression (28b) for p leads to a

quantity WhlCh is 2/3 of formula (2ge) for AI' as it of course should since

p :-: dv/dt.

Similar reductions of the remaining (second order) terms in the

trigonometric series for v and p, as given by eqns. (28a, b), leads to the

coefficients listed below in Table I.

TABLE I

COEFFICIENTS OF SECOND ORDER TERMS IN THE TRIGONOMETRIC

SERIES FOR v AND p, FROM EQUATIONS l8a AND 28b.

Argument Sine Coefficient in v Cosine Coefficient in p

2

(+- ;/i2
2 t + ~ (J...- v~ + 64

bl 3 N bI-, _.._,--_.,

10 t/3 - ~ (1- _JLj2 - 160 C'- - 1J.)2
3 b 1 3 N 9 b1 3 N

128bm 1 e.- JL)2 2(21 3)(3m - 2}t - 256 bm 3 m - 2 CV)
- 3 bf (m - 1}(3 m - 1) 3 N 9 bt (m - 1)(3 m - 1) "3 - N

256 bm 1 C ff)2 512 bm m 1 vJ2 m t ~.

bf 9 m 2 - 1 3' - N + 2
9 m l - (3 -N

bl 1

(2/3)(3m + 2)t - 128 bm 1 (1 - lJ)f _ 256 bm 3 m + 2 C 11)2
3 b 2 (m + 1)(3 m + 1) 3 N 9 b{ (m + 1)(3 m + 1) 3 N.

1

The coefficients listed here for the terms appearing in eqn. (28a) for v are immediately

seen to be concordant with the coefficients of the trial function of Section B, as listed in

eqns. (7b-f). Similarly the coefficients listed for p are seen to be related to those given

.or v in a way consistent with p =dv Idt.
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Coordinates of fixed points may of cour se be obtained directly from

eqns. (28a, b). Thus, for one of the fixed points at t -: 0 one finds

2

V : 0 (31a)

1

P ·_·- ~(~- ~)~~1." b 3 N N
1 1

(31b)

This expression (31b) for p may be somewhat simplified if various reductions

are made by aid of ~1;l1 1 - 2 '" (~ - !fJ .use of eqn. (30), and the approxi-

mation (V/Nl2
;j i [1 - 6 G-~)] :

p ,; - ~(~_ U) (1Jf ~ 1 - [2 _16 L: m (bm /b1) .1(1 _ Y..~1
b 1 3 N/ W l11 l 4 m~2 (m2 - 1)(9 m 2 - 1~ 3" NjJ

;, - 1:8(~_ ~OO[1-[~1_8 r 2m(bm/bl)-({9m2-5)(bm/b1)21(~_ ~\1
1 NJ m,," 2 (m2 - 1) (9 m 2 - n J 3 N ) J

; - ;~8 (t -~[1 -f ~5 - 8 L 2 m (bm/b 1) - (9 m
2

- 5) (bm/b1/1(~ _~\}
1 NJ m:::2 (m2 - 1) (9 m 2 - 1) j I,

(31b')

which is in agreement with the result (8b) found in Section B. The other

unstable fixed points associated with this value of t likewise may be

obtained, by the substitution of t ::-; ±. 'it in eqns. 1(28a, b):

1

1 + 3 -zJ/N
2

- 2 'V m b m I- 1 1
/;: 2 01"\m 2- 9 ZJ IN Z... m'-'2'---V~2~/-N""2""'1

1 -
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• - 32 f3 (1 _ vVV)Yl 1 _(2 _ 6 ~ b m m J(.!. - V)]
e;:+ hI C3 NJ\.-N/'ll 4 1 k12 15l (m2 -1)(9m2 -1) 3 N

!. - 32i3(1 _~)(~£ _[~_8 '" Zm(bm !b1)-(9m
Z

-5)(bm !b1)Zl (.!. _V)l
- + b 1 3 NJ\.-Nl 4 f:z 1m2 - 1) (9 m 2 - 1) j 3 NIJ

; :; 32f3(.!. _JL))1 _[~ _ 8 L.. 2 m (bm /bl)-(9 m
2

- 5)(bm /bl)211.!. _ 'til
3 b I 3 NJ ( 4 m~2 (m2 _ 1) (9 m 2 _ 1) JC3 N)J (32a')

10 1
+ 1 + 3 z}/N .

The reduced forms (32a') and (32b') agree with the value of the trial function

of Section B and its derivative at t = + 'IT..., namely v = + (73/2) >" (A -Cm)- - rfdl m

and dv/dt =- (1/3) '=': [(3 m - 2) Am - 6 m B m + (3 m + 2) Cm ] ,- when

the coefficients are taken as given by eqns. (7a-f).

The coefficients of the trigonometric development of the unstable equi-

librium orbit, and particular fixed-point coordinates, are thus seen to agree,

through terms in (~ - J(J2, when obtained by the variational method or by the

Moser procedure. In the following Section we present some computational

checks of these results.
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D. COMPUTATIONAL CHECKS

The analytic results of Sections Band C for the limiting-amplitude

solution of eqn. (2), for which the solution was carried through terms of

order (z}/N - 1/3)2, have been subjected to computational checks4 for a

series of examples in which

b 1 :; 1,. b 3 :: 3/4, and b 5 = 1 /2 ,

and in which .,)/N successively assumed the values

0.3267,

O. 33,

0.3367, and

O. 34.

(33)

The computational results for the trigonometric representation of the

unstable equilibrium orbit, and for the coordinates (v, p) of the fixed points

corresponding to t :: 0, were compared with the results of the analytic work,

both in the form obtained directly from application of the Moser method and

in the simplified, or "reduced ", forms in which the results also could be

expressed. A particularly decisive test of the results might be afforded by

examining explicitly the coefficient of (V/N - 1/3)2 in the results--thus by

forming

9 b1 (- p)
1 - TIB'""" ~ - 1)

3 N
1 V
3" N

one might expect to obtain a result which would approach

45
"4 8L;

m::2

2 m (bm/b 1) - (9 m 2 - 5) (bm/b 1)2

(m2 - 1) (9 m 2 - 1)
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as z)IN ~ 1/3 [cf. eqn. (31bl~. From such tests it appeared that the

coefficients of interest were approximately of the size expected but assumed

limiting values which depended appreciably on the Runge- Kutta interval

employed in the computations--thus with NRK =64 (requiring runs of length

NE= 960 Runge-Kutta steps), the limiting value of

9 bl (- p)
1 - 128 1 V

3"-N
1 -,)-3 N

appeared to be about 11. 7. In the results reported below, the computational

results are taken primarily from runs made with N
RK

= 64.

In Table II we list the Fourier coefficients of the unstable equilibrium

orbit for the cases studied. For each argument listed, the first line gives

the value of the coefficient expected from the results of the Moser theory

&qns. (28a, b) J; the second line gives the value obtained from the reduced

forms [see eqn. (2ge) and Table I] ; and the third line gives the coefficients

obtained computationally.

In Table III we similarly list the fixed-point coordinates, for t = O.

The agreement between the analytic and computational results, as illustrated

by Table II and Table III, is felt to be completely satisfactory.
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(a)Eqn (28a)
(b)Reduced for rns

(c )Computational

TABLE II MURA-459
FOURIER COEFFIC IENTS IN T ')TABlE EQUILIBRIUM ORBIT

b1=1 b-:t::::J/4 bl:;=1/2

(;I)E4n. (28<.1)
(h)Hl'du('ed fonns(2ge), ~ seq
k )('ornputatiollcd

-
Sine Coefficient in v Cosine Coefficient in p

Argument -vtN ~ N

() ~? fl7 () ~~()() () ~~fl7 () ~4()() () ~?fl7 () ~~()() () ~1n7 o ~4()()

-.133 915~(a -.0691337 oj- .073 9787 ~.150 9863 -.089 1973(a) -.046 0785 't. 049 3068 -1".1005561
2 t/:1 -.1334186(b -.069 0676 of" .073 9068 +.1503963 -.088 9457(b) -.046 0451 t. 0492712 of".l 00 2642

(c
-.069 1799 + .073 9996 't .151 3 083 -.089 423 (c) -.046 120 ~, 049 333 +.100 872-.1341 351

+.001 2792 t .000 3385 oj- .000 3818 -+ • 001 5780 1" .002 5584 l' .000 6771 +.000 7637 ;- . 003 1561
2 t -t.001 4080 +.000 3556 oj- .000 362', + . 001 4222 -+-.002 8161 ~ .000 7111 + .000 7254 + .002 8444

-t.0012594 -to. 000 ::13 57 + .000 3859 +- .001 61 75 -t .002 51 9 +.000 67 1 +.000772 +.00323 5

-.0002170 -.000 0570 -.0000630 -.0002578 -.000 7192 -. 0001892 -.000 2109 -.000 8662
10 t/3 -.000 ~347 -. 000 0593 -.000 060::> -.0002370 -.0007822 -. 000 1975 -.0002015 -.000790L

-.0002101 -.000 056 0 -. 000 0643 -.0002693 -.00070
0

-.000 187 -.000 21 4 -.000 898.-
" .. 000 0794 ". 000 0211 '-.000 0240 -. 000 0994 -.000 3724 -.000 0987 - 000 1115 -.0004611

14 t/3 · . 000 0880 ..·.000 0222 · .000 0227 -.000 0889 -.0004107 -.0001037 ·.0001058 ... 0004148
· . 000 078 5 ".000 020

9 · . 000 0241 -.000 101 3 ".000 367 -.000 09
8

.. 00011
3 -.00047 3

-to 000 0964 +.000 0254 + . 000 0286 +.000 1178 -+'.000 5782 +.000 1527 .... 000 1714 +.0007069
6 t 1". 000 1056 -+' . 000 0267 +.000 0272 't. 000 1067 t. 000 6336 t.OOO 1600 +. 000 1632 't. 000 6400

-t. 000 0947 t ' 000 0252 +. 000 028 9 +.000121 0 't. 000 568 +.000151 .... 000 17 3 +.000 72 6
· . 000 0324 '. 000 0085 . 000 0095 ". 000 0390 -. 000 2365 -.000 0623 .. 000 0697 -. 000 2869

22 t/3 000 0352 . 000 0089 · . 000 0091 -. 000 0356 -.000 2581 -. 000 0652 -.000 0665 -.0002607
. 000 031 8 ... 000 008 4 - . 000 009 6 ". 000 039 9 -.000234 -. 000 06

2 -.000 07 a -.000293

DOD 0152 · . 000 0040 -. 000 0045 .. 000 0188 ·.000 1322 -.000 0350 ··.000 0394 - 000 1625
26 t/3 000 0168 · . 000 0042 .000 0043 .. 000 0169 ". 000 1453 -.000 0367 . 000 0374 -.0001467

. 000 0148 000 003 9 .000 0046 .0000195 .000 128 -.000 03 4 .000 04 0 -.000 169

+ 000 O:BO ;- , 000 0061 t 000 0068 -r .000 0280 +.000 2295 +. 000 0606 ~. 000 0680 +.000 2804
lOt '1". 000 0~51 + . 000 0063 + 000 0065 ;- . 000 0254 +.000 2514 +. 000 0635 .... 000 0648 +.000 2540

r.OOO 022 5 1". 000 006 0 + 000 006 9 + . 000 0288 +.00022 5 .... 000 06 0 + .000 06 9 + . 000 288
I 000 O(HlO · .000 0024 000 0026 -.0000109 000 1014 - . 000 0267 -. 000 0299 -.0001233

34t/3 - 000 0098 - 000 002 f> 000 0025 - . 000 0099 -,000 1108 -. 000 0280 ... 000 0285 - . 000 11 1 9

000 OOgo .. 000 002 3 - .000 002
6

... 000 0109 - . 000 1 03 -. 000 02 7 -.00003 0 -OOO12:~

...

I~
0\
~



TABLE III

FIXED POINT COORDINATES

(t = 0, mod4 2 'l()

b 3 = 3/4

MURA-459

z1N On Symmetry Axis To Right and Left of Symmetry Axis
p v p

-.087 393(a) +.115832(a) +.048 746(a)

0.3267 -.086 955(b) +. 115 396(b) +.049 029(b)

-.08764 (c) +'. 116 040
(c) +.048 794

(c)

-.045 600 +.059 834 +.024136

0.33 -.045 542 +.059777 +.024 173

-.04565 1=.059 892 +.0241 53

+.049 849 +.064 108 -.023 420

+.049784 + .064 043 -. 023 462
0.3367

+.04987 2:. 0641 12 -.023 413

+. 102 799 + . 130 922 -.045 185

0.34
+. 102 275 + . 130 396 -.045 530-
+.10316 !.. 131 200 -.045204

(a) Eqn. (31b)

(b) Eqn. (31b')

(c) Computed

(a) Eqn. (32a)

(b) Eqn. (32a')

(c) Computed
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APPENDIX A

SOLUTION OF EQNS. 6a-f FOR THE COEFFICIENTS OF THE TRIAL FUNCTION

From eqns. (6b-f) we immediately obtain
-1

B 1 ~ (1 116) b 1 A 1
2

[1 - (tJ1m2
]

2 2)-1
C 1 :::-(9/32) b 1 Al [25 - 9 (VIN)

-1
Am = - (9/32) b m A 1

2 [(3 m - 2)2 - 9 (VIN)2]

2 [ ] -1B m = (9/16) bm Al (3 m)2 - 9 (VIN)2 m~2

(A-1a)

(A-1b)

(A-Ie)

(A-1d)

(A-Ie)

By insertion of the expressions (A-la-e) into eqn. (6a), and rejection of the trivial

root Al = 0, the quadratic equation for Al is obtained:

~ 2J .2 2t 1/4 9/16 ']
32 1 - 9 (VIN) + 9 b 1 Al - 9 b 1 Al VI Z + VI 2

1 - ( N) 25 - 9 ( N)

81 2 ~ 2 [1 + 4 +
- ibA1 ~2 b m (3 m - 2)2 - 9 (z)IN)2 (3 m)2 - 9 (-z}/N)2 (3 m +

J J-0
2)2 - 9 (-z)IN)~ -

(A-2)
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(A- 3a)

in which V/N has been replaced by 1/3 in terms such that a simplifcation could

(A- 3c)

(A- 3b)

m ~2 (A-3e)

(A- 3d)

thereby be achieved consistent with the objective of retaining accuracy through order

(1/3 - V/N)2. To this same order we also obtain, by substitution of

Al~ -~ (~ - -zJ) into eqns. (A-la-e) in turn,
3 b1 3 N

B 1 = 32 (~ - JL¥
b1 3 N)

16 (1 ~12
C 1 = - 3 b 1 3' - NI 2 2

b m /b 1 (1 ~\ 128 bm /b 1 (1 V.)
Am = - 1:: (3 m _ 2)2 - 1 ~ - ;;; =-3 b

1
(m - 1) (3 m - 1) ~ - -;;/

_ 256 bm /b 1 .(~ _ V)2 =256 bm/b1 (-31 - VNJ
Bm - bl" (3 m)2 - 1 3 N7 b 1 9 m 2 - 1

128 bm /b1 (~ _ z)f 128 bm /b1 (1 tJr
Cm =- b"; (3 m + 2)2 - 1 3 N) = - 3b

1
(m+ 1) (3 m + 1) 3" - N) . (A- 3f)

It is these equations which have been taken as eqns. (7a-f) in the main body of the

text. The results for the special case bm =0 (m :",2) can be seen to be consistent,

through order €. 2, with equations (lOa-c) of I [pection C 1 of refereence 1] .
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CONCER~1:NG THE ,)/N-. 1/3 RESONANCE, III

Use Of The Moser Method To Estima~e The Rotation Number,

As A FunctlOn Of Amplitude, For The Equation

::; + e~1) 2 v T ~ (sir. 2t) v2 =0

L. Jackson Laslett **

May l8, 1959

ABSTRACT

The Moser method of analysis, as applied through terms of order (-z/IN - 1/3)l

in an earlier report, is here employed to determine the variation of rotation number

(or "tune") wlth amplitude for solutions of the non-linear differential equation given

in the title. The result is given in terms of a complete elliptic integral of the first

kind, with a modulus determined by the roots of a quartic equation. The rotatlOn

number is thus calculable in terms of an amplitude characterized by the value of the

Moser t-independent Hamiltonian and this in turn may be related to some desired

salient dimension of the phase curve of interest. This results although by no means

as convenient for hand calculation as the handy formulas sometimes employed for this

purpose 3 is found to give results in very good agreement with numerical computations

for a problem in which the small-amplitude frequency corresponds to -z.)IN =0.3. As

is typical, the rotation number in this example departs initially from its small-amplitude

value (0.3) by an amount proportional to the square of the oscillation amplitude and only

near the stability limit undergoes a rapid variation to attain the value 113. The area

enclosed by the phase curves, most specifically by the separatrix, is also briefly

examined.

* AEC Researc h and Development Report. Research supported by the Atomic Energy
Commission, Contract No. AEC AT(1l-1)-384.

**Departm~ntof Physics and Institute for Atomic Research, Iowa State College,
Ames, Iowa.
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A. I~TRODUCTIO~

In an earlier report, 1, * hereinafter denoted as I, a differential equa:lOp. of

the form

dZv + (!:lL~Z b 1 Z2 N v + T (sin Zt) v = 0
dt

was discussed, the dependent variable v being so scaled, for convenience, that

(M
Z

1. 2+N} v + "2 (sm Zt) v =O.

(1 )

(2 )

**(3a)

In that report1 the Moser method2 of solution was applied to eqn. (2), through terms

of order (-z) IN - 1/3)2, to obtain an approximate t-independent Hamiltonian

3/2 3/2
K2 =-Z6J

2
-(l/48)(N/71) J

Z
cos3r2

+ (DC 12048) (NI.,,) )3 J 22

with

1
1 + 3;17 N

(3b)***

and

J = 113 - ,)IN ,

the expression KZ thus representing an approximate constant of the motion.

(3c)

In I the results of the analysis were specifically applied to examine the character

of the limiting amplitude solution of eqn. (Z), resulting from the 7l1N-t1/3 resonance--

in the present report we apply the results of the same general analysis to examine

the dependence of the "rotation number" on amplitude.

The Hamiltonian K2 [eqn. (3a») was obtained in Sec. D3 of I by a series of

canonical trandormations.

*References are given in Section D.

**Eqn. (57) of I.
***Eqn. (25) of 1.
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Coordmate
I

Momen~um

v ,P
~o I n

Y1 J,
'lf2 i J2

In WhICh ~2 11_ 2 + ~", ~ t- 1 3"' - 0 3

arld J 2 = J 1
~ J o- =

wIth

(4a) *

(4b)**

and

1/2 1/2 . J
v = (N12) ) J sm •o 0

p =2(1J/N)1/2 J 1/2 cos-rl •
o 0

(5a)***

(5b) **"'*

Phase plots of solutions to eqn. (2), plotted in v, p-space at t =3 '1r1 4, mod. 1T' I show

a tranSItion in form from elliptical to roughly triangular curves (as Illustrated) as the

amplitude approaches the stability limit.

t
!/J
;,

Seporo.trix

*Eqns. (56b) and (52b) of 1.
**Eqns. (56a) and (52a) of 1.
***Eqns. (49c) of I.

li<***Eqn. (49d) of 1.
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Ope:-at:Oi_dlLv, the amplltude may be charactenzed by the m:ercept Vi (see sketch),

with v then serving to denote the value of this intercept for the separatrix_ The
I

corresponding values of J 2 ~r J 1 may be similarly designated. In the present

report we shall examine analytically the dependence of the rotation number on (J2)
1

~nd hence on vii VI' specifically for a case in which the small-amplitude frequency

is charactenzed by vi N =O. 3, and compare the results of th1S analysis w1th

corresponding results obtained from computer solutions. A brief exammation wl1l

also be made of the area enclosed by particular phase curves, in specific limiting

cases.

B. THE ROTATION NUMBER

1. AnalytiC

To illustrate the procedure to be followed in obtaining a rotation number to

characterize a particular solution, we may first note that, due to the non-linear

characte r of the differential equation [eqn. (2)J ' J Z is not a constant of the motion

but 15 governed by the following differential equation:

dJZ1dt :: - .KZ1'?J)(z

=-(l/16)(Nlv)3IZ J
z

31z . 3\/
Sln 0 Z' (6)

and d "liz 1dt is similarly given by e KZI ~ J Z. In the course of integratlOn of dJzl dt,

J 2 may go from an extreme value (say a minimum value) corresponding to its value

(J
2

) =a at the intercept v. to a second extreme value (say its maximum value) b in
i 1

an mterval ,At =T. The corresponding changes of the variables of mterest are then

as hsted below:

At Jz =J 1 .~ Z A~

0 a 0 0

T b - "'/3 ZT/3-1f13
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Afrequency of revolt;.tlOn may then be ~.akec: as

v' ~.:1~/T

2 1'(
:: 3" - 3T

or, since we conslder N :: 2 in eqns. (1) or (2), a "rotation number'! llltrcduced as

(7 )

This quantity, ";'/N, will be seen to vary from the small-amplItude value, vlN,to 1/3

as the amplitude increases to the value corresponding to the stability limit.

The differential equation (6) may be in!egrated by making use of the constancy

of Kz [giVen by eqn. (3a)] to eliminate liz:

dJ2/ dt =-'8 K 2 / ~ ~s.

3/2 3/2 ~/
= -(l/16)(N/-,) J sin 3~

2 2

0( (N)3 2J
2048 V J 2

(8a)

2 ]2J 2 - 2;' J 2 - K2

(8b)

•
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In the parLcdar case that ~/;;;::: 0.3, tI-:: 1/3 - 0.3 = 1/30 a:id ci.. -:: 1 45'7.• 06

2
+ (76.18071427 K

2
- 6.448 334 695)3

2

- 193.450 0409 K2J2 - 1450.875 307 K2
2

eqn. (8b) above :hen assumes the form

2r
T = 12.696 7851

av 4
-J

2
3

1" 28.401 684 09 J
2

(8-:

(8e

=
25.393 571 42

J(c - a)(d - b)
K (k) ,

(8e

where a, b, c. d represent the roots of the equation obtamed by settmg the denommator

of the integrand m eqn. (8c) equal to zero ( a( b <c (d),

(b - a)(d - c)
(c - a)(d - b) , (8d)

3
and K(k) denotes the complete elliptic integral of the fIrst kind (modulus k). The

"values of T computed from eqn. (Bc ) may ther: be substituted into eqn. (7) to obtain

I
the estimated rotation number, V IN, for this case.

Z. Comparison with Computational Results

In applymg the results of the previous sub-sec;lOn, the value a :. (J ~) =(J1)
'- 1 i

may be related to a corresponding value of J o by aid of eqn. (52) of I ard ther:ce

directly to the mtercept coordir.ate, vi' The quan'.itie s (v) V
I
)2 and (J1\1 (J1 \ wll~.

of course. be rO:..lghlv proportional to one another. The root "a" VflE have the valuE'

*From Eqn. (3bL or from p. 16 of 1.
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(J 1 ), ; for srr.all !J1 ) rhe roots a and beach aFprc-ach zero.. w!u:e fer (J ) near
·11 1 i

the limitlng value (J1 ~I the roots b ar..d r: cash app:'oact 0.103 6384 ar_d

a:O.Ol75557.

Observed rc,:a,,;:'or.. I'.umbers from a senes of cOr.1pu:er- - see Fig. 1.

The results for a series of selec,:ed values of (J ) a:e Lsted u: Taole I. For
1 .

small values, the modulus k varies direc:l.y as (J, I 3/4 .: being approxim2.~elyequal
J. i

3/4
to 4(J.)

. i

runs.. made with the MURA I. B. M. - 704 computer by use of the DUCK-ANSWER

4
program, were obtained from examination of suitably nl1mbered points on phase plots

of the output data - - see Fig. 2. - - and are included in Table I. The results are

expressed in terms of vi/vI' or (v/vI)2. using the value of vI repor:ed previously in r.
1

The va:-iation of rotation number with "amplitude" (or amplitude squared) is,

finally. depicted in Fig. 3. in which the curve has been drawn to pass ~hrough the cal-

culated values listed in Table I and the circles represent the results obtained from the

machine computations. The agreement between the calculated curve and the computer

results is seen to be close. 5

Since the enclosed phase-space area is proportional to K
l

, to a reasonable

approximation. an effective average value of -..II/ N may be taken as given by

J (VI/ N) dKl / I dK
l

- - i. e., by an average of '2J' / N sampled in equal intervals

of K
l

• For the case considered. there thus results the effective vabe

;y
O. 306 • (9 )
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TABLE I ,
CALCULATED AND OBSERVED VALUES OF-.J/N

1/2 .,) /N
I

(vi/ VI)2 (J1 )i -103K2
a, b, (*) 1,) IN

Vi/vI (J1 ) . k K T
1 C. d Calc. Obs.

u
7(/2 = 1011/2::; 1/3··1/300

0 0 0 0 0 .228 8851 0
1.5708 15.708 =0.3 II. :1

28.172 7990
-- . ._-- --

• 050 =.188 567 0.3481 .030918 .000 9559 0.06745
.000 9559

.268 .001 0797 .02331 1. 571 0 15.808 0.3002 n. ]/)()l

.227 0228
28.172 6257

._.

• 003 8267
i .100

.13923 0.:l8474 .004 9413
: • :l68 :::.373 1::i4 .061 860 .003 8267

.220 8204
.07139 1.5728 16. 1 ~5 0.3009 0.1010

i 28 172 0957 -
.008 1

I .5427 .2945 .09 .0081 0.61071 .012 025J .13883 1. ~784 16.796 0.3022I .. .-. -
.2103242

:>.R 171 ?:-l4R

• 008 6167
.150

.31327 .092 826
.012 9909

0.1023:268=·559701 .008 6167 0.67391
.208 9491

.14725 1. 5794 16.886 O. :1O:n

28.171 1274 ._.-
.015 3314

.200_ 71'<6!l .5t;G9:'. .12382 .015331Ji 1.25661
.028 0399

• 270l 0 1.600'{ 18 0 111 O. :.04D 0 0 '10~1-- ,It j..268 -. ,,,' .188 5344
28.169 7784 -_._--

.015 6250

• "534 .~b76 .125 .015 625 1 .28289
.028 9322

.27746 1.6024 18.502 0.3050 ........
• 187 5105

28.169 6164 ---
.023 972

.250 .060 689
0.3107 O.31l1.268::' .932 836 .87018 .15483 .023 972 2.05366 .149 319 .54037 1.7093 23.125

28.167 704 --
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TABI 1
(continued)

(Vi /v I)2 (J 1 ) i
l 12 103K

a. b. k(*)
, I

v/v (J1). - 2 K T V/N 'JJ/N
1 I 1 C• d Calc. Obs.

. 025 600

.9293 .16 .025 6 2.20878
.071 529

.64067 1.7849 25.593.9640 .137236 0.3129 .. - -
28.167 319

.027 5557
"--

1 .166 • 027 556 2.39707
.103 6384

1 OC 1 1
1 .103 6384 CO 3 3

28.166 8515

(*) 3/4. . 3/4
For small (J1)i' k is proportional to (J1 )i • bemg approxunately 4(J1 )1 •



C. THE PHASE SPACE AREA

1. Analr;ic L"1;roduction

It may be of some interest to inqL.1re concerning 1:he area. S, 1:1 phase space

mcluded withm a curve of constan~ K
2

, 1:aking, as before, K
2

as glven m eqno (3a).

We thus mvestigate

S :§p dv

1J'3 ?
= 6/ JZ d 1z '

with K
Z

given in term s of J2 (=J1) and (/z by Grom eqn.

(10)

(3a) with.J/ N =O. ~

j". 3/Z J 2
K

Z
=- /$ J 2 - O. 126 787 6Z9 J Z cos 3~ 2 + O. 026 253 363 72 J 2' (11 )

Equation (11) may be used to eliminate 'liz from eqn. (10), with the result (written m

where a, b, c, d have the same meaning as before [1. e., m connection with eqn.

(8cI)] .
If one were to undertake to evaluate the integral of eqn. (12) directly, it appears

that the (complete) elliptic integral of the third kind would appear 6 and we shall not

further pursue this matter with such generality here. The character of tre integral,

and hence the value of the area 5 may, however, be examined with some interest in

the case (i) that K2 is small and (ii) ir. the case that KZ =. (K2) , corresponding to the
I

separatrix which encloses the entire stable area of phase space.

(i) For K small, the numerator of the integrand in eqn. (12) is approximately
Z .

-3K
Z

- (1/15) J Z or (Z/ 15} J 1 ' and is approximately constant, while~c - J 2)(d - J z)

:::::-~ = z. 539 357 [cf. Table fl. Accordingly, in this limit, we may wnte

eqn. (12) as
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.t
/

dJ
2 <J > 1

1 f' J 1 - a)(b - J 1\
0. ~

;\ICRA - -to 1

= 2 ..,,(J )
1

= 211'Jo

21r(V!N) vi
2

=

(by a:4 elementary integrac.on)

cPy eqn. (Sa)] (13 )

This result is immediately seen to be cor:-ect. for the area enclosed within an

elliptical phase curve of semi-axes v.• 2(.,)/ N) v. [cf. eqn. (Sb)' • and thus.
1 1 - ~

to a degree. constitutes a check of eqn. (12t

I
0_. - t-- ---- ----- .

~

(ii) When K assumes the value (K.,) characterizing the separatrix.
2 ' I

b =c and the numerator of the integrand in eqn. (12) moreover may be factored to

=

give us p"

S
-J (b - J1)(J1 + 2.642 995) dJ1 • with c = b

Q. y'(J1 - a)(b - J 1)(c - J 1)(d - J 1)
t

= J J 1 + 2. 642 995 dJ1

~ .; (J1 - a)(d - J1) j.

[(5.28599 + a + d) tan -1:1_- Ja -f(JI - a)(d - J 1IJ
1 ~-1Ma _A= (5.28599 + a + d) tan -,{b - aHd - b)

d - b

= 0.2805
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by use of the vaLles a = 0.027 5557, b = c =0.103 6384, and d =28.166 8515 listed

in Table 1.

2. Compu4:er Result for Area Within Separatrix

From computer results ob4:ained in connection with the work reported previously

in I, one finds (after scaling of those results so as to apply to the case b 1 =1 under

consideration here) that the area enclosed within the separatrix (estimated from the

original plot in the v, p-plane) is approximately

Scomputer ~ 0.296. (15)

This area is some 5 or 6 percent greater than that suggested by the analytic result,

eqn. (14), as might be expected in view of the observation that the computer values for

salient coordinates and momenta on the separatrix were found correspondingly to be

a few percent greater than the values derived from the Moser theory employed here

[see, f. ex., Table IV or the first line of Table VI in I] •

Finally, it may be noted in closing that if the small-amplitude result,

S ; 2 77'~5(-K2>J

= 301('(-K
2

) , (16 )

of eqn. (l ~ had been applied in this form to the large value K2 =-0.002397 which

corresponds to the separatrix, one wo~d have obtained the result

S = 0.2259

the value obtained in this way thus would have been some 20 percent lower than that

calculated by eqn. (14).

1-480



:\ICRA.-461

D, REFERENCES A)J"D NOTES

1. L Jackscr. Lasle+.t; :\1CRA-452 (Apnl 13, 1959), hereinafter denoted by 1.

2. Jurgen Moser, Nach .. GOtt, Akad. (Math. - Phys. K1.) Nr. 6, 87-120 (1955).

3. ct, B. 0, Pe i rce II A Short Table of Integrals", Ed. 3 (Ginn and Company, Boston,
Massac!:use>:'s). Formula 552, p. 70.

4. J. N, Snyder, DUCK-ANSWER (1. B. M. Program 75), MURA-237 (1957). In the
actual use of ":his program for the work reported here, the coefficient b

1
in

eqn. (1) was given the value 1. 15; the computational values of v and p, accordingly,
each required multiplication by the factor 1. 15 to bring them into agreement with
the quantities employed in the analytic work presented here.

5. Although the analytic approach outlined in the present report is of interest as an
illustration of the applicability of Moser methods, and the results appear to be
quantitatively quite accurate, the results obtained here [eqn. (8c"), etcJ cannot
be regarded as particularly convenient for numerical evaluation. It therefore
may be of interest to recall, as Dr. G. Parzen has kindly pointed out (private
communication, 27 May 1959), that a "handy formula" has been proposed to
describe the variation of "tune" in cases such as we consider here. One form of
this formula is such that one would write for the present problem

(lJ'/N)2 ;; (1/3)2 - [(1/3/' - (11 IN):) /1 - (A/A
I
)2 (17)

where A and AI respectively denote the "amplitudes" of the actual oscillation
and of the limifing stable motion. In the pre sent instance we might, perhaps
somewhat arbitrarily, identify Al as proportional to K and write

l

(-V' IN)l ~ (1/3)2 - [(1/3)l - (0.3)2.) -11 - Kll(l<.l)' (18)
I

We now may make a comparison, presented below, of (i) the results derived in
the body of the text, (ii) the prediction of the handy formula noted here, and (iii)
the rotation number derived from the computer results:

v'/N
Kli (Kl)

Formula of text Handy formula ComputerI

0 . 3 • 3 • 3
.Ol8139 .300l .3005 .300l.
• 118 786 . 3009 · 3021 • 3010
• 281 137 .3023 .3053 .30l3
.524 l2? .3049 • 3107 .3051
.856 737 • 3107 • 3211 .3111

1 1/3 1/3 1/3
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Although the handy formula certainly represents correctly the general trend
of V' / N, it appears to be somewhat inferior quantitatively, at least as
applied here, to the more elaborate result given in the text.

6. See, f. ex., W. Grabner and N. Hofretter, "Integraltafel", Ed. 2 (Springer,
Vienna, 1957) in regard to integrals such as they denote by~n dx, n ~ 1

Y
[as in Pt. I, Indef. Int. I Sect. 244, pp. 81 ffJ.
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M:nWESTERN UNIVERSITIES RESEARCH ASSOClATION*

2203 University Avenue, Madison, Wisconsin

CONCERNING THE t//N~1/3 RESONANCE, IV

THE L:M;T~NG-AMPLITUDESOLUTION OF THE EQUATION

:~ l + {a + b cos l ¢ ) u + ~1 (sin l ¢) u" , 0

**L. Jackson Laslett

June 3, 1959

ABSTRACT

The equation shown in the title is reduced, by the transformations

¢d A.7- ' to the form

;,C:If y + i ~ b m (sin l m I) ] yl , O.

Use is made of the results of an earlier report, in which the characteristics

of the limiting-amplitude solution of this latter equation were obtained by a

variational procedure and by application of the Moser method, to obtain

corresponding information concerning the solution u (¢) of the first equa

tion, The ana~ytic work is carried through terms of order (l /3 - V/N)2

and applied to an example in which

a ..;: 0.1262875

UN 0.2997

Comparisons with the results of direct digital computation for this example

indicate the results of the analytic theory are within a few (2 to 4) percent

of computed values_

"". AEC Research and Development Report. Research supported by the Atomic
Energy Commission Contract No. AEC AT(1l-1)-384.

:~:o:

.. Departrr;ent of Physics and .Institute for Atomic Research, Iowa State College,
Ames Iowa.
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1 :

:n 0. previous report.· heremafte:- des~gnated as I, the character-

:s':2.CS of t~e different~a~ eq~_ta.~.ion

(1 )

were investigated, in particu:ar at the stability bour..dary. both by a varia-

tional method and by appEcaticn of the Moser procedure. These results

were extended in a second report. 2 denoted by II, to describe similarly the

results for the limiting-amplitude solutions of the equation

dl; + il viN)l v + (Ill) rL b m sin l m tJ v
2 ~ 0 I (2)

dt Un=l
the work being carried through terms of order (V/N - 1/3)2.

It was pointed out in I that if the coefficient of v in eqn. (1) had con-

tained an alternat:'ng-gradient ,A -G) term, it would have been possible to

transform the equation, through a suitable introduction of new variables,

so as to remove the A-G character of the linear term. In the present re-

port we undertake to apply this technique to the equation

and, by subsequent use of the results of II, then to examine the nature of

the limiting-amplitude solutions for a particular example with a small

ampiitude oscillation frequency giver. by zJ/N ~ O. 2997:

(3)

B. ELIMINATION OF THE A-G ASPECT OF THE LINEAR COEFFICIENT

We commence with eqn. (3; written above .. and. for convenience in

executing the transformations, note that it may be associated with the

>%References are given in Section Eo
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Lagrang:.-1.n

T 'd" IdA.......0 '. u 'f' 1" m'
..4" f'

(4a)

in which

(4b)

T~e transformation to follow then makes use of the constant 2 V/N,

where 27( z};N ('"" cr) represents the change in phase of the solutions of

the linearized eqn. 13) when A ¢ .' 7( and also employs the function

,B (~) commonly employed in the theory of A-G accelerators. 3, 4 We then

introduce the variab;es 5

(5b)

(5a)uV-in);
N rr¢

t-= 2V)
(;>

the transformati.on of the independent variable being such that in an interval

A ¢ ::: 1fE. e., in or:e period of the coefficients of eqn. (3)J:, 6t:.: ~ ii = rr
and the period in terms of t accordingly is the same as in terms of ¢ .

The Lagrangian in terms of the new variables is taken to be

L
1

(dv/dt~ v; t) _.

1 (dV 2 V :2L dv
~ tit) + v at2 N dt

+ ~l~ ~/M/ -~ (~~4J]
B 1 t V,&f/2

(sin 2 ¢) 3
6 N -; v

2
v

(6)
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Tho Lo.g:· :.ng:c.11 r~.:~ t;-e~. r.1odi::ed by 3ubtract~or. of a perfec': dIfferentia;

(7~

the last reduc~ion bemg accomp~isl:edby virtue of the relationb

£ d 2/8 1 (d 5)2
k ,:)2 1 (8)- .....

Z .") 4 : dfP"J /ci(/)'- \ .
I

The dlfferentia~ equatlOn ',vl:.ich f0110\vs from the Lagrangian n: is seen

tc be

B.
1

, 2
2 .i/ \

• ---I

1'7 -' v -
Z-·)£i·5 / 2

~ ... II"-· i
-2-'\ N ) o (91

ar.c. the assocateC: Haml~tcnian is

H 1.2 V /.r z

l N )
.sin 2 ¢) v 3 dO)

with P dv/dt According~y if one makes the expc.nsion

v
~ b (sin 2 m t)
m1 m

{11)

tr.ese results (9~ and \lOj ar-e in U~e form treated in II Ve proceed ther.

to an appJica"':lOn 0: thi::; analysis to a speclfic examp:e in which. for compar-

isor. computational ':?o:utions are 8.vaEable for the original differential equa-

tic!! Specifica~ly we 5ha~1 take
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o 126 2875 ·12aJ

b L 15 and

cor.sider as in ;.: t~.<: dependen: variab~e to be so scaled that

The va~ue of zJ/r:; wh:c~ is implied by th:'s partiC1A:a:~ se:ection of va.;ues

02c!

for a and b may be estlmated a!1alytica~~y 7 ')btair.ed from available tables, 4

or determ:'ned by a di:-ect computation - - ir. the present example we Hr.d

(12d)

or substanEally 0,3,

c. THE EXPANSION INVOLVING ;S

The function f (¢: may be estimated analytica~:y.7 obtained from

tabulated4 values of ;J " ..=inO""): or found by direct computation, In the

present ins~ance, with the governing parameters gi-,ren by :(l2a, b). ,/3 <¢>
itself may be represen·ed by the expansion8 <see Fig, 11

, 1. 3956 [1 T 0 741 13 cos 21

+ 0 083 56 cos 4 ¢
+ O. 004J54 cos 6 ¢ + ,0.] , (13 )

It may be of interest to note in passing that the anaJytic results of reference 7

suggest that in the presen: case tr'..e quantity 2: Ii ranges between the

maximum and minimum values (a,:: 1> ,0 ar',d at ¢ - rrr/2, respectively)

2. 539 and 0.474. whilE the va!ues octained by a direct computation are sub-

stantialJy 2.552 and 0,472,

In the present work we requ:'re tre expansion of B 1 (2 ~,d )1/2 sin 2 <p,

as a trigonometric serle:;; in the variab~e t with t related to rby e qn. (5b),
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The coeff:cients8 of this expansion, (ll), are as listed in Table 1.

TABLE I

COEFFICIENTS, b m , OF sin 2 m t IN THE EXPANSION (11)

a~0.1262875 b.;L15 B 1 cc. 1

m bm

1 1.0645

2 L 3531

3 1.2396

4 0.9878

5 0.7278

6 0.5100

7 0.3450

8 0.2274

9 O. 1470

~10 ~ O. 01

These tabulated values may be employed, in application of the results given

in It to an examination of the expected limiting-amplitude solution to eqn. (3).

The scale distortion in passing from the variable ¢ to the variable t is instru

mental in effecting a pronounced peak in a plot of the (odd) fUnCtior{2
N
V

,dj!f';in 2 p
vs. t (Fig. 2),. with a consequent enhancement of the higher-order Fourier

coefficients bm; the effect of the higher-order coefficients on the salient features

of the phase plots, however, would not be expected to be great.
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D. COMPARISON W~TH COMPUTATIONAL RESULTS

For comparison with availab~e computer results we apply the pro-

cedure out~ined above to the spec:fic case for which
A

a -~ O. 126 2875

b _. 1. 15

( t1N = O. 2997)

particularly with respect to the location of the unstable fixed points which

characterize the unstab~e equilibrium orbit at t "" O. In terms of the nota-

tion of II, then, we cave

1/3 - V/N . 0.0336 3333 . u. :: 1. 009/30 (14a)

0(,. 3,975 962 and (14b)

'l,,-=: 0.8201 1582 ,

making use of the values of bm (m ~ 9) listed in Table 1.

1. Location of Unstable Fixed Points

For the fixed point on the symmetry axis (at t ..=' 0) we calculate ~<*

v::.: 0

(14c)

(15a)

to obtain

~~Eqns. (12 a - d).

**Eqns. (31a, b) of IL

2

1 -

v=:O

p ... - 0.2874 .
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again making use of the values of bm (m' 9) in Table 1. Similarly, for

the fixed points situated to the right and left of the symmetry axis (for t :: 0)

we ca1culate Ji"

2 1_--.:.:.....-_-

1 - 1J2/N 2 1 + 3 z) IN

-2 " m bm f- 1 _ 1 ~ (i -~h
r£;l °1 \ml -9 21'2 /N2 m2-z)lIN~

(16a)

(16b)

to obtain

v ::: '+ 0.4153

p .- 1" 0.2759 .

To transform the quantities v, p, found above, to the quantities

(l6a ')

(16b')

u, P :du/d<!>, which pertain to eqn. (3) and which essentially constitute the

working variables in the computational work, we note from eqns. (5a, b)

that

and

v = 1. 5975 v (17a)

*Eqns. (32a, b) of II.
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p
1 5975

when (as here at t c; ° ¢
(l7b)

O~ !:..-.~4 . 2,552 and dlld¢ -. °(Fig. 1).

T~~e resulting pred:cted fixed - point coordinates and the corresponding

values obtain~d from dig:ta~ computa:.:.c.n are presented in Table II. The

latter va~ues were obtained wi:h the MURA IBM 704 computer, by use of

the DUCK-ANSWER9 program" A phase plot, obtained from the computational

results for 1 ° (mod, 1"C) is given in Fig, 3.

TABLE II

COORD~NATESOF UNSTABLE FIXED POINTS AT ¢ c.: 0,
As Obtained from the Ana!ysi s of ~his Report and from Computer Results

b 1. 15 :zAN '0' 0. 2997

FIXED From Ana:ysis From Computer

POINT u P S dU/d¢ u P "0 dU/d¢

I

On Symm.

° -0.1 7 99 I
° -0, 1866Axis I

Rand L of +0,6634
.

Symm, Axis ... 0 ! 727 ; 0,6866 +0.1765

It is noted from Table 1f tr2t the va:ues found by use of our formulas are

some two to four per cent less in magni:ude than those given by the com-

puter--a situation simLu TO th2.t sr;own in Table VI of I for an example

with V/N -; 0,3"
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20 Rep:-esentation of the Unstable Equilibrium Orbit

Our appJication of the results of II to eqn. (9) gives us, of course, a

trigonometric (sine) senes for v (0, from which. for example. eqn. (l6a)

would follow. In the present example the pertinent coefficients for such a

development of v (t)., and the similar (cosine) coefficients ca~culated sepa-

rately for p (t} by the expressions in II with which our present eqns o (15b)

and (16b} are consistent, are listed in Table III (by use of Table I, consider-

ing m" 9).

TABLE III

COEFFICIENTS FOR A TRIGONOMETRIC EXPANSION OF v(t) AND p(t)
m~9

Argument m Sine Coefficient in v Cosine Coefficient in p

2 t/3 1 -0.477 435 -0.309 642
2 t 1 +0.018 056 +0.036 113
8 t/3 2 -0.005 580 -0.015 631

10 t/3 1 -0.003 329 -0.010 649
4 t 2 + O. 005 343 +0.021 370
14 t/3 3 -0.001 687 -0. 008 098

16 t/3 2 -0.001 567 -0.008 145

6 t 3 + O. 002 148 +0. 012 887
20 t/3 4 -a. 000 665 -Ou 004 520
22 t/3 3 -0.000 744 -0.005 354

8 t 4 +0.000 959 +0.007 668
26 t/3 5 -0. 000 291 -0.002 565

28 t/3 4 -0.000 362 -0.003 330
10 t 5 +0. 000 451 + 0.004 511

32 t/3 6 -0.000 135 -0.001 462
34 t/3 5 -0.000 180 -0.002 012
12 t 6 +Ou 000 Z19 + 0.002 631
38 t/3 7 -0 0 000 065 -0.000 834
40 t/3 6 -0.000 091 -0. 001 196
14 t 7 +O. 000 109 +0. 001 525
44 t/3 8 -0.000 032 -a. 000 475
46 t/3 7 -0.000 046 -0. 000 702
16 t 8 + 0.000 055 +0.000879
50 t/3 9 -0. 000 016 -0. 000 271
52 t/3 8 -0. 000 024 -0.000 409
18 t 9 +0.000 028 + O. 000 505
58 t/3 9 -0, 000 012 -0. 000 237
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The cop-version of v ~t) to u {¢) would appear to be rather tedious,

involving as it does both the factor 1'l' and the non-linear relation be

tween the independent variables t and 4. It is of interest to note from

Table III. however: that v (t) itse.~fevidently should be rather well. rep-

resented by its first one or two coefficientsi' --say by

v (t) ~ -0.477435 sin 2 t/3 + 0.018056 fin 2 t . (18)

If a table of values of u :-.;i 2 ~,4 V j vs. ;" is constructed by hand

computation" one finds that eqn. (18) suggests u (¢) should have a rep

resentation8 in which the leading terms are roughly

u (¢) ~ - O. 5339 sin ¥ + O. 1772 sin ¥ + O. 0155 sin 2 if>

-0.040
0

sin ¥ + .•• (19)

this result, eqn. (19), may be compared with the direct computer analysis 10

of the limiting-amplitude solution for eqn. (3), namely (with Bl :;; 1);

u (¢) ::;: -0.55231 sin!:./- + 0.18429 sin if. + 0.02167 sin 2 ¢

-0.04919 sin~ + 0.00575 sin¥ + 0.00283 sin 4 ¢

-0.00140 sin ¥ + .•. v (20)

As with the data of Table II, it is seen that the major calculated coefficients

in the representation (19) are some three or four per cent less than the

corresponding directly-computed values shown in eqn. (20).

*Cf. the result of the numerical solution of eqns. (8a - c) in Sect. C 1 of I,

or the computer results given by eqn. (12a) of that report ( zJ .-:: 0.3).
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M~DWESTER.N lJI\T:VER5TT:ES RESEARCH ASSOC:AT~ON!

2203 University Avenue Madison. Wisconsin

CONCERNING THE ~N~ 1/3 RESONANCE, IV A

A TRIAL FUNCTION FOR THE LIMITING-AMPL:TUDE SOLUTION OF

2 B
d u + (a'" b cos 2 ~:I u + -21 (sin 2 rA) u 2 : 0
dc/>2 r

Lo Jackson Laslett'*'*

June 17 1959

ABSTRACT

For comparison witt. the results given in an earlier report, use of a

trial function for the limiting- amplitude solution of the equation given in the

title is illustrated for an example in which

z)IN ~ 0.2997

a 0 0 1262875 b .. L 15

B 1 - 1

The trial function employed sine functions of argument 2 f}/3, 4 f/3, 21J,

8 ~/3, and 1017/3. The coefficient found for the dominant term appeared

to be within one-tenth of a per cent of the computer result and the spatial

fixed-point coordinate (for the unstable fixed points situated to the right and

left of the symmetry axis at ¢ " O. modo 'it) within 0.2 per cent; the corre-

sponding fixed-point momentum is found to be somewha.t less accurate, due

to the enhanced comributions of error from the higher-frequency terms, the

error being roughly 3% in this example.

*AEC Research and Development Report. Research supported by the Atomic
Energy Commission, Ccntract No. AEC AT /11-1)-384.

**Department of Physics and Institute for Atomic Research., Iowa State
College. Ames, Iowa.
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A. :NTRODVCTION

In a pr evio'.ls repo::'t 1- solutions to the differential equation

2 B
:¢~ ~ ;a T b cos 2 ¢: U + + (sin 2 pl u

2
" a

were studied by the Moser method;. after use of a suitable transformation

to eliminate the alternat::ng-gradient (A-G) character of the Hnear term.

The limiting-amplitude solution was examined in this way for a particular

(1)

example and the results compared with corresponding computer information.

Recently an interest has been expressed2 in the use of a variational

or harmonic-balance method to estimate the limiting-amplitude solution of

eqn. (1). in a way which would parallel closely the application of this method

in other papers 3 of this series and in earlier reports. 4 In the present re-

port we apply this method to eqn. q) and illustrate the results for the ex-

ample which was previously employed in reference 1.

B. TEE VARlATIONAL METHOD

As in earlier work~· 4 the differential equation is replaced by a varia-

tional statement for purposes of determining the (periodic) unstable equilib-

rium orbit. In the case of eqn. (l), this statement is

[[«UI )2) -a<u2 ) -b <u2 cos2¢) -(BI/3)<u3sin2¢>]::O,

(2)

the prime denoting differentiation with respect to ¢ and the symbol <.. )
denoting that the function embraced is to be averaged over one or more

periods. The coefficient B1 of eqn. (1) may, of course, be made unity by

suitable scaling of t~e dependent variable u,

*References are given in Section D.
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In selecting an adequa.te. tut :-easonabJy simple, trial function we note

first that the dominant term :n a deve:opment of the periodic solution con

trolled by the YIN -71/3 resonance would be expected to be of the form

Al sin 2 ¢/3, the sine functi.on being selected because of the predictable

symmetry of the phase plots {at ¢: a.mod. 'lC) about the vertical axis. Be-

cause of the nature of the coefficient of the ~inear term in eqn. (1), this

dominant term should be supplemented S by terms of argument 4 ¢/3 and

8 ~/3. while the non-linear term suggests 3 supplementary terms of argu

ment 2 ¢ and 10 ¢/3. We select therefore, the five-term trial function

u =Al sin 2 iJ /3 + A2 sin 4 ¢/3 + A 3 sin 2 ¢ + A4 sin 8 ¢/3 + ASsin 1a¢/3.

(3)

Substitution of the trial function (3) into the variational statement (2)

leads to

i ~(lll;[(lI3)l- a] All + '1Il)[(4/3)l. a] Ai + (l/l)[(l)l- alA:
+ (l/2> Fa/3)2 - aJ At + (1i2) [00/3)2 - a]A~

+ (b / 2) A 1A 2 - (b / 2) A 1A 4 - fa /2) AzA 5

+ 0/24) Al- (1/4) Al A 3 + d /8) A 1
z

AS

- (l/8) AlAi - (1/4) A 1A zA 4 - (1/4) A1A 3As

- (1/4) A;A 3 - (1/4) A 2A 3A 4 - (1/4) A zA4A S

- (l/8) Ai - (1/4) A 3Af - (1/4) A 3A; - (1/8) AiAs} ~ 0, (4)

where, for simplicity, we have set B 1 :::' 1.

By making the appropnate differentiations of eqn. (4), one then obtains

the simultaneous non-linear algebraic equations
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which serve to determine the coefficients Al' ..• A5 .

C. NUMERICAL EXAMPLE

In the specific case taken as an example in reference 1, for which

/,

(5)

a = 0.1262875

zltN = 0.2997

b = 1. 15

an approximate numerical solution of eqns. (5) leads to coefficients such

that the trial solution assumes the form:

u = -0.5520 sin 2 ¢/3 + 0.1840 sin 4 ¢/3 + 0.0213 sin 2 ~

- 0.0497 sin 8 ¢/3 + 0.0057 sin 10 ¢/3 . (6)

This result may be compared with the Fourier analysis of the limiting

amplitude solution given by direct.computational integration1, 6 of eqn. (I),

namely

u = -0.55231 sin 2 ¢/3 + 0.18429 sin 4 ~/3 + 0.02167 sin 2 ¢
-0.04919 sin 8 ¢/3 + 0.00575 sin 10 ¢/3 + 0.00283 sin 4 rp

-0.00140 sin 14 ¢/3 + ... . (7)

From comparison of eqns. (6) and (7) it is noted that the coefficients

given in (6) agree through three decimal places with the computational result
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and the coefficient of the dcminant sin .2 ¢/3 term is within one-tenth of

one per cent of tte va.lue found computationally. From eqn. (6) the spatial

fixed-pomt coordinate (fo: ~hp. unstable fixed points situa~ed to the right and

left of the symmetry axis at ¢.: G mod, 7f. j is obtainab~e within O. .2 per

cent [c f' Tab:e II of reference 1.]. The corresponding fixed-point momenta

are found to be somewhat Jess accura.te, due to the enhanced contributions

of error from the higher-frequency terms--mcluding those omitted from

eqn. (6)--the error being of the order of 30/0 in this example.

In summary. it appears that the use of a trial function of the form

given in eqn. (3) permits one to obtain a reasonably accurate representation

of the periodic solut~on to eql'!. (1) with rather better accuracy and some-

what less complexity than by employing the methods outlined in reference 1.

These latter more general methods, however, do of course permit additional

features of solutions to equation \1) to be estimated ana1ytica11y.
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CONCERNING THE V/N~ 1/3 RESONANCE, V

ANALYSIS OF THE EQUATION
2 .

d 2v (2. V) . b 2"). 2 s
-- t. -- v - - (cos 2 s ) V -/\ (cos --) = 0
ds!. N 2. 3

.- ***L. Jackson Laslett' -0 and Seymour J. Wolfson .

August 17, 1959

ABSTRACT

An analytic and computational study has been made of the equation given

in the title, specifically for the fixed points in the case tJ/N =0.3, b =1.15,

and A usually equal to 0.006. The equilibrium orbits and the fixed points are

found to be obtainable quite accurately by a variational method or by use of

harmonic balance if a numerical solution of the simultaneous algebraic equations

for the coefficients of the trial function is performed. A straightforward applica-

tion of the Moser procedure is seen to involve as a first step the elimination of

the stable forced equilibrium motion--a~ is given by the appropriate trial-function

solution--and the new differential equation is then found to involve an s-dependent

(A-G) coefficient for the linear term. The solution is carried through, by con-

tinuation of the Moser method to the same order as in previous reports of this

series, aided where appropriate by numerical work for the particular example

considered. An alternative, and considerably simpler, analytic method similar

to the Moser procedure is also examined and is found to lead to results of reason-

able accuracy without requiring extensive numerical work. This last method also

permits one to estimate without great effort the critical value of )I at which the

stable fixed point and one of the unstable fixed points become coincident.

*Research supported by the Atomic EnergyCommission, Contract No. AT(lI-I)- 384.
*:"~Departmentof "Physics and Institute for Atomic Research, Iowa State University.
***Summer participant from Wayne State University, Detroit, Michigan.
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A MOT IVA TION

computer studies, to be reported in detail e~sewhere; have been in

progress to examine the regions of phase space from which injected particles

may be captured into a stable region .vhen a secularly-changing perturbation

(decreasing field bump) is applied to an FFAG structure characterized, under

certain simplifying assumptions. by a simple non-linear differential equation

whose stability limits are determined by the V/N~ 1/3 resonance o In

parallel with the computer studies an analytic investigation has been made of

unperturbed differential equations, similar to that employed in the computer

work, and the results summarized in a series of MURA reports. 1. 2, 3;~ It is

the purpose of the present report to investigate in a somewhat similar way

the character of solutions--particularly of the limiting-amplitude solutions--to

an equation of this same form but containing a static perturbation (field bump

free of secular change).

B. PROCEDURE

The differential equation which which we shall be concerned in the present

report Nill be taken to be 4

dlv (2 z))2 b . 2 2 s
ds 2 +\~ v - 2: I,COS 2 s) v - »cos -3- ~ 0,

If one visualizes the application of the Moser procedure!) to Eqo (1,

(1)

in the spirit

1,2 3of previous reports in this series one realizes that the fir st step which it

*References are given in Section I at the end of this report,
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would be n;:ttural to undertake would be the removal of the forcing term

2 s "- l'cos -3- , from Eq. (l), This step ,vhich may be regarded as making

a transformation of the dependent variable so as to measure displacements

from the stable (forced) equilibrium orbit, appears to requ~re. then, determina-

tion of this periodic solution (period 31[) by harmonic balance or some similar

method. It may be remarked that the very steps which are then employed to

determine this stable equilibrium orbit are substantially those which also can

serve to give unstable equilibrium orbits and hence, to a degree, may provide

the solution to the questions of major interest with respect to Eq. (1).

The elimination of the forcing term from Eq, (1) results, by this pro-

cedure, in the new differential equation containing a s-dependent (A-G) co-

efficient for the linear term, thus removing any simplification which it might

have been supposed would result from selection of the simple non-AG coefficient

for v in Eq. (1). A continuation of the analysis "Would then require removal of

this A-G feature from the linear term, by a transformation of the dependent and

independent variables through use of the function I (s), in a manner paralleling

that illustrated in a previous report. 3 Following completion of such preliminary

steps it should then be possible to proceed with the Moser method, as it was

applied in reference 2, to obtain results which may be interpreted in terms of

the original variables after application of the appropriate reverse transformations.

It can be remarked, if one may anticipate, that the preliminary steps

mentioned above can typically be performed with acceptable accuracy more

*The writer is indebted to Dr, F T, Cole for discussIons concerning the straight-

forward method of applying the Moser procedure to equations of the form of Eq. (1).
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satisfactorily by numerical solution of the algebraic equations, which serve

to ~ecify the coefficients of the various functions which are required; than

is possible conveniently by purely algebraic means. In view of this situation

it is understandably difficult to expect that one can obtain satisfactory final

results in a simple closed algebraic form.

In what follows we undertake to carry through the analytical procedure

outlined above for a specific example, using numerical solutions of algebraic

equations where desirable but attempting also to note approximate handy

formulas which may serve to indicate roughly the magnitude of the quantities

with which we are concerned. As a second undertaking; we also attempt to

follow, in Section H, a somewhat less logical procedure which; it is hoped,

may have some merit in circumventing the inconveniences mentioned above.

C. THE FORCED MOTION
(Stable Equilibrium Orbit)

The solution of equation (1) Nhich describes the forced motion, or

stable equilibrium orbit, may be sought by harmonic balance or by application

of a variational procedure similar to that employed to find the periodic (un-

stable) solution to the equations of references 1~ seq. We thus replace Eq. (1)

by the variational statement

~ [< (dv!ds)Z> - (2 V/N)Z t... v 2) + (b/3) <v 3 cos 2 s> + 2/\.( v cos 2
3

S >] = 0;
(2)

in which the symbol <>denotes that the average value of the embraced

quantity is to be taken. For the present purpose a trial function of the form

v = A1 cos 2 s /3 + A2 cos 2 s + A3 cos 10 s /3
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is substitut~d into Eq. (2) to obtain

or

(4)

b Z b b b
+-A +-AA+-AA+ AA =

8 1 Z lZ 413'4 Z3 -A (5a)

[
(.Z 7Jt] b 2 3 b Z b b Z

4 - \NJ A Z +"4 Al + -8-' A Z + '4 Al AS + '4 A 3 = 0

[
100 (Z V\Zl b Z b b
-9- - N) AS + '8 Al +"4 Al A Z +"2 A Z A 3 = O.

(5b)

(5c)

Equations (5a-c) admit, of course, the solution Al = A Z = A 3 = 0 when

A = 0, corresponding to the equilibrium orbit v !I 0 which applies in that

case; with 7\ not necessarily zero, the corresponding solution is such that

with

and

N /\
AI..... - -4-/-9---'---'(Z-z.}---=-/-N-)Z~

N bIZ
A Z := - -4 -z} Z Al

4 - (Z /N)

(6a)

(6b)

1

100/9 - (Z t://N)Z
(6c)

Somewhat more satisfactory results than can be obtained conveniently from

Eqs. (5a-c) by algebraic means are obtainable numerically--in the particular

case that

-v1N = 0.3 (7a)

b = 1. 15 (7b)

:It = 0.006 (7c)
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we find values of AI' A2, A3 such that

v = - 0.0831620 cos 2 s/3 - 0.0005469 cos 2 s - 0.0000937 cos 10 s/3, (8a)

while a computer inveStigation6 leads to the result

v =- 0.083160 4 cos 2 s/3 - 0.000546 7 cos 2 s - 0.0000937 cos 10 s/3. (8b)

The corresponding location of the stable fixed point, for s =0 (mod. 31'[),

is at

v = -.0838026 from Eq. (8a)

and at

v = -.083802
3

from direct computer studies.

The results of the numerical solution of Eqs. (5a-c) are thus found to be in

excellent agreement with the computer results, while the stable fixed point

computed from the simple forms (6a-c) would be -.07105 -.00040 -.00007 =

-.07152, or about 85% of the correct value ..

D. LIMITING-AMPLITUDE SOLUTIONS
(Unstable Periodic Orbits)

1.
In addition to the solution of Eqs. (5a-c) discussed in the previous

section, these equations admit a second solution--a solution with which the

unstable fixed point lying on the symmetry axis of the phase plot (for s =0;

mod. 3 'TO is associated. The coefficients given by this second solution

have values given roughly by

Al£8[~-(~tJ
b

+

(in which the first term should represent the value of Al for /\ =0), and
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A Z = - "4 -tJ Al

4 - (2 /N)2

A,.J b 1

3 8 100/9 _ (2 tJ/N)2.

(as in (6b, c)].

MURA-497

(9b)

(9c)

A numerical solution of Eqs. (5a-c), for the parameters taken previously

[Eqs. (7a-c)], leads to the solution (unstable periodic orbit)

v = - 0.4262.94 cos 2 s/3 - 0.014466 cos 2. s - 0.002597 cos 10 s/3, (lOa)

whereas a computer investigation leads to the result

v =- 0.426274 cos 2 s/3 - 0.014468 cos 2 s - 0.00l598 cos 10 s/3

- 0.000098 cos 14 s/3 - 0.000010 cos 18 s/3 - ....

The corresponding fixed-point location (for s ::: 0, mod. 3 n) is

(lOb)

and

v ::: - 0.443357

v ::: - 0.443449

from Eq. (lOa)

from direct computer studies.

With a stronger perturbation (larger'). ) this unstable fixed point and the

stable fixed point will approach one another.
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P.

U.S.F. P,

~ === 0 mod. 31t

).. :; 0.006

Stable
F.P

U .. S.F. P.

To determine in this same way the locations of the other unstable

fixed points--those situated above and below the symmetry axis of the s -~ 0,

mod.31T. phase plot-- a trial function more general than that shown in
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..,
Eq (3) must be 2mployed For ,::i3 purpose \. e may emp20y the periodic

trb.l function

V ::- A 1 cos 2 s /3 .,.. A 2 cos 2 5 .,.. A 3 cos lOs /3

:. (E1 sii1 2 s/3 + B.2, sL1 .:; s + 3 3 sin'10 s/3)

vvhich, upon introduction into {he variational statement (2) leads to

(11 )

C' [1 (4 (2 ~)2J 2. 2 1[ (2 V)2.J~ 2 2) 1r100 (2 Zi?:](. 2 2)a "2"9 - Nj C'i + B 1 ) + 2" 4 - \N/ ,A 2 + B2 + 2" [-9-- N) A 3 + B3

b ~ 0 b
--A. B, + -A. B

1
B

3
+ - A, B 2 B:~8 .L .L 4 .L 4°·.L_

or

b :; b
- ~ B-' .\ B B- " rt 3 . .,.. -:i -~.) • _/o 1 ~ <.l .L o (12)

-A (l3a}

[4 -trr!] b 2 b 3 b :- b 2
A 2 +-A! +-A. 1 A" + -_. A; +"4 A 34 4 . .) 8

+~
2

- b B +.£p2.+ b 2- 0B
1 B 3 - 3~

4 "4 1 8 2. 4 J

';'It may be noted that in contrast to cases discussed in previous reports

(13b)

(e. g., ref 1), the basic perioC: of the coefficients in the differentIal equation

is 3 IT when the pertur:)ation is present and the locations of the various fixed

points arc no 10Llger obtainable I'ro~l a s:'a:;le periodic solution by substitution,

in turn of val:.:.es of the indepei10cnt yaric:.ole c.iffc:ring b:v 7L from one another
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(l3e)

(130

Possible solutions of Eqs. (13a-f) are of course given by B 1 ::: B 2 =B
3

=a

with A1, A2; A3 then being solutions of Eqs. (5a-c); the new results which

are obtained by admitting the case in which not all the coefficients B i vanish

will have, very roughly,

,..

~ 4 f3l~
b

1

13 [~ - (2:/]

(l4a)

(l4b)

,
(l4b )

A numerical solution of Eqs. (l3a-f), again for the parameters specified by

Eqs. (7a-c), suggests a solution

V :: 0.244637 cos 2 s/3 - O. 022431 cos 2 s + O. 002307 cos 10 s/3

+ (0.470329 sin 2 s/3 - 0.000021 sin 2 s - O. 003362 sin 10 s/3), (l5a)

while a computer investigation gives the corresponding result

1-520



MCRA-497

v =0.244624 cos 2 s/3 - O. 022434 cos 2 s + O. 002309 cos 10 s/3

+ 0.000087 cos 14 s/3 - 0.000020 cos 6 s +

+ (0.0470300 sin 2 s/3 - 0.000021 sin 2 s - O. 003365 sin 10 s/3

+ O. 000168 sin 14 s/3 - 0.000002 sin 6 s + ... )

The corresponding fixed-point coordinates (for s =0, mod. 3 7T) are

(15b)

and

v = 0.224513

p = + O. 3023

v = 0.224566

p = + O. 3030

}

}

from Eq. (15a)

from direct computer studies.

The methods described in this section evidently are able to give a good

representation of the unstable periodic solutions for the differential equation

(1). For the present, however, we shall regard this section as a diversion

and proceed with the results of Section C to effect a removal of the forcing

term from (1) and 50 per mit a continuation of the analysis in the manner out-

lined in Section B.

E. REMOVAL OF FORCING TERM AND DETERMINATION OF # (s)

1.

If we denote by v 5 the stable periodic orbit resulting from the forcing

term - /\ cos ¥ in Eq. (1), with v s taken as well given by expressions

presented in Section C (e.,;..E., Eq. (3), w-ith coefficients as illustrated in

Eqs. (8a. b)], we may w-rite

v = v + q
5
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and transform Eq. (l) to the form

_
d

2
q + ~"'.(2,))2 _ b ] b 2(cos 2 s) V s q - -2 (cos 2 s) q .. 0

ds2 N

or I making use of (3),

d2q [(2-zJ) bA2 Al + A3 ~ Al 8 s A 2 A 3 16 s]- + -- - -_. - b cos - b -2 cos -3-- b Teas 4 s - b-2 cos -3- q
ds2 N 2 2 3

- £ (cos 2 s) q2 ::: 0 (17b)
2

in w-hich the terms of primary importance in the coefficient of q would normally be

(
2 V)2 _b A 2
N - I

l.

b Al
--- cos~2 3 ;

b Al 8 s
and - -- cos2 3

With the coefficients of v found in Section C by numerical methods
s

[cf. Eq. (8a) ] I for the parameters specified by Eqs. (7a-c), the differential

equation (17b) for q becomes

d 2q [ 4 s • 8 s- + 0.3603 145 + 0.0478 720 cos -3- + 0.0478 182 cos-
ds 2 3

+ 0.0003 145 cos 4 s + 0.0000 539 cos 1~ s ]

- 0.575 (cos 2 s) q2 ::: O.

2.

q

(18)

It is of some interest to estimate the small-amplitude oscillation

frequency ~ for Eq. (18), and it is necessary for what follows to describe

the variation of the function I which qp.aracterizes the solutions of the

linearized equation. To this end it is convenient to introduce a change of

scale for the independent variable,

2.
'C ;: '3 s

and consider the linearized equation
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_d 2q + (a + b cos 2'0 + c cos 4'C ) q _. 0
d~2

-.vith, in the case corresponding to Eq. (18),

a = 0.810 708

b = 0.107 712

c = 0.107591

lVICRA- 497

(20 )

(21a)

(21b)

(2Ic)

(the coefficients of the higher-order terms, cos 6 7: and cos 8 c:: , being

ignored).

(i) It is tempting to attempt to estimate the oscillation frequency for

Eq. (20) by means of the "smooth approximation"--since the value of 2{

for Eq.

for Eq

(18) is not very far from ~ and hence the corresponding value. V:
3,

(20) not far from unity (0- near 7C>. however, this method would

be inappropriate A possible, relatively quick, estimate may be obtained

by reference to available ILLIAC tables 7 from which one finds

cos v 'rr~ coshIT - O. 36 b
2

- O. 022 c 2 (22)

for band c small, h in the neighborhood of 0.9, and with t/'denoting

i ~ in the present application. With the particular coefficients of interest

here [Eqs. (21a-c)], the expression (22) gives z)' = 0.9051; or ~ ::-: 0.6034,

in complete agreement with the value found by direct computation4 6a for

7\ = 0.006. Alternatively. a somewhat less arbitrary estimate may be made

in connection with an examination of the range of variation of ,11 , to be dis

cussed below.

(ii) The differential equation (20) is of the fb rm

d 2

~ + ( a + b cos NT: + c cos 2 NT:) q = 0,
d"l;
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with N =Z. As has been noted previously, 8 a rather accurate solution may

be found by use of the trial function

q ::: go cos -zJ1:+ f1 cos (N - -z)')1; + g1 cos (N + tJ/)7:

+ f2 cos (2 N - Vi) 'C + g2 cos (2 N + z)/),(; (23)

and use of harmonic balance.;~ There results in this way the algebraic

equations

~,~ b c
a - + "2 (f1 + g 1) + "2 (f2 + g 2) = 0

[a - (N - z}')Z] f 1 + ~ ( 1 + f2 ) c 0+ "2 g1 =
- V' 2] b cLa - (N + ) g1 + - (1 + g2) + 1" f1 = 0

Z

[ a - (2 N - z),)2J f b c 02+2 f1 +2 -

[ a - (2 N + z}')~ b
+~ o .g2 + 2 g1 .-

2

(24a)

(Z4b)

(24c)

(24d)

(24e)

- J' .. aGuided by prior knowledge of at least an approximate value of -v

numerical solution of Eqs. (Z4a- e) is readily obta.ined. leading in the present

case [coefficients given by Eqs. (21a-c)] to

f
1 = 0,1408 59 (25a)

g1 ..• 0.0080 69 (25b)

f
2 = 0.007001 (25c)

and

.
gz = 0.0023 33

z)',; 0.9051 (t4... 0.6034).

(25d)

(25e)

The extreme values of VJ1 ('Z:'L and hence of the quantity ~,8(S)

for Eq. (18), are given by8

1 ~ (f1 + g1) + (f2 + g2) (26)

I +[(~ - 9II -(~+0gl] -[(~- 012{:'+ I) g21 '
¥We here omit, for simplicity, the phase shift (denoted by €., in ref. 8) which

permits one to form in this way a general solution.
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the upper and lower signs referring respectively to s 0 (T 0) and

s = 3 n /4 ("l:' :-: 'It /2)- -the range of values for ~I suggested by ~.

ical values of f1 etc given in Eqs. (25a-e) is, then

0.759.(. -zJ,...ft ~ 1 372 . (27a)

These limits, (27a), are within a fe\v tenths of a percent of the computational

values.

O. 7578~ -z,{/~ 1. 3755 . (27b)

It appears to be quite tedious to derive Vf1 (1:) as a function of t: from

the solution q ('(;") as expressed by Eq. (23)--on the supposition that the

variation is a pure cosine function: however, one might \'/rite roughly

~I~ 1. 066 + O. 306 cos 4 s /3. (28a)

b
A corresponding very approximate formula, based on taking f1~ 8 (1 - z"I~)

and ignoring g1' . ,might be written

zi.../~ 1 + 4 (l ~"'iJ') cos 4 s/3 or 1 + 2 (l
b

_ a) cos 4 s/3

dhich, in the present example ,,';oulci lea·::; to

(28b)

~;5'~ 1 + 0 2H4 cos 4 sU (28b')

A more satisfactory evaluation of ~.:"'2 funct'onaJ .;", :e;1d2ilC(' of

may be sought by reference to the Jifferentia:l e(~'..latioi1 , 1:jch b satisli.<

2 2
.L d 4 _ 1. (~) + (a + b cos 2 7:: + .c cos 41:: ) A 2 1. (29)

2 d'02 4 dl.- I

A functional dependence

~ -= A + B cos 21:: + C cos 41:

'~Cf. Eq. (8) of reference 3
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may be inserted into Eq (29) and the coefficients adjusted by harmonic

balance to obtain the set of simultaneous equations

2 6-la-c
a A - -----

4

2 a) b
B - (6 - 2) c- -+- b A B + l B C + c A C = 1 (31a)

- 2 (l - a - ~) A B - (7 - a - c) B C + b (A 2 + ~ B 2 + 1. C 2 + A C) ::: 0 (31b)
242

_2(4_a)AC_l-a-cB2+b(AB+BC)+cA2+~cC2::O. (31c)
2 . 4

For the parameters a, b, c as given by Eqs. (21a-c), a numerical solution

of Eqs. (31a-c) leads to

A - 1. 1536

B - 0.3365

.
C :: 0.0247 ;

substitution of these values into the expression (30) and multiplication by

1/'(= O. 9051)~' leads to the result

W= 1.044 + 0.305cos4s/3 + 0.022cos8s/3

The results of a computer analysis of this case leads to

~/= 1.04501 + 0.30735cos4s/3 + 0.02156cos8s/3

+ 0.001 51 cos 4 s + 0.000 06 6 cos 16 s/3 ;

with which the numerical result (33a) is in reasonable agreement.

F. ELIMINATION OF THE A-G COEFFICIENT FROM THE

LINEAR TERM AND CONTINUATION OF THE MOSER METHOD

1.

(32a)

(32b)

(32c)

(33a)

(33b)

For continuation of the analysis of Eq. (18), it is convenient to intro-

duce the independent variable

:'~By use of the values (32a-c) in connection with Eq. (30) a value oftl"'could
be estimated from this solution for ;1 by forming t.I~ c= .(.1 1;5'> .
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t = ?:12 = s/3 (34)

to obtain

d 2q
+ 4 (a + b cos 4 t + c cos 8 t + ... ) q - 5. 175 (cos 6 t) q2 = O. (35)

dt l

As in an example presented previously (Sect. Bof ref. 3], the transformation9

Q = ql1-v'ji (36a)

T -_ Jt dt (36b)
o 11,1

enables one to eliminate the A-G aspect of the coefficient of the linear term

7,/' == 2 (0.9051) = 1.8102. The variables t and T become

(37)-Z)"Z Q-5.175(7)~)5/2(cos6t)Q2 = 0,+

in Eq. (34). to obtain:

d 2Q

dT
2

V" = 2in which

equal at t =0, q-[/4, 'Tr12, 3 7r 14, 7£, etc. The quantity (zJ~ )5/ 2 cos 6 t,

if expressed6b , 10 in terms of T (Fig. 1), permits Eq. (37) to be written

d
2

Q [-- + 3.2768 Q - 1.03504 cos 2 T + 5.41441 cos 6 T + 3.05511 cos 10 T
dT

2

+ 1. 26600 cos 14 T + 0.46114 cos 18 T + 0,15573 cos 22 T

+ 0.04940 cos 26 T + O. 0144i cos 30 T + . , J 0 2 = 0 (38)

It may be helpful to note that, with 1/Nnear 2, the oscillations will

have a phase change of about 2 rr in one period of the term 1.03504 cos 2 T

(as for an integral resonance) and a phase change near 2 77:13 in one period

of the (larger) term 5.41441 cos 6 T (third-integral resonance). Accordingly,

as we shall indicate in the work to follow, in undertaking to remove by the

Moser method 5 the T-dependence from the Hamiltonian associated with Eq, (38)

special attention must be given both to terms stemming from the cos 2 T term

above and to those stemming from cos 6 T, in order to avoid potentially-

resonant denominators.

1-527



I\ICRA-497

Solutions for the unstable equilibrium orbits associated with Eq. (38)

could; of course; be sought by harmonic balance, although this procedure

would be of value only as a check of the preceding Nork since the original

equation [Eq, (1)] was already treated satisfactorily by this method in earlier

sections (Sects, C and D). Thus one solution of Eq, (38) may be sought in

the form

Q :: C 1 cos.2 T + C2, cos 6 T + C 3 cos 10 T ;

in which; approximately,

Al =- 0,29519, A 2 = - 0.01036; and A3 = - 0.00303;

. accordingly the corresponding fixed point for Q (at T =0) is at Q =- O. 30858,

q = i2Jl'Q ::: 1. 17282-(- 0,30858) =- 0,36191, and v :: v s + q =- 0.08380 - 0.36191

:: - O. 44571: which is in error by about one- half of one percent of the computer

fixed point, As a further check, a direct computational determination of the

unstable fixed points for Eq. (38) was made; retaining just the first four cosine

terms in the coefficient of Q2; the values of (G. P) found in this ..;..ray ..;..rere

(- 0.30729 , 0) and (0. 263, ~ 1. 064), which correspond to values of (v p) ..;..rhich

are (- 0: 4442,0" 0) and (0. 22465 ; ~ 0,302405 ) and thus are in good agreement

with the results (- 0.44345, 0) and (0. 2246; ~ O. 3030) reported previously

(Sect. D) from direct computer studies of Eq. (1).

In the subsection to follow we continue with the Moser procedure, which

is of greater versatility than the harmonic-balance methods of Sects. C and D,

applying the Moser method to Eq. (38) and then deducing in particular the fixed

points in this way.
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The Hamiltonian associated with Eq. (38) is

H = -!. p2 + ~ V~Q2 - ~ (b
1

cos 2 T + b., cos 6 T +
2 2 3 '-

MFRA-497

+ b. cos 2 (2 j - 1) T + ... )Q3
J (39)

- )"
where P denotes dQ/dT, // = 1. 8102, b 1 = 1. 03504, b 2 =5.41441, etc.

As in previous reports, 1- 3 we now employ the generating function

Go (Q, ~) = (z}"/ 2) Q2 ctn )';

to effect the transformation

p = 3 G~:/dQ = -zJIQ ctn ~

J o = oGo/tJYo = (-z}/12) Q2 csc 2 ~

thus

and the ne w Hamiltonian is

(40)

(41a)

(41b)

(42a)

(42b)

(42c)

(42d)

K o = H + ;; Go /;) T

= H

= V"Ja - i- (?f 2
J~/2 sin3 f. jt;1 b j cas 2 (2 j - 1) T

=_JII _...!.. ( 2 ~3/2 3/2~ t3Sin[~t 2(2j - l)T] t 3sin ['fo- 2(2j - l)T) ~
7/ J o 24 .. )11 J o L bJ

v j=l' -sin[3"t2(2j-l)T]-sin[3Yc,-2(2j-l)T]
•

(43)
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As a second generating function we next employ

in which the Kronecker delta,

3 ~t-2.(tJ~l)r] 13(1-[/) ~['t-Z(2JJ-QTJ
z)'+Z (2J -I) J -z)"- 7. (~j -I)

_~[3J;r2(~-M-f-S/) ~{3t,-Z(Zj-/rrl
3 z)'~2 (~j -I) ~ 3 z)"-Z(ZJ -I)

S~ or S~ J serves to eliminate terms
J 'J

which, with j =1 or j =2, would lead to terms with potentially-resonant

denominators. The transformation equations which result from the generat-

ing function G 1 (", J 1) are

J 0 = aG 1 /a y;,

1'; :: ;;6,I;;Ji

=~_*~~1~JJf;j

~['-;-2.(ZJ-i)T]+0-;/) .Ahv[y;, -2.(Zj-I)T]
V"-t-Z(?.j-J) :.J t/"- Z (Zj -I)

- .d7l4?/'a +Z(2.j-l)T]-(I- S~) ~[3~ - 2,{Zj -1)7J
3 V + 2.(2,j -I) "J 3v"'-Z(Zj-l)

3 ~[fa+Z(7..j -1)7'J +3(1-8!) a,u['Ia- Z,(2j -or]
-z)"-f"Z(~J-/) 'J -z)"-Z(2j-l) (4-5~)

_ w.J[3'fo 1-2.(Zj-I)T] -(l-S.) ~f}Yc, -l(zJ -i)r]
3'1J".,. ;z{~j-I) J av"_ Z(:lj-P ~

with the new Hamiltonian
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3 ~.rfo +Z(~.j-I)7') -3U-["/) ~(~-l{zJ-;)ti
tJ rZ (;l-J -I). .J -Vn-2{~J-1)

4hvit;, -;.(1./ -I)T]
v·,-- Z(z~" -I)

.3.~ L~Y.'l-C<'J· -I) T:_~ 3 di,v ~¥: -z (Zj -~r]I
- M7'f.>L3t; r'<'(2.J-!) ,'1 - ~'&ic -Z(2J - PjT] J,
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To continue the work beyond this point, K 1: as expressed by Eq. (46)

should be written in terms of 'f, and a final transformation then made 1- 3

to new variables; ~ ::: r: -2 T and J 2 :': J 1 with the aim of obtaining a

new Hamiltonian which is substantially independent of T It would be the

2
intention to keep in the J 2 term; which is in a sense regaFded as a correc-

tion term only terms v,'hich are constant or possibly functions of ~ (i. e. ,

circular functions with arguments which are multiples of ~ =Y; - 2 T and

hence are T-independent). Since by Eq. (45bL the difference between ~

and ~ is of order J 11/2, ~ may simply be replaced by f, in the J 1
2

terms

of Eq. (46). The distinction between -r; and I';; in the term involving

J 1
3

/
2

[ b
2

sin 3 (~ - 2 T) - 3 b1 sin (~ - 2 T)J does not appear to introduce

into the J 12 term any terms of the form which we elect to retain.. Consider-

able complexity arises, however; in evaluating in this same sense the pro-

duct of the two sums which appear in the J 12 term of Eq. (46), since numerous

cross products occur which involve circular functions with arguments that

are multiples of ~ ::: Y, - 2 T.

2
The J 1 term of Eq. (46) includes, then firstly the constant terms

«/ b 2
___2---" J 2 where ~I denotes .

_ ,UJ 1 '
192 V

1 + (3 b
1

/b2)2

Z)"__ +1
2

= + 1.75516 (in our example).
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There are, in addition, cross terms ',vhich involve circular functions of

arguments that are multiples of ~ :: 1;

depending on b
2

in combination with b
1

with

- 2 T, of which we write those
2

b 2 2.,J
or b 3 as . J 1 F(/~),

192 1/#3

F(~) = - 6[:~ [6 _\)" + 10 _337/"- 6/.)" + 10 ~zJ" 6+33zJ"

- :~ [l .3V" - 6 _if- • l + : zJN' 6 + ~"J cos l Yz

• :~ [ 3 1.1: _l - 6 _\r]cos 4 J;.]

1 leos 2J
10 tV1

(48a)

=- 1. 10355 cos 2 ~ - 0.72926 cos 4~

We accordingly take

( in our example). (48b)

+
bi [~I + F (Y; - 2 T)]

3
192 V"

(49)

For the final transformation we now, of course, employ the simple

generating function

so that

J 1 = ~G2/J'l; - J 2

~:;: dGz' d J 2 -= y; - 2 T

and
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K 2 = K 1 + JG2/:J T

= K 1 - 2 J 1

1 ( 2 _)3/2 3/2
= (V" - 2) J 2 + n V'') J 2 (b 2 sin 3 ~ - 3 b 1 sin ~) (52a)

+ b 2
2 rei" + F ( ~ ) J J 2

192. v o3 2

Since K2; as expressed by Eq. (52a), is so written as to be T-independent,

we take K2 to be a constant of the motion. In our present example this

invariant is

K2 = - 0.1898 J 2 + 0.048389 (5.41441 sin 3 ~ - 3.10512 sin >t.) J;/2

+ [0.045179 - 0.028406 cos 2~ - 0,018772 cos 4 y;,J J: (52b)

G. THE FIXED POINTS
(In Particular For T = OJ

1.

The fixed points associated with the Hamiltonian K2 of Eq. (52a) are

given by points which simultaneously satisfy

and (53a; b)

so that K2 is stationary. If it were not for the presence of the function

F( ~), the first condition would be met when

cos ~ = 0 or when (54a, b)

The two roots in addition to the root y;, = 2700 appear to be shifted by about

5/3 degree by inclusion of the function F ( ~) in the calculation, and the

value of J; /2 which corresponds to these latter roots increased by about

3 percent. Estimates of these solutions to Eqs. (53a, b) are given in Table 1, ':'

:;'The roots chosen here are selected so that; with -z)'~ 2, J i /2 will be positive.

At T =0 the values of y; will be identical with ~ [Eq. (51b) J.
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together with the associated values of KZ' ,.hich are now necessarily not

all the same.

T.-\BLE I

Values of '4, J 2 for .vhich the Hamiltonian K
2

can be Stationary
(b 1 /b

2
1 03504/5 41441)

Root "(z 3~
J liZ

J2 K2Z

1 - 90 0 - 270 0 0.291 84 0.0851 68 -0. 0055 21

2, 3 l8~ 41 85~ 23
0.579 58 -0. 0226 50

151 0 59 454
0

77 a 335 915

I

It will be recalled that J 1 ~ J 2 and.. for T - O. )j .; y~ . In the

following subsection we make the inverse transformations necessary to

express these results in terms of the original variables, specifically for

T=O(s-=O).

2

For the assumed value of T namely T .; a in the present case the

values of r;, (·c r; ) and J 2 (,. J 1) may be transformed to corresponding

values of r.;, J by means of Eqs. (45a, b). This transformation is least
o

laborious in the case designated as "Root 1" in Table I, since, for that case.

~ = ¥; (:: 270 0
). Once the desired values of 'Yc;, J 0 are obtained, Q and

P (.;; dQ/dT) follow immediately from Eqs (42c, d) Since, at T :;; 0,

VI ;.;. 1. 3755 and d( -z)~)/dt ~ 0, one next may evaluate

q - iz!~' Q :.: 1.17282 Q
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Finally of course
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O/Yij8') dQ/dT .:: PI-Yilj!' =: p/1 17282 (55b)

and

v '-' v s + q .. - 0 08380
2

+ q [from Eq (16)J 56a)

P
-:= dv _1 dq (56b)

ds 3 dt

since t :: s/3 [Eq. (34)] and dVs/ds :: 0 at s :0 O. In this way we estimate

the values listed in Table II.

TABLE II

Values Leading to Fixed- Point Coordinates
(T ~, O. s::. 0)

1R00t X;
1/2

Q P dq/dt lP=dv/dsJ o
q v

1 I-~Uo 0.29265 -0.30761 0 -0.36077 0 -0 4445' 0

2, 3 25?1l
154?89 o 5665 0,2527 +0.9761 0,2964 +0.8323 0,2126 +0.277£1- - -

The true values for the coordinates v, p of the unstable fixed points,

as given by the computer, are (Sect D)

v -- - 0.44345,

v - 0.2245,

p :. 0,

p - + O. 3030 ;

it is seen, accordingly, that the present "analytic" method gives (as Root 1)

the location of the unstable fixed point which lies on the v-axis with an accuracy

considerably better than 1 %; but that the values of v and p for the other un

1
stable fixed points are reElpectively smaller than the correct values by 5 - and

2

'~Cf. Eqs (1 7a, b) of ref 3
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8 i Ufo. These analytic results were not materially affected by a refinement

of the function F (~ ) [Eq, (48b)], which enters in Eqs. (5la, b), through

inclusion of terms involving b 3b 4 in the coefficient of cos l ~ and terms

involving b
i

b 3 and b l b4 in the coefficient of cos 4 ~ .

H. ALTERNATIVE, SIMPLIFIED, ANALYTIC METHOD

The analytic method of the previous sections, in which it was attempted

to follow the Moser procedure in an orderly fashion, clearly involved consider-

able complexity in the details of the calculations. It was necessary, firstly,

to undertake some numerical work in order to estimate adequately the stable

solution for the forced motion. Subsequently, once the forcing term was re-

moved from the equation of motion, additional labor was required because the

new differential equation then contained an A-G coefficient for the linear term,

Because of these complications, it would seem difficult to arrive at useful

formuJ-as by following the methodology on which our numerical work was based

and, accordingly, it is of interest to explore a somewhat less straightforward,

but simplified, analytical procedure.

In this second method the effect of the forcing term will only be eliminated

immediately by subtraction of that part which would result from consideration

3/2
of the linear terms of Eq. (l). In the subsequent wor,k, terms of order ?\ J 1

and 7\l J 1 in the Hamiltonian will be neglected, in comparison to the J 1
3

/
2

l
term and the constant part of J 1 term, since 7' may in a sense be regarded

as a perturbation. Information concerning the stable equilibrium orbit, as well

as pertaining to the unstable equilibrium orbits and other features of the motion,

should then result from the analysis,
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1.

We commence, therefore, with the differential equation (l), for which

the Hamiltonian has the form

h =
_
1 p2. + _1 (2V)2. v2. _ 3.,. 2. s(b/6) (cos 2. s) v - /\. (cos -3-) v.
2. 2. N

(57)

For the initial transformation, to quantities akin to angle-action variables,

2. J2.cos T ctn Yc;

we employ the generating function

vf ?\
F 0 (v, Yo )= r-![v + ~ -e~f 2.?\ 2+ - 2 (sin _s) v + f (s) ,

3{ _(2~) 3 (58)

where f (s) would be selected to obviate the need to include in the new

Hamiltonian terms which only involve the independent variable and hence

play no significant role. The resultant transformation is

p =
. 2. s

Sln--
3

(59a)

2 s.1 2

cos -3-J (59b)

so that
2 7) 2. s

p-~

~ _(~)2
sinT

ctn ~ = N (60a)217 7\. 2s
v +

_(2~)2.
cos-

4 3

9

2. [.u. .J1.
sin 3] + N v +
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( ~) 1/2.. Vv=ll J o smdO
2. s

cos -3-

:\TCRA- 497

(60c)

(
v· lI 2. 1/2. V 2.

P = 2. -.) J coslD 4o-NO·3

~ _(2%!
" 2. s

Sin--
3

(60d)

and the new Hamiltonian is found to be (after some intermediate algebraic

work)

Ho = h + d F 0/ d s

3 /2 .[ s in(3 ~ + 2. s) + sin (3 ~ - 2. s) J
V bt·N~ 3/2.= 2. ._J + - -- J V V
N 0 48 1J 0 - 3 sin ( '0 + 2 s)- 3 sin (#0 - 2. s)

+~ N 7) J

16 17 ~ _(.2 vt 0

9 \ N-;

8 s 4 s
2. cos -3- + 2. cos -3-

- cos (2. rc; +~) - cos (2 >;; -~)
3 3

y" 4s (2 ~ II- cos (2. 0 + -) - cos
3 3

- 2 sin (~ + 2. s) - 2. sin (~ - 2. s)

" .y lOs, "(v lOs
- sm ('0 + -3-J - sm '0 - -3-)

_ Si"n (k . 2 s . "" V 2 s )
+ \ - Sin ( '''0 - ---3-' 3

(61 )

[The nature of the transformation and its effectiveness in removing completely

the coupling term from the linearized differential equation (1) may be evident

from Eqs. (60a) and (61), The general character of the Hamiltonian Ho of

(61) is seen to correspond to that given for Ko by Eq. (50) of ref. 1(p. 2.y,

noting that, in ref. 1, b = 1 and that for our present - cos 2. s the function

sin 2. t is employed in the v 2 term of the differential equation.]
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Paralleling previous work, 1 we now make the next transformation by

use of the generating function

cos (3 ~ + 2 s)

1 + 3 1II1N

cos ();; + 2 s) cos ( r; - 2 s
3 w + 3 '

1 + iI IN --:-l---~/;-N=-T-j

(62)

so that

+
sin (~ + 2 s)

1 + 1/IN
sin ( /'; - 2 s)

1 - DIN (63a)

cos(3~+2.S)

1 + 3 YiN

cos (~ + 2. s) cos ( 'l;;" - 2. s)
- 3 + 3 ----;-:----1

1 + -V/N 1 - VIN
,

and
(63b)

(64)

I:, in ( Y; - 1. s)
3 -_---r:---

1 - t/IN

_ b fJi~/2 311.
-Ho + 48W) J 1

sin (3);, + 2. s)

1 + 3 VIN
sin ( ~ + 2 s)

+ 3 1/1 +1 + N

IU V b ( Nj
3

/
2

3;'2 .
= 2. N J 1 + 48 17) J 1 sm (3}j - 2 s)

b2 (N)3 J 2r6 VIN
+ 2048 11 1 L1 _ 7J2 /N 2

b N A v 4
- - -=-r 2 J 1 cos (2 'I' __6)

16 V 4 _ Ci,;/J) 3

_ b (N 'f (2 711. 1 I 2 y; 2 s

Tb V) [i _(~jr J 1 sin ( I - -3-)
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in which the last result follows after some algebraic

3/2
a result of neglecting terms of the order. )\ J 1

simplification and as

)

7\ - J 1 and terms

which do not involve circular functions which are multiples of ( ); - 2 s/.3)--

.,
[.:::.i Eq. (54) of ref. 1 (p. 22)j

For the final transformation we employ as in previous ,vorkthe

generating function

so that

v ('/_~).F 2 ( 'I' J 2) - J 2 ' 11/ 3 ' (65)

and

JF2/~r; : J 2

'JF 2 I J J 2 .;. 1; 2 s

3

(66a)

(66b)

2
HI - "3 J 2

(
VI \ b(N)3';2 312

- 2 -;-3)J2 + 481/ J2 sin 31;.

[~ Eq (57) of ref. 1 (p Z.3») where

J 2 cos 2 ~

1/2 \/
J 2 sin tJ'k (67)

6 VIN
c~ ~

1 - -z/Z
/N

2

rcf Eq. (25) of ref. 1 (pp. 13.
1._

1
I

1 + 3 v IN

23») The Hamiltonian HZ' in the form

wTitten, is independent of s and will be taken as a constant of the motion
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1/2 V
J 2 cos 42J =0
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2.

To obtain the fixed points, in particular, we may take the Hamiltonian

HZ to be stationary, as given by setting the partial derivatives dH2/)~

and ~ H2 / d J Z each equal to zero; specifically,

3/ Z 3/2 .1m.{/Z 2}2.

1~ t~) J Z cos 312. +~W~-t-~ JZ sin Z~-~~ ~-t~r

and

Two roots of interest for Eq. (69a, b), corresponding to the stable and

unstable fixed points which lie on the v-axis of the phase plot for s =0 (mod. 31T),

are obtained by taking ~ =- 90 0 and J 2 as satisfying

2!%. -;,)+ ~(N_~3/2 Jl/2 +b2«. (-N_f
CJ.'l ,) 32 17) 2 1024 7J) J 2

+~ N
16 17

-1/ Z
J Z =0 , (70)

in which the term of order J 2 is comparatively small--for small 7\ one root,

in fact, may be estimated roughly by consideration of just the constant term

and that involving J; 1/2, while the other is given roughly by use of just the

constant term and that which involves J~ /
2

Numerically, for

v1N =0.3, b = 1.15,

1-542
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Eq. (70) becomes

1/2 -1/2
0.06944J2 + 0.21871 J 2 - 0.04964 t 0.00033124J2 :: 0, (70')

with roots for Jl/
2

given by 0.006881 5 and 0.2.061 5 , The remaining roots

of interest similarly involve simultaneous solution of Eqs. (69a, b) for values

of 0;, near 300 or the supplementary angle 1500 • To obtain the corresponding

v, p coordinates of the fixed points, at s =0 (mod. 3 rr:), one must next trans-

form ~ (= 't for s = 0) and J 2 (= J 1) to >;; , J 0 and thence to v, p by

use of Eqs. (63a, b) and (60c, d).

It may be noted in passing that the two roots of Eq. (70) become coincident

for a critical value of /\ given approximately by

1 ~ 64 (J:. _7.1)2(1. +~) 1/
b 3 N 3 NJ N

;:: 0.01175,

for V/N =O. 3 and b =1. 15; a more accurate numerical estimate, again

based on Eq. (70), gives

1 =0.01168,

with

J 1/ 2 =0 0740
2 . 4 '

from which one finds, by Eq. (63a),

1/2
J = 0.07412o

(71 )

and, by Eqs. (60e, d),

V
c

= -cnl!2 0.01168
(0.07412) - 4 36

"9 100

= - 0.13532 - 0.13832

=- 0.2736 4 '

Pc =0 •
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The correct values for this confluent situation, as obtained by direct digital

. 4computatlOn, are

~ =0.01136,

V c = - 0.2650 ,

Pc =0 ;

so that our estimates for 1 and V c are evidently some 3% larger, in

relative magnitude, than the correct values. 11

Returning to our example with 71 = 0.006, the fixed-point coordinates

found by the present method of analysis are as summarized in Table III.

TABLE III

Estimated Fixed- Point Coordinates at s = 0, mod. 37t

-rAN = 0.3 b = 1.15 71= 0.006

Calculated Values Computer Relative
'!Ro",' ,-It", ~rr,.,r

Root
~ "'J 2 J v P v p ev €F0

Stable -900 0.006881c; -900 0.0068822. -0.08361 t 0 -0.08380~ 0 -0.22% -.
;;

1 -90 0 0.2061 5 -900 0.20676
-0.4485

5
0 0.44345 0 +1. 15% -.

0 31?24
!!.0.2842, 3

34.20
E0.31269 148~76 : O. 303 3

0.2161 0.22.46 +O. 3030 - 4 0/0 -6

145~79~
-

I
;

The results obtained by the present simplified method not only are far more

easily obtainable but appear to be of as good accuracy as those previously

summarized in Table II (Sect. G).
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4/9 - (2 -zJ /N)2
(72a)

v2 (A) '¥ v2 ( 7\ :': 0) + 4/9 _ -; -v/rij
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A parabolic fit, tangent to the lines (Ila; b) at /\:'; 0, may be obtained by

writing

7\'¥ y,(v-vz(/' ::0>1. [4/9-(2 V/N)2] ,
V z ( 7't =0)

for which the maximum value of 71 ;

(73)

(74b)

~ = ~ .[ 4/9 - (2 zJ IN)2] . [- v2. ( 7l =0) J ' (74a)

is attained at

1
Y = - v( /) =0).

c 2 2

With 2. -zJ/N = 0.6 and - v2 ( ?l = 0) = 0.5238 [from computational results

cited in ref. 1, after division by b:: 1.15J, Eqs. (74a,b) suggest

~ = 0.01106

Yc = - 0.2619 ,

which may be compared Nith the computational results cited in the text, namely

~ = 0.01136

v = - 0.2650
c
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pp 1-8, 55 only

*ON THE PASSAGE OF A BEAM THROUGH A CAVITY,

INCLUDING ANALYTIC NOTES OF A.M. SESSLER

L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

April 20, 1970

I. Introduction and General Principles

A particle beam may be sent through an R.F. cavity with the object of

attaining a time-varying deflection or, alternatively, of obtaining an

energy spread. It can be shown that these two effects are related, and one

may be distressed to obtain one of the effects when interested only in ob

taining the other.

As an example of the relationship mentioned above, one may consider

three trajectories that pass through a cavity that extends from za to ~.

All three rays will be taken to enter with the same energy and to be

paralle 1 (~.~., normal incidence). The first ray (#1) will be regarded

as the reference ray. The second ray will be supposed to emerge at the same

time as #1, but with a transverse displacement ox and an energy that

differs by oE from the emergent energy of the reference ray. The

3

____--i-_-:!+--:-~--l

* Work supported by the U.S. Atomic Energy Commission.
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third ray will be supposed to emerge at the same point as #1, but later

by a time interval dt. For this to occur, in the presence of time

varying forces within the cavity, the third ray may follow a trajectory

that differs from that of the reference ray and the emergent transverse

momenta accordingly may differ by dp . It then can be shown that,x
provided only that the particle motion within the cavity is governed

by Hamiltonian dynamics,

(1)

i.e., the scanning-rate and the energy-dispersion are directly related

in the manner indicated by Eqn. (1).

The reasoning leading to Eqno (1) has been outlined by Fowler and

Goodl * in connection with a beam sweeper, and was based on application

of the bilinear covariant of Whittaker. 2 In this type of application

it is useful to consider the motion as governed by a "space Hamiltonian,"

in which a distance coordinate (~.~., z) plays the r61e of independent

variable and the negative of the momentum conjugate to this coordinate

then serves as the Hamiltonian function. In such a formulation the time

t acts as a generalized coordinate, and the conjugate "momentum" then

is the negative of the usual Hamiltonian or, in this instance, the neg

ative of the particle energy. One then notes that the evolution of a

Hamiltonian system**effects a canonical transformation of the dynamical

variables, so that the invariants of a canonical transformation can

be applied to these variables.

Because the derivation of Eqn. (1) through use of the bilinear

covariant has been treated elsewhere,l it may be of interest here

to indicate how this result might alternatively have been demonstrated

by appeal to the Fundamental Poisson-Bracket Relations. 3 Thus, sup

posing a space Hamiltonian to be employed, we may in the present appli

cation consider x'Px and t,-E to constitute two conjugate coordinate

momentum pairs. Suppose we now pass to differential quantities about

some possible trajectory (but omit, for brevity, the differential symbol)

* References are listed in Sect. IV.

**I.e., the evolution from one definite value of the independent variable
to-a second definite value of this quantity.
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and linearize the transformation that carries a particle from z =z to'
a

z =z; we then may write
b

x Tl 1 Tl ,,2 Tl ,,3 Tl 4, ,
Px T2 1 T2,,2 T2,3 T2,4

=
,

t T3,,1 T3,,2 T3,3 T3,4
-E Tlj. 1 T4 2 T4 ,,3 Tlj. 4

~
, , ,

or, for the inverse transformation,

""" """x Tl 1 Tl 2 Tl 3 T1 4
""" , '" , '" , '" ,

Px T2 1 T2 2 T2,3 T2 4
= , , ,

""" """
,....

"""t T3 1 T3 2 T3 3 T3 4
'" , """ , """ , ,.... ,

-E T4 1 T4,2 T4,3 T4 4za , ,

x

(2a)
t

-E

x

(2b)

-E 0

~

The fundamental Poisson-Bracket relations are (in Goldstein t s3 notation)

[ <l., q.] = 0,
~ J

and [q., PjJ = 0. j' (3)
~ ~,

where 0i .,J
ditions for

*

is the Kronecker o-symbol; these necessary and 'sufficient con

a canonical transformation impose six conditions on the matrix
* """el6nents T. . of the transformation (2a) -- or on the coefficients T. j

~,J ~,

of the inverse transformation (2b). Thus, in particular, the condition

[p , -E ] = 0 imposes the relation
xa a

With 6 significant relationE imposed on the 16 coefficients Ti,j'

the number of free parameters for the linear (homogeneous) transformations

(2a) becomes 10. It may be noted that if such a transformation were to

be cOnBidered as arising from a homogeneous quadratic generating function

of' 4 variables, the number of' terms (with arbitrarily assignable coef-

) . 4(4+1)ficients in such a generating funct~on would be 2 = 10 --

in agreement with the above.
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With reference now to the specific problem considered initially, the

fact that the incident rays are taken to have the same direction and the

same energy requires that

(5a)

and

(5b)

For ray #2 it is understood that there is to be no time differential

(with respect to #1), so from Eqns. (5a,b) we have for this ra:y

(6a)

and

(6b)

from which elimination of p yieldsxb

or, recalling that the variables ~ and Eb are actually differentials,

Likewise, for ray #1, the (differential) transverse coordinate is to

vanish, so for this ray Eqns. (5a,b) become

and

o (8a)

so that, on elimination of -Eb,

(8b)

or
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ABSTRACT

As a continuation of an 'earlier report pertaining to the z)/N ---t 1/3

resonance, the stability boundary for the equation

::; +e~l y + ; L~1 b m sin 2 m t ] y2 - 0

has been studied analyticaLy and (for b 1 ~ 1, b 3 ='= 3/4. b S ' 1/2) by digital

computation, A rel.atively simple trial function,

v:;;: 2; [Am sin (2 m - 4/3) t + Bm sin 2 m t + Cm sin (2 m + 4/3)t
m:;; 1

is employed in a variational procedure or with harmonic balance to obtain

an estimate of the unstable equilibrium (perbdic;sol.ution and associated

fixed points. Application of the Moser method of solution is a1.SO carried

through, to inc~ude terms of order (z)/K - 11 3}2, Tn.e results are compared

with computational data for 1JIN -: 0.3267, 0,33, 0.3367, and 0.34,
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A. MOTIVA'TION

In a previous report, 1* hereinafter designated as I, a study was made

of the differential equation

d
2

v + (2 VIN)2 v + (1/2) (sin 2 t) v 2 = 0,
dt 2

(1)

with particular attention to the limiting-amplitude solution governed by the

one-third resonance (zAN -H 13). As was pointed out in I, if the coefficient

of the linear term in (l) had not been constant but involved a periodic function

of the independent variable t, it would be possible 2 to remove this t-depend-

ence by a suitable transbrmation. Such a transformation, however, has the

effect that the quadratic term becomes more complicated than in eqn. (1).

As an extension of the results of I, we therefore consider in the present re-

port the equation

+ (2 VIN)2 v + (1/2) [L b m sin 2 m I]
m:-:1

2v =0, (2)

with b 1+O.

As before, 1 results of a variational solution and of application of the

Moser procedure 3 will be presented and compared with computational results.

In particular we shall be concerned with the limiting-amplitude solution

governed by the one-third resonance, and undertake to carry the analysis

consistently through terms of order (VIN - 113)2.

)lcReferences are given in Section E.
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B. THE VARIATIONAL METHOD

The unstable equilibrium orbit, or the associated "fixed points"

characterizing the limiting-amplitude solution of eqn. (2),

d
2

v + (2 V/N)2 v + (1/2) [L b m sin 2 m t] v 2 ::': 00'
dt 2 m::;: 1

may be soughtO by insertion of a suitable trial function into the variational

statement

b [ t..(dv/dt)
2>- (2 z)IN)2 ( v 2>- (1/3) ml;1 bm ( v 3 sin 2 m t >} = O. (3)

We shall employ here. the trial function

V ,0: A 1 sin 2 t / 3 + B 1 sin 2 t + C1 sin 10 t / 3

+ m0z[Am sin (2 m - 4/3) t+ B m sin 2 m t+ Cm sin (2 m + 4/3) t]. (4

in which the first term is the dominant one and the remaining terms are then

of a form suggested by considerations of harmonic balance.

In the substitution of the trial function (4) into the variational statement (3),

only those terms need be retained which will contribute terms of order no

higher than (V/N - 1/3)2 to the solution--to this accuracy it is then sufficient

to retain (cubic) terms in ( v 3 sin 2 m t> which involve Al squared or cubed.

With this approximation the variational statement (3) then becomes ( on multi-

plication of (3) by 72):

16 [1 - 9 (z}/N)2]Al + 16 [9 - 9 (,V/N)2] B 1
2 + 16 [25 - 9 (z)/N)2]cl

+ 16 mLJ[<3 m - 2)2 - 9 (VIN)2] A;' +[(3 m)2 - 9(zJlN)2] B;' +[<3 m + 2)2

• - 9 (zJIN)2]C~

+ 9 b 1 [A 1
3

/ 3 - 2 AlB1 + A 1
2

C 11

-+- 9~ 2 b m [Al (Am - 2 B m + Cm )} to be stationary. (5)
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By performing the appropriate differentiations of the algebraic form (5) the

simultaneous algebraic equations for the coefficients of the trial function are

then obtained directly:

32 [1 - 9 (1AN)2J Al + 9 b1[A1
2

- 4A1 B 1 + 2 Al c1l
+ 18 L: bm Al (Am - 2 B m + Cm) .- 0 (6a)

m~~ 2

32 [9 - 9 (tJ/N)2]B 1 - 18 b 1 A 1
2 :;-: 0 (6b)

32 [25 - 9 (tJ/N)2] C1 + 9 b 1 Af :: 0 (6c)

32 [(3 m - 2)2 - 9 (V/N)2] Am + 9 bm At :: 0 (6d)

32 [(3 m)2 - 9 Cz)/N)2] Bm - 18 bm A1
2

:; 0 m ~2 (6e)

32 [(3 m + 2)2 - 9 (,)/N)2] Cm + 9 b m At = 0 • (6f)

In solution of eqns. (6a-f), one may first express Bl' C 1' Am'

in terms of Al by means of eqns. (6b-f) and substitute the results into eqn, (6a)

to obtain an equation involving the unknown Al alone. An approximate solution

of this last-named equation.. valid through terms of order (z)/N - 1/3)2, may

then be obtained and the remaining coefficients (B l' C l' Am' ... ) determined

[Appendix AJ. We thus find

64 .. ) [ [+ ~ ~bm~2 9 m
2

- 5 J z)}AI=: - 3 b 1 (1 /3 - 1.//N) 1 - 8 1 ~ b 1 (1 / 3 - / N) (7a
m=2 1 (m2 -1)(9m2 -

32 _ 1 2
B 1 =hi" (1/3 - V/N) (7b)

C 1 ~ -3
1
:

1
(1/3 - V/N)2 (7c)

A - -~ bm /b1 (1/3 - V/N)2 (7d)
m - 3 bl (m - 1) (3 m - 1)

B
m

= 256 bm /bl (1/3 - U/N)2 m ~ 2 (7e)
b1 9 m 2 - 1

C 128 bm /bl (1/3 - z}/N)2 (7f)
m ::: - 3 b 1 (m + 1) (3 m + 1)
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These coefficients, when employed in the trial function (4). provide us. with

an approximate representation of the unstable equilibrium orbit in the form

of a trigonometric series.

From the foregoing results for the unstable equilibrium orbit, the

coordinates of the fixed points may be obtained, as desired. Thus, at t =0,

one finds

v :: 0 (8a)

(8b)

From the experience reported previously in I (Section C of reference 1)

it may be expected that the accuracy of these results, being c~rried only

through second order terms, will be somewhat limited unless.! - z) Iis
3 N

small; reasonable accuracy might be expected, however, if f ~ - -fl-I were,

say, as small as 0.01. A comparison of the analytic results with digital com-

putations will be presented later in this report (Sect, D). We turn next to the

applications of the analytic method of Moser to eqn. (2),

C. THE MOSER PROCEDURE

1. The Forward Transformations

In this section we undertake to treat eqn. (2) by the Moser procedure, 3

in a manner paralleling that presented in Sect. D 3 of I. 1 Our basic equation,
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eqn. (2), follows from the Hamiltonian

H =(liZ) pZ + (liZ) (Z VIN)Z vZ + (1/6) [£;1 b m sin Z m t] v 3, (9)

which we now subject to a series of canonical transformations designed to

eliminate the t-dependence from the cubic term in (9).

We commence by employing the generating function

so that

p = dGol ~ v = (2 ~N) v ctn Yo

J o = - dGol d~ = (VIN) v 2 csc
2 ~

thus

v _ N P
ctn 4 0 - 2fl -;-

1 l N _1 2 + 1.[2 V) v 2
J 0 = "2 \"2V1 p 2 \: N '

v = (Nlz){!~ Jo'/~ sin Yo

p = 2 (zJIN)'/~ J;/'-- cos Yo

and the new Hamiltonian is

(10)

(lla)

(llb)

(12a)

(12b)

(12c)

(12d)

= H

= 2 (VIN) J o + (1 I 6)(N I .,})3/1.. J~1- sin3 to ~ bm sin 2 m t
m=1

= 2 ( -;)IN) Jo
_ll'Z. 3f1; \' [3 cos (Yo - 2 m t) -3 cos(Yo + 2 m tj+ (1 I 48)(N IV} J o W b m

m = 1 + cos (3 Yo + 2 m t) - cos (3(0 - 2 m t) ,

(13)

with Yo and J o constituting respectively the new coordinate and momentum.
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We now select as a second generating function

sin (3 (0 + 2 m t)

. m + 3 DIN

(14)

J
1

) =1 J~INf•
Y0

3Yi b 1 ~ __----':::......,...._ Y v-sin ( ~ - 2 t) sin (,0 + 2 t) sin (3 I'0 + 2 t)
+ 3 - ----.=;.-r-----4

1 - U/N 1 + 1./IN 1 + 3 7N
+9'61': J 1

sin (Yo - 2 m t) + 3 sin ( Yo + 2 m t)
m - DIN m + illN

+Lb
_ sin (3 Yo - 2 m I) _

m=2 m - 3 iJ/ N

so that

[
COS(Yo- 2t) cos(~+ 2t) cos(3'(0+ 2t)1

1 - DIN + 1 + VIN - 1 + 3 1)IN J
cos (yo - 2 m t) + cos (~ + 2 m t)

m - 1)IN m + DIN

_ cos (3~ - 2 m t) _ cos(3 Yo + 2 m t)

m - 3 DIN m + 3 N

(15a)

b
1

r~ sin( Yo - 2 t) + 3 sin( Yo + 2 t) _ sin(3~ + 2 tJr 1 - vlN 1 + 7JIN 1 + 3 iJlN ]

sin (Yo - 2 m t) 3 sin (16 + 2 m t)
3 +

+Lb m m - 7JIN m + 1JIN
m=2 _ sin (3 to - 2 m t) _ sin (3 ~ + 2 m t)

m - 3 1JIN m + 3 7JIN
t

(15b)

and

b
1

[_ 3 cos«(o - 2 t) + 3 cos(I"o + 2 t) _ cos(3~ +

1 - VIN 1 + V/N 1 + 3

_ 3 cos (~ - 2 m t) + 3 cos (~ + 2 m t)

1 - VlmN 1 + t/lmN

+ ~~m + cos (3 Yo - 2 m I) _ cos (3 y" + 2 m I)

1 - 3 1JImN 1 + 3 illmN

(16)

1-453



MURA-459

it is now in order, of course, to express the new Hamiltonian, K1, explicitly

in terms of Y1 and J l' As a first step" substitution of J o ' as given by

eqn. (15a), into Ko' as given by eqn. (13), results (after considerable sim-

plification) in eqn. (l6) assuming the following form, through terms of order

Jl

Y in eqn. (17)
o

+ terms which are neither constant, nor involve
circular functions of an argument which is a
multiple of 3 y - 2 t

o

+ ~ bmbm + 2 [. 1 1]cos 2 (3 r: - 2 t)LJ 2 .. J - .j 0
m::1 b l m+3V/N m+2-3lJ11N

It can be seen that the introduction of Yl in place of

need not change the form of this result, since the substitution, based on

eqn. (l5b), which is involved in expressing cos (3 Yo - 2 t) in terms of Yl

does not introduce into the J f term any terms of the form which we have

elected to retain. It may moreover be noted that there is little point to re-

taining the last term in eqn. (17), involving the cross products bm bm + 2 '

since. to this order, 3 VIN may here be set equal to unity with the result

that the term in question vanishes. In this spirit, and in the interest of

simplicity, we therefore write

(l8)

1-454



MURA-459

where

1

1 + 3 z)IN

....m~2"...-_ -9_1_1J-':2~/-N":"'"2 -~ (19)

[cf. eqn. (25) of I] and in which t-dependentterms have deliberately been

omitted from the J; term of K
1

.

For the final transformation we now. as in I. introduce the third

generating function

which effects the transformation

J 1 = dG2 / 'd'f1
:: J 2

Y2 dG21 ~ J 2 Yl
2

,- := - .... t
3

with

(20)

(21a)

(21b)

and in which 0(" is given by eqn. (19). K2• which. as written, is independent

of t, is now to be regarded as substantially a constant of the motion.

2. The Separatrix and Fixed Points

The expression (22) for K2, which we take to be a constant of the

motion,is virtually ident'cal in form to eqn. (57) of I [Section D 3 of refer

ence 1] and the succeeding step thus will parallel the corresponding work
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2

in I, save that the values of J 2 (::: J 1) will contain a factor I/b
1

and :;1'_

is to be interpreted in the manner of eqn. (19).

The fixed points, corresponding to the unstable equilibrium orbit,

are characterized by K
2

being stationary; i. e., by

cos 3 1
2

- - 1

1
2

= ±.. 7113, /[(

~ = + 7£13 + 2t/3, 1T+ 2t/3

(23a)

(23b)

(23c)

and

where

~1

= J I/'U = ~ (I _ 7J) ItJ)J/'Ln
2 b 1 t 3 N eN (l

-I.} + 80(. (f /3 - z)/N)' - 1
= 4 ()I., (l 3 - iJIN)

= 1 - 2 ()(., (113 - VIN) + .•• •

(24)

(25a)

(25b)

•

Other points on the separatrix are determined by eqn. (22). with K
2

given

• the value [implied by eqns. (23a) and (24)J

K Z = - :1:: (~jn-K1
3

3. The Inverse Transformation

To obtain an expression for the unstable equilibrium orbit in terms

(26)

of the original dependent variable, v, we perform the inverse transformation

from Yl' J I' making use of eqn. (24) and (say) setting 11 = 1f+ 2 t 13

[cr. eqn. (23C>j. We thus write

J lIt. ~ J '/"L [1 _b 1 m\3f~J '/~. R] (27a)
o 1 n\lll 1

sin to ~ sin ~ - (cos ""11) (~ - Yo)

~ sin ~ + b l ~:s Yl (fll J:ft.. S (Z7b)
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and

cos to ,; cos

- cos . S, (27c)

where

R:! cos 4 t/3 + cos 8 t/3 cos 4 t
1 - iAN 1 + DIN 1 + 3 ilIN

cos (2/3) (3 m - 1) t cos (2/3) (3 m + 1) t
m - 7)IN + m + 1JIN

cos 2 (m - 1) t cos 2 em + 1) t
m - 3 iJIN . - m + i/IN

(27d)

and

3 sin4t/3
S =. - 1 - VIN + 3 sin 8 t/3

1 + 7)/N
sin 4 t
1 + 3 V7N

_ 3 sin (2/3) (3 m - 1) t + 3 sin (2/3) (3 m + 1) t
m - iJIN m + PIN

+
sin 2 (m - 1) t

m - 3 illN
sin 2 (m + 1) t

m + 3 VIN

(27e)

sin 2 t/3 +4( Z);N)sin 2 t -f 1 ~
1 - UN 1 - z)2/ N 2 \1 + 'ZAN -1+3Zl!N) sin lOti

.
I

m + ~ illN) sin (2 13)(3 m +

(28a)

(in -1UN - m - \ il/N) sin (2/3)(3 m - 2) t

\' b + 4 ( 7JIN) sin 2 m t
i..A. b1 m 2 - - J2./N 2
m=2 V-
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similarly [cf. eqn. {l2d)J

_ J 1~ '/t.
p =2 (VIN) 3

0
cos y

o

= - 2 (zJIN) 'liJt ~ -(i -~) 11 . RJ [ cos 2 t/3 - G-}) '11 ~in~) s]
cos 2 t/3

4 m cos 2 ill t

m 2 _ J2IN2

J(28b)

~os2t/3_4coS2t\+( I I I _\cosIOtl
\i - DIN I -iJ IN?') \1 +UN 1 + 3iJ1Nj

(m - \lIN + m - i iI/N) cos (2/3) (3 m - 2)t

~bm

L, bi
=2

+(m /1J/N + m +1 3 iJ/N)COS (2/3) (3 m + 2)tl
For comparison with the results of Section B, we may first examine

the coefficient of sin 2 t I 3 in the expression for v shown in eqn. (28a),

making certain simplifications consistent with retention of terms through

those of order (1- ffJ. This coefficient is

Al =- :: (-~ - ~)f~h [1 - 11~3 iJt~N 11]
~ _64 (1.. -~l 6~) [1 - Ii 0<. + 1 \ (1. _-z))]
- b 1 . 3 N/ Nj \.. 1 - iI/N/ 3 N

~ -:~ (i - ~X~) [1- (2 ~ + %) (i -~)]

~ - ;~1 G-~) [1 - (2 f¥- + ~J (i -~]

(29a)

(29b)

(29c)

(29d)

and, with

,J ; 714 + 4~ (bm )2 9m
2-5

10'1; £...J b (9 m 2 - 1) (m? - 1)
m=2 1

[cf. eqn. (19)], (30)
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9 m
2

- 5 l(! - ZJ)\t
(m2 _ 1)(9 m 2 _ I) 3 N~, (2ge)

in agreement with the expression given as eqn. (7a). A similar reduction

of the coefficient of cos 2 t I 3 in the expression (28b) for p leads to a

quantity WhlCh is 2/3 of formula (2ge) for AI' as it of course should since

p :-: dv/dt.

Similar reductions of the remaining (second order) terms in the

trigonometric series for v and p, as given by eqns. (28a, b), leads to the

coefficients listed below in Table I.

TABLE I

COEFFICIENTS OF SECOND ORDER TERMS IN THE TRIGONOMETRIC

SERIES FOR v AND p, FROM EQUATIONS l8a AND 28b.

Argument Sine Coefficient in v Cosine Coefficient in p

2

(+- ;/i2
2 t + ~ (J...- v~ + 64

bl 3 N bI-, _.._,--_.,

10 t/3 - ~ (1- _JLj2 - 160 C'- - 1J.)2
3 b 1 3 N 9 b1 3 N

128bm 1 e.- JL)2 2(21 3)(3m - 2}t - 256 bm 3 m - 2 CV)
- 3 bf (m - 1}(3 m - 1) 3 N 9 bt (m - 1)(3 m - 1) "3 - N

256 bm 1 C ff)2 512 bm m 1 vJ2 m t ~.

bf 9 m 2 - 1 3' - N + 2
9 m l - (3 -N

bl 1

(2/3)(3m + 2)t - 128 bm 1 (1 - lJ)f _ 256 bm 3 m + 2 C 11)2
3 b 2 (m + 1)(3 m + 1) 3 N 9 b{ (m + 1)(3 m + 1) 3 N.

1

The coefficients listed here for the terms appearing in eqn. (28a) for v are immediately

seen to be concordant with the coefficients of the trial function of Section B, as listed in

eqns. (7b-f). Similarly the coefficients listed for p are seen to be related to those given

.or v in a way consistent with p =dv Idt.
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Coordinates of fixed points may of cour se be obtained directly from

eqns. (28a, b). Thus, for one of the fixed points at t -: 0 one finds

2

V : 0 (31a)

1

P ·_·- ~(~- ~)~~1." b 3 N N
1 1

(31b)

This expression (31b) for p may be somewhat simplified if various reductions

are made by aid of ~1;l1 1 - 2 '" (~ - !fJ .use of eqn. (30), and the approxi-

mation (V/Nl2
;j i [1 - 6 G-~)] :

p ,; - ~(~_ U) (1Jf ~ 1 - [2 _16 L: m (bm /b1) .1(1 _ Y..~1
b 1 3 N/ W l11 l 4 m~2 (m2 - 1)(9 m 2 - 1~ 3" NjJ

;, - 1:8(~_ ~OO[1-[~1_8 r 2m(bm/bl)-({9m2-5)(bm/b1)21(~_ ~\1
1 NJ m,," 2 (m2 - 1) (9 m 2 - n J 3 N ) J

; - ;~8 (t -~[1 -f ~5 - 8 L 2 m (bm/b 1) - (9 m
2

- 5) (bm/b1/1(~ _~\}
1 NJ m:::2 (m2 - 1) (9 m 2 - 1) j I,

(31b')

which is in agreement with the result (8b) found in Section B. The other

unstable fixed points associated with this value of t likewise may be

obtained, by the substitution of t ::-; ±. 'it in eqns. 1(28a, b):

1

1 + 3 -zJ/N
2

- 2 'V m b m I- 1 1
/;: 2 01"\m 2- 9 ZJ IN Z... m'-'2'---V~2~/-N""2""'1

1 -
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• - 32 f3 (1 _ vVV)Yl 1 _(2 _ 6 ~ b m m J(.!. - V)]
e;:+ hI C3 NJ\.-N/'ll 4 1 k12 15l (m2 -1)(9m2 -1) 3 N

!. - 32i3(1 _~)(~£ _[~_8 '" Zm(bm !b1)-(9m
Z

-5)(bm !b1)Zl (.!. _V)l
- + b 1 3 NJ\.-Nl 4 f:z 1m2 - 1) (9 m 2 - 1) j 3 NIJ

; :; 32f3(.!. _JL))1 _[~ _ 8 L.. 2 m (bm /bl)-(9 m
2

- 5)(bm /bl)211.!. _ 'til
3 b I 3 NJ ( 4 m~2 (m2 _ 1) (9 m 2 _ 1) JC3 N)J (32a')

10 1
+ 1 + 3 z}/N .

The reduced forms (32a') and (32b') agree with the value of the trial function

of Section B and its derivative at t = + 'IT..., namely v = + (73/2) >" (A -Cm)- - rfdl m

and dv/dt =- (1/3) '=': [(3 m - 2) Am - 6 m B m + (3 m + 2) Cm ] ,- when

the coefficients are taken as given by eqns. (7a-f).

The coefficients of the trigonometric development of the unstable equi-

librium orbit, and particular fixed-point coordinates, are thus seen to agree,

through terms in (~ - J(J2, when obtained by the variational method or by the

Moser procedure. In the following Section we present some computational

checks of these results.
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D. COMPUTATIONAL CHECKS

The analytic results of Sections Band C for the limiting-amplitude

solution of eqn. (2), for which the solution was carried through terms of

order (z}/N - 1/3)2, have been subjected to computational checks4 for a

series of examples in which

b 1 :; 1,. b 3 :: 3/4, and b 5 = 1 /2 ,

and in which .,)/N successively assumed the values

0.3267,

O. 33,

0.3367, and

O. 34.

(33)

The computational results for the trigonometric representation of the

unstable equilibrium orbit, and for the coordinates (v, p) of the fixed points

corresponding to t :: 0, were compared with the results of the analytic work,

both in the form obtained directly from application of the Moser method and

in the simplified, or "reduced ", forms in which the results also could be

expressed. A particularly decisive test of the results might be afforded by

examining explicitly the coefficient of (V/N - 1/3)2 in the results--thus by

forming

9 b1 (- p)
1 - TIB'""" ~ - 1)

3 N
1 V
3" N

one might expect to obtain a result which would approach

45
"4 8L;

m::2

2 m (bm/b 1) - (9 m 2 - 5) (bm/b 1)2

(m2 - 1) (9 m 2 - 1)
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as z)IN ~ 1/3 [cf. eqn. (31bl~. From such tests it appeared that the

coefficients of interest were approximately of the size expected but assumed

limiting values which depended appreciably on the Runge- Kutta interval

employed in the computations--thus with NRK =64 (requiring runs of length

NE= 960 Runge-Kutta steps), the limiting value of

9 bl (- p)
1 - 128 1 V

3"-N
1 -,)-3 N

appeared to be about 11. 7. In the results reported below, the computational

results are taken primarily from runs made with N
RK

= 64.

In Table II we list the Fourier coefficients of the unstable equilibrium

orbit for the cases studied. For each argument listed, the first line gives

the value of the coefficient expected from the results of the Moser theory

&qns. (28a, b) J; the second line gives the value obtained from the reduced

forms [see eqn. (2ge) and Table I] ; and the third line gives the coefficients

obtained computationally.

In Table III we similarly list the fixed-point coordinates, for t = O.

The agreement between the analytic and computational results, as illustrated

by Table II and Table III, is felt to be completely satisfactory.
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(a)Eqn (28a)
(b)Reduced for rns

(c )Computational

TABLE II MURA-459
FOURIER COEFFIC IENTS IN T ')TABlE EQUILIBRIUM ORBIT

b1=1 b-:t::::J/4 bl:;=1/2

(;I)E4n. (28<.1)
(h)Hl'du('ed fonns(2ge), ~ seq
k )('ornputatiollcd

-
Sine Coefficient in v Cosine Coefficient in p

Argument -vtN ~ N

() ~? fl7 () ~~()() () ~~fl7 () ~4()() () ~?fl7 () ~~()() () ~1n7 o ~4()()

-.133 915~(a -.0691337 oj- .073 9787 ~.150 9863 -.089 1973(a) -.046 0785 't. 049 3068 -1".1005561
2 t/:1 -.1334186(b -.069 0676 of" .073 9068 +.1503963 -.088 9457(b) -.046 0451 t. 0492712 of".l 00 2642

(c
-.069 1799 + .073 9996 't .151 3 083 -.089 423 (c) -.046 120 ~, 049 333 +.100 872-.1341 351

+.001 2792 t .000 3385 oj- .000 3818 -+ • 001 5780 1" .002 5584 l' .000 6771 +.000 7637 ;- . 003 1561
2 t -t.001 4080 +.000 3556 oj- .000 362', + . 001 4222 -+-.002 8161 ~ .000 7111 + .000 7254 + .002 8444

-t.0012594 -to. 000 ::13 57 + .000 3859 +- .001 61 75 -t .002 51 9 +.000 67 1 +.000772 +.00323 5

-.0002170 -.000 0570 -.0000630 -.0002578 -.000 7192 -. 0001892 -.000 2109 -.000 8662
10 t/3 -.000 ~347 -. 000 0593 -.000 060::> -.0002370 -.0007822 -. 000 1975 -.0002015 -.000790L

-.0002101 -.000 056 0 -. 000 0643 -.0002693 -.00070
0

-.000 187 -.000 21 4 -.000 898.-
" .. 000 0794 ". 000 0211 '-.000 0240 -. 000 0994 -.000 3724 -.000 0987 - 000 1115 -.0004611

14 t/3 · . 000 0880 ..·.000 0222 · .000 0227 -.000 0889 -.0004107 -.0001037 ·.0001058 ... 0004148
· . 000 078 5 ".000 020

9 · . 000 0241 -.000 101 3 ".000 367 -.000 09
8

.. 00011
3 -.00047 3

-to 000 0964 +.000 0254 + . 000 0286 +.000 1178 -+'.000 5782 +.000 1527 .... 000 1714 +.0007069
6 t 1". 000 1056 -+' . 000 0267 +.000 0272 't. 000 1067 t. 000 6336 t.OOO 1600 +. 000 1632 't. 000 6400

-t. 000 0947 t ' 000 0252 +. 000 028 9 +.000121 0 't. 000 568 +.000151 .... 000 17 3 +.000 72 6
· . 000 0324 '. 000 0085 . 000 0095 ". 000 0390 -. 000 2365 -.000 0623 .. 000 0697 -. 000 2869

22 t/3 000 0352 . 000 0089 · . 000 0091 -. 000 0356 -.000 2581 -. 000 0652 -.000 0665 -.0002607
. 000 031 8 ... 000 008 4 - . 000 009 6 ". 000 039 9 -.000234 -. 000 06

2 -.000 07 a -.000293

DOD 0152 · . 000 0040 -. 000 0045 .. 000 0188 ·.000 1322 -.000 0350 ··.000 0394 - 000 1625
26 t/3 000 0168 · . 000 0042 .000 0043 .. 000 0169 ". 000 1453 -.000 0367 . 000 0374 -.0001467

. 000 0148 000 003 9 .000 0046 .0000195 .000 128 -.000 03 4 .000 04 0 -.000 169

+ 000 O:BO ;- , 000 0061 t 000 0068 -r .000 0280 +.000 2295 +. 000 0606 ~. 000 0680 +.000 2804
lOt '1". 000 0~51 + . 000 0063 + 000 0065 ;- . 000 0254 +.000 2514 +. 000 0635 .... 000 0648 +.000 2540

r.OOO 022 5 1". 000 006 0 + 000 006 9 + . 000 0288 +.00022 5 .... 000 06 0 + .000 06 9 + . 000 288
I 000 O(HlO · .000 0024 000 0026 -.0000109 000 1014 - . 000 0267 -. 000 0299 -.0001233

34t/3 - 000 0098 - 000 002 f> 000 0025 - . 000 0099 -,000 1108 -. 000 0280 ... 000 0285 - . 000 11 1 9

000 OOgo .. 000 002 3 - .000 002
6

... 000 0109 - . 000 1 03 -. 000 02 7 -.00003 0 -OOO12:~

...

I~
0\
~



TABLE III

FIXED POINT COORDINATES

(t = 0, mod4 2 'l()

b 3 = 3/4

MURA-459

z1N On Symmetry Axis To Right and Left of Symmetry Axis
p v p

-.087 393(a) +.115832(a) +.048 746(a)

0.3267 -.086 955(b) +. 115 396(b) +.049 029(b)

-.08764 (c) +'. 116 040
(c) +.048 794

(c)

-.045 600 +.059 834 +.024136

0.33 -.045 542 +.059777 +.024 173

-.04565 1=.059 892 +.0241 53

+.049 849 +.064 108 -.023 420

+.049784 + .064 043 -. 023 462
0.3367

+.04987 2:. 0641 12 -.023 413

+. 102 799 + . 130 922 -.045 185

0.34
+. 102 275 + . 130 396 -.045 530-
+.10316 !.. 131 200 -.045204

(a) Eqn. (31b)

(b) Eqn. (31b')

(c) Computed

(a) Eqn. (32a)

(b) Eqn. (32a')

(c) Computed
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APPENDIX A

SOLUTION OF EQNS. 6a-f FOR THE COEFFICIENTS OF THE TRIAL FUNCTION

From eqns. (6b-f) we immediately obtain
-1

B 1 ~ (1 116) b 1 A 1
2

[1 - (tJ1m2
]

2 2)-1
C 1 :::-(9/32) b 1 Al [25 - 9 (VIN)

-1
Am = - (9/32) b m A 1

2 [(3 m - 2)2 - 9 (VIN)2]

2 [ ] -1B m = (9/16) bm Al (3 m)2 - 9 (VIN)2 m~2

(A-1a)

(A-1b)

(A-Ie)

(A-1d)

(A-Ie)

By insertion of the expressions (A-la-e) into eqn. (6a), and rejection of the trivial

root Al = 0, the quadratic equation for Al is obtained:

~ 2J .2 2t 1/4 9/16 ']
32 1 - 9 (VIN) + 9 b 1 Al - 9 b 1 Al VI Z + VI 2

1 - ( N) 25 - 9 ( N)

81 2 ~ 2 [1 + 4 +
- ibA1 ~2 b m (3 m - 2)2 - 9 (z)IN)2 (3 m)2 - 9 (-z}/N)2 (3 m +

J J-0
2)2 - 9 (-z)IN)~ -

(A-2)
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(A- 3a)

in which V/N has been replaced by 1/3 in terms such that a simplifcation could

(A- 3c)

(A- 3b)

m ~2 (A-3e)

(A- 3d)

thereby be achieved consistent with the objective of retaining accuracy through order

(1/3 - V/N)2. To this same order we also obtain, by substitution of

Al~ -~ (~ - -zJ) into eqns. (A-la-e) in turn,
3 b1 3 N

B 1 = 32 (~ - JL¥
b1 3 N)

16 (1 ~12
C 1 = - 3 b 1 3' - NI 2 2

b m /b 1 (1 ~\ 128 bm /b 1 (1 V.)
Am = - 1:: (3 m _ 2)2 - 1 ~ - ;;; =-3 b

1
(m - 1) (3 m - 1) ~ - -;;/

_ 256 bm /b 1 .(~ _ V)2 =256 bm/b1 (-31 - VNJ
Bm - bl" (3 m)2 - 1 3 N7 b 1 9 m 2 - 1

128 bm /b1 (~ _ z)f 128 bm /b1 (1 tJr
Cm =- b"; (3 m + 2)2 - 1 3 N) = - 3b

1
(m+ 1) (3 m + 1) 3" - N) . (A- 3f)

It is these equations which have been taken as eqns. (7a-f) in the main body of the

text. The results for the special case bm =0 (m :",2) can be seen to be consistent,

through order €. 2, with equations (lOa-c) of I [pection C 1 of refereence 1] .
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CONCER~1:NG THE ,)/N-. 1/3 RESONANCE, III

Use Of The Moser Method To Estima~e The Rotation Number,

As A FunctlOn Of Amplitude, For The Equation

::; + e~1) 2 v T ~ (sir. 2t) v2 =0

L. Jackson Laslett **

May l8, 1959

ABSTRACT

The Moser method of analysis, as applied through terms of order (-z/IN - 1/3)l

in an earlier report, is here employed to determine the variation of rotation number

(or "tune") wlth amplitude for solutions of the non-linear differential equation given

in the title. The result is given in terms of a complete elliptic integral of the first

kind, with a modulus determined by the roots of a quartic equation. The rotatlOn

number is thus calculable in terms of an amplitude characterized by the value of the

Moser t-independent Hamiltonian and this in turn may be related to some desired

salient dimension of the phase curve of interest. This results although by no means

as convenient for hand calculation as the handy formulas sometimes employed for this

purpose 3 is found to give results in very good agreement with numerical computations

for a problem in which the small-amplitude frequency corresponds to -z.)IN =0.3. As

is typical, the rotation number in this example departs initially from its small-amplitude

value (0.3) by an amount proportional to the square of the oscillation amplitude and only

near the stability limit undergoes a rapid variation to attain the value 113. The area

enclosed by the phase curves, most specifically by the separatrix, is also briefly

examined.

* AEC Researc h and Development Report. Research supported by the Atomic Energy
Commission, Contract No. AEC AT(1l-1)-384.

**Departm~ntof Physics and Institute for Atomic Research, Iowa State College,
Ames, Iowa.
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A. I~TRODUCTIO~

In an earlier report, 1, * hereinafter denoted as I, a differential equa:lOp. of

the form

dZv + (!:lL~Z b 1 Z2 N v + T (sin Zt) v = 0
dt

was discussed, the dependent variable v being so scaled, for convenience, that

(M
Z

1. 2+N} v + "2 (sm Zt) v =O.

(1 )

(2 )

**(3a)

In that report1 the Moser method2 of solution was applied to eqn. (2), through terms

of order (-z) IN - 1/3)2, to obtain an approximate t-independent Hamiltonian

3/2 3/2
K2 =-Z6J

2
-(l/48)(N/71) J

Z
cos3r2

+ (DC 12048) (NI.,,) )3 J 22

with

1
1 + 3;17 N

(3b)***

and

J = 113 - ,)IN ,

the expression KZ thus representing an approximate constant of the motion.

(3c)

In I the results of the analysis were specifically applied to examine the character

of the limiting amplitude solution of eqn. (Z), resulting from the 7l1N-t1/3 resonance--

in the present report we apply the results of the same general analysis to examine

the dependence of the "rotation number" on amplitude.

The Hamiltonian K2 [eqn. (3a») was obtained in Sec. D3 of I by a series of

canonical trandormations.

*References are given in Section D.

**Eqn. (57) of I.
***Eqn. (25) of 1.
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Coordmate
I

Momen~um

v ,P
~o I n

Y1 J,
'lf2 i J2

In WhICh ~2 11_ 2 + ~", ~ t- 1 3"' - 0 3

arld J 2 = J 1
~ J o- =

wIth

(4a) *

(4b)**

and

1/2 1/2 . J
v = (N12) ) J sm •o 0

p =2(1J/N)1/2 J 1/2 cos-rl •
o 0

(5a)***

(5b) **"'*

Phase plots of solutions to eqn. (2), plotted in v, p-space at t =3 '1r1 4, mod. 1T' I show

a tranSItion in form from elliptical to roughly triangular curves (as Illustrated) as the

amplitude approaches the stability limit.

t
!/J
;,

Seporo.trix

*Eqns. (56b) and (52b) of 1.
**Eqns. (56a) and (52a) of 1.
***Eqns. (49c) of I.

li<***Eqn. (49d) of 1.
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Ope:-at:Oi_dlLv, the amplltude may be charactenzed by the m:ercept Vi (see sketch),

with v then serving to denote the value of this intercept for the separatrix_ The
I

corresponding values of J 2 ~r J 1 may be similarly designated. In the present

report we shall examine analytically the dependence of the rotation number on (J2)
1

~nd hence on vii VI' specifically for a case in which the small-amplitude frequency

is charactenzed by vi N =O. 3, and compare the results of th1S analysis w1th

corresponding results obtained from computer solutions. A brief exammation wl1l

also be made of the area enclosed by particular phase curves, in specific limiting

cases.

B. THE ROTATION NUMBER

1. AnalytiC

To illustrate the procedure to be followed in obtaining a rotation number to

characterize a particular solution, we may first note that, due to the non-linear

characte r of the differential equation [eqn. (2)J ' J Z is not a constant of the motion

but 15 governed by the following differential equation:

dJZ1dt :: - .KZ1'?J)(z

=-(l/16)(Nlv)3IZ J
z

31z . 3\/
Sln 0 Z' (6)

and d "liz 1dt is similarly given by e KZI ~ J Z. In the course of integratlOn of dJzl dt,

J 2 may go from an extreme value (say a minimum value) corresponding to its value

(J
2

) =a at the intercept v. to a second extreme value (say its maximum value) b in
i 1

an mterval ,At =T. The corresponding changes of the variables of mterest are then

as hsted below:

At Jz =J 1 .~ Z A~

0 a 0 0

T b - "'/3 ZT/3-1f13
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Afrequency of revolt;.tlOn may then be ~.akec: as

v' ~.:1~/T

2 1'(
:: 3" - 3T

or, since we conslder N :: 2 in eqns. (1) or (2), a "rotation number'! llltrcduced as

(7 )

This quantity, ";'/N, will be seen to vary from the small-amplItude value, vlN,to 1/3

as the amplitude increases to the value corresponding to the stability limit.

The differential equation (6) may be in!egrated by making use of the constancy

of Kz [giVen by eqn. (3a)] to eliminate liz:

dJ2/ dt =-'8 K 2 / ~ ~s.

3/2 3/2 ~/
= -(l/16)(N/-,) J sin 3~

2 2

0( (N)3 2J
2048 V J 2

(8a)

2 ]2J 2 - 2;' J 2 - K2

(8b)

•
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In the parLcdar case that ~/;;;::: 0.3, tI-:: 1/3 - 0.3 = 1/30 a:id ci.. -:: 1 45'7.• 06

2
+ (76.18071427 K

2
- 6.448 334 695)3

2

- 193.450 0409 K2J2 - 1450.875 307 K2
2

eqn. (8b) above :hen assumes the form

2r
T = 12.696 7851

av 4
-J

2
3

1" 28.401 684 09 J
2

(8-:

(8e

=
25.393 571 42

J(c - a)(d - b)
K (k) ,

(8e

where a, b, c. d represent the roots of the equation obtamed by settmg the denommator

of the integrand m eqn. (8c) equal to zero ( a( b <c (d),

(b - a)(d - c)
(c - a)(d - b) , (8d)

3
and K(k) denotes the complete elliptic integral of the fIrst kind (modulus k). The

"values of T computed from eqn. (Bc ) may ther: be substituted into eqn. (7) to obtain

I
the estimated rotation number, V IN, for this case.

Z. Comparison with Computational Results

In applymg the results of the previous sub-sec;lOn, the value a :. (J ~) =(J1)
'- 1 i

may be related to a corresponding value of J o by aid of eqn. (52) of I ard ther:ce

directly to the mtercept coordir.ate, vi' The quan'.itie s (v) V
I
)2 and (J1\1 (J1 \ wll~.

of course. be rO:..lghlv proportional to one another. The root "a" VflE have the valuE'

*From Eqn. (3bL or from p. 16 of 1.
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(J 1 ), ; for srr.all !J1 ) rhe roots a and beach aFprc-ach zero.. w!u:e fer (J ) near
·11 1 i

the limitlng value (J1 ~I the roots b ar..d r: cash app:'oact 0.103 6384 ar_d

a:O.Ol75557.

Observed rc,:a,,;:'or.. I'.umbers from a senes of cOr.1pu:er- - see Fig. 1.

The results for a series of selec,:ed values of (J ) a:e Lsted u: Taole I. For
1 .

small values, the modulus k varies direc:l.y as (J, I 3/4 .: being approxim2.~elyequal
J. i

3/4
to 4(J.)

. i

runs.. made with the MURA I. B. M. - 704 computer by use of the DUCK-ANSWER

4
program, were obtained from examination of suitably nl1mbered points on phase plots

of the output data - - see Fig. 2. - - and are included in Table I. The results are

expressed in terms of vi/vI' or (v/vI)2. using the value of vI repor:ed previously in r.
1

The va:-iation of rotation number with "amplitude" (or amplitude squared) is,

finally. depicted in Fig. 3. in which the curve has been drawn to pass ~hrough the cal-

culated values listed in Table I and the circles represent the results obtained from the

machine computations. The agreement between the calculated curve and the computer

results is seen to be close. 5

Since the enclosed phase-space area is proportional to K
l

, to a reasonable

approximation. an effective average value of -..II/ N may be taken as given by

J (VI/ N) dKl / I dK
l

- - i. e., by an average of '2J' / N sampled in equal intervals

of K
l

• For the case considered. there thus results the effective vabe

;y
O. 306 • (9 )
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TABLE I ,
CALCULATED AND OBSERVED VALUES OF-.J/N

1/2 .,) /N
I

(vi/ VI)2 (J1 )i -103K2
a, b, (*) 1,) IN

Vi/vI (J1 ) . k K T
1 C. d Calc. Obs.

u
7(/2 = 1011/2::; 1/3··1/300

0 0 0 0 0 .228 8851 0
1.5708 15.708 =0.3 II. :1

28.172 7990
-- . ._-- --

• 050 =.188 567 0.3481 .030918 .000 9559 0.06745
.000 9559

.268 .001 0797 .02331 1. 571 0 15.808 0.3002 n. ]/)()l

.227 0228
28.172 6257

._.

• 003 8267
i .100

.13923 0.:l8474 .004 9413
: • :l68 :::.373 1::i4 .061 860 .003 8267

.220 8204
.07139 1.5728 16. 1 ~5 0.3009 0.1010

i 28 172 0957 -
.008 1

I .5427 .2945 .09 .0081 0.61071 .012 025J .13883 1. ~784 16.796 0.3022I .. .-. -
.2103242

:>.R 171 ?:-l4R

• 008 6167
.150

.31327 .092 826
.012 9909

0.1023:268=·559701 .008 6167 0.67391
.208 9491

.14725 1. 5794 16.886 O. :1O:n

28.171 1274 ._.-
.015 3314

.200_ 71'<6!l .5t;G9:'. .12382 .015331Ji 1.25661
.028 0399

• 270l 0 1.600'{ 18 0 111 O. :.04D 0 0 '10~1-- ,It j..268 -. ,,,' .188 5344
28.169 7784 -_._--

.015 6250

• "534 .~b76 .125 .015 625 1 .28289
.028 9322

.27746 1.6024 18.502 0.3050 ........
• 187 5105

28.169 6164 ---
.023 972

.250 .060 689
0.3107 O.31l1.268::' .932 836 .87018 .15483 .023 972 2.05366 .149 319 .54037 1.7093 23.125

28.167 704 --



...
I

.&;0..
-...l
-...l

TABI 1
(continued)

(Vi /v I)2 (J 1 ) i
l 12 103K

a. b. k(*)
, I

v/v (J1). - 2 K T V/N 'JJ/N
1 I 1 C• d Calc. Obs.

. 025 600

.9293 .16 .025 6 2.20878
.071 529

.64067 1.7849 25.593.9640 .137236 0.3129 .. - -
28.167 319

.027 5557
"--

1 .166 • 027 556 2.39707
.103 6384

1 OC 1 1
1 .103 6384 CO 3 3

28.166 8515

(*) 3/4. . 3/4
For small (J1)i' k is proportional to (J1 )i • bemg approxunately 4(J1 )1 •



C. THE PHASE SPACE AREA

1. Analr;ic L"1;roduction

It may be of some interest to inqL.1re concerning 1:he area. S, 1:1 phase space

mcluded withm a curve of constan~ K
2

, 1:aking, as before, K
2

as glven m eqno (3a).

We thus mvestigate

S :§p dv

1J'3 ?
= 6/ JZ d 1z '

with K
Z

given in term s of J2 (=J1) and (/z by Grom eqn.

(10)

(3a) with.J/ N =O. ~

j". 3/Z J 2
K

Z
=- /$ J 2 - O. 126 787 6Z9 J Z cos 3~ 2 + O. 026 253 363 72 J 2' (11 )

Equation (11) may be used to eliminate 'liz from eqn. (10), with the result (written m

where a, b, c, d have the same meaning as before [1. e., m connection with eqn.

(8cI)] .
If one were to undertake to evaluate the integral of eqn. (12) directly, it appears

that the (complete) elliptic integral of the third kind would appear 6 and we shall not

further pursue this matter with such generality here. The character of tre integral,

and hence the value of the area 5 may, however, be examined with some interest in

the case (i) that K2 is small and (ii) ir. the case that KZ =. (K2) , corresponding to the
I

separatrix which encloses the entire stable area of phase space.

(i) For K small, the numerator of the integrand in eqn. (12) is approximately
Z .

-3K
Z

- (1/15) J Z or (Z/ 15} J 1 ' and is approximately constant, while~c - J 2)(d - J z)

:::::-~ = z. 539 357 [cf. Table fl. Accordingly, in this limit, we may wnte

eqn. (12) as
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.t
/

dJ
2 <J > 1

1 f' J 1 - a)(b - J 1\
0. ~

;\ICRA - -to 1

= 2 ..,,(J )
1

= 211'Jo

21r(V!N) vi
2

=

(by a:4 elementary integrac.on)

cPy eqn. (Sa)] (13 )

This result is immediately seen to be cor:-ect. for the area enclosed within an

elliptical phase curve of semi-axes v.• 2(.,)/ N) v. [cf. eqn. (Sb)' • and thus.
1 1 - ~

to a degree. constitutes a check of eqn. (12t

I
0_. - t-- ---- ----- .

~

(ii) When K assumes the value (K.,) characterizing the separatrix.
2 ' I

b =c and the numerator of the integrand in eqn. (12) moreover may be factored to

=

give us p"

S
-J (b - J1)(J1 + 2.642 995) dJ1 • with c = b

Q. y'(J1 - a)(b - J 1)(c - J 1)(d - J 1)
t

= J J 1 + 2. 642 995 dJ1

~ .; (J1 - a)(d - J1) j.

[(5.28599 + a + d) tan -1:1_- Ja -f(JI - a)(d - J 1IJ
1 ~-1Ma _A= (5.28599 + a + d) tan -,{b - aHd - b)

d - b

= 0.2805
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by use of the vaLles a = 0.027 5557, b = c =0.103 6384, and d =28.166 8515 listed

in Table 1.

2. Compu4:er Result for Area Within Separatrix

From computer results ob4:ained in connection with the work reported previously

in I, one finds (after scaling of those results so as to apply to the case b 1 =1 under

consideration here) that the area enclosed within the separatrix (estimated from the

original plot in the v, p-plane) is approximately

Scomputer ~ 0.296. (15)

This area is some 5 or 6 percent greater than that suggested by the analytic result,

eqn. (14), as might be expected in view of the observation that the computer values for

salient coordinates and momenta on the separatrix were found correspondingly to be

a few percent greater than the values derived from the Moser theory employed here

[see, f. ex., Table IV or the first line of Table VI in I] •

Finally, it may be noted in closing that if the small-amplitude result,

S ; 2 77'~5(-K2>J

= 301('(-K
2

) , (16 )

of eqn. (l ~ had been applied in this form to the large value K2 =-0.002397 which

corresponds to the separatrix, one wo~d have obtained the result

S = 0.2259

the value obtained in this way thus would have been some 20 percent lower than that

calculated by eqn. (14).
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D, REFERENCES A)J"D NOTES

1. L Jackscr. Lasle+.t; :\1CRA-452 (Apnl 13, 1959), hereinafter denoted by 1.

2. Jurgen Moser, Nach .. GOtt, Akad. (Math. - Phys. K1.) Nr. 6, 87-120 (1955).

3. ct, B. 0, Pe i rce II A Short Table of Integrals", Ed. 3 (Ginn and Company, Boston,
Massac!:use>:'s). Formula 552, p. 70.

4. J. N, Snyder, DUCK-ANSWER (1. B. M. Program 75), MURA-237 (1957). In the
actual use of ":his program for the work reported here, the coefficient b

1
in

eqn. (1) was given the value 1. 15; the computational values of v and p, accordingly,
each required multiplication by the factor 1. 15 to bring them into agreement with
the quantities employed in the analytic work presented here.

5. Although the analytic approach outlined in the present report is of interest as an
illustration of the applicability of Moser methods, and the results appear to be
quantitatively quite accurate, the results obtained here [eqn. (8c"), etcJ cannot
be regarded as particularly convenient for numerical evaluation. It therefore
may be of interest to recall, as Dr. G. Parzen has kindly pointed out (private
communication, 27 May 1959), that a "handy formula" has been proposed to
describe the variation of "tune" in cases such as we consider here. One form of
this formula is such that one would write for the present problem

(lJ'/N)2 ;; (1/3)2 - [(1/3/' - (11 IN):) /1 - (A/A
I
)2 (17)

where A and AI respectively denote the "amplitudes" of the actual oscillation
and of the limifing stable motion. In the pre sent instance we might, perhaps
somewhat arbitrarily, identify Al as proportional to K and write

l

(-V' IN)l ~ (1/3)2 - [(1/3)l - (0.3)2.) -11 - Kll(l<.l)' (18)
I

We now may make a comparison, presented below, of (i) the results derived in
the body of the text, (ii) the prediction of the handy formula noted here, and (iii)
the rotation number derived from the computer results:

v'/N
Kli (Kl)

Formula of text Handy formula ComputerI

0 . 3 • 3 • 3
.Ol8139 .300l .3005 .300l.
• 118 786 . 3009 · 3021 • 3010
• 281 137 .3023 .3053 .30l3
.524 l2? .3049 • 3107 .3051
.856 737 • 3107 • 3211 .3111

1 1/3 1/3 1/3
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Although the handy formula certainly represents correctly the general trend
of V' / N, it appears to be somewhat inferior quantitatively, at least as
applied here, to the more elaborate result given in the text.

6. See, f. ex., W. Grabner and N. Hofretter, "Integraltafel", Ed. 2 (Springer,
Vienna, 1957) in regard to integrals such as they denote by~n dx, n ~ 1

Y
[as in Pt. I, Indef. Int. I Sect. 244, pp. 81 ffJ.
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M:nWESTERN UNIVERSITIES RESEARCH ASSOClATION*

2203 University Avenue, Madison, Wisconsin

CONCERNING THE t//N~1/3 RESONANCE, IV

THE L:M;T~NG-AMPLITUDESOLUTION OF THE EQUATION

:~ l + {a + b cos l ¢ ) u + ~1 (sin l ¢) u" , 0

**L. Jackson Laslett

June 3, 1959

ABSTRACT

The equation shown in the title is reduced, by the transformations

¢d A.7- ' to the form

;,C:If y + i ~ b m (sin l m I) ] yl , O.

Use is made of the results of an earlier report, in which the characteristics

of the limiting-amplitude solution of this latter equation were obtained by a

variational procedure and by application of the Moser method, to obtain

corresponding information concerning the solution u (¢) of the first equa

tion, The ana~ytic work is carried through terms of order (l /3 - V/N)2

and applied to an example in which

a ..;: 0.1262875

UN 0.2997

Comparisons with the results of direct digital computation for this example

indicate the results of the analytic theory are within a few (2 to 4) percent

of computed values_

"". AEC Research and Development Report. Research supported by the Atomic
Energy Commission Contract No. AEC AT(1l-1)-384.

:~:o:

.. Departrr;ent of Physics and .Institute for Atomic Research, Iowa State College,
Ames Iowa.
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1 :

:n 0. previous report.· heremafte:- des~gnated as I, the character-

:s':2.CS of t~e different~a~ eq~_ta.~.ion

(1 )

were investigated, in particu:ar at the stability bour..dary. both by a varia-

tional method and by appEcaticn of the Moser procedure. These results

were extended in a second report. 2 denoted by II, to describe similarly the

results for the limiting-amplitude solutions of the equation

dl; + il viN)l v + (Ill) rL b m sin l m tJ v
2 ~ 0 I (2)

dt Un=l
the work being carried through terms of order (V/N - 1/3)2.

It was pointed out in I that if the coefficient of v in eqn. (1) had con-

tained an alternat:'ng-gradient ,A -G) term, it would have been possible to

transform the equation, through a suitable introduction of new variables,

so as to remove the A-G character of the linear term. In the present re-

port we undertake to apply this technique to the equation

and, by subsequent use of the results of II, then to examine the nature of

the limiting-amplitude solutions for a particular example with a small

ampiitude oscillation frequency giver. by zJ/N ~ O. 2997:

(3)

B. ELIMINATION OF THE A-G ASPECT OF THE LINEAR COEFFICIENT

We commence with eqn. (3; written above .. and. for convenience in

executing the transformations, note that it may be associated with the

>%References are given in Section Eo
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Lagrang:.-1.n

T 'd" IdA.......0 '. u 'f' 1" m'
..4" f'

(4a)

in which

(4b)

T~e transformation to follow then makes use of the constant 2 V/N,

where 27( z};N ('"" cr) represents the change in phase of the solutions of

the linearized eqn. 13) when A ¢ .' 7( and also employs the function

,B (~) commonly employed in the theory of A-G accelerators. 3, 4 We then

introduce the variab;es 5

(5b)

(5a)uV-in);
N rr¢

t-= 2V)
(;>

the transformati.on of the independent variable being such that in an interval

A ¢ ::: 1fE. e., in or:e period of the coefficients of eqn. (3)J:, 6t:.: ~ ii = rr
and the period in terms of t accordingly is the same as in terms of ¢ .

The Lagrangian in terms of the new variables is taken to be

L
1

(dv/dt~ v; t) _.

1 (dV 2 V :2L dv
~ tit) + v at2 N dt

+ ~l~ ~/M/ -~ (~~4J]
B 1 t V,&f/2

(sin 2 ¢) 3
6 N -; v

2
v

(6)
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Tho Lo.g:· :.ng:c.11 r~.:~ t;-e~. r.1odi::ed by 3ubtract~or. of a perfec': dIfferentia;

(7~

the last reduc~ion bemg accomp~isl:edby virtue of the relationb

£ d 2/8 1 (d 5)2
k ,:)2 1 (8)- .....

Z .") 4 : dfP"J /ci(/)'- \ .
I

The dlfferentia~ equatlOn ',vl:.ich f0110\vs from the Lagrangian n: is seen

tc be

B.
1

, 2
2 .i/ \

• ---I

1'7 -' v -
Z-·)£i·5 / 2

~ ... II"-· i
-2-'\ N ) o (91

ar.c. the assocateC: Haml~tcnian is

H 1.2 V /.r z

l N )
.sin 2 ¢) v 3 dO)

with P dv/dt According~y if one makes the expc.nsion

v
~ b (sin 2 m t)
m1 m

{11)

tr.ese results (9~ and \lOj ar-e in U~e form treated in II Ve proceed ther.

to an appJica"':lOn 0: thi::; analysis to a speclfic examp:e in which. for compar-

isor. computational ':?o:utions are 8.vaEable for the original differential equa-

tic!! Specifica~ly we 5ha~1 take
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o 126 2875 ·12aJ

b L 15 and

cor.sider as in ;.: t~.<: dependen: variab~e to be so scaled that

The va~ue of zJ/r:; wh:c~ is implied by th:'s partiC1A:a:~ se:ection of va.;ues

02c!

for a and b may be estlmated a!1alytica~~y 7 ')btair.ed from available tables, 4

or determ:'ned by a di:-ect computation - - ir. the present example we Hr.d

(12d)

or substanEally 0,3,

c. THE EXPANSION INVOLVING ;S

The function f (¢: may be estimated analytica~:y.7 obtained from

tabulated4 values of ;J " ..=inO""): or found by direct computation, In the

present ins~ance, with the governing parameters gi-,ren by :(l2a, b). ,/3 <¢>
itself may be represen·ed by the expansion8 <see Fig, 11

, 1. 3956 [1 T 0 741 13 cos 21

+ 0 083 56 cos 4 ¢
+ O. 004J54 cos 6 ¢ + ,0.] , (13 )

It may be of interest to note in passing that the anaJytic results of reference 7

suggest that in the presen: case tr'..e quantity 2: Ii ranges between the

maximum and minimum values (a,:: 1> ,0 ar',d at ¢ - rrr/2, respectively)

2. 539 and 0.474. whilE the va!ues octained by a direct computation are sub-

stantialJy 2.552 and 0,472,

In the present work we requ:'re tre expansion of B 1 (2 ~,d )1/2 sin 2 <p,

as a trigonometric serle:;; in the variab~e t with t related to rby e qn. (5b),
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The coeff:cients8 of this expansion, (ll), are as listed in Table 1.

TABLE I

COEFFICIENTS, b m , OF sin 2 m t IN THE EXPANSION (11)

a~0.1262875 b.;L15 B 1 cc. 1

m bm

1 1.0645

2 L 3531

3 1.2396

4 0.9878

5 0.7278

6 0.5100

7 0.3450

8 0.2274

9 O. 1470

~10 ~ O. 01

These tabulated values may be employed, in application of the results given

in It to an examination of the expected limiting-amplitude solution to eqn. (3).

The scale distortion in passing from the variable ¢ to the variable t is instru

mental in effecting a pronounced peak in a plot of the (odd) fUnCtior{2
N
V

,dj!f';in 2 p
vs. t (Fig. 2),. with a consequent enhancement of the higher-order Fourier

coefficients bm; the effect of the higher-order coefficients on the salient features

of the phase plots, however, would not be expected to be great.
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D. COMPARISON W~TH COMPUTATIONAL RESULTS

For comparison with availab~e computer results we apply the pro-

cedure out~ined above to the spec:fic case for which
A

a -~ O. 126 2875

b _. 1. 15

( t1N = O. 2997)

particularly with respect to the location of the unstable fixed points which

characterize the unstab~e equilibrium orbit at t "" O. In terms of the nota-

tion of II, then, we cave

1/3 - V/N . 0.0336 3333 . u. :: 1. 009/30 (14a)

0(,. 3,975 962 and (14b)

'l,,-=: 0.8201 1582 ,

making use of the values of bm (m ~ 9) listed in Table 1.

1. Location of Unstable Fixed Points

For the fixed point on the symmetry axis (at t ..=' 0) we calculate ~<*

v::.: 0

(14c)

(15a)

to obtain

~~Eqns. (12 a - d).

**Eqns. (31a, b) of IL

2

1 -

v=:O

p ... - 0.2874 .
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again making use of the values of bm (m' 9) in Table 1. Similarly, for

the fixed points situated to the right and left of the symmetry axis (for t :: 0)

we ca1culate Ji"

2 1_--.:.:.....-_-

1 - 1J2/N 2 1 + 3 z) IN

-2 " m bm f- 1 _ 1 ~ (i -~h
r£;l °1 \ml -9 21'2 /N2 m2-z)lIN~

(16a)

(16b)

to obtain

v ::: '+ 0.4153

p .- 1" 0.2759 .

To transform the quantities v, p, found above, to the quantities

(l6a ')

(16b')

u, P :du/d<!>, which pertain to eqn. (3) and which essentially constitute the

working variables in the computational work, we note from eqns. (5a, b)

that

and

v = 1. 5975 v (17a)

*Eqns. (32a, b) of II.
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p
1 5975

when (as here at t c; ° ¢
(l7b)

O~ !:..-.~4 . 2,552 and dlld¢ -. °(Fig. 1).

T~~e resulting pred:cted fixed - point coordinates and the corresponding

values obtain~d from dig:ta~ computa:.:.c.n are presented in Table II. The

latter va~ues were obtained wi:h the MURA IBM 704 computer, by use of

the DUCK-ANSWER9 program" A phase plot, obtained from the computational

results for 1 ° (mod, 1"C) is given in Fig, 3.

TABLE II

COORD~NATESOF UNSTABLE FIXED POINTS AT ¢ c.: 0,
As Obtained from the Ana!ysi s of ~his Report and from Computer Results

b 1. 15 :zAN '0' 0. 2997

FIXED From Ana:ysis From Computer

POINT u P S dU/d¢ u P "0 dU/d¢

I

On Symm.

° -0.1 7 99 I
° -0, 1866Axis I

Rand L of +0,6634
.

Symm, Axis ... 0 ! 727 ; 0,6866 +0.1765

It is noted from Table 1f tr2t the va:ues found by use of our formulas are

some two to four per cent less in magni:ude than those given by the com-

puter--a situation simLu TO th2.t sr;own in Table VI of I for an example

with V/N -; 0,3"
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20 Rep:-esentation of the Unstable Equilibrium Orbit

Our appJication of the results of II to eqn. (9) gives us, of course, a

trigonometric (sine) senes for v (0, from which. for example. eqn. (l6a)

would follow. In the present example the pertinent coefficients for such a

development of v (t)., and the similar (cosine) coefficients ca~culated sepa-

rately for p (t} by the expressions in II with which our present eqns o (15b)

and (16b} are consistent, are listed in Table III (by use of Table I, consider-

ing m" 9).

TABLE III

COEFFICIENTS FOR A TRIGONOMETRIC EXPANSION OF v(t) AND p(t)
m~9

Argument m Sine Coefficient in v Cosine Coefficient in p

2 t/3 1 -0.477 435 -0.309 642
2 t 1 +0.018 056 +0.036 113
8 t/3 2 -0.005 580 -0.015 631

10 t/3 1 -0.003 329 -0.010 649
4 t 2 + O. 005 343 +0.021 370
14 t/3 3 -0.001 687 -0. 008 098

16 t/3 2 -0.001 567 -0.008 145

6 t 3 + O. 002 148 +0. 012 887
20 t/3 4 -a. 000 665 -Ou 004 520
22 t/3 3 -0.000 744 -0.005 354

8 t 4 +0.000 959 +0.007 668
26 t/3 5 -0. 000 291 -0.002 565

28 t/3 4 -0.000 362 -0.003 330
10 t 5 +0. 000 451 + 0.004 511

32 t/3 6 -0.000 135 -0.001 462
34 t/3 5 -0.000 180 -0.002 012
12 t 6 +Ou 000 Z19 + 0.002 631
38 t/3 7 -0 0 000 065 -0.000 834
40 t/3 6 -0.000 091 -0. 001 196
14 t 7 +O. 000 109 +0. 001 525
44 t/3 8 -0.000 032 -a. 000 475
46 t/3 7 -0.000 046 -0. 000 702
16 t 8 + 0.000 055 +0.000879
50 t/3 9 -0. 000 016 -0. 000 271
52 t/3 8 -0. 000 024 -0.000 409
18 t 9 +0.000 028 + O. 000 505
58 t/3 9 -0, 000 012 -0. 000 237
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The cop-version of v ~t) to u {¢) would appear to be rather tedious,

involving as it does both the factor 1'l' and the non-linear relation be

tween the independent variables t and 4. It is of interest to note from

Table III. however: that v (t) itse.~fevidently should be rather well. rep-

resented by its first one or two coefficientsi' --say by

v (t) ~ -0.477435 sin 2 t/3 + 0.018056 fin 2 t . (18)

If a table of values of u :-.;i 2 ~,4 V j vs. ;" is constructed by hand

computation" one finds that eqn. (18) suggests u (¢) should have a rep

resentation8 in which the leading terms are roughly

u (¢) ~ - O. 5339 sin ¥ + O. 1772 sin ¥ + O. 0155 sin 2 if>

-0.040
0

sin ¥ + .•• (19)

this result, eqn. (19), may be compared with the direct computer analysis 10

of the limiting-amplitude solution for eqn. (3), namely (with Bl :;; 1);

u (¢) ::;: -0.55231 sin!:./- + 0.18429 sin if. + 0.02167 sin 2 ¢

-0.04919 sin~ + 0.00575 sin¥ + 0.00283 sin 4 ¢

-0.00140 sin ¥ + .•. v (20)

As with the data of Table II, it is seen that the major calculated coefficients

in the representation (19) are some three or four per cent less than the

corresponding directly-computed values shown in eqn. (20).

*Cf. the result of the numerical solution of eqns. (8a - c) in Sect. C 1 of I,

or the computer results given by eqn. (12a) of that report ( zJ .-:: 0.3).
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9. J. N. Snyder" DUCK-ANSWER (IBM Program 75), MDRA-237 (1957).
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M~DWESTER.N lJI\T:VER5TT:ES RESEARCH ASSOC:AT~ON!

2203 University Avenue Madison. Wisconsin

CONCERNING THE ~N~ 1/3 RESONANCE, IV A

A TRIAL FUNCTION FOR THE LIMITING-AMPL:TUDE SOLUTION OF

2 B
d u + (a'" b cos 2 ~:I u + -21 (sin 2 rA) u 2 : 0
dc/>2 r

Lo Jackson Laslett'*'*

June 17 1959

ABSTRACT

For comparison witt. the results given in an earlier report, use of a

trial function for the limiting- amplitude solution of the equation given in the

title is illustrated for an example in which

z)IN ~ 0.2997

a 0 0 1262875 b .. L 15

B 1 - 1

The trial function employed sine functions of argument 2 f}/3, 4 f/3, 21J,

8 ~/3, and 1017/3. The coefficient found for the dominant term appeared

to be within one-tenth of a per cent of the computer result and the spatial

fixed-point coordinate (for the unstable fixed points situated to the right and

left of the symmetry axis at ¢ " O. modo 'it) within 0.2 per cent; the corre-

sponding fixed-point momentum is found to be somewha.t less accurate, due

to the enhanced comributions of error from the higher-frequency terms, the

error being roughly 3% in this example.

*AEC Research and Development Report. Research supported by the Atomic
Energy Commission, Ccntract No. AEC AT /11-1)-384.

**Department of Physics and Institute for Atomic Research., Iowa State
College. Ames, Iowa.
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A. :NTRODVCTION

In a pr evio'.ls repo::'t 1- solutions to the differential equation

2 B
:¢~ ~ ;a T b cos 2 ¢: U + + (sin 2 pl u

2
" a

were studied by the Moser method;. after use of a suitable transformation

to eliminate the alternat::ng-gradient (A-G) character of the Hnear term.

The limiting-amplitude solution was examined in this way for a particular

(1)

example and the results compared with corresponding computer information.

Recently an interest has been expressed2 in the use of a variational

or harmonic-balance method to estimate the limiting-amplitude solution of

eqn. (1). in a way which would parallel closely the application of this method

in other papers 3 of this series and in earlier reports. 4 In the present re-

port we apply this method to eqn. q) and illustrate the results for the ex-

ample which was previously employed in reference 1.

B. TEE VARlATIONAL METHOD

As in earlier work~· 4 the differential equation is replaced by a varia-

tional statement for purposes of determining the (periodic) unstable equilib-

rium orbit. In the case of eqn. (l), this statement is

[[«UI )2) -a<u2 ) -b <u2 cos2¢) -(BI/3)<u3sin2¢>]::O,

(2)

the prime denoting differentiation with respect to ¢ and the symbol <.. )
denoting that the function embraced is to be averaged over one or more

periods. The coefficient B1 of eqn. (1) may, of course, be made unity by

suitable scaling of t~e dependent variable u,

*References are given in Section D.
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In selecting an adequa.te. tut :-easonabJy simple, trial function we note

first that the dominant term :n a deve:opment of the periodic solution con

trolled by the YIN -71/3 resonance would be expected to be of the form

Al sin 2 ¢/3, the sine functi.on being selected because of the predictable

symmetry of the phase plots {at ¢: a.mod. 'lC) about the vertical axis. Be-

cause of the nature of the coefficient of the ~inear term in eqn. (1), this

dominant term should be supplemented S by terms of argument 4 ¢/3 and

8 ~/3. while the non-linear term suggests 3 supplementary terms of argu

ment 2 ¢ and 10 ¢/3. We select therefore, the five-term trial function

u =Al sin 2 iJ /3 + A2 sin 4 ¢/3 + A 3 sin 2 ¢ + A4 sin 8 ¢/3 + ASsin 1a¢/3.

(3)

Substitution of the trial function (3) into the variational statement (2)

leads to

i ~(lll;[(lI3)l- a] All + '1Il)[(4/3)l. a] Ai + (l/l)[(l)l- alA:
+ (l/2> Fa/3)2 - aJ At + (1i2) [00/3)2 - a]A~

+ (b / 2) A 1A 2 - (b / 2) A 1A 4 - fa /2) AzA 5

+ 0/24) Al- (1/4) Al A 3 + d /8) A 1
z

AS

- (l/8) AlAi - (1/4) A 1A zA 4 - (1/4) A1A 3As

- (1/4) A;A 3 - (1/4) A 2A 3A 4 - (1/4) A zA4A S

- (l/8) Ai - (1/4) A 3Af - (1/4) A 3A; - (1/8) AiAs} ~ 0, (4)

where, for simplicity, we have set B 1 :::' 1.

By making the appropnate differentiations of eqn. (4), one then obtains

the simultaneous non-linear algebraic equations
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which serve to determine the coefficients Al' ..• A5 .

C. NUMERICAL EXAMPLE

In the specific case taken as an example in reference 1, for which

/,

(5)

a = 0.1262875

zltN = 0.2997

b = 1. 15

an approximate numerical solution of eqns. (5) leads to coefficients such

that the trial solution assumes the form:

u = -0.5520 sin 2 ¢/3 + 0.1840 sin 4 ¢/3 + 0.0213 sin 2 ~

- 0.0497 sin 8 ¢/3 + 0.0057 sin 10 ¢/3 . (6)

This result may be compared with the Fourier analysis of the limiting

amplitude solution given by direct.computational integration1, 6 of eqn. (I),

namely

u = -0.55231 sin 2 ¢/3 + 0.18429 sin 4 ~/3 + 0.02167 sin 2 ¢
-0.04919 sin 8 ¢/3 + 0.00575 sin 10 ¢/3 + 0.00283 sin 4 rp

-0.00140 sin 14 ¢/3 + ... . (7)

From comparison of eqns. (6) and (7) it is noted that the coefficients

given in (6) agree through three decimal places with the computational result
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and the coefficient of the dcminant sin .2 ¢/3 term is within one-tenth of

one per cent of tte va.lue found computationally. From eqn. (6) the spatial

fixed-pomt coordinate (fo: ~hp. unstable fixed points situa~ed to the right and

left of the symmetry axis at ¢.: G mod, 7f. j is obtainab~e within O. .2 per

cent [c f' Tab:e II of reference 1.]. The corresponding fixed-point momenta

are found to be somewhat Jess accura.te, due to the enhanced contributions

of error from the higher-frequency terms--mcluding those omitted from

eqn. (6)--the error being of the order of 30/0 in this example.

In summary. it appears that the use of a trial function of the form

given in eqn. (3) permits one to obtain a reasonably accurate representation

of the periodic solut~on to eql'!. (1) with rather better accuracy and some-

what less complexity than by employing the methods outlined in reference 1.

These latter more general methods, however, do of course permit additional

features of solutions to equation \1) to be estimated ana1ytica11y.
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ds2. + \N v - l (cos 2. s) v - A \cos -3-) = 0

RE~""~-...... y- ~
• 'to,,, -, • •

L. Jackson Laslett and Seymour J. Wolfson

NUMBER _4_9_7_

1-509



I"vIl'RA-497
Distribution List GC 28

MIDWESTERN UNIVERSITIES RESEARCH ASSOCIATION;'
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CONCERNING THE V/N~ 1/3 RESONANCE, V

ANALYSIS OF THE EQUATION
2 .

d 2v (2. V) . b 2"). 2 s
-- t. -- v - - (cos 2 s ) V -/\ (cos --) = 0
ds!. N 2. 3

.- ***L. Jackson Laslett' -0 and Seymour J. Wolfson .

August 17, 1959

ABSTRACT

An analytic and computational study has been made of the equation given

in the title, specifically for the fixed points in the case tJ/N =0.3, b =1.15,

and A usually equal to 0.006. The equilibrium orbits and the fixed points are

found to be obtainable quite accurately by a variational method or by use of

harmonic balance if a numerical solution of the simultaneous algebraic equations

for the coefficients of the trial function is performed. A straightforward applica-

tion of the Moser procedure is seen to involve as a first step the elimination of

the stable forced equilibrium motion--a~ is given by the appropriate trial-function

solution--and the new differential equation is then found to involve an s-dependent

(A-G) coefficient for the linear term. The solution is carried through, by con-

tinuation of the Moser method to the same order as in previous reports of this

series, aided where appropriate by numerical work for the particular example

considered. An alternative, and considerably simpler, analytic method similar

to the Moser procedure is also examined and is found to lead to results of reason-

able accuracy without requiring extensive numerical work. This last method also

permits one to estimate without great effort the critical value of )I at which the

stable fixed point and one of the unstable fixed points become coincident.

*Research supported by the Atomic EnergyCommission, Contract No. AT(lI-I)- 384.
*:"~Departmentof "Physics and Institute for Atomic Research, Iowa State University.
***Summer participant from Wayne State University, Detroit, Michigan.
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A MOT IVA TION

computer studies, to be reported in detail e~sewhere; have been in

progress to examine the regions of phase space from which injected particles

may be captured into a stable region .vhen a secularly-changing perturbation

(decreasing field bump) is applied to an FFAG structure characterized, under

certain simplifying assumptions. by a simple non-linear differential equation

whose stability limits are determined by the V/N~ 1/3 resonance o In

parallel with the computer studies an analytic investigation has been made of

unperturbed differential equations, similar to that employed in the computer

work, and the results summarized in a series of MURA reports. 1. 2, 3;~ It is

the purpose of the present report to investigate in a somewhat similar way

the character of solutions--particularly of the limiting-amplitude solutions--to

an equation of this same form but containing a static perturbation (field bump

free of secular change).

B. PROCEDURE

The differential equation which which we shall be concerned in the present

report Nill be taken to be 4

dlv (2 z))2 b . 2 2 s
ds 2 +\~ v - 2: I,COS 2 s) v - »cos -3- ~ 0,

If one visualizes the application of the Moser procedure!) to Eqo (1,

(1)

in the spirit

1,2 3of previous reports in this series one realizes that the fir st step which it

*References are given in Section I at the end of this report,
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would be n;:ttural to undertake would be the removal of the forcing term

2 s "- l'cos -3- , from Eq. (l), This step ,vhich may be regarded as making

a transformation of the dependent variable so as to measure displacements

from the stable (forced) equilibrium orbit, appears to requ~re. then, determina-

tion of this periodic solution (period 31[) by harmonic balance or some similar

method. It may be remarked that the very steps which are then employed to

determine this stable equilibrium orbit are substantially those which also can

serve to give unstable equilibrium orbits and hence, to a degree, may provide

the solution to the questions of major interest with respect to Eq. (1).

The elimination of the forcing term from Eq, (1) results, by this pro-

cedure, in the new differential equation containing a s-dependent (A-G) co-

efficient for the linear term, thus removing any simplification which it might

have been supposed would result from selection of the simple non-AG coefficient

for v in Eq. (1). A continuation of the analysis "Would then require removal of

this A-G feature from the linear term, by a transformation of the dependent and

independent variables through use of the function I (s), in a manner paralleling

that illustrated in a previous report. 3 Following completion of such preliminary

steps it should then be possible to proceed with the Moser method, as it was

applied in reference 2, to obtain results which may be interpreted in terms of

the original variables after application of the appropriate reverse transformations.

It can be remarked, if one may anticipate, that the preliminary steps

mentioned above can typically be performed with acceptable accuracy more

*The writer is indebted to Dr, F T, Cole for discussIons concerning the straight-

forward method of applying the Moser procedure to equations of the form of Eq. (1).
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satisfactorily by numerical solution of the algebraic equations, which serve

to ~ecify the coefficients of the various functions which are required; than

is possible conveniently by purely algebraic means. In view of this situation

it is understandably difficult to expect that one can obtain satisfactory final

results in a simple closed algebraic form.

In what follows we undertake to carry through the analytical procedure

outlined above for a specific example, using numerical solutions of algebraic

equations where desirable but attempting also to note approximate handy

formulas which may serve to indicate roughly the magnitude of the quantities

with which we are concerned. As a second undertaking; we also attempt to

follow, in Section H, a somewhat less logical procedure which; it is hoped,

may have some merit in circumventing the inconveniences mentioned above.

C. THE FORCED MOTION
(Stable Equilibrium Orbit)

The solution of equation (1) Nhich describes the forced motion, or

stable equilibrium orbit, may be sought by harmonic balance or by application

of a variational procedure similar to that employed to find the periodic (un-

stable) solution to the equations of references 1~ seq. We thus replace Eq. (1)

by the variational statement

~ [< (dv!ds)Z> - (2 V/N)Z t... v 2) + (b/3) <v 3 cos 2 s> + 2/\.( v cos 2
3

S >] = 0;
(2)

in which the symbol <>denotes that the average value of the embraced

quantity is to be taken. For the present purpose a trial function of the form

v = A1 cos 2 s /3 + A2 cos 2 s + A3 cos 10 s /3
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is substitut~d into Eq. (2) to obtain

or

(4)

b Z b b b
+-A +-AA+-AA+ AA =

8 1 Z lZ 413'4 Z3 -A (5a)

[
(.Z 7Jt] b 2 3 b Z b b Z

4 - \NJ A Z +"4 Al + -8-' A Z + '4 Al AS + '4 A 3 = 0

[
100 (Z V\Zl b Z b b
-9- - N) AS + '8 Al +"4 Al A Z +"2 A Z A 3 = O.

(5b)

(5c)

Equations (5a-c) admit, of course, the solution Al = A Z = A 3 = 0 when

A = 0, corresponding to the equilibrium orbit v !I 0 which applies in that

case; with 7\ not necessarily zero, the corresponding solution is such that

with

and

N /\
AI..... - -4-/-9---'---'(Z-z.}---=-/-N-)Z~

N bIZ
A Z := - -4 -z} Z Al

4 - (Z /N)

(6a)

(6b)

1

100/9 - (Z t://N)Z
(6c)

Somewhat more satisfactory results than can be obtained conveniently from

Eqs. (5a-c) by algebraic means are obtainable numerically--in the particular

case that

-v1N = 0.3 (7a)

b = 1. 15 (7b)

:It = 0.006 (7c)
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we find values of AI' A2, A3 such that

v = - 0.0831620 cos 2 s/3 - 0.0005469 cos 2 s - 0.0000937 cos 10 s/3, (8a)

while a computer inveStigation6 leads to the result

v =- 0.083160 4 cos 2 s/3 - 0.000546 7 cos 2 s - 0.0000937 cos 10 s/3. (8b)

The corresponding location of the stable fixed point, for s =0 (mod. 31'[),

is at

v = -.0838026 from Eq. (8a)

and at

v = -.083802
3

from direct computer studies.

The results of the numerical solution of Eqs. (5a-c) are thus found to be in

excellent agreement with the computer results, while the stable fixed point

computed from the simple forms (6a-c) would be -.07105 -.00040 -.00007 =

-.07152, or about 85% of the correct value ..

D. LIMITING-AMPLITUDE SOLUTIONS
(Unstable Periodic Orbits)

1.
In addition to the solution of Eqs. (5a-c) discussed in the previous

section, these equations admit a second solution--a solution with which the

unstable fixed point lying on the symmetry axis of the phase plot (for s =0;

mod. 3 'TO is associated. The coefficients given by this second solution

have values given roughly by

Al£8[~-(~tJ
b

+

(in which the first term should represent the value of Al for /\ =0), and
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A Z = - "4 -tJ Al

4 - (2 /N)2

A,.J b 1

3 8 100/9 _ (2 tJ/N)2.

(as in (6b, c)].

MURA-497

(9b)

(9c)

A numerical solution of Eqs. (5a-c), for the parameters taken previously

[Eqs. (7a-c)], leads to the solution (unstable periodic orbit)

v = - 0.4262.94 cos 2 s/3 - 0.014466 cos 2. s - 0.002597 cos 10 s/3, (lOa)

whereas a computer investigation leads to the result

v =- 0.426274 cos 2 s/3 - 0.014468 cos 2 s - 0.00l598 cos 10 s/3

- 0.000098 cos 14 s/3 - 0.000010 cos 18 s/3 - ....

The corresponding fixed-point location (for s ::: 0, mod. 3 n) is

(lOb)

and

v ::: - 0.443357

v ::: - 0.443449

from Eq. (lOa)

from direct computer studies.

With a stronger perturbation (larger'). ) this unstable fixed point and the

stable fixed point will approach one another.
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P.

U.S.F. P,

~ === 0 mod. 31t

).. :; 0.006

Stable
F.P

U .. S.F. P.

To determine in this same way the locations of the other unstable

fixed points--those situated above and below the symmetry axis of the s -~ 0,

mod.31T. phase plot-- a trial function more general than that shown in
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..,
Eq (3) must be 2mployed For ,::i3 purpose \. e may emp20y the periodic

trb.l function

V ::- A 1 cos 2 s /3 .,.. A 2 cos 2 5 .,.. A 3 cos lOs /3

:. (E1 sii1 2 s/3 + B.2, sL1 .:; s + 3 3 sin'10 s/3)

vvhich, upon introduction into {he variational statement (2) leads to

(11 )

C' [1 (4 (2 ~)2J 2. 2 1[ (2 V)2.J~ 2 2) 1r100 (2 Zi?:](. 2 2)a "2"9 - Nj C'i + B 1 ) + 2" 4 - \N/ ,A 2 + B2 + 2" [-9-- N) A 3 + B3

b ~ 0 b
--A. B, + -A. B

1
B

3
+ - A, B 2 B:~8 .L .L 4 .L 4°·.L_

or

b :; b
- ~ B-' .\ B B- " rt 3 . .,.. -:i -~.) • _/o 1 ~ <.l .L o (12)

-A (l3a}

[4 -trr!] b 2 b 3 b :- b 2
A 2 +-A! +-A. 1 A" + -_. A; +"4 A 34 4 . .) 8

+~
2

- b B +.£p2.+ b 2- 0B
1 B 3 - 3~

4 "4 1 8 2. 4 J

';'It may be noted that in contrast to cases discussed in previous reports

(13b)

(e. g., ref 1), the basic perioC: of the coefficients in the differentIal equation

is 3 IT when the pertur:)ation is present and the locations of the various fixed

points arc no 10Llger obtainable I'ro~l a s:'a:;le periodic solution by substitution,

in turn of val:.:.es of the indepei10cnt yaric:.ole c.iffc:ring b:v 7L from one another
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(l3e)

(130

Possible solutions of Eqs. (13a-f) are of course given by B 1 ::: B 2 =B
3

=a

with A1, A2; A3 then being solutions of Eqs. (5a-c); the new results which

are obtained by admitting the case in which not all the coefficients B i vanish

will have, very roughly,

,..

~ 4 f3l~
b

1

13 [~ - (2:/]

(l4a)

(l4b)

,
(l4b )

A numerical solution of Eqs. (l3a-f), again for the parameters specified by

Eqs. (7a-c), suggests a solution

V :: 0.244637 cos 2 s/3 - O. 022431 cos 2 s + O. 002307 cos 10 s/3

+ (0.470329 sin 2 s/3 - 0.000021 sin 2 s - O. 003362 sin 10 s/3), (l5a)

while a computer investigation gives the corresponding result
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v =0.244624 cos 2 s/3 - O. 022434 cos 2 s + O. 002309 cos 10 s/3

+ 0.000087 cos 14 s/3 - 0.000020 cos 6 s +

+ (0.0470300 sin 2 s/3 - 0.000021 sin 2 s - O. 003365 sin 10 s/3

+ O. 000168 sin 14 s/3 - 0.000002 sin 6 s + ... )

The corresponding fixed-point coordinates (for s =0, mod. 3 7T) are

(15b)

and

v = 0.224513

p = + O. 3023

v = 0.224566

p = + O. 3030

}

}

from Eq. (15a)

from direct computer studies.

The methods described in this section evidently are able to give a good

representation of the unstable periodic solutions for the differential equation

(1). For the present, however, we shall regard this section as a diversion

and proceed with the results of Section C to effect a removal of the forcing

term from (1) and 50 per mit a continuation of the analysis in the manner out-

lined in Section B.

E. REMOVAL OF FORCING TERM AND DETERMINATION OF # (s)

1.

If we denote by v 5 the stable periodic orbit resulting from the forcing

term - /\ cos ¥ in Eq. (1), with v s taken as well given by expressions

presented in Section C (e.,;..E., Eq. (3), w-ith coefficients as illustrated in

Eqs. (8a. b)], we may w-rite

v = v + q
5
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and transform Eq. (l) to the form

_
d

2
q + ~"'.(2,))2 _ b ] b 2(cos 2 s) V s q - -2 (cos 2 s) q .. 0

ds2 N

or I making use of (3),

d2q [(2-zJ) bA2 Al + A3 ~ Al 8 s A 2 A 3 16 s]- + -- - -_. - b cos - b -2 cos -3-- b Teas 4 s - b-2 cos -3- q
ds2 N 2 2 3

- £ (cos 2 s) q2 ::: 0 (17b)
2

in w-hich the terms of primary importance in the coefficient of q would normally be

(
2 V)2 _b A 2
N - I

l.

b Al
--- cos~2 3 ;

b Al 8 s
and - -- cos2 3

With the coefficients of v found in Section C by numerical methods
s

[cf. Eq. (8a) ] I for the parameters specified by Eqs. (7a-c), the differential

equation (17b) for q becomes

d 2q [ 4 s • 8 s- + 0.3603 145 + 0.0478 720 cos -3- + 0.0478 182 cos-
ds 2 3

+ 0.0003 145 cos 4 s + 0.0000 539 cos 1~ s ]

- 0.575 (cos 2 s) q2 ::: O.

2.

q

(18)

It is of some interest to estimate the small-amplitude oscillation

frequency ~ for Eq. (18), and it is necessary for what follows to describe

the variation of the function I which qp.aracterizes the solutions of the

linearized equation. To this end it is convenient to introduce a change of

scale for the independent variable,

2.
'C ;: '3 s

and consider the linearized equation
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_d 2q + (a + b cos 2'0 + c cos 4'C ) q _. 0
d~2

-.vith, in the case corresponding to Eq. (18),

a = 0.810 708

b = 0.107 712

c = 0.107591

lVICRA- 497

(20 )

(21a)

(21b)

(2Ic)

(the coefficients of the higher-order terms, cos 6 7: and cos 8 c:: , being

ignored).

(i) It is tempting to attempt to estimate the oscillation frequency for

Eq. (20) by means of the "smooth approximation"--since the value of 2{

for Eq.

for Eq

(18) is not very far from ~ and hence the corresponding value. V:
3,

(20) not far from unity (0- near 7C>. however, this method would

be inappropriate A possible, relatively quick, estimate may be obtained

by reference to available ILLIAC tables 7 from which one finds

cos v 'rr~ coshIT - O. 36 b
2

- O. 022 c 2 (22)

for band c small, h in the neighborhood of 0.9, and with t/'denoting

i ~ in the present application. With the particular coefficients of interest

here [Eqs. (21a-c)], the expression (22) gives z)' = 0.9051; or ~ ::-: 0.6034,

in complete agreement with the value found by direct computation4 6a for

7\ = 0.006. Alternatively. a somewhat less arbitrary estimate may be made

in connection with an examination of the range of variation of ,11 , to be dis

cussed below.

(ii) The differential equation (20) is of the fb rm

d 2

~ + ( a + b cos NT: + c cos 2 NT:) q = 0,
d"l;
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with N =Z. As has been noted previously, 8 a rather accurate solution may

be found by use of the trial function

q ::: go cos -zJ1:+ f1 cos (N - -z)')1; + g1 cos (N + tJ/)7:

+ f2 cos (2 N - Vi) 'C + g2 cos (2 N + z)/),(; (23)

and use of harmonic balance.;~ There results in this way the algebraic

equations

~,~ b c
a - + "2 (f1 + g 1) + "2 (f2 + g 2) = 0

[a - (N - z}')Z] f 1 + ~ ( 1 + f2 ) c 0+ "2 g1 =
- V' 2] b cLa - (N + ) g1 + - (1 + g2) + 1" f1 = 0

Z

[ a - (2 N - z),)2J f b c 02+2 f1 +2 -

[ a - (2 N + z}')~ b
+~ o .g2 + 2 g1 .-

2

(24a)

(Z4b)

(24c)

(24d)

(24e)

- J' .. aGuided by prior knowledge of at least an approximate value of -v

numerical solution of Eqs. (Z4a- e) is readily obta.ined. leading in the present

case [coefficients given by Eqs. (21a-c)] to

f
1 = 0,1408 59 (25a)

g1 ..• 0.0080 69 (25b)

f
2 = 0.007001 (25c)

and

.
gz = 0.0023 33

z)',; 0.9051 (t4... 0.6034).

(25d)

(25e)

The extreme values of VJ1 ('Z:'L and hence of the quantity ~,8(S)

for Eq. (18), are given by8

1 ~ (f1 + g1) + (f2 + g2) (26)

I +[(~ - 9II -(~+0gl] -[(~- 012{:'+ I) g21 '
¥We here omit, for simplicity, the phase shift (denoted by €., in ref. 8) which

permits one to form in this way a general solution.
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the upper and lower signs referring respectively to s 0 (T 0) and

s = 3 n /4 ("l:' :-: 'It /2)- -the range of values for ~I suggested by ~.

ical values of f1 etc given in Eqs. (25a-e) is, then

0.759.(. -zJ,...ft ~ 1 372 . (27a)

These limits, (27a), are within a fe\v tenths of a percent of the computational

values.

O. 7578~ -z,{/~ 1. 3755 . (27b)

It appears to be quite tedious to derive Vf1 (1:) as a function of t: from

the solution q ('(;") as expressed by Eq. (23)--on the supposition that the

variation is a pure cosine function: however, one might \'/rite roughly

~I~ 1. 066 + O. 306 cos 4 s /3. (28a)

b
A corresponding very approximate formula, based on taking f1~ 8 (1 - z"I~)

and ignoring g1' . ,might be written

zi.../~ 1 + 4 (l ~"'iJ') cos 4 s/3 or 1 + 2 (l
b

_ a) cos 4 s/3

dhich, in the present example ,,';oulci lea·::; to

(28b)

~;5'~ 1 + 0 2H4 cos 4 sU (28b')

A more satisfactory evaluation of ~.:"'2 funct'onaJ .;", :e;1d2ilC(' of

may be sought by reference to the Jifferentia:l e(~'..latioi1 , 1:jch b satisli.<

2 2
.L d 4 _ 1. (~) + (a + b cos 2 7:: + .c cos 41:: ) A 2 1. (29)

2 d'02 4 dl.- I

A functional dependence

~ -= A + B cos 21:: + C cos 41:

'~Cf. Eq. (8) of reference 3
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may be inserted into Eq (29) and the coefficients adjusted by harmonic

balance to obtain the set of simultaneous equations

2 6-la-c
a A - -----

4

2 a) b
B - (6 - 2) c- -+- b A B + l B C + c A C = 1 (31a)

- 2 (l - a - ~) A B - (7 - a - c) B C + b (A 2 + ~ B 2 + 1. C 2 + A C) ::: 0 (31b)
242

_2(4_a)AC_l-a-cB2+b(AB+BC)+cA2+~cC2::O. (31c)
2 . 4

For the parameters a, b, c as given by Eqs. (21a-c), a numerical solution

of Eqs. (31a-c) leads to

A - 1. 1536

B - 0.3365

.
C :: 0.0247 ;

substitution of these values into the expression (30) and multiplication by

1/'(= O. 9051)~' leads to the result

W= 1.044 + 0.305cos4s/3 + 0.022cos8s/3

The results of a computer analysis of this case leads to

~/= 1.04501 + 0.30735cos4s/3 + 0.02156cos8s/3

+ 0.001 51 cos 4 s + 0.000 06 6 cos 16 s/3 ;

with which the numerical result (33a) is in reasonable agreement.

F. ELIMINATION OF THE A-G COEFFICIENT FROM THE

LINEAR TERM AND CONTINUATION OF THE MOSER METHOD

1.

(32a)

(32b)

(32c)

(33a)

(33b)

For continuation of the analysis of Eq. (18), it is convenient to intro-

duce the independent variable

:'~By use of the values (32a-c) in connection with Eq. (30) a value oftl"'could
be estimated from this solution for ;1 by forming t.I~ c= .(.1 1;5'> .
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t = ?:12 = s/3 (34)

to obtain

d 2q
+ 4 (a + b cos 4 t + c cos 8 t + ... ) q - 5. 175 (cos 6 t) q2 = O. (35)

dt l

As in an example presented previously (Sect. Bof ref. 3], the transformation9

Q = ql1-v'ji (36a)

T -_ Jt dt (36b)
o 11,1

enables one to eliminate the A-G aspect of the coefficient of the linear term

7,/' == 2 (0.9051) = 1.8102. The variables t and T become

(37)-Z)"Z Q-5.175(7)~)5/2(cos6t)Q2 = 0,+

in Eq. (34). to obtain:

d 2Q

dT
2

V" = 2in which

equal at t =0, q-[/4, 'Tr12, 3 7r 14, 7£, etc. The quantity (zJ~ )5/ 2 cos 6 t,

if expressed6b , 10 in terms of T (Fig. 1), permits Eq. (37) to be written

d
2

Q [-- + 3.2768 Q - 1.03504 cos 2 T + 5.41441 cos 6 T + 3.05511 cos 10 T
dT

2

+ 1. 26600 cos 14 T + 0.46114 cos 18 T + 0,15573 cos 22 T

+ 0.04940 cos 26 T + O. 0144i cos 30 T + . , J 0 2 = 0 (38)

It may be helpful to note that, with 1/Nnear 2, the oscillations will

have a phase change of about 2 rr in one period of the term 1.03504 cos 2 T

(as for an integral resonance) and a phase change near 2 77:13 in one period

of the (larger) term 5.41441 cos 6 T (third-integral resonance). Accordingly,

as we shall indicate in the work to follow, in undertaking to remove by the

Moser method 5 the T-dependence from the Hamiltonian associated with Eq, (38)

special attention must be given both to terms stemming from the cos 2 T term

above and to those stemming from cos 6 T, in order to avoid potentially-

resonant denominators.
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Solutions for the unstable equilibrium orbits associated with Eq. (38)

could; of course; be sought by harmonic balance, although this procedure

would be of value only as a check of the preceding Nork since the original

equation [Eq, (1)] was already treated satisfactorily by this method in earlier

sections (Sects, C and D). Thus one solution of Eq, (38) may be sought in

the form

Q :: C 1 cos.2 T + C2, cos 6 T + C 3 cos 10 T ;

in which; approximately,

Al =- 0,29519, A 2 = - 0.01036; and A3 = - 0.00303;

. accordingly the corresponding fixed point for Q (at T =0) is at Q =- O. 30858,

q = i2Jl'Q ::: 1. 17282-(- 0,30858) =- 0,36191, and v :: v s + q =- 0.08380 - 0.36191

:: - O. 44571: which is in error by about one- half of one percent of the computer

fixed point, As a further check, a direct computational determination of the

unstable fixed points for Eq. (38) was made; retaining just the first four cosine

terms in the coefficient of Q2; the values of (G. P) found in this ..;..ray ..;..rere

(- 0.30729 , 0) and (0. 263, ~ 1. 064), which correspond to values of (v p) ..;..rhich

are (- 0: 4442,0" 0) and (0. 22465 ; ~ 0,302405 ) and thus are in good agreement

with the results (- 0.44345, 0) and (0. 2246; ~ O. 3030) reported previously

(Sect. D) from direct computer studies of Eq. (1).

In the subsection to follow we continue with the Moser procedure, which

is of greater versatility than the harmonic-balance methods of Sects. C and D,

applying the Moser method to Eq. (38) and then deducing in particular the fixed

points in this way.
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The Hamiltonian associated with Eq. (38) is

H = -!. p2 + ~ V~Q2 - ~ (b
1

cos 2 T + b., cos 6 T +
2 2 3 '-

MFRA-497

+ b. cos 2 (2 j - 1) T + ... )Q3
J (39)

- )"
where P denotes dQ/dT, // = 1. 8102, b 1 = 1. 03504, b 2 =5.41441, etc.

As in previous reports, 1- 3 we now employ the generating function

Go (Q, ~) = (z}"/ 2) Q2 ctn )';

to effect the transformation

p = 3 G~:/dQ = -zJIQ ctn ~

J o = oGo/tJYo = (-z}/12) Q2 csc 2 ~

thus

and the ne w Hamiltonian is

(40)

(41a)

(41b)

(42a)

(42b)

(42c)

(42d)

K o = H + ;; Go /;) T

= H

= V"Ja - i- (?f 2
J~/2 sin3 f. jt;1 b j cas 2 (2 j - 1) T

=_JII _...!.. ( 2 ~3/2 3/2~ t3Sin[~t 2(2j - l)T] t 3sin ['fo- 2(2j - l)T) ~
7/ J o 24 .. )11 J o L bJ

v j=l' -sin[3"t2(2j-l)T]-sin[3Yc,-2(2j-l)T]
•

(43)
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As a second generating function we next employ

in which the Kronecker delta,

3 ~t-2.(tJ~l)r] 13(1-[/) ~['t-Z(2JJ-QTJ
z)'+Z (2J -I) J -z)"- 7. (~j -I)

_~[3J;r2(~-M-f-S/) ~{3t,-Z(Zj-/rrl
3 z)'~2 (~j -I) ~ 3 z)"-Z(ZJ -I)

S~ or S~ J serves to eliminate terms
J 'J

which, with j =1 or j =2, would lead to terms with potentially-resonant

denominators. The transformation equations which result from the generat-

ing function G 1 (", J 1) are

J 0 = aG 1 /a y;,

1'; :: ;;6,I;;Ji

=~_*~~1~JJf;j

~['-;-2.(ZJ-i)T]+0-;/) .Ahv[y;, -2.(Zj-I)T]
V"-t-Z(?.j-J) :.J t/"- Z (Zj -I)

- .d7l4?/'a +Z(2.j-l)T]-(I- S~) ~[3~ - 2,{Zj -1)7J
3 V + 2.(2,j -I) "J 3v"'-Z(Zj-l)

3 ~[fa+Z(7..j -1)7'J +3(1-8!) a,u['Ia- Z,(2j -or]
-z)"-f"Z(~J-/) 'J -z)"-Z(2j-l) (4-5~)

_ w.J[3'fo 1-2.(Zj-I)T] -(l-S.) ~f}Yc, -l(zJ -i)r]
3'1J".,. ;z{~j-I) J av"_ Z(:lj-P ~

with the new Hamiltonian
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3 ~.rfo +Z(~.j-I)7') -3U-["/) ~(~-l{zJ-;)ti
tJ rZ (;l-J -I). .J -Vn-2{~J-1)

4hvit;, -;.(1./ -I)T]
v·,-- Z(z~" -I)

.3.~ L~Y.'l-C<'J· -I) T:_~ 3 di,v ~¥: -z (Zj -~r]I
- M7'f.>L3t; r'<'(2.J-!) ,'1 - ~'&ic -Z(2J - PjT] J,
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To continue the work beyond this point, K 1: as expressed by Eq. (46)

should be written in terms of 'f, and a final transformation then made 1- 3

to new variables; ~ ::: r: -2 T and J 2 :': J 1 with the aim of obtaining a

new Hamiltonian which is substantially independent of T It would be the

2
intention to keep in the J 2 term; which is in a sense regaFded as a correc-

tion term only terms v,'hich are constant or possibly functions of ~ (i. e. ,

circular functions with arguments which are multiples of ~ =Y; - 2 T and

hence are T-independent). Since by Eq. (45bL the difference between ~

and ~ is of order J 11/2, ~ may simply be replaced by f, in the J 1
2

terms

of Eq. (46). The distinction between -r; and I';; in the term involving

J 1
3

/
2

[ b
2

sin 3 (~ - 2 T) - 3 b1 sin (~ - 2 T)J does not appear to introduce

into the J 12 term any terms of the form which we elect to retain.. Consider-

able complexity arises, however; in evaluating in this same sense the pro-

duct of the two sums which appear in the J 12 term of Eq. (46), since numerous

cross products occur which involve circular functions with arguments that

are multiples of ~ ::: Y, - 2 T.

2
The J 1 term of Eq. (46) includes, then firstly the constant terms

«/ b 2
___2---" J 2 where ~I denotes .

_ ,UJ 1 '
192 V

1 + (3 b
1

/b2)2

Z)"__ +1
2

= + 1.75516 (in our example).
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There are, in addition, cross terms ',vhich involve circular functions of

arguments that are multiples of ~ :: 1;

depending on b
2

in combination with b
1

with

- 2 T, of which we write those
2

b 2 2.,J
or b 3 as . J 1 F(/~),

192 1/#3

F(~) = - 6[:~ [6 _\)" + 10 _337/"- 6/.)" + 10 ~zJ" 6+33zJ"

- :~ [l .3V" - 6 _if- • l + : zJN' 6 + ~"J cos l Yz

• :~ [ 3 1.1: _l - 6 _\r]cos 4 J;.]

1 leos 2J
10 tV1

(48a)

=- 1. 10355 cos 2 ~ - 0.72926 cos 4~

We accordingly take

( in our example). (48b)

+
bi [~I + F (Y; - 2 T)]

3
192 V"

(49)

For the final transformation we now, of course, employ the simple

generating function

so that

J 1 = ~G2/J'l; - J 2

~:;: dGz' d J 2 -= y; - 2 T

and
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K 2 = K 1 + JG2/:J T

= K 1 - 2 J 1

1 ( 2 _)3/2 3/2
= (V" - 2) J 2 + n V'') J 2 (b 2 sin 3 ~ - 3 b 1 sin ~) (52a)

+ b 2
2 rei" + F ( ~ ) J J 2

192. v o3 2

Since K2; as expressed by Eq. (52a), is so written as to be T-independent,

we take K2 to be a constant of the motion. In our present example this

invariant is

K2 = - 0.1898 J 2 + 0.048389 (5.41441 sin 3 ~ - 3.10512 sin >t.) J;/2

+ [0.045179 - 0.028406 cos 2~ - 0,018772 cos 4 y;,J J: (52b)

G. THE FIXED POINTS
(In Particular For T = OJ

1.

The fixed points associated with the Hamiltonian K2 of Eq. (52a) are

given by points which simultaneously satisfy

and (53a; b)

so that K2 is stationary. If it were not for the presence of the function

F( ~), the first condition would be met when

cos ~ = 0 or when (54a, b)

The two roots in addition to the root y;, = 2700 appear to be shifted by about

5/3 degree by inclusion of the function F ( ~) in the calculation, and the

value of J; /2 which corresponds to these latter roots increased by about

3 percent. Estimates of these solutions to Eqs. (53a, b) are given in Table 1, ':'

:;'The roots chosen here are selected so that; with -z)'~ 2, J i /2 will be positive.

At T =0 the values of y; will be identical with ~ [Eq. (51b) J.
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together with the associated values of KZ' ,.hich are now necessarily not

all the same.

T.-\BLE I

Values of '4, J 2 for .vhich the Hamiltonian K
2

can be Stationary
(b 1 /b

2
1 03504/5 41441)

Root "(z 3~
J liZ

J2 K2Z

1 - 90 0 - 270 0 0.291 84 0.0851 68 -0. 0055 21

2, 3 l8~ 41 85~ 23
0.579 58 -0. 0226 50

151 0 59 454
0

77 a 335 915

I

It will be recalled that J 1 ~ J 2 and.. for T - O. )j .; y~ . In the

following subsection we make the inverse transformations necessary to

express these results in terms of the original variables, specifically for

T=O(s-=O).

2

For the assumed value of T namely T .; a in the present case the

values of r;, (·c r; ) and J 2 (,. J 1) may be transformed to corresponding

values of r.;, J by means of Eqs. (45a, b). This transformation is least
o

laborious in the case designated as "Root 1" in Table I, since, for that case.

~ = ¥; (:: 270 0
). Once the desired values of 'Yc;, J 0 are obtained, Q and

P (.;; dQ/dT) follow immediately from Eqs (42c, d) Since, at T :;; 0,

VI ;.;. 1. 3755 and d( -z)~)/dt ~ 0, one next may evaluate

q - iz!~' Q :.: 1.17282 Q
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O/Yij8') dQ/dT .:: PI-Yilj!' =: p/1 17282 (55b)

and

v '-' v s + q .. - 0 08380
2

+ q [from Eq (16)J 56a)

P
-:= dv _1 dq (56b)

ds 3 dt

since t :: s/3 [Eq. (34)] and dVs/ds :: 0 at s :0 O. In this way we estimate

the values listed in Table II.

TABLE II

Values Leading to Fixed- Point Coordinates
(T ~, O. s::. 0)

1R00t X;
1/2

Q P dq/dt lP=dv/dsJ o
q v

1 I-~Uo 0.29265 -0.30761 0 -0.36077 0 -0 4445' 0

2, 3 25?1l
154?89 o 5665 0,2527 +0.9761 0,2964 +0.8323 0,2126 +0.277£1- - -

The true values for the coordinates v, p of the unstable fixed points,

as given by the computer, are (Sect D)

v -- - 0.44345,

v - 0.2245,

p :. 0,

p - + O. 3030 ;

it is seen, accordingly, that the present "analytic" method gives (as Root 1)

the location of the unstable fixed point which lies on the v-axis with an accuracy

considerably better than 1 %; but that the values of v and p for the other un

1
stable fixed points are reElpectively smaller than the correct values by 5 - and

2

'~Cf. Eqs (1 7a, b) of ref 3
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8 i Ufo. These analytic results were not materially affected by a refinement

of the function F (~ ) [Eq, (48b)], which enters in Eqs. (5la, b), through

inclusion of terms involving b 3b 4 in the coefficient of cos l ~ and terms

involving b
i

b 3 and b l b4 in the coefficient of cos 4 ~ .

H. ALTERNATIVE, SIMPLIFIED, ANALYTIC METHOD

The analytic method of the previous sections, in which it was attempted

to follow the Moser procedure in an orderly fashion, clearly involved consider-

able complexity in the details of the calculations. It was necessary, firstly,

to undertake some numerical work in order to estimate adequately the stable

solution for the forced motion. Subsequently, once the forcing term was re-

moved from the equation of motion, additional labor was required because the

new differential equation then contained an A-G coefficient for the linear term,

Because of these complications, it would seem difficult to arrive at useful

formuJ-as by following the methodology on which our numerical work was based

and, accordingly, it is of interest to explore a somewhat less straightforward,

but simplified, analytical procedure.

In this second method the effect of the forcing term will only be eliminated

immediately by subtraction of that part which would result from consideration

3/2
of the linear terms of Eq. (l). In the subsequent wor,k, terms of order ?\ J 1

and 7\l J 1 in the Hamiltonian will be neglected, in comparison to the J 1
3

/
2

l
term and the constant part of J 1 term, since 7' may in a sense be regarded

as a perturbation. Information concerning the stable equilibrium orbit, as well

as pertaining to the unstable equilibrium orbits and other features of the motion,

should then result from the analysis,
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1.

We commence, therefore, with the differential equation (l), for which

the Hamiltonian has the form

h =
_
1 p2. + _1 (2V)2. v2. _ 3.,. 2. s(b/6) (cos 2. s) v - /\. (cos -3-) v.
2. 2. N

(57)

For the initial transformation, to quantities akin to angle-action variables,

2. J2.cos T ctn Yc;

we employ the generating function

vf ?\
F 0 (v, Yo )= r-![v + ~ -e~f 2.?\ 2+ - 2 (sin _s) v + f (s) ,

3{ _(2~) 3 (58)

where f (s) would be selected to obviate the need to include in the new

Hamiltonian terms which only involve the independent variable and hence

play no significant role. The resultant transformation is

p =
. 2. s

Sln--
3

(59a)

2 s.1 2

cos -3-J (59b)

so that
2 7) 2. s

p-~

~ _(~)2
sinT

ctn ~ = N (60a)217 7\. 2s
v +

_(2~)2.
cos-

4 3

9

2. [.u. .J1.
sin 3] + N v +
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1/2.

( ~) 1/2.. Vv=ll J o smdO
2. s

cos -3-

:\TCRA- 497

(60c)

(
v· lI 2. 1/2. V 2.

P = 2. -.) J coslD 4o-NO·3

~ _(2%!
" 2. s

Sin--
3

(60d)

and the new Hamiltonian is found to be (after some intermediate algebraic

work)

Ho = h + d F 0/ d s

3 /2 .[ s in(3 ~ + 2. s) + sin (3 ~ - 2. s) J
V bt·N~ 3/2.= 2. ._J + - -- J V V
N 0 48 1J 0 - 3 sin ( '0 + 2 s)- 3 sin (#0 - 2. s)

+~ N 7) J

16 17 ~ _(.2 vt 0

9 \ N-;

8 s 4 s
2. cos -3- + 2. cos -3-

- cos (2. rc; +~) - cos (2 >;; -~)
3 3

y" 4s (2 ~ II- cos (2. 0 + -) - cos
3 3

- 2 sin (~ + 2. s) - 2. sin (~ - 2. s)

" .y lOs, "(v lOs
- sm ('0 + -3-J - sm '0 - -3-)

_ Si"n (k . 2 s . "" V 2 s )
+ \ - Sin ( '''0 - ---3-' 3

(61 )

[The nature of the transformation and its effectiveness in removing completely

the coupling term from the linearized differential equation (1) may be evident

from Eqs. (60a) and (61), The general character of the Hamiltonian Ho of

(61) is seen to correspond to that given for Ko by Eq. (50) of ref. 1(p. 2.y,

noting that, in ref. 1, b = 1 and that for our present - cos 2. s the function

sin 2. t is employed in the v 2 term of the differential equation.]
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Paralleling previous work, 1 we now make the next transformation by

use of the generating function

cos (3 ~ + 2 s)

1 + 3 1II1N

cos ();; + 2 s) cos ( r; - 2 s
3 w + 3 '

1 + iI IN --:-l---~/;-N=-T-j

(62)

so that

+
sin (~ + 2 s)

1 + 1/IN
sin ( /'; - 2 s)

1 - DIN (63a)

cos(3~+2.S)

1 + 3 YiN

cos (~ + 2. s) cos ( 'l;;" - 2. s)
- 3 + 3 ----;-:----1

1 + -V/N 1 - VIN
,

and
(63b)

(64)

I:, in ( Y; - 1. s)
3 -_---r:---

1 - t/IN

_ b fJi~/2 311.
-Ho + 48W) J 1

sin (3);, + 2. s)

1 + 3 VIN
sin ( ~ + 2 s)

+ 3 1/1 +1 + N

IU V b ( Nj
3

/
2

3;'2 .
= 2. N J 1 + 48 17) J 1 sm (3}j - 2 s)

b2 (N)3 J 2r6 VIN
+ 2048 11 1 L1 _ 7J2 /N 2

b N A v 4
- - -=-r 2 J 1 cos (2 'I' __6)

16 V 4 _ Ci,;/J) 3

_ b (N 'f (2 711. 1 I 2 y; 2 s

Tb V) [i _(~jr J 1 sin ( I - -3-)
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in which the last result follows after some algebraic

3/2
a result of neglecting terms of the order. )\ J 1

simplification and as

)

7\ - J 1 and terms

which do not involve circular functions which are multiples of ( ); - 2 s/.3)--

.,
[.:::.i Eq. (54) of ref. 1 (p. 22)j

For the final transformation we employ as in previous ,vorkthe

generating function

so that

v ('/_~).F 2 ( 'I' J 2) - J 2 ' 11/ 3 ' (65)

and

JF2/~r; : J 2

'JF 2 I J J 2 .;. 1; 2 s

3

(66a)

(66b)

2
HI - "3 J 2

(
VI \ b(N)3';2 312

- 2 -;-3)J2 + 481/ J2 sin 31;.

[~ Eq (57) of ref. 1 (p Z.3») where

J 2 cos 2 ~

1/2 \/
J 2 sin tJ'k (67)

6 VIN
c~ ~

1 - -z/Z
/N

2

rcf Eq. (25) of ref. 1 (pp. 13.
1._

1
I

1 + 3 v IN

23») The Hamiltonian HZ' in the form

wTitten, is independent of s and will be taken as a constant of the motion
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(69a)

1/2 V
J 2 cos 42J =0

l\I"CR_-\-497

2.

To obtain the fixed points, in particular, we may take the Hamiltonian

HZ to be stationary, as given by setting the partial derivatives dH2/)~

and ~ H2 / d J Z each equal to zero; specifically,

3/ Z 3/2 .1m.{/Z 2}2.

1~ t~) J Z cos 312. +~W~-t-~ JZ sin Z~-~~ ~-t~r

and

Two roots of interest for Eq. (69a, b), corresponding to the stable and

unstable fixed points which lie on the v-axis of the phase plot for s =0 (mod. 31T),

are obtained by taking ~ =- 90 0 and J 2 as satisfying

2!%. -;,)+ ~(N_~3/2 Jl/2 +b2«. (-N_f
CJ.'l ,) 32 17) 2 1024 7J) J 2

+~ N
16 17

-1/ Z
J Z =0 , (70)

in which the term of order J 2 is comparatively small--for small 7\ one root,

in fact, may be estimated roughly by consideration of just the constant term

and that involving J; 1/2, while the other is given roughly by use of just the

constant term and that which involves J~ /
2

Numerically, for

v1N =0.3, b = 1.15,

1-542
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Eq. (70) becomes

1/2 -1/2
0.06944J2 + 0.21871 J 2 - 0.04964 t 0.00033124J2 :: 0, (70')

with roots for Jl/
2

given by 0.006881 5 and 0.2.061 5 , The remaining roots

of interest similarly involve simultaneous solution of Eqs. (69a, b) for values

of 0;, near 300 or the supplementary angle 1500 • To obtain the corresponding

v, p coordinates of the fixed points, at s =0 (mod. 3 rr:), one must next trans-

form ~ (= 't for s = 0) and J 2 (= J 1) to >;; , J 0 and thence to v, p by

use of Eqs. (63a, b) and (60c, d).

It may be noted in passing that the two roots of Eq. (70) become coincident

for a critical value of /\ given approximately by

1 ~ 64 (J:. _7.1)2(1. +~) 1/
b 3 N 3 NJ N

;:: 0.01175,

for V/N =O. 3 and b =1. 15; a more accurate numerical estimate, again

based on Eq. (70), gives

1 =0.01168,

with

J 1/ 2 =0 0740
2 . 4 '

from which one finds, by Eq. (63a),

1/2
J = 0.07412o

(71 )

and, by Eqs. (60e, d),

V
c

= -cnl!2 0.01168
(0.07412) - 4 36

"9 100

= - 0.13532 - 0.13832

=- 0.2736 4 '

Pc =0 •
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The correct values for this confluent situation, as obtained by direct digital

. 4computatlOn, are

~ =0.01136,

V c = - 0.2650 ,

Pc =0 ;

so that our estimates for 1 and V c are evidently some 3% larger, in

relative magnitude, than the correct values. 11

Returning to our example with 71 = 0.006, the fixed-point coordinates

found by the present method of analysis are as summarized in Table III.

TABLE III

Estimated Fixed- Point Coordinates at s = 0, mod. 37t

-rAN = 0.3 b = 1.15 71= 0.006

Calculated Values Computer Relative
'!Ro",' ,-It", ~rr,.,r

Root
~ "'J 2 J v P v p ev €F0

Stable -900 0.006881c; -900 0.0068822. -0.08361 t 0 -0.08380~ 0 -0.22% -.
;;

1 -90 0 0.2061 5 -900 0.20676
-0.4485

5
0 0.44345 0 +1. 15% -.

0 31?24
!!.0.2842, 3

34.20
E0.31269 148~76 : O. 303 3

0.2161 0.22.46 +O. 3030 - 4 0/0 -6

145~79~
-

I
;

The results obtained by the present simplified method not only are far more

easily obtainable but appear to be of as good accuracy as those previously

summarized in Table II (Sect. G).
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4/9 - (2 -zJ /N)2
(72a)

v2 (A) '¥ v2 ( 7\ :': 0) + 4/9 _ -; -v/rij
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A parabolic fit, tangent to the lines (Ila; b) at /\:'; 0, may be obtained by

writing

7\'¥ y,(v-vz(/' ::0>1. [4/9-(2 V/N)2] ,
V z ( 7't =0)

for which the maximum value of 71 ;

(73)

(74b)

~ = ~ .[ 4/9 - (2 zJ IN)2] . [- v2. ( 7l =0) J ' (74a)

is attained at

1
Y = - v( /) =0).

c 2 2

With 2. -zJ/N = 0.6 and - v2 ( ?l = 0) = 0.5238 [from computational results

cited in ref. 1, after division by b:: 1.15J, Eqs. (74a,b) suggest

~ = 0.01106

Yc = - 0.2619 ,

which may be compared Nith the computational results cited in the text, namely

~ = 0.01136

v = - 0.2650
c
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*ON THE PASSAGE OF A BEAM THROUGH A CAVITY,

INCLUDING ANALYTIC NOTES OF A.M. SESSLER

L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

April 20, 1970

I. Introduction and General Principles

A particle beam may be sent through an R.F. cavity with the object of

attaining a time-varying deflection or, alternatively, of obtaining an

energy spread. It can be shown that these two effects are related, and one

may be distressed to obtain one of the effects when interested only in ob

taining the other.

As an example of the relationship mentioned above, one may consider

three trajectories that pass through a cavity that extends from za to ~.

All three rays will be taken to enter with the same energy and to be

paralle 1 (~.~., normal incidence). The first ray (#1) will be regarded

as the reference ray. The second ray will be supposed to emerge at the same

time as #1, but with a transverse displacement ox and an energy that

differs by oE from the emergent energy of the reference ray. The

3

____--i-_-:!+--:-~--l

* Work supported by the U.S. Atomic Energy Commission.
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third ray will be supposed to emerge at the same point as #1, but later

by a time interval dt. For this to occur, in the presence of time

varying forces within the cavity, the third ray may follow a trajectory

that differs from that of the reference ray and the emergent transverse

momenta accordingly may differ by dp . It then can be shown that,x
provided only that the particle motion within the cavity is governed

by Hamiltonian dynamics,

(1)

i.e., the scanning-rate and the energy-dispersion are directly related

in the manner indicated by Eqn. (1).

The reasoning leading to Eqno (1) has been outlined by Fowler and

Goodl * in connection with a beam sweeper, and was based on application

of the bilinear covariant of Whittaker. 2 In this type of application

it is useful to consider the motion as governed by a "space Hamiltonian,"

in which a distance coordinate (~.~., z) plays the r61e of independent

variable and the negative of the momentum conjugate to this coordinate

then serves as the Hamiltonian function. In such a formulation the time

t acts as a generalized coordinate, and the conjugate "momentum" then

is the negative of the usual Hamiltonian or, in this instance, the neg

ative of the particle energy. One then notes that the evolution of a

Hamiltonian system**effects a canonical transformation of the dynamical

variables, so that the invariants of a canonical transformation can

be applied to these variables.

Because the derivation of Eqn. (1) through use of the bilinear

covariant has been treated elsewhere,l it may be of interest here

to indicate how this result might alternatively have been demonstrated

by appeal to the Fundamental Poisson-Bracket Relations. 3 Thus, sup

posing a space Hamiltonian to be employed, we may in the present appli

cation consider x'Px and t,-E to constitute two conjugate coordinate

momentum pairs. Suppose we now pass to differential quantities about

some possible trajectory (but omit, for brevity, the differential symbol)

* References are listed in Sect. IV.

**I.e., the evolution from one definite value of the independent variable
to-a second definite value of this quantity.
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and linearize the transformation that carries a particle from z =z to'
a

z =z; we then may write
b

x Tl 1 Tl ,,2 Tl ,,3 Tl 4, ,
Px T2 1 T2,,2 T2,3 T2,4

=
,

t T3,,1 T3,,2 T3,3 T3,4
-E Tlj. 1 T4 2 T4 ,,3 Tlj. 4

~
, , ,

or, for the inverse transformation,

""" """x Tl 1 Tl 2 Tl 3 T1 4
""" , '" , '" , '" ,

Px T2 1 T2 2 T2,3 T2 4
= , , ,

""" """
,....

"""t T3 1 T3 2 T3 3 T3 4
'" , """ , """ , ,.... ,

-E T4 1 T4,2 T4,3 T4 4za , ,

x

(2a)
t

-E

x

(2b)

-E 0

~

The fundamental Poisson-Bracket relations are (in Goldstein t s3 notation)

[ <l., q.] = 0,
~ J

and [q., PjJ = 0. j' (3)
~ ~,

where 0i .,J
ditions for

*

is the Kronecker o-symbol; these necessary and 'sufficient con

a canonical transformation impose six conditions on the matrix
* """el6nents T. . of the transformation (2a) -- or on the coefficients T. j

~,J ~,

of the inverse transformation (2b). Thus, in particular, the condition

[p , -E ] = 0 imposes the relation
xa a

With 6 significant relationE imposed on the 16 coefficients Ti,j'

the number of free parameters for the linear (homogeneous) transformations

(2a) becomes 10. It may be noted that if such a transformation were to

be cOnBidered as arising from a homogeneous quadratic generating function

of' 4 variables, the number of' terms (with arbitrarily assignable coef-

) . 4(4+1)ficients in such a generating funct~on would be 2 = 10 --

in agreement with the above.
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With reference now to the specific problem considered initially, the

fact that the incident rays are taken to have the same direction and the

same energy requires that

(5a)

and

(5b)

For ray #2 it is understood that there is to be no time differential

(with respect to #1), so from Eqns. (5a,b) we have for this ra:y

(6a)

and

(6b)

from which elimination of p yieldsxb

or, recalling that the variables ~ and Eb are actually differentials,

Likewise, for ray #1, the (differential) transverse coordinate is to

vanish, so for this ray Eqns. (5a,b) become

and

o (8a)

so that, on elimination of -Eb,

(8b)

or
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IV. MtJLTI-COIL LAMBDA-METER

1. Purpgse:

The use of a two coil bridge circuit to measure

has been proposed by Beth LRAB-l (June 30, 195417.

1 ~H

(H)Av 6y
It my be

desirable to modify this proposal in such a way as to e1imin-

d2H ~ d3H
ate the dependence of (H)Av on dy2 and. of t::.y on dy)

and so provide a more precise measurement of t ~. The

following sections, although not necessarily employing opti

mum dimensions, incorporate a suggestion of Snyder LAGS I~gnet

Group meeting, July 9, 1954/ concerning the use of multiple

coils and are intended to illustrate the possible use of the

1 dHmodified bridge method. for measurement of Ii dy in a two-

dimensional magnetic field.

2 • .Qll:m!ll:

The proposed circuit is illustrated schematically

below, each of the outside coils being connected (as shown)

--~
l

The condition ofin opposition to their immediate neighbor.

R

Servo-Fluxmeter
I

f
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balance for the bridge' is that

R - r
R + r

= L¢~(+bA) -¢A(-bA>7 - L~ (+b B ) -¢B(-bB,l1 •

L¢A(+bA)+¢A(-bA17 - L¢B (+b B) +¢B(-bBU

3. Basi2- Equations:

We write the response of the individual coils as

and

¢B = ~H + cB HI! ,

2
where WI;;; d. H (at the center of the coil) and the coef

- d,·2
0'"

ficients b, c nay (for axially-symmetric coils) be identi-

fied with the coefficients PI' P
3

of L31-l (Part I):

2
b = 211" r 0 PI /2 ,

We note, in addition, that the field in the median plane ms.y

be expanded

()
g (2) g (3)

H = % + Ho 1 + T?- + TY3 + ••• ,

HI! . (2) + H (3) +
Ho 0 y

2-66
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The condition of balance for the bridge hence becomes

R - r

R + r

It 1s seen, therefore, that it is, desirable to arrange the

constants of the coils so that

whereupon

and

!L::..r.
R + r

as is desired for a measurement of the relative gradient

at a point.

4. NUlDO'l'ical Example:

We exhibit, here the dimensions of a set of coils, all

of the same turn-density WI, meeting the conditions of sec-

tion 3. Scaling of the dimensions would, of course, be per-

missible but no claim is laid to the relative dimensions be-

ing optimum in every respect.

We select

and

bA = 0.500"

b
B

= 1.250"
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We then take ffirg. rIll
For Coil "A":

a = 0.810"
1

a2 =0.900"

~ = 0

x
2

=0.08011

(o.x. = 0.080") ;

For Coil liB II :

al =0.100"

aZ = 0.50011

~ = 0.448"

~ =0.4?!l"

(~x =0.03911
) •

(for use with H" ex-
. I' 2)presses ~n gauss ~n ,

The coil constants accordingly become (for WI expressed in
2

turns/inch )

r 2n., (A) (a23 - a13)(6x)
bA = 21T ~._L_ = 21T -- 3 Nil

= 21T(2.54)2 Q.l.275~2:(0.OSQ Nil =21T(2.54)2LQ.0052S.Q7Ni, cm2,

b
B

=21T(2.54)2 0.1?~; 0.039 WI = 21T(2.54)2LO.00161g7N" cm
2
,

_ r o
4p3(A) _ §0(6X)2(n23-aJ?)-9(a25-a1517(Llx)Nil

cA - -21T 24 - -21T - 360

=-21T(2.54)2 ~0(0.080)2(0.197559)-9(0.24181217(0.0801WI
360

=21T(2.54)2 l6.o0047il Nil cm
2
in

2

L20(x~+X1X2+xi)(a~-ai) - 9(a~-'.ti17(J.\x)
cB = -21T - 360 WI

2 ffiO(0.65605 )(0.124) - 9(0.0312417(0.039) I

=-2'17"(2.54) 360 W

2 - ~7 2 2= -2'17"(2.54) LO.OOO145~ Nil cm in •
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These values will be seen to satisfy reasonably well the

conditions of section 3, so that

H (I)

0.168 T-
o

(I)
(0.005250)(0.500) - (0.OO~612)(1.250) ~

0.005250 - 0.001612 H
(I) 0

= 0.0026gs - O.OQggJ-j,~
0.00525J - 0.001612 Ho

(1 )
= Q.00061.Q!!.CL- =

0.003638 H
o

R - r
R + r

the relative grad.ient
(1 \

H J/H being expressed ino 0
- 11)

reciprocal ::'nches. .LT.rpically Ho\ /:Io for a full-scale

model of an AGS lIl3.gnet-sector would "ne l~ in-1, so

R - r ~ 0 n16S or r; O.9G7 R in this examp1e~7RT; - .-

v. EVALUAT IO~ OF POSSIBLE ERROR FROM INDUCTIVE EFFEcrS

In the dynamic field measurements it is planned ~~ first

~~ £f. J. P. Fb.1mer's present~tion, ADD meeting, July 14, 1954.

to combine the signals from the gradient coils and field coils

in such a way that these sign~ls nearly bnJ..l3.11Ce, then to intro-

duce the resultant signal to a high-performance integrator,

and finally to display the output on an oscilloscope against

a raster of radial lines representing variations of n in

})9.rts per thousand. Due to the time-varying character of the

measurement, it is important that the signals from the two
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sets of coils shall at every instant buck one another sub-

stantially as with steady state E~W's, regardless of induc-

tivG or capacitative effects.

In this section we shall undertake to analysize the

role played by inductive effects alone and to estimate the

magnitude of the errors which could thereby arise through

the use of coil systems with characteristics similar to those

described in Parts II and III of the present report. Emm-

ination of the influence of capacitative effects is deferred

until later; it appears from the present analysis, however,

that the inductive effects (which will predominate) should

alone not introduce a serious error, despite the fairly high

values for the inductance of small coils constructed so as

to provide the desired induced signal strengths.

Field-Coil Gradient-Pair Integrator-Ampl. Oscilloscope

Rl,Ll R2,L2

-~O~

l~ ~l ~D\
Ra tllb pi'---..d"'----V ~H-/-

l Swcep-
Signal

(proportional
to field-strength)
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The basic loop equations for the circuit indicated are:

Rather than solve these ~quations explicitly for ~ as

a function of time, we find it convenient first to integrate

the equations and to solve for J12 dt. The measured signal

is proportional to

J' RL r I' r, }
RL i 2 dt = D~ (Rl -t-Rp )Je2 dt - aJel dt + lRbLl \ -(Rl+Rp)L2~J '

where D = (Rl +RpHR2 +~ +~) - Rb
2

LIt will be found that the terms contained within the square

brackets constitute the source of the error under investigation~

3. Interwetation of Me1l3ured §ifmtl:

We note that the signals from the field and gradient

coils may be written

the prime disignating space differentiation. In addition
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We now introduce the quantity

which will be seen to represent the value of n ideally

giving zero output signal for the ~tentiometer setting

adopted; the measured signal then may be written

If this output signal is interpreted in terms of an

apparent napp as

we have

n - n =
app

::app - n
no.

RbLl i 1 - CRI + Rp) 1:212
(R1 + Rp ) k:2 B

Rl + Roe •= Llil - Rb L2~2

kl B

or

representing the error or relative error which inductive

effects introduce into the measurement of ·n •

4. Estimation Qf ~ Error:

It is of interest to estimate the error contributions

represented by the terms, involving i l and i 2 , in the

last equation of the preceding section. By reference to the

original oircuit, one may readily set an upper lindt on i l :
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so

The maximum value of i 2 is considerably limited by the

bucking feature of the potentiometer connection:

= k1Rb [d(nB)/dt _
D nd

= klRb [dn/dt B +
D ~

whereupon

~-J
dt

n dB}(- - 1) dt 'nd

5. Numerical Values:

We consider that in a typical series of measurements

we may establish the definite limits

dn[dt < 500 x 10-2 = 5 ,
nd

n < 10-2 , and- - 1
I\i

dB/dt 104
= 500 •

B <20
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We further consider circuit parameters, similar to the

estimated values of Part III, as follows:

RJ. =117 ohms,

L2 = 0.094 henry,

R2 =1500 ohms,

Ra = 750 ohms, ~ =2250 ohms, Rp =3000 ohms, ~ =5000 ohms.

With these values, the relative error from the effects of

self-inductance would not exceed the following estimate:

!lapp - n -3
1500 +05§6~ + 626 (5 + 5)<: 4.13 x 10 x 500 +

no. 3117

<: 0.6625 x 10-3 + 0.1319 x 10-3

< -3 within one-tenth of one percent.0.8 x 10 , or

Because of possible ringing effects, due to the presenoe of

such inherent capacitances as are considered in Part VI, the

currents i 1 and i 2 may have instantaneous values greater

than the foregoing estimates and, over a short time interval,

the relative error of the apparent n might appear larger than

estimated here.
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VI. ESTIMATE OF POSSIBLE ERRORS FROM COJL CAPACITANCE

As pointed out earlier, some error will be introduced

in the dynamic field measurements by the self-capacitance of

the several search o~ils. It is the purpose of the present

sections to include this phenomenon in attempting to evalu-

ate the errors of the measurement procedure.

The capacitative effects Will, as is customary, be

considered representable by an equivalent shunt capacitance

across the combined inductance and resistance of the coil

system. It is difficult accurately to estimate in advance

the capacitance to be associated in this way with multi-layer

coils such as are proposed here, although what may be regar-

ded as an adequate formula for single-layer coils has been

given by Palermo. *

* A. J. Palermo, Froc. I.R.E. gg, 897 (July, 1934). The re

sult of this work has been quoted by J. Hak (212. cit.) and

has been displayed in the for~ of an alignment chart by

p. H. ~assant in "Electronics for Engineers ll (J. Mirkus and

Vin Zeluff, Eds.), McGraw-Hill, Inc., N.Y., 1945.- .

The system of axially-symmetric flux-coils suggested

in Part III may be expected to have a somewhat less prominent

capacitance than would long coils of otherwise similar perform-

ance, due to the smaller E.M.F. per turn and the distributed
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character of the winding for the axial coils. Although the

best estimates would undoubtedly result from measurements

made on the coilsthemselves, we believe that thecapacitance

to be associated with the gradient coil system may be pri-

marily that d'..l.e to stray- or lead-capacity, while that for

the field coils may run as high asa mill i-microfarad • We

propose, accordingly, to take tho shunt capacity of the

field-coil system as

and that of the gradient coils as

C2 = 10.5 I-LI-Lfds ,

for which the nominal resonant frequencies would be, respectively,

f l = 80 KC ,

f
2

= 160 KC •

e
l

Rl 11
./If-' ' ..'
/&:'-i

1
V11 :

i :Cl
3~

Ra1
'--------------- .-J
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We wTite the basic loop equations for the equivalent

circuit illustrated 8.S

Ll(dil/dt) -I- (1/Cl)[J~ldt-ft3dtJ + Rlil = el

L2 (di2/dt) + (1'/C2)[ji2dt - fi4dtJ + R2i 2 = e2

(l/Cl ) lfi3dt - fi l dt ] + i3~P + :'4Rb = 0

(1/C2 ) [Ji
4

dt -f2dtJ + i
4

(RL + Rb ) + i
3
R

b
' = 0 •

By use of the last two equaticns to elLminate the capacitance

terms, the first two equ~tions may be w~itten

(~+Rp)Ji3dt + R;:,.f\dt =Je1dt - Llil - ~f(j1.-i3)dt

RbJi
3
dt + (R2 +RL +Rb1i,~dt =Je2dt - L2i 2 - R2}i2-i4 )dt •

The measured output will then be proportional to

3. Interpretation of ;thg Error:

By the same methods as employed in Section V.3, we find
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where VI' V
2

represent the potentials across the capacitors

C
l

, C
2

•

4. Estimation of the Error:

The terms which explicitly involve L
l

and L
2

in the

expression for error given in section 3 have been estimated

in Part V -- it remains therefore to estimate the magnitudes

of the terms which depend upon Cl and C
2

•

We suppose that Vl <. 2 e l , so that for the first

term of interest

We similarly suppose that V2 < 2 e2 , so that

Rl +Rp,R2C2V2
~ kl B

5. Numerical Values:

Considering, as stated in section 1, that

N

Cl 960 ~~fds,

and the remaining constants are as etated in section V. 5, we
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find that the foregoing contributions to the relntlv\:;) -eTror

of the n-measureme.nt are:

-9 -3
2 x 117 x 0.96 x 10 x 500 =0.112 x 10 and

It thus appears that if the .capacitative effects have not been

grossly underestimated the resultant errors will be negligible

in gradient measurements of the type proposed.

It is hoped that more definitive information concerning

the performance and errors of a coil system such as herein

described will result from experimental tests now being under-

taken in this Laboratory.

jl
7/20/54

Distribution
ADD-Bl
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INTERIM REPORT

ON A BOUNDARY CONDITION

APPLICABLE TO MAGNETOSTATIC RELAXATION COMPUTATIONS*

L. Jackson Laslett

INTRODUCTION

With the exception of methods that solve directly for the magnetization. l

magnetostatic problems that involve a prescribed current distribution and ferro-

magnetic material customarily are solved by a relaxation procedure that employs

as the working variable a potential function (scalar, vector -- or, selectively,

a potential of one type in some regions and a potential of the other type in the

remaining regions) from which the field components can be derived. In such cases

it commonly is necessary to provide an "ex terior"region -- that in principle

should extend to infinity --within which the relaxation evaluations of potential

must be performed. although the character of the field in such regions may be of

little or no interest.

Such exterior regions frequently (and perhaps usually) are processed on a

coarse mesh -- which, although sometimes inconvenient. is both understandable

and reasonable. A judgment then must be made whether to apply a Dirichlet or a

Neumann type of boundary condition at the outer edge of this exterior region

1
E.g .• programs of the GFUN family. developed at the Rutherford Laboratory of the

U.K. Atomic Energy Authority.

* Work assisted by the U.S. Energy Research and Development Administration.
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(or possibly a Dirichlet condition along a portion of this edge and a Neumann

condition along the remainder). In any case, however, this technique must be

recog.nized as only approximate and as one that introduces into the problem a

substantial number of additional mesh points on which the potential function must

be processed by iteration of the relaxation algorithm.

It accordingly appears desirable to devise a boundary condition that could

be applied on a boundary closely surrounding the region of physical significance

and that would correctly describe the fact that no "sources" (current or magnet

ization) are present outside this boundary. In the following Section we propose

a boundary condition of this type, that can be applied to process the values of

potential on this boundary. while values in the interior are processed by a

standard relaxation algorithm. In a subsequent Section we report briefly on

tests that have been performed to check the performance of this proposed procedure

in various two-dimensional situations. It will be immediately evident that the

proposed procedure has an obvious analogue for application to electrostatic

problems in which an exterior region can be taken to be free of charges2 and of

polarized matter.

2 The analogy to the magnetostatic problem will be the most immediate if the

total charge in the interior is zero -- since then, so to speak, there is no

"crarge at infinity" and the types of fun,tion at-imissible for expressing

the potential function in the exterior region will be similar in the electro

static and magnetostatic cases.
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DERIVATION OF THE BOUNDARY CONDITION

If U and V are harmonic functions of position (V2U = 0, v2V = 0) that tend

toward zero sufficiently rapidly as the field point approaches infinity and if

ndenotes an outward-drawn unit normal vector directed into the exterior source-

free region from a closed inner boundary to this region,

then by application of Green's theorem one may write

! (V au _ U av) ds = 0an an

in which the integration is taken over the boundary.

c
-...._--. n

"'<' Source Free
\ "Exterior" Region

'-~~J

In the work to follow we shall let V represent the potential function (such

as the vector potential of a two-dimensional magnetostatic problem), for which

v2V = 0 in the source-free exterior region, and we shall denote this function by

A in the remainder of this work.

In the case of a two-dimensional situation in which the inner boundary to
-;

the exterior region is taken to be a circle, a natural choice for U would be any

of the harmonic functions

-mr cos me , r-m sin me (with m positive),

plane polar coordinates being employed. In this case the unit normal is

simply n= e and the absence of exterior sources requires that
r

, (rnA + a ~~ ) cos mO de = a

and

, (rnA + a ~~ ) sin me de = a
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for every (positive) m, with ~ denoting the radius of the boundary circle.

Conditions of similar form can be obtained for two-dimensional situations

in which one wishes to employ a different type of boundary curve -- that Illay

more suitably enclose the region of physical interest. Such curves, and functions

U, in fact may be conveniently suggested through the use of conformal trans for-

mations. Thus the transformation

x + iy = c Cosh (u + iv),

For which

c Cosh u cos v}

y = c Sinh u sin v ,

results in the curves of constant u forming a set of (confocal) ellipses, concen-

tric with the origin, whose major semi-axes are c Cosh u (coincident with the x

axis) and c Sinh u (coincident with the y-axis). The variable v is a distorted

analogue to the polar coordinate angle 0 (tane = Tanh u tan v) and numerically

covers the same range as e in transversing successive quadrants. Selection of

(harmonic) functions U of the form

-mue cos mv, e-mu sin mv (with m positive)

then leads to the condition for no external sources to be present to be expres-

sible as

Jf(mA + ~~) cos mv dv = a,l U

and

§(mA + a.~_ ) sin mv dv = 0,au
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for every positive m, with the integration taken along a curve of constant u.

As another example, a quartic boundary curve may be formed through use of

the transformation 3

(x + iy)2 = c2 Cosh (u + iv),

leading to curves of constant u that in Cartesian form are given by

r22
- i 12

+ [ 2 2 xy ] 2 = 1
~ Cosh ~ c Sinh u

Again with the functions

-mue cos mv and e-mu sin mv

chosen for U, one obtains conditions of the same fonn as written in the preceding

paragraph.

3 The transfonnation (x + iy)2 = c2 Cosh (u + iv) leads to the explicit expres-

sions

y =cj ,I Cosh' u - si~TV - Cosh u cos y

for the Cartesian coordinates. 1TAn octant is covered by 0 < v < 2 '

with x = y when v 1T= 2
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For three-dimensional problems .employing a scalar potential function V in

the region near (and external to) a spherical boundary, the suitable set of

harmonic functions U would appear to be the spherical-hannonics

r-(m+l) p(£) (cos 0)
m

and the integration would be over the surface of this spherical boundary. In

order that the conditions cited to describe the absence of external sources be

not only necessary but also sufficient, it would appear that in any of the cases

one merely must specify that the functions U constitute a complete set of har

monic functions suitable for describing the potential function in the exterior

region. In many applications certain s.YIlr.Jetry properties of the problem under

consideration will be recognized in formulation of the relaxation procedure and

in such cases only functions of U that possess the appropriate sylTllletry need be

explicitly considered.
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APPLICATION

The detailed application of the principle stated to relaxation procedures

on a finite mesh will, as has been noted, be influenced by the sytfUlletry of the

problems, and some specific choices with respect to procedure can result in some

simplifications. We may best illustrate these points that arise in practice by

considering a means of applying the foregoing principle to a two-dimensional

situation in which the vector potential A will have the quadrant symmetry charac

teristic of a dipole magnet. The area of study in this case thus may be con

fined to the first quadrant, with A to be maintained at a value zero at all

points on the y-axis and the derivative aA/ay to vanish at all points on the x

axis.

In the situation just mentioned, values of A would be sought by a relaxation

process applied on a mesh that should be terminated on a boundary arc, external

to the sources and magnetic material present, that is of some convenient form

such as a quarter-circle or quarter-ellipse. "Active" mesh points, on which the

values of the vector potential will be subject to repeated revision, will be

located on this arc. If N such points are present, it would be reasonable to

employ only N suitable functions U in formulating the condition that no external

sources are present and to construct a suitable finite-difference algorithm to

describe the integral required for each of these functions. The values of

au/an that are required to construct the integrands similarly would be obtained

from some finite difference algorithm that employs points on one or more nested

arcs (also external to all sources) immediately inside the boundary, and it

clearly would be convenient for such arcs to be related in a simple geometrical

manner to the outer boundary arc -- thus, in the first examples cited, the arcs

to be employed might constitute portions of concentric circles or of confocal
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ellipses with a separation ~r or ~u equal to a constant h. It seems indeed

highly approporiate to employ just two such nested arcs and to perform the

integration along a similar arc midway between them.

The integration algorithm and some of the subsequent work will be material

ly simplified if the points on the outer arc (and the points at which values

of the integrand are estimated) are regularly spaced -- specifically, in these

examples, taking e or v as given by (2k - 1) ;N ' with k = 1,2, ... N. Because

of the quadrant symmetry assumed for the present discussion, appropriate forms

for the function U would be

r-{2m-1) cos {2m-l)e or

-{2m-1)u ( )e cos 2m-1 v,

with m = 1,2, ... N. The conditions to be applied then may be written

or

N
r

k=l
[ {2m-l)A + r l.~ ] cos ({2m-l )(2k-l) .2!-)= 0ar 4N

r=a-h/2
8={2k-l ).2!

4N

k~l [(2m-1)A + %~ ] COS ((2m-l)(2k-1l :N)= 0

u"'u - h/21
v= (2k-l) _"!.

2N
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for the respective cases.

Both the function and the derivdtive can be estimated on the midway

arc (r = a - h/2 or u = ul - h/2) by use of values of A on the two nested arcs

mentioned earl i er. Thus,i f there are N such pO'j nts on ~=-~h_ of these arcs

(disposed in the regular manner sU~Jyested above), one can' simply write

and, for the derivative,

or

-- where the superscripts (b) and (i) refer respectively to the outer

(boundary) arc and to the neighboring nested arc inside it. The conditions to

be applied then becor.le:

or

for the respective cases.

The equations just written can be solved for the A~b), with the result

(for circular arcs),

or
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1. ~ l:

R,=1 10=1

1 1- - (m - .. _)
h 2r------·f'
- + (m - -)h 2

- 11 -

( 'IT) I 'If 1'1' (i)cos (2m-l) (2k-l) '4"1- cos {2m-1 )(2£-l) .. ' i A
r I . 4N j R-

(for elliptical arcs).

Introducing a matrix [, evaluated at the start of a run, with elements

a
'. 2 N 11 - 10 ( ) 1T )l/k R, = -N L cos {2m-l )(2k-1) _TI.-, cos ({2m-l )(2R--l) --

, m= 1 K+ (rn- 1) . 4N 4N

or
U

l' _ 2 [
L 'k ,R, - IT 10=1

1 111 - (m - 2)
-=------1- cosk+ (m - '2)

((2m-l) (2k-l) --~I_,) cos ((2rn-l) (2R--1)) ..2!_)
4N 4N '

then the result for the A~b) is very simply expressed as

The result last given can be used (possibly with an under-relaxation

or over-relaxation factor) to revise from time to time the values of the vector

potential on the outer (boundary) arc. The conventional relaxation procedure

will be used to process values at the remaining (interior) points, and in the

course of this process sometimes will make use of the values residing at the

points on the boundary.
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Modification for a TR111..:.!lI?e m~.h: In constructing a :tri~_!:!9.!!l~r. mesh, of the

type used in TRIM4 and similar pt'Oardlll~;, it apparently is conven'ient to employ

only N-2 mesh points on the inner arc irnmediately adjacent to the outer (boundary)

arc if N points are present on the latter. As we indicate below for circular

arcs, in the case with quadrupole syrMlctry with points at e = e = (2k-l) ~k 4N

on the outer arc. this special feature is found to introduce no serious compu-

tations.

Again we may apply the condition expressing the absence of all external

sources on an arc of radius a - } and express the integral condition as a sum

over values of A and its radial derivative at points for which e = 8k• A

trlgonometric development of the vector potential A(i) on the arc t' = a-h

(i) _ _ ( ) TIcan be conveniently written in terms of values AQ, at G - 8£ -" 21',-1 4(t1-2) ,

with £ = 1, 2, ... N-2:

(") 2 N-2 tl-2 (i) ( )
A 1 = ~1-2 L L A£ cos (25-1)(2£-1) 4m~~ cos ((2s-1)0).

I s=l Q..=l -t...}

At polar angles identical to the Ok' then, one may make use of the

interpolated values

(") 2 N-2 N-2 (")
A 1 = -- L: 2: A 1 cos ((2s-l)(2V.-1) "4'"('r)!-2iT ) cos ((2S-1)(2k-1) -4T!r') .

8k N-2 s=l Q..=l £ ~ :) i

In these terms, the condition

4
See Jo~n S. Colon"ias, "Particle ric;:elerator Des'i~]n: Computel' Programs",
Academlc press, New York, 1974; or see the original paper A.M. Winslow
IItlumerical Solution of tl1(~ (/u.'}<;ilineilr Poisson Equation in a rion-unifo;m
Triangular Mcsh ll

, .I. [OfilPlIt. P~:!'. ~'(Fl 17? (l%G).
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t1
i; [<2m-1 )A+r a,~ 1ar -, h cos

k:::l r=a --
2

O=(2k-l) _1.1
4N

becomes

! 11 \ .
\(2m-1)(2k-1) 4N) = 0

(ra= 1 ,2 , ... )

( ) [

N-2 N-2 ~~ }
+ ~ - t A~b) - N:2 E ,: A~i) cos (25-1) (2£-1) 4(N:2r) cos (25-1 )(2k-l) 4~)

5=1 9,:::1

x cos(2m-1)(2k-l) 4~)= 0,
or

N la 1 (b) { "
L j_._+ (m-l)i Ak cos (2m-1)(2k-l) 4WJ1

k=l Lh J

= N - a ] 2 N-2 N-2 (i) ( ) ( "II
L lh - m "N:"2- r. ,~ A£ cos (?S-1)(2Q,-1)4(lJ~-21 cos (2s-l}(2k-l) 4N

k=l . 5=1 £=1

(

111
X cos (2m- 1) (2k- 1) 4N) .

The summation over k may be explicitly performed in the expression on the

right-hand side of this last equation, with the result:

~ [~+ (m-l)1A(b) cos (2m-l )(2k--l) -4~~rll)
k=l h ~ k 1

I~- 2
}:

Q,= 1
(
a \ (i)-il - mJAQ, cos (?I'1-·l)(2Q,-l)4(t/':'~2T)' or zero if m -> 11-2.
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Finally, as a solution to this last equation. we write

N-2 [ N-2 ~- - m
= E N~2 E-------

t=l m=l ~ + (m-l)

--1·~· ,

where

I 7Tl { 7T \; (i'cos \ (2rn-1) (2 k_.l) illr cos (21i1- 1)( 2t-l) wr:2T lj At J

N-2 ('. ( i )
E (: AQ.

t=l k.l!-

N-2
L

m=l

a
Ti - m

_.*-------._-*+ (m-1)
cos((2m-1)(2k-1) 4TI

N) cos((2rn-1)(n-1) 4(N
7T
_2r)'

[This result is seen to be closely similar to that obtained earlier for the case of

nested arcs containing an equal number of n~sh points.]

Likewise. for revision of values of vector potential that may be required at

r=a, 8=0, ..sane may employ

A(b) =
8=0

N
}~

£=1

5 On a triangular mesh with dA/an = 0 at 0= O. values of A at r = a. G = 0 may

be required for relaxation of the potential values at a smaller radius (e.g., at

r = a - h). The relation proposed in the text for A~~~ constitutes. in effect.

the extension to 0 = 0 (k = 1/2) of the trigonometric expression given for the

A,(b) (' '" 1, ? > . •• N'.
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where

E ==_£-
(o),R. N-2

N-2
t.:

m=l

a- - m
h _ cos( (2m-1 )(29, - 1) 4TN~2)-)'
~-"r (m-l)
h

Results analogous to those just cited are clearly derivable for relaxation

of a problem with quadrant symmetry on a triangular mesh with ell iptica1 boundary

arcs -- namely, with A(b) and A(i) respectively at u = u10r u1 - h and at

v = (2k-l) :N (k = 1,2,N) or (29, - 1) 4TN-2T (~ = 1, 2, ... N-2),

with

A(b) =
k

N-2

E
~=1

and

G _ 2
k,~ - N-2

N-2
E

m=l

1h - (m- 1/2 ) 1T 1T
1 cos«2m-l)(2k-1) 4N) cos(2m-l)(2~-1) 4(N-2)
- + (m-1/2)
h

with

A(b) = N;2 f' A(i)
v=O l. (o),R. 9,

~=1

1
,(' 2 N- 2 h - (rn- 1/2) 1T

~(o),~ = N-2 L 1 cos{(2m-1)(29,-l) 4(N-2)'
01= 1 -11 + (m- 1/2 )
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Cases with Half-Plane Symmetry

In a number of cases of practical interest (e.g., in the design of a combined

function magnet that serves both to bend and to focus or defocus particle traject

ories) a half-plane symmetry may be present that can be exploited to advantage.

Typically, if a vector potential is employed in such cases, the vector potential for

a two-dimensional problem will be even about a line that we may take to be the

x-axis (0 = D,n), and aA/an will be zero at all points on this line. To obtain a

mathematically well-posed problem, whose solution is to be sought by relaxation

methods, it will be desirable in such cases also to specify the value of the poten

tial itself at some point of the relaxation mesh.

Given a circular or elliptical arc outside of which no sources are present, one

then can assert under the circumstances just mentioned, that 6

n 'dAJ [(m-l)A + r -- ] cos (01-1)8 dO = D
o 'dr

n dA
or Jr [(m-l)A + au ] cos (m-l)v dv = D

o

on such an arc, for all 01 ~ 1.

6 It will be recognized that we have here adopted for the functions U (first intro

duced in our application of Green's theorem) functions of appropriate symmetry

of the form
c c2_1 cos 0, 2 8,co' r rz cos ...

-u -2uor co' c l e cos v, c2e cos 2v,

that would be appropriate for development of the potential in the exterior region,

while excluding such functions as
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tn r, r cos8, r2 cos 28, ...

or
u, eU cos v. e2u cos 2v, ...

With N points on an outer arc and M(e.g .• N-2) points on an adjacent inner

arc, at

8 = (2k-1) ;N (k = 1,2 .... N) and (22-1) 2TrM (2 = 1,2 •... ~1)

or

v = (2k-l) ~ (k = 1,2, ... N) and (22-1); (t = 1,2,. ..M)

for a half circle or half ellipse, we accordingly write

N
E [(m-l)A + r ~~ ] cos((m-l) (2k-1) l) = 0

k=l 2N
h

r = a - 2"

or
8 = (2k-l) 2~

N
[ (m- 1)A + ~~ ]E cos ((m-l)(2k-l) 2~ ) = 0

k=l hu = ul - 2"

v = (2k-l) 2~

for m = 1, 2, ...

Then, by algebraic work entirely similar to that indicated previously, we obtain

where
a2- - m

fm : cos ((m-l)(2k-l) 2~) cos((m-l)(2l-l) ;M)
2h + (m-2)

2-99



or

[ = I r
k,£ Mm=1
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2h - (m-l) n
---- cos ((m-1)(2k-1) 2

n
N) cos((2m-l)(2~-1) 2M)'

I + (m-2)
h

where f = 0.5 for m=l and f = 1.0 for m>l.m m

Values of A(b) at 8=0 and 8=n could be obtained, if required, by respectively

setting k = 1/2 or k = N+1/2 into these formulas.
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Absence of Symmetry

In a two-dimensional problem in which no symmetry is present to be exploited t

it would be appropriate to employ both cosine and sine functions in expressing the

condition that no external sources are present beyond the boundary curves. We

might employ p = 2N points on the outermost curve and Q (taken to be even) points on

an adjacent inner curvet taking (for a circular or elliptical boundarYt respectively)

mesh points with coordinates

r = a, ek = (2k-l)n/p; r = a-h, e~ = (2~-1)n/Q

or
U = ul ' vk = (2k-l)n/p; u = ul - h, v~ = (2~-1)TI/Q.

The condition of no external sources would then be expressed, in these respec-

tive cases, as

P
L [(rn-l)A + r ~Ar ] cos (m-l)8 k = 0

k=l Q

r = a-h/2
e = ek

or

and
P
L

~1

[rnA + r ~~ ] sin rn8 k = 0

r = a-h/2
e = 8k

P
L [(m-l)A + ~~ ] cos (rn-l) vk = 0

k=l h/2u = ul -

v = v
k
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P
E

m=l

- 20 -

[rnA + aA ] sin m vk = 0au

u = u1 - h/2

v = vk

for positive values of m.

As in the case of half-plane symmetry discussed previously, one again should

also specify the value of the potential itself at some point of the relaxation mesh.

These specifications then lead (after some algebraic work of a character

similar to that indicated previously) to a result of the form

where Q/2
>- _ 1
(..,k,~ - Q/2 l:

m=l

T (c)
m

B (c)
m

cos ((m-1)(2k-1) ~) cos((m-1)(2£-1) &)

T (s) ~
+ III _ sin (m(2k-l) !!.p ) sin(m(2£-l) _QTI )BTSl

m

with 9 = 0.5 for m=l, 9 = 1.0 for m>l,m m

and, for a circular boundary

T (c) = 2 ~ - m
m h

T (s) = 2 ~ - (m+1)
m h

while for an elliptical boundary

T (c) =~ - (m-1)
m h

T (s) = £ - m
m h
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Tests

Several computational tests have been made of the principles discussed

above, both with small special interactive programs executed through the LBL

SESAME system and also by modification of the TRIM program for the CDC7600

computer. The interactive programs all employed a two-dimensional polar

coordinate mesh with the same number of mesh points per angular interval at

every radius, while TRIM employed the customary triangular mesh with the number

of mesh points at the periphery decreasing by 2 as one moves inward from one

arc to the next. In all the interactive runs and in some of the TRIr1 runs

the results obtained could be compared with known analytic results in order

to verify that a good approximation was being obtained to the true solution. 7

The tests with TRIM, which are continuing, so far have been confined to cases

of quadrant symmetry.

The early tests employed values of vector potential on three, rather than

two, nested arcs (because of the choice of algorithm for estimating aA/an),

but subsequently some of the work was repeated so as to involve values on only

two such arcs in the manner outlined earlier in this report. In all cases

convergent solutions appeared to represent good approximations to the correct

solution of the problem under consideration. The use of potential values on

two, rather than three, nested arcs appeared to lead to results of even some

what better accuracy and clearly represents a certain simplification.

The cases for which interactive computational trials were made were of

the following types:

Quadrant symmetry, with circular boundary arcs,

Half-Plane symmetry, with eliptical boundary arcs.

Some attention was devoted to examining empirically, for these cases, the

7 /lone of the interactive computations involved the presence of magnetic material.
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advantages, with respect to rate of convergence, of over-relaxation. 8 It

appeared that (as expected) over-relaxation was distinctly helpful when

applied to the conventional relaxation procedure for the potential in the

interior, but that then it was desirable to confine the over-relaxation

parameter used for adjustment to the boundary values A(b} to ~oderate values

(for exa!T1ple, to 1.5, or possibly less). A satisfactory procedure that may

warrant adoption accordingly is one in which a common value is e~ployed for

the over-relaxation parameter used in each of these operations, but the boundary

values are revised only on every other passage through the mesh.

As with any relaxation procedure, it is a delicate question how best

to adjust the over-relaxation parameter, and further examination should be

given to the suitability of the automatic adjustment procedure (now frequently

employed with TRIM) when the boundary values are processed in the manner

suggested in this note.

8 In all the work, relaxation was of the Liebmann type, wherein new values
are stored (over-writing old values) immediately, and are subsequently used
whenever required. By an over-relaxation parameter (c.d we mean the following:

New Va1ue = a· (Recommended Va 1ue) + (l -a) . (01d Va 1ue ) .

Over-relaxation then consists in the use of values of this parameter that are
greater than unity. [In some runs, after the relaxation had been considered
to have progressed sufficiently far toward convergence, a few additicinal
relaxation sweeps through the mesh would be made with the over-relaxation para

meters set to unity.]
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CAPn ONS nm FI GimES

Fig. 1 - Typical TRIM mesh for studying one quadrant of a proposed

ESCAR dipole magnet. Note the extensive air region external to

the iron.

Fig. 2 - TRIM mesh for the example of Fig. 1, after introduction of

circular boundary arcs (external to the iron) whereon one applies

the boundary conditions presented in the text.

Fig. 3 - An example employing a II window-frame ll current distribution. with

quadrant sYl1lretry, wi th no magneti c materia 1 present -- so that the

correct vector potential can b(~ calculated analytici:lny for test

purposes. Circular boundary arcs, closely surnJundinu this current

distribution, are shown wht~r'e()n one dpplies the boundary conditions

presented in the text. In this example the inner half-width and
/

half-height of the window frall~ were each taken to be 31.0 units and

the external half-width and half-height to be 41.0 units.

Fig. 4 - Detail of the,warm-iron dipo1e-magnl~t design used to obtain th(~

data recorded in Table II.
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TABLE I
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Comparison of Numerical and Analytic Results

for the Problem illustrated in Fig. 3

x Y A, by relaxation A analytic,

10. O. 249.7 250.2

20. o. 493.1 493.9
30. o. 730.6 731.6

61.98276 o. 625.9 626.9

61.25426 9.47511 625.1 626.1

58.91443 19.26013 622.2 622.9

53.95623 30. :Jo553 612.6 613.1

43.82843 43.82843 561.7 562.1

30.50553 53.95623 405.G 404.1

19.26013 58.91443 257.3 256.1

9.47511 61.25426 127.2 126.1

5. 5. 125.9 126.1

20. 20. 511.8 513.2-

25. 25. 631.5 633.2

30. 30. 727.3 729.1
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TABLE I I --

Compa ri son of Va 1ues for Vector Potenti a1

Obtained with conventional TRIM and modified TRIM for the
dipole magnet of Fi gure 4.

x y Conventional TRIM* Modified TRIM

10 o. 456684 456756
22.91 o. 401632 401841

41.52 o. 7113 8290
41.52 6.478 6381 7574

41.52 29.51 2515 3484

30.504 29.51 2631.5 3254.3

20.336 29.51 3920 4360
10. 168 29.51 3097 3332

0.847 29.51 218 229

* A = 0 on outer boundary.
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Field of a Linear Electrostatic Multipole
L. JACrsON LASLETT

Departmenl of Physics and Inslilule for Atomic Research,
Iowa Slale College, Ames, Iowa

A RFKENI has recently emphasized the desirability of
bringing the multipole concept emphatically to the

attention of physics students. A specific examination of
certain features of the field from a linear multipole may be
of value, both in lending definiteness to the multipole
picture and in affording an illustration of useful analytic
techniques.

The generation of multipole potentials by differentiation2

is a method of general utility. Thus, in terms of polar
coordinates (r,e), the electrostatic potential of a linear
2n-pole is immediately seen1.2 to be proportional to

(an/azn)(l/r) = (-l)nn!Pnv,)/rn+1,

where Pnv,) is the Legendre polynominal of order nand
argument l'=cosfJ. The field-components accordingly are
in the ratio

E r:EB=(n+1)Pn:sinePn', (1)

and the equation describing the lines of force is determined
by the condition

dr:rdfJ=Er:EB. (2)

With the field-components (1), the differential Eq. (2)
may be integrated easily to obtain the explicit equation for
a line of force

f dr f (n+l)P n-;-+ (1_1'2)P
n
,dl'=const.

FIG. 1. Direction of lines of force from linear multipoles:
(a) dipole. (b) quadrupole. (c) octupole.

of force would then be given by

(iJn / iJzn) cosfJ = const.
(iJn/azn)(z/r) =const.

n(iJ n- l/ iJzn-l) (l/r) +z(iJn/ iJzn) (l/r) =const.
(-l)n-l(n!/r n)pn-l+(-l)n(n !z/rn+I)Pn=const.

(1/rn)[Pn_I-I'PnJ =const.
(1- ,..2)Pn'/rn =const.,4

For a linear 2n-pole of infinitesimal spatial extent the lines

Inr- (l/n) In[(1-1'2)Pn'J=const.
rn=C sin2ePn'(cosfJ), (3)

the second integral being evaluated by subtituting for P n
the expression

P n = [2,..Pn' - (1- ,..2)Pn"J/[n(n+ l)J (4)

obtained from Legendre's equation.
A direct derivation of the foregoing equation for a line of

force may be obtained alternatively by application of
Gauss's law in a manner indicated by Smythe. For an
array of collinear charges qi arranged along the polar axis,
Smythe3 shows that the lines of force are described by the
equation

or

(6)P n (cose) =0.

rn = C sin2e~n' (cose)

as before [Eq. (3)]. Figure 1 illustrates the direction
of lines of force from linear dipoles, quadrupoles, and
octupoles.

It may be worthwhile to point out, however, that certain
characteristics of the lines of force can be found without
use of the equations for these .curves in their integrated
form. Thus, from Eqs. (1) and (2), the line of force will be
perpendicular to the radius vector at polar angles for which

The radius-of-curvature p of the line of force can be
found by differentiation of the unit-tangent with respect
to arc-length. In particular, at a point such that the line of

(5)1:qi cOSet =const.
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2 NOTES AND DISCUSSION

where 6, and eft denote unit vectors which at every point
are, respectively, tangent and normal to the curve, The
unit-tangent may be expressed in terms of the field
components, E r and E6, and the associated unit vectors,
6,. and e" taken, respectively, in the directions of increas
ing rand (J:

e,=[E r6r+E,e,J/[Er2+Ef]i
me(n+ 1)P,,@r+sin8P,,'e,]/[(n+1)2(P,,)2

+sin28(P,,')2Ji. (8)

The differentiation indicated by Eq. (7) is performed by
the use of Eq. (8), noting that de r /dIJ=6, and d@,/dIJ= -er •

Following the differentiation one makes use of Eq. (6) to
obtain the simple result

for the radius of curvature at points where the line of force
is perpendicular to the radius vector.

In summary, the generation of multipole potentials by
differentiation appears as a useful basic concept which
affords a means of readily obtaining a simple equation
describing the lines of force of a linear multipole. It is
interesting to note, however, that certain features of the
lines of force can be found without use of the equations for
these curves in their integrated form.

I G. Arfken, Am. ]. Phys. 25, 481 (1957)•
• W. K. H. Panofsky and M. Phl1lips. Classical Elutricity and

Magnetism (Addison.W~sley Press, Cambridge, 1955), Sec; 1-7.
• W. R. Smythe, Stallc and Dynamic Electricity (McGraw-Hill Book

Company, Inc.. New York, 1950), second edition Sec. 1 101
• By the identity (l-I")f.'+nl'p.-nP.-1 =0; E. T.Whittakel;and

G. N. Watson, A Course In Modern Analysis (Cambridge University
Press, New York, 1927), Sec. 15.21, Eq. (V), or reference 3, Sec. 5.154.

force is perpendicular to the radius vector

(1/p)6"mde,/ds
= (1/r)d6,/dIJ, (7)

or
(1/p)e" = - [(n+2)/r]er,

p=r/(n+2)

(9)

(10)
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An Equivalent Distribution of Surface Currents for the Generation of a
Prescribed Static Magnetic Field within the Enclosed Volume*

L. JACKSON LASLETT

Lawrence Radiation Laboratory and Department of Physics,
University of California, Berkeley, California

(Received 12 January 1966)

It is shown how a specified static magnetic field within a given volume may be generated through use of a
current distribution on the surface surrounding this volume. The surface distribution includes a distribution
of magnetic moment (oriented tangential to the surface) that may be interpreted as a double-current layer,
but no magnetic poles are introduced. No sources are required external to the surface and the exterior field
will be zero.

fl being the outward-directed unit vector normal to the
surface S. [Such a <P may be assumed to exist. In
particular, with the stipulation that v·A=O (so that
f fsA·fldS=f f fvv·Adv=O), <P may be taken as a
solution of the Neumann problem in which Y'2<I>=O and
boundary conditions of the second kind apply.] Ac
cordingly, V xA'=H, and A'·il=O on S.

One now defines the vector

closed surface S, together with an associated vector
potential A so that V xA=H and v·A=o. Within S,
v·H=O and V xH=471J,4 with J=O if no currents
exist in the volume V interior to S. One may construct
a new vector potential,

A'=A+ V<P, (1)

where <P is specifically selected so that,at all points on S,

I T is knownl,2 that the external sources of an elec
trostatic field that is specified within a closed sur

face S can be replaced by an equivalent distribution of
charge and electric dipole moment on S (the so-called
Green's equivalent stratum). With this replacement,
the electric field external to S vanishes. It appears to
be less well known whether an analogous distribution of
surface currents may be found to replace the external
sources of a static magnetic field, without employing
magnetic poles or surface distributions for which no
physical interpretation is evident.3 It is shown here
that there exists a current distribution on S that will
produce the same magnetic field interior to S as is
produced by the external sources (whethf'r the external
sources are formed by a current system or are imagined
to be magnetic poles), and an explicit prescription is
given for determining this current distribution.

The magnetic field H is considered as given within a

(V<P)·fl= -A·fl, (2)

IIIJ 111{HXil rx[A'xil] r }
=. ;dv+

4
71' -r-+ r +r (A'·il) dS

v s

(3a)

(3b)

that can serve as a suitable vector potential to give the field H within S. The vector r is to be understood as ex
tending from the field point P to the surface element dS (Fig. 1), and the two forms given for Eq. (3) are equivalent
because the factor A'·il that appears in the last term of Eq. (3b) is identically zero on all points of S.

The three surface integrals in Eq. (3b) can be transformed to volume integrals as follows:

II (Hlr) x ildS=III (-[V x H]lr+[r x H]/r)dv
s v

= -471'1II (Jlr)dv+III [(r/r) x (V x A')]dv;
v v

(4a)

*Work assisted by the U. S. Atomic Energy Commission.
1 Sir James Jeans, The Mathematical Theory of Electricity and Magnetism (Cambridge University Press, Cambridge, England, 1948),

5th ed., Sees. 204-206.
2 W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill Book Co., Inc., New York, 1939), 1st ed., Sec. 3.12.
3 See, J. A. Stratton, Electromagnetic Theory, (McGraw-Hill Book Co., Inc., New York, 1941), 1st ed., Sec. 4.15 [esp. Eq. (14), in

which the last term is difficult to interpret in physical terms, and Eq. (23) in which the last term represents (in rationalized mks
units) the field of a distribution of magnetic poles].

4 Unrationalized electromagnetic units are employed.
2361
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f f [(r/r3
) x (A' x 11)]d5= f f f {A/v· (r/r3)+[(r/r3)·v]A/-v[(r/r3)·A/])dv

s v

= 41rA/+ f f f {[(r/r')·v]A/-v[(r/r')·A'])dl'

v

(4b)

for P interior to 5 [since v· (r/r3
) may be identified with 41r times the.Dirac delta function]; and

f f (r/r3
) (A/·n)d5= f f f [(r/r')(v·A/)+ (A'·v) (r/r')]dl'.

S l'

(4c)

By addition of Egs. (4), expansion of V[(r/r3)·A'], and
use of V x (r/r3)=0, Eg. (3b) reduces to

The curl of the last term in Eg. (5), taken with respect
to the coordinates of P, is found to vanish. It thus
follows that

A/I=A/+~fff~(V'A/)dl" (5)
41r r3

v

V xA"= V XA/=H, (6)

istic of a field whose sources are confined to a finite
region of space, Egs. (4) still apply except that the
term 41rA' will be absent from Eg. (4b). In this case
the term A' will be absent from Eg. (5) and the curl of
A" will vanish. The current distribution stipulated in
the preceding paragraph therefore produces no external
field.

In examples for which the given vector potential is
such that A· 11 = 0 on the boundary 5, the scalar function
1>, of course, need not be introduced. Thus one may
characterize a uniform interior field

and A" will serve as a vector potential to describe the
field H in the region interior to 5.

From Eg. (3a), which served to define A", it is seen
that this potential would arise from such currents J as
may exist in the region interior to 5, supplemented by
the following surface distributions:

(i) a surface current

j= (1/41r)[H xn] abamp/cm (ia)
and

(ii) a double layer of current, visualized as formed of
currents parallel and antiparallel to A' on the inner and
outer surfaces of an infinitesimally thin shell, that is
describable by a surface distribution of magnetic
moment

H=Hoez=Ho[cos BeT-sin Bee]
= HO[P1(cosB)eT-P1I(cosB)ee] (8)

with J=O, by the vector potential

A1= !Ho(-yex+xey ) =!Hor sinBe.p
=!HOrpll(cosB)e.p, (9)

in which the last forms shown in Egs. (8) and (9) are
expressed in spherical coordinates. If 5 is selected to
be a sphere of radius a concentric with the origin of the
coordinate system, the vector potential Al is such that
A1'n=0 on this surface and A'=A1. Eguations (7) then
immediately give the surface distributions

FIG. 1. The surface S to which
the vector r is drawn from the field
point P.

These surfac,e distributions therefore may be employed
in place of sources external to 5. The surface-current
distribution of Eg. (7a), when supplemented by volume
currents J that terminate on leaving the interior region,
are such that the steady-state equation of continuity is
satisfied.

If the foregoing analysis is applied to evaluate A" at
a point P external to 5, subject to A' being character-

p= (1/41r)[A' xn] abamp. (7b) j= (Ho/41r) sinBe.p and p= (Hoa/81r) sinBee (10)

that will produce the specified uniform internal field.
The form of the surface current j is such that this current
alone will produce a uniform interior field 5

; the respec
tive contributions to the internal field, due to the current
and magnetic moment distributions of Egs. (10), are
in the ratio 2: 1 and the individual contributions to the
external field cancel.

Alternatively, if the field of Eg. (8) were characterized
by the vector potential

A2= -HoY~z= -Hor(sin2() sin¢ cos4>~r

+sin8 cos8 sin¢ cos¢~e-sin() sin2¢~q,); (11)

5 W. R. Smythe, Ref. 2, Sec. i.051; ibiJ (1950), 2nd ed., Sec.
i.12.
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A2 ,n= -Hoa sin28 sinep cosep and one may take 4> as
the (hannonic) function

(12)

to satisfy Eq. (2). With this form for 4>,

A2'=A2+V4>= !Hor sin8c<p=A1 (13)

and Eqs. (7) lead to the expressions for j and p given
before by Eqs. (10).

This work was begun as a result of stimulating con
versations with my colleague, Dr. A. :VI. Sessler, con
cerning the possibility of realizing certain field con
figurations intended to reduce aberrations in beta-ray
spectrometers.
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A ~fETHOD FOR STATIC-FIELD COMffiESSION

*IN A.'1 ELECTRON -RING ACCELERATOR

L. Jackson Laslett and Andrew M. Sessler

Lawrence Radiation Laboratory
University of California

Berkeley, California

The Static Field

re~uirement of final rings with small minor di
mensions seems to impose an almost cmattainable
demand on the ener~J spread of the injected beam
(cf. Ref. 5).

We also wish to impose the re~uirement tb~t riags
not be accelerated (or decelerated) in the z
direction. Since the force in the z-du'ection is
proportional to 3} we re~uire--for all z
included in the co~pression process--tr~t

In this paper we first discuss general
aspects of the compressor static field and the
associated traveling well. Subse~uently, we give
an example of a possible field configuration and
coil arrangement. An appendix is devoted to
describing the computational procedc~es employed
in seeking practical designs. A schematic gener
al view of the proposed compressor is given in
Fig. 1.

constant.

O.

r(z)·B lr(z),zJz

E lr(zJ,zJ
l'

\.J'e propose a static-field compressor in
which there is no axial ring deceleration (or
acceleration) and hence no very stringent sensi
tivity to initial energy spread. ~~thermore,

the fields of the static compressor are neither
focusing or defocusing in the axial direction so
that, with the addition of a small traveling
::.2.=:"'~,=ti2 'Jell} tra:-~;3Ve1:"3e- f'O:c;;"';'3i:-.g ,:::~•. -.....:.: ULl::.L
tained throughout the compression process, and
the integrity of the ring maintained. A trav
elin~ magnetic pulse, matched to the repetition
rate of an electron i~jector, can easily be
attained in pr3.ctice, and thus can preserve the
high pulse-rate advantage conceived for a static
field compressor. In addition, the continuous
control of the electron ring may prove advanta
geous for the proper phasing of a compressed and
loaded ring into an acceleratir~ section.

In the design of the static compressor we
r~ve at our disposal the choice of the surface
l' = r(z) on which the electron ring moves.
Because the fields are static, the energy of an
electron does not change d~ing the compression
process, and with no axial acceleration, the
orbital component of momentum remains substantial
ly constant for an electron on a circular (e~c;i

librium) orbit. With the re~uirement that this
orbit lie on a specified surface r = r(z), it is
necessary that

A review of methods for static-field compres
sion of an electron ring is show~ to sc~gest ad
vantages for. a metb,od in which there is no axial
acceleration or deceleration of the ring. In the
method proposed here the static magnetic field
itself is of such a character that the electrons
are neither focused nor defocused in the axial
direction. The integrity and movement of the
ring through the compressor is controlled by a
small traveling magnetic well. The feasibility
of creating such a traveling well is dLc"' ""l..
and an example is presented of a current distri
bution capable of producing the static tr.::.gnetic
field of the compressor.

This work was done under the auspices of the
U. S. Atomic Energy Commission.

Summary

Introduction

The method proposed (independently) in Refs.
3, 4, 5, 6 is essentially the reverse of a normal
magnetic expansion process. 7 In contrast to the
situation during normal expansion, the ring will
not hold ions during the compression process and
hence will not be self-focused; accordingly, there
are critical ~uestions concerning the feasibility
of achieving rings of small minor dimensions in a
static-field compressor--in the face of an inher
ent energy spread and transverse emittance of the
electron beam from the injector.

1
In the original proposal of Veksler "t al.)

the electron ring of an electron-ring accelerator
(ERA) is compressed by a pulsed field ~rom a lar~

to a small radius and with an associ~ted increase
of ele3t~o§ ~nergy. As Christofilos~ and
others ' " r~ve noted, compression can be
achieved (Without an energy gain) in a~
magnetic field. With acceleration divorced from
the compression function, the need for large
supplies of pulsed power is avoided, and increased
repetition rates become possible--at the expense
of a higher-energy injector.

*

The method proposed by Christofilos (Ref. 2)
hss one Dr more alternating sections of axial
acceleration and deceleration and therefore can
provide focusing except within a short region
between adjacent decelerating and subse~uent accel
erating sections. Such defocusing regions ~y not
be serious if special methods are eWPgoyed, or if
the crossing is sufficiently rapid. c , However,
as in the other static compressor proposals, the
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Vacuum vessel

Electron Injection tube

"LHelix for moving magnetiC well

Accelerating loaded
electron ring

"
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,E lect ron ring at
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Electron ;1'rTg.• i.
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& trans fered by .
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Injected
elect ron ring

XBL 692·250

Fig. 1. Schematic view of the static compressor. Note the inner
and outer coils. Injection is at the left, loading takes
place just after compression, and a magnetic expansion
unit is shown on the right. The traveling magnetic well
is supplied by a current pulse on the (slow-wave) helix.

0, (6)

Focusing Properties of the Static Field

The focusing properties of the static field
follow from the dynamical equations of lliotion for
electrons in the field of Eqs. (3) and (4). At
first thought one might argue that, since B is
zero along the trajectory r = r(z), the derIva
tive of Br in the z-directio~ is not zero, the

2·;e = 0, 2 X ;e 0,

namely

['Br(r,,: dB,(r,,~
dZ dr

r=r(z)

and

(dr(Z)/dz]2(r - r(z)]

r(z)ll + (dr(z)/dz]2 j

and

The specification of Band B on the
surface r = r(z) can be s~en to be~ (1) con
sistent with Maxwell's equations, and hence a
permiso~~:c ~rocedure; and (2) adequate to deter
mine completely the field for points near the
surface r = r(z) (as an expansion in powers of
the distance from the surface). Thus we find that,
if RO is the (arbitrary) injection radius at
which the field B takes the (arbitrary) value
BO' then z

Bz(r,z) :t:, {l -

J( 3 )

BORO {(dr(Z)/dZJ[r - r(z)] }
B(r,z)=-2- . + ... ,(4)
r r (z) (1 + (dr(z)/dz]2 j

through first order in (r - r(z)]. It is easy to
verify that these first-order expressions satisfy
(1) and (2), as well as the zero-order equations
which follow from
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Proceeding as we have, this result is certain
ly nonobvious; we are aware that such a simple
conclusion probably can be obtained by a general
consideration of our original (simple) field
specifications. In lieu of such an argument: we
burden the reader, in the remainder of this sec
tion, with details of the straightforward argument.

Starting from the principle of least action,

6 J(p h - A)'d« 0 (2).......mec ..... ~

4vith the mechanical momentum measured ill U!lJ.ts of
"magnetic rigidity"), one can conveniently derive
the equations for a general particle trajectory.
Keeping only first-order terms in the motion about
the equilibrium orbit r = r(z), one obtains

(lla)

(llb)

(13a)

o .

2
[dr(z)/dz]

r=r(z)

1
2' :t

2
v

B (r, z)
r

n

-[il,(~,,) <lBr (r" I~n oz
r=r(z)

and

[B,(~"I <lB, (r, 'IJa - oz
r=r(z)

a -[BJr,,) <lBr(r,,~
ar ,

r=r (z)

with

and correspond to eigenmodes in which the rand
z motion is mixed. From (3) and (4), and the
definition of n and a [Eqs. (lla,b)], we find

The characteristic frequencies of the system
(10) are g~ven by

(sa )o")x _ l' + [r(z) + x]B (r,z)
r(z + x z

field index n is nonvanishing, and the static
field would necessarily have some focusing or de
focusing effect. One recalls, however, that the
usual derivation of focusing is special to1situa
tions with median-plane symmetry, which is not
present in the static compressor. We have under
taken a detailed calculation (outlined below) of
small-amplitude motion in the region of the equi
librium orbit r = r(z). The general result is
that the focusing involves two field indices.
When we employ the fields of Eqs. (3) and (4) to
determine the indices, we find that the static
field determined by Eqs. (1) and (2) has the same
focusing frequencies as a uniform field (namely
one mode in neutral equilibrium).

and

- [r(z) + x]B (r,z) = 0,x r

dr(Z)/dz (13b)

where p = r(z)B [r(z),z], x = r - r(z), and the
primes denote differentiation with respect to the
azimuthal angle e.

Exp9.nding the fields about the equilibrium
orbit, and employing ~axwell's equations to relate
field derivatives, we may put the coupled equa
tions in the form

and consequently, from (12), v2 = 0, 1. These
frequencies are the same as would be obtained in
a ~~iform field (but now with some coupling of r
and z motion corresponding to the pure-r and
pure-z modes of the uniform field). One mode is
on an integral resonance, and the other is in
neutral eqUilibrium.

X II + (1 - n)x + az o (loa) The Moving Magnetic Well

n ;;;

where

and

z" + nz + ax = 0,

the field indices n and a are

OBz(r,z~
ax:

r=r(z)

(lOb)

defined by

In order to control ring position along the
trajectory r = r(z), and also to supply axial
focusing, a moving magnetic well must be added to
the static field of the compressor. Because of'
the neutral equilibrium of the axial mode in the
static field, only a modest strength is reqUired
for the moving field.

A number of possibilities have been suggest
ed for creating the moving well; a particularly
interesting proposal is to send a current pulse
down a slow-wavp. structure. Dombrowski has

-3-
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*

(Al )

1, • "r.! ,

:I., •• 'm,i

i

are weighting factors.

:L
j=l

where the

Trlis Appendix woos prepared ::y Ste':e~: Sackett.

A practical solution for the currents I,
may be obtained by taking 2m ~ n and obtaining
the best fit to (Al, A2) in a least-squared sense,
with the possibility of a relative weighting of
the B~ equations compared with the B equations.
This process Will, in general, lead to ~urrents
that are not smoothly varying, or that are large
in value. Consequently we require that the quan
tity to be minimized be supplemented by

(z) (r)
where Bij and Bi . denote the z and r
components, respective1y, of the field at point i
due to unit current in coil j, and the field
components desired at point i are denoted by
3
Zi

8.J."1d B
ri

.

*Appendix: Determination of Coil Currents

Practical designs have been investigated by
choosi~ (1) a desired compression surface
r = r(z), and (2) a desired set of coil locations.
The currents which must be supplied to the coils
to give the necessary compressor fields are then
computed. Because of the linearity of Maxwell's
equations, the problem reduces to solving the
system of (linear) equations:

The computatior~l procedure consists of a
reduction of the matrix equations, by orthogonal
Householder transformations, followed by itera
tionrowhich successively improve the least-sq;~res

fit. The computer program first generates the
fields to be fitted, B., and the matrix of coef
ficients, 3.. (employIng the fields of infinite
ly thin wire~!oo:ps); it the:1 (using input values
of weights and a convergence criterion) determi:1es
I. • Since machine la:1g-~ge is ,-<sed, the speed is
hIgh. Output is nu:ucrical and. also crraphical.

I~ Fig. 2 we present one numerical example
Which should suffice to show the practicality of
the device. The compressor has a length of one
meter; it accepts electrons at a radius of 57 cm
and compresses them, by a factor of 7.5, to a
radius of 7.3 em. The separation between inner
and outer coil surfaces is 8.0 cm. It can be seen
that the req~ired coil currents are smooth (the
oscillations near the ends presumably can be
removed by slight lengthening of the solenoid) and
not excessive in ma~itude.

A practical compressor design consists of
specifying coil ra~ii, positions, and associated
currents. The expansion of fields about the
trajectory r = r(z) (which was described above)
cOLl1d be used to generate fields at distances
away from the trajectory; these fields could then
be "terminated" by suitable current distributions
in such a way as to require no further currents
at greater distances. This procedure ie not easy
to follow. Furthermore, it is not clear ill ad
vance at what point singularities will appear in
the expansion and thus dictate the location of
c\rrrents. If these singularities are tOG close to
the trajectory, r = r(z), they would preclJde
adequate room for particle oscillations or ade
quate vacuum chamber width for pumping, and might
force the Windings to be inconveniently thin in
order that intolerable field ripples be avoided.

considered a design involving a helix with a
surrounding die~ectric layer and an outer con
ducting sheath. He finds that the dispersion of
a current pulse can be made acceptably small,
while the rather slow decrease of impedance with
frequency is advantageous for matching into a
modulated power supply. Details may be found in
Ref. 9, but the conclusion is that a helix appears
to be a practical solution to the problem of ring
focusing and control.

In order, then, to demonstrate the feasibility
of the compressor in cases of practical L~terest,

we have resorted to digital computation. The c~n

putational studies were undertaken by Steven
Sackett, and the procedures employed are described
in the Appendix.

Numerical Example
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In the eilCample cited in the text, the orbit
trajectory was taken to bea cosine curve with
100 fitting points between z = 5 cm and 95 cm.
There were 200 coils located between z = 0 and
z = 100 cm on two cosine curves separated by 8 cm.

The Br weighting factor was 5, wo = 10-10,
-l2 -9 (wI = 0, w2 = 10 , and w

3
= 10 • T'nese

values were seen, in some survey studies, to be
effective.) 'The time to solve the problem was
14.8 seconds on a CDC 6600, and the total sums of
squares o:f the relative errors in B and in B

r
8 4

-6 z_6
were respectively • X 10 and 7.3 X 10 •
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Fig. 2. Static compressor having a compression
ratio of 7.8:1. (a) Geometry of the coils
and ring trajectory. (b) Currents required
in each turn of two lOO-turn solenoids (or,
equi~dlently, the turn densities required
for series-wound coils). The current values
correspond to a field B = 4.0 kg at

z
r = 56.7 cm; i.e. electron kinetic energy of
63.3 MeV. (c) "Flux plot" shOWing lines-of
force (the density- of lines does not reflect
field strength). -
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(Note~ for tulk a L

ERA Seminar ~/15/69)

ON THE FOCUSSING EI~FECTS

ARISING FROM THE SELFF'IELDS OFA TOROIDAL BF.AM*

L. Jackson Laslett

Lawrence Radiation Laboratory
Universi ty of California

Berkeley, California

IN'IfRODUCTION

The self fields of a toroidal beam were discussed in the ERA ~roceedings

(UCRL-18l03, Papers ERAN 7-8), wherei.n simple approximate formulas were

presented to describe the bitHI f'ieldu at the center of the beam, and com

putational results were reported to confirm the magnitude of these bias fielda

and to suggest values for the gradients of the self-field components.

A recent Soviet paper [ I.N. Ivu.nov ~ a1., JINH Report P9- ln32 (l968.~
bas given identical fonnulas for the bias fields, together with similar

formulas for the field gradients. The Soviet authors, moreover, indicate

the effect of these self-fiel.d effects on the betatron-oscillation frequencies

of individual particles in the beam, and it is evident that these oscillation

frequencies can be markedly affected by the toroidal self-field effects when

the parameters of the ring are similar to those that pertain to the Soviet

electron-ring device (V. P. Surantsev, prlvate communication, March 1969).

Because of the potential interest in these effects, we review here the

considerations that can lead to the analytic results cited in the Soviet

report. It will be noted that analysis of this probl~m is complicated by

the presence of the bil:"s fields, Er and Bz ' that act to expand the ring and

whose presence requireD ttlut the applied gUide (and focussing) field be

strengthened, or the part.Jcle ellergy be redLlced) ox' that Borne combinut10o

of these actions be tul\en if' the major orbit rudJus of the ring is to be

maintained. The anal.ysis o.lso is compl.icated by the presence of electric,

as -well as magnetic self' fields, whose dynamical effects must be evaluated.

The present notes are divided belml lato four sections, of which the

first three in turn (r) derlve the self fields of u toroidal beam, (II)

discuss the general dyillimtcul problem of smull-fl.mplitLlde oacillations 1n

'* Work supported by the U. S. Atornic Energy Commiss ion.
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the presence of magnetic and electric fleldfJ, and (III) apply the dynamical

results to obtain the implications of the seLf fields with respect to the

incoherent oscillation frec;Luencies of particlea in the toroidal beam. This

analysis does not t~(e explicitly into account the poasible presence of

stationary iona in the beam,nor does it include the inherent non-toroidal

space-charge forces that would be present with a straight beam. These

latter effects, that have been treated by Teng for a uniform beam of

elliptical cross-section [L. C. Teng, Argonne National Laboratory Report

ANLAD-59 (1963) ] , intr0duce no bias terms and so present no complication
2they moreover often will be small in practice because of the strong 1 - ~

cancellation between the electric and magnetic forces of an unneutralized

highly relativistic beam. A concluding section (IV) attempts to take

into account partial neutralization of the beaIIl by stationary ions, with

the inclusion of direct seLf-field effects and of image terms that will

arise from nearby conducting or dielectric cylinders. The present work

will be concerned moat specifically with a beam of highly relativistic

identical particles distributed uniformly throughout the cross-sectio~ of
. esu

a toroidal beam. E'or the 11miting situationfj ;;.-: 1, we write I ;: ":"-2R •emu 1C

I. THE SELF FIELOO OF A TOROIDAL BEAM

A. The Bias Fields

The scalar and vector potential functions of a filamentary cbarge-cUJT~nt

ring can be expressed directly in terms of complete elliptic integrals Gr.. W. R.

Smsthe, "Static and Dynamic Electricity,· Sect. 7.1rjJ, and the corresponding poten

tials for a toroidal beam can then be expressed as clefinite integrals. Differenti

ation of such expressions than g1vea the components of the electric and ~netio

fields, am further differentiat.1on gi.ves the gradients of these field QOD1pononta.

Thus, for a ring of major radius R and an elliptical cross-section with sem1-axO&

a,bl

Q ~r·[K (lHr~Glt-r~(l-r~&/')] R.. -+ ..../~e' J..S'
E= L-n -( I I~ I 1):1.

E J "
, 7f:LQ.p ~,. . . 'R.- ('+(~ 0) +(i -rc:M.6 l'(K-t-("'\- I'~e' )':L.+ ('l- r'~ ~')a.

ciS',
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where the parameter of the complete elliptic integrals E and K is

2 . 4r(R+r'aine l )
m=k = •

(R + r + r' ain e' )2 + (z .. r I 008 a') 2

1 + r.!..sin 9'4R (R + r' sin el) ~R:.:.. ~
Dl. = __-J;_O:'-_--:"'.:...;.;.;_...,;.~-~-= 1 • 2

(2.R + r' sin 8')2 + r ,2 coi 9' 1 + 1f sin 9 1 + (~)

(~)2

~=l-m= 1
1 + r...:.sin 9 1 +

R
Hence a critical term in each ot the defin1 te integrals i8

If we are interested in the bias fields at the oenter of the cross-section,

where r =R and z= 0, ve note that

Acoordingly the dominant terms in Er and Bz at r= R and z::: 0 are respectivel,y,

when the minor dimensions are small relative to R,

B S!:
z t.bii ff.. elS'

== ...!.-ffi~~ .. ,uabR rl dS·.

E ~ 9 rrK dSI
r - 2n2aba2 JJ J

~ Q f'tn ~ tiS'
2n2a~ JJ~ r l

The integral lfK dS I over the crosa-section of the beam is readily ev-+uated

(see the Apperrlix to this Section) and yields, as a dominant term,

Jfi (is' :: nab J.a~Rb = 11 ab ~ ~, where b =a ~ b is the avenA;_ ~mr
radius of the beam. We thus obtain for the bias fields,

and B ~ !.tn@
• - R b'

111ese reaul to 'Were checked reasonably well computationalll, for a beam or
circular cross-section 'Wi th a ratio of major- to minor radius equal to JJ), although
the resul t ai' numerical integration gave a reBu.!t for the §1.flYitric t1 tid tbat .....
JJ11l.y 83 percent of the approximate amlytic value.

B. The Field Gn.<l1antD

For the "effective i'iald," Fr = ~ + Bz at the oenter of the beam, we ahdl.arlT

tim, to the same order of approximation (\lith I = 2~)" the gradient
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orr Q_ .C:!.

Or - - ;2aoiJ
1

which is - Ii times the 'total

- I, -
...- Q ~~!::
-~ l>

,

bias field Fr :: Er + B"" at tho centor of the bllJ.f.un..

From the result just found, one can immediately write the corresponding

derivative of16z through \1se of the divergence ani curl condi tiona, where Fz

denotes the effective axial field Ez - ~ •

'dF 7> l:;I '&>,}I,. (- E,. 21.'=, \. ( COlD:O] ~)rr - ~~ - "iii: - "V.. e: -.,. - b(, ) - ,JI..p.,+-;, ..

_ r, - (Er ~r CaB.J)
,. V .. E -L'V)\l}), - J( + b(' 'T ~("

(
e r ~F;.)

:. 41t (f - J') - "-R""'"' '3 r

a result that has half the magnitude aul tho opposite aign when compared to 6F;rI6r.

Computationally, values of oF1I'I)z \lere found that were about 78 percent ot
the values expected from this simple analytic formula (for ratios of major to min~

radii equal to 40 or to 10). The computational reaults for 61.10r were somowhat les8

olear, although the ulilm~8 slopes of Fr aoross the beam were roughly in agreement

with the formula given above for CF~8r at the oenter.

c. swnmarz
With introduction of the notat1.on employed by the Soviet workers, we have

~rectlIe Pias Fielda 2
moc "t.

eFr)o :; "It ~

Gradiants I

e OF.lor

e iiF/6z

u'P _ ~Q2 .t,,~ :;
..... - wa2 b

3-16



- 5 -

Henoe the effeotive radial and axial forces on 8. particle of the beam are

m 0
2

1. 1~ = ..jlR""": [lJ.P - i ~ and

2
~ = ~c -.: ~ ~ , where x:: r - R,

.c; R R 2

in agreement with Eqns. (3.1) ani (3 .. 2) of tho Soviet report.

APPENDIX

To evaluate ifK J.S' ~JJt,r,. ~~JS~ \ofe may introduoe the ooordinate.

I'~ 6 1
:::: '%''' := J a. ~r} 0 ~ A ~ I

r/~", ti' ... 71/ >;I. j.h ...u;., vr 0 ~ "" ~ 2.7C t

wi th r' =- !:x,.2...,. :/':1. _ J ~:L._,~..yr + .J,:L~?

and

Then

bee. for example, I .. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Seriel,

and Products," Sect. 4.226(2), p. 52SJ. and finally

JJ K J.S/ ~ 7Ca.b -e~ "~
CL-I-.b

_ nah L '3- .
.b

where b =a ; ~'.
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II. DYNAMICAL CONSlDERATIO~

lie are fWDiliar 'With the fooussing cba.raoter1sticlS or a purely magnetoatatio

field and reoognize that analya1e or suoh phenomena io simplified by the taot that

the magnetic field does no work on the particle. Thus. in particular. the speed

ani mass of a partiole remain constant. and the dynamical behaviour is described in

juat the same W8¥ for a relativistio particle as for a classical (non-rel.ativiat1o)

partiole -- save that the relativistio maaa m=V,fl - v2jc2 is employed to relate

mechanical momentum to veloc1t,.

i'he situation is different. however, for a charged particle in an eleotrostatic

field -- or, more generally. for a partiole acted upon by a conservative force

derivable from a soalar potential funotion. In this case the focussing effect of

the field will be distinotly differen-" for non-relativistio (I-B) am for ultra

relativistic (U-R) particles. If we restrict our attention to fields vi th a.x1a1

symmetry and that POSS8l:lS a median plane, the striking differenoes arise in evalu

ating the radial betatron-oscillation frequency, 'Yr'

The equations for small-ampl! tude oscUlation about a circular equilibrium

orbit oan be derived wi th confidenoe from general principles of anaJ.yt1cal mechanics

-- for example using the Routhian or, perhaps more direotly, by employing the

Prinoiple of Least Aotion. It may be more informative, however. to attempt a

simple, more physical treatment that prooeeds directly trom the force equation.

Particle in a Pure Magnetostatic Fielfi

In the case of a pure magnetostatic field. one wri tea
2mr = qvB + mY- ,z r

in which Dl ia the relativistic mass, am recalls that m and v2 are oonstants

of the motion. One nay then make An expansion about a circle of radiU8 r o ' writi.ng

r = r 0 + x to obtain

riX :: q V B ( 1 + [.E... 6B.l1\.. .!.) + ml.(l _ .!..)
Zo B Or l r o r r'z o· 0 0

Then to obtain 8 homogeneous differential equation of motion.

arr:l makes the identification (r!B.)(oR/er) = -n to obtain
2

uii =m~ (n - 1)-x ,
ro

X + J (1 - n) x = O.

or, with primes denoting differentiation \Ii th respect to 9,

x" + (1 - n) x = 0 •

whence
y2=1_n.
r
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fatyclg j,0 an EiloeRQatf:t1.o Fiola

In the casa of a oharged }'llrticle moving in an 1lJul'tJ:2Q1&tig, tield, 1 t 1a

expedient to write the "centr1.tugal force"as w(Pg/r), lIhere Pe 1s the mechaldoal

angular momentum. am oonst.:1tutelil a constant of the mot1on in this eaae.

Ltn lowest order, lOOreaver, we app.roximato ft;(mr) by mor ..7

In the non-relativist1o lim1t, w :irP~ , \lh.Ue in the ultra-relativistio 11m1t,

w ~ e/r. Accordingly, one has in ~se l1J:n1 ting cases:

or

x + Ii ( .3 - nelec)·x = 0

x" + (3 - Delec)·X = 0

V 2 =.3 nr - alec.

x+ J( 2 - Deleo)·x = 0

xl' + (2 - Del )·x:: 0
8C

,,2 c: 2 n
r - alec.

N'!(/l:..v 2 = (.3 _ A2)r I' - neleo .

2The non-relativistic reoult " :;:;.3 - n 1 is fwn1l1a.r trom oeleot1al mecban1cs
r e eo 2 2

-- speolf'1cal.ly, in an inverse-squaro central-force field: (i) P81 (2mor) ill

known to represent an equivalent centrifugal potential, 80 PQ2/(~r.3) represents

the radial f'orce arising from this centrifugal potential, and (1i) with n = 2,
2 .

the rosul t vI' = .3 - 2 :: 1 describea the olosed cb;.t.racter of elliptical orbits.

A s1m1lar. but slightly more tedious analysis leads to the general result tor the

electrostatio case:
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Electrostatic ard Magnetoatatic Field
F. ;;pg;r; •

An analysis may be made in a similar apirit for the ultra-relativistio

case when R2.~ magnotostatic ani e1eotrontatic fields are present. In this

case the quantity Pa that we take to be a constant of the motion is the dynamioal

angular momentum E!.B!! ~ rA, llhere A is the (azimuthally direoted) vector poten

tial trom vhioh the magnetio field can be derived. Hence the oentrifugal faroe

is written Po ~ ~A P - ~ rA
w ~ r :: eM. 2C

- 0 • (l)
r

We thus write. &8 the radial equation of JOOtion,
q

q Pe--rA
•• ~ B 0 cmr ::: + -·0· +o z r 2

On expa.nsion one obtains •

In0': = 'I.E,o + 'I. ~t'" + 'I.~! l:>< + 1'.-r; (rA\ ~ (I - .z f.) - f.. ~r~ l;( .

r:.
= 2..

The inhomogeneous terms on the r1 ght are removed by eelecting
p - ~(rA) .a c 9 c =- q(E + B )

r:2 r o Zo
a

(which physically balances the "centrif\lgal force" at the equilibrium. orbit by

the force arising at that radius from the eleotric and magnetio fields), 'With

the result

mx :::: ~ 1>~1 x + 'L ~I \;X + 2 (Ere> + J3z) ~
.. 0

'4E( dEl)]
2 Er... + B io + [r (~ + V 0

~.

The expression given by Eqn. (1) on this page i8 equal, however, S11Dp1y to the

mechanical linear momentum (in the 9 direction) times c/rJ 1.~., to mc2/r. Our

differential equation (3) thus, with tho aid of (2), can be put into the form
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mX

o

= 1+
~ + r(~+~~)

Er + Bz

Similarly, for the axial. motlon, \16 uJ'¥iortake an expansion or the force

equation about the asswued median plane of symmetry'

oar\--- z.
- CZ 1)£

•

It [ ~:! __ ~Br]
m.c 21Z "b~ Z

- i r" _2,(E.I'-+B.1.)
• •

('bE~ dBr)]('-l) [r ~l - 1l .. 1..z -
o Ec: + :B.t... ..

"
[r (1It:3 - 'Ob-!)J

..l + '2IZ "'DZ!. Z. - 0
Er + 1)1... ..
(~E~ _ ~)

rL:L r b"f: "b?

-
E .. + B~z •

0

2
The result found for \I will be seen to be cons1.stent with the usual

r
result (p,6) for a purely magnetostatic field and with that given on p. 7

for a pure electrostatic field in the ultra-relativistic limit.

As shown on the follow lag pages in the Appendix. to this Section, an

analysis based on more generl.l.l methou/3 will also lead to these reflul ta

for the freq,ue I1C leu of smull-B.JnpU. tude: be ta troCl 013(: illatioCls •
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APPENDIX

Derivation from a Routh1an Function
r=-:wr=tr ) 'S

The equations of motion nay be derived tram. a Lagrangian .funotion that

oonta.1ns the scalar and vector potential function.s that rospeot!vely account for

the eJ.eotrostatlc and magnetostatic fleldl3 (A::: A(r,z)ee):
.4. ...... Jli~

L =- - mo-t' J - r + ~:I+ r + !: rd A (r;~) - 2 V(r,.l).

The coordinate e is a "cyclic" variable

is a constant of' the motion:

'JL
18 == dO ==

(aL/c9 ::: 0), 80 the conjugate momentum

tram which

•
() :=

J -
"2. .:1.r +.z

10 -
"

h - .z.. rAro ;C.

m r:J..o

To benefit tram the oonstanoy ot Pe it 18 ~ correot to replace it 1Jl the

Lagrangian by its expression in terms of Pe am then to regard the reoult as

a 8uitable Lagrangian .function from which to obtain the r and z equations or
mot1on. One can, however, torm the Routh1an f:2!... Goldstein, lIClassical Meohanios,"

Sect. 7-2J tor this purpose. The Routhian 1.8 tourd, after some intermediate

aJ.gebra, to be

Gf-V

N- (
~ -e. ) ( .. 2. .. .2.)- -T - ClA 1- r:;.,::-. - Q...V

3-22
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I ?J':A-V 1.2. !.. -tV 1 2 t.
- ~~~ % -La?

o 0

•

The radius r o is to be chosen such that the first-order terms in x are

absent from the BouthiaJ1, and th.1.s requires that

~~ QAI UI::: 0,r 2 + q, ar - q &1'
000

or, sinoe gAl = B - >and fI' = -Er, tl».t Pj; - q~ =-q(B + Itr ).
r 0 1.0 0 erIo 0 r o 0 ·0 0

~ .A.. 1M OBZ
ibplo,yi.ng this result, 1X>t1ng that &r2. r2 • r B.r + Or' and dropp1J1g oonstant

terms (tbat do not affeot the aquattons of motion), the HoutMan 1s axpreas1h1.e ..

a [ J?>l..+ Er., I .(~ +~\) ~l +~l1 x~
+ _~ 2.. --- - - r 'ltr + 4t1". 1)t

Z r. r. 0 • •

+~ [;¥I-~~l1£~

~11.C),t .
OJ
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For convenienoe, the oonstant faotor -q(,+ ~o)/ro -1 be divided out am
the ratio ro/o identified au 1/w to obtain the equivalent Routh1anl

(olt ~E ~].a. r (aEs oBr\1 a.
__' x~ i:A. .... l~ ... 2...Er -+ r ':iI' +lI ..:fJ •X ..... ~ u - »'"/1.,z

R - ai" .2. .:2.. (:B -f- E )
:l r.

the result.1ng differential equa.tiona ot motion then are:

, ,.,.
(;}-"

, ..
(;}-L+

II
X +

II
.i! +

•

in the limit ~ -1,

v .. E - (ValBJ.]
:B. + Er •

( b E.z. "'b»r)]r lS'l;- - U

o

= I + ~

From these resultIS 1t is noted that

+ [Er + f (\~ -~ ~) +

::B~ + E r

[

(
E.r -;-1>.!r + O~_L) _(~~f _O:B-.!)]
r ~(" "U. D~ or

-: I T r .. ..
Bz + E r

f-J.
= 4-1r r 8I + B,l ~ Er

"
since then J - P (for an un"neutTa.l,hed highly re.lativ1s'tic beam) ..amu eau
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AIternativ.6_~=t.n,F2.rmulatf0~-- ~::!.!1!lg~~.rt.loti&!!

The Princ1.ple of Least Aotion may' be written, tor a oharge q 8liU, as the

variationa!. 8 ta tamant :

~/(f + ~ A).et4 = 0 or SJelcU, + :: (A-:~)] :: 0

where 7' == /(1'0 - ~V)~_<me>JG):L ,

Po being a constant (conservation of. er:ergy-).

Thus ]
$J[ /(1'. - "'1.t - (m.~/·: Jr"-+ r/"-+ :l'''' +~ rA dB = 0.

This formulation 11:.1 convenient, in thut J.t leads directly to differential

equations for the trn.jector.l, rather thn.n to equutiona that describe the

motion in terms of time.

Considering r motion only, then

d [ vi0 - 1;1 r-- (rno-c):L'

tit} .,;,.4.+ r/:4

r V''J.+ ,.1:1..

To avoid ·terms of order r·2 , f2.1Q.., one may e:iJDplify aId \011'1 te

o.

(10 - :cV )

_ o.

+ Cf..(rtJV _!(rA)'
/C ~ r gr ')

~~ _ ~ ...~ (rA)
'ar r a,-----

r.. - 'hi

moreover, namely for Po» moc, this

2. .2r+r fl
- r

or

In a highly-relativistio situation,

last equation may be written

r"
(~-~)'r
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Then

"~ -r;,-x

•o

(
bEr _ ~oB~)

E ... + r or t- ~r

E:r + J3.l:

ro 0: -+ ..l3;;;. - Et;.
:;c
r;.

0

[I ~oEr

'01>1) ]Er
.+ r(~ + ---a,<, Z - CJ

+ E r -+ B 1:
•

+

.:z..
(r'o + X)

+

"Jl /1 -t-

1L" - r;, - x

Thus,

or, in first order,

For this equation to be satisfied by

whereupon one obtain13

Again frOJll the variational statElll6l1t representing the application ot the

Prinoiple of Least Action to the prElue.nt problem, one obtains for the z-mot:i0n

(with x =0)*'l- V(A - ~). - (mo~)~ z'J
dlJ 02. -+ r'.2. + Zi:J.

_ 0 ,

or, to the order of accuracy roquired.

V "(~-~)~-

o.

~.~.,

"Z:. +

+ ~ ror -~:)-o
)v 'OA
'$l a.c

J., _ ~V

To A:

;
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We n.ext write V =V(ro) - E • Z - 12 (8E/l)Z)' z2 =V(r ) - ~(6E.j&z) • 1.
2

Zo 0 0 ~ 0

8V/oz= -E
zo

" (oE/az)o·z = - (aE/Cz)o·z

a.m aA/8z = - B - (CB 16z) • z = - (all /3z) • Z t
~ ~ 0 ~ 0

the last forms being witten by virtue of the syrrmetry of the field

with respect to the plane z =0 'Where the ring 1s assumed to be situa.ted.

Fina.~ly, 'We set p - 5!v(r );;; _.9: r (E + B ) ,as before (p.14).o C 0 cor Zoo

ThU8 ve obtain

:2.".c + r;,

and hence

'ij)lE~ ~.Br
'02: 'a2 Z: = 0

Er+B~
I)

r (?-£,! _ OEr)

"21~ '4~

,1:- + 13;[ •r
0

LBote I r 0 dEmoteD the l'8.d1al ooordinate of the aotual. conter ot the 'beBJrtj

3-27



- 16 -

III. APPLICATION TO THE ELB::TRON RIm

For a ring of total oharge Q (Q < 0 for an elootron ring), actuaJ. mean _jor

radius R, average minor radius b, am oomposed of particles moving 'With relativistic

speeds (p == I), the "bias tiEilda" are (for Q in esu and I:::~ emu) l

Ering ::: ..s....enfill
r 21l~ ~

Bring ::: ! k.~ ::: -!- kaj (2)
z R b 2na2 b

am the field Ilgradients" may be taken to be suoh that

[
o~lng 6Jiirl8] er'ing ..tr.. all

R -:-- + ~ ::: R? :lIl _.JL
2

'-b (J)
or Qr r 11ft

R[~1n: ~ing] = R~~ -S- -Ir~ ~
&z &z at; - 2'IIR2 b· (4)

It is noted that if ve form i times the SUlD. of' Iqns (1), (), and (I.)>> ve

obtain zero, in consistency 'Wi tb the oomi tion Ji
VoE -[vxilJ e =(~ + ~:: + :.1) _(~~ _::Z) ::: 411p-4nJe ::: 0

for ,= 1.

To compare with the Soviet vork we introduce the notation or I. N. Ivanovft.\ 11.
@NR Report P9-41JY by lai t:lng

~ ::: _IQ~.1 1m.~
rrRpo b

~ .! ~_L. L W!
.n ~ b'

"
where \ denotes the magni,~ud~ of the total. effeotive guide field, inoluding eelt

eleotrio a.OO magnetic fields as well aa the oxternally applied magnetic field. Thus

the bias fields may be witten

ring ::: +B l:!
r - g 2

:aring = +B ~
z - g 2
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tor positive or negative charges respeotively_

The guide field, and henoe the appl:1.ed rield, will be negative tor positive charges

am currents, so

+Bg ::: B
il
~ Bg~P a.n:l hence Ba = :tBg (1 + ~p) 1s the applied ti.eld.

This applied field oontributes the gradients

alflPp1 aIflPpl n n (1 + pI')
--l :: --.t = - B - ::: + B -':a--Or az a R - g

that of oourse must be included in evaluating the tooullsing action at the total field.

Acoordingl,y ,

- , +

oBz OE r )
E.,. + R (~ -+ M

v,.2.. = I + -------
.B ..... E r r ..., "l. ~rtn~. (°:62 a ~( )

Er ,.., 1:) - .... -
r +,~ 2> (' "b ('..

t-t.-p
I - -.z

_ Y\ (t+ ~T-')

('-n)(I+~"'P)

3-29
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(6)

=
=F "Bg

- - ~ + n (l + r"?)
2-

- n ( , + f1') _. Ji- .
The results round for ,,~ and v: agree with those given by the Soviet authors

(¥!. their Eqns. (4.7». The reaulto expressed by (5a) and by (6) appear reasonable,

moreover, in that the effect of the focu8s1ng in.:lex n for the applied field is en

baDCed by the factor 1 +~, thereby taking acoount ot the taot that this applled

field BlUst be strengthened by thiu faotor (or the particle momentum oorrespordingly

deoreased) to compensate for the outwardly direoted electrio and magnetic toroes

tbat arise at the center or the beam from tho self fie.lds (bias fields) of the ring.

The supplemental terms, +1- in (58.) and - ~ in (6) then describe the inherent

focussing characteristics (focussing for radial motion and detooussing for axial

motion) ot these self' fields.

It is noted that, as expected (po 12), v/ + "a2 • 1 tor the (highl,y relat1viatio)
beam oonsidered here.
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IV. F..FFECT OF "IMAGES" ON THE INCOIlEREWr (SnmLE-PARTrC~E2 "TUNE"

Images, 1f present, can act to shif't the betatron-oscillation

frequencies of' individual particles oscillating in a given toroidal beam,

and such effects may prove useful in the operation of an electron-ring

device. The images may arise because of the presence of material

cylinders external or internal to the beam (or from cylinders in both

locations) - if the cylinders are ~nducting, they may be taken to impose

the boundary conditiono E
t

= 0, B
n

= 0 (A.C.-magnetic boundary condition)

on the fields, whereaa u J:lelectric cylinder of high spec.11'ic inductive

capacity may be regarded as essentially (althoUBh .in principle only

approximately) imposing on the electric 1'h:ld u boundury condition

similar to that 'which applies at a conducting surface. A dielectric

cylinder thus appears to provide a means (similar to the conducting "comb"

employed by the Soviet workers) for separating the electric- and magnetic

image effects and so can result in avoiding the strong cancellation often

occurring between forces of electric and of magnetic origin.

The image fields may be present both as additional "bias fields"

and as fields 'lhose "gradients ll are of' importance. They basically have

the character of toroidal f'iclc1s - just as 1'01' the direct self 1'ields of

the ring - but, with a separation of electric and magnetic boundary

surf'aces (or with ions present tn the beam), toroidal effects may be of

secondary u~ortance in some cases of interest. In many cases) moreover,

it may prove adequnte to estimate the bias fields and gradients as if

these quantities resulted 1'rom the proxim:lty of u. l:itraight beam to a

planar boundary.

The image fields of a charge-current ring in a cylindrical surface

can be expressed in te:crns of integrals over' modified Bessel functions

(of order 0 or 1), and the relevant integrals evaluated numerically with

the computer. Thus, for a conducting cylinder of radius T external to

(but co-axial with) a ring beam of' major radius 1'0' H was shown in

paper EHAC-38 of the 1968 EHA S.lrmposhurl Proceedings that the electric

field of the II images" could be expressed by the scalar potential function

v -ir 1:0{~:}Z(X) I.{f.x)
f.I
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where S "" 'l'/ro and 0. similar expression (iavolving the Bessel functions

I,) K I) can be wrHten for the vec:toI' potential of the lIlagnetJc image-field.

l!'rolU such an analysis) the blas f:i.elds can be written

Q..
- Z7CR?i. K

where approximately (for S near unity) the coefficients are such that

1< ,.... I
= S-l ~

£.
L ,.... I

- SlYl-
as 'Would be expected for a litraight ueam neal' a pl.unar boundary. [~J

for an external cylinder) and a positive beam) E is radially outward and
l'

B is to the left (:L.e.) directed in the negative··z direction), asz --
expectedJ

Simi~a(~~:h::r~~~0.t~n~F:e:re:Bl:E~~:a~l (;~~~)~]} ~1{c;~

- + B~ [ - K + 'f[~)i -fi1(5~~';;Ll} fA-

[
EI£' .l. ("m 1

=r- If JJ~ (SE~ - f3 (5",- ,):1. f

with ~'.li and £""" each approx1.rnutely ~ ) l.lut ..../ith u strorlg cancellation

avoided if the bounda.ry uUl'f'nccD for the electrLc and magnetic fields ure

such tha t S Ii -+ SM .

To pull all thiB together ....w may \'/rite (for a bea.m. neutralized by

a fraction f of stationary 101U», including internal self fielcls that

'Would be present with a straight beam (unlform density, ra(11.al and axial

semi-axes a and b respectively) b ~ a + b);
2
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Bias Fields

Er
- (I-i) s~ Jrv !f

. :.U{f~;L. .b

13 - D +B f'-P P-LB)'".i! ...D« - '.:J -2,- +" ~

- B a :t B s [~ - PL ] r .
Gradients*

where B is the (Z-clirected) applied magnetic field anda ---- ,
is the field index of this appUed field.

*See Note on the ltwt page of this section.
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The net guide field, und hl;lnce BI,l,J will 'be negu.tlve for positive

chargee and currents - hence

:;:: f3 Bg = jlB~ + l%J (I - f) [i + KJflo

+ PBS [~ - Jl L]f ·

B
a

= -t- B, ~ I + [( I - i)"p + (\ - 5> K - I"I.]f} .

(
'b Er A. 0Bi£\

Er * f.. V + r ');r-J.,

:B.lo -to E r..

:t :a, (1- t) [1: + K ] f :til 1\ { I + [<1-1)p + (I - f)K - f [ ]1"'}
± B1{2.~:L(~2. - f) - (\-1)"p - (1- f) \< -t 4.r~I-DE~ _ A.a. E"M_]ll ~

o.b . LCSIi-I)· r (5,..- It f'

1+

Then

or, only retaining the factor f3 as different from unity in the combination
;1,-

(I"'" 1) K - P L,

- t +

and
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+" nB:J

.z
~ =1

.------.. _... . _-. ---.

+ n53 [(t -i)p + (I-j) j< - p~[J p-

+ .B {~(.1. -f) ;- (I-f)! - if.r~!-f)€',€ _ p". E'lm ]11 ~
j h b G ~ liSE-I'a. (~_I)a. ~ I

~~-'-- . .. . rr·...;,~l1 ..~Jr... t-'.·l. '1(" ·t~.Jr".r.~· ...._ ..... ~ .. ..,

n +

.0. + b
where we recall '6 := -"2-'

It is noted f'rom these expressions that

JJ/' + 1{~ - J - t::&-(~ .... ~) (ir -f) f

~ f (~~ - f)
:. ,_ ~ '3:/{0 ~ ( I -1 - Jf)>>

1f :Bg
and so dHf'crs from unity only in t.he familiar wuy from the effec t of

....... -
the "direct" self fields ucting 1n the region vlhcre V·E and VJC B

do not vanish.

If the image terms are discarded awl H f is oet equal to zero, one obtains

f'rolll the above formulas for ia. & . J:2. :r v~
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in agreement with the results presented by E(lB. (11,7) of the Sovlet

paper P9- 4132 by 1. N. Ivanov et ~l.

f

as follows:

- B~ ( I - f) f'P

+.B5(I-f)tJ~

we now write the IlP terms :Ln the gradients

~ (~~~ -t p o:~~ ~

/oE. l _ P ?>~)' :;;r.. , () 1. 01 ..

to the

~ ~'P
3 :l-

If

and

I:lote: The introduct1.on of the frue tional-neutralizution coefficient

in 'with the IlP terms is not entirely clear, since w1.th f f 0, the

strong cancellaUon between the effects of electric and lnagnetic field

gradients if.! lost and the lO@ll'ithm1.c term becomes dominated by the

larger effects of a stra1.ght beam with f) <'j.. l but f 4 0.

It is clear, however, that the fac tor (1.-1') should be appended

.B~ t!:{ term in the bias electric field E
r

and not to the

term in the bias magnetic field B .z

we find that this procedure is consistent to the extent that then (for

these terms only) we have) with t3 =: 1:

(
eEl' ~I~Z)

E(" + r 1)r + 13 ~f"' +

~ r (\7. E - J] [VJ( »],)
- B

S
[( I - n 1",.1' - (I - n ~pJ ~ O.

This rCSLllt for the fields of tile beam it~elf' 113 correct (for i:>;~ 1),

since then 87-£: - [W')'B]o - 47r (fesu. - J'emu.) >:I: 0 tfor jj =1).
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ERAN-200

On The Focussing Effects
1(.

Arising From The Self Fields of a 'roroidal Beam

-- Sequel to ERAN-30

L. Jackson Laslett

Lawrence Berkeley Laboratory
University of California

Berkeley, California

October 26, 1972

The present report indicates a revision of results given in earlier

notes [ERAN-30) for the oscUlation frequenciefJ of an electron in a partially

neutralized electron-ring beam subject to toroidal self-field gradients.

The need for this revision arises from the observation by Professor M.

Reiser that the toroidal contribution to CEz/2lz is small in compari.son to

the toroidal term in dBr/cz while the toroidal contributions to cEr /2lr

and cBz/dr are comparable. Some numerical computations are reported that

appear to support this property of the toroidal field gradients.

'X Work supported by the U.S. Atomic Energy Corrurd.ssion
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1. Motivation

Stimulated by a Soviet report by Ivanov et al.,l notes were prepared

by the writer2 for a Seminar talk in April 1969 concerning the self fields

and self-field gradients of a toroidal beam and the focussing effects that

arise from the action of these field quantities. The analysis to some

degree was an extension of an earlier examination of self fields and self-

field gradients as reported in the Proceedings of the 1968 LBL Symposium

on Electron Ring Accelerators. 3

The 1969 notes2 attempted, in a final Section, to include the effect

of partial neutralization of the electron ring beam by stationary ions

having a similar (constant density) distribution throughout the cross-section

of the beam. This adjustment of the equations for the betatron-oscillation

frequencies admittedly was not done carefully, however, since at that stage

of the analysis the electric and magnetic field gradients had been combined

into quantities oFr/or:: oEr/or + oBz/or and OFz/oZ = OEz/oZ - oBr/oz

(for highly-relativistic electrons).

M. Reiser recently has kindly forwarded to the writer an advanced

copy of a report4 in which he re-examines separately the electric and magnetic

bias fields and field gradients of a toroidal beam and also evaluates the

betatron-oscillation frequencies of electrons of arbitrary energy in a

partially neutralized electron ring beam. Reiser's analytic estimates4

of the field gradients at the center of the ring cross-section indicate that

the neutralization factor f ~ Ni/Ne was incorrectly introduced into the

~p terms of the equations given for 2 2 2vI' and Vz in the 1969 notes. We

have undertaken, therefore, to re-examine these field gradients computationally,

treating the electric- a.nd magnetic-field gradients separately, in order to

obtain some impression of the accuracy of the convenient simple analytic
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I}
forms gben by Reiser for these quantites.

It is the purpose of the present report to summarize the results

of this recent computational Hark, to indicate the comparison betvleen

these results and the simple analytic forms proposed by Reiser,4 and to

note the correction that should be applied to certain terms in the equations

2 4of the 1969 notes if Reiser's forms for the self-field gradients are

adopted.

II. Equations for Fields and Field Gradients

A. Formulas for Computational Evaluation

The magnetic vector potential for a current-carrying loop has been

given by Smythe 5 and an analogous similar expression may be similarly

derived6 for the electrostatic scalar potential of a ring charge of in-

finitesimal cross-section. The resulting magnetic and electric fields can

be obtained from these potentials by differentiation and the resulting

expressions integrated numerically over the cross-section of the beam to

find the required field components produced by a ring beam. Finally, the

desired field gradients can be obtained from these latter quantities by

numerical differentiation.

Because considerable interest i.s attached to the difference between

the fields and field gradients of a ring beiun in comparison to those that

arise from a straight beam, and because the integrations

involve integrands with an (integrable) singularity, it is expedient to

perform the numerical evall~tions not only for the field quantities arising

from a ring beam but also directly for the difference between these quantities

and those for a straight beam (2'~" for the toroidal contributions).

We consider here a ri~g charge Q (e.6.u.) or ring current I (e.m.u.)
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• 5·

of major radius R and a circular cros~-section of minor radius

b = R/L. Field quantities will be evaluated either along a radial

line passing through the center of the distribution, at r = R + xb,

or along a line passing through the center of the distribution

and parallel to the axis, at z = yb. A factor D. present in the

integrands will serve, if' set eClual to unity, to subtract off the

contribution that a straight beam would make in the integral in question.

Xbt b~
- / \

\ tYb')
!

"\-..
'-,

R

~
~

With
~

denotip~ the complementary parameter7

~
I

01>.....

(ml = k,2 = 1 - k2 = 1 • m) of the complete elliptic integrals K

and E, then if'
Axis

~=

2 , 2x .2xx'cos e +x'

4L2+4L(X+X'cose') +-~2~2xx'cos e'+x,2
,

n~2
--Q-~ Er

1 n{=3J J--- L +~'cos e'
IJ (L+x) J ~ - A

x'=O e' =0

[
K+ 2L(x-X''''cos a/ )+x

2
.x,2 E]

x2-2xx"'cos a+x,2

and

_ D.. x-x' cos
2

X -2xx"'cos
a' }
e/+x... 2

x'dx'de'
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tK - 2L(x-x'cos e' )+x2_x,2 cos 28' EJ
2 , ,,2

x -2xx cos e +x

1 ~ I 1 .~

= 2 f f r x . x 's 6' } x'dx'de' •
e
' -0 x-x co 2

x'=O _ , ,

+ .6. 2 2 'cos e +xx - xx

~b B
21' z

Also, if'

,
2 , 1,2

Y -2yx sin e +xm1 = ------,.,--------- -------,.,
4 2, l.' , c. - ,. / ,e.L +'TLx cos 8 +y -2yx s~n e +x

Yo!
I

01:>.
N

then

1 21t

1r~2 1 JJ[ L+x' cos e'
~ Ez = L 2 ~4L"2.;i;.LX'cos e'+?-2yx'Sin e' +x,2

x'=O 8'=0

E - D, J. y-x'sin e'
~-2yx'sin e'+x,2

x'dx/de'

and

1

1rb f21 Br =

x'=O

J{i
e'=o

1 [21,2+2LX' cos e' +~-2yx' sin e' +x,2"", KJ
~4L2+4LX'cos e' +Y2-2yx'Sin 6' +x,2 y2_2yx"sin e' +x,.2 ~ -

_D,o 1 }y2 -2;'y'JC
1
sin e' ,2 (y-x' sin e' )x' ax'de'+x •



B. Approximate Analytic Estimates

The approximate analytic estimates ror the bias rields at the center

324of' the cross- section are} }, in the present notation,

rr2 ln 8L
2L

and

rrb n
7'\-i' Bz ~ 2L ln 8L}c.:l

where L:::: Rib. Similarly, ror the rield gradients expressed in the present

notation, Reiser4 proposes the expressions

rc2
b3 dEr

~ -~. ln 8Lq,- -ar 2L3

rr b2 dBz
~ - ~ ln 8L--zr dr

2L

rc2·b3 dEz
0

~ ----en; ::::

and

.3
2

In 8L
2L

ror the toroidal contributions that rematn after subtraction or the values

that would apply ror a straight bemn.

3-43



- 8 -

It may be noted that these last four expressions imply, for a highly

relativistic beam (I ~A ~ 2QR)'.n

and

in agreement with results previously suggested2 for of lor and of loz. The self-r z

consistency of the expressions st~gested by Reiser4 with respect to the
-+ -+

conditions \7. E :::: 0 and [\J x 13] ¢l ;;:: 0 for the toroidal contributions

moreover may be checked, for the forms written above, by forming

and

to obtain zero in each instance.
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III. Computations

A. Method

associated derivatives at the center of the cross-section were made for

L :: Rib:: 40 and for L:::: 10. Tre numerical integrations \-lere performed

simply by sunrrnation of values at the centers of cells (usually of width

6:x.' :: 1/200, 6.0' :: 11/400, although some check runs were made with

6"x' :: 1/2000 and with 60' == 11/4000 in the angular interval lying wi thl.n

n/8 of the singularity of the integrand). Because of the singularity of

the integrand, the field points were always chosen to be at the corners

of such cells, so that the singularity was not directly encountered.

Field derivatives were estimated as the weighted average (weights

+4/3 and -1/3) of slopes evaluated for points displaced by

~ :: ± 0.05 and ± 0.10 or by 6y:= 0.05 and 0.10

with respect to the center of the cross-section. Consistency checks on

the accuracy of the work are provided by noting how well the following
~ ~

identities, relating to div E and curl B, are satisfied:

....-- -or

{21l/L for D. := 0

0 for D. := 1,

{2n: for /~ :::: 0

0 for .6 :: 1.

B. The Bias Fields

'rhe bias fields, as obtained computationally at the center of the

cross-section for L:::: 40 and for L:::: 10, are given in the follOWing table.
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Also shown are

analytic forms

- 10 -

the values suggested for these quantities by the simple
2 r)

n be n r.b ~
--- E ';t - ln 8L and -2'r Bz ~ ~2--1 10 810

Q r 2L2

n2b2 nb

L R -Q-- Er 21 Bz
=1:)

Analytic (a) Analytic Cb )Computer Computer

40 0.001+681 0 0005663 0.226518 0.226521

10 0.053065 0.068833 0.68811 0.68833

(a)
rc2 ln 8L

2L

(b)
;. ln 8L

The analytic estimates for the magneti.c bias fi.eld are thus seen to be

in good agreement with the computational results, but the similar estimates

for the bias electric field exceed the computational values by some 20

or 30 percent in these cases.

C. The Field Gradients

The field gradients, as obtained for the ~~ida~ ~ontributio"nl~

(6 ;:: 1, the gradients of a straight beam thus being removed) are similarly

tabulated below.
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2 3 uEr 2 '
J( b nb dBz-zr- ~-

21 0r-R
or

L ="'5
Computer Analytic (a) Computer Analytic (b)

-

40 -0.0001.417 -0.OOOl!~16 -0.003694 -0.005663

10 -0.0063!~ -0.00688 -0.04·276 .0.06883

(a)
- ~ in 8L

2L3

(b) fC
- 2 ln 8L

2L

1{2b3 ClE fCb2 ClB rz

R
Q"" dZ 2I dZ

L =1)

Computer Analytic Computer Analytic (c)

40 0.00002l.j·65 0 .0.003695 -0.005663

10 0.0010307 0 .0.04276 -0.06883

(c)

- fC2 ln 8L
2L

The field derivatives can be seen to satisfy the conditions

and [\7 x Bil/l = 0 acceptably well, the derivative ClEz/ClZ is Been to be

rather small, and dEr/dr is close to its analytic eet1Ina.te. The magnitudes of

the analytic estimates for the derivatives oBz/or and oBr/oz of the

magnetic field components, however, evidently exceed the computational

values by some 50 to 60 percent in these examples.
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IV. The :8etatron Oscilla.tion }'rcquencies for a

Relativistic Electron Ring Beam

If we accept the conclusion that dEz/dZ = 0 for the toroidal component

and also adopt the other convenient approximate analytic expressions cited

above, we may proceed to estimate the betatron··oscillation frequencies for

relativistic electrons (~ = vic ~ 1), neglecting any possible complications

due to the'i?olarizatiorl' to which Reiser has called attention on p. 15 of

his report. 4 As in our earlier work,2 we ID£~y make use of the Soviet notationl

v
I-l = - ""

"I

for a highly relativistic electron of momentum p in a total "effective"

(Inagnetic and electric) field Bg, and

P = 2 In !3..~
b

a+b
13 =--2-

4
The toroidal terms in the fields and field gradients then are, as noted,

E =~ln8~
I' 21tR b

1
± "2 Bg \-lP,
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- ~ B 11P.+ 2 g ,
aBz

R -.-- :::or

aEz
R Y:.oz .- 0, and

when no ions are present to ef'f'ect some neutralization of the beam.

A fraction f' of ions will act to reduce the electric f'ields, by

a factor (l-f'), while causing no change in the toroidal magnetic fields

of the beam. He thus replace the equations written irmnediately above by

E <= ±
l'

_ 1
+ 2 Bg IlP,

and also write (using these supplemental bias fields) f'or the externally

applied ma.gnetic field the relation

that was given on p. 22 of' Ref'. 2 (Where K and L characterize possible

electric and magnetic image f'ields as might arise from an image cylinder

co-axial with the ring beam).8,9

We now proceed to re-do the analysis attempted in Ref. 2 to evaluate
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2
v == 1 +r

and

where the expression Bz + Er that we have written in the denominator

(for ~ b 1) is the quantity ~ Bg • We substitute8

211.
2

(1 'J:= - n~Ba ± Bg -:-:- "2 - f J..L
ab )'

Applied Internal, for a straight beam
F'ield

[
l-f 1]

;Bg 2+2 J..LP

toroidal terms

± Bg t(l-f)K + ~

image term

2
:= nr3Ba + B ~~

- g bb

1
± "2 Bg IlP
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He then obtain

_ 1- n _ {~Il (~._1')
db )'

P [(l_f)€l,E
-"2+ 4 ~-

(8 -1)
E

+ n [(1 - ~)P + (l-:r)K _ ~2 L]} ~,

f) - ~ +2
4 [(l_f)€l)E _ ~2 €l,M ]

(8 _1)2 (8 _1)2
E M

+ n [(1 _~)P + (l-:r)K _ ~2 L]}~'

where we have set 13:!: 1 throughout except in a few selected terms where

a strong cancellation may occur when 13 is close to unity. The expressions

written for and VZ
2 differ from those of Ref 2 in that the n-free

primarily from the magnetic term.

Iterms ± 2 ~p in these expressions no longer contain the factor (I-f)

observation that the toroidalas a result of our recognizing Reiser's

(
dEz dBI')contributions to R dZ - 13~ arise

The results just written for v 2 andI' V
Z

2 thus agree, when image effects

1.
are ignored, With the results given by Reiser when we set 13:::: 1 and

neglect tenus proportional to the sq~~ of ~p in his expressions.

When, in addition, f is set equal to zero the reStuts can be seen then

Ito coincide with those given by Ivanov et al. It may be noted, finally,

that the complete expressions given for 2 2vI' and Vz are such that, as

expected,

2 + v 2
vI' Z·- 1 - 1. E.u

2
(.~ - f 1ab 2

f
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and so differ from unity only in the familiar way from the effect of

the "direct" self-fields acting in the region where they ma.ke non-

vanishing contributions to
-) -)0.

'7 • E and 7 x B.
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and

Bz :0.: :;. fJ L Bg I-l,

where approximately (for S near tmity)2

1 d -L !:!!_-;:;--T an
SE -

1.
S ~ 1. •
M

The total electrostatic field that contributes to equilibritun at
2the equilibrium radi.us then is

Er ::.: ± _l;~ Bg I-lP ± (l.. f)K Bg I-l ;=: ± I~g(l~f) [~ + K] I-l,

and the corresponding total magneti.c field is

The conditi.on for equilibritun at the equilibrium radius 2 8
R is written '

+ 8 Bg ::: 13 Ba ± Bg(l-f) [.~ + KJ I-l

± 13 Bg [~ - f3 L] I-l ,

whence, if we retain the factor 13 as different from unity only in

the combination (l-f)K - 132 L,
f 2-Ba ::: +Bg (1. + [(1 - 2)P + (l~f)K - 13 L] I-l} •

10. The image field gradients are written In terms of coefficients
f)

€1.,E and €l,M:~

Normally €l,E

f3 R~z ::: f3R ~~r =_4132 ~~~ -SL_ - - 4f32B €l,M I-l.
(SM-l)2 2nR2 - + g (SM- l )2

1
and €l,M will each be approxUnately B.
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ERAN-37

DECAY OF IMAGE CURRENTS IN A PLANE GEOMETRY*

L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

July 28, 1969

I. Introduction
(Motivation)

The effect of eddy currents induced in an infinite plane

conducting sheet (infinitely thin) with a surface resistivity

p )1 has been elegantly solved by Maxwel12 in termsemu per sCluare
of images that recede from the sheet with a speed ~n. Since problems

may arise in which the conducting boundary is not a plane sheet) it

may be instructive to attempt to find Maxwell's solution for the plane

sheet by other methods) for some particular type of source. Such an

exercise may then facilitate (illuminate) the solution of additional

problems of interest.

We consider below an example in which the magnetic field can

be characterized by a vector potential with a single non-zero Cartesian

component (A). The problem will be taken to be one in which there isz
no Z dependence) and most specifically will be concerned with a case

in which two long parallel wires run parallel to the sheet at

y := - (h + s/2) (with respect to the sheet at y := 0) and carry currents

'"± I e respectively. By taking the limit s--7o) while :r:s --7 p)
emu z

,'Ie simplify the source to a two-dimensional current loop of infinitesimal

width.
2As is customary in this type of problem) displacement currents

are regarded as ignorable.
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II. Solution in the Spirit of Maxwell's Solution

For the specific case considered the vector potential of the

isolated sources ± I(t) at y = - (h +s/2) would be

• pet) ~ [In x2 l

h)2]
2 p(t) Y + h , where2 h)2+ (y + x + (y +

p(t) L ICI(t) .s1, for s -7 o. We wish to write
S-7 0 ~ J

y + hA ;:: 2 p(t)
z x2 + (y + h)2

I
+A (x, Yj t),

where AI denotes the vector potential of the eddy currents induced in

the infinite plane conducting sheet (at y = 0) and may be expected to

be an even function of y.

Since the induced currents are of the amount (emu/em)

we require

4 dArc z
;:: - p at

y=o

Since AI is even in y, this may be written

dA
I 4rc

[2 p'(t)
h dA

I

LJ2 dY + - 2 h
2 + dt

y=o p x +

or
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21( [ h
P 2 p"(t) 2 2

x- + h
ClA

I I ]
+ 'd"t"" y=o '

ClA I I h
dY + = - 2 p"(t) 2 + h2y=o x

. Cl2AI Cl2A I
In addition, we of course requlre ---2- + ---2- = 0 (y ~ 0).

Clx .Cly

A solution for AI in the Maxwell form is readily seen to be

t2J dP(1")~ +v (t - r)

d1" x
2 +[11 + Iy/+y(t-

-:xl

2 d1"
1" )J

with v = ~1( , for which AI receives contributions only from values of

~~ that occur at times less than t. One thus may write:

A = 2 p( t) Y + h
Z x2 + (y + h)2

t p

2J dP (1") ~I + 2n(t - 1"). d1"

_;<) d1" x
2

+[h + Iyl+ ~1((t-1)J2

= 2 p(t)

L

y + h
2

+ (y + h)
-~l2 2

x + (Iyl + h) J

_.Y.>

P 2 2ULI + h + 2;( t - 1") J - x d1"

222
([Iyl + h + ~1((t - 1")J + x }

[by partial integration J
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2 p(t) [) Y + h ~? 1=
hl

2
h)2J+ (y + x + (Iyl +

",

L
2(L) f --UxJ e)2 2

+ h + 2rc - x p( t - :.) d~.+ n2 2
J
2

2rc 0 [( Iyl +L+ h 2rc + x

Thus for an abrupt step-function form of p(t), in which P

changes suddenly from zero to unity at t = t - i.e., P' = o(t - t )o -- 0

the first form shown for A becomesz

A
z

= 2 r2 y + h
Lx + (y + h)2

(t ~ t )o

an expression which permits interpretation in terms of Maxwell's

general result concerning images. In the present case we have images

at + [h + ~1C (t - to)Jfor supplementing the field at y Z0, respectively,

and hence each of these recedes from the sheet at the speed ~1C em/sec.

The "dipole ll image at - [h + P2 (t -t )], which contributes to giving
1C 0

the field in the region y> 0, is of the opposite polarity to the given

source (and completely annuls the effect of the given source for

t = to and y > o)j while the dipole image at +[h + ~1C (t - to)] , that

affects the field in the region y < 0 (Where the given source is

situated), is of the same sign as the source (and results in Bn = By 0

at the sheet when t = t ).o
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III. Solution in Terms of Harmonic Series

As before, we write

A
z

= 2 p(t) Y + h
x2

+ (y + h)2

I
+ A (x, Y t) ,

and recognize that the image contribution AI to the vector potential

will be even in y. Again we re~uire that AI be a harmonic function

(v2 AI = 0, for y f 0) and that (p.3)

_E-~I =-2P"(t) 2
h

2'
2rc oy , + hy=o x +

We now employ the harmonic-function representation

AI =f F(k, t) e- k Iy I cos kx dk

k=o

and note that3

co

h =1 -kh
2 h

2 e cos kx dk.
x +

0

. ide thus re~uire

::-0 ~

,/ dF cos kx dk + kp iF cos kx dk
dt 2rc

.
0 0

2: .~ ., i'le re~uire

""

- 2 p"(t) J'
o

-khe cos kx dk;

dF .f kp F
Cit 2rc

- 2 p .. (t) -khe
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As a solution of this last, first-order differential equation
4

in t, we take

Then

F(k,t)

t kp (
khJ -2:n: t - :.)

;: - 2 e- P'(t) e dE.

-~

-00

00 t

AI == - 2 Jdkf d~ p,(~) e-k[h of Iyl + ~:n: (t - ~)Jcos kx

k=o ~=-oo

t 00

== - 2JP . ( ~) d ~ Jdk e - k [h + Iy I + 2
P

(t - ~) ]'" " :n:" cos kx
-00 ki:o

t P
2JP" ( ~) """"'2:----,1.1:.1 of h + 2;:( (t - ~) d~

x + [IYI + h + ~:n: (t - ~)J2

(ref. 3),

and

()
y + h

A = 2 P t --=-~---=-

z x2 + (y + h)2

t E-
2Jp,,(~) --.Jx..1 + h + 2:n: (t - ~) d~,

-00 x
2

+[Iyl + h + ~:n: (t - ~)J2

in agreement with the result of the preceding section (p. 21-).

IV. Frequency Analysis

Time dependent electrical problems are frequently analyzed in

terms of Fourier components (each with a time dependence characterized

bye jrot). It is evident that such an approach may not be the most

direct in the present example, but use of the technique may provide a

bridge to connect with results obtained by the use of the Fourier
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time-spectrum method.

t .o

Suppose we consider a unit step function for p(t), occuring at
8

Then

1
p(t) ="2 +

00

1
= 2

+ l-J sin m(t
21C m

-00

For each of the individual a.c. components of p(t) !:..~.,

1
2n run -- the vector potential will require a supplementary

image contribution to account for the presence of the infinite plane con-

ducting sheet. One may seek, then, to refer to the solution of the steady-

state problem for an a.c. 2-D double line-current source situated a distance

h below an infinite plane conductor (of d.c. surface resistance P emu

per square). If, as assumed in the previous sections of this note, the

sheet is infinitely thin, the sheet will exhibit this same surface resis

tance P emu per square for all finite a.c. frequencies.

1 sin m(t - to)
For an a.c. source, P(m,t) = 21C m ' the equation for

F (bottom of 1st page of Section III),

= - 2 p'( t) -kh
e

becomes . ko.",+ -1'21C =
1 -kh
n e cos m(t - to)
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with the steady-state solution

F = 1- -
1C

ro sin ro( t - t ) + k2
P

o 1C -khe

Thus, for this Fourier component,

IA (ro,t) ::r

sin ro(t - t ) + ~Po i1C
cos ro( t - t )

o e
- kClyt + h)

cos kx dk

and, for the entire step-function wave-form,

co co

sin ro(t - t ) + ~P
AI(t) = - ~fdk -k(lyl + h) kA/~

ro cos ro(t - t )
. 0 1C 0

e cos
2 (kP) 2ro + -

21C

k=o -co

9, 3
Performing the integration over ro we obtain

co

= -
r -k '

) e [Iy I

k=o

+ h + ~1C (t - to) ]
cos kx dk

in agreement with the previous results when interpreted for a unit step

function for pet) that occurs at t = t •o
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v. Character of the Solution

If one recalls the solution for AI when p( t) has the character of

a step function (p ), namely (for a step at t = 0):o

I
A :::< - 2P

o
-ly I + h + vt

2 I' 2x + ( y I + h + v~)
, with v :::< ~1( ,

it is evident that AI does not falloff exponentially with increasing

time.

For large t, AI ~ -
P

2--9..
vt

Also, for the image fields,

2P
o

-->..('-",y-,I_+_h--,-+_v_t-i.)_2=_--,-x~2..",........,=- "'" ± 2 _P_o_

[(Iyl + h + vt)2 + x2
J2 (vt)2

Finally,

4p
o

x • (Iyl + h + vt)

\
' \ 2 2 2[( Y + h + vt) + x J

P x
"'" _ 4 0

(vt )3

while of course

3x2 _ (Iyl + h + vt)2
223

[(Iyl + h + vt) + x J
(/y! +h+vt)

P4_0_

(vt )3

dBI?JBI

x + Y _ 0 with each individual termdX dY - J
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p x
o

asymptotically + 12:--:4'
(vt )

Specifically, at y = - h ,

respectively.

I
A (t = 0)

2

(~h) + 1
2 ( )2• x '1 rl..

\. 2h/ + 1 + 2h

=IB (t = 0)x

2
, X \.

-{ -i
\ 2h/

B
1 (t = 0)
y

[dBxldY Jt
[dB;{jdY]t=o

~ 2 ,2
, ) I X) +1

= (1 + ~ l<2ii J
[(~h) 2+ (1 + ~ ) 2]2

2 (. ' 2
:(~) - 1 +~)

r )2
3~h - 1
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VI. Numerical Calculations

By way of illustration, numerical values have been computed for the

ratios listed on the preceding sheet (end of Section V). Values for these

ratios are tabulated vs. W == x/h and R == vt/h. The attached program

permits these computations to be performed readily by use of the LRL BRF

facility.

L

1•
2.
3.
4.
5.
6.
7.
8.
9.

10.
1 1 •
12.
13.
14.
15.
16.
17.
13.
19.
20.
21.
22.
23.
24.

OK

10

20

30

40

l'j = 0
PRI;'J T9.. \.j

R = 0
U = W2
S = R/2
F = 1 + S
N 1 = 1 + U* U
o1 - F* F + u* U
.\j 2 = F* F - U* U
02 = 1 - u* U
(-j3 = 3*LJ*U - F*F
03 = 3* U* U - 1
A = F* l'J 11 0 1
BX = C-J2/D2)*C OJ}IDD**2)
BY = F* ( ( Nil 0 1 ) *'" 2 )
oBX IJY =' F* ( ;\) 31 D3)" *((,\) 11 0 1 ) **'3 )
PRH.JT9 .. R.. A.. ax .. BY .. OBXO'{
I F (R • GE • 5 • '3 ) GO TO 3 g
j~=F~+J.·3

GO TO 20
I F (U • GE • 2 • 9 ) GO TJ 42)

I;i = '..i + 0" 3
GO TO 10
STOP

Numerical results are given in the Appendix.

3-65



-12-

VII. References and Notes

* Work supported by the U.S. Atomic Energy Commission.

resistance expressed as ohms per square.

expressed in M.K.S. units as 2p
flo

1 The resistance p abohms per square is equal to 109 times the surface
p

The velocity ;mu may be
p G1t

Thus v = 2 ohms =
M/sec flo

1 Pemu
100 2;t ,

v Pemu
or em/sec = -z;-

2
.r.C. Maxwell, "Electricity and Magnetism", Sec. 654 ff. See also

Sir James Jeans, "Electricity and Magnetism", Sec. 538 ff; W.R. Smythe,

"Static and Dynamic Electricity" (Ed. 2), Sec. 11.10.

3

4

B.a. Peirce, ITA Short Table of Integrals", #506, p. 64.

If one Wishes, one may seek the solution to the differential equation

for F, as a function of t, by the use of the Laplace transformation

[cf. J.C. Jaeger, "An Introduction to the Laplace Transformation" (Methuen,

London; Wiley, New York); the Laplace transform is denoted by a bar,

and is defined as f =~-Pt f (t) dt]. Since 5

0

00
00

pJe-rdfi _ r pt of
00

I - -pt \ ptf (t)
L~l

=
/

e dt dt = fe + dt
10

601 0
0
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== - f(o) + pf

== pf if f(o) = 0 ,

then in application to our first-order differential equation for F:

P F + kp F = 2P' e-kh if F ~ 0 at t == o.
2n

In this event

F - 2
P' -kh

== e
p + kp

2n

-kh (~- ~~ J ~) 6
" - 2 e .'

7
Hence

. /

t

.-kh!nU kp
(t - s)- 2n

F - 2 e ds

0

for cases in which F = 0 at t = o.

as written in the text

More generally (removing the condition that F =
t

1 -kp (t - 1;.)
F == - 2e- kh p' (I;.) e 2n dl;. ,

(Sect. III of th~se notes).

o at t == 0), then,

5

6

J. C. Jaeger, op. cit., Theorem III, p. 14.

J. C. Jaeger, op. cit., Table I, p. 3.
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7
By use of the convolution theorem, as stated by Jaeger (op. cit.),

Theorem IX, p. 90.

8 B. O. Peirce, 2£. cit., #484, p. 62

9 I. S. Gradshteyn and I. N. Ryzhik, "Table of Integrals, Series, and

Products" (Academic Press, New York, 1965), Sect. 3.723, #3 and #2,

p. 406.
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APPENDIX

Numerical Results

vj= 0.000010
i<= 0.00000
R= 0.30000
R= 0.' 60000
j\ = 0.90000
R= 1.'20008
R= 1~50000

R= 1.60000
R= 2.100fD0
R= 2. 4000,)
t<= 2.' 70000
R= 3.00000
r<= 3.300100
R= 3"600010
1<= 3"90000
R= 4"200210
R= 4"50000
H= 4.8010010
R= 5~10000

R= 5~' 400(30
R= 5. 700v)0
R= 6.' 00000

A= 1.00000
A= 0.36357
A= 10.76923
A= 0.66966
A= 0.62508
A= 0.57143
A= 0.52632
A= 0.437:3 0
A= 0.45455
A= 0"42553
A= 0.40000
A= 0"37736
A= 0.35714
A= 0.33693
A= 0.32258
A= 0.30769
A= 0'-29412
A= 0.23169
A= 0.27027

A= 0.25974
A= 0"25000

ax= 1.000E10
8X= O. 75614
8X= 0.59172
BX= 0.47:> 62
8X = 0.39063
ax= 0.32653
ax= 0.27701
ax= (J.23795
a,\ = ,0. 2.J 661
BX = 0. 1<3108
ax= 0. 160010
8X= 0"142<'jIJ
BX = (]. 12755
B,\ = 0.' 1 149 1
BX= 0"10406
ax= 0.09467
ax = 10.0665 1
8X= 0; 07935
B,~= 0"073;')5

BX= 0.06747
BX= 0"06250

8Y = 1.0iJO(JO
BY= 0.65752
8 f = 8. 1-/5 5 1 7
dl'= u.323.J2
BY= 0.24414
tTf= 0.1365;;1
;3Y = 10. 1 457'7
BY= 0·116';;7
BY = 0. 0'739 1
8Y = 0. 0 7 7~j 5
Sf= 0.0640;,)
8Y= 0.'05374
BY= O.0L1555
SY= 0.03.395
BY= 0.03357
BY= ~).02913

BY= 0.02544
BY= 0.02235
BY = 0·01974

8Y= 0.01752
BY= 0.01563

DdX DY = 1. J00i2hj
08;<OY= 0.65752
DB;< 0 Y= i::J. 455 1 7
DBi\i)!'= U.320\·j2
D8,\ 0 f = (). 24 Lj 1 4
DBXOf= i{).136S:1
D8l~OY= kj. 145 7j

tJ 8;( DY = (Q. 1 1 60 7
013;\ Of = 0.0:1 39 1
oBl\OY= 0.07705
om<!)!'= 0.064UJ
02i\Df= 0.05374
Ot3/(OY= 0·~:J4555

OcL<OY= 0.03395
o8i\oy= 8.D3357
Oi:JXOY= 0.02913
Od/,Of= 0·02544
OB,<DY = J. 02235
o8X OY = 0. '019 74
DBX DY = o. 'J 1 7S 2
D8I(D'{= 0·'01563

VJ= 0"30000
R= 0;08000 A= 1 .00000 8X= 1 .00000 ~3Y = 1 .00000 oBI\ Of = 1 .00000

f~ = 0"30000 A= 0.37426 BX= 0. 76361 Bf= o. 66463 OBXO( = 0. 63001

R= 0.60000 A= 0. 7762'/) ax= O. 60S 1 6 BY= (tJ. 46346 OB;< OY = 0· Lj:3 143

R= 8.90000 A= 0.69 771 8X= o. 49267 BY = 0. 33572 o9X 1)( = 0· 35253

R= 1 .20000 A= 0" 63349 BX= o. 40694 8Y = 0.25032 oB/\ or = 0·26545

R= 1 .56000 A= 0;53002 BX= 0"341 64 8Y= o. 19224 oBXiJ'{= 0.20465

R= 1 .38000 A= 0.53432 BX= g"29080 BY= 0. 15055 oBXOY = 0- 1 6099

K= 2. 10000 A= 0. 49 612 BX= 0'-25046 BY= o. 12007 oBXOY= 0· 12355

R= 2. 40000 A= 0; 46262 8X= 0.'21 793 8Y= :0.09 723 OBXDY= 0· 104'i0

R= 2"70000 A= 0.43334 BX= 0." 19 132 Bf= 0.079 :1 1 08,,\ Of = 0·03 628

/<= 3.'00000 A= 0.4075 3 BX= lO. 1 6929 BY= o. 06643 08/"\ f){ = J. J71.30

f<= 3. 30000 A= 0.33462 B/\ = 0; 1 5U65 BY= (0.05532 OBX Llf = o· 06043

R= 3. 600:30 A= 0. 3641 3 8/\ = 0· 13526 BY= 0. 04735 08;\ OY = 0·05133

E= 3"90080 A= 0.34572 81\= 0" 12 195 2"(= ~0 • 04852 00/<0"(= '.d· 0 LI3J '7

H= 4'-20008 A= 0~32987 SI< = 0. 1 1052 er( = 2.1" 03 ij) 3 oB;\[)Y = O·;J37Y4

R= 4"50000 A= 10 e' 31 395 BX= 0· 10062 BY = 0. 03033 OB/"\ OY = 0"lO329 7

R= 4;30000 A= 0.38015 ax= 0"09 198 BY = 0. 02650 OBX Of = 0- 026,33

R= 5. 1 0003 A= 0"26 75 1 B/~= 8. 88442 BY= J. 02329 OBXOf = 0· 02535

R= S. 402108 ,6. = v). 27590 BX= 0. :37774 BY = i:Q • 02D57 08/(0{= 0· 02241

i~= 5. 7000J A= U.265 13 B,( = J. 07133 t3'{ = 0. 01·327 08,\ 0 {= 0'-01:19 1

R= 6"J0008 A= ;3.25527 13 ..( = J.J6657 2,( = 0.Gl 62';1 oa:",o(= U.dl 776
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i'l = 0. 60000
j~= 0: 08000
c< = 0. 30 0 0 0')

K= 0.60000
R= 0;90000
R= 1'-200130
R= 1.50006
R= 1 ~80000
...~= 2. 10000
c~= 2.' 40000
R= 2.' 70000
R= 3.'00000
R= 3:30000
R= 3.601380
R= 3-'90000
R= 4;20000
R= 4;50000
R= 4;80008
R= 5.18000
R= 5'- 400130
R= 5'; 70080
R= 6.00000

A= 1.00000
A= 0.83743
A= 0.79607
A= 0.72007
A= 0.·65311
A= 0.60508
A= 0.55973
A= 0'-52056
A= 0.43641
A= 0.' 45639
A=- 0.42981
A= 0.48612
A= 0.36 4d 7
A = ~).- 3 6571
A=- 0.34335
A= 0;33255
A= 0;31811
A = 0; 30487
A= (];29 2 67
A=- 0;23141
A= 0.27093

B;,(=
BX=
8X=
BX=
BX=
BX=
BX=
B>(=
BX=
BX=
8/,( =
BX=
SX=
s;.(=
BX=
B;<;=
8>(=
B.-\=
8>( =
ax=
ax=

1.00(2)0
003:0653
0.65931
J;5466~)

0.45922
0·39050
;].3357'iJ
0;29140
3;25516
0;22510
0;28008
0). 1 7392
0.16090
8; 1 45 Ll5
0;13210
0.12049
0.1103Ll
0.10141
0.09351
0;D36 Li:t
(J.G3J2Ll

BY =
BY=
BY=
BY=
BY=
BY=
BY=
8Y=
BY=
BY =
BY=
BY=
BY =
sy=
BY=
BY =
8t=
BY =
BY =
BY=
BY=

1.00000
O. 6343,2
0.43746
0·35333
13·2707:;
0·20921
((). 1 6Ll3 9
0;1321':1
0·1075Lj
0· 03364
0; (2) 7339
0.0622Ll
0·05290
O.J453Ll
u.03914
J.03403
0;02376
0"82613
0.02315
0.02',357
0.01336

013/\ OY =
DB/\ 0'1' =
OBX D{=
OW( 0'1' =
OBX DY =
08/~ DY =
OB~< DY =
08XO:(=
OBXO'(=
08,\ OY =
Oi3~< DY =
03,\j)f=
oa/, O{ =
0,3.< ot =
Odi\ul=
Or3i<O:(=
08/; ot =
08,-<: O'{ =
08,\ Of =
08.'<OY=
DB/\ DY =

1. DC.JUUCJ
J. 7(1)2
0.52) ,,) 6 '(
i/j.44725
D·34':123
,J.27071
0·2222:)
J. 13 ,,jo 2
8el433S
10. 12336
0. LJ 1.1~j'f

(j.yJbo23
'].,07:,)..6..)

U. J 6.:'.j;J:~

u· OS 623
0· V Lj,;hj)

0.03798

l·J = 0;90000
R= 0~'00080 A= 1.00000 B>(= 1 .00008 BY= 1 .00000 OB?<OY = 1 .0082)i2J

R= 0'-38000 A= 0090680 BX= 003 7321 BY= 8. 7150LI OBi< Dt = 1 .J27!ZJ'7

R= 0'-6(2)00 A= 0.32602 BA= 0. 75305 BY = 0· 52L;36 OB,,\ Of = 0·9 1:177

R= 0;90lZJl::J:J A= g. 75 645 BX= 0· 6Lli3 41 BY = 0~37464 DB><DY= 0. 73 L; 1 7

R= 1';20000 A= 0"696Ll7 BX= 0·56013 Bt= O. 3031 7 Oi3,\D'{= 2).65648

R= 1'-50000 A= O. 64453 BX= 0; 486 L;5 BY= 0'- 23738 OBXO'! = 0·54633

R= 1:800100 Ai::. 0;59928 BX= O. 42507 BY = 0; 13902 08,\0,(= Zl. Ll5 60 6

R= 2~' 10000 A= 0;55962 B;{= O. 37377 BV - 8. 15277 08.< D( = J. 33 197.-
R= 2'" 40000 A= 0'-S2464 BX= 0"33078 BY= 8. 1251 1 08,\ DY = 0· 32173

i\= 2'~ 70000 A= 0"Ll9360 BX= 0;29431 S'{ = 0. 10363 oa~<lW= 0.27270

R= 3.00000 A= 0; 46590 BX= 0"26337 BY= o· 036·33 08.< 0:( = 0. 23262

H= 3;30000 A= 0. 4Ll106 BX =- 0·23639 BY= 0;07341 03.\DY= 0· 1-)) 63

R= 3. 60000 A= 0" 41365 ax= 0.' 21 412 BY = 0. 0626'J 08>< DY = J. 1 7246

R= 3~'90002J A= 0. 39336 BX= 0. 19435 BY = 0"05379 08,< o'{ = J. 1433 1

R= 4;20000 A=- 0.37990 8X= a. 1 771
,

BY = 8'~J46S6 03.'< ot = .J • 130360

R= 4;50000 A= 0.3630Ll BX= 0'- 1 6218 B'( = O· 04855 DB.-<:OY = 0· 1 1 Ll3 9

R= 4"80000 A= 0.'34759 BX= 0. 14334 BY= G. 03553 OB,\ OY = 0. 10137

R= 5: 10000 A= 0. 33333 BX=- 0;13712 BY =
,.) 83131 08.'\0'(= 0. iJ3 9 3 5\:().

R= 5. 40000 A=- v)~32026 BX= G. 12671 BY= 0.02772 OB.\ Of = 0·07973

:~= 5;70800 A= 8. 30313 B,( = ~J .' 1 17 lI:2 S{= 8. J2466 D8,< O{ = a· 'J71Ll3
D~ 6;00000 A= ~)'-29637 8;( = ,J. 109 1 1 dY = J.'822'2)3 03;-~ 1)( = ,,:;.861.;13.,-
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~-j= 1 ~2l(J000

H= 0.'00000
H= 0'-300'00
R= 0~60000

i\= 0.'90000
R= 1~20000

R= 1-'-5 0080
I~= 1 .'30000
R= 2'-10800
R= 2'-Lj0'000
1~= 2'- 70000
R= 3'-610(300
R= 3-"38000
R= 3.60000
R= 3'-910000
l~= 4''-20000
R= 4'-50000
R= 4;30000
R= 5''- 10000
R= 5-" 40000
R= 5''- 70000
R= 6~00000

ItJ = 1;5 0 0 0 0
R= 0'~ 00000
R= 0,,'30000
R= 0'- 60000
R= 0';90000
R= I.' 20000
R= 1;58000
R= (;80000
R= 2.' 10000
R= 2'-40000
R= 2-'- 70000
R= 3~'00000

R= 3; 30000
R= 3; 60000
R= 3;90;;:)00
R= 4;28000
R= 4; 50000
R= 4'-80000
J""\= 5.' 10000
R= 5'- 402100
R= 5. 70800
K= 6'-\::1000io0

A= 1.00000
A= 0.'92957
A= 0.36244
A= 0.30081
A= 0.74521
A= 0.'69540
A= Ii); 65033
A= 0'-61107
A= 0.57533
A= 0;5Lj331
A -= 0.'5 1437
A= 0.43813
A = 0.' 46439
A=- 0"44270
A= 0.' 42287
A= 0.40467
A= 0~ 38792
A= 0.37246
A-= 0;35815
A= 0.'34437
A= 0'-33252

A= 1.00000
A= 0'-95325
A-= 0.'901 73
A== 0'-35014
A= 0'-80064
A= 0"75431
A= 12"'-71150
A= 0.'67222
A= 0; 63 628
A= 0.'60343
A= 0;57339
A= 0'-54590
A= 0.'52068
A=- 13.: 4975 G
A= 0'-47616
A= 0;45646
A=- ~).43823

A= 0;42133
A== 0.Lj0563
A= 0.39101
A= 0~37736

BX= 1.00000
BX= 0.98263
Bf\ = 0. 91 462
8,{ = 0" 3 3 0 4 6
a;{ = 0. 74568
ax = 8; 66677
BX = 0; 59 594
ax= 0'-S3347
BX= 0.47332
BX= 0.43116
8;<= 10'-38959
BX= 10;35329
8X= 0;32149
BX= 0.'29356
8X = J" 2 689 Lj
BX= 0'-24715
8X= 0'-22781
ax= 0'-21057
BX = 0. 19515
BX = O. 13132
BX= 0. 16383

ax= 1.00000
BX= 1.19353
BX= I; 24008
BX= 1~21001

8X=1.14326
ax = 1'- (] 6166
ax= 0;97682
BX=- 0;89462
ax= 0;81783
ax=- 6.7Lj752
8X= 0-" 63336
8X= 0''- 62659
BX= 0.57521
B/\ = 0" 5 29 1 7
8X=- 0.48790
ax= 0"45083
BX =- 0. Lj 1 76 1
BX= 0·33766
9X= 0.36063
ax= 0.33619
8X= 0.31404
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8Y= 1.00000
ay= 0.75139
BY= 0~S7215

BY= 0.Lj4223
BY= 0.347(03
ay= 0.27633
BY= 0 ;22297
BY = 0. 18215
BY= 0.15049
8'1' = O. 12561
BY= 0.10533
BY= 0. ~0099 3
BY= 0;07702
Bf= O'-lu664Lj
BY= 0.'05763
BY= 0"05839
BY= 0'-04426
BY= 0;03908
BY= 0.'03L167
BY= 0.03089
BY= ~.02764

BY= 1.00000
BY = 0. 79016
BY= 0.62554
BY = 0. Lj98 44
B'(= 0.40064
BY= 0"32513
BY = 0'- 26 64Lj
BY= 0.'22043
BY == 0. IS 402
8Y = 0.' 15 LI9 5
BY= 00'I3151
BY = 0. 11245
8Y = 0.09632
8Y = 0. 0:3 39 0
BY= 0.37314
BY == 0; 0641 1
BY= u;056,Cj9
8Y= 0"2)5001
BY= 0.:J4LJ47
BY= 0.03971
8Y= 0'-03560

OBXDY= 1.00000
OBX OY = - 1.34107
DBXOY= -2.39L~27

oax J) '( = - 3. 12 19 7
DBXOY= -2.;19061
DB,{Of= ~2. 72112
DBi(OY= -2.41562
o8X 0 Y= ...; 2. 1 1 ':1 2 1
OBXOY= -1'-84931
OB,(D'(= -1.61264
DB:;(O{= -1.40719
uB/(J){= -1.23064
Dl:3X Dr' = ...; 1 .07942
08;\ 0'( = -0 • 9 49':1 5
o8X J) Y= - 0 • 3 389 8
DEJI<DY= "';0.7LI365
D81< DY = ...; (0. 66151
D8X DY = "';0.59(')52
DB/,DY= -0;52895
D8XDY= ~0.'47536

Of3XO'f= -~J.42855

OBXOY= 1.00000
DBXOY= 0'-34773
OBXOY= -0.00158
08;{ Of = - 0 • 1 7641
D8XO'(= -0·254Lj3
DB;<OY= -0.28029
OBXOY= ~0;27901

08i<OY= ~0'-26442

OBi<i)Y= "';0·24405
D8/\ Dt = ..: 0.' 22 19 4
DBXDY= -'0;20018
D8;<D'{= ~0.17976

D8XDY= ":0.16113
D8I,Of= -0.14433
OBXD'f= -0012946
D8XO'f= "';0·11624
D8XDY= "';0010455
OB/(O'(= -'0·09423
DBi(DY= -CJ;03511
D8X 0Y= - 0 • lJ 7 7 7J 5
D!3X Df = - 0·06992



l'j= 1. (33000
R= 0.08000
2.= 0;38000
K= 0.60000
i~ = 13.' 9 0000
l~= 1;20000
i~= 1 ;58000
i~= 1;30000
t~= 2':10000
R= 2.-40000
R= 2'; 70008
r~= 3':00000
l~= 3.'30000
R= 3-: 60000
R= 3~'90008
J~= -4~'20000

i< = -4'; 5 [30 CJ 0
j~= -4:30000
r~= 5~'10000

R= 5': 40000
R= 5.10000
R= 6;00000

A= 1.00000
A= 0.'77603
A= 0.'9-4120
A= 0'-90112
A= 0'-:35935
A= 0.'81 79 5
A-= 0.77805
A= 0.7-4025
A= 0~ 70476
A= 0:67169
A= 0;64093
A= 0;61233
A= 0;5359 D
A= 0:56131
A= 0:53343
A= 0;51726
A= 0.49749
A-= 0; 4 79 0 7
A= 0;46136
A= 0.44577
A= 0;43070

8X= 1.08000
ai<= 1.94321
a;<= 2.'42776
ax= 2.62726
8,(:= 2'- 6::) 694
8X= 2;53991
ax -= 2. 47125
8X = 2.' 3231 7
8X = 2.'17677
8X= 2,'- 02630
BX = 1;38183
8X = 1'- 74610
8X= I; 620(04
BX = 1;50393
BX::: 1.39750
BX ::: 1~' 300 19
BX = 1; 2113 6
Bi\= 1;1302:;1
BX = 1.05629
ax= 0'-93869
8X= 0;92639

BY = 1. 012100vJ
8'(= ;3.32347
8Y= 0.631 il3
BY = 0.- 560 U 1
8Y = o. LI6 15 5
8Y = J. 33231
BY = 0.31361
8Y = 0; 26 730
8Y= 0'-2257J
BY=0.19199
8Y= 0; 16432
BY = 0; 1 4151
8Y=0.12268
BY = 121; 10600
8Y = 0;09354
BY= 0'-03232
BY::: 0; 0 72 79
BY= 0;06-465
BY= 0'-05765
BY = 0.051 61
BY= 0.04637

DB/(OY= 1.(2j0~Jfj0

OB/~ Df = 0.:3 L!46\:J
OSXDY= 0.25538
08,<0'(= 8.107370
OBXOY= -0. [,)2254
DaXDY= -0.iJ79U4
D8XOY= ":(:J.18766
DBXD'(= -8011964
08X DY = - (j. 12190
OSXOY= -0·11367
08XOY= -0·11254
OBXOY= -0.1J5(:;3
OBXOY= -0·09705
oa;\oY= "';0.0391 LJ
08XOY= -~/j.U;j15o

oa/\ Dr::: - 0 • (2) 7451
OB~,DY= -0.06300
06;\OY= ":0.06206
caxo'(= -0.05667
OBXOY= -(J.GS17,)
OBXDY= -0· 0LJ733

w= 2.10000
R= 0:00000
R= 0:30000
R= 0~' 60000
i~= 0';90800
R= 1 ;20000
i'<= 1':50000
R= 1;80000
R= 2;10000
R= 2;40000
R= 2;710000
R= 3~'00000

R= 3;30000
R= 3'.' 60000
R= 3:90000
R= 4:20000
R= 4;5000~J

R= L(;S0000
R= 5:18000
R= 5. LI0000
R= 5.72)000
t~= 6·.·0GCH~0

A= 1.00000
A-= 0;99706
A= 0;91318
A= 0;95121
A= 0;91850
A= 0;38340
A= 0.'84169
A= ~f;8 1246
A= 0.11338
A= 0;1 -4579
A= 0; 71489
A= 0. 68574
A= 0;65332
A= 0.63257
A= i). 6:08-42
A= 0;53573
A= 0:56-454
A= ..0;54461
[~= 0'-52539
A = ~J. 5 !j;3 30

A= 0.49174

8X=
8X=
8X=
8X=
8i\ =
BX=
ax=
ax:
8X=
8X=
BX=
8X=
ax=
8X=
ax=
8i'~=

ax=
ax=
ax=
3~\ =
8;< =

1.00000
-i.61342
..: 3; 24915
..: 4. 19343
..: 4; 68 599
- 4. <3 7275
- 4''- 36952
":4;75050
..: -4; 564-48
":4'-34389
..: 4; 10652
":3.36744
-3·63353
":3. Li0931
..: 3'- 1971')
-2.99326
- 2;81279
-2'-64851
- 2.48 08 7
-2.33315
-2.19656
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BY = 1.00000
BY= d.36-446
8Y= 0;73693
BY= U.62-480
BY = 2)'-52727
BY = 0.44594
BY= 0.37320
BY= 0.32200
BY= 0· 27540
BY:: 0 '-23663
BY= 0.20443
BY = 0. 1 7745
BY= 0.15-473
BY= 0.1356<4
BY = 0. 1 1941
8Y = 0. 10553
BY = 0. (09374
BY= 8.08355
BY= 0.87LJ75
8'( = 8'- 13 6 711
BY = J. j 6J LiS

DBX OY = 1.00000
oa;< 0 '{ = 0. 6 4 4 7 5
D8XO'{= 8·33393
08,-( Lj'( = 0. 2 1 3 /7
DB;(OY= 0·093J5
oi3 ;< 0 ,( = 0. 0 2 3 9 2)

08>,DY= -0·.02212
DB,\O,(= -0.10495,]
OaXDY= -0·06<471
OBXDY= -0.,J7210
OSXOY= -0.0745L;
OBXO'{= -0.07393
OB~< Dr = - 0. J 71 4,,3
Oi:3;(O{= -J.,063,)j
Ot3,\OY= -8.J6L;;)1
08;\D'(= -0·05933
08>\l)Y= -O.lJ5S(,{;
D2>~01= -;J.05163
0:-::;;< OY = -lJ.:J L; 73 0
DS,\ 0Y= -:J. ~'J i! L; 2 1
o8 ;.~ [j'{ = - G • J Ln] 33



Lv= 2; 40iOG0
j~= 8;00000
R= 8': 301000
H= 0;68(2)10
R= 0.'90000
R= 1.281000
R= 1;50008
R= 1"<3 OG0ta
R= 2;10(:,)00
R== 2'.' 40~001J
R= 2'.' 70000
R= 3.000130
R= 3.' 30000
1\= 3; 60000
R= 3;900010
R= 4;20000
R= 4'.' 501000
R= 4;88000
H= 5;18800
R= 5'; 400810
R= 5'; 710800
R= 6;00000

~~= 2'; 780010
R= kr;00800
R= 0'''30000
R= 8'" 60000
R= 0.'90000
R= 1"20000
R= 1 ';5 0000
R= 1'''80000
R= 2'" 10008
R= 2'" 40000
R= 2': 70008
R= 3-"00008
R== 3'; 30000
R= 3'; 60800
R== 3;90088
R= Ll;20000
R== Lf;50U00
R= 4;80000
R= 5';101000
R= 5:40000
R= 5"'7J00~j

l~= 6. [j0000

A= 1.00000
A = 1.' 01575
A = 1;01342
A= 0.99873
A= 0.'97680
A == :J.9 4836
A= 0.'91302
A = [~);38 649
A== 0;85478
A== 0'''82355
A= 10'.' 79 324
A= 0;76403
A= 0:73621
A== 0';70969
A== 10; 68452
A== 0.66070
A= 0" 63315
A= 0.61 634
A= 0.59670
A= 0;57765
A= 8;55963

A= 1.00080
A= 1;03207
A= 1'''04463
A= 1;04271
A= 1"03046
A= i"81113
A== 10;93716
A= 0';96035
A= 0;93201
A= 121";90305
A= 0''-87411
A=- 0"84563
A= 8 ;,31 790
A == 0'- 79 1 1 J
A= 0" 76534
A= 0;74066
A == 0" 71 789
A= 0" 69 462
A= 0.67322
A= 0" 65 235
A= 0.63347

ax= 1.00000
8X= 0'-20833
8X= -0.34529
BX= -0;71432
8X= ~0;94716

8X = - 1 ; 03 29 4
ax == ~ 1 • 15 13 4
BX = :...; 1 • 1 7405
ax = ~ 1 • 1 665 1
ax= -1"13352
8X == :...; 1 • 10057
8;~ = ~ 1 .. US 477
8;\= -1'-00557
8X= -'0;95526
BX = '..: 0 .- 9 U5 3 7
B;<== ~0.'i35634

BX= -0'-31025
BX= -'0" 76595
BX= -'0;72403
BX = ~8. 68 468
BX= ~8;64773

BX= 1.00000
BX= 0;48962
BX = 0; 10402
ax= -0.17604
BX = -' 0. 37 19 2
BX= ~..:o. 5033~a
8X= ~O;53665

8X= '..:0; 63583
BX= - G. 65842
BX= ~0" 66423
BX= '..:0'-65807
BX= :·:8" 64370
BX=-'0;62427
ax = ~ 0. 60 15 6
ax = -c .. 5 7 7 1 0
8X= -0.55139
BX = :...; 0 • 5 2 6 6 3
8X = - 0.581 79
8;< = - 0. L17 767
a,<= -'0.454/.17
8X= -0.43231
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3Y = 1.00000
BY= 0.89717

BY= c. 790~Jl

BY = o. 6:3 790
BY= 0;59536
BY= 0.51394
8'1'= 0.44356
BY= 0;3333:5
8Y= 0"33211
BY = 0 ;23361
8Y == 0.25169
BY= 0;22D31
8Y = 0. 19357
8Y= 0.17073
BY = 0. 151 15
BY= ~j.13431

BY = 0. 1 1978
BY= 0. 10713
BY= 0;89623
BY= 8.08667
BY= 0'-07330

BY= 1.00000
BY = 0 ;92624
8Y= 0;33942

BY = '0. 7 219 3 2
8'1'= 0.66366
BY= 0.58422
BY= 0;51239
BY= 0; 44989
BY = 0" 39484
BY= 0;34702
BY = 0'" 30563
BY=- 8"26985
BY= (2);23392
8Y= 0'-21215
BY = :J. 133'3 5
S{ = ~J" 163 79
8Y= 0.15124
8'(= 0;13591
BY= 0.12249
BY= 0.11iJ70
,] Y= j. 1J >0 32

08;<0'(= 1.0000b
oax OY = 0. 715 45

oa;<oY= 0.4<3736
Oi-MDY= ;].316£;7
08;<OY= 0.1':;1252
oaXOY= 0.1054:1
lJBi<DY= 0.04533
D8XDY= 0.G0537
08~\OY= -0.02021
OBXO'(= ":O;'j3663
081<0'(= ":0.04642
oaXD'(= -0.05171
OBXOY= -0.:jS396
DB,<OY= -0.85LI22
DBXOY= -0.(;J5313
DBXOY= ":0.05134
DBXO'(= -O.OLJ9G3
DBXD'(= -0.«j46 L46
OBXDY= -0."J4330
D3XDY= ":0.04114
DBXOY= -f3. 033 54

08/( DY = 1.00000
DBXOY= 0.77125
D8XDY= 0.57034

DBXO'(= 0.40614
DBXDY= 0·27817
D8XOY= J. 113172
OB~\OY= 0.11088
D8XDY= 0"05968
D8XDY= 0;02349
DaXDY= -0.00164
DBXDY= -'0.01872
DBXDY= ~0.02997

DBX DY = -' 0.' 03 78 6
03:<0'(= -0.D4120
D8;\0'(= -J.04326
DBi<DY= -0. 0,:j38 7
DBXDY= -0·0435&)
D8XDY= -(J.G42LJ7
DBXD'(= -(j;~JLil02

DB;<D'{= -~~).t03931

DB>~D,(= -(j.037LJ6



~.;= 3'.' 00000
R= 0':00000
R= 0';30000
R= 0'" 60000
R= 0';90000
i~'= 1.201300
R= 1"50000
R= 1;300100
R= 2'''10000
R= 2'; 40000
R= 2': 70008
R= 3.'00000
R= 3"'30000
R= 3;60000
R= 3'.'90000
R= 4"20000
R= 4':50000
R= 4';80000
R= 5'''10000
R= 5-"40000
R= 5';70800
I~= 6; 00000

END X~Q.

A= 1.00000
A= 1.'134619
A= 1.:2) 7234
A= 1':03271
A= 1.03103
A= l ..a 7059
A= 1;05375
A= 1;03255
A= 1'.' 00346
A= 8;93263
A= 0';95588
A= 0;92332
A= 0,.'90138
A= 0;87537
A= 0.34949
A= 0;S2439
A= 0;8001 LI

A= 0-"77631
/-\= 0.'75439
A= 0;73290
A= 0';71233

BX = 1. 0 0 [] 0 vJ
ax= 0.61403
ax= 0; 30483
ax= 0.06579
BX= -0011322
BX: ~0;24327

ax=' ~0; 33 LI66
BX= ~0; 39 627
ax=' :':0; 43538
ax :: -' 0; 45 7 7 Lj

ax= -'0; 46732
Bi<= :':0-"46904
BX= -'0.'46397
BX= -'0.45453
BX= :':0;44215
BX= -0; 42 7(30
BX= ~0;41250

8X= :':0.39655
BX = :.: 0 '; 33 04 6
BX:: ;,.'0; 3 6449
8X= :':0.' 34335
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8Y= 1.00000
8Y= 0;:;5174
BY= O;S345il
BY= 0;30346

BY= 0.730il6
8Y= 0.65495
BY= 0;58442
8Y= 0;52007
8Y= 0.46227
8Y = 0; 41033
8'(= 0; 365 43
8Y= 0;32555
BY= 0;29:05CJ
8'1= 0;25975
BY= '9;23279
BY= 0.'20911
BY = 0.' 18330
BY= 0016998
8Y = 0; 15381
8Y = 0-'13952
BY=' 0; 12685

OBXDY= 1.,jOOiijG
DSXOY= 8.31727
OBX OY= 0. 642'),J
08XOY= 0.43793

08,<OY= 0.359 65
Di3XOY= 0.25695
D8XDY= 0;17708
OBXO'(= 0011606
D8XOY= 0.07839
08i{DY= 0.83663
oBi< DY = o. J 12 15
D8XOY= -8.0;]541
D8;\I)Y= -D.1)1774
08><OY= -Cj.82617
Dax ,)'( = ..;, 0 • D3 1/'3
Dl3XDY= -0.83517
D8,<0'(= -0·03707
DBX 0 Y= ~ 0. 0 3 73 6
DBXDY= :':~J"03735

DBXDY= ~0"~J37;27

DGi(D(= -'fJ"03634



ERAN-38

DECAY OF IMAGE CURRENTS

INDUCED IN A THIN CONDUCTDm CIRCULAR CYLINDER

BY A CO-AXIAL LINE-CURRENT PAIR*

L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

July 29, 1969

If the wall is absent: The vector potential of a single line current is

2 2
= _I ( t) ln _r__+_s--;~,,-2_r_s_c_o_S_9

r

cos 8
r

= 2 p( t)

Az

2 p(t) r cos e
2 2.

r + s - 2rs cos 8

and for s small (infinitesimal) the potential of a line-current

with L I(t) ; s = p(t), becomes
S---7 0

We n01;; write, so a s to take into account the effect of eddy currents

induced in the thin conducting circular cylinder,

A = 2. p(t) cos e
z r

I+ A .

As is customary, displacement currents will be neglected.

* Work supp.:->rted by the U. S. At.)mic Energy C:Jtmnission. For previous
·"ork, see L. Jackson Laslett, ''Decay of I!llage Currents in a Plane
Geometryfl) LRL Report ERAN-37 (July 28) 1969).
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dA' cos e dA I
Now B = - ~ = 2 p( t) --2- - ~r '

8 or orr

while the induced current density in the wall at r = R is

I
1: dAz\J = -z P dt r = R

\ IThe condition Be + - Be
r=R r=R

I
= 4nJ then becomes

z

~I \
or -r=R

4 dAn z
=Pdt

r=R

= bn r2 p'( t) co: e + ~I I ].
L r=R

We also require continuity of AI and require that AI (a Cartesia.n

component of a divergenceless vector AI) be harmonic (V2AI = 0,

for r f R):

Suppose, then, that AI is of the form

F(t)
r cos e for r:S R,R

AI =

F(t) R cos e for r ~ R.r

Then the inhomogeneous differential equation for AI becomes

_ ~F(t) cos e = ~ [2 p'(t) co~ e + F'(t) cos e],

or

F' + 2~R F = - ~ P" ( t ) •
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We take the solution of this first-order equation to be

t _ -E- (t _ ~)

F = - ~. J P "( ~) e 2nR d~ •

-00

The vector potential of the induced eddy currents then becomes

_ 2 r cos e
R

2

t

J'
-00

- -E- (t - ~)
p'(~) e 2nR d~ for r ~ R)

t _ -E- (t _ ~)

- 2 co; eJ p'( ~) e 2nR d~ for r ~ R;
-00

the total vector potential correspondingly can be written:

A (r)e;t)
z

= 2P(t) cos e _
r

~[1 p'(,) e- 2~R (t - ~) l [~/R]
d~ I· or cos e)

R/r....
{

r.::s R

for r ~ R •

for r ~ R)e
r cos e

R
2

- 2 P
o

In the particular case that p(t) is a step function) of ma.gnitude

Po occuring at t "" to [p, = PoeS (t - to)] and with no changes prior

to that time) the above solution for AI becomes:

- -E- (t - to)2nR

- 2 Po
cos e

r
e for r ~ R.
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decreases exponentially with time from

= to. [The external fields (r > R) thus

zero at the initial time to.]

- 4 -

In this case of a "dipole" line current centered in a thin conducting,.

circular cylinder, we appear to have, in contrast to the case of a

plane conducting sheet, an exponential decrease of AI with time. The

characteristic time is ~ =~,where v =~~ (for p in emu per square).

Interpretation

Interpretation of the Field Modification resulting from the

Eddy Currents generated when p(t) is a step Function:

1. For r > R:

AI has the form of the vector potential for a 2-D current

"dipole" - similar to the actual "dipole source" P and similarlyo
situated, but of opposite polarity to the latter - whose strength

- -E..- (t - t )
pI(t) = _ p e 2~R 0

o
an initial strength - Po at t

build up form a value that is

2. For r < R:

The vector potential AI that characterizes the field produced

by the induced eddy currents is of the form that describes a uniform

field (as is characteristic of the field produced within a circular

cylinder by a current distribution JI oc cos e on the boundary), andz
this field has the exponentially-decreasing value

~I 2 Po
H = -- e

R
2

- -E..- (t - to)
2~R Ae

y

rl Such a uniform It image field" is

encountered in magnetostatics (steady-state current problems) when a

source approaches the axis and the external images in consequence

recede to infinity.J
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Appendix: Check of the solution given for A (r J ej t):z

With

Az(r, 9; t) = 2p(t) co; 9_~L!p,(,) e- 2~R (t - <)d<J.[ ~~:]. cos 8, for{:::,
-00

I 1 dA z \ 2 2 [ Jt -2~R (t- e) ]
J ~--""'\7"""" =--p'(t)cose+- p'(t)- -E.... P"(~)e d~ ·cose

z p at R Rp Rp 2rcR
-co

Also, then,

t

~ -~[f p'(n e
rcR

p
- 2rcR (t -~.) ]de. . cos e.

dA

Be I - Be I = ~ I
R+ R- R-

[
t -.-E-(t~;) J

= -;2 f P "( U e 2rcR d~ . cos e
-:<l

I
~ 4rcJ , as required.z
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DECAY OF IMAGE CURRENTS

INDUCED IN A THIN CONDUCTING CIRCULAR CYLINDER

BY A LINE-CURRENT PAIR

THAT IS PARALLEL TO, BUT NOT NECESSARILY COINCIDENT WITH,

THE CYLINDER AXIS *

L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

31 July 1959

1. Vector Potential With The Wall Absent

We consider a 2-dimensional "current dipole", formed from anti-parallel

currents ± I (t) at e = 0 and r = h + s or h, in the limit s ~ 0 with

p( t) == I( t ). s. Then the vector potential of this isolated "current dipole"
1

is given by 'of

s = 0

= 2 p(t) r cos e - h
2 2

r + h - 2rh cos e

2
By use of the identity v

ln (r2 + r 2 - 2rr cos e) =
o 0

2 I:
n=l

2
cos ne - In r (r <r),

o

this A (0) can be written in an alternative form as an expansion in terms of
z

familiar plane-polar harmonic functions:
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A (0) 2p(t) {}. [n~l
I "r CO" n~ }.1 /h +

= ( rz n
\ = 0

2
co

( ~)n= h p(t) L: cos nS (h < r).
n=l

2. Introduction of a Vector Potential to Account for Induced Eddy Currents

We consider now the presence of

a thin circular cylinder, with its axis

coincident with the polar-coordinate

origin. The surface resistance of this

cylinder is taken to be pemu per square

and the radius of the cylinder is de-

noted by R. The vector potential of

the induced eddy currents will be

written AI, so that the total vector

potential is (With.fAI = 0, for

r :f< R):

/

k!
.---~----
o "P
-h-

-7

With E
-7

dA
= - dt or J

z
1= - -p

dA z
'd-t '

dA
z

= - dr" the condition

r=R

= 41CJz becomes
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.!-!:.' ,

or, equivalently,

.: r2P '(t) 2 R c~s e - h
l R + h - 2Rh cos e

3·

oAl dA l

~ +-'d"r
r=R r=R

ISolution for A

= 41C [~ p'( t) ; (. E.)n
p h 1\ Rn= '

dAr
cos n8 +~

r=R J·

To procede

employ the series

in Section 2. We

rdirectly to obtain a solution for A , it is convenient to

expansion for A(o) that led to the last of the equations

then assume Ar to be of the form

(r ~ R)

n

~ F (t)(~\
I

n I r!
n= \,/

cos n8 (r ~ R),

that is manifestly harmonic_

Then we require

co
2 z:
R n=l

nF (t) cos n8 = 41C r~ p'(t) ~ (~\
n p ~ n=l)

cos ne + ~ Fn'(t) cos neJ '
n=l

so that we obtain the first-order differential equations for the F (t):
n

F ' +n = -
n-l

2 _h_

Rn

3-83

p'( t )_



- 4 -

An appropriate solution for F is
n

n-l
F ~ _ 2 _h_

n Rn

( -n::z. (t-~)
I P' (~) e R dE,

wi
-00

where v - .e..... (dimensions of velocity).2n-

Thus r t
l tf1 rr~ R

-n ~ (t-~) I I R
2

AI 2
00 I fp ,(,) tr ~ R.

::: l: e d,rl (ir ·co,
n8, forh n=l

l.
-00

When p(t) in particular has the form of a single step function, of magnitude

P and occuring at t ~ t [so that p'(t) =P • 5(t - t )J, this solutiono 0 0 0

becomes

00
I 2

A = - h Po L:
n=l

(cos ne)
-n ::L (t-t )

e R 0 , for t>to •

4. Interpretation of the Step-Function Result

(a) Interpretation of the result for t = to
------ - - ---

At t = t the last result in Section 3 may be written
o

C~) n
I,

00 \
AI(t ) 2 f.cos= - h Po L: or ne

0 n=l ~)n
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R
2

P fa (In [D
2 2

2rD C08 e] ) ]
2

- h2 + r
R2 +- P

0 LdD h 0D =-
h

=: or

[}. 2 2
] ) ] 8P (In [r + (h + s) - 2r (h + s) cos e

0 =: 0

r~ R

r ~R.

Thus, at the instant of creation of the "2-dimensional dipole current"

P , we have the following image system that will serve to describe the effectso

of the eddy currents induced in the cylinder:

To account for fields outside the conducting cylinder (r >,:.. R), one

provides within the cylinder, at the location of the true source (r =: h), an

image that replicates this source but has the opposite sign. The combination

then serves, of course, to give zero total field in the region under consid-

eration -- namely in the region outside the cylinder.

To account for magnetic fields inside the cylinder (r ~ R), one places

a 2-dimensional dipole-current image at the familiar image position (outside

the cylinder) whose radial coordinate is D =: R2/h. This image has the same

dipole polarity as the actual source Po' and a magnitude that is (R/h)2Po

[due, one might say, to the "magnification" in imaging a pair of line filaments

at h and h + s to radii R
2
/h and R

2
/(h + s)]. The term ~ Po that appears

in AI(t ) does not contribute to the magnetic field.
o

(b) Interpretation of the result for t ~to

------- - -- ---
The expression (Section 3) shown for t > t (in the case of a step

o

function that occurs at t = t ) is of the form given for t =: t , save that
o 0

- J.. (t - t ) - y. (t - t )h is replaced by h =: he R 0 and P by P =: PeR 0 •
000
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These substitutions then suggest the following interpretation:

To describe the field outside the cylinder (r ~ R), one imagines

supplementing the true source by a. 2-dimensional current dipole of opposite
v

sign and exponentially decreasing strength, - P e - R (t-to ); this image
o

imitially is situated at the location (r = h) of the true source but moves

inward so as to decrease exponentially its distance h from the axis

[ -*(t - to)l •h = h e J

moment of this source is

increase of strength associable with the magnification that would result from

imaging a pair of internal line currents situated near r = h ).

5. step-Function Solution in Closed Form

Aided by the interpretation of the preceding section (Section 4), one

may write the solution for a step-function p(t) in closed form: - Thus for r~ R,

; (t - t ) [d 2 2 ]
o dE [In [D + r - 2rD cos e]J

D

+ 2 P
h 0
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R
2 .:!.(t-t)= _ 2 __ P eR 0

h 2 0

- 7 -

D - r cos e
2 2

D + r - 2rD cos e

1 -
- Yo (t - t )

2 hr R 0
-- e
R

2 (

:\ 2 - z.Y (t - t )
cos e + ~) e R 0

v
R (t - to)

e

'.

Likewise, for r ~ R,

y
- - (t - t )R 0e

,..,
h - r cos e

2 ':" 2
r + h - 2rh cos e

2
= - - Ph 0

v
r - R (t - to)
h COB e - e

y v

2
_r e - w (t - to) e -~ (t - to)h n cos + e -rt

We thus write, for the case in which pet) is a step function,

hrcos e - ~ E (t,t )
R 0

AI = - 2 P
o

1

1 -
hr

2 ~ E(t,t ) cos e +
R 0

cos e - ~ E (t,t )
r 0

·E (t,t ),
o

-r
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where E(t,t ) denoteso

- 8 -

; (t - to)
e while the upper and lower forms shown

within the curley brackets refer respectively to r ~ R or r ?R.

The total vector potential is then

r cos e - h
Az = 2 Po --:::'2-----'-----:::-2

r - 2rh cos e + h
(t ? t ),

o '

and the induced surface current in this case is

P
o

= rc

for t ~ t •
o

2 2
R cos e - 2 RhE(t,t ) + [h'E(t,t)] cos e

o 0
2' 2 2

(R - 2RhE (t , to) cos e + [h' E(t, to)] }
. E(t,t )

o
abamp/cm

6. General Solution in Closed Form

The results of the preceding section (Section 5)of course can be

immediately generalized to describe the results for an arbitrary p(t):

r cos e - hA = 2 p( t) ---:2::--------:::2-
r - 2rh cos e + h

4,
v

hr
E(t,~)cos e -2

t
r R
""2

2 ~ E(t,~) cos e + [(~) E(t,~) J2(~ {
R 1 -

- 2 ! p'( g)
!

I l h E(t,g)
1

cos e - -
1/ r

- 00 r
1 - 2~E(t,g) cos e + [(~)E(t,g)J2

For r ~ R or r ~ R, respectively;

3-88



- 9 -

2 2
R cos e - 2Rh E(t,~) + [h • E(t,~)] cos e
(R

2
_ 2Rh E(t,~) cos e + [h E(t,~)]2}2

• E( t, e) de ,

- 00

The components of magnetic
- 2~R (t - ;)

1 dAzB :::-
r r de

= e
dA

z
Be = - ~ 'field are given by

- ~ (t - n
with E(t,~) = e

7. Asymptotic Character of the Effects of Eddy Currents That are Induced

by a Step-Function pet)

I 'The solution for A , as obtained in Section 3, was (for r ~ R or r ~R)

AI = 2 P- h 0

00

L:
n=l

(cos n e) e
- n Y.. (t - t )R 0

so that

00

'\'
'-'

n=l

(t - t ) ]o • cos n e

and

00

L:
n=l

- n *(t - to)
(cos n e) e

Also,

p r(~r +

(:~ n v (t - t )00 - n -
B :: 2--..2. L:

R 0 • cos n en or ee hr n=l _ (~)nL
and r {(~n} v t )lp 00

t~r
- n R (t -

B =- 2-.2. L:
0 • sin n e ,n. er hr n=l

, (~)n
J
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so that the discontinuity of Be at r = R, namely

IS Be ~ - 4 :~ ~ n (~)n (cos n e) e
n=l \

n ! (t- t )
R 0, at all times is

equal to 4~ J (as required), and initially (t = t ) the external field van-
Z 0

ishes [withB =oatt=t].r 0

When expressed in this form, the results indicate that the various

e

order spatial harmonics decay at increasingly great exponential rates as the

harmonic order n under consideration becomes larger [decay proportional
_ n .! (t - t ) t - t L
Roo J' or to e ~n where ~ = B- = l 2~R

n nv n p •to

I~ consequence, the induced eddy currents that remain assume more and more
5

the character of a pure cos e distribution; correspondingly, the external

magnetic field becomes more and more that characteristic of a 1T2-dimensional

current dipole IT , with the numerical factor 1 - e- *(t - to) , and the eddy-

current modification to the internal field becomes essentially the expon

2Po - ~ (t - t )
entially decaying uniform field -z- e Roe These results

R y

correspond to those obtained in an earlier report (29 July 1969) for the

special case h = o.

(for t

The asymptotic character of the solution, as just described here

- t large in comparison to ~ ), also follows immediately from the
o v

closed-form results presented in Section 5. The results of Sections 5 and

6 also become identical, when h is set equal to zero, to results presented

in the previous report that considered only the special case ofa source

situated on the axis of the cylinder.
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8. Numerical Computations

(a) Numerical values of the induced current density have been computed

at various times, for lO - degree intervals of the polar-coordinate angle,

for cases in which h =: G • R, with G :: 0, 0.1, 0.2, 0.3, and 0.4; these

values of G are denoted by GO' Gl , •.• 04'
current density, for a step-function source

The corresponding values ~f

R Jz
(po)' are given by J i == -P

o

(i = 0, 1, .•• 4), as a function of the angle A (equals 8, in degrees) and

f L
_ v (t - to),

a - •
R

With E -L- e ,
1

J =i ,,;

[1 + (G
i

• E)2 J..
2[1 + (G • E) 

i

cos 8 - 2 • G
i

• E

2 • G • E • co a 8]
2

i

E.

Appendix A presents the results of this computation, with each table

corresponding to a part icular time (L = 0, 0.5, ••• 3.0), and lista the J i

va. G
i

andA.

(b) Similarly, for the image field and ita gradient at the location

(r '= h, 8 = 0) of the source, we have

R
2
B1

ThUE, defining Bi == P Y and Pi
o

B II
y x = h

y '= 0

P E
= 2 --".__...-;.o;.",-_~

R2[1 _(~)2 EJ2

at the points X= h :: G
i

• R, Y = 0, we have

and •
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Tables are given in Appendices B and C respectively of the quantities B
i

and Pi vs. Gi (0, 0.1, ••• 0.4) and L.

~92
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9. References and Notes

* Work supported by the U.S. Atomic Energy Commission. For previous work,

see L. Jackson Laslett, 'rDecay of Image Currents in a Plane Geometry"

ERAN-37 (28 July 1969) and "Decay of Image currents Induced in a Thin Con-

ducting Circular Cylinder by a Co-Axial Line-Current Pair" ERAN-38

(29 July 1969).

distance h.

axis and then shifting the origin by a

F/eld
P~"'d

will be recognized as that

polar-coordinate

for a 2-dimen-
cos cf>

r l
on the

1 The result A :: 2P (t) _;;--_r--:::c~o.;;;.s.-;8:....--.....:;;h__
z 2 2

r + h - 2rh cos e
employing the

sional current dipole

expression A =2P(t)
z

which would be obtained by

2 Cft> W.R. Smythe, "Static and Dynamic Electricity" (McGraw-Hill, New York,

1950) Ed. 2, Sect. 4.02, Eqn. (1), p. 65.

images (used to assist

R2 -R (t - to)
It is noted that ~ e3 2

= B- , so that the external and internal
11

in determination of the magnetic field in the regions

r < Rand r > R, respectively) are images of one another.

4
It can be confirmed directly that the results presented here in Section 6

do constitute a solution to the problem as it was formulated by the next to

last equation of Section 2.

5 The fact that the current J becomes progressively more smoothly distributed
z

is reminiscent of a similar situation for currents induced in an infinite plane
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conducting sheet (report of 28 July 1969). The initial eddy-current dis-

tribution in the present case is

J (t ) =z a

p
o

1C

2 2
(R + h ) cos e - 2 Rh
222

[R - 2 Rh cos e + h ]
and only is ofa pure cos e

form if h =0.
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APPENDIX A

INDUCED CURRENT DISTRIBUTION

A-l

1 •
~) ,

<...'

3.
1; .-

5.
6.
7.-

3.
9''

1'Ci .

1 1 .-

13.'
1 L;.'

15.'
16.'
17'-
13.'

21 .;
22'
23.'
24~

25.
26';
27.'
23.'
29 .
30'
31'
32'~

33'
34.
35.

10

2U

LiS
50

OI.,jE.J.:.iIJ>J G(5)
IJI i';:::.~.:31 J.-.J JC 5)
DO 1 j 1= 1 ~:;

G( n = (I - D 11J
CO.~ TI :'; u;:::
(-;G = GC 1 )

G1 = C,C 2)
G2 = GC 3)
G3 = Cie 4)
G..'J = GC j)
L =·0
i~ = i::: (? C( - L) )

?EI.JT7~ L~' Ci:.J~ C;1~ (::,~~ (-;3~ GL;
A = u
C = CJSCPI*A/130)
D'J ··5 j I::: 1~ 5
D = C 1 +C GCI ) *E) '" 'j, 2 - :2 oj' GC I ) ;j, E ;j, C) ;;< 'i' 2
JCI) = ":((1+ (GCI)';<E)*'i'2)'~C - 2;::Ci(I),j<:::)':'i~/C)j>D)

I r CCAS's.c J CI ) )) ~'GT • (5. CE - LO) C:) T,j it :5
JCI)'= [:j

CO;"; TI ~~ UE
CO:·J TI ;~ :ji~

JD = J( 1)

J 1 = J C2)
J2 = J(3)
J 3 = J CLj)

JLj = J(5)

PRI~T7; A; JO~ J1; J2~ J3~ J4
IF (:2; • ,jT. 175) G,] TJ 6J
1-\ = A .; 1:J
GO . TO 1;~)

I 1'- (L • GT • ;2 • 9 ) CiJ TJ 77;
L = L .;: C.-S
GJ TO ~2J

S TOi'

- ..) 0 I)

- ,J. J J~

. -, ", ,
- I.) • ::J I,) ~-i

-~). ~'J') L!

J Lj=

j.~= 0 • .J41
J 4= J. 121

,J li= i,)' 1 63
J 4= J. 1<33

J ..:;= '.;.1:J9
,J c:; = ,:;.- 1,)9
J !;= 'j. 1:; 5
JL,= G.131
J ~= '~. 170

:';.'17(j
·0. 1 ~. 5

;J. LJ:J
:J.1:J:J

J 3= - Lj. (~:; 5
J 3 = -~ .- Lie:.;.3
J3= -~j·3~37

"' ....... " '".

~·GU~_)

J 2= - 0. L,9 7
J~2= -,--,'-Lj7(;.

,J2= ~:.J'-~17

J2= ~;J.32,1

Ci,':: =

J2= ~~'-235 J3= -0'-lJ~

J2= -;:;'-139 J3= -;j.J65
J2= ~0'-JS4 J3= 0.023
J2= J.~17 J3= G.S92

J ;2 = :.;. C7 ,~ j 3;:: ;;. 1 :3 5
J ~-:. = .J.1 1-3 j 3 = .:J' 1 I] 1

-~.·J52

- G. 353
-Z;'-3,) 7
-,J;2LJ9
-j'-1,3Lj
-.J.117

J • .j ..JJ

1 " } J 2 :.: 1j J ') =.'..J · ,j ~ !J · .~
....,

" · 1 .::;9 J 2 = ·1 7 .:., J 3 =:,.... ~J

· 1::) ;2 j ' ..~ = · 1 ~l J J 3 :.:,- .j -"
, · ..' -) J 2 = j ·2 ..J 2 J ~, -~ "'- j .:.'
- ;-"'r

J ~~ = 2 1 ) J 3 =~ · ::::'c---': ;' ~' ·

~.... -l,/ ,"

,/). '0 0:':':

Jl=
Jl=
Jl=
Jl=
J1=

J1=
J1=
J1=

J1=
j1=
Jl=
J1=
J1=
J 1=

L = .. . ;) '••'.1 _J CO = ~) ·;:.; ...) Lj

A = 0.u U ,:.J J ;J = -0· :3 1G

A
-,

j " -.
J J (j C 3 1 3= oJ ·:.J = - ·

A = 2 J -'- = - :~ :J ;;,:.J ·u 'J J ~ ·A = 3 G·8 8 J v = - ,J · ;2 7 U
A = 48·:J :J J 0 - -:;.i · i::: -4 LjH

" = :) -' ·;J ',) J <:J = -.J ·2'~j ::>M

I~ 6:.) ·J ) J J = -.:.J · j ::> .)
-"

A= 7 -- J J = - 1 -;;J ·.:..J .) ,~ · ~~I

•6. J J = - " .
S- .:,) u ·,., t.::; ,;) · _J ::>

A= ,~) · .) J .:J= · .;.1 ........J-" ' . ~ ,J J

.Co, = 1 -
','( :J J

..
= ,J .:J::>,- · e_ · :J

A = 1 1 ,J· J J oJ = 0 ·1.. j :;

A= 12 ) · '.J J •.J = {) ·1~ .)
-"

A = 13
-.

J J J =
~

2
-.

S..J· U · (.,

,'I = 1~ · '-J j J = u · . .J
L~ L!~-; :J ,-
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A-2
A=
.4=

" -h-

15..;;J
16j;u
1 7:.; ~ j

J ,j= C.;2 7 ,~

JG= ...;.'2")",-)

J~j= 0.':)12
,Jj= ,.J.'31....,

J 1=:j' :.2-.:44
,j1= :.-;2:):)
01= ,J;,::;{;l
,J 1:::: ,j; ',~;,]::;'

J2= J.~215

oJ ~:..:.: ::J.';~ 1"-;)
,j2= _~j.;?~.2J

,J:~= ~;,::';21

....,J....:;=,J·l....J;/

u ...:.. = ,.J. 1 ~ ./'

c.J ,,;=
. ,-

,.J ."--!-

,J -,=
.~ ,l.;=

-~.·.'J13

,J' 12:J

J ./,=

:.... 122J .!..=

- ,j • u;J 1
-_ .. 1 ':i:S

::;. 1 :,2,',

J 3=
J ~3=

J3=
J3=

J3=
J3=

-:-);1)~)

-'-.j.1Si:j
-0;1~J7

J2=
J2=
J2=

J1= :"'0.21) J2= -~.2:)J JJ= -..).~3) J~= -u.337
J1= -0;214 J2= -~;24:3 J:3= -~·2'i7 04= :"j.319
Jl= "-:J.'2'J.J J2= -,)~2S~2 J3= -].-2/;2 J~= _·...;.·~~71

J 1::: :.. :.j; 1 '/ j J 2 =
J1= -J;1::i1
J 1 = :.. U; 1 1,::;
J 1= ~0; 03:3
J 1= -' 0 '.0 j ~ 0 J ;2 = - u • ,,:) 23 J 3 = :~. L):) ~~ J ~'! = ~,~: ....... 3 0
Jl= :"0;011 J2= 0.014 J3= u'J~~ J4= ;.~61

Jl= -,";j~~3 ,j2= ".).045 J3= ..)eJDc 0 L;= 0 •. j134
J1= C'-':'SLj J2:::).j~i2 J3=;:'.';,:;7 c.J "-J.,j-))

Jl= 8.'032 J2= :0.j94 J3= j.'h3 JL'j= '::;.109
J 1= j; 1J 6 J ~~ = ..J ; 1 1,2 J 3 = :j. 1 1 ::i ,J L;=.j' 1 1 Q
J1= :j;126 J2=
J 1= :J" 1 /4 3 J 2 =
J 1::: 0; IS L) J 2 = c); 1~ /; ,J 3 = 'J. 1 :3.c, c.J "~! = .). 1 :2':;

J 1= C.- 1 65 J 2 = j. 1Sj J 3 = ;J; 13 (J c.J ':;= ,J 01 ~.c::)

Jl~ 8~17J J?= O;lj3 J3= 0;133 J4= S"125
J1= 0;172 J;J= ;':';L:j.'! J3= '.J;13::; J-"i= :.i-1~~::i

Je;= -").1:):3

J J = -0. 17 iJ
.J :,J = ~ j; 13 1
jj= -0;167
J ,j = - j ; 1 ,~;3

J:.J= -C;12l;
Jj= -~j;0';1 7
J,j= :"O'-Joo
J J = :'-:j; 0 3 Lj
JC= ..)'0,),)

JO= J;03i;
JO= O:,J66
Jj=:; ;J9 7
J::.J= :;.12LJ
J!J = U. 1 LJ]
J:)= 00167
J:J= :j.'l:.31
J:J= 0': 1'3 :.J

J:J= :;:;;193

G..~ = :.) • ...,.- ,"J .....;

l;);J.J
1 L;.' J
120;,:)
130.' ",:
1LJJ.0
150; :J
168;iJ
i 7;:,/: J
i:3 iJ; u

G.~j'.J

1U. Cil)

20:00
3::)'.' ;j ;:)

LJJ.j'-..'
5 :Y; j.J

68'- u ;'.;
7U ; 'j:j

GO'.' .0U

L=
A=
A=
A=
i;=
A=
A=,;=
A=
A=
A=
A=
/,,=
A=
A=
A=
A=
A=
A=
A=

L= 1 • l,;j:J G,J=
(.!'; 8,J 0

Lj.JU
20.~J
"r~_'. . r"· ,..,

Jw-::J:.:.J

~CJ''' GLl
5[3'; 0J
60': ,:is
7J~'G0

3 LY; JC;
90;:j !J
1 JC. :j

1 1,J;~;

138.u
1 LjU~'J

150: j

160;.0
1 78~':.J

1J C'; G

J;,)=
JO=
JU=
J0:::
JO=
JO=
J0=
JO=
JO=
JO=
Jj=
JO=
J'j=
J8=
J0=
J0=
J0=
J0=
J0=

-J. 11 7
-S'" 11 5
:.. CJ; i 1 c:J

:"O"L:il
-'0';090
:":j'; J 75
-'0;059
:..'0; :J ilO
:"iZf: 820
U. C0:0
~j''' C2,~

G" G~~ ...J
:J;05,;'
J. 0 75
0"090
O';U 1
0;110
cr;11S
0: 1 1 7

Jl= '·':;:j.126 J2= -.j.130 J3= -::j.lil,.:i Ji:= -iJ.l{ll
Jl= -'0"12.4 J2= -jJ.l:::>3 J3= -;).I/j4 J4= < .... ISt)
Ji= -'0;117 J2= -0;124 J3= -~;132 J4= -j;lilJ
J 1 == :.. 0; 1G6 J 2 = :... C .. 1 1 j J 3 = - :J. i 1 Lj J ,i::; - 0. 1 1:;
J1= :"0';091 J2= -0;J92 J3= -(j.';;))1 JLj= -').,~,9j

J1= :":,);073 J2= :"U;070 J3= :"8;066 J4= -'0·061
Jl= :"0;054 J2= :"0;043 J3= -'0;j41 J4= -'0;033
Ji= :"0;033 J2= :"0;025 J3= -'0'-017 J4= -0;003
J1= :"0;012 J2= :"0"003 J3= 8.086 J4='O;0[5

J1=O.089 J2= j.jl1 J3= 0.025 JLj= v.j3j
Jl= S.'::)2:::) J2= :~,;.J35 J3= ;";.j42 J.,',=j.,j':,o
,j 1 = ~j .. S L: 6 J 2 = ~~ .' :J 5 2 J ;) = ~J." J S ,S J i;= j ." ~- 6 :.~j

J1= 0;",62 J2= U'-06j 03= j;j63 J4= j'-J69
J 1= S; ~j 7 6 J 2 == :; ; J 7 7 J 3 = :D. :.) 7 7 J Li= .'1 .-:', 7 6
Jl= 0'-030 J2= 0;036 J3= C"JS4 J4=0.C,:':;1
Jl= 8'''097 J2= :':;;::,)93 J3= 0.J89 JLj= ;J.C::)5
J1= 0;104 J2= j;098 J3= 8.::j92 JLl= j.837
J1= ;];1.]3 J2= ;:;;101 J3= J;W4 J/!= 0.039
Jl= J;109 J2= 0;102 J3= S.U95 J4= j;039

•

._i ....' 12
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40

APPENDIX B

IMAGE FIELD AT SOURCE LOCATION

DIMENSION G(5)
DIMENSION 8(5)
DO 10 1:1,5
G(l) : (I - 1)/10
CONTINUE
GO - G( 1)
G1 : G(2)
G2 : G(3)
G3 : G(4)
G4 : G(5)
A : 0
PRINT7, A, GO, G1, G2, G3, G4
L : 0
E: EXP«-L»
DO 30 1:1,5
D = (1 - G(!)*G(I)*E)**2
B(1) = 2*E/D
IF «A8S(8(!») .GT. (5.0E-4» GO TO 25
B(I) : 0
CONTINUE
CONTINUE
BO - 8 ( 1)
B1 = 8(2)
B2 = 8(3)
83 = 8(4)
B4 : 8 (5)
PRINT7, L, 30, Bl, 82, 83, 84
IF (L .GT. 4.95) GO TO 40
L = L + 0.1
GO TO 20
STOP
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B-2

A= 0.000 GO= 0.000 Gl= 0.100 G2 = 0.200 G3= 0.300 G4 = 0.400
L= 0.000 80= 2-:-000 B1= 2 •(f4r---tf2-:: -"2~ '1 fO ' Ef3:2":4Ts--S4 =-2":814
L= 0.100 80= 1 .810 81= 1 .843 82= 1 .948 83= 2.145 84= 2.474
L= 0.200 80= 1 .637 81= 1 .665 82= 1 .750 83= 1 .908 84= 2.168
L= 0.300 80= 1.482 81= 1 .504 82= 1.574 83= 1. 70 1 84= 1 .907
L= 0.400 80: 1 .341 81= 1.359 82= 1.416 83= 1 .518 84= 1 .682
L= 0.500 80= 1 .213 81= 1.228 82: 1.274 83= 1 .357 84= 1 .488
L: 0.600 80= 1 .098 81= 1 • 110 82= 1 .1 47 83= 1 .215 84= 1 .319
L= 0.700 80= 0.993 81: 1 .003 82 : 1.034 83= 1.088 B4= 1 .1 72
L= 0.800 80= 0.899 81= 0.907 B2: 0.932 83: 0.976 84= 1 .043
L= 0.900 BO= 0.813 Bl= 0.820 82= 0.840 83= 0.876 84= 0.930
L= 1 .000 BO: 0.736 B1= 0.741 82: 0.758 83= 0.787 B4= 0.831
L= 1 .100 BO= 0.666 81= 0.670 B2= 0.684 83= 0.707 84= 0.743
L= 1 .200 80= 0.602 B1= 0.606 82= 0.617 B3= 0.636 84 : 0.665
L= 1.300 80: 0.545 81= 0.548 82 = 0.557 83= 0.573 84 : 0.596
L= 1.400 80= 0.493 B1= 0.496 82= 0.503 83= 0.516 84= 0.535
L= 1.500 80= 0.446 81= 0.448 82= 0.454 83= 0.465 84: 0.480
L= 1.600 80= 0.404 81= 0.405 82= 0.410 83= 0.419 84= o•431
L= 1 .700 80= 0.365 Bl= 0.367 82= 0.371 B3: 0.378 84= 0.388
L= 1.800 80: 0.331 81= 0.332 82= 0.335 83= 0.341 B4= 0.349
L= 1.900 BO= 0.299 81= 0.300 82: 0.303 83= 0.307 84= 0.314
L= 2.000 BO= 0.271 81= 0.271 82= 0.274 83= 0.277 B4= 0.283
L= 2.100 BO= 0.245 81= 0.246 82= 0.247 83= 0.250 84: 0.255
L= 2.200 80= 0.222 Bl= 0.222 82= 0.224 83= 0.226 B4: 0.230
L: 2.300 80= 0.201 81= 0.201 B2= 0.202 83: 0.204 84= 0.207
L= 2.400 80= 0.181 Bl= 0.182 82= 0.183 83= 0.184 84= 0.187
L: 2.500 80: 0.164 81= 0.164 82: 0.165 83: 0.167 84= 0.169
L: 2.600 80= 0.149 Bl= 0.149 82= 0.149 83: 0.151 84= 0.152
L= 2.700 80= 0.134 81= 0.135 82= 0.135 83= 0.136 84= 0.137
L= 2.800 80= 0.122 81= 0.122 82= 0.122 83 = 0.123 84= 0.124
L= 2.900 80= 0.110 81= 0.110 82= 0.1 1 1 83= o•11 1 84= 0.112
L= 3.000 80= 0.100 81= 0.100 82= 0.100 83= 0.100 84= b. 101
L: 3.100 80= 0.090 81: 0.090 82= 0.090 83= 0.091 84= 0.091
L= 3.200 80: 0.082 81.= 0.082 82 = 0.082 83= 0.082 84= 0.083
L= 3.300 80: 0.074 81= 0.074 82= 0.074 83= 0.074 84= 0.075
L= 3.400 80= 0.067 81= 0.067 82 = 0.067 83= 0.067 84= 0.067
L= 3.500 80= 0.060 81 = 0.060 82= 0.061 83= 0.061 84= 0.061
L= 3.600 80= 0.055 81= 0.055 82= 0.055 83= 0.055 84= 0.055
L= 3.700 BO= 0.049 81= 0.049 82= 0.050 83= 0.050 B4= 0.050
L= 3.800 80= 0.045 Bl= 0.045 82= 0.045 83= 0.045 84= 0.045
L= 3.900 80: 0.040 Bl= 0.041 82 = 0.041 83: 0.041 84: 0.041
L= 4.000 BO: 0.037 81= 0.037 82: 0.037 83: 0.037 84= 0.037
L= 4.100 80: 0.033 81= 0.033 82= 0.03·3 83= 0.033 B4: 0.033

L= 4.200 80= 0.030 81= 0.030 82= 0.030 83= 0.030 84= 0.030
L= 4.300 80: 0.027 81= 0.027 82: 0.027 83= 0.027 84: 0.027
L= 4.400 BO= 0.025 81: 0.025 82= 0.025 83= 0.025 84= 0.025
L= 4.500 80= 0.022 Bl= 0.022 82 = 0.022 83= 0.022 84= 0.022
L= 4.600 80= 0.020 81= 0.020 82= 0.020 83= 0.020 B4= 0.020
L= 4.700 80: 0.018 81= 0.018 82= 0.018 83= 0.018 84= 0.018
L= 4.800 80= 0.016 81: 0.016 82= 0.016 83= 0.016 84= 0.017
L= 4.900 80= 0.015 81= 0.015 82= 0.015 83= 0.015 B4= 0.015
L= 5.000 BO: 0.013 81= 0.013 82: 0.013 83= 0.013 B4= 0.014

END XEQ.
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APPENDIX C

GRADIENT OF ThTAGE FIELD, AT SOURCE LOCATION

DIMENSION G(5)
DIMENSION P(5)
DO 10 1=1,5
G(I) = (I - 1)/10
CONTINUE
GO = G( 1)
Gl = G(2)
G2 = G(3)
G3 = G(4)
G4 = G(5)
A = 0
PRINT7, A, GO, Gl, G2, G3, G4
L = 0
E = EXP«-L»
DO 30 1=1,5
o = (1 - G(I)*G(I)*E)**3
P( I) = 4*E*E/D
IF «ABS(P(I») .GT. (5.0E-4» GO TO 25
P(J) = 0
CONTINUE
CONTINUE
PO = P( 1)
PI = P(2)
P2 = P(3)
P3 = P(4)
P4 = P(5)
PRINT7, L, PO, PI, P2, P3, P4
IF (L .GT. 4.95) GO TO 40
L = L + 0.1
GO TO 20
STOP
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C-2

7.38E-04 P3: 7.39E-04

6.04E-04 P3= 6.05E-04

P3= 0.000 P4: 0.000
P3= 0.000 P4: 0.000
P3= 0.000 P4= 0.000
P3 = 0.000 P4= 0.000
P3= 0.000 P4: 0.000
P3 = 0.000 P4= 0.000

G3= 0.300 G4= 0.400
P3 = 5 '-3'Og-P'4=-'6-.-7 49
P3= 4.225 P4= 5.236
P3= 3.373 P4= 4.086
P3= 2.700 P4= 3.205
P3= 2.166 P4= 2.526
P3= 1.741 P4= 1.999
P3= 1.403 P4= 1.587
P3= 1.131 P4= 1.264
P3= 0.914 P4= 1.010
P3= 0.739 P4= 0.809
P3= 0.599 P4= 0.649
P3= 0.486 P4= 0.522
P3= 0.394 P4: 0.421
P3= 0.320 P4= 0.340
P3= 0.260 P4= 0.274
P3= 0.212 P4: 0.222
P3= 0.172 P4= 0.180
P3= 0.140 P4: 0.146
P3= 0.114 P4= 0.118
P3= 0.093 P4= 0.096
P3= 0.076 P4: 0.078
P3= 0.062 P4= 0.064
P3= 0.051 P4= 0.052
P3= 0.041 P4= 0.042
P3= 0.034 P4= 0.034
P3= 0.028 P4= 0.028
P3= 0.023 P4= 0.023
P3= 0.018 P4= 0.019
P3= 0.015 P4= 0.015
P3= 0.012 P4= 0.012
P3= 0.010 P4= 0.010
P3= 0.008 P4= 0.008
P3= 0.007 P4= 0.007
P3= 0.005 P4= 0.006
P3= 0.004 P4= 0.005
P3= 0.004 P4= 0.004
P3= 0.003 P4: 0.003
P3= 0.002 P4= 0.002
P3= 0.002 P4= 0.002
P3= 0.002 P4= 0.002
P3= 0.001 P4= 0.001
P3< 0.001 P4= 0.001

9.01E-04 P3= 9.03E-04

0.000
0.000
0.000
0.000
0.000
0.000

P2 =
P2=
P2=
P2=
P2:
P2=

0.000
0.000
0.000
0.000
0.000
0.000

P1=
P1=
Pl=
Pl=
Pl=
P1=

0.000
0.000
0.000
0.000
0.000
0.000

A= 0.000 GO= 0.000 G1= 0.100 G2= 0.200
L= O. 006-po-=-"4:-006-p 1= 4:'f22'P-2:-,C52T-
L= 0.100 PO= 3.275 P1= 3.365 P2= 3.658
L= 0.200 PO= 2.681 Pl= 2.748 P2= 2.963
L= 0.300 PO= 2.195 Pl= 2.245 P2= 2.403
L= 0.400 PO= 1.797 Pl= 1.834 P2= 1.950
L= 0.500 PO= 1.472 Pl= 1.499 P2= 1.584
L= 0.600 PO= 1.205 Pl= 1.225 P2= 1.288
L= 0.700 PO= 0.986 Pl= 1.001 P2= 1.048
L= 0.800 PO= 0.808 Pl< 0.819 P2= 0.853
L= 0.900 PO= 0.661 Pl= 0.669 P2= 0.695
L= 1.000 PO= 0.541 Pl= 0.547 P2= 0.566
L= 1.100 PO= 0.443 Pl= 0.448 P2= 0.461
L= 1.200 PO= 0.363 Pl= 0.366 P2= 0.376
L= 1.300 PO= 0.297 Pl= 0.300 P2= 0.307
L= 1.400 PO= 0.243 Pl= 0.245 P2= 0.251
L= 1.500 PO= 0.199 Pl= 0.200 P2= 0.205
L= 1.600 PO= 0.163 PI = 0.164 P2= 0.167
L= 1.700 PO= 0.133 Pl= 0.134 P2= 0.136
L= 1.800 PO= 0.109 Pl= 0.110 P2= 0.111
L= 1.900 PO= 0.089 Pl= 0.090 P2= 0.091
L= 2.000 PO= 0.073 Pl= 0.074 P2= 0.074
L= 2.100 PO= 0.060 Pl= 0.060 P2= 0.061
L= 2.200 PO= 0.049 Pl= 0.049 P2= 0.050
L= 2.300 PO= 0.040 Pl= 0.040 P2= 0.041'
L= 2.400 PO= 0.033 Pl= 0.033 P2= 0.033
L= 2.500 PO= 0.027 P1= 0.027 P2= 0.027
L= 2.600 PO= 0.022 P1= 0.022 P2= 0.022
L= 2.700 PO= 0.018 Pl= 0.018 P2= 0.018
L= 2.800 PO= 0.015 P1= 0.015 P2= 0.015
L= 2.900 PO= 0.012 Pl= 0.012 P2= 0.012
L= 3.000 PO= 0.010 Pl= 0.010 P2= 0.010
L= 3.100 PO= 0.008 Pl= 0.008 P2= 0.008
L= 3.200 PO= 0.007 Pl= 0.007 P2= 0.007
L= 3.300 PO= 0.005 Pl= 0.005 P2= 0.005
L= 3.400 PO= 0.004 Pl= 0.004 P2= 0.004
L= 3.500 PO= 0.004 Pl= 0.004 P2= 0.004
L= 3.600 PO= 0.003 Pl= 0.003 P2= 0.003
L= 3.700 PO= 0.002 Pl= 0.002 P2= 0.002
L= 3.800 PO= 0.002 Pl= 0.002 P2= 0.002
L= 3.900 PO= 0.002 Pl= 0.002 P2= 0.002
L= 4.000 PO= 0.001 P1= 0.001 P2= 0.001
L= 4.100 PO= 0.001 PI = 0.001 P2= 0.001
L= 4.200 PO= 8.99E-04 P1= 9.00E-04 P2=
P4= 9.06E-04
L= 4.300 PO= 7.36E-04 Pl= 7.37E-04 P2=
P4= 7.41E-04
L= 4.400 PO= 6.03E-04 P1= 6.03E-04 P2=
P4= 6.06E-04
L= 4.500 PO =
L= 4.600 PO=
L= 4.700 PO=
L= 4.800 PO=
L= 4.900 PO=
L= 5.000 PO=

END XEQ.
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*ON HIGH-CURRENT INJECTION

(Preliminary notes to serve as basis of discussion)

L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

**October 1, 1969

* Work supported by the U.S. Atomic Energy Commission.

** Submitted for typing on 22 December 1969.
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I. Introduction

The action of self-fields has been mentioned (Kerst, Judd, Lambertson,

Hartwig, Faltens) as a possible mechanism for self-inflection. It appears

that, even overlooking image effects, there may be several phenomena of this

type:

(i) There are radial self forces from bias fields (Laslett;

Ivanov et al.) that act in a sense to expand the ring (Kegel).

(ii) The increasing flux through the ring produces a back-EMF

that acts to retard the particles, with the result that the orbits gradually

would contract in radius from this effect alone.

(iii) The increasing charge on the ring produces an electrostatic

potential that acts to retard the particles on injection, and this effect

also acts to decrease the radius of the path described in the magnetic

field (Faltens).

We attempt to treat these effects, in turn, below. We suppose that

at any time n (t) particles have been injected to form a ring, so that we

consider the steady injection of n highly-relativistic particles (of charge

e eBu) per second, at an injection moment~~ p. For simplicity, we take the
o

applied magnetic field to be spatially constant (f1uniform fl
), and let Ro denote

the trajectory radius for particles of momentum p in this field.o
We employ r to denote the classica.l particle radius,

o

r =o

2
e

2
m c

o

( = 2.82 x 10-13 cm for electrons).

(i)

II. Estimates of 6R/Ro

The effect of the radial self-forces:

The electric and magnetic "bias fields" le a d to an effective

radial bias force (Laslett; Ivanov et al.)

eF) = e (E + B) =r 0 r Z 0

2
m c )'

o
---I-lP,

R
(1)

to employ the notation of Ivanov et al. in which
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(Particles per unit length) x roI-LP :::I

:::I
nr

o
ll)'R

ln 8R
b

(2)

Then, for particles of momentum p in a magnetic field
o

B (emu):::I
o

p y
o

(e/c)R 'o

'We have (treating f3 ~ 1) :

[~ B - moc)' I-Lp] R
coR

e:::I - B R :::I m )'f3ccoo 0

= m )'Co

= ~ B R ~ m )'Ccoo 0
~ B R- (m er)(l-Lp)coo

2
m c )'

B R _ 0 P
o e I-L :::I B Ro 0

2
m c

~ 0
=--)'

e

B R - (B R )I-LP = B R
0 o 0 o 0

B R :::I B R (1 + IJ.p)
0 o 0

or
R 1 + I-LP (3)
R

0

[cf. Kegel].

This result contrasts the orbit radii of electrons of a specified kinetic

energy under circumstances of high ~. vanishing intensity.

(ii ) The effect of the back electromotance:

With n particles of charge e esu in the ring, the circulating

current in emu is (for f3 ~ 1)

I
ne

= 21lR emu

and the rate of increase of this current is
. ne abamp/sec.I :::I 21lR

3-105

(4 )

(5 )



- 3 -

The induced electromotance (per turn) is most readily obtained from the

self-inductance of the ring, which is given roughly by

~ 1 8RL = ~~R ln ~ emu.
b

(6 )

The induced electromotance per turn then is

E = - L1

2ne
. 8R

= - ln -=- emu,
b

(7)

the negative sign indicating that the induced electric field acts to

decrease the particle energy when n> 0 (Lenz's Law).

All particles, once they are in the ring, will individually lose

momentum at the following rate as a result of the induced electric field

associated with the electromotance given by Eqn. (7):

~ 1 dE Ee
2

8R . 2 8Rill ne ill ln ne ln= - dt = 2" 2~ = -
~ = -dt c b ~cR bc rcc

(8 )

or

8Rln
b

• 2
ne

2
~/m Hco

nr
o ln 8R

~/R b=

Thus, for an early particle that is injected when the ring has zero

intensity,

~)
Po early

nr
o

=
~/R

ln 8R
b

while one injected when n = n. experiences a momentum change given by
J.

=
(n-n.)r

J. 0

~/R

ln 8R
b

(10 )

Accordingly, at any given time when the number of particles in the ring

is n, the average particle momentu.m will differ from p by an amount
. 0



_ l~ _

6p = <p> -p given by
0

n! (n - ni ) dn.
~

~ r 8R0 In=
Po n 1r yR bJdni

0

nro
= - 21ryR ln

8R
b

(n)

With the ring acting as-a-whole with regard to its curvature in a uni

form applied magnetic field} this change of average momentum will imply

a corresponding radius change given by

nr
o 8R

ln -
b

(12 )

Alternative Derivation: As Faltens has pointed out, the ring

contraction derived above for the effect of induced electromotance

[effect (ii)] should be readily derivable by consideration of the energy

in the magnetic field.

The relevant quantity of interest here is the magnetic energy

term that is proportional to the square of the circulating current:

w = 2: 1I2
M 2

2 2
= ~ ln 8R

21rR b
(13 )

If this energy is provided by the incoming particles, the departure of the

average particle momentum from p will be given} for this cause, byo

and hence

1
6p = - DE =c

\If, ,
1"1

nc

2
ne

= - 2ncR In
8R
b

2
ne

2
21rym c R

o

ln
8R
b
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nro 8R
= - 21!yR ln b

a result that is identical to Eqn. (11) on p. 4. Accordingly;we

obtain, as before (p. 4),

.6R
nr 8Ra ln= - 21!rR -Ra b

1
= - 2' !J.P,

or
R 1 1= - '2 !J.P.Ra

(iii) The effect of the electrostatic potential of the ring:

(14 )

(15 )

(16 )

We may take the electrostatic potential of the ring a.s essen-

tially

v = 2A In· ~R =..s.. ln 8R = ne ln 8R
b 1!R b 1!R b

esu.

[This suggests viA = 2 ln 8~ = 2 In(320) = 11.54 at the center of a
b

ring with ~ = 40; compare L.J. Laslett, ERAN-7 in the ERA 1968 Proceedings
b

(UCRL-18103).]

A particle injected a.t a. moment when the ring contains n. particles thus
~

would be expected to experience a loss of moment~~) because of the electro-

static field, given by
2

2:f:,E
n.e

ln ~R6p =
~

= -c 1!cR b
or (for t3 ;; 1)

2
6p =_

n.e
1n 8R~

Po 2
1!rm c R ba

n.r
ln 8_R~ a

- 1!')'R
b

(18 )
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ln 8!
b

r o
'It)' R

such that

. Accordingly, when the number of particles in the ring has become n, the

average particle momentum will differ from p by a.n amount 6p = < p> - p
o 0

j nnodno
~ ~o

=
nr 8

o ln !
2'lt)'R b

(20)

As in sub-section (ii), this effect similarly will itself contribute

a radius change given by a similar expression

6R
Ro

=
nr

o
2'lt)'R

ln ~R
b

(21)

Alternative Derivation: Analogously to the work on p. 4-5, the

ring contraction derived above for the effect of electrostatic fields in

reducing the particle kinetic energy can alternatively be derived by fol

lowing Faltens l suggestion that this effect will follow from consideration

of the electrostatic field energy.

We employ the electrostatic field energy term that is proportional

to the square of the number of charged particles present:

W =
E

~ Q,V
2

2 2
= ~ ln 8R

2'ltR -b
(22)

If this energy is provided by the incoming particles, the departure of

the average particle momentum from the injector value will be given, for

this effect, by

6.p

and hence
2

ne
2

2'lt)'m c R
o

8R
ln

b
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nr 8
°In_R ()= - 2rel'R b' 23

a result that agrees with that given as Eqn. (20) on p. 6. Accordingly

we obtain, as before (p. 6),

6R
nro 8R

= - '2R ln -;:-R reI' b0

1
= - - flP

2 '

or

R 1
= 1 - "2 flP.R

0

(24 )

(25 )

r II . Summary

Neglecting image-field effects and the influence of trapped ions

(that in practice may gradually accumulate in the ring beam, we find the

following terms for contributions to ~ in a uniform applied field:
o

From Radial Self Forces:

From Back Electromotance:

From Electrostatic Potential:

+ flP

1
- "2 flP

1
- 2' flP

Sect. rr(i), Eqn. (3), p.2;

Sect. rr(ii), Eqn. (16), p.5;

Sect. Ir(iii), Eqn. (25), p.7.

The total result of these three effects thus appears to be zero -- at least--=
to the accuracy justified by the foregoing rough calculations.

It undoubtedly will be recognized that, in many situations met in practice,

image effects can, however, be of considerable importance. Such effects

would, of course, deserve specific study and one can scarcely anticipate

that in the end their results will vanish.

IV. Comments (22 December 1969)

The above notes have been circulated to serve as a basis of discussion.

There is a continuing interest in these possible effects that may influence
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the equilibrium-orbit radius at injection, and also in the following

allied features: energy change, dispersion of radius, and dispersion of

energy. It will be recognized that the model used as a basis for the pre

sent treatment is incomplete -- it may be appropriate to attempt careful

attention to the following additional aspects (amongst others):

1. Inacuracy of the simple (logarithmic) formulas for the

Ifbias fields If .

2. Effect of electric and magnetic images, and the possible

decay of the latter (if present).

3. Azimuthal variations

(a) From the plural-form character of the injection

process;

(b) From localized features of the structure (~.~., the

injection snout).
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ERAN-41f
November 4, 1969

POTENTIAL OF A UNIFORMLY CHARGED BEAM ''lITH AN ELLIPTICAL SHAPE t

L. Jackson Laslett

1
b
.1,

(}) Write x = lIa 2_ b 2

y = l/ a 2_ b 2

sin u Cosh v

cos u Sinh v.

Charge
Density

=p
Introducing the complex numbers

,...,
z = x + iy, w = u + iv,

.... I 2 2
this transformation may be 1vritten Z = Va - b

(a) It may be noted that, for this transformation,

sin; and hence is conformal.

d~ __ ' la.2 _ b2 cos ""'w __~ f a 2_ b2
V :V (cos u Cosh v - i sin u Sinh v),dw

so that

2

[
d~l (2 2) (2 h2 . 2 . h2 )- = a - b cos u Cos v + s~n u S~n v
dw

= (a 2_ b2). cos 2u + Cosh 2v
2

we have the ellipse (.;:) 2 + (t) 2 = 1.

(b) Also, curves of constant v are

Ca2
- b

2 yx Cosh v

+

so that when Cosh v
a

=

\/a2 _ b 2

Sinh v
b

== -Va
2 _ b

2

-1 b
v = Tanh

a

given by

(~a2_ b2Y Sinh)
2

= 1,

t Work supported by the U.S. Atomic Energy Co~~ission.
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For this value of v we also

Cosh 2v

Sinh 2v

2v
e

-2v
e

-2-

have
2 b2a +

=
a 2 _ b 2

a + b
= a-::-b

a - b
= a + b

@ *Write the electrostatic potential as

= + ~o (a- b) {[(a -b)+(a +b) cos 2u] - [(a+b)+(a- b) cos 2u J} Cosh 2v

for points inside the elliptical
boundary,

< -1 b(v _ Tanh a) .

The potential as written in the Ca.rtesian form is clearly such that

if 11> = -4rcp, as required.x,y

If one wishes to check the ~(u,v) in this regard, one may form

b
2

)(coS 2u + Cosh 2v) =
b2). cos 2u + Cosh 2v

2

- 4rcp, as before.

Write the external potential (for the region outside the elliptical boundary

of the beam -- ~.~., where the charge density is zero) as of the form

( ) -2v
if> = A + B':Y + C' cos 2u e .

This form is clearly harmonic (~ ~u,v

*Cf. L. C. Teng, ANLAD-59 (1963)·
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and

-3-

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Iinside the beam

a- b
= C a+ b

= B

= A + B • Tanh-1 E
8

( ) a - b== B - 2C cos 2u a +b

- ~abp

- 2~abp

a-b
~ab --b Pa+

a- b a b
-2~ab -- p= - 2C -a.+b a+b

B = - 2~abo

C = ~abp.

-~p(a-b)[(a+b)+ (a-b)cos 2u] ~ab2
a -b

-1 b a - b
- A + B • Tanh - + C • ( cos 2u) --b

8 8.+

It remains to adjust the constants so that the potential and the fields are

continuous at the beam boundary -- ~.!., so that ~ -and ~ are continuous
-1 b OV

at v = Tanh -.a

dence on u has the same cos 2u form that is employed inside the elliptical

boundary, and the e-2v factor is such that the major dependence on distance

when v ~ ln r is large is ~ B ln r. One might, in fact, expect that with

this form for the exterior potential one must have B = -2A = -2~abp.

2:-!"

These relations are all satisfied by taking

A = ~ab [2 Tanh- l E -l]p
a

Thus we may write:

~~ To match the b d -t'~ oun ary condl lons, we require, as identities in u,

~~(a-b) {[(a - b)+(a +b)cos 2u] - [(a +b)+(a -b)cos 2u] a:+ b:}
a - b

;

i

i
/
J

I
J
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and

-1 b" -2y
1'! = -rcabp [1 - 2· Tanh - + 2y - e cos 2u] outside.

a

® Along the y-axis (x =0), Iyl =-Va
2

_ b2 Sinh y, so that

and

-1 Y
Y = Sinh

..., f 2 2
Va - b

2
- Iyl) while cos 2u = 1.

Thus we may write for the potential along this axis

a 2
~ = - 2rcPa +bY' for

and

l!> = - rcabp [1 -2 . Tanh- l ~ + 2Sinh- l Y
.. I 2 2
Va - b

= - .abp [ 1 -In : ~ ~ + In

" (II 2 2 2
+ 2 In y + a - b

a + b

from either formula.

At the boundary voints on this axis (x = 0, y = ~ b),

2
ab

~ = -2rcp a. +b
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Similarly J ~:: 0 at the origin J and ~ ';;; -21Labp ln l y I:: - 2" ln [yl at

great distances along this axis.

The interior field is Ey :: L~1Lp _8_ Y = 4" y inside J with the value
a + b b( 8 +b)

L ab "~1LP a+b = 4 a+b at the edge (y = b);

The exterior field** is E = l~1Lp 2a.b 2 [ -V y2 + a 2 _ b 2 -y]
y a - b

for y> b J

abbecoming 41Lp a+b

(or for b -t a) .

at y
21Lpab 27\

= b and tending toward -~- = -y y as y ~ 00

In the special~ b = a J the expressions for ~ become J after evaluating

the limit of the indeterminate form for the exterior potential,

2
- 1LPy ,

for b = a.

- 1Lpa
2

[1+2 ln I~I] J

In application to the Action-Integral programme,

we replace 1Labp by

" = (Nef) lei = 1.5288 X 10-10 (r2{Ref )
21LR

and scale ~ by

1 :: (FP) =
~

-J p
2 + (170L~. 9) 2

P

**

(with P in gauss' cm) to make A + (-~) an effective "potential" .. scaled

We thus obtain the working formulas (writing z in place of y)

For Iz I :: b:
(FP) (N r)

_ cI> :: 1.5288 X 10-10 e z2
scaled Rb(a + b)

This expression for the exterior field along the y-axis agrees with
the result given as Eqn. (23) in the cited report of Teng (ANLAD-59). The
present report has the merit of giving the potential, ~(u,v), not only along
principal axes but also at an arbitrarily situated point in the neighborhood
of the beam.
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For z >b:

(FP)(N f)
- ~ = 1.5288 X 10-10

R e
scaled

if b yi a, or

V 2 2 2
1 z + 8 - b

+ n ba +
+ IZ~

10 (FP)(N f)
- ~sca1ed = 1.5288 X 10- R e

if b = a.

For the preparation of numerical tables to illustrate the character of

Ill, as a function of z and of the parameters 8, b, one may find the following

LRL BRF TTY program convenient.

Q + 1

We let

We define

Then

~
U=~l

s= Izsl
U = 1

11:

z
ZS =

b

for Izsl < 1

~[ s(1! 82+ Q2 _ 1 -8) \/S2+ Q2_ 1 + S ]Q2 _ 1
+ 1n Q + 1

U = for IZ81::: 1
and Q 1= 1

1 r 1
+ 1n s]

11: l2 for Izsl~ 1

and Q = 1.
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1•
2.
3·
4.
5.
6.
7.
8.
9.

10.
1 1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

OK

10

20

30

40
50

60

70

80

-7-

LRL BKY BRF TTY Program for Tabulating

Representative Values of -~

Q = 1/4
PRINT6" Q
ZS = -6.0
S = A8S( ZS)
IF (S .GT. 1> GO TO 30
U = S*S/(PI*(Q+l})"
C..Q TO 50
IF (Q • E Q. 1> GO TO 40
o = SQRTC S*S + Q*Q -1>
U = (S*(O-S)/(Q*Q-l) + ALOG«O+S)/CQ+l»)/PI
GO TO 50
U = « 1/2) + ALOGCS»/PI
PRINT12" ZS" U
I F CZS • GT. 5. 9 5} GO TO 70
I FCC ZS .• G1. (- 2. 05» • AN O. (Z S • LT. (1.95») GO TO 60
ZS = ZS + 0-1
ZS = ZS + 0. 1
GO TO 20
IF (Q • GT. 4.90) GJ TO 60
Q = Q + 1/4
GO - TO 10
STOP
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Sketch of
Curves of constant vector potential
giving direction of magnetic field
within one quadrant of an
elliptical aperture
with a = h/w = 0.4

0.2 0.4 0.6 0.8 X/w _ 1.0

XBL 697 4858

3-120



a = h/w-'
1.00.8

E2 ,rectangle

0.60.4

Image-field coefficient for
elliptical and rectangular
boundaries

0.2
0'--__-'-__---I. 4--__-'-__--L .L.-_--'

o

0.1

0.3

0.4 rr----r----.----r---,.-----r---...,----,

0.2

t
E

XBL 697-4837
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ERAN-49

*IMAGE FIELD OF A STRAIGHT BEAM OF ELLIPTICAL CROSS-SECTION

L. Jackson Laslett

13 January 1970

I. Introduction

1Image-field coefficients (~.~., El ) are nor~ally calculated on the

supposition that the image field can be taken to be that of a line charge

(or line current), and frequently are eV2.1uated for a si~nple tlw-dimensional

boundary. In this spirit the image field of an electron ring close to a co

axial cylinder may be approxima.ted by Ifstraightening-out lf the ring and cylinder

into a line source and an infinite plane boundary, respectively) and the image-
1 2field coefficient E l then assumes the value E

The use of a line source appears justified for computing. image fields

"When the boundary surface is somel·/hat re~ote in comparison to the transverse

di.'1lens ions of the beam. Straightening out the source and image surface to

a tvlO-dimensionc:l configuration appears sui tabJ.e in cases for 1'lhich the trans

verse di~ensions and clearance are each small compared to the major dLmensions.

Dr. Perkins has pointed out3 that the first of these assumptions may not

be appropriate for describing some of the experiments perfo~ned in the LRL

Compressor-III device. In the following report we therefore investigate the

image fields of an elliptical beam) taken to be straight and parallel to a

.conducting plane sheet) viithin which the charge density is assumed to be

constant.

II. Notation

We take the linear charge density to be - A (e.s.u. per em.) and deno-ce

the semi-axes of the bee_'ll by Ifalf (X-direction) and Ifb" (y-direction) -vlith

the center of the bea..'u loce.tee' at the origin of the coordinate system. P.n
. ~. . t - , .t-. ..t-. . .f- .t- d t h 4 T • h t .t-. .t-h1nI·ln1 e Inane conQUC t..lng sn~e t.. lS Sl uU8.t..e a y = - • tIe vllS 0 CO:Tiput..e u_ .. e

image-field contribution to the f'ollo'"ing quantities:

POT - <filA
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and

G =x
h2 .d (POT)

d x

2 E 2
h x h

EPS = E l = IU\ x = 4" d( POI')
dX

at points along the x axis (in particular for Ix [ ~ a).

III. Derivation

Since each fil~~ent of the assQ~ed elliptical be~~ will give rise to a

mirror-image fil~~ent of opposite sign, the image field of the entire el

liptical be~~ will be that which would arise from a sL~ilar positive beam

centered at y = - 2h. The field of such an image (+ A e.s.u. per cm.) is

characterized by an exterior potentia15 such that

¢ -2v
POT = - ~ = 2v - e cos 2u

(if we drop an arbitrary additive constant), where

x = F sin u Cosh v
and

with

y = F cos u Sinh v - 2h (for our present choice
of origin),

The x-axis, along which we wish to evaluate the L~age effects, then is given

by the relation

F cos u Sinh v = 2h.

To obtain u in terms of x, we eliffiinate v to obtain the quadratic

equation for sin
2

u:

where we have written

L = 2h, M = L/F, and Z = X/F.

From this equation, sin u and related quantities can be determined.

The curvilinear coordinate v is then given by

Sinh v = M/cos u
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and

2 2 .l
Cosh v = (cos u + M )2 /COS u

. 2 2 .l
Tanh v = M/(cos u + M )2

e± v = Jl + (M/cos u)2 ± M/COS u

v = .en [ .j 1 + (M/cos u)2 + M/cos uJ •

From the quantities given above) one can im.'rlediately evaluate

<I> -2vPOT = - ~ = 2v - e 'cos 2u

2 (e-v)2 ( 2' 2 )= v 1 - Sln u •

)
dv -2v. l du

cos 2u du + e Sln 2uJ dx •

To evaluate

depOT)
dX

d(POT)/dX) we note that

= 2[(1 + e- 2v

The derivative dV/du [with y held constant (y = 0)] is obtained from

cos u Sinh v = constant.

cos u Cosh v dv - sin u Sinh v du = 0

dv .
du = tan u Ta~h v.

Similarly) from

x = F sin u Cosh v

= F Js in
2

u + M
2

tan
2

u

one obtains the derivative

)

du 1
dx = dX/du

Accordingly)

EPS = E = h
2

depOT)
1 4x dx

Jsin
2

u + tl tan
2

u=----'--------=-------=---
[ 2 . / 3 ]F sin u cos u + M Sln u cos u

x cos3 u/sin u
= 2 !~ 2

F cos u + 1-1
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h
2

[(1 +
-2v 2u)tan u Tanh v + -2v sin 2 J cos

3 ulsin u=-2 e cos e u 4 2
2F cos u + M

1 (L/F )2
2

[(1 +
-2v -2v 2

uJ
cos u

cos 2u)=8"
COSL~ 2 e Tanh v + 2e cos

u+ M

2 2
1 M cos u

= 8" L~ 2
cos u + M

-2v -2v+ e cos 2u) Tanh v + 2e
2

cos

and
E O(POT)

h
2 ~ = h

2
dX

A

= 4 . x·· EPS.

rv . Computat ional Prograrnme

A short programme has been written, for the LRL BRF system, to eval-

uate the quantities POT, ~, and EPS for which expressions have been presented

above in Section III.
6

Th: listing of this progr&%~e is given below (next

page))

V. Tests

When h is large, we expect that a line image will represent a. good ap

proximation and hence that

~ =x
2 E '"'h2

h ~ - G :::::::= 2
A x [1 + (2hl x) ]

2h
2

for x largex

x for x small"2 .
Correspondingly,

1 (h/x)2"2
EPS = E :::::::

1 1
8

for x large

for x small ,

with the value El~~ familiar from previous work.
2

h
2

d(POT)
LI·X dX

c = h2 d(POT)
x dX

These features are illustrated in the following test runs,7 wherein

one also can check (by numerical differentiation) that

ex
and El L~X =
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T
011 1 3/70 13. 5 .It. 1 1

·1 •
2''
3-"
4'~

5~'

6'.'
7'~

S';
9''-

10'
1 1 ~'

12 ;
13.
14;
15 ~.

16'
1 7.'
18 :
19 ';
20'
21'"
22'"
23.'
24"'
25~'

26''
~7'"

~3~·

:9:
~O·"

10

20

38

40

READ .. A .. B
F : 5QRT(A*A - 8*8)
READ.. H
L : ~*H

r-1 == LI F
PRINTS .. A .. 8 .. F
Pf.U NT3 .. H
READ.. 0 .. Xi-1AX
X : 0

Z == X/F
SS= (M*M + Z*Z + 1)/2
SS : S5 - SQRT(SS*SS- Z*Z)
SU = SORTC SS)
U : "ASI I\J( 5u)
CS'", 1 - SS
CU :: SORTC CS)
C2U"= 1 --2*SS
SO :' SQFnCl + Civjl CW *01/ CU»
EMV'= SO .,; ....1/CU
V == ALO G( So + 1·1/ CU)
E i/j2 V '" Eli] V* H'iV
Trl :: [>11 501<'[( CS + \'Jj*IY])

POT': ~*V - EM2V*C2U
EPS :: (1/8)*i"1*i:j:';:( (1 + E,·j2V::<C2LJ)*TH + 2* 1:>12 v,: CS)
EPS == EPS*CS/(M*M+ CS*CS)
EX "'-4*X*EPS
PRINT11 .. X .. POT .. EX .. EPS
IF (X' ~ GE." (X [....iM\; -0/3» GO TO 20
X : X :+ 0
OJ . TO 40

- 6 -

TEST RUNS

a = 5.0
b = 4.0
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> T
01/13/70 13·56·59

rXt:O

BE GI.'.J Xc: Q

EN TER ••• A., B..
5 • 0., 4. (1

ENTEk. •• H ..
200.

-7-

A= 5.0008 B= 4.0000 F= 3.0800
H == 2130.00

EN TER. •• D.. Xi·1AX.,

O.t .. l.0

x= 0. 1080000 POT= 1 1 • 1 72013 EX= [). 0499979 EPS= 0· 1249947
x= O~'2000000 POT= 1 1 • 1 72013 EX= 0·0999953 EPS= O. 124:1947
x= 6'; 300i-.;)023'3 POT= 11.'172014 Ei{= 0. 1 LI])9 36 EPS= o. 12/,9':; 47
x= 6'; 4CJOOO,JO POT= 1 1 ~. 1 72014 EX = 0';19999 1 Lj EPS= 0. 12L(99/i6
x= 0~'5 000000 POT= 1 1: 172015 Ei' :: 0; 2 499391 EPS= 0'- 1247945
x= 0': 60 0007jO POT:: 1 1 • 172315 EX= 0.'2999867 EPS= 0. 12499 Lj/.j

x== ~)'; 7000'000 POT= 1 r; 1 7201 6 Ei{= lJ ; :'3 /1'998 LI2 EPS:: 0· 12LI9943
x= 0';80080;)0 POT:: 1 1'; 1 72 ~j 1 7 E;{ = 0;3999315 EPS= 0- 12IJ9942
X= 0~'9 000000 POT= 1 1 '; 1 72813 EX= O~' IJIJ9 9787 EPS= O· 12/;9'9 L; 1
X= r~' 0000000 POT= 1 1 ~' 1 7201 9 EX= ~r: /4'?9 9753 EPS= 0;12 IJ9 939

ENTEi·; •• . H.,

200.

A= 5.0000 B= 4.0000 F= 3.0000
H='2DO.00

EN TE l~ ••• : D.. XMAX ..
1 .0., 25. 0

x= 1.0000000 POT= 1 1 • 172019 EX= 0. 4999753 EPS= 0. 12/;9939
x= 2';0000000 POT:: 11;172038 EX= 0;999932<:3 EPS= 0'-1249916
X= 3';0080000 POT::: 1 I; 1 72869 E'/ .:.. 1;4998524 EPS= 0- 12498771\-

X= 4';0000000 POT:: 1 1'; 1 721 13 EX= 1;999 715"1 EPS= 0; 1249322
X= 5';0000800 POT= 1 r; 1 721 69 EX:: 2'; 49950 L!'D EPS= 0; 1249752
x= 6'; 0000 080 POT= 1 I': 1 7223,3 EX= 2'-9991987 EP5= 0. J 2/i9 666

p,AUSrN G
t GO., 5

x= 7. 0800088 POT= 1 1 • 1 72319 EX= 3. L:93 7,3 10 EPS= 0. 124} 5 65
x= 0;0800800 POT:: 11~'172Lil3 Ei~ :: 3;9932321 EPS= 0- 1249/~·/J3

X= 9': 0000U00 PUT= i 1''- 1 72519 EX= 4;/~)75335 EPS= 0; 12!l9 315
X= 10.000880 POT=- 1 I; 1 72633 Ek= 4.'9966665 EPS= 0'- 12/19 167
X= i r; 0000r00 POT::: i 1

' .
1 72769 E7~ = 5. 4956123 EPS= 0.' 12A:1003.

X= 12:080000 POT= 1 1 ; 1 729 12 L< = 5;99A3525 EPS= 0;1243323
X= 1 3'; 0;J~)[)00 POI= 1 1;1731;69 EX= 6; /;') 2363 Li E?S= 8· 12 /;:.:; 629
X= 1 /j~'00JOJO POT= 1 1~' 173237 ,.... ,/.:.. 6;99 1 141/; E?S= (~ . 12 LI3 Lj 13C-I\-

x= 15~'()8D[008 POT::: 1 I': 1 73/113 E!~ = 7. 4.3 9 1532 EPS= G· 12<-')3192
X= 16;000000 POT= 11:173612 E>'~ = 7;9.3 633 43 E?:=;= 0. 12/jT351
x= 1 7; (JOG 08[.'0 PO T= 1 I; 1 7331 7 EX= (3 ; /~S 4313 1 EPS= 0. 124769/.j
x= 1S'; 0 8000'21 POT= 11;174036 El~ = <3 :9814347 EPS= 0· 12.!l7!i21
x= 19.000000 POT= 1 I; 174267 EX= 9 • Lt1;321 61 EPS= O· 12/;713 11
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x= 20;000000
X= 21;000000
x= 22';000008
x== 23;08(:l008
X=' 2L(;000800
X::: 25';G(J000~1

E i\J TE: i~. •• H ..

200.

PO T= 1 1. 1 7 <15 10
POT= II; 17/J.765
POT= rI ·"17::>033
PO T= 1 1 ~' 1 75 3 1 4
PO T== 1 1'; i 75606
P8 T= 1 1. 1 7591 1

EX = 9;97 L;64-40
EX = 10. 470720
EX= 1'::;;966366
EX = 1 1 • <'! 6 1 62 /J.
EX= 11;956 L,55
EX = 12; L~503 41

EPS= 0·124&330
EP S= O. 12465 12
EP S = 0·· 12 .1; 61 73
EPS= O;12·~5329

EPS= O.'12<'i5'i6'~

A= 5.0000 B= 4.0300 F= 3.0000
H= 288.00

E;\,J n::r;. •• D.. X!-1AX ..
25.0 .. 850.

x= 25.000000
X = 5 !:!; 00 0 000
X= 75';000000
X= 100.00000
x= 125;00'2)00
X= 150;00000
X= 1 7S~'8U000
X== 200;00800
X= 225·;00880
X = 25 C": 00800
X:: 275~'00000

X= 300';00000
X== 325·;00000
X= 35~r;00000

X= 375';(i)0000
X = LI00': 00000
X= 425';000D0
X>= 450'''00008
X == 475 ';00000
X= 500;00000
X:: 525': 00080
X= 550;00000
X= 575 ·;0000;J
X= 600;00000
X= 625;80000
X = 65 0~'00000

X::: 675';00000
X:: 700'; 00000
X= 725.'00000
X == 750'''00000
X= 775~,00008

X= 600~'00000

X == 825;00080
X= 850:C8DOS

PO T= 1 1 • 1 759 1 1
PO T = 1 1 ~' 18 75 1 6
POT= 11;286564
PO T= 1I; 232635
POT= 11;265137
POT= 11.303535
POT= 11:3471 Lll
POT::: 11.39514':1
POT= 11;L146910
PO T:: 1 I; 50 1 757
POT:: 11;559070
POT= It'; 618289
PO T::: 11 '; 6 739 12
POT= 11';740505
PO T = 1 1'.. 8 82 63 '7
POT= 11·;86S1·Q,:)
POT= 11;927607
POT= 11':939049
POT::: 12';051639
POT::: 12~'1129S 1
POT= 12;173605
POT= 12;233470
POT= 12;292504
POT= 12~'35~.l652

PO T= 12: 4073 77
PO T== 12. Ll6 LI15 3
POT= 12';519461
POT= 12;573796
POT= i2';627154
POT::: 12;6795<'41
PO T:: 12 '; "/309 64
PO T::: 12; 73 1 Lj35
POT::: 12~'330969

PO T= 12 : 3 79 53 2

EX = 12. 4508 41
EX = 24·,' 61 LJ33 3
D,= 36~225CJ06

EX = Lj 7. 057102
EX= 56;937573
E;'(= 65;751393
EX= 73';Ljl.jC5TJ
E~( == 79 ·"9 98 020
EX= 85';L;53080
EX= 89~'3S5935

D, = 9 3; 36 71 70
E:X= '95':993652
F'::;<= 9 7~'83118 4
EX= 99;114CJ45
D,:: 99; 79 1257D,= 99;99)297
EX= 99;315934
E:', == '99·; 3093 73
EX::: 93 ;S409 5f)
EX = 9 7;5 606 75
EX= 96.412966
D(= 95: 13/19 53
EX = 9 3; 7 5 73 3 1
EX= 92·3'J7630
EX= 90:3853-42
EX= 89 ;270352
EX= 87.71572.'1
EX= 86.'153351
EX::: 3 Lj; 59 4366
EX == 2; 3; 0 /J. 5G 12
L\= 31;511953
E;<= 30. :00C:J0.q5
El\= 73';513061
EX= 77:853373

EPS= 0. 12L150SLj
EPS= 0.1230-/19
EPS= 0.121375(00
EPS= 0.1176423
EPS= 0.113,3751
EPS= 0· 1\095357
EP S= O. 1049 15 1
EPS= O;(l999-J75
EPS= 0;0949S3/j
EPS= 0;039St; 59
EP S= 0" 0,3 LIO ~f') 2
EPS= 0:0799969
E?S= 0;0752932
EP S= 0; 070795"1
E:PS== 0:066527S
EPS= 0;U62/1)') 6
EPS= 0;0537153
EPS= 0"0551722
EPS= 0;0518637
EPS= O;OLiS 7303
EPS= 0:0/459109
E?S= 0.0432<',32
EPS= 8;01;076/j3
EP S= (3 : G33 461 5
EPS= 0;8363223
EPS= O.'03LJ33 Lr3
EPS= 0: 0324373
EPS= O;03l'3-/692
EP S= 0; CJ 2 ') 1 7US
EPS= ~):0276817

EPS= 0.02629/12
EP S= 0; G2S88i;;O
EPS= 0.(237)18
EPS= 0;0226629
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EN TER. •• H ..

1 O·

A= 5.0000 B= 4.0000 F= 3.0000
H= ID.000

X= 0. 1000800 POT= 5. 1861526 E~\ = O.OL!,) 1 706 E,oS= O· 1229265
X= 0';2000000 POT= 5;1362263 EX= 0;0~833LI1 EPS= 0-"1229176
X= O~' 3000000 POT= 5. 1S 63 LI9 2 EX= O. 1 /17 /;334 EPS= 0· 1229028
X= O~' 40000vJ0 POT= 5.' 1865213 EX=' 0;1966114 EPS= 0· 1223821
X= 0';5000080 POT= 5; 1S 67424 EX= 0; 2 45 71 1 1 EPS= 0;1228556
X= 0'; 6000080 POT= 5; 1870127 E;<:= 0;29 -4775 L, EPS= O. 1226231
X= 0'; 7000000 POT= 5~'i8 73320 EX= o~.3 Ij 3 79 73 EPS= 0;1227347
X= 0';8000000 POT= 5;1877003 EX= 0; 3927697 EPS= 0· 1227405
X= 0:9000000 POT= 5~'1881 1 75 EX= 0; 4416556 EPS= 0: 122690LJ
X== 1~'00000D0 POT= 5';1885836 E' _. 0; 4905331 EPS= 0; 12263/!5" -

ENTEH. .. ,H ..

1 0.

A= 5.0000 B= 4.0000 F= 3.0000
H= 1'0.000

EN TE H. •• D.. Xi'-'iAX ..

1 • 0 .. 25. 0

X= '}.0000000
X= 2'; 0000000
X= 3;0000000
X= 4'; 0000000
X= 5';0000008
X= 6';0000000
X= 7'; 0000000
X= 8~'0000000

X= 9';00~)0000

X= i'6.000000
X= 11';000000
X == 12;0000J0
X == i 3~'000800
X = 1 Ll'; 1300080
X= 15';000000
X;; i 6~' 000880
X= 1 7~' 0(2)080
X == i er; (JOOOD0
X = 19'" 006000
X= 20~'00()GDr:J

X== 2 r; 808000
X= 22': ~JD000D
X= 23;l:HJ0000
X= 24;000000
X= 25;008000

POT= 5. 1835336
PO T= 5: 19 59 1 5 3
POT= 5;2030192
PO T== 5;2247271
POT= 5;2453146
POT= 5:2710U93
POT: 5';300004LJ
POT= 5;332/1645
POT= 5"'3680418
POT= 5. LI063334
POT= 5; 4LI71 LJJ3
PO T= 5; L1399 743
POT= 5;S 3/;5 660
PO T== 5'; 58 0 6135
PO T= 5; 62 n Ii'J3
POT= 5. 67599 Ll1
POT= 5; 7243 472
POT: 5; '1'1 /11 9 63
POT= 5';823363LJ
POT= 5'-zn36394
POT= 5':9235331
POT= 5~·9732"714

POT= 6.'0223"79
PO T= 6: 0 72121 6
POT= 6';12104:32

EX= 0. 49~)S3S 1
EX= 0.97 406LJ5
EX= 1; 44339 0S
EX = 1;3 9 39 4 11 5
E;-(= 2;3190065
EX = 2. 7 1 LJ3 75 6
EX = 3; 073/1523
EX == 3 '; LIO 7 743 2
EX= 3'; 7813205
EX= 3;9606661
Ei\ = 4. 1;3 5 0 7 Llo

L< = 4; 3 7 6/j 7·J 3
EX =·4; 5 3 6 7 L13 Lj

E;'~ = 4; 663 1 322
EX= 4;773'.:)293
E;<= 4;8539316
EX= LJ;9 13321 S
E1~= 4;953603 D
E1<= 1~;9 770760
E/: = 4: 9 (; 53 59 G
EX= /j"931919~)

E X = 4 ; 9 6 7G/i 'J /1

EX= 4;9 LJ23213
EX= LI;9 IVJ719S
EX= 4;::;719333

EPS= 0·12263,::5
EP s= O. 121 753 1
EPS::: 0· 12;)32/i2
EP;;= 0.1133nS
EPS= 0·1159503
E?S= 0.J131198
E?S= 0·18994 Lj7
EPS= O.106L!921
EPS= 0;1028233
EPS= 0;0990167
EP S= 0" 09 51 153
EPS= G;~)91176S

EPS= 0:0372/:52
E?S= 0;0333595
E?S= 0;01'95505
E?S= 0;~)758/i27

EPS= 0;07225/17
E P S= 0; G 688 [) C 1
EPS= O;S65/j37G
E?S= u;8623232
t:?S·= ;J"D59 3:-J3 6
EP S= D; 05 (Ji/13 6
EPS= 0 '-053 ~i2 6Lj

EPS= 0.8511533
E P S= ~;. 8 1;3 7 1'j 8
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ENTEi;; ••• H ..
5·0

A= 5.0000 B= 4.0000 F= 3.0000
H= 5.0088

ENTER. •• D.. 1\ (Y1AX ..

X= 0. 1 '2lliJ0080 POT= 3·3163456 E/~= (1 • 0 1168 S5 7 EPS= 0- 1 1 7139 1

X=' 12";2000000 POT= 3':8 1 66267 E;(= (.I'; 09 363 71 EPS= 0· 1 I 7106':1

X= 0~'3000000 POT= 3~'8 i 70950 EX= O. l L10/1703 EPS= 0. 1 1 78506

X= 0': 4000000 POT::: 3: 81 77503 EX= ~J'; 1:37131 1 E?S= 0'- 1 1 69382

X= Ei';S 000000 POT= 3~~8 185923 EX= 0;2337955 E:PS= f~ • 1 163'3 70

X= f:r; 600000(') POT= 3:3196205 EX= 0;2302399 EPS= 0-;1 167374

X= (f; 7800000 POT= 3';820834 Lj EX= 0; 32 6 6405 EPS= 0: 1 1 66573

PALJSING
GO .. 10
X= 0.8000000 POT= 3·8222334 EX= 0.372321;(2) EPS= 0. 1 1 65075

x= 0"'9000000 POT= 3;8233 168 EX= 0';41381 ~/2 EPS= 0. 1 1 6333 1

X= I'; 000;-')800 POT= 3~'8255337 EX= 0; II 6/159 73 EPS= 0'-1 1 61 ~j9 3

E0JTEH. .. H..
5 • 0

A= 5.0000 B= 4.0000 F= 3.8800
H= 5.0000

ENTER. •• D.. Xi'1AX ..

1 .0 .. 25. (3

x= 1. 0v)000(7jO
X== 2'" 0008000
X= 3';080080:J
X= Li:000000(~

X= 5~'D000000

X:: 6; 0 (~ 0 0 000
X= 7': 8000000
X= 8';0000000
X= 9';0000000
X:: l{j. G080ei(j
X :: 1 1~' COO [3 () D
X= 12:000D00
X= 13'; 00C:::H;:J
X== 1~.OOJ(.jOO

X= 15';~)8CJ00D

X= 16;088000
X = 1 7': 080800
X = 18~' 0 Cj S::; S 0
X= 19;CCj0'b0D
X= 2 S; G8 ell] ~) G
X= 21~'G~)08Gl')

X= 22:COOGGO
X= 23';808000
X == 2 L'j'; GQ::; uG(j

x= 25'" GOC/SSG

POT= 3·8255337
POT= 3:85:q 079
POT= 3"897/,310
POT= 3';9566799
POT= 4';0282655
PO T = 4; 1096552
POT= 4.·.. 19835/14
PO T == L('- 29 2 1 152
PO T= 4'; 33 90213
PO T = Lj·.· L10 75 1 3 7
POT= 4';5:363673
POT= 4';63/(6553
PO T:: Li; 73 1 69 7 1
POT= LI:8770102
POT= .Ij;9702665
POT= 5.'0612560
POT= 5;1493569
PO T= 5; 23 60 12 4
PO T = 5 .' 3 19 7 1 3 3
POT= 5; LiCJ89337
POj'= 5./1798713
POT= S~5564395

PO T= 5~' 6307623
POT= 5: 7029193
PO I'= 5'; 7729 '9 3 7

E:X= O.L!C,45973
E/;= 0;'9C593 t:i'9
EX:: 1.30"::1020
EX = 1'; 64 5 43 1,5
EX = i;'9 22'9 33 7
EX = 2; 1360927
EX= 2';269Li653
E)(= 2'''3905333
EX:: 2; LI43 25 35
L<== 2.47126GS
EX:: 2'; 467573 6
EX = 2; /1.11 Lj DQ 6 (,
E:< = 2.406:"::90.13
EX:: 2;:-~ 53 2 1 1 1
E:<= 2;3037~\2Ll

E:< = 2. 2 LI5 2 3 Lj]

L< = 2. 18 /l,5 ::) C0 3
E i\ = 2. 12 3 1 6 5 ;:)
EX= 2.G61933(
E,<= 2;D(-JI737 /;
El~ = 1;9 LJ29 03 2
E,\= 1';3853I Lj7
EX= l';S3S6559
EX:: I; -/7 75 1;32
EX= 1.72652 /17

EP s= 0. 1 1 61 4.93
EPS= 0;1132/11 L;

EPS= 0·1036313
EPS= 0· 1023 L:23
EPS= 0;0961467
EPS= O;039(~939

EPS= 0'-0317666
EPS:: 0'-074"057
EP S::: 0" 0 63 0 0 7 i~l

EPS= 0;0617315
EPS= 0;0560313
EPS= 0.05891 D3
E P S= G. C I! 62710
E(')S= 0;0/:211:;9
EPS= C;G333957
EPS= O.035031()
i::PS== 0.8221262
EPS= 0.[;2).1:334
t:?S::: 0.~:;27L31/:

EP S= [;.' C? :5 :',; 2 1 7
EPS= 0.023129)
E P S= (;. 02 1 "129 7
E?S= 0;019398 L,

EPS= 0;0135161
EPS::: 8.0172652
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EN T~ F: • • • " H ,
4.0

A= 5.0000 B= 4.0006 F= 3.0008
H= 4. Of~00

EN TER. •• D.. Xi·IAX ..

Go},I.0

x= 13. 1000000 POT= 3.3820321 EX= D.0452714 EPS= 0. 1 1 31 735
x= 0~'2000000 POT::: 3~'3i325065 EX= 0":098589 1 EPS= fj. i 13136LI
X= D~' 3000006 POT= 3~'3832133 EX:: 0:135679 Lj EPS= 0:1 13(,662
x= (~r.. LI000000 POT= 3~' 3342022 EX= 0: i807Llf39 EPS= 0;1 12963 1
X::: 0:5000800 POT= 3: 335 LI72 4 ..-, ...;-

~r:22563LI2 EPS= 0": 1 123/!21c../\ -

X= E": 6000000 POT= 3': 3870230 EX= 0': 2 7~J11 52 Lj EPS= O. 1 126'335
X= 0'" 7000000 POT= 3': 3303527 r"' .~, .:.. 0;31502;;;8 EPS= 0'; 1 12507 LI1:.'\ -

x== Er:3800000 POT= 3'" 39 09602 EX= 0; 3593572 ~PS= 0· 1 12299 1
x= 0~'9 000000 POT= 3"" 3933LILli EX= 0;11;;)34293 EPS= 0:"1 128630
X= 1': OC)(~JOO00 POT= 3': 396002$ EX:: 0': L.·4720 76 EPS= D. 1 1 18 C 19

ENTEr~. .. ,H,
4.13

A= 5.13000 R= 4.0000 F= 3.0000
H= LI':0800

EN TER ••• D.. Xl"LClX,
1 .,0,25:"0"

X= 1.0000000
X ;; 2 ~. 0000000
X= 3':0000000
X= Lj'''O(-j00000
X == 5~' 0000000
X= 6'; 0008000
X == 7': 0000000
X= ~r:0800000

X= 9':0000000
X= 10. 00~3000
X= 11"'-008080
X= 12~'000000

X == i 3'" OD0000
X= 14''-0D80:'']0
x= is:0000DO
X:': 16': 000900
X:: 1 7: 00008 0
X= 13':000000
X= 19 ;00(')000
X:: 20': 80lijG 00
X::: 21 ~·OGO~)00

X:: 22"'- U00880
X= 23 ..' 8 G00 Clfj
X== 24':0000DO
X = 25': 000000

PO T= 3. 3960025
PO T;; 3: 4 j 7 1 705
POT:: 3''-5825987
PO T= 3~'588 1 600
POT= 3''-6391520
POT= 3~'8009522

POT= 3;9194776
POT= 4"·0LI14037
PO T= 4: 1 6 L1220 Lj

POT= LI';23 609 73
PO T::: Lt" 40:i'3 08 6
POT= 4:S225317
PO T= LI; 635313/1
PO T= 4'; 7/153953
POT= 4:8511330
PO T= 4.'953136/1
PO T == 5: ~l S 1AS 3 1
POT:': S"I/j61929
POT:: S~·23746C.i1

POT= 5;3254/119
POT:: 5~'LjHj2999

POT= S''-492195/1
POT::: 5;5712356
POT= 5~'6477228

POT::: 5~' 7216437

EX= 0.4 L172076
EX ~ 0:8 62/1263
EX= 1;2200733
EX::: 1:505168C
EX= i~'71LI125:3

EX = 1:S 5253 Lj 7
EX= }';931L;213
EX= 1.'9636646
EX::: 1':9 6 15 0 53
EX::: 1'-9352335
EX= 1~'3931197

EX= 1:8LjlD239
EX= 1'- 73 3336?
[;<== I: 7230 L166
EX: 1;6621962
[;\= 1.6J21266
EX= 1."5436921
EX= 1 • .1:374090
E;< == 1.1;335632
D:= 1; 3822.3 51
E;<= 1.3336819
EX= 1'-237/j733
E;<= i''-2/~3S13d

EX= 1:2025299
EX= }":1634:36LI
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EPS= 00l 113019
EP S= O. 1:0 73 S33
EPS= Ool;J167:'23
~pS= 0. 09 L~;;) 730
EPS= 0:~JS57063

E P S = (y; 0 -/7 1S 0 9
~PS= 0:0639793
EP S= (2)': 0 613 6 Li5
E? S== 0: 05 Lj LiO 63
EPS= 0:01;33322
EP,3== 0; 0 li302 5/1
EPS= 0:03335/;3
E?S= 0:031;29 L:;J

EP S = O. S 30) 7 65 -;
~PS= Cj.0277.J33
EPS= 0'-025;-;332
EPS= O·022'iGI/1
E?S= 0o\J206S~)5

EPS= 0.::)1-38627
EPS= u·j172736
EP S= :0. CJ 153 762
EP S= G" 0 1 1; 63:; LJ
EPS= 0.0135193
EPS= 0.0125264
E?S= IU:01163/i9
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VI. Results

As an example of a physica.lly realistic ca.se) the progra.rrl.'lle has been

applied to a be~~ for which a ::: 1.0 (semi-axis in the transverse direction

parallel to the conductor) normally the axia.l or z-direction)) b 0.5 (semi

axis in the transverse direction normal to the conductor, normally the radial

or r-direction), and the clearance (h) was given the values

h ::: 2.0, 1.5, 1.0, 0.75) and 0.50

(the last case corresponding to no clearance for the edge of the beam). In

each case of this series, the runs were caxried to values of x no greater

than lIa ll) because of the interest in "incoherent" image focussing forces

felt by some representative particle of the be~~.

The values found for c:. provide a measure of the local image field atx ---
the corresponding value of x -- the extent to which G.. is not directly pro-

x
portional to x (in the range Ixl ~ a) gives an indication of the non-linearity

of this image field. The computed values of EPS (::: E l ) are proportional

(factor ~) to [//x and would be constant throughout the range of x if the

image field were exactly proportional to x.

The computational results are given on the following sheets, and are

folloi'led by graphs of Cx and EPS (::: E
l

) VS. x.

- 13 -

RESULTS

a ::: 1.0

b ::: 0.5
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t XEQ

BE GIN XEO

EN TEH. •• A~ B~

1 • 0~ 0. 5

Ei\JTEf-~ ••• H~

2.08

A= 1.0008 B= 0.5000 F= 0.S660
H= 2.0000

ENTER ••• D~ XMAX~

0.bl.0

X= 0. 1000000 POT= LJ. LI537529 EV - 0. 8LJS2S 03 EPS= 0. 1287807..'\-
X= fr; 28DOOO~J POT= It. 4605613 EX= 0: 0963933 E?S= 0. 120 11923
X= 0':3800000 POT= Lj''- LI635698 EX= 0'- 1 /~ Lll 757 EPS= 0. 1201 Li6L!

X= 0'- LIOQJ0000 POT= 4'- 1t677665 E~<= O. 19 Ilt646 EPS= G. 1 J') 6654
X= 0';50D0080 POT= 4''- /j731376 EX= 0; 2 33 10 ,~5 EPS= O. 1 19 ;;)522
X= 0'.' 6000C"J00 POT::: 4': LJ 79 665 1 EX= !?r; 2839 Li63 EPS= 0· 1 l2i 31 10
x= f"; 70000[30 POT= /l~' /~373271 F V ":' 0· 32:38 Lj') Lj EPS= fj. 1 J 7 L1462.. /\ -
X= O';S 080000 POT= 4'; /1'160986 EX= 0;3726327 EPS= \:j; 1 lC;463LJ
X= £";9080808 POT= /1;5059513 E:>~ == 0. /1153259 EPS= 0. 1 153633
x= I'" rj00()0S(j POT= /;; 51 63541 EX= n Lj566701 EPS= (:} . 1 1 /;} 675~.

ENTEF~••• H ~

1 .5(1)

A= 1.0(-)00 B= 0.5(100 F= 0.8668
H::: 1';5 00(~

ENTr'::R ••• D~ Xt1AX~

0.1~1.0

x= 0. 1000000 POT= 3· 8926604 EX= 0. 0/170319 EPS= O. 1 1 75 79 6
x= 0';2000800 POT= 3';89579 13 EX= 0.'093 7) 20 EPS= 0·." 1 1 724;'JO
x= 0; 3:'000080 POT=' 3~'9G(J9,39 5 F"'':' O. 1 LjOOl 37 EPS=

,-,
1 j 6n7-3J.. :\ - ~:J •

v...:. 0; L18 ~) 0 [0 0 \j POT::: 3;9~j2;2252 EX= 0. 135Li3-J2 EPS= 0; 1 15:: ') 9 51\ -

X= 0;5000000 POT= 3;9 J 74576 El,= 0. 2298251 EPS= (' 1 1 I' .J 1:2 :).:). ,-,

X= 0.' 6(,')0 vJ0 C)O POT::: 3'- 92d 6353 ~"? - o. 2729 Li 51 EPS= " 1 1 ~3 /:? 'Il...... /\ - u·
PAUSIN G

T GJ~ 10
X= 0. 70(iJOOOO P;JT= 3· 9 "'I 1 69 76 EX= 0 .3 1 I.jS9 L"~' EPS= C· 1 12355,:).-.1

x= 0';80:iJ0800 PIJT= 3';9 565747 r'y _ 0. 35459 i:J 1 E?S= ;.j. 1 1,j ;:; :)9 L'C-/\ - 1

x= ~J'''9 000008 POT= 3"'9 731399 EX=' 0. 392TI'/5 E?S= u· 1 ':_1'-) 1J .';)
x= 1'; OCJS88JQ POT:: 3';99 1 /j59 6 E/~ ~ O. "'129 ~J2 66 EPS= 0· 1:072566
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A= 1.0800 B= 0.5800 F= 0.8660
H= 1.00U0

EN T2:R. •• D.1 )\i:I!~X.1

0.1.>1.8

x= 0. 1008008 POT= 3· 1072936 EX= 0. (3433319 EPS= O. 1095797

X~ 0'; 28001000 POT::: 3~' 1 13;3552 E" .:. 0'" GS 71 794 EPS= 0'; 1G39 7421\ -

X= 0'; 300~)080 POT::: 3: i 2 L17 027 EX:: 0':129572:3 EPS= 0';1079774

X= 0~' 4000000 POT= 3'; 1397232 EX= 0':1 705710 EPS= 0': 1066069

X== 0': 5 000000 POT= 3';1587570 EX= 0':2097739 EPS= [) :10 L133 69

X= 0': 6800000 POT= 3': 18 1 6065 E>,= 0:2/163332 EPS= 0: 1023472

X= 0~'7tJS8000 POT= 3';2080424 EX= 0;2-31 460/J EPS= 0; 1835216

X= 0~'8 Gr00C00 POT= 3':2378180 EX= 0:3134321 E?S= 0:0979475

X= 0':9000000 POT= 3':2706351 El~ == 0; 3/125920 EPS= 0;8951645

X= 1':0000000 POT=
..... ,

306231 6 E;'( = 0;3633507 EPS= 0;0922127v·

EN T2:I< • .• H.1
0. 75

A= 1.0000 B= 0.5000 F= 0.8660
H= O. 7500

ENTE~;••• D.. X[~A>~.1

o .1.> 1.0

X= 0. 1000~a00

X= ff:2002J000
X== ~r: 3000000
X= ()': 4(:100000
X:: 0': 5080000
X= 0'; 68000DO
X == ()': 7003880
X= 0 ~'8 008000
X:: 0':9080000
X= 1':0000800

ENTER- ••. H.1

o .50

PO T= 2· 5656869
POT= 2";5763331
PO T= 2~'59 338 76
POT= 2':61307 L!2
POT= 2': 6435209
POT= 2·.'63 LI7734
POT= 2':7263124
POT= 2';7725719
POT= 2~'S229 539
POT= 2''-8763727

E;< = 0. 0 LI::'! 03 43
EX= 0';0795252
EX= \1)';11771;33
EX:: v)': 15/jS!Lj64
EX:: kr;13S0S12
EX= 0';2193011
EX = (1'; 2 LO 43 0 1
EX::: 0: 2 72 33 1 1
EX= 0';2939075
D~== 0.3120676

E P S= 0. 1 002 1 OS
EPS= 0;099 LL'365
EPS= 0:0930361
EPS= 0': 0962 79 ~i

EPS= O:09Lt2J256
EPS'= 0:091375LI
EPS= 1::]':0383;357
EPS= ;;)';0351191
EPS= 0:0816 211 (!l
EPS= 0:0730169

A= 1.0083 B= 0.5000 F= 0.3668
H= 0.5tJ08

Ei'JTE1\ ••• I) .. Xl,IAX.>
0-1.>1.0

x = O. 1080;:;30
X= 0:2U80080
X:: 0': 3000000
X == 0~· L18l00000
X=' O':SU;)U8UJ
X= 0~' 6800000
X=' G"" 70:;;)030
X:: (j': S 0 GJ 0 C:i G
X::: (r:90:J8JOO

POT= 1.:3407919
POT::: 1~'S6CJ1332

POT= 1';3918313
POT= 1';9353234
PO T= 1':989 LO 20
Plrr= 2';0S321~76

PO T= 2'" 12:) 1278
POT= 2:2CJ33125
POT:: 2';237795 Lj

PO T= 2:3756563

EX =: 0 d3 32 Ll1 ) 6
EX= S:06410LjJ
E/~::: O'."09/j3485
EX= 0.122/1635
EX= 0';1 Lj7<.:i355
EX= 0';1701303
EX:: 0'; 1S 3':; 6 79
E;\ = (r.. 2 ::1 3:1 LJ 15
E;-~= 0·'2153733
E/'= 0;22337<30
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EPS= OdJ3ltj Li39
EPS= O;030138D
E.:? S= l:J': 073 61 73
E?S= 0.0765397
EPS= 0;0739L127
EPS= 0;0703376
EPS= 0';~i67'~1523

EP S= ~j': Co 6 3 7 3 1 7
E?S= (:J·OS;i3273
EP S:: [j: 0553 L1/;5
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1 330r:'

0001.i:JS0lJ 10
0002.8000
(:) 0 G3: 0 GGO 20
0004':0000
0005~'00CO

IHJ0 6': 0000
0(2) (2) 7': 800~)
0803':OOUO 30
0009:0000
6010"088[:) 48
0011':0080
0012~'0000

0013':0000
0014: 0000
0015':0008
001.6':0008
o0 i 7': 0 [) 0 Cl
0oifr:8000
0019':0000
0020~'0000

002 r~0000

0022~'0000

0023':0000
0024':0000
o 025~' 0000
0026':0000
0027:0000
0028':0000
0029:0000
0030"0000

>1'

j~E!~D3 A~ 8
F ::: SOj\T<A*.1\ - 8*8)
READ~ H
L ::: 2:;:H
;',1 ::: L/r
Pf:ll\jT6~ A3 8~ F
PfU i'J Ti.)~ H
r\EAD~D~ Xi'lAX
X ::: 0
Z ::: ,UF
55 ::: «(,1*.-1 + Z* Z + 1) 12
S5 ~ SS - SQRT(SS*S5:- Z*Z)
SU :: SORT( S5)
U =-ASU'-J<SU)
es-= 1 -'SS
eu =. SORT( CS)
e2U-= 1 - '2:.;<SS
5 Q =-SO ET ( 1 + (19 CU) :;.: ( 1-1/ CU) )

E iW - = SQ ..; t'l I CU
V = ALOG(SQ + iVCU)
E 1·12 V ::: E i';j V* 2: I';; V
TH = 1V SOFn( CS + ,'-1* IV})

POT = 2*V - 'EM2V*C2U
E?S :: (1/3)':;:I';*l';*« 1 + Ec'i2V*C2U)*TH + 2*Ei'~2V*eS)

EPS:: E:PS*CS/Uj,,,,'.J+ es:;:CS)
EX ::: - LFi'X*EP S
PI~I;\jTll~X~ POT~ EX3 EPS
IF (X • m:. (Xi·lAX -DIS)) GJ TO 20
X/::: 'X + 0
GO - TO 40

01/13/70 19.46.05

> DC.

>1'
01/ 13/ 7f} 19 • /10· 1S
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VIII. References and Notes

* Work supported by the U.S. Atomic Energy Co~~ission. For previous

work) see UCID-10162.

1.

2.

3·

5·

6.

7·

BNL-7534) p. 325 ff.

ERAN-30

Private conversation (13 January 1970).

The notation adopted here follm·/s that of reference 5 belOlv. One

should note that the transverse dimension parallel to the conductor

is x and that the semi-axis of the beam in this direction is denoted

by "a " in the present work. '\ole suppose) as is a.ppropriate for the

present application) that a ~ b. With respect to notation) the direc

tion here designated by x is frequently termed the z-direction in

electron-ring 'dork) and the dimension denoted here by "a" then is

commonly written lib ".

The quantity u is explicitly evaluated in line ll~ of the BRF pro

gra~~e) although with the present print statement no direct use is

made of this quantity. By adding a suitable print instruction)

however) the curvilinear coordinates u and v could be printed.

~ is typed as EX in the listing and on the output of the BRF
x

progra.'Tl.'ne.
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