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3
Electromagnetism - Image Forces

in Presence of Boundaries, etc.
(Continued from volume m





If.1..6.GE FIELD OF A

Sequel --

L. Jackson Laslett

19 January 1970

1. The electrosta,tic irr,age-fie1cl co-

ef'i'icient f'or an extended straight oe::r:c,

of' constant density throughout end of el-

liptical cross-section, has been discus

sed in EPJ,N-!f9. In that report En infinite

plane conducting boundary surface was taken

to be at y =: - h ",ith respect to the centre

of the beam, end the image fields were ex-

---------..------
y

i~x

-1··-, a ---~.

ar.1ined along an axis that p2.. sses through

the cenb'e of the bc:a~:l end is pnralle1 to the conducting sheet.

The non-linearity of E vs, x ,·u;sx- found to be not so pronounced but tha.t

one might, in the interest of convenience, employ simply the coefficient E
l

evaluated at the centre of the bee!'"!. In this Sl)irit ,'Ie note here that one

can easily evaluate, in closed form, this quantity

2 ",\,-, (1m)
h o..~x
---
4;\ 2lx

= ~~ ( d~tm))

na:nely at y:~ + 2h if the origin is no,,! shifted to the centre of the el

lipt ical b:'3.ge- charge distribution (A e. s. u. per c:r,). For this purpose "ie

refer to the for:nula

(contd)

* ~oTk sUfported ty the U,S. Ato~ic ~~Ergy Co~~issio~.
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- 2 -

-*
given (for X= 0, Y ~ b) on p. 5 of' EFAI{-~.l~ •

By differentia.tioD '-Ie novi find

a.nd

OE/Imn
-- J :=

'0y Beam
Centre

2 2
a - b

Hence, based on the field gradients at the centre of the beam,

F 2 --~l
(1 + -) 2J

1~h2

",here 'I'1e have '-Iritten

In the form of a series devclop!iL"-"nt,

1 [ 3 F
2

5 r
2 1

= 8' 1 - 16 h2 + 128 [/1' - •. J .
1

'Thus, for h » F, €1 tends to-liard the value €l ~ 8' .

* Cf'. ECF!. (32) of L. C. Te!'1.g, AIlt.J-59 (1983).
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- 3 -

Nu~erical values of E
l

are listed below, for a few values of h, when

co:rtputcd in this manner for beams with a:: 1.0 and b:: o.l~ or 0.5.

E
1

AT THE CEnTRE OF MY ELLIPTICAL BEliM

a::1.0} 2
F :: 0·75

b :: 0.5

F=========-==r-===-==-==-=------=-----r=---====--- -.----------

h

2.0

1.5
1.0

0·75
---.._- -~'.__ .-., ._----

0·50
---._.-....... .- .. _------"
.o.ho

o.120282~

0.116879

0.108225

0.093223
._- -

0.078211
-_. - --_ .. '.- -- _.'

0.c65220
,.' --I

I
I

2.0

1.5
1.0

0·75

0·50

0.120770

0.117693
_...- ..-- --,._---_..."-- ..

0.109783
-- .-----_.. __ ..

o.10o!f81

0.081357

2. The work discussed up to this point has been for a conducting surface

that is parallel to the l:1ajor axis of the elliptical charge distribution,

and hence is appropriate for application near II spill out n rlhen the greater

of the semi-axes (here denoted by "a") is in the z-direction. For gen-

erality, in the. interests of cOIr'tpleteness, one r1'.ay \~ish to obtain results

that are derived in tr:e spirit of paragraph 1 above but that consider the

image surface to be parallel to the minor axis (b) of the beam. One may

presume that the result for E
l

will be an analytic function of the bea:n

para;:leters, a and b, but the follm:ing explicit derivDtion ::lay be appro-

priate 0 s a check.

Accordingly, rle nO;'1 take the x and y seed-axes to be a and b respectively,

with a > b as before, and locate a similar image distribution of opposite

-- 211)field at &i:llE:.geof the
dx

dista~ce 2h to the left of the beam.

d:: (1m)
x

sign (+ A e. s . u. per c:r,) a

to evaluotc the derivative -
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_ l~ _

>T
61 /1 7/ 'n 1 3. 2 -I. 3C:,

L

1•
2.

S.
9 .

10.
1 1 •
12.
13.
1 I~.'

15.
1 6 ~

17.'
JS •
1'9 •
20'
21"

2 _' '
J'

(ii,

t XE U

IG

30

I; :,)

H( 1 ) = 2- ~J

He 2) = 1. 5
H ( 3) = 1.G
H( ..''j) = 0. -/5
H( 5) = 0- 50
ri( 6) = 0. liU

i~:::: f\ D., 'A ~ f3
Pt\L\jT~j-/~ {\J 8
IF (13 .GT. 1\) U TJ I·;)
FS = A;(./\ - 8:;:8
F = SDF:T< F:::i)
Pid,\JTIJJ F
('Ij = 6
IF (8 .Ci'. H(6» GJ TJ I::;')

OJ 3 U 1= 1~. ;.j

R = F:::;/(~(I)~rl(I»

EPS = (1 - 1/;:-;urn( 1 + fU/j»/['~

P~<I,-JtIU) HCl» Ei"S
CO. \j 'i'l :\j U::
GJ TJ 1u

GJ 'TJ 2U

E.'i T~ i<. •• p..~ B~

1 • f) ~ 8. Ll

A= 1.000 B= C.4JJ
r= 0·916515139
H( 1)= 2.CiJ(j~1;j,j EYS= O.12J2~jLj

rl ( 2) = 1.' ~) ~) S 0::" J E f) S = C. 1 I l) 3 7»

H(3)= I"CZJ~jJ ~ps= O"IG322~

H(Lj)= 8;7j0~00 E2S= u.G9S2~3

H(S)= 0;588800 E?S= 2.873211
rl(6)= O.·~JJJ0J Et)S= 8.'S6522J

8\JT::= },(. •• f'u 8 ,

1.0,0.5

~ 1.Q~~C 8= 0.5(jO
F == G; 3 (, 6 'j :2:) I:) L;

H <' 1) == 2. G:,l :'j J ;:; J
Ii ( 2)::: 1 ~ S :) ,:i;~ ,j ,j

H( L!)::: 0. 75 ~) ,~<) :'j

H( 5) = C"5~)JJ':;:"\

Ei<)= 8·12:1 77.J
E I~ 55 = G" I I -U,) J
EiS= '':).1;''-')7-='3
EP :~ = J. 1:)::'; E. ':,: 1
t: r'·' S = C;." G.3 135 "/
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- 5 -

y = 0 with respect to the centre of this image-charge distribution. Again

'We ....irj.te

and employ the results of E?J\N-44.

Along the positive x-axis (y = 0) we have u

x == F Cosh y.

, so

Also (EHAN"-44, p.4), since then cos 2u == -1, the exterior potential of the

image is

( . -2v)
¢ = -t.. 2v + e

at points along the x-axis, and

2i\ 1 _ e- 2v
= F Sinh v

l~i\ -v= e
F

hi\ -ve
= -

F
2 Sinh v

8i\ 1
== -

F
2 2v

e - 1

So]~ing the equation 2h = F Cosh v for the value of the curvilinear

coc:)rdinate v at the centre of the bee.m, ·\'Ie find

e±v =
2h
F

and

Accordingly,

±2v
e [ ~---Jk' 2

l:±: 1-(2h) -1.

( Tm)
2lEx -t

2Jx I
Be5m
Centre

i\
== - h 2 /

1 +"\ 1

3-145
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- 6 -

Hence) finally)

[
_ 2lEX~Im) l

dX J

''lith

S\J}]-lARY

oo.J '

To adapt these results to the custo:nar;y notation, in ,-:hich llb" refers

to the axial se:;'li-axis and llaH refers to the radial semi-e:ds, "drite

F =

then) a.t the centre of the beam,

If a > b:

"le obtain

Ifa.<b:

2[- 2__t ]h F 2
E =-- l-(l+--r)

1 2 l' CF ~n

[1 -2 I,
1 3 F 5 :F' r

=8 -1"6
h

2 + ---
1 <;>3 L'

l~ h r
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- 7 -

In either case, then, "Ie m.ay 11rite tl:e elect:tostatic i;:~age coefficient

at the centre of the elliptical beam as

1'1here

a = radial semi-axis

and

b = axial sem.i-axis,

1'1hile h denotes the radiCll clearance from the centre of the beam to the

conducting boundary (assur'ued to be essentially ph.ne).

Nurnerical values of (1 (denoted EPS1) are presented on the follmdng

sheets,1(' for various values of band h in units of the radial serili-axis

II a II (a = 1, h 2 a).

It is noted that for a > b, the value s of El 'Hill ~:ceed ~ si;:ce,

physically, a portion of the image-charge distribution is rele.tively close

t t ' L ~ t' b ~ b 1 0 l~" Lo ne cen0re 0; ne eam. ror a = ,E
l

= ~ = .~) under the presen0

assu:nptions of a straight beam and a plane bounda.ry.

It will be recalled that the notation of the previous cosputational re
sults, presE::1tecl on p.~. of this report (:E?}'I;-!~9-bis), intccch9.nges the sig
nificance of the se~i-axes a, b. Thus those earlier runs correspond, in
the present notation, to b equal to 2.5 or 2.0, respe~tively, with h de
creasing fro~ 5·0 to 1.0 or fro~ 4.0 to 1.0 in the t~o cases shown.

3-147



C 1/ 1-) / 7 ,:~, 1;)' /; 1 • ,j /; - 8 -

A = 1. Glj ~:) J J B = l-J. 1 U() 0J ~j rl = 1. 0;);) :>:j C E: r' S 1= c;. 15 ,'J :o~ /:
(1 = 1. J ~_j ~J ~~ J ~j

A= 1. n.) ~j :) ,j (,)
i-\' = 1; C":';0 ej 0 :J
A== I;C0·,:;:J:.J:j
A= 1; \:~CiGJ~)G
A= 1" CiJ i, ;j Ci 0
l-\ = 1" Dl) :'; :j C:~

A== 1. 8::;C:jj,:):::J
A== I; GCJ:.,h; GJ
A= 1:0U30 ,JD
A= 1-:8~~;_J:jUJ

A == 1 ~ J '.j U~J ;J C:i
f-\ == 1 ~ i"::h) J C; U,j

A= l"~jDb'.j~~}J

A= 1 ;S0JS~;Cj
A= 1; 000{,)'.0J
A == 1;U~0C,CG

A= 1; UC8,)OO
A= 1;0000CG

PAUSUl Ci
t GO ~ 1 C:j

A= 1.000000

B= 0.1 ('jCU;);j

8 =: O. 1 I) {~ J) ,3

B= 0. 1 ()(:iGGU
B;:: O. 1 Lr~;DD~l

8= 0.°1 CUCU:/J
}3 = O. 1 CG~0 t:; ~j

t.J:.: 8."lDG2j;;8
B= (j.l GUC(j8
B- ('~ .. 1 CC0;J0::)
8= ,3;10J;:;0)8
L3::: 0; i C:0 ;~; G,:;
B == (:).. 10 U ::j ,:) ()
B= G: 1 C)(j;'Jj;j
B= ~J.·l CJuD~~

8 = 0; 1GJ C:i ~) J
B== 0" 1(:)':;:)J8

H = 1· ::~ :-) D .,~'; U ~~)

;-{ = ? .:) ,J ~:j Ci ~~ J
H:-..: 2":2 C~I :l~'i :.~i ~.:J ~:J

H = 2-. L;,)C.;CC~"]

H= 2"6;.:);~.:j~~j~·:J

t-{ = 2.;3 CdJ ,J 2 :0
H = 3: J ::JlE; :<)

H = 3 .' Ii j 0 ~~j {~l G
n == 3" 6 ~:i ~ J ~; LJ

H = Lj.' :2 :j:j t.0 ;~; :.1
ri::: Lj:L;Su2:;::)
H= Ll.'6~~j~J:J:~jJ

H= /::0C~CJ::J0Cj

1:=1):,) I = C. 1 <j':; 3::'
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ERAN-60

CURRENT mAGES INDUCED IN AN INFINITE PLANE

CONDUCTING SHEET OF THICKNESS s AND VOLUME

RESISTIVITY Pv' *

L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

31 March, ,1970

I. Notation

We consider a 2-dimensional "current dipole", p( t) abamp·cm,

formed of currents in the ± z direction and situated at y:::: - h.

Parallel to this current dipole is placed an infinite conducting sheet,

of thickness s, that fills the region 0 < y < s. The specific volume

resistivity of the sheet is denoted Pv abohm.cmj we shall also employ

the (d.c.) "surface resistance" Ps:::: pv/s :::: 21i:v, so that p :::: 21i:vs.
V

We shall, most particularly, examine the case in which pet)

is a step function, of magnitude Po' that-is turned on at t:::: 0

[pl(t) :::: Po.o(t)]. Results for other functions pet) in principle can

rea0ily be synthesized from the solution for the step-function case.

As is customary, displacement currents are neglected and the
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currents induced in the conducting sheet have a density

1 oK ~- P- dt in terms of the total vector potential. A.
v

II. Basic Analysis

2
(abamp/cm ) given by

The 2-dimensiooal current dipole is taken to have, if isolated,

a vector potential (z-component)l

A(O) = 2Po
y + h

2 2x + (y+h)

CXl

= 2Po
Je-k(y+h) cos kx dk,

0

:for t ~ 0 in the step-function case. We then take the total vector

potential to be given by

where A(I) denotes the contribution that induced eddy currents make

to the total vector potential A e. The condition 'V x it = 4,,;1 orz z

'V x ['V x A:I = 41tJ then reCluires that A(I) be "harmonic" (ifA = 0)z

for y < 0 and y > s, while
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0< Y < s.

We also require continuity of A(I) at the surfaces y = O,s and of

dA(I)/oy at y = s. Moreover, once a volume distribution of current

has been established in the sheet (t > 0), we require continuity of

CA(I) loy at the interface y = O.

III. Fourier and Laplace Transformations,
in x and t Respectively

We write

00

00

J F(y, t;k) cos kx dk
o

For y -< O.

For 0 < Y < s

For y > s

J F (t;k)e
ky

cos kx dk
o

Such a solution clearly is harmonic in the regions y < 0 and y > s,

while the function F(y,t;k) must satisfy the differential equation
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The continuity conditions at the upper interface require that

oPjd y = - kF at y = s. At the lower interface we similarly require that

oFjOy = + kF, at y = 0, after a volume distribution of currents has been

established in the sheet. At tbe instant the current dipole has been turned

on (t = 0), however, a s~ace current

j (x) = - ~ PoJ ke -kh cos kx

o

with a vector potential

co

A;:~ =-2Po~ e-k (lYI+h) cos kx dk,

will arise to prevent immediate penetration of magnetic field into the

sheet; at this moment there will be a discontinuity of slope such that

of ( 4 -kh)7iY = k F + Poe at y = 0, t = O. More explicitly, we can say that

at this initial instant

F(y,t = + 0; k)

throughout the sheet.

= _ 2P e-k(y+h)
o

A Laplace transformation of the partial differential equation

for F(y,t;k) can be conveniently wrttten for all subsequent times by

thinking of the impulse P' as having disappeared, but introducing
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F(t = 0) = - 2Poe-k (Y+h). We thus obtain the ordinary dif'ferential

equation for i(y):2

d~ _ (k2 + 2p)'F =~ P e";k(y+h)
dy2 vs vs 0

This differential equation is to be solved subject to the boundary con

ditions dF/dy = +kF at y = s, 0 (respectively). We find

where

- 2Po [2kF=-
P

(K+k)eK(s-y) + (K_k)e-K(s-y)

(K+k)2eKs _ (K_k)2e-KS
e-ky] e-kh ,

The corresponding Laplace transforms of F and F
+ -

are

_ 2P
o

F =+ p

and
2P [ ( ) Ks ( ) -Ks- oK+k e +K-k eF = - 2k ~---'-:::--:::~--'>"----'--~--=::--

- p (K+k)2eKs _ (K_k)2e-Ks
-khe ,

by continuity. The last of these expressions is of greatest interest

for describing directly the eddy-current fields in the neighborhood of

the dipole source.
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IV. Examination of the Solution for t Small

The correctness of the results can be checked, if desired, and

some insight gained into their implications, if one examines these results

for

p

p large and thereby obtains the behavior at very early times.

large, we have, to lowest order, K:: J2P • Thenvs

For

F 4 2Po r2k •.jvS
p L 2p

-khe

r1 -ky .rr;::: k -J!YJ -kh= - 2Po \! e - V2vs p3!2 e e

2P k [l:o p
-kye 2

p

Note: One expects that with p ndvery large the 2 term retained within

the s~uare bracket for dF/dy will be negligible unless y is exactly

zero, but will combine with the 1st term to give dF/dy = - 2P ~ e-kh
o p

when y = O. (This behavior already reflects the discontinuity of

dAley at y = 0.)

Also

From this last approximation we find the inverse Lapla~e transforms3

F .. -
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when t is small, for the function that pertains to the image potential

A(I) at points below the sheet (y< 0).

Accordingly, we expect that, when y < 0 and t is small,

A(r) • - 2P
o
~.. e-k(h-y)cos kx dk - 2

eel

~2V:tJ -k(h-y) J.. ke cos kx dk
o

It may be noted that, to first order in Jvst, this result can be written

where

A(I) .. -2Po
H - Y

H = h + 2 ~2~st

thus, in this approximation, the image that initially is situated

at y:::: h recedes to y = H = h + 2 J2vst/:n: at subseCluent early times
2

(t <!... =~ ;::~ ).
2v Ps Py

V. Examination of the Solution for t Large

The implications when t is large of the solutions presented in

Sect. III can be examined by treating p as small.4 In this limit one may

write
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K-k~L (p)- kvs - 2k kvs

- 8 -

and
2 2

(K-k) :;0 (-kP ) •vs

By a somewhat tedious Taylor-series development of F through terms

of order (K_k)2 we then find, for s ~ 0,

2PoF ~ --kv
-khe

.= -
Po -kh

2 --=---- ekv + p

:By taking the inverse Laplace transform of this last form, we then obtain

where now

H = h + vt.

Accordingly, in this large-t approximation (s« vt), the image that

is situated above the sheet (in order to describe the effect of eddy currents
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as felt below the sheet) recedes from its initial position y ~ h with

a constant speed v (= ps/2~). This is the well-known result of Maxwell,

for the case of a thin infinite sheet, to which reference was made in

ERAN-37.

VI. References and Notes

* Work supported by the U.S. Atomic Energy Commission. For previous work,
see LRL Reports ERAN 37 - 39 (July, 1969).

1 The Fourier integra.l form follows from B.O. Peirce, "A Short Table of
Integrals", #506, p. 64.

2 The Laplace transform of F(t) will be denoted F(p) =J: e-ptF(t)dt.
The Laplace transform of a time derivative is then given by

= - F(O) + pi.

[ Cf. J. C. Jaeger, l'An Introduc tion to the Laplace Transformation",
(Methuen, London; Wiley, New York).]

3 The connection between the behavior of a function for t small and the
asymptotic character of its Laplace transform (p large) is discussed by
G. Doetsch, "Theorie und Anwendung der Laplace-Transformation" (Dover,
New York, 1943), Part III, Chapt. 13, Sect. 1.1 (p. 243 ff).

4 Cf. G. Doetsch (op. cit., ref. 3), esp. Part III, Chapt. 13, Sect. 2
"G. 247).
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ERAN-6l

MAGNETIC IMAGE FIELDS FROM THE PARALLEL TRANSVERSE MOTION

OF A LINE CURRENT WITHIN A THIN- WALLED CIRCULAR CYLINDER

OF NON-VANISHING SURFACE RESISTIVITY*

L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

16 February 1970

I. Statement of the Problem

A steady line current re e .m. u. moves its location along a radial
z

trajectory r = h(t), e = 0 within a thin-wall conducting circular cylinder

of radius R and surface resistivity p e.m.u. ( abohms) per square. It

is desired to find the vector potential or magnetic-field components of

the Ilimage currents ll induced in the cylinder -- most particularly the azi

muthal field component B~I) of the image currents evaluated at the location

r = h( t ), e = 0 of the line current I.

II. Solution

The solution to the problem posed in Sect. I should be obtainable from

the results of ERAN-39 (31 July 1969). In that report it was shown that,

for a step-function two-dL~ensional dipole

turned on at t, we have (for t < t) the
o 0

tential of the image currents:

P at r = h, e =0 that is
o

following z-directed vector po-

{

(hr)n}OJ R2

~ or (cos ne)
n-l h n

(-)
r

-n 2( t - t )R 0e for
{

rSR

r~R

= P • F (h, r, e, t- t )
o 0 '

\'Ihere F can be written in closed form as

*Work supported by the U.S. Atomic Energy Co~~ission.
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cos e - £ E (tJt )
1 __.....,.- .....;r~__:_o~---___".-

r 1 - 2 £ (co s e) E( t ,t ) + [ (£) E(t Jt )] 2
r 0 r 0

F = - 2·

cos e - hr E (t t )2 J 0
R

( co s e) E(t ,t ) + [( hr2 ) E(t ,t ) ]2
oRO

• E(t Jto) for{r ~ R

r ~ R J

- ~(t - t )
) R 0with E(tJt - e. ando V = ..£..- 21{ [with P expressed in aboh.'1ls (e.mou.)

per square].

If now -- to return to the problem that was posed -- a constant current I

(e.m.u.) moves in radius at the constant azimuth angle e =0 ''lith h= h(t),

one expects that the vector potential of the image field in this case will be:

A(I) = I ; ~~:') F (h(t'), r, eJ t - t') dt'

-0)

and the total vector potential will be this A(I) supplemented by the direct vec

tor potential A(O) of the current itself at its instantaneous position h(t). Ex

plicitly this latter is (with an arbitrary zero):

A(O) - I J1-IiL= .en 2
R

h2_ 2rhcose+ 2
I .en r

= -
R

2

h n
(-) cos
r ne] - 2n ~ },

this last (series) form applying only for r > h.
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III. Check of the Proposed Solution

To test the results suggested in Sect. II) we note that the "induced cur

rents" in the vTall at r=R have a surface density (e.m.u. of current per centi

meter of circumferential distance)

.J - J:.. [B I _B I ] - J:.. [ dAI _dAI ] = 1:..[dA ( I )1 _ dA ( I) I ]
- 4:rc 8 R+ 8 R- - L~1l dr R- dr + L~1l dr - dr +

R R R·

However this sa~e current density must also be given by

.J = ~ = - %~~I = -[%
R

Hence we require:

+ dA(I)]
dt

R .

2 dA (I) I
+ v dt

R

=
2 dA (0) I- -
v dt

R

As a check of whether this requirement is in fact satisfied by the solutions

proposed, we may apply the series forms and write the condition

t

J dh(t' ) [ d ( ( / ) I) d ( ( I) /~ /I dt dr Fr<R h t ) r) 8) t - t - dr Fr >R h t )r) 8) t - t ~ dt +

- 00 R
t

+ ~ I[ dh(t) F(h(t ) R 8 0\ + J dh(1) dFI dt'] ~_ ~ dA(O)1
v dt ) ) ) ') dt dt v dt

-00 R R

as

00 [ t v( ') 00
L~I ~ ! dh( t') h n-l -n"R t-t~] _ 41 dh( t) L C~t-l cos n8 +

- R2 n=l n -00 dt" CR:) e dt cos n8 vR dt n=l R

t v ( ')

n[ J dh(t') (_h)n-le-nF: t-t ]dt.l cos n8
dt' r

-00

00

1 L~I dh(t) L (-Rht-
1

cos n8 •
vR dt n=l
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This relation is seen indeed to be identically satisfied. In addition to satisfying

this boundary condition at r = R, the forms proposed for the vector potential are

continuous and A(0) has the proper singularity at r = h. The solutions elsewhere a.re

harmonic (\f.A = 0), as required, and falloff rea.sonably as r ~ 00. The vector po

tential could be supplemented, if desired, by the vector potential of a constant and

uniform (t-independent and 8 independent) surface current at the radius R, to repre

sent a uniformly distributed return D.C. current (-I) in the cylinder, but this would

contribute no field to any point in the interior.

If we accept the vector potential expressed in the proposed series forms as correct,

it is readily verified that the closed-form expressions are equivalent and hence may

also be adopted as solutions to the problem that was posed.

IV. The Image Field at the Location of the Given Current

At r=h, 8=0 we have the image field F(It B~I)e8' with B~I) given by

oA (I)
---or

h,O

Hence we may write
t

B~I) = - I J dh~:/ ~ F (h(t'),r,o,t-t') I dt/,

-00 ~h

where (using the forms for r < R)

00 , n-l -n ~(t-t"")t F0(t'),r,0,t-e)! = - 22 L n[ h(t)~(t )] e R

r=h R n=l R

with E(t,t') = e
~(t-t/)
R

2
- R2
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V. Illustrative Exalnples

A. Exponential Movement of the Current

As an illustration, it is interesting and informative to consider the case in

which the current moves outward exponentially from a very small radius value at a

very early time. We accordingly take

h( t)

t-tl

he'
o

and dh(t)
dt

Then the result given in Sect. IV becomes, employing the closed-form expression

for *F(h(t /),r,o,t-t') I '
r=h

B(I)
8

h
o

• e

t~t
1

[

t-t t' -t ] 2
h 2 __1 1 _ ~(t-t"')
o l' • R1- - e e e

R
2

dt'

2Ih
o

= -2-
'rR

t l t t
-(- + ::....)/

l' R
e

-CD

(l: + ~)t'
• R

e

[
t-2t ]2h 2 1 _ vt (l: + ~){

1
0 • R l' R--- e e

R
2

dt'

and, by writing t'= t - s,

\-tl 2 1 ] 2 ds
-) -(- + ~)s

l' • Re e

=

h
o

2 I
t-t

1

e

1
v.

1 + R

1

1 v)-(- + - S
l' R

e

CD

°
1

v'r
1 + R

1
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( contd)
t-t

1

= 21
1+ VT

R

h e
o

(

_ t-tl)2
R2 _ h e T

o

=
21

1+ VT
R

h

If one has a very good conductor serving as the image cylinder, so that

p and hence v are small, or if the location of the current is changing rapidly,

so that T is small, our result indicates that in this limit (VT «R) we

shall have

at r =h, and the con-I

h in agreement with the result
R2_ h2

(v-r not necessarily small in comparison

h away from the current

21 = 21
R

2
/h_ h

B(I) is
esequent value of

This result is that expected under circQ~stances such that the cylinder can be

regarded as a surface into which virtually no flux will penetra.te -- in this

limiting situation the image field is that of a. line current - I situated at

R
2

R
2

r = -- , or a distance
h h

found above. In the more general case

to R), the image field at the location of the line current I is reduced by

the factor 1__ in this example.
1+ v-r

R

B. Sinusoida.l Oscillation of the Current

A similar evaluation of may be attempted for a line current whose

position oscillates with simple-harmonic motion (sinusoidally) about the central

axis of the image cylinder. In this case we take

h(t) = A sin mt and dh( t) _ A tdt - m cos m •

We now find the necessary integrals to be more elaborate, so we here confine our

attention to the terms in the result that are first-order in the a~plitude A (the

terms of next-higher order are of order A3). The result obtained then is

(contd)
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A m v
21""2 2 v 2 [m sin mt + - cos mtJ

R m +(R) R

where

tan ¢ = viR = p __.•
m 211: m R

sin (mt + ¢),

For m» *this result approaches 21 A
2

sin mt = 2Ih , as obtained in sub-
R R

2

section A above for rapid motion of the current if we now employ the approxima

tion that h is small.

There is also present, however, the out-of-phase component of the image magnetic

field, namely

This possibly-small out-of-phase component leads to an inward force from the re

sidual image magnetic field when dh/dt is positive (and vice-versa) for this

parallel-displacement mode.

It may be mentioned that retention of only the initial terms of the series

developments presented in this report as, in ef'f'ect, has been done in this

last exa~ple -- confines attention to image fields of low multipole order (cf.

ERAN-38 and ERAN-39).
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ADDENDUM

(23 February 1970)

The L'nage Field of a Suddenly Established Current

1. The solution to the image-field problem that arises when a current

I is suddenly created at a radius h should be obtainable from the dipoleo
step-function solution given on p. 4 and p. 7 of ERAN-39, namely from

ro

= - ~ p E
h 0n=l

(cos ne)
-n !( t - t )

R 0
e

hr
cos e - ~ E(t,t )

R 0

1- 2 h~ E(t,t )cos e + [(h~)E(t,t )J2
R 0 R 0

= - 2Po or • E(t,t )
o

h- - E(t,t )r 0

h 2
co s e + [( -) E( t ,t ) J

r 0

cos e
1
---:---------~-----=

for r § R and with E(t,t )
o e

- !( t-t )
R 0 It is only necessary simply to

form
(I)

ACurr

h

= 1 f 0 A(I)
P P db.

o 0
o

We then aug.'nent this result with the direct vector potential of

(i) an isolated doublet, formed by a current +I at r= h and-I
o

at the axis:
h

c;> _l(_r)n 0
w cos ne - ,en -
n=l n ho r

r < h
o

or

1 h n
~ -(~) cos ne

n=l n r
r> ho

( contd)
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h h 2
= - I £n [1 - 2 r

O
co s e + ( :) J, and

(ii) a current +1 on the axis and a return current -I uniformly distri

buted over a cylindrical surface situated (to be definite) at r = R:

R
(0) (0) {21 £n r

A . + A =I on aXlS -I at R 0

r.<r<R
t

r> R.

Accordingly, employing the series expansions, we have

-n ~(t-t )
(cos ne)e R 0 (r ~ R)

CD

-21 L: 1:
n=l n

or
-n ~(t-t )

(cos ne)e R 0

or the closed-form expressions (that can be obtained directly by inte

gration

h r h r
£n[l - 2 O2 E(t,t )cos e + [(-;')E(t)t )J2)

R 0 R 0

or

h h 2
£n[1-2 -£ E(t,t )cos e + [(-£)E(t,t )J )

r 0 r 0

(r < R)

(r> R).

These forms) if used in conjunction with the A(O) given above, give the

total potential A = A(O)+ A(I):

(contd)
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00 1 h r n -n i(t-t ) R21 (L: _[(..E..)n_(~) e 0 Jcos n8 + .en - } r <h <R
n=l n ho R2 h 0

0

or

00 1 h n h r n -n ~(t-t ) RA = 21 (L: - [ ( .-E.) - (--.£..-) e 0 Jco s nS + .en - } h < r<R
n=l n r R2 r 0

or

00 1 h n -n ~(t-t )
21 L: -( .-E.) [1 - e 0 J cos nS h <R<rn=l n r 0

r. <r<R
z

h r
[(-;.) E(t,t )J2

R 0

h 2
(.-E.)

r

h r

{

l - 2-; E( t ,t )co s S +
R 0

I .en h

1 - 2 .-E. cos S +
r

= or

h h 2 }

{

1 - 2 .-E. E( t, t ) co s S + [(.-E.) E( t ,t ) J
I

n r 0 r 0
kn h h

00 2
1 - 2 - cos S + (-)r r

r > R.

It will be noted that these for~s for the total vector potential A

vanish at and outside the boundary r = R when t = t and that correspondingly
o

B = 1: ~A likewise vanishes for r 2: R, t = t -- i.e., there is no initial flux
r r oS 0

penetration of the boundary. To continue a check of the expressions proposed,

we first form

co h n -n ~(t-t )
- 2;R [1+2 nE l (;) (cos nS) e R 0]

3-176



- 11 -

We then also form

1· 1·-(-A) - -(-A)p r=R- 2~v r=R

()() h

~i 6 (;)(cos ne)
n=l

-n Y..( t-t )R 0e

We thus see, from these expressions, that the current density in the cylinder

is correctly related to the induced electric field ~ = - A through the

surface resistivity p, save for the D.C. term - 2;R in J. This uniform

(e-independent) return current of course must be sustained in this model

by other means -- ~'~.j by electrostatic fields.

As for the Be fie.ld, the total Be field near ho is given by

n n-ln-l h r
r 0-- + ----0='-

h n R2n
o

-n Y..(t-t )] }R 0 1e cos ne + -
r

A =

{

00 [h~ h~rn-l
2I L -1 + 2

1 n+ R nn= r

or

-n Y..( t-t )]R 0e cos ns}

r>h
o

r< ho

[

r - h cos 8
= 2I -r-2-_---

o
------=2 + 11

2h r cos e + 11 0
o 0

. h r

cos e - ~ E(t,t ) JR 0
h E(t,t )

2 r 2 0
R - 2h rE(t,t )cos8+ [R

o
E(t,t )J

000

Of the terms shmm, those that do not involve the time-dependent exponential

- ~(t-t )
factors e R 0 or E(t,t

o
) represent just the Be field of an isolated

wire that is situated at r= h , e =0 and carries a current +1. The force
o

on this wire thus may be calculated by employing solely the remaining field -

that we might term the lIimage field ll and denote by B(I).
8
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Thus} in s~~ary} we have at the location of the current the image

field

h 2
2Ih 1 - (R

o
) E(t}to )

o __.,..-- -=..;._~--'----- E( t} t )=7 h 2 h 2 2 0

1- 2( .;) E(t}to ) + [(R
o ) E(t}to )]

2Ih E( t} t )o 0
= --------7 h 2

1 - (R
o

) E(t}to )

This last form is immediately interpretable} as are the image-field com-

ponents at any point within the cylinder} as the field that

would arise from an image current -I at a radial location H that is

the rtimage rt ~

of a point that recedes towards the axis as h =
o

h • E(t}t );
o 0

+ ~(t-t )R 0e

2. The solution to the image-field problem that arises when a current I

also should be obtainable immediatelyis suddenly created at a radius h
o

from the results in the body of the present report. In this instance we

would set h(t) equal to h tL~es a unit step fQnction (S) of t-to 0

for evaluating the image fields by use of the formula

for the vector potential of these fields. With the argQ~ent h(t / ) in

F a step function and dh(t~l = h 6(t / -t )} we now may write
dt" 0 0

( contd)
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t +€
o

= \ Ldh~~:l F (h(t'l,r,e,t-t
O

) dt'

o

h
o

I J F(h,r,e,t-to ) dh

o

= I ho (F)
h-average

Now from the body of this report we have

so

r
F < R = -2 R2r_

cos e - h~ E(t,t )
R 0

h h 2 E(t,t ),
1 - 2 ~ ( co s e) E( t, t ) + [( ~) E( t, t )] 0

R 0 R 0

and

= £n {l _ 2hor (cos e) E(t,t ) + [(h~r) E(t,t )]2}
R2 0 . R 0

(I) {h r hr 2}
A <R = I £n 1- 2 O2 (cos e) E(t,t ) + [( ~ )E(t,t )]
r_ R 0 R o.

From the image potential just written, we find the following a-component

of' f'ield:

h r
1 - 2 ~(co s e) E( t, t ) +

R2 0

dA (I)
- dr

2 Ih
o

cos
h r

e- +- E(t,t )
R 0

h E(t,t ),r 0

[(-%-)E(t,t )]2
R 0

and ",hen evaluated at r =h , e = 0 gives
o

( contd)
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2I11 E(t,t)
Be(I) = ---;- ..:.0__

R h 2
1 - (R

O
) E(t,to )

as found in Section 1 of this Addenduln.

The writer is indebted to Dr. Lloyd Smith of this Laboratory for

penetrating comments concerning questions that arose with respect to the

treatment undertal\.en in Section 1 of the Addendu.'Il.
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THE IMAGE-FIELD POTENTIAL

OF A UNIFORMLY-CHARGED ELLIPSE

SITUATED BETWEEN A SET OF

CONDUCTING HYPERBOLIC SURFACES

L. J. Laslett

I . INTRODUCTI ON

In considering the significance, for the transport of intense charged

particle beams, of image fields arising from charges induced in nearby

conducting surfaces, attention has previously been given to boundary surfaces

that are circular or that have a fundamental rotational symmetry period of

180 degrees -- so that terms of the form r2 ~~~ (26) can readily arise in

the image-field potential and linear contributions to the image-field com

ponents can readily be present. Results for some such cases have been

presented elsewhere by the oresent writer. (1,2)

As non-linear aspects of such image fields may become important, there

may be utility in extending work of this nature to treat the case of signifi

cantly extended beams, such as has been done for an elliptical beam (of constant

charge density) co-axially situated within a circularly-cylindrical conducting

wall (Appendix C). It.also may be of interest to examine image fields that

are present for slightly displaced extended distributions, in order to

examine the possible "coherent" effects that act on the beam as a whole.

A situation of particular interest -- and that has motivated the work

described in the present Note -- is that in which the boundary surfaces have

the shape of (four) hyperbolic sections [x2_y2 = ~ c2], such as would be
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provided by the electrodes of an electrostatic quadrupole-focussing system

(and that. in this application. of course could not be shielded from the beam).

We accordingly have undertaken to treat the 2D electrostatic problem of an

elliptical beam (with semi axes ~ and ~. oriented in the x and y directions,

respectively) situated inside conducting cylindrical boundaries of hyperbolic
2 2 + 2cross-section x -y = - c. The analysis will cover the case in which the el-

liptical beam may be displaced. by distances 0 ,0 along the x and y axes.x y

so that its center lies at the point ox' Oy. [These conditions. that still

are somewhat special -- namely the orientation of the elliptical beam boundary

with respect to the four hyperbolic electrodes -- are adopted in the interests

of simplicity. but are believed to refer to situations of greatest practical

interest.] With respect to the charge distribution within the elliptical

beam boundary. we furthermore assume the charge density to be constant across

the beam cross-section. although it may be difficult to reconcile this as

sumption with a stationary distribution for a beam significantly affected by

the image fields whose characteristics we seek.

In the work that follows the linear charge density of the beam will be

taken to be A=l esu/cm and results will be stated in e.s.u. for that linear

density. (3) With respect to dimensional (geometric) scaling, we anticipate

that fields will be of the form

E =!"7 (~ ~ Ox ~ x 'i.
c

).
c c' c' c' c ; c'
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II. THE TRANSFORMATIONS

The conformal transformations that we have found suitable for solution

of the present problem are described in some detail in Appendix A. The

"Green's Function" from which one can construct the fields of the elliptical

beam (even if displaced, as shown) by (numerical) integration is that of a line

charge A situated at a point whose location we shall denote at this stage by

(a, b). It has proven convenient to regard the solution of this problem to

be formed as the sum of four problems (see Appendix A).

For each Case, the appropriate transformation or transformations lead to

new coordinate values for the source points (and correspondingly for field points)
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that may be denoted by primes (corresponding to whichever new plane is being

considered). Such transformations have been programmed as a Sub-routine, for

subsequent use. The results of such programmed transformations can be checked

by observations of conformality between traces made in each of two different

planes, by checking the correctness of the Cauchy-Riemann conditions, or

(equivalently) by examining the values of v2 Re(z') &v2 1m (Zl), or etc.

III. THE POTENTIAL FUNCTIONS

Following the appropriate transformations, the potential functions for each

of the cases may be evaluated (in terms of, coordinates for their respective

final planes) and the results, when summed, provide the desired total potential

for the Green's-Function problem posed above. By subtraction of the "direct"

potential (i.e., for the isolated source), the associated "image-field" poten

tial also is obtained.

Such results, as obtainable at this stage, of course can be subjected

to some checks of correctness thus:

(i) The total potential should approach zero as the field-point approaches

the hyperbolic boundary surfaces.

(ii) The image-field potential should appear to be such that its gradient

is divergence-free in the interior, while the total potential should exhibit

an incipient singularity (V = -2A ln 16rl) in the immediate vicinity of a

line source; and

(iii) A pair of sources close to the x-axis and close to the pole tip

at (c,o) likewise should exhibit in that neighborhood potential or field

characteristics close to those which would be expected for an image charge

(-2A) situated behind the pole tip by approximately the same distance as these

charges are in front of this pole tip.
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With such checks performed, to the extent deemed desirable, the correspond

ing results for the full (possibly displaced) ellipse are evaluated by inte

gration over the area of the elliptical beam. Initially, for simplicity,

this integration was performed computationally by a Monte-Carlo integration,

but this procedure was soon replaced by a more economical (and, in practice,

more precise) procedure employing a double Gaussian integration (using our LBL

source routine, GB (developed by Gene Golub), and normally employing n=32

in our work).

Again such final results can be subjected to certain checks (some similar

to those mentioned for the Green's function), of which we mention the following:

(i) The total potential should approach zero as the field point approaches

the hyperbolic boundary surfaces;

(ii) For a small ellipse displaced so as to be situated close to the pole

tip at (c, 0) of one of the boundary hyperbolae, the potential or field quan

tities in that neighborhood should exhibit characteristics close to those

expected for a similar image charge, of opposite charge, a similar distance

behind the pole tip;

(iii) For a centered beam of very small dimensions, the image-field potential

should approach that expected (save for an arbitrary constant) from an inde

pendent analytic examination of the specific case of a centered line charge;(4)
and

(iv) The "direct" field, or its associated potential function (V(T) - V(I))

should have the character expected for a uniformly charged ellipse -- say, most

particularly, within the beam itself. (5)

With this description of our analysis and of the types of tests to which

our computational work has been subjected, we turn now to certain results

that have thereby been obtained.
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IV. RESULTS

In operating the Program GBIMG or its succesor GB4MG it is convenient to

make one or more of three types of scan~ once the relevant dimensional

parameters are specified (namely~ _c~ the semi-axes a &b~ and ° 0):- - x~ y

(i) A scan along the x-axis~

(ii) A scan along the y-axis~ &/or

(iii) A scan around a circle in the z-plane (centered on the

origin~ and with the radius typically taken to be R = D.gc). In any

such scan the image potential at a succession of field points is printed

(in e.s.u. t for A=l.O statcoulomb/cm) and (in the most modern version of the

Program) also the total potential. In the scan with respect to angle (Hiii),

a "standard" scan may be chosen, in which the angles of the field points are

the thirty-six values

5 Deg. t 15. Deg., 25. Deg., ... 355. Deg. in Program GB4MG. If this

option is elected~ one then may ask the program to print the Fourier coef-

ficients of the image-field potential, developed in the form

17 k
= Co + L c

k
(~) cos ke +

k'=l

18
L

k=l

k
( ~) sin kesk c

-- in which some of the higher-order coefficients may be expected to have

somewhat lesser accuracy than those of lower order. In this case the Program

also evaluates and prints the inferred field strength at the centroid of the

ellipse (point ox' 0y)' as computed from the negative gradient of this trig

onometric development evaluated at the point ox' 0y' Also (optionally) the

average image-field components, <E (I» and <E (I»A are obtainable by
x Av. Y v. ,

means of a double Gaussian integration of E (I) and E (I) over the area of thex y
ellipse.
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A. The Centered Beam

The characteristics of the image fields of a centered beam perhaps are

best described in teY~s of the Fourier coefficients of the image-field poten-

tial

( I) 17 k
V = Co + E ck (~) cos ke ,

k=l

of which only coefficients ck with k even will be non-zero in this case.

Accompanying Tables present such results (only for ck with k~12)

(i) For a/b=3/2 (and, in one case, for a/b3~)'

(ii) For alb close to unity (actually 16/15), and

(iii) For a/b=2.

Clearly the change of the value of the ratio alb to its reciprocal will

result only in a reversal of sign of the coefficients c2' c6 and clO (and so

forth, if the tabulation were continued), while the remaining coefficients

would remain unaffected.

The striking feature ·of all these results (in contrast to that frequently

found for other image configurations) is the pronounced presence of fourth

order coefficients (c4' c8' c12 ), attributable to the variation of the boundary

(with its four-fold symmetry). These fourth-order coefficients in fact do

not vary greatly with the size (or shape) of the beam, and for beams of moderate

dimensions approach values(4) characteristic of a line charge at the origin
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C = 1.0 /) = O.

~
I....
oc
\Q

Cases with alb = 3/2 (or 3;2)

a = 0.15 0.30 0.45 0.60 0.75 [O.50J 0.80 0.90

b = 0.10 0.20 0.30 0.40 0.50 0.75 0.533333 ... 0.60

Co +0.2415605 +0.2415002 +0.2412389 +0.2405338 +0.2390389 +0.2390389 +0.2382890 +0.2362921

-0.0025702 -0.0102822- -0.0231469 -0.0412083 -0.0645817 +0.0645817 -0.0735908 -0.0935155c2

c4 -0.205620 -0.205672 -0.205898 -0.206511 -0.207825 -0.207825 -0.208492 -0.210291

c6 -0.000423 -0.001692 -0.003817 -0.006831 -0.010829 +0.010829 -0.012411 -0.016018

c8 -0.02960- -0.02962 -0.02972 -0.02998 -0.03057 -0.03057 -0.03087 -0.031705

clO -0.0001 -0.0004 -0.0009 -0.0016 -0.0026 +0.0026 -0.00303 -0.00400

c12 -0.0051 -0.0051 -0.0052 -0.0053- -0.0055 -0.0055 -0.0056 -0.0059

A = 1. (e.s.u.)



C = 1.0 6 = o.

(,H
II,C)

Q

ALMOST - CIRCULAR BEAMS

a = 0.16 0.32 0.48 0.64 0.80

b = 0.15 0.30 0.45 0.60 0.75
- ...... ...- -

Co +0.2415642 +0.2415605 +0.2415445 +0.2415012 +0.2414101

-
c2 -0.0006374 -0.0025497 -0.0057369 -0.0101999 -0.0159404-

c4 -0.205617 -0.205620 -0.205634 -0.205671 '-0.205750
-- ----

-0.000105- -0.000419+ -0.000944 -0.001679- -0.002626c6

c8 -0.029594 -0.029595 -0.029601 -0.029617 -0.029650+

c10 -0.00002 -0.00010 -0.00022 -0.00039 -0.00062

c12 -0.0051 -0.0051 -0.0051 -0.0051 -0.0051+

A = 1. (e.s.u.)



c = 1.0 6 = o.

(M
II,Q-

CASES WITH alb = 2.

a = 0.2 0.4 0.6 0.8
b = 0.1 0.2 0.3 0.4

+0.2415414- +0.2411940 +0.2396821 +0.2355548-Co
,_.- f------

c2 -0.0061688 -0.0246923 -0.0557264 -0.0998993

c4 -0.205637 -0.205937 -0.207257 -0.210965

c6 -0.001015 -0.004073 -0.009298 -0.017211

c8 -0.029602 -0.029733 -0.030315 -0.032025

clO -0.00024 -0.00096 -0.00223 -0.00434

c12 -0.0051 -0.0052 -0.0054 -0.0060
., -- --- - -



The remaining significant Fourier coefficients in the image-field potential

(i.e., c
2

, c
6

, &c
10

), for any fixed value of alb, evidently scale fairly

closely in direct proport'~n to the square of the transverse linear dimensions

of the beam rel"ative to c (see following Tables) -- ~.~., ~ (~) -- and of
c

course become small as the centered beam approaches circularity.

alb = 2

a b c2 c6
c10

-
ab/c2 ab/c2 ab/c2c c

0.8 0.4 -0.312185 -0.05378 -0.01356

0.6 0.3 -0.30959 -0.05166 -0.0124

0.4 0.2 -0.30865 -0.05091 -0.012

0.2 O. 1 -0.30844 -0.05075 -0.012

alb = 1. 5

a b c2 c6 c10
- -c c ab/c2 ab/c2

ab/c2

0.90 0.60 -0.17318 -0.0297 -0.0074

0.80 0.53333 ... -0.17248 -0.0291 -0.0071
0.75 0.50 -0.17222 -0.0289 -0.0069

0.60 0.40 -0.17170 -0.0285- -0.0067
0.45 0.30 -0.17146 -0.0283 -0.0067
0.30 0.20 -0.17137 -0.0282 -0.0067

0.15 0.10 -0.17135 -0.0282 -0.0067

alb = 16/15

a b c2 c6 c10- --c c
ab/c2 ab/c2 ab/c2

0.80 0.75 -0.02657 -0.004377- -0.0010

0.64 0.60 -0.02656 -0.004372 -0.0010

0.48 0.45 -0.02656 -0.004370 -0.0010

0.32 0.30 -0.02656 -0.004365_ -0.0010

0.16 O. 15 -0.02656 -0.00437 -0.001

For ~ and ~ interchanged, the signs of these coefficients reverse.
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To extend this discussiDn we may now inquire how the coefficients c2'

c6' and clO scale with respect to the ratio alb. A cursory examination of the
c

data already presented suggests that the quantities 2 2 ' etc. may scale
(ab/c )

approximately in direct proportion to ln (alb) -- a behavior that would lead

to these coefficients vanishing when a=b and reversing in sign when alb is replaced

by its inverse. To examine this issue in some greater detail we have performed

computations for a sequence of cases in which the product ab has the constant

value 0.2520 c2, while various values are assumed by the ratio alb. The Fourier

coefficients found for these cases are presented in tabular form below, followed
c2 c6 cl Oby a tabular summary of the quantities 2 ' 2 ' and 2 . These

(ab/c) (ab/c) (ab/c )
latter quantities, plotted against ln (alb), yield the graphs shown on the Figures

that follow and suggest a very close to linear dependence upon ln (alb) in each

case -- at least for the interval 0.625 = ~ ~ 62 ~ = 1.6, approximately.

We accordingly might suggest that, for approximate practical work, one may

represent these coefficients of the image-field potential of a centered ellipse

by the handy formulas

c2 = -0.426759 (~) ln (5)
c

= -0.98265 4), 10910 (5)'
c

c = -0.07097 ~ 1n (6)6 c

= -0.16342 ~ 10g10 (6)'
C

clO = -0.01695 ~ 1n (6)
c

= -0.03902 ~ 10910 (6)
C

-- or, more simply,
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C2 = -0.98 (4) 10910 (5 ),
c

C6 = -0.16 (4) 10910 (6), and
c

c10 = -0.039 (4) 10910 (6) .
c
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C = 1.0 6 = o.

W
I...
'C
Ul

2CASES ~ITH a-b = 0.2430 xc. cont'd

a = 0.504 0.5 0.45 0.40 0.35 0.30 0.84
b = 0.50 0.504 0.56 0.63 0.72 0.84 0.30

Co 0.2415641 0.2415641 0.2412470 0.2401169 I 0.2374956 0.2315825 0.2315825+

-0.0008258- 0.0008258- 0.0228585 0.0488521 0.0820725 0.1291658 -0.1291658-c2
.-.

c4 -0.2056170 -0.2056170 -0.2058913 -0.2068757 -0.2092024 -0.2146843 -0.2146843

c6 -0.0001358 0.0001358 0.0037690 0.0081242 0.0139265+ 0.0229729 -0.0229729

-0.0295939 -0.0295939 -0.0297130 -0.0301456 -0.0311983- -0.0338541 -0.0338541c8
-

c10 -0.0000319 0.0000319 0.0008883 0.0019399 0.0034303 0.0060938 -0.0060938

--- -------- .. _._----

c12 -0.0051216+ -0.0051216+ -0.0051636 -0.0053182 -0.0057093 -0.0067893 -0.0067893

~_._--- - -



W
I'C
~

( = 1.0 ~ = o.
CASES WITH a-b = 0.02520 x (2

a = 0.28 0.90 0.80 0.75 0.70 I 0.60
b = 0.90 0.28 0.315 0.336 0.36 0.42

I

0.2273171+
, I

Co 0.2273172 0.2339056 0.2363015- 0.23819843- 0.2406963-
---- ~_._._._----. -·_------1----·---- ------~-l

0.1548658 -0.0934314 -0.0746071 ! -0.0378169 i(2 -0.1548658 -0.1129270
I

-----_._._--f-

(4 -0.2188537 -0.2188537- -0.2124908 -0.2102829 -0.2085726 -0.2063697
I

(6 0.0285348 -0.0285347 -0.0197118 -0.0160024 -0.0125911 -0.0062614

-0.0360484 -0.0360483+ -0.0327610 -0.0317019 -0.0309090+ -0.0299223
(8

(10 0.0080129 -0.0080129 -0.0050753 -0.0039992 -0.0030753 -0.0014851

--

(12 -0.0077804 -0.0077804 -0.0063288 -0.0059039 -0.0055998 -0.0052380-



W
I....
\C......

6 = O.

CASES \JlTH a·b = 0.2520 x c2

a, b 0.50, 0.504 0.45, 0.56 0.40, 0.63 0.35, 0.72 0.30, 0.84

1n (a/b) -0.007968 -0.218689 -0.454255 -0.721318 -1.0296194

c2

(4-)
0.003277 0.090708 0.1938575 0.325684 5 0.512563-

c
c6 0.000539 0.014956 0.032239 0.055264 0.091162

( ab )
""7
c10

( ab ) 0.0001266 0.003525 0.007698 0.013612 0.024182

""7

a, b 0.90. 0.28 0.80. 0.315 0.75. 0.336 0.70, 0.36 0.60. 0.42

1n (a/b) 1.167605 0.932039 0.802962 0.664976 0.356675

c2 -0.614547 -0.448123 -0.3707595 -0.296060 -0.150067
(ab )
""7

c6
(ab ) -0.113233 -0.078221 4

-0.063501 6
-0.049965- -0.024847

""7 I

c10 -0.031797 -0.020140 -0.015870 -0.0122036 -0.005893
(ab )
""7

-~-_ .._--.
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With respect to the fourth-order coefficients c4, c8, ... for such

a centered ellipse, on the other hand, these might be taken simply as

having values identical to those for a central line charge (as a lowest-

order approximation) namely

c4 - -0.2056,

c8 - -0.0296, and

c12 ~ -0.0051

3·201



~ The Displaced Beam

In the case that the elliptical beam is displaced, as a whole, we

have concentrated our attention on the effect that a displacement has on

the development of the following quantities:

(i) the Fourier coefficients ck and sk in the image-field potential.

(ii) the components of the image field evaluated at the centroid

of the displaced ellipse, obtained from the Fourier coefficients as

E (I) (0 ,0 ) = 1 r k(_cr)k-l [sk cos (k-l) e - ck sin (k-l) e],
y x y c

where (in this application) r, e are the polar co-ordinates of the centroid

and summations extend from k=l through k=17 or 18 for terms proportional to

ck or sk' respectively.

(iii) the average image-field components, (E(I) ,and (E (I) )
x avo y av.,

obtained by integrations, over the area of the ellipse, of expressions similar

to those written immediately above.
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1. For Displacements Exclusively in the x Direction

Before describing and discussing results obtained when non-zero dis

placements are present in both the x and y directions, we first present

some results (obtained with the simpler program GBIMG) for cases in which

the displacement is only in the x 'direction (8x = 8, 8y = 0). One finds that

the three quantities -c11 , E (1) (8,0), and <E (1) are all compara-c x x avo
b1e and are odd functions of 8. For a circular beam (alb = 1), moreover,

these quantities are independent of beam size, and the values of Ex(I) (8,0)

and (E (1) are identica1--as is to be expected, since the
x avo

external direct field of a circular beam is independent of its radius.

For this circular beam, however, the quantities Ex (1) (8, 0) and (Ex (1) av ..

while remaining equal to one another for a circular beam, exhibit noticeable

non-linearity as a function of 81c.
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Values of the quantities cl ' and Ex(I) (0,0), and <Ex(I)av.

for the image fields have been computed and tabulated for several combina

tions of values for the parameters alb, ab/c2, and o/c. We recognize

that the quantity cl should be a function simply of these dimensionless

ratios, while the remaining two (field-like) quantities similarly should

be 1times functions of these same ratios -- and all are for A= 1 (e.s.u.).

The attached tabulations of this nature (for c=l) accordingly should be

of some utility in themselves for application to specific cases. In addi

tion, however, it appears that -- for cases in which alb does not differ

greatly from unity, and the ratios ab/c2 and o/c are each reasonably small

-- one may write the approximate handy formulas

cl _ -1.6 [1.0 + 0.21 (,) ln (6)] ~

= -1.6 [1.0 + 0.48 (~) 10910 (6)] 2
c c

E (I) (0, 0) ;: 1.6 [1.0 + 0.73 (~) ln (6)] O2x c c

= 1.6 [1.0 + 1.68 (ab) 10910 (%)] .;-,
c2

c

(E (I) - 1.6 [ 1.0 + 1.71 (ab) ln (5)] ;x avo ~ c

= 1.6 [ 1.a + 3.94 (~) 10910 (6)]
0
2'c c

The extent to which these formulas provide values differing somewhat

from the more exact values obtained from runs with Program GBIMG--when

olc differs significantly from zero, alb differs significantly from unity,

and ab/c 2 is significant--is illustrated by the following tabulation of

results for cases that might be regarded as typical of situations of interest.

Agreement is found amongst all these cases substantially within 10 percent,

and chiefly with an error appreciably less than this amount.
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(E}I) )(I)c • 10. cl Ex \&/ (~. 0)

a. b. 6 COMPUTER FORMULA COMPUTER FORMULA COMPUTER FORKlLA

4. 3. 1. -0.1584 -0.1612 0.01645 0.01640 0.01702 0.01695

3. 4. 1. -0.1562 -0.1588 0.01564 0.01560 0.01510 0.01505

4. 3. 2. -0.3183 -0.3223 0.03499 0.03281 0.03620 0.03389-_._-----
3. 4. 2. -0.3136 -0.3177 0.03326 0.03119 0.03213 0.03011 ,

3. 2. 1. -0.1581 -0.1608 0.01633 0.01628 0.01673 0.01667
i

2. 3. 1. -0.1565 -0.1592 0.01575 0.01572 0.01537 0.01533 !

3. 2. 2. -0.3176 -0.3216 0.03473 0.03257 0.03559 0.03333 !
i

2. 3. 2. -0.3142 -0.3184 0.03350 0.03143 0.03269 0.03067 i
i

6. 4. 1. -0.1609 -0.1632 0.01724 0.01714 0.01897 0.01866

4. 6. 1. -0.1545 -0.1568 0.01426 0.01486 0.01345 0.01334

6. 4. 2. -0.3236 -0.3265 0.03669 0.03427 0.04046 0.03733

4. 6. 2. -0.3099 -0.3135 0.03145 0.02973 0.02868 0.02667

7.5 5.0 1. -0.1633 -0.1651 0.01796 0.01778 0.02086 0.02016

5.0 7.5 1. -0.1533 -0.1549 0.01433 0.01423 0.012Os.. 0.01184

6. 3. 1. -0.1623 -0.1642 0.01768 0.01746 0.02012 0.01942

3. 6. 1. -0.1537 -0.1558 0.01455 0.01454 0.01260 0.01258

6. 3. 2. -0.3267 -0.3283 0.03765 0.03491 0.04302 0.03883
_.--

3. 6. 2. -0.3081 -0.3117 0.03097 0.02909 0.02691 0.02517

~
I

N=til



The lack of generality thus consists only in restricting the

2. For Possible Displacements in both the x and y Directions

The displacement of the beam center, from the origin, is now represented

by cS , 0 .x y
results to be cited here to cases in which (for simplicity) the principal

axes of the elliptical beam are taken to be parallel to the x, yeo-ordinate

axes.
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and

Va1ues of < E/ I) >av. and <Ey(I) >av. have been computed

(Program GB4MG, stored in Library JACKSON), for various values of ox' 0y'

for several combinations of values of a and b. If al I dimensions of the

problem (c; a, b; °,°)are scaled by a common factor, we expect the fieldsx y

to vary in proportion to ~; also an interchange of ~ with ~ and of 0y with

8 will be expected to lead to an interchange of E (I) with E(I). Thex y x
image-field potential and the components of the image field itself moreover

may be expected to be respectively even or odd functions of Ox and of 0y.

Finally, if b=a (circular beam), the average field values <E/I) avo

(E (I» shoul d be independent of the common value of a ,b.
Y av.

Results for the cases that have been run (esp.~ with c=l. and alb

equal to 1.25, 1.35, or 1.50) can be seen in tabular form. We have attempted

to describe these results for <Ex(I) avo and < Ey(I) ) avo as derivable

(approximately) as the gradient (with respect to ° , ° )of a function - POTx y

(denoted POTM in a Least-Squares fitting routine FITD2 of Library JACKSON)

where

(E (I) >. = ~~x (-POT),x av. au
(E (I) ) av = d

Y .• dOy (-POT),

° 2 ° 2-POT = Al (2...) +A4
(...L)

c c

° 4 ° 4 ° 2 ° 2
+ A2 (2... ) + A7 (2....) + A5

(2... ) (L) .c cc c

[It was not judged desirable, in this effort to represent .. POT, to go beyond

terms of 4 th order. Greatest utility may be expected to accrue for situations

in which loxlcl and IOy/cl each are less than (or do not exceed) 0.15].
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We thus attempt the representation of our results in the form

( 0 0 0 0

<E 1) = } [2 A (.1...) + 4 A
7

(1..)3 + 2 A (2-)2 (.1...)].
y av. c 4 c c 5. c c

For convenience in possible future dynamical computations, finally,

we have attempted to represent the coefficients Al , A2, A4, AS' and A7 by

simple approximate functions of the parameters ab/c2 and alb (or 10910 (5))

as follows:

ab a
Al ; 0.785 + 3 ~ 10910 5'

c
A2 ; 0.834 + 3 ~ log a

c~ 10 5'

A7 = 0.834 - 3 ~ log a
Co 10 b'c

_ [ (ab a)2]A5 = - 2.4864 + 6.5 ~ 10910 b .
c

Thus for c = 10. cm, a = 4.32 cm, b = 3.20 cm

(ab/c 2 = 0.13824 and alb = 1.35)

and with 0 = 1. cm, 0 = 0.5 cm (0 Ic = 0.1,0 Ic = 0.05), we wouldx y x y
compute from the "handy formula" for <Ex (I) the result <Ex (I)

1
TO. [1.701126 x 0.1] = 0.1~~1126 = 0.01701126 (for <E (1) ). x avo

expressed in statvolts/cm when A = 1.0 statcoulomb/cm), while if all

physical (spatial) dimensions had been one-tenth as great (c = 1.0)

we would obtain an image field ten times greater--namely 0.1701126

<
(I)

for Ex avo

For this latter case (c being unity) the program GB4MG prints

<E (1) = 0.1709450
x avo
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The adequacy of the handy (approximate) formulas just proposed may

be indicated by the following table, in which for c=l and 6 Ic = 6 Ic = 0.15 we
x '¥

list first the values of (E (1) and (E (1» from GB4MGx avo y avo
computations and then (on the line that follows) the same quantities as

estimated by the handy formulas.

C = 1 .0

Average Image Field At 6x/c = 0.15, 6y/c = 0.15

alc b/c C (Ex'I) C(Ey(I)

0.338 821 487 0.295 140 668 0.2359 0.2243
0.2356 0.2243

0.40

0.55

0.65

0.32

0.44

0.52

0.2423
0.2416

0.2536
0.2519

0.2634
0.2605

0.2182
0.2183-

0.2079
0.2078-

0.1994
0.1989

0.432 0.32 0.2481 0.2128
0.2468 0.2129

0.54 0.40 0.2587 0.2034
0.2562 0.2033-

0.675 0.50 0.2761- 0.1889+
0.2708 0.1881-

0.45 0.30 0.2544 0.2072
0.2522 0.2075-

0.60 0.40 0.2747 0.1900
0.2692 0.1897

0.75 0.50 0.3033 0.1684
- -----

0.2908 0.1666

a = b 0.230"1 0.2301
0.2300 0.2300

..-._-_.-
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(E (I»
x avo

e • 1.0
I(E (I) )

Y avo
am • 0.338821487 bm• 0.295140668 R • 0.96

~11 ~ 1\ O. I 0.05 , 0.10 I 0.15
<u-c 0.08082663 0.1641968 0.2527371z:-LI.I O. I c5x • .15en O. O. O.- *:JI
a:: O. 0.08020871 0.1629574 0.2508683 I I 0.2485318LI.I
::z: 0.05 I c5y • .075....
0 0.07710680 0.07648903 0.7463233 0.07152556 0.1080434
en

eM en
O. 0.07835341 0.1592368 0.2452597I LI.I

N ...J
0.10.. z

Q :::) .
0.1566461 0.1516912 0.1454724

N
0.1530260 0.2359025

c5x • .075
C"1 O.
• 0.15

I I 0.1199442z 0.2411192 0.2336685 0.2243233 I c5 • 075
0.1143313

y .

From 13 Cases From 16 Cases
0.1136670

r
A1 • 0.8039980 or 0.8040216

6y • .15 I 0.2369308
A4 • 0.7669757 0.7669926or

c5x • .075
A2 • 0.8532866 or 0.8528030

A7 • 0.8170315 or 0.8166176

A5 • -2.488301 or -2.487639

by FITD2

GB4MG



c = 1.0

a = 0.40. b = 0.32m m

&

( E (I) )
x av.

1[0) >
\ y avo

R = 0.96

.~
I

l',)......

l) O. 0.05 O. Fl 0.15 0.20x
6y --

O. .08288833 .1683879 .2592025

O. O. O.
-

O. .08226903 .1671447 .2573251
0.05

.07514553 .07452655 .07266513 .06954687

0.10 O. .08041053 .1634146 .2516940

.1526708 .1514322 .1477079 .1414711

O. .07731037 .1571944 .2423092
0.15

.2350174 .2331569 .2275646 .2182049 -
0.20

0.25



c = 1.0

am = 0.55, bm = 0.44

<E (I)
x av.

<E (I) )
y avo

R = 0.96

(,H
I
~~

6x
I

'-. O. I 0.05 0.10 0.15 0.20"-6y I

, ,- .08652265 .1757875 .2706475
O. .:'/>/'• / I • / •. , O. O. O.

0.05 O. .08589880 .1745332 .2687484

.07184918 .07122595 .06934983 .06620037

O. .08402831 .1707732 .2630572
0.10

.1459979 .1447524 .1410037 .1347130

O. .08091364 .1645144 .2535896
0.15

.2247973 .2229306 .2173142 .2078948

0.20

0.25



c = 1.0

am : 0.65, bm = 0.52

( E (I) >x avo

(E (I)
y avo

R = 0.96

~
I

N....
~

,

Ox

0y O. 0.05 0.10 0.15 0.20

V ,
.08969047 .1822497 .2806762

O.
/~ ,/ O. O. O.
O. .08906060 .1809816 .2787515

0.05
.06913150 .06850251 .06660731 .06341977 --

O. .08717344 .1771828 .2729878
0.10

.1405044 .1392487 .1354660 .1291064

O. .08403561 .1708688 .2634142
0.15

.2164037 .2145254 .2088685 .1993639

0.20

0.25



c = 1.0

am = 0.432, bm = 0.32

IE (I))
\' x avo

& \Ey(I) avo
R = 0.96

~
I
~....
~

6X -' ~ o. 0.05 0.10 0.15 0.206
y+,

O.
/e ; I /71·' .08475825 .1721933 .2650833
/., o. o. O.

0.05 u. .08413693 .1709450 .2631958
.07342470 .07280386 .07093586 .06780326

0.10 O. .08227325 .1672015 .2575369
.1491860 .1479444 .1442096 .1379485

--
0.15 o. .07916730 .1609649 .2481148

.2296766 .2278140 .2222123 .2128272
----~

0.20

0.25

6 =0 5 .01709450

Y . I .007093586 I

are ~lose tQ -c1/e &-sl/e' respectively,

and (with am = bm)

(Ex) = Ex (6), (Ey) = Ey (6)

6 6y
c1 Ex(6) (EJx
sl Ey(6) {Ev)

0.1 o. -.1572868 .1603891 .1603891
o. O. o.

0.1 0.05 -.1571291 .1591516 .1591516
-.07825915 .07647937 .07647937

0.1 0.1 -.1566619 .1554348 .1554348
-.1566619 .1554348 .1554348---

O. 0.1 O. O. o.
-.1572868 .1603891 .1603891

(R=0.96)

bm = 0.372
c = 1.00

am = 0.372a = b ..m m

~ = 1.0
x

NOTE:

c = 10. II
am = 4.32 bm = 3. 20.I

(R = 9.6)
If all spatial dimensions scaled simiarly,
fi~ld components change in inverse proportion.

NOTE:



c = 1.0

am = 0.54, bm = 0.40

&
(

E (I)
x avo

(
E (I)
y avo

R = 0.96

~
J
~.
VI

~46 O. 0.05 0.10 0.15 0.20y~,

01/;' .08817417 .1791550 .2758696
o. Ij;;;'/~>/ O. O. D.

O. .08754741 .1778940 .2739579
0.05

.07041504 .06978904 .06790368 .06473560

O. .08566892 .1741152 .2682312
0.10

.1430981 .1418477 .1380827 .1317586

O. .08254335 .1678300 .2587121
0.15

.2203643 .2184923 .2128569 .2033969

0.20

0.25

---



c = 1.0

am = 0.675, bm = 0.50

< (I) )
Ex avo

&(Ex(I) avo

R = 0.96

~
I

N....
Q'I

6

~ O. 0.05 0.10 0.15 0.20

(;j.' . ~ .09377064 .1905914 .2936711
O. /'/',,~;

/1'/'/ O. O. O.

O. .09313038 .1892999 .2917046
0.05

.06582642 .06518739 .06325952 .06000871

O. .09121380 .1854346 .2858210 .3958613

0.10 .1338328 .1325588 .1287162 .1222394 .1130065

O. .08803280 .1790220 .2760666
0.15

.2062345 .2043330 .1985995 .1889424

.1701007
0.20

.2752079

0.25



(Ex (I) avo

&

c = 1.0
(

E (1)
y avo

am = .45. bm = .30 R = 0.96

.1342431

.2638715
0y = 0.15

for am = 0.3~
bm =0.4~

Ox
~° -.'~ O. 0.05 0.10 0.15 0.20Y ..,

V.·'>:'// .08678270 .1763175 .2714689 .3753420
O.

1/;///2/ O. O. O. o., / ... /.

O. .08615843 .1750623 .2695679 .3727701
0.05

.07162080 .07099716 .06911969 .06596748 .06150147

O. .08428678 .1712995 .2638715* .3650664
0.10

.1455360 .1442898 .1405387 .1342431 .1253285

O. .08117057 .1650369 .2543963 .3522637
0.15

.2240908 .2222234 .2166043 .2071791 .1938453

O. .07681203 .1562823 .2411627 .3344059
0.20

.3097377 .3072494 .2997649 .2872213 .2694986

O.
0.25

.4051049

O.
Ox = 0.100.30 .5130844 , ,

* Reciprocally.

(.oJ
I

N....
-..:a



c = 1.0

am = 0.6, bm = 0.4

( E (I) >x av.

& (E (0)
y avo

R = 0.96

W
I

N...
00

"'- Ox"
-,
'-, O. 0.05 0.10 0.15 0.20 0.25

0y "

0 :09333310 .1896959 .2922732 .4045882 . 530749\J.. /

O. / ../.' .. ' /"
, / ,I' ,

</;'<~/.:-"' ." O. O. O. O. O.

O. .09269409 .1884071 .2903116 .4019141
0.05

.06617088 .06553306 .06360912 .06036584 .05574169

O. .09078108 .1845499 '.2844423 .3939168
0.10

.1345276 .1332559 .1294206 .1229578 .1137490

O. .08760540 .1781492 .2747096 .3806684
0.15

.2072924 .2053938 .1996698 .1900313 .1763119

O. .08318344 .1692421 .2611798 .3622791
0.20

.2867639 .2842471 .2766630 .2639044 .2457711

O.
0.25

.3753668

O.
0.30

.4757151



c = 1.0

am = .75, bm = .50

&

(
£ (I)
x avo

(Ey (I) avo

R = 0.96

W
I

N....
'C

~~
y '~ O. 0.05 0.10 0.15 0.20

/#/1-/ .1025356 .2085882 .3219207 .4468460
O.

O. O. o. o.
O. . 1018637 .2072271 .3198324 .4439670.

0.05
.05938263 .05871287 .05668636 .05324866 .04829958

O. .09985625 .2031605 .3135949* .4353669
0.10

.1208547 .1195230 .1154947 .1086637 .0988322

O. .09653645 .1964388 .3032916 .4211692
0.15

.1865265 .1845480 .1785652 .1684281 .1538542
O. .09194053 .1871404 .2890574 .4015916

0.20
.2585535 .2559484 .2480758 .2347535 .2156390

O.
0.25

.3391666

6x = 0.10

* Reciprocally, for am = 0.501L

bm =0.7sJ

6y = 0.15
.1086632

.3135957



(E (I»
x avo

( E (1)
y avo

c = 1.0

e

R = 0.960.6n

O. 0.05 0.10 0.15 0.20 0.25

/ Ii. / .1/ .07895164 .1603891 .2468736 .3411269 .4461357
' ''/ _ / /o. ~/I//.' // O. o. o. O. o.

U. . 07833419 .1591516 .2450101 .3386261
0.05

.07895164 .07833419 .07647938 .07337896 -.06901632

O. .07647938 .1554348 .2394145 .3311199
0.10

.1603891 .1591516 .1554348 .1492241 .1404894
O. .07337896 .1492241 .2300697 .3185942

0.15
.2468736 .2450101 .2394145 .2300697 .2169382

O. .06901632 .1404894 .2169382 .3010138-r'\
0.20

.3411269 .3386261 .3311199 .3185942 .3010137_~

O.
0.25

.4461357

a = 0.6, b

(,H
I

N
N=

Values below diagonal
recorded by symmetry.



c = 1.0

am = 0.36, bm = 0.36

I E (I l>\ x avo

&(E {O>
y avo

R = 0.96

~
I

N
N-

O. 0.05 0.10 0.15 0.20 0.25

//! ... .07895164 .1603891 .2468736 .3411269 .4461357
O. 1.0 /I ' - ////'/ />~ O. O. O. o. O.

O. .07833419 .1591516
0.05

.07895164 .07833419 .07647937

O. .07647937 .1554348
0.10

.1603891 .1591516 .1554348

O.
0.15

.2468736

O.
0.20

.3411269

O.
0.25

.4461357

Values below diagonal
recorded by symmetry

Va1ues for
a = bm m
are identical to those
for other am = bm (e.g., am = bm = 0.60).



C. Illustrations

To illustrate these image effects--~ ..9.., in relation to the "direct"

field of the beam--we have considered the particular case of a A=l beam with

a=7.5, b=5.0 and f=~a2 b2 =~; 5.590. Such a beam may be typical

of one traversing an A-G focusing structure as adopted for an induction

linear accelerator for a heavy-ion driver in a HIF research program. Curves

are presented graphing Ex vs. x at y = 0 and Ey ~. y for x = 0 when such an

ellipse is situated'centra11y between four hyperbolic grounded conductors

characterized by x2 - y2 = ± c2 with c = 10.

For comparison we also present similar curves for two alternative bound-

ary surfaces:

a concentric circular boundary (R=10.), or

an elliptical boundary that fits snugly (and hence confocally) around

the beam.

One should recognize that in the case in which hyperbolic boundaries

are present, the distinctive feature of the image fields is perhaps not their

magnitudes but rather the pronounced content of third-order terms (arising

from the term c4 r4 cos 48 in the image-field potential). Accordingly,

for a>b, this can result in the image-field contribution to Ey(I),x=O

remaining quite small for all Ixl ~ b. Thus, in the present example, by

the time that the contribution of c2 to Ey(I)lx=o has become somewhat sig

nificant (say at y;4 in this example) the contribution of c4 may virtually

cancel the c2 contribution:

Contribution from c2
Contribution from c4

y = 3.75

-0.00484
+0.00438

y = 4.00

-0.00517
+0.00532

with, at these radii, terms of higher order individually contributing amounts

less than 10-4 in magnitude.
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[We recall that the coefficient c2 in the image-field formula is present as

a result of the eccentricity of the ellipse, while a significant value of

c4 will occur even when a/b=l (as a result of the 4-fold character of the

boundary structure presented by the hyperbolic surfaces.)]

A circular boundary concentrically surrounding as elliptical beam also

gives rise to non-linear image fields, but such effects appear to be less

dramatic--and indeed in the example treated here the image fields are seen

to be rather weak. The image fields resulting from the confocal elliptical

boundary (that in our example snugly surrounds the beam) appear to be rea-

sonably pronounced in magnitude, while being linear. It may be pointed out

that, as Regenstreif has already noted (CERN Report CERN/PS/DL 77-37)* the

image field due to the presence of the surrounding circular chamber reduces

the field arising from the isolated beam in the direction parallel to the

major axis and increases the isolated-beam field in the direction parallel

to the minor axis.

Returning to the case of the elliptical beam centered within the four

hyperbolic boundaries, one will recognize that the cancellation we have

seen to occur between the c2 and c4 - terms in forming Ey(I),x=O is associated

with a corresponding very flat plot of image-field potential vs. y at x=O.

Finally, with respect to the displacement of such a beam, by an amount 0

along the x axis, we present here a curve of relevant fields that then arise

[Ex (0, 0) and (Ex) av.] and that exhibit some non-linear character as a

function of o.

* Final reference cited in our Appendix C.
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IMAGE -FIELD POTENTIAL, with y = O.
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10.9.8.7.6.5.

IMAGE-FIELD POTENTIAL at x = o.
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V. SUMMARY

The problem considered was an evaluation of the 20 image field* that

arises from an elliptical charge distribution situated within four hyperbolic

surfaces x2 - y2 = ± c2. The principal axes of the ellipse (semi-axes

a &b) are taken to be parallel to the x and y axes of the co-ordinate system,

but the semi-axis in the x direction (~) need not necessarily be greater than

that in the y direction (Q). The charge density throughout the ellipse is

regarded as constant, with an overall linear density A = +1 esu/cm and with

results expressed in un-rationalized cgs electrostatic units. The elliptical

charge distribution may be either centrally located between the four hyper

bolic surfaces, or displaced from the center by a distances ox' 0y along

the x and y axes. [Note: The effect of a displacement exclusively along the

y-axis is readily inferrable from results obtained for an x-axis displacement

with the ratio alb inverted.]

Aided by some preliminary reformulation of this problem through the

use of some conformal transformations discussed in Appendices, the problem

just posed has been solved computationally (Program GBIMG or GB4MG) to provide

the image-field potential (as well as the approximate total--image + direct-

potential) at any field point (x, y) situated within the circle r=c, and

numerical finite-differences evaluations of -grad V would provide one means

of obtaining the corresponding electric fields. Alternatively, however, a

loop scan to evaluate potential values at a sequence of points equally

spaced around a circle provides values that the program then (optionally)

has been designed to analysize into a truncated trigonometric series for

* The term "image ll here refers to the surface distribution of charge induced

on the surrounding conductors.
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the image-field potential in the form

V(I)
= c

o
+ 17

k~l
r k 18

ck (c- ) cos k6 + g
k=l

--from which image fields can be obtained by evaluating the negative gradient

of this expression. The same coefficients as are generated for this trig

nometric development then also (optionally) can be employed to evaluate both

the image field at the centroid of the beam (at 0 , c ) and the average fieldx y

(obtained by Gaussian integration over the area of the possibly displaced

beam)-- as may be of interest in connection with the dynamical movement of

the beam as-a-whole.

Results obtained in many runs (with different values for the various

relevant parameters) have been recorded in a number of Tables and several

graphs have been drawn to illustrate such results. A most distinctive property

of the image field for this configuration is the pronounced contribution of

a c4 (~)4 cos 48 term in the associated image-field potential function (r<c)

and the consequent third-order non-linearily in the components of the image field

itself. Thus for a centrally-located circular beam (independent of the size of

a(=b) relative to c) one finds the image-field potential to be in excellent agreement

with

(1) TI
2 (r)4 7TI

4
V = const. - A[~ e cos 46 +~ (~)8 cos 86 + ...],

as predicted for this case by Lloyd Smith. (4) [Note eccentricity of the ellipse

can give rise to coefficients c2 etc., and a displacement to coefficients

cl ' sl etc., but coefficients c4 etc. can always be expected as a consequence

of the 4-fold character of the boundary surfaces.]
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The results obtained for image fields (or for total--direct plus image-

fields) that would act on individual particles of the beam in the present

configuration have been compared (or contrasted) with the corresponding fields

that would arise from a few other boundary configurations that have been

examined in the past. As stated previously, the distinctive feature of the

configuration examined here appears to be the pronounced non-linearity--

say of Ex(I)ly=o vs. x (as is particularly noticeable for a>b, when c2 and c4

terms add in forming Ex rather than effect some considerable cancellation).

It will be recognized that the results presented here lack significance

to some extent in that the assumed constant density of charge throughout an

elliptical beam may not represent a truly stationary distribution of charge

in view of the special dynamical effects that may arise from non-linear image

forces acting on the particles of the beam. We are not at this time in a position

to comment further concerning the dynamical consequences of the non-linear

forces whose existance has been emphasized here (perhaps also, in some applications,

with a distinctive AG or non-AG character) and certainly not concerning the

extent to which the assumed constant density distribution will differ significantly

from one that has a stationary character. It may, however, be of interest to

suggest that, as G. Lambertson has kindly commented, the non-linearities

introduced by the 4-fold character of the hyperbolic boundary structure consider

ed here might be reduced or suppressed by use of a more circular structure

(perhaps composed of many isolated electrodes) onto which appropriate poten

tials could be individually applied to create, when desired, a suitable (~,

quadrupole) applied electric field.

Finally, for possible practical use (or for approximate dynamical computations)

we have undertaken to provide some approximate handy formulas to describe in

broad terms the salient results of the present work--thus (with A=l statcoulombl

cm):
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For a Centered Beam:

c2 ; -0.98 (a~) 10910 (%)
c

C4 = -0.2056

- ab a
c6 = -0.16 (""'2) 10910 (1))

c

C8 :: -0.0296

c10 :: -0.039 (~) 10910 (~)
c

C
12

:: -0.0051,

where 10910 denotes the logarithm to the base 10. Similarly

For a Beam Displaced only in the x Direction:

~ [ (ab) (a OVc1 - -1.6 1.0 + 0.48 ~ 10910 1»)] ~

Ex(I) (°x' 0) :: 1. 6 [1. 0 + 1. 68 (~) log1a (%)] ~ ,
c c

<Ex (I) >avo :: 1.6 [1.0 + 3.94 (~) 10910 (~)]o~ ,
c c

where we may be overlooking, however, non-linear dependencies on Ox that could

be significant for sufficiently great values of 0x/c.* Also, more generally,

For a Beam Displaced by ox' 0y:

<E/I) avo - ~ [2 Al (oCX) + 4 A2 (:X)3 + 2 A5 (oCX) (1)2]

1 ° ° ° °[2 A4 (...1
c

) + 4 A
7

(2)3 + 2 A (2)2 (.1)]
c c 5 c c

* See. however. alternative (more extended) aooroximate exoressions proposed

immediately below for (Ex(I) avo and(Ey(I) avo for cases in which both

Ox and 0y may be non-zero.
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where

A1 =0.785 + 3 ~ 10910 ~
c ~

ab a
A4 :: 0.785 - 3 ~ 10910 b

c ~

A2 :: 0.834 + 3 a~ 10910 ~
c ~

ab a
A7 :: 0.834 - 3 ~ 10910 b

c ~

( ab a)2A5 :: -[2.4864 + 6.5 ~ 10910 b ].
c .
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1. L. J. Laslett, "On Intensity Limitations Imposed by Transverse Space-

Change Effects in Circular Particle Acceleration," ~ Proc. 1963 Summer
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Energies (J. W. Bittner, ED.), pp. 324 - 367 (BNL 7534, Brookhaven

National Lab., Upton, Long Island N.Y.; 1963).

2. L. Jackson Laslett, "Electrostatic and Magnetostatic Image-Field

Coefficients", Proc. VII Internat. Conf. High Energy Accelerators

(Yerevan-Tsahkadzor, 1969), ~ II, pp. 362 - 375 (Acad. Sci. Armenian

SSR, Yerevan; 1970).

3. If one wishes to interpert the results presented in this note in terms

of MKS-C (SI) units, one may regard the results as applying to a charge

density of 1 coulomb/meter, employ meters as distance units throughout,

and divide reported values of potential (or field-strength) by 4TI€ too
obtain results in volts (or volts/meter).

[ 1_ = ~o c2 = 10-7 c2 = 8.987 x 109
4TIE lIT 554

o
4TI€

o

4. Lloyd Smith (private communication) has kindly provided, as a result of

analytic evaluation of the image-field potential of a unit line charge

centrally situated between the hyperbolic electrodes (x2 _ y2 = ± c2),

the expression

V(I) = Const. -A [
l( 1: (_l)n) (4 1 (_l)n r 8
4 n=o (n+l)2 c) cos 48 + 32 (n~o (n+l)4) (c) cos 8e + ."

=Const. -A [~~ (z)~ cos 46 + ~;~40 (Z)B cos B6 + ... ] ,
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so that (for example)

E(I) I =l [1T
2

(xor Y)3
x or y c 12 c

y=O
or x=O

~ ~ [0.822467 (x ": Y)3 + 0.23676- eX o~ Y)7 + ... ]
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Our computational program for a small, almost circular, beam (with

~=l), centered at the origin (a = 0.11 c, b = 0.10 c, and 8 = 8 =0)x y

gives results for which the 48 and 8e terms in V(I) imply

(~ agreement with Dr. Smith's results for the limiting case of a centered

beam), while harmonic contributions to V(I) other than those of the type

4n8 have been seen to tend to zero as the (centered) beam becomes small

in its physical dimensions. This illustrates a case in which the 4-fold

symmetry of the boundary introduces dominant non-linear terms into the image

fields that act on individual particles of the beam.

5. Within an elliptical beam (with .\=1), of constant charge density throughout its

cross-section, one expects the "direct" self field to be (6) the linear

field noted below:

Along the x axis:

- 4 xEx - a(a+b)

Along the y axis:

E =4~
y b(a+b)

(e.s.u.),

(e.s.u.).

6. L. C. Teng, "Transverse Space-Change Effects ll
, ANLAD-59 (Argonne National

Laboratory, Argonne, Ill.; February 1, 1963). See also early papers cited

in Ref. 1.

3-242



APPENDIX A

THE TRANSFORMATION

The starting configuration to be analyzed, and that in a sense serves

as a Green's Function, is that sketched below--in which a unit line charge

(A=l e.s.u.) is situated at a, b within grounded hyperbolic cylinders,
i _y2 = ± c2.

t
y

The solution to this problem will permit, by subsequent integration (in

practice, numerical integration), the evaluation of the electrostatic

potential function for a charged beam situated within this set of hyperbolic

conducting surfaces.
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The electrostatic problem just posed can be taken to have the solution

provided by one-fourth of the sum of the solutions to the four problems

presented by the four sketches that follow:

~=-, "=1

CASE IA

). =-1
•
•

~= ,
4t (a.,):)

• (~,O)

• %--

CASE IB t
1J

(O,~)

A=I
A:.I a.tCa) b)

• •
• • X ----

A,=-I ~=-I
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CAS E I I

~=t

A= I at(A,J::,)
("<')0)• •

• • x--
~=I "-= I

CASE III

).= I A=-I
x--••

,,= I
i'= -I tit (4, b)

• • (..e,O)
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In these several cases the x and y axes become either equipotential

surfaces (V=O) or stream lines, as follows:

CASE

IA

IB

II

III

x-axis

Stream Line

V=O.

Stream Line

V=O.

y-axis

V=O.

Stream Line

Stream Line

V=O.

We accordingly may analysize each of these individual cases by first applying

a conformal transformation (or transformations) applicable directly in

each case to the first quadrant.* We note, moreover, that Case IB becomes

identical, with respect to the potential function, to Case IA if the source

co-ordinates a, b are interchanged and if the field-point co-ordinates x, y also

are interchanged.

We now continue by first examining Case II, for which both co-ordinate

axes constitute stream lines.

*Solutions obtained for situations in which both the source point and the

field point lie in the first quadrant can subsequently be so re-interpreted

to account for situations in which one or both of these points may lie in

any other quadrant.
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y" = 2 x y / c2

to obtain in the z" plane the situation sketched immediately below, in

which the full line segment -1 < x" < 1, y" = a constitutes a stream

1i ne:

.
o
II

> A. =I.'

.
o
It
>

Equivalent to this situation, of course, is the extension shown below,

•
- - - .. - - - (I) 0)

o
">

(-1,0)

A= I
•

o
">

)..,=1

in which (through inclusion of the second line charge, below the dashed line)

the dashed line automatically constitutes a stream line.
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The problem of a single unit line charge situated between a pair of

parallel conducting plates is a familiar one (Appendix B), so, with refer

ence to the preceding sketch. we may apply the result of that case (by

superposition of results for unit line charges at a~, b~ and at a~ , -b~,

with a field point at x~, y~) to obtain

[ 1n
Cosh I (y~ - b~) Tf (~ ~)- cos '2 x - a

VII = -
Cosh I (y~ - b~ ) + cos I (x~ + a~)

Cosh ;. (y~ + b~) 7T ( ~ - a~) ]- cos '2 x
+ ln

Cosh ~ (y~ + b~) + cos I (x~ + a~)

where

y~ = 2 x y / c2

Although this result for Case II has been derived for source and field

points in Quadrant I of the original z plane, it is evident from the

symmetry of the original sketch describing this case that a reversal

of sign of anyone or more of the quantities a, b, x, or y would affect

neither the magnitude nor sign of the potential function VII for this Case

II. We accordingly, for this evaluation, may perform the transformation

from unprimed to single-primed variables by use of lal, Ibl, lxi, and Iyl

-- and then evaluate VII through use of the formula presented (in terms of

primed variables) above.
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CASE I II:

The situation designated as Case III may be treated by again introducing

the transformation z~ = (z/c)2 for transformation of the first quadrant

of the z plane. In this case, however, the full line segment -1 < x~ < 1,

y~ = 0 is to be regarded as characterized by V=O. -- as indicated below:

.
o
II
>

.
o
II
:>

A = I
•

or, equivalently,

o
II
':> ~=I•

I
I .o
">

(-1,0) - - - -.- - - - ( ,) 0)

•
A= -I

where, in this latest diagram, the introduction of the line charge A = -1

below the dashed line automatically results in this dashed line assuming

the potential value V=O.
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Accordingly, for this Case III, we again may make the transformation

from unprimed to single-primed variables (taking the former with positive

values, as if they were in the first quadrant of the z plane) and then make

use of the known results for a line charge between parallel conducting

plates. In this instance, however, we note the assignment of the negative

value A = -1 to the line charge at a', -b' and write

VIII = - [In
Cosh ~ (y' - b') - cos .~ (x' - a'), 2 2

Cosh! (y' - b') + cos ¥(x' + a')

Cosh ~ (y~ + b~) ~cos i (x~ - a') ]
- 1n

Cosh ¥(y' + b') + cos i (x' + a~) .

With VIII evaluated through use of primed variables derived from lal, Ibl,

lxi, and IYI, inspection of the original z-plane sketch for Case III indi

cates that each change of sign of a, b, x, or y should imply a sign reversal

of VIII' With VIII orginally evaluated as indicated above, we then append

the instruction that IF a·x·b·y < 0, then a sign reversal of VIII is to be

imposed.



CASE IA.

For Case IA we once again may transform from lal, Ibl, lxi, Iyl to

the single-primed variables in the manner indicated previously--now resulting

in the boundary-value problem sketched below:

o
II
>

(-',0)
v=o

d
">

IYL A=f
X' • (I 0)

(0.0) ,

z~ plane

in which the left-hand portion of the x~ axis (-l<x~<O) is to be at zero

potential, while the right-hand portion (O<x~<l) constitutes a stream line.

A sequence of two additional transformations now serves, first, to

straighten out the 90° corners, and then, second, to bend upward again the

portions of the boundary that are at zero potential. Thus, following the

transformation to the single-prime variables, we perform the Schwartz-

Christoffel transformation

i·~· ,

II • 7T ~
Z = Sln "2 z

XII = sin;' x~ Cosh;' y~

yll = cos;' x~ Sinh ~ y~

(i)

followed by an inversely somewhat similar Schwartz-Christoffel transformation

Z III = .?. sin-1 (2z II -1)
7T

[or, equivalently, z" = 1 + s~n l z"J
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The results of these additional transformations, (i) &(ii), then are

as sketched below:

)1=0.

)I. =I
•

Y=o.
Zll plane

and

o
11
>

I
I

Q
It

':>

A=I
•

Zlll plane

(-1,0) (1,0)

The resulting problem, as presented in the Zlll plane, is thus seen to

be identical to that presented in the z~ plane of Case II. For the present

Case lA, then, we accordingly write

fn
Cosh ~ (y UI - bill ) - cos ~ (XIII - a III )

VIA =
2 2-

Cosh ¥(ylll - bill ) + cos ~ (x III + a III )

2

Cos h 2!. (y /II + bHI ) - cos ¥- (x III - a III ) ]+ ln 2
Cosh ~ (y III + bill) + cos ~ (x III + YIII )

2 2

For z-plane values such that a·x < a the result so computed for VIA should

be reversed in sign.
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Case lB.

As was noted earlier, the problem posed by Case IB becomes identical

to that of Case IA if we interchange the x-plane values of a with b and

of x with y. For Case IB, then, we accordingly first obtain new values for

the single-prime variables

y' = 2 Ixyl / c2 b~ = 2 labl / c2

and then, with these single-prime variables, proceed through the same

succeeding transformations as before to obtain new values of the corresponding

triple-prime variables. With these new triple-prime variables, one next

evaluates VIB through substitution into the formula given previously for

VIA and then reverses the sign of the result if the original z-plane co

ordinates are such that b . Y < o.

SUMMARY

The total potential of the single unit line charge in the problem

originally posed (A = 1. e.s.u., at a, b) then is given by

The associated image-field potential is then obtained by subtracting the

"direct" potential--specifically by forming*
2 2

v(I) = V(T) + ln (x - a) + (y - b)
2 •

c

*V(I) as so formed clearly has been assigned an arbitrary additive constant

to its value. The subtraction procedure, as defined, also clearly will be

inoperative if the field-point and source point coincide.
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APPENDIX B

POTENTIAL OF A LINE CHARGE ?ARALLEL TO,

AND BETWEEN, TWO PARALLEL GROUNDED CONDUCTING PLATES

For parallel conducting planes at y = ± h and a line charge A,(c.g.s.

) t th t f t · ~ n (z + i h) .e.s.u. a x = xl' Y = Yl' e rans orma ,on z = exp 2h carr,es

the conducting planes to the x~ axis of the z~ plane. The points z = ± i h

(x = 0, Y = ± h) lie at z~ = + 1. The source point goes to z~-plane co

ordinates -e nXl/2h sin nYl , e nx l /2h cos nYl , its image then becomes
2h ~

-e nx l /2h sin nYl , -e nX,J2h cos nyl , and the field point becomes
~ 2h

e nx/2h s,'n ~ nx/2h cos ~ ,·n th,·s ~ 1- 2h ' e 2h z pane.

t
h

t
h__ --..J _

The potential function then becomes

* The transformation employed in this Appendix was introduced in Appendix B,
(pp. 352-353) of L. J. Laslett, liOn Intensity Limitations Imposed by
Transverse Space - Charge Effects in Circular Particle Accelerators," ~
Proc. 1963 Summer Study on Storage Rings, Accelerators and Experimentation
at super-High Energies (J. W. Bittner, Ed.), pp. 324-367 (BNL 7534, Brook-
haven National Lab., Upton, Long Island, N.Y.; (1963). .
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and after some algebraic manipulation is found to be expressible as

1T (x - Xl) 1T (y - Y1)

]V = -A 1nrOSh

•

2h - cos 2h
(x - xl) 1T (y + Yl)

Cosh 2h + cos 2h

With a re-orientation of the diagram, to become

J\
•

1J t (X"lJ,)
.-.?C

h~h
"I

the result may be written

It is this last form of which we have made use in Appendix A of the present

work, with allowances of diJferences in notation and with recognition of

the fact that (in these applications) more than one line charge may need

be considered present.
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APPENDIX C

IMAGE FIELDS FROM AN ELLIPTICAL BEAM

SURROUNDED BY A CONFOCAL ELLIPTICAL CYLINDER

OR BY A COAXIAL CIRCULAR CYLINDER

For comparison with some of the results presented in the body of the

present report, we summarize here results for cases in which a uniform ellip-

tical beam is surrounded either (l) by a confocal elliptical cylinder or

(2) by a coaxial circular cylinder.

1. Surrounding Confocal Elliptical Cylinder*

We consider here a uniform elliptical beam with semi-axes ~ and ~

(focal length f =~a2 - b2 ) surrounded by a confocal elliptical conducting

cylinder. In this case it is found that the image fields are strictly linear.

The result has been briefly included in some of our early transport computa

tions, but appeared to be of little consequence in that work.

The electrostatic potential problem in this case may be analyzed in

terms of elliptical co-ordinates generated by the transformation

z = x + i y = f Cosh (u + i v),

namely

x = f Cosh u

y = f Sinh u

cos

sin :} .

*E. Regenstreif, CERN / PS / DL 76-4 (C.E.R.N., Geneva, Switzerland; June

1976). L. Jackson Laslett (Lawrence Berkeley Laboratory), unpublished.
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The major and minor semi-axes of the beam boundary then are

a = f Cosh uE and b = f Sinh uE'

where uE refers to the edge of the beam. From the well known* expression

for the "direct" field of such a beam (when isolated),

E (D) = 4A ~x~
x a (a+b)

and E (D) = 4A
y

y
b (a+b) (e.s.u.)

within the beam, we may write the associated direct potential function as

V
(D) x2

= - 2A [a (a+b)
y2

+ b (a+b)] + const.

f2 [ 1 Cosh2 u cos 2 t Sinh2 u .2] + const.- - 2A a+b v + Sln va

f [ Cosh 2u + 1 (1 + cos 2v) + Cosh 2u -1 (1 - cos v)] + canst.- - A a+b 2 Cosh uE 2 Sinh uE

within the beam (u ~ uE ), and correspondingly

f [Sinh 2u
= - A a+b Cosh uE

(1 + cos 2 v) + Sinh 2u
Sinh uE

(1 - cos 2v)]

at the boundary. This direct internal potential and normal derivative may

be matched to a harmonic external direct potential function

( ) u -2u uEV D = _ A a~b [e E cos 2v + 2 e . u] + const.

* L. C. Teng, "Transverse Space-Charge Effects II , ANLAD-59 (Argonne National

Laboratory, Argonne, Ill.; February 1, 1963).
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The image field required to make the surrounding elliptical conductor

(u = uw) an equipotential then must be characterized by the supplementary

potential function

v(I) + I- -.L
r uE

Cosh 2u cos 2V]= i e - 2u. w + const.,a+b LCosh 2uw
uE 2u

[2
i 2

+ 1]f e w - y + const.,
= I- a+b Cosh 2uw f2

or simply by

It is noted that this potential implies exclusively linear image fields in

this case.
",

In the special case that the elliptical tube fits snugly around the

beam (u ~ u) V(I) becomeswE'

-UE(since e = Cosh uE - Sinh uE

In this case, then, the image fields become

E (I) =
x

E (I) =
y

+ 41- a-b
a+b

y

a2+b2

To obtain, finally the total space-charge field for this special case,

we add



E (0) = 4A x or E (D) 4A b(i+b)a(a+b) =x y

to obtain

E = 4A Q x and Ey 4A ~ Y (u.::. uE = uw)=x a a2+b 2 b a2+b 2

with V . E= 4A = 4n __A__ = 4np (as required). It was these components ofab nab
space-charge field that were employed in some brief tests of beam transport

and that led to the conclusion that image fields introduced no pronounced

effects in such a configuration as that just discussed.
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2. Surrou~ding Coaxial Circular Cylinder*

With the elliptical beam again characterized by semi-axes a, b and with

the focal length f =~a2 - b2 , the surrounding conducting surface is now

taken to be a co-axial circular cylinder of radius R. In this case the image

field potential at a point r, e can be written conveniently in the multipole

form

v(I) = 21. ln [ 2 (~)2 ] - A n~l c (i)2n (f)2n cos 2ne,n R

where cn = (2n-l)!
22n-l n'i (n+l)!

Thus the image field at points along the x-axis can be written

Ex (I) I y = 0 =
'Ov (I)

'Or Ie = 0

f2n /n-l
= A E 2 n c

n
4 (e.s.u.),

n=l R n

where the cn are as before. The form just shown exhibits most explicity the

occurrence of fields of various harmonic orders. The closed form presented

by Regenstreif gives this same result as

* E. Regenstreif CERN/PS/DL 77-37 (C.E.R.N., Geneva, Switzerland; October

1977). L. Jackson Laslett (Lawrence Berkeley Laboratory), unpublished.
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E (I) I
x y = 0

in our units.

.,
-~ (:~)j

The corresponding forms for the image field along the y axis are

E (I) I = A 1:
Y x = 0 n=l

f2n 2n-l
(_l)n 2n c

n
y

R
4n
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133 CA~. T~~N5(Y.).tDl.Y~1.~P2.YP2.XP3.VP3,C.~4LOl

IF (MALO .Ea. 0 I GO TO ZOO
PRINT 3190 S GO TO 235

•
S SI1"4l1l'S = O.
r SU~IITT :: O.

P~P:~ :jOOO
SU"'S :: O.
S~"1T = o.
= 1(:;IJI

IF ".HE .EO. 11
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FOR~~rl· ·,~11.3,· CJ-S Rr~A!~·,/t

~O~~ATI· ·,2~y,1~~··· E~D OF RUN ···./t
5T;)P
~'O

5v3~J;rINE T~A~SIUO,VO.Ul,V1,U2,V2,J3,V3,C,"ALO)

')ATA P;JT, TOP I
$ 172JcZZ07?32S0:'20551~, 1717S057~c0333447104e I

~:S = 1.IIC·CI
'1 A.. 0 : 0
IF (JO .FO. :l.1 GO T:' 40
IF (VO .~a. 0.1 GO T~ 50
Ul : ~CS·IJO·J:l - V)-VOI
VI = 2. 4RCS-A3S(VO·V)
~V : E(PI P OT·Vl) $ ~Ev = 1./E~ I A~GU = POTaU1
J2 = 0.~4SIN(A~GU)·I:V'~EV)

V2 = o.S-COSI'~GU)·I:V-~EV)

AL = 2.·UZ - 1. I AL5 = ALAAL 1 a~s = :,.4VZ·v2
S = 1. + Z~4IeES-ALSt + (6:S+ALSI4·Z

IF (5 .S;. 0.) GO TO 05
'1A .. J : 1
~ET U~'"

05 55 = S:;TIS)
A~S : ~.S·11. + ALS + 9:5 - SSt

1 = O.S-ISS - 1. + ALS • SfSt
IF (IH::; • .,:.0.1 .:"0. (1'1 .G:. O.t) :;0 TO P
... AL.:J : 1
~ETu~N

07 SH: S)~jlrll

J3 : T)P·A5I~ISccTIA~Slt

IF (AL .S:-. O.t GC TJ 10 1 L:3 = -J3
10 V3 = T:J~·A~O:;ISQ~TI~+1.1 + SH)

~E r J ~ ~I

.. C ~ Z = V1 = O. S '.13 = - 1 •
J1 = -IVO-VO)'~CS

JZ : S!t;(PCT-Ull
6R; : 1. - 2. 4 JZ $ ARGSM: AP.~·A~; • 1.
IF IA .. :;S'" .GE. 0.) GC TO ~5

'1A~:l = 1
~~rJ~\l

.. 5 V3: TOP-ALC':;(AFf; + S1'<T (~RGSlo4tl

~ET PN
;0 ~1: (JO-UO)-~:S s V3: VZ = V1 : O.

J2 : SIN (Oor·Ul t
J3 : rJP·tS!NIZ.·~2 - 1.)
~EfJ~'1

~N:J

SU9")J~I~~ G:T4V(A,3,X.y,Al,e1,~1,Y1,A3,33,Y3,Y3,

lAP3,3°3,yo3,YP3,C,VjJT.~I~G,~ALOt

DATA PJr I 17Z0cZZO~73?SO~Z~~~13 I
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. : ~PIPOT"13~3-YP311 S BI-I'13 = O.S"IE • 1.1l1
: ,PIPOT"I~P3+YP311 t 9HP3 = O.S"(': + 1./EI

- = J( PI PO T" I 93 -v 3 I ) $ CHH3 = O.S"(E + 1.1L I

- = I( Pli'OPic3 +Y3 ) I S CHP3 = O.S"IE + 1./E I

- = j(PIPGT"131-Yll ) ! CH~l = o .5" I c:.: + 1./ll
E = lCPIPO'!'''191 +Y1l1 i CI1Pl = O.S"Ic:.: + 1.1l I
aC"I3 = COSIPQT"IAP3-tP31)
3C~3 = CCSIPJT"IAP3+r a 31)
CC"I3 = CCSIPJT"IA3-(311
CCP3 = C05 I POT" lA 3+l( 3 I I
CC'11 = COSIPOHIA1-.q))
eC a l = COSIPJT"(Al+(II)
::33 = 13HM3-3C~31/1?~'13+eC331

E3I = 13HP3-3l'131/13HP3.3C~31

F3J = I:HH3-C:'131/IC~H3.CCP31

F3I = ICHP3-CC'131/(C~P3+CC~3)

1:"10 IC~'11-C:~II/(CH~I+CCP1)

FlI = ICHP1-C:Hl1/(C~~1+CC~11

P19 = ::30·:31
Pl~ = F3 J" F3!

P2 : FlD-Fl!
P3 = F3:::l/F31

IF 14")1' • L. T• l' • ) "lA = 1 .IP1&.
If (3"Y .IT. C. I Dl~ = 1./P13
IF 14 ".("a·Y .l T • O. I P3 = 1.IP3
IIT:H = -0.25·4.0G(P1D·Pl~·D?·P31

DRJ = I(A-X)"Z + lo-YI"Z) I(C"'2)
1111'1:; = IITOT + HOG(P;))

"
~ETJ~N

EN)
:iU3~)JTINc:.: FO~I~I

~ ») FO~R!::~ 4NAlY~IS OF I'1A:;f-FIElD PCT::NTIAl.
::O!'1I'10'l I COF')U I C. JX. !JY, FADIUS, 113::G, II::':,.,'),

• KASES, ST::P, ~I5tV13~1

CO'1'1oN I GOlU5 I N, 4'1, q ... , UG(12~), wG 112-1
~I"I::'lSION C~(1~), SKI1')
DATA PI, P:H I

S 172162207732~a420551~. 17206220771Z50420551~ I
~OJ = PI/l~O. $ NKASES = 36
IF «ASE5 .GT. NKASf51 ~ETU~N

IF «AS::S .l:. 41 ~ETVRN

(1-1 = (4S::5/2 I K!'1 = K~ - 1 r qK~S:S = 1./KASES
PRINT ~02 I :K(18)=::(C=S(1~=~. , FS~F=l.

":: »> oaTAI'l I:"OU~1:; COEFFICIENTS OF IMAG:: PCT~~r:Dl

DO 100 lS=l,KASES
eKO = :<0 + ~r5AVllSI

Sl(l!l = 51<11\ + FS·VISAVIlSl S FS = -FS
100 :CNf! .... J:

:KO = ~(AS€S"C<O I S(ll~1 = R<AS::S"SK1'
ClRI-.T ~o 3, C<O
IF (~A)IUS .:0. 0.1 qfT JRN
~A3FA: = RAOIUS/C I R~A~FAC = C/~')IUS

DO 250 (S=ltK~ I F = 'F'DFtC"1:"
SU~:iI = SU~:~ = o.
~o 2D~ lS=l,(ASES
AR~ : ~O~"IV3::; • IlS-l.I-;TF"1
SU~:J = SU'1Co • VIS,vllSl·COS«~"A~;1

SU"ISI = SU~SI + IIISAV(lSI·SINI<S·A~~1

200 :oNTI .... JE
C«(:il = 2.-F"~KAS:5"SUMCO
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SKI(5) = '.·.·~KASES·SUHSI

PRINT ~O~, K5, CKI~S). KS. SKIKS)
250 :ONTINU~ I SKIK~': RPADFAC·F·SKIKHI

:»RI"lT ~07, Koi. SKIKOi)
•

DO: = 15QRTI).··Z • ovaaZ»/C • r .. : O.
IF lIDK.N~.O.I.OR.I~Y.N:.O.)1 T~ : ArANZlDY.'Y)
~YD:~ = ~XDEL = O. IF: 1.
:>0 290 L=l.<"!
CO~" : :CSIIL.-1.1 a T,",1 f SIU1: SP4(IL.-l.laTH)
EXJE~ = EXDEL • LaF·lCKIL)·COL~ • 5<IL)aSIL~1

~YJ:L. = EYe: .... LaFa I51<IU+CCL"1 - C<IUaSIL""
I Fl. • ~ o. I( "! I GC T: 2c0
F = FaJOC

260 CONTINJ~

28!J CONTI"'J~

~XD:L. = -E~~:L/C J ~YOEL. = -EY~EL./C

~RI"'T ~10. :(r~L. EYD~L,
PRINT 300 , p~rNT 3!J5 t PEAD 301. a
IF 11 .:0. lofta GC·C :.00 I PRINT 3Dc

~ »> DBTAIN 10~TIJ"'ALlV) C~ECK su~~

DO 350 .S:l.KAS~S ! F: 1.
AR~ = ~JDalV9=~ • lLS-l.)aSTED) I S~~: :KO
)0 300 <S:l.<~ SF: RA)FAC·F
5U~ = SJM.F+lCKIK~)·COSlKsaARG).SKl(s)aSINIK5aAFG')

30 J :ONTI NJ:
P~INT i/Oe. L.S, VISAVILS). S:,)M

3SD :ONTINJE I PR!NT 9CJ I PRINT 90~

+
:,DO:» IU ... T :JZ 0 S H A[ '1 01. Q I If I 0 • ~ a, 1HN) Rff l, ~ N
: >>> INTEG'1HE FI:LO OVU (DISPL.ACED) EL.L IPSE

5U~51 = SU~5( : C.
)0 ~50 J=l,~ J SUMTV = SU~TY = o.
~s = ~~IJI IS: ~GIJI

) 0 :. ~ 0 I: 1 , tj

~T = w;I:1 S T: WGI!) S AP~: PI+lT.l.)
A = D.5+A~alS.l.I·COSlA~GI • OX
3 = 0.5'3~·15.1.)OSI~I~~GI • OV
~O: = 150~TIA·A • aa~I)/C I 'N;: ATANZlB,AI
;Y : ;( : G. IF: 1.
)0 .. 30 L=l,lCof
CO. I"! : :O:;IIL.-lo1aAN~1 S SIL~ = SI~IIL-l,)aANG)

~X : ;( • L+F'ICKIL)'COLH • SKILlaSIL~)

;Y = :1 • L·~·ISKILI'COL~ - CICIL)·5IL")
IF IL .;1. <oil GO TC loza
• = :"'1JC

loza :ONTIt-.W:
.. 30 :ONTINJE

SU~T( : SV~T( • w!a~t

S~~T1 = ~U~TY • WT+tY
-.1) GONTI ~J;

SU~S( = SU~)~ t WS·IS.l.)aSJMTX
SU~)1 = SU~SY • wsal~.l.laSJ~TV.,0 ':DNrINJ~

~XA~~ : -O.25·SU~~~/:

,~YA~~ = -O.25·5UM~V/:

~~I~T iZl, E(AJG. EvtVG
~ETJ~'1

+

iDa FORMAT I' 0'
~D1 .O~~c.r CAlI
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~02 FO~~~T(- -,11,+ V.~G = CKIO)+SU~II~~DIUS/C'-'

CSH--L)+,-(IC«~)-,7H-COSCL-,-TH'+S<CL)-,

S11~+SINCL-T~I),II)

303 FO~~ArC- FCJRlf~ COEFFICIENTS-,ll,
J- :<C D) =-:15,~)

30~ FO~~~TC- eKC·IZ,·) =-t1&.~,· $(C-I2,-) =-r16.6)
305 FO~~4TC- TAeULATE Cr:C< SV~S? -- Y O~ N·)
306 FO~~~T(- -,11,- O~IGINAL COMPUTED ~ALUES-,

i7X,· FJJ~I:~ SJH-,/I
i07 FO~~lrc- ·,25),- S<C-I2,-) =·£1&.5,/)
90~ FO~H~TC- VIC-I2,·' =-~1~.~,

i- SJH =-~1&.~)

,10 FO~~4rc- ·,1,- crM£~:NT FIELD AT D~,DY IS :~ =-,
$E1~.5,-, EY =-E1~.;,/)

3ZO FOR~ATC- INi~G~ATt Fep AVG. FLD,-,
S- CO~ :OH:R:NT FORCE ~:~ UNIT L~~8)~)?·,

i- -- Y OR N+)
,Z1 FO~Hlrc- ·,1,- 4VG ~~AGE FIEL~ ON 3EA~ EX~V =-,

IE1 •• ;,-, EYAV =-rl~.f,/)

ENJ

2ZZZ22ZZZ.2222Z2222.22222222Z.ZZZ22222Z.22222222Z.2222 22222.222222222.22222222 •
222222222.222222222.2222222Z2.222222222.22Z222Z22.222£ 22222.222222?22.22222222 •
2ZZ2ZZZZZ,Z22Z2Z22??22222222.2Z2222ZZ2.22222ZZ22.2222 22?22.222?2?222.22222222 •



222222222.Z22222222.2222222Z2.2222ZZZZ2.22222222Z.222222Z2~.2~ZZ2ZZ22.222222222.

222222222.2c2222222.222222222.ZZ2222222.2Z222222Z.22Z2222Z2.2?2?22222.Z22222222.
222222222.222222222.222222222.222222222.222222222.222222Z22.ZZ22Z222Z.2Z2222222.
222222222.222222222.222222222.222222222.222222222.222222222.Z22Z22222.2222222Z2.

1 2 3 10 5 Ii '7 ~

tUVOSll

I 0.Z5; lJ PAGES: 521 PRINT LIN:S; P~INT~P 12, ~1

8 ILL 8 0 l R 0 W~IT:UPS SUBSET BCYNENS WAS LAST CMAN;:) ~AR 31
~AND300K SJBSET C~lNG~S WAS ~AST CMA~~E1 MAR 03

l~R 2 NO SQUA~E PEGS
YO~ HAVE AN JNPA~~LLELED CPPORTUNITY TO ~EA~ THE PEGS,
8I(Y'S A ::AP:LLA MUSIC MA~TEI;.S. AT A GALA ALL FOOL·S OAY CONC~H AT 300 ;)>4

ON FRI A;)~IL ~ IN T~E ~09 TRtINING ROCM (509/22~~), WME~ TM: PfGS WILL
SING ALL NEW MAHUH, SO"': OF IT T"ANSCRI9ED ESPECIt.LLY FO~ r-'E
~CCASIO!ll. A GOOD TI"E WILL SE HAD BY AL...

A~R 2 ~OOOS CACHE U~

r~E ~DO~S G55 CAC"~ IS NOw ReADY FOR JS:. SEE r~E MRITEU~S 5J3S~T G5S
F~R I!llFJ~"Arl0N. W~ITEUPS SU9SET GS5 WILL B~ U~DATEt ON MO~jtY. '7 APRIL,
T~ INCLJ~E E~A~PLE~ OF USING THE CACHE CONTROL CA Q 9S (fETCHGS. ENTERGS,
A''O UASEGS).

"AR 31 SOURCE LIBRARY HIT LIST
AS ANNOJN::J IN T!"t~ HAPC", lSBD, N~WSLE!'TE=\, '1A!llY °Ol;rr~~S

F~OH THE SOIJ~CE LI~~APY WILL 9~ ~Pl0V:u FR.OM THE PSS T0"10RP~Io/,

AP~IL 1. ANJ PLACE:> ON GSS TAPE 13Z11t. SEt: lf~I~~ltt'S StIBS:T I'I~ I::ltJE'
A~D/O~ TH~ CONSULTANTS FO~ DETAILS.

~AR 06 C~ANGES FOR VA~ USE~S ~F THE ZETA PLOTTER.
~N TUES:lAY, HA~C~ 11, T~:: GRAFPAC 1~IVE~S FOR T~E ZETA ~LJTrE~ J~ VAX
:O'1PUTE~S LaLG AN) LBLH ~ILL BE SrGNIFI:AN~LY MOCI~IlO. lETA TAO~S c~rAT::)

~N L8LG O~ LBLH ON OP AFTEP THIS DATE MUST 9: REA:l O~ BCY WIT!"t THE A~GU~::~T

".B~YVA( J~ fH: C~DE9 CON~~OL CA=\O --
C'OECJ.NF.O.".SKYVAX ••••

PLEASE Dl~ECT ANY OJfSTIONS TO Q::B~IE CA~N. X~8~9.

FEB Z5 NEW FTN~ CO"PILER AVAILABLE fOR TESTING.
A NEW FrN4 CCH~ILEF (FTN~.8, LEVEL 5mel, C~NTAINING HANy ~TN. ~UG FIX~S,

WILL Sf PH IN TM: 7&00 SYSTEM ONLY ON r~JES:lAv "APC"; 4. lf~ ~NC::hJ~AGE'

YOU T~ EST :T IN T1t. M:ANH"E, t.SPECIALLY IF YOU" O"OG~A"S HAll: CAJSED
T..£ CJ~~::NT FTN. TO A~O~T. THE TfST VE~SION IS AVAILAS.E O~ PSS AS FOLL:>WS 

FETCHPS,FTN4,FTNIt.FTN4.
FaSIZE,FTNIt.O.

0L::ASE ~PJ~T 3U:;S TO TM';: CONSULTANTS, 1(59"1, O~ RICHAF) ~"IE)"'AN, )(S2"~.

TJ CALL A CONS'':LTANl CIAL 1I:;;61, (IoH) .. 36-5<:'1 (.~ "Sl-59IH (Frs)
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HIVO~H1

0 XXXX XXX)' XlCX XXl(l( )/ )J.

'I. X X X X l( X X X l(
)')( XX X0: l( l( J( J( )/ X
)l )( X X XXIOO( J( X X
i.~XX X X .( X '(J( XIf '(

a .. 5:'1 D1 • . .DEC'" . D3 A~~ 6D . 1 'Z. 53 . 105101 01

l(l(~X,l((XXAJ(AA

X
X
X

Xl(A)C.(XXIi.J(J(A.

J( .(

XXJ(XHXXXJ(Xl(
J( J(

XXlij(J(1l )/XXX X't'J(JfJ(
Xl(J( )( X X

l(l(( )( Y X
XXI( X X II

Xl(l(l(A( XlCXXXXlfl( '(X'()(

XXXXXl(XXAJ(J(1l XYXlOO'Xl( lOfJ(X
t J( 'f "I
l( ~ II X
l( .( x II
)(OnXXlCxql( ~XX"';O'O" l(XJ(X

lCXXXXl(XlCXJ(i..( XXlO'X't'
J( lC .( X((

r: x J( )(l( X
IC X .( )(<<

XXXXl( lCl'.j(, X'I(XXXX

)( x
'('('('('(YIC-: Hl()(

lC II

X't''I(XlfXXX)(Xl( )'
x
X
X

XlfXXl()().J( )(l(lClf

405 .. 1 01 • T ~UI1 SDlI 'f . C3 A;)~ 30 . 1'Z."~ . ;,,541 01
0 ) lC XXI " x... XlC l( Xn: x )( l('J()' 'IX."'"

'( y X )/ '( 1I X X 'I
) l(X , x x .( l( Xli'll( '11C lOf

" ) ) >- X lC IC X 'I'

.. ) Y'XXX '(lCltXY J(xXXl( l( )( ICH
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~IT~2,12,4000.51000.~5600~.LASLETT

·6;00,NOTA~:S.PSS

FLOOR(3)
lI8COPY(LASl:TT.lI9/~BF.FATTY)

CO~YIINPJr.l~M.lI3,l~.D~C(/~~~)

:<!TUiW.l :OJ.
~~N76(SC~,NL1~000,I=JEC(1

TTY.
lGO(TAOETrY.TAPETTYl
:: JCIT.
:)'4P.
J'1P (13600)
T:~T,TAPErrY.[Y[Q £FROP).
:JC1T.
T:(T.TAo£TTY.ICOMO. ;RPC~J.

FIN.
SESAME.

ORJG~AM FITJ2IINPLT.CUTPUT)
DII'1;NSION 01'13J). DynO). EK(301. :'1'1301
JII'1:~SION U(SI. V15)
JI 1'1; '~ S10 N A( 5 I. f (5. E1. SC ~ ( ~ ... I
JII'1:~SIO~ IF-AYI71

•
CA:'l :PNTTY

•
•
10 "R. I "I T 30 00

~RI"IT 3010 $ CALl DAT4IA~.1.9~.1.:.1)

°RINT 30 11. A!". 9". C
11 ~RINT 3000 $ PFINT 9020 S CALL JATA(KASES.11

IF 1(~~~S.lT.SI .OF. (K~S;S.GT.3011 GO TO 11
PRI NT H 21. I(ASI:.S

•
JO 12 <=1.I<A5'"5
PRINT 3022. <. K • CALL JATA(Vl.l.V2.11
J;(( <l = 1/1 S DY (1<1 = V2
~RI"IT 3023, 1<. K I CALL )ATAllll.1.V2.11
::~«) = Vl • EYI() = V2

12 CONTINJ; S PPINi 3000
13 DRI"IT 3000 J I<M = C

JO 1:. (=l,I<A5::5
PRINT i025, <. i)YIO. ,)\'(1<1. L~()' ::YlO

1~ CONTINJE I PRINT ~OOO

15 PRINT 30~O • CAll 04T411<.1)
IF 1< .::0. 0) GO TO 18
IF ((o( ... T.ll.C~.(I(.GT.I(AS~S)) G'J TJ 15 ! K~ = 1
PRINT 3022, (. K £ CAL~ )ATA(l/l,l.1/2,l)
)~() = Vl • DY(o() = V2
PRINT 3023. (. I( S CALL )AT411/1.1.112.1)
::~(l = Vl • EYII<) = 1/2 • GO TJ 15

1 !l IF (<"1 • N::. DIG C T0 1 3
0RINT 3000 , PPINT l032 I R!AO 30Cl. a
IF (~ .; Q. 1 ~") (; C T:: 10 • PR Hi" 13 000
lO:l< = 1 J PP!NT :;033 s READ ~001. Q

IF I) .EO. 1'1~) LO:>I< = 0
•

~O ~J N=1.5 S [(N.:t = A(~) = O.
'0 30 ~ 1.5 I ~(~.~I = o.

30 :ONTlNJ
40 CONTINJ
•

3-273



~O 100 <=l,KA$ES
OlCS = JI( IQ'"I)X(KI S OYS = oY(O'"OYII()
JIll = ?-DJ(II(\ $ Vl1l = 0,
~121 = ~.'"DlC(KI-DXS • VI21 = O.
JI31 = O. S VI31 = 2.'")YII(I
U(~I = ?'")lC(KI-9YS S V(~I = 2,·)YIKI+JY5
J(51 = O. • VI~I = ~.'"1Y(KI·DYS

DO &0 N=l,~

:(N,&I = 4(NI = 41Nl + UINI'"EJ(KI + ~(NI-fY«J

00 50 '1=N.5
:: ('0', N I = :: IN, 1"1 = E 0 •• '0 t U IN I·U I'" I t 'J I NI • VPH

50 CONTINJE
00 CDNTINJ:

IF « .L T. KASESI GO TO 80
IF IL.OJ< .EO. 01 GC TO eo
DO 65 N=1,S $ pn'H 3035, N, AINI

&5 :ONTINJ: 1 O~I~T 9000
)0 75 N=1,5
DO 70 '1=";,~ $ PFINT Q03~. N, "" ;IN,'11

70 :oNTI,.;JE
75 CONTINJ: $ P~INf 3000
!So CONT I NJ~
100 :ONTINJ:

'"
'"

'"

..
IF DET .Ea.C.1 (,J r: 9H
PRINT H11, 4"1, '31', C

• p~rNT 9000

)0 210 L.=1,5 • IN~ = ~

I F I L. • EO. 31 I NO = ..
IF ( •• EI). ~I INfJ = ::
IF IL. .::0. 51 IN" = 7
PRINT 10 .. 5. IN), t.lL,l)1

210 :ONTINJE $ PPINT ~OJO

IF IA'1 .N~. 9"11 GO TO 250
::13,&1 = ~Il,pl = O.S·I~!l,&1 + ::13,0»
::(5,;1 : ;:12,~1 = 0.5·1::12.61' EH,&"
)0 220 L:l,5 $ IN~ = L
IF (L.. .:Q. 3J :N~ = ~

IF IL .:0. ~I IND = ;
IF (L .Ea. 51 INO : 7
PRINT H .. '.i. IN), [(l.f'

220 CONTINJE 'P~INT 3000..
?50 I)RINT 3000

)0 2'0 (:l,KAS:S
)X5 = )1(1(1"2 soy'.) = Dl'lou2
1)0T'1 : El1.;I':,\Y.S + :12.61"D~$-:ll(S

•• ;13.51'":)1S • '( .. ,:I·JXS.JYS • ~15,pl'":)y5 .. r)y5
F LJ ( = 2.· IE ( .. , 6 I .)YS .2. ·E 12 ~ '" 1·1') JI.. i. : (1 , &I I • J 't ( KI
~L)1 = 2.·I:(~.61·J~St2.·~{5,EI·OY3+~(3.pll·JY(~1

PRINT 1050,D(I(I,CH(KI,EJ(IKI,EY(O(I,o<,FL:)X,rLJy,p::lT"4
2~O :ONTINJ: C p~INr goao..
170 ~RINT 30~0 • CALL ST~TUS(I~tYI

:US.( = 0.~01-F:'OATl!~AYI31l ~ PR!NT 3700. CL'<'~

98D PRI~r 3002 $ pOIN~ l500 I ~:AD ~D01, c
IF (:;) .NE. toiTI GO TC 10
PRINT 3000 $ CALL ~llT: (1,.1 $ P~:~H H03. L
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lJH PRI~T BOO
•
iOOO
iOO 1
lJ002
i003
iOl J
9011

i015
iOZO
90Z1
i022
9023
9025

H3Q
i032
i033

H3S
iOH
30 .. 0
iO.5
9050

lJ500
9700
HIIO
•

•

FO~'1U(· .)
FOR'14 T(A1)
FO~'14TI- -,1.+ +.17(~rl-44+),/)

FO~M4T(- -.ZSY.Al0.11)
FO~M4T(- +.1,· TyPE (FOR RECORD) A. a, " C·)
FO~MAT(- -.1,+ A =+1'15.10.

,- 3 =+1'15.10.· C =-1'15.10./)
FO~~4T(+ 1(+11,+) =+12.+ J(-Il.+) =+12)
FOR~4T(+ TYPE KASfS (GE 5. LE 30)-)
FO~~lT(+ -,60~.I2,+ KAS~S4)

FO~Mt.T(- TYP; ;»)(-12,+) ,. OYC-IZ.-)+I
FOR~4T(· TYPE CA(+Il.-, A £Y(412,-)+)
FO~~AT(- (=+13,+ J~ =4F7.~.- DY =·F7.~,

,. ;( :+1'11.8,+ EY =+Fll.!)
FO~~4T(+ TO CORRfCT, TYPE ( 1NDEY -- OfHEP~!Sr.

FO~MAT(+ PROCf:D WIT~ THESE DATA? -- Y 0 0 ~+)

FO~~lT(+ P~I~T VECTO~ ,. HATQIY ELEM~NT~?-.

s+ -- Y OR N+)
FOR~~T(- ~HS(+!1,-' =-:18.10)
FO~~AT(+ :(+11,+,+11,-) =+~18.10)

FO~MAT(+ DET;~~1NANT :+E18.101
FOR~'T(- -.9x,-A+I1,+ =-tl~,~)

FOR~AT(+ D~ =+F8.~,+ oy =4F~.4.1.

S. :( =-F12.!.· FY =+1'12.8,5)(,+( =+13.
11Z_,+INPUT DATA+,I,
I. F~ =·"12.8,+ Fv =+F1Z.',
S. -P~T =-F13.~,- F~O~ FIT+,/I
FO~~AT(+ HORE )~ T~P~INATE? -- ~ O~ T+'
FOR~AT(+ -.1'11.3," CJ'S REMAIN·./)
FORMAT(- -,25X,18H-·· ~NO OF ~UN ···./)

STO"
::NJ
SU3ROJTINE H'TIN~(~,N.H,DET,IDIH,S:~)

01 HEN SION V( I:l I .. , 11 .S: I( ( 10 pi t1 )
CALL "'ATIN (",N,V(l,~.lI.~,QET,IOIM.SC~,SCt:(l,!),S:I<:(l,I.))

~ET HN
EN)
SU3~)UTIN~ HATIN (A.N.3.H.)ET~R~.I1IM,INOEA,IPIVOT.PIV~T)

: HAT~I. INVERSION wIT~ ACCO~PtNYING SOLUTIO~ OF LINEAP EQJATTONS
:J I l'1; NSION A ( I::J I M. 1 ) • ~ ( I DIM ,1 ) • I ~0(( ( In 1'1, 11 , IP! "C' TIl) .;) I Of ( 1 I
EQJI~A .. ~NC~ (IROW,J~~lf). (ICCLU'~,J:nJ'4), ('''AI(, T, 5"~~)

C I NIT I A~ I ZAT I 0 ~J

,)Er:~"':l,O

!:IO ?O J=l.N
20 IPI~)T(J)=O

!:IO HO I=l,N
C SEA~:H FOR PIVOT tLE~ENT

4I1A(=O,O
00 1115 J=l.N
IF (PIVOTIJ) .fl). 1) GO TO 105
')0 100 (=l,N
IF (IPIVOTI(I-1) ~D, 100. 7~D

!O IF USSIA'1At) .Gr. AESlIdJ,K)1I GO TO 100
IRJ~=J

ICO~L.J"l=1(

AI1A~=A(J,I()

100 CONTINiJE
lH CONrINJ~
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IF IAl1A( .EQ. 0.0) GO TO 500
IPIVJTI!COLUM)=IPIVOTIICOLUH)+l

C INrE~CHANGE ~CwS TO PUT PIVOT ELEH~~T O~ Dl~GO~~L

IF II QJil .f Q. I COLUM) GO TO 260
DEE~'1=-OET::~"

:10 200 ~=l,N

SWA:l=AIIROil,Ll
AIIROw,L )=A IICJLUM,Ll

ZOO AI1:OLJH,L)=SwAP
IF 1'1 .LE. 01 ~O TO 2:0
JO Z50 L=l,'1
SWA:l=3IIROIol,L)
3IIROw,L)=aIICOLU~,L)

250 3IICJLJH,L)=SWAP
2?0 INO~(II,l)=I~OIoj

INJ£(II,Z)=I:J~UM

PIVOTII)=AIICOLUH,ICCLU'1)
3ETE~H=DETEQ'1·~IVCTII)

aIVIJ: PIVOT POW ev ~IVCT EL[~[NT

AII:OLJM,ICOLUH)=1.0
:10 350 L=l,N

350 AII:OLJM,L)=AIICCLU~,l)'P!VOTII)

IF 1'1 ,Lr. 0) ~O TO 380
30 370 L=l,~

370 3(I:JLJM,L)=3IICOLU~,L)'~IVOTIII

C ~EOJ:E NON-PIVOT ROW~

3!0 )0 550 L1=1.N
IF III .fQ. I~:lLUM) ~O TO 550
T=AILt,ICOLUH)
A(1.1, I:nU'1)=o.u
:10 ltH L=l,N

.30 AILl, Ll =4 111,Ll-A IICClUM,UaT
IF 1'1 .Lf. D) ~O TO ~50

)0 SOD .. =1,1'1
~~a 3IL~,L)=6ILl,~1-9IICDlU~,L)·T

550 :ONTINJ:
C INT:~:HA NGE :OLLIMNS

'JO 71C 1=1,101
1.='H1-1
IF IIN;)£).(L,ll .fO. 1NOEXIL,2)) GC TO 7H
JROW=I~:J:\(ILt1)

JCJLJM=IN~E(IL,,)

)0 705 O(=l,~

SWAO)=A«,JQO~)

AI(,J~JW)=A«,JCOLU'1)

Alo(,JCJ~U"')=SWAP

705 CONTINJf
710 :O~TINJ::

7 .. 0 ~EhH~

'DO DEE~~ = O•
•

333333333.333333333.333333333.333333333.333333333.333333333.333533333.33333!333.
333333333.333333~33.333333333.333333333.333333333.333333333.333~33333.33333~333.
333333333.333333333.333333333~333333333.333333333.3333~3333.33i333333.333333333.
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33333jjjj.333333333.333333333.3333333]3.J33333~33.333333333.333331333.333333313.

333333333.333333333.333333333.333333333.133333333.333~333!3.333333333.33333~331.

333333333.333333333.333333333.333333333.3333]333].333333333.333J]3333.333333333.
333333333.333333133.333333333.333333333.33333333].3333]3333.333'33333.33333~333.

1 2 3 ~ 5 5 7 8

~Ivoal1

I 0.24; 6 PA~~S; 30~ PRINT LIN~S' PQINTEq 12, ~~

9 ILL a 0 A R 0 W~IT£UPS SUBSET B~YNENS WAS LAST CHAN~~~ ~AQ 31
HANO~OOK SJeSET C~ANGES WAS LAST CHAN~E) ~A~ 03

A~R Z NO SQUA~[ PEGS
YOU HAV~ A~ JNPA~AL~~Lr~ CPPOQTUNITy TO ~EA~ THE ~EGS,

9~Y'S A CAP~LLA MUSIC HASTE~S, AT A GALA ALL fOOL'S ~AY CONCE~T AT 3 00 p~

ON FRI A~~IL ~ IN T~E 503 TRAINING ROOM 1518/22&5), WHE~ THE PfGS WILL
SING AL. N:W MATERIAL. )OH£ ~f IT TRANSC~IaED ES~CI~LLY FO~ TH~

OCCASION. A ~OOO TI~E WILL BE HAa 8Y ALL.

A~R Z &OOOS CACHE UP
THE 6000S 'SS CACH~ IS NOW READY FOR US~. SEE THE MRIT~U~S 5J3S~T G55
FOR INFJRHATION. NRITEUPS SUBSET GS5 WILL BE UPDATED O~ HO~DAY, 7 APQIL,
TO INCLJJE ~(A~PL:S Of USI~G TH~ CACHE :ONTROL CARDS (FETCHGS, ENTERGS.
AHD E~ASEGS).

MAR 31 SOURCE LIBRARY HIT LIST
AS ANNOJNCED IN T~: HA~CM, 19bO, N~WSLETTE~. MANY RO~TtN~S

FRO~ TH~ SOU~CE LIB~APY WILL BE ~EMOV~D F~O~ THE PSS TO~ORDOW,

APRIL 1, AND PLAC~D ON G55 TAPE 13Z1~. S~~ WRITEUPS SUeSET ANTI~UE

AND/OR T~~ CONSULrA~TS FO~ OETAIL~.

~A~ 16 C~ANGES FOR VAX USERS OF THE ZETA PLOTTE~

ON TU~SOAY, MAqCH 11, T~~ GRAFPAC DRIVE~S FJR THf ZETA ~LOTr~~ O~ VAX
:O~PUTE~S L!LG AN~ LBLM WILL e~ SIGNIF!:A~TLY HODIFIlO. lETA TAPES C~EATE~

O~ LBLG O~ LBLH O~ OR AfT;~ TH!S DATE MUST 9£ FEA~ ~N 8(Y WITH T~E A~GU~;Nr

M-8KYVA( ON TH~ COD£9 CONT~OL Ct~D --
CJOE9,NF_0,MaBKYVAX, •••

PLEASE Dr~~:T ANY QJESTIONS TO DE6aIE CA~N, ~58~9.

FEB 25 N£W FTN~ COMPILER AVAILABLE FOR TESTI~G.

A NEW FTN~ COMPIL~R (FTN~.et LEVEL 508), CONTAINING HANY FTN~ ~U~ FIKES,
~ILL BE PJT ON TH~ 7600 SYST:~ 3NlY ON TJES'AY ~APC~~. ~f E~CJU~A~E

YOJ TJ TEST IT IN T~E MEANTIME. ESPEC!ALLY If YOUR PkOG~A~S HAV~ CAUSED
THE CJR~~NT FTN~ TC A~ORT. THE TEST VERSION IS AVAILA8~: O~ PSS AS fOLLJ~5 

FETCHPS,FTH~,FTN~,FTN~.

F8SIZE,FTN~=a.

PLEAS~ ~EPO~T 3U~S TO THF CONS~LTANTS, (;~81, CR RIC~APJ FFIEO~AN. X5279.

TO CAL~ A CONS~LTANT DIAL X59~1, (~15) ~86-59il O~ ~51-;9~1 IFTS)
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HI- FAN-271

Addendum to HI-FAN-117

liThe Image-Field Potential of a Uniformly Charged Ellipse Situated Between
A Set of Conducting Hyperbolic Surfaces ll

L. Jackson Laslett

March 1985

In an earlier report [HI-FAN-117 (LBID-244), July 1980] we analyzed the

image-field potential that arises from the image charges induced, by a

(possibly displaced) elliptical beam, in a set of 2-D quadrupole electrodes

222
x -y = ±. c

The beam was taken to be of uniform charge density (~=l, in electrostatic

units) and the semi-axes were denoted lIa ll and lib II (for the x and y

directions, respectively).

Computational options (g.g., in version GB4MG, as stored in library

Jackson) included the analysis of this image-field potential into Fourier

components or multi pole coefficients in terms of r,e variables taken with

respect to the origin. Dr. Lloyd Smith has recently expressed an interest,

however, in certain similar multipole coefficients, for the image-field

potential, computed with respect to an r,e origin situated at the center of

the displaced beam. Such coefficients (as well as correct values for image

fields at the beam center) can be readily obtained by only minor

modifications to Program GB4MG viz:

Values of x and y evaluated on line 121 should be augmented
respectively by OX and DY; the DO-LOOP index KH on line 382
should be replaced by 1 (unity); and the quantities OX and DY
should be deleted from the expressions on the respective lines
411 and 412.

Such results for cl ,sl'c3, and s3 moment coefficients are

summarized on the attached Table for a circular beam displaced (i) along the

x-axis or (ii) at 45° to the x-axis.
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c = 10.0

>-. = 1.0

a = 3.0 b = 3.0

W
I
N
-..J
\0

Fourier Coefficients for Image-Field Potential Image Field Components
Displ. About Center of Displaced Beam at Center of Displaced Beam

..... ~. .. _...

6X 6y (1 sl c3 s3 Ex Ey<"
-

0.5 o. -0.07895 o. -0.05165 O. 0.007895 O.

1.0 O. -0.16039 O. -0.10480 O. 0.016039 O.

2.0 o. -0.34113 o. -0.22305 O. 0.034113 O.

3.0 o. -0.56529 O. -0.37657 O. 0.056529 o.

4.0 O. -0.86288 O. -0.61024 o. 0.086288 o.

5.0 O. -1.27931 O. -1.02932 O. 0.127931 O.

0.5 0.5 -0.07833 -0.07833 -0.05173 +0.05173 0.007833 0.007833

1.0 1.0 -0.15543 -0.15543 -0.10537 +0.10537 0.015543 0.015543

2.0 2.0 -0.30101 -0.30101 -0.22542 +0.22542 0.030101 0.030101

3.0 3.0 -0.42706 -0.42706 -0.37133 +0.37133 0.042706 0.042706

4.0 4.0 -0.52477 -0.52477 -0.54644 +0.54644 0.052477 0.052477

5.0 5.0 -0.58777 -0.58777 -0.74303 +0.74303 0.058777 0.058777
.._~_ .. _-
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Charge

Original A
l

-A
l

-A
1

+\
+A

l
-A

1
-A

1

Distance from Field Point

Yl - Y above

2h - Yl - Y above

2h + Yl + Y below

4h - Yl + Y below

4h + Yl ~ Y above

6h - Yl - Y above

6h + Yl + Y below

The upward-directed electric field due to the images alone then is:

E = 2A [ 1 _ 1 + 1 1 + 1 1 + ] (B 4 )
. 1 2h 2~ + 4h + 4h+y

l
-y 6h-y

l
-y - 6~Yl+Y ... . a~mage -Yl -Y LITYl Y -Yl Y LIT

[
Yl + Y Yl - Y Yl + Y

= 4/.. 1 2 2 + 2 2 + 2 2 +
. 4h - (Yl + y) l6h - (Yl - y) 36h - (Yl + y)

Al f
~ ~ L[(Yl + y) + (1/9)(Yl + y) + (1/25)(Yl + y) + ... ]

h

+ [(1/4)(Yl - y) + (1/16)(Yl - y) +

... ] (B.4b)

(B.4c)

"'1 [ -2 -2 -2 -2 -2 -2 ]=~ (yl+y)(l + 3 + 5 + ... ) + (1/4)(yl -y)(1 + 2 + 3 + ... )
h

"'1 [TT
2 a2= -- (y + Y)-- + (y - y)~

h2 1 8 1 2

in agreement with Eq. (B.3).

(B.4d)

(B.4e)

(B.4f)
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Coherent Electromagnetic Effects in High Current Particle Accelerators:
II. Electromagnetic Fields and Resistive Losses*

V. KELVIN NEIL AND DAVID L. JUDD

Lawrence Radiation Laboratory, University of California, Berkeley, California

AND

L. JACKSON LASLETTt

Ames Laboratory, Iowa State University, Ames, Iowa, and Midwestern Universities Research Association, Madison, Wisconsin

(Received October 13, 1960)

Coherent electromagnetic fields arising from an azimuthally modulated beam are considered. The beam is com
pletely enclosed in a toroidal vacuum tank of rectangular cross section and highly conducting walls. Expressions
are given for the image currents arising from low harmonics of the beam circulation frequency. These expressions
are then used to evaluate resistive losses in the walls of the chamber. Expressions are given for fields arising from
harmonics of the revolution frequency high enough that the beam may be in resonance with a characteristic mode
of the vacuum chamber. The results are generalized to provide a description of the electric field in the neighborhood
of a resonance. Numerical examples of resistive losses are given, indicating that these effects will not be serious for
circulating currents of the order of 1 amp. Some properties of high-order Bessel functions, required for a description
of the resonant chamber modes and the energy lost in their excitation, are developed in an appendix.

II. NONRESONANT FIELDS

For the lower-order harmonics, the wall currents are
substantially divergence-free image currents (i.e., un
influenced appreciably by time dependent induced
charges), distributed in such a manner that the normal
component of the magnetic field vanishes at the boundaries.
Since the field configuration will be substantially that
found in a straight pipe of rectangular cross section and
transverse dimensions small in comparison to a wavelength,
the distribution of image currents can be found readily by
methods analogous to those employed in corresponding
two-dimensional electrostatic problems. l Therefore, we
employ a coordinate system (:lJ, y, z=R8) in which the
toroid is straightened.

The current distribution

arising from image currents in the walls of the vacuum
chamber and is largely due to the low harmonics of the
beam circulation frequency. This loss may be calculated
to a good approximation by neglecting the curvature of the
vacuum tank. The second loss is due to wall currents
specifically associated with resonant modes which may be
excited by a high harmonic of the orbital frequency.
Expressions are given for the power dissipated by each
of these effects, and numerical examples are given which
indicate that such losses are negligible in many practical
instances.

Sections II, III, and IV are devoted to determining the
nonresonant fields, resonant fields, and fields near reso
nance, respectively. Section V contains numerical examples
of energy loss, while the Appendixes are devoted to a discus
sion of the properties of the resonant modes.

I. INTRODUCTION

IN most particle accelerators currently in use, the total
number of particles is not sufficiently large to produce

coherent effects that warrant special consideration. As the
number of particles and thus the circulating current in the
machine is increased, some of these accompanying phe
nomena may become troublesome.

In this paper we investigate the electromagnetic fields
arising from the current and charge distributions of a
beam of particles in an accelerator vacuum tank. l In
general, such a beam of high velocity particles will have
an azimuthal variation in density which will give rise to
large coherent electromagnetic fields. It is noted that
these fields contain "resonant" and "nonresonant" parts,
the former arising from a resonant excitation of the cavity
modes at a multiple of the particle circulation frequency.2
These resonant fields are of particular interest because of
the forces they exert on coasting beams, which may
produce instabilities.s This problem will be treated in
Part III of the series, where use will be made of the results
presented here.

The electromagnetic fields associated with the particles
provide a mechanism for loss of energy from the beam.
These losses are of two types. The first is the resistive loss

*This work was done under the auspices of the U. S. Atomic
Energy Commission.

t Now in London with the Office of Naval Research.
1 The treatment given in this paper is somewhat intuitive (and

consequently simple) in its approach, and therefore not as rigorous
as might be desired. A more extensive, rigorous treatment may be
found in V. Kelvin Neil, "A study of some coherent electromagnetic
effects in high-current particle accelerators," (thesis) Lawrence
Radiation Laboratory Report UCRL-9124 (April 26, 1960).

2 The possible existence of resonance is discussed in the Appen
dixes; see also reference 3.

3 C. E. Nielsen, A. M. Sessler, and K. R. Symon, P"oceedings of the
International Conference on High-Energy Accelerators and Instrumen
tation (CERN, Geneva, Switzerland, 1959), pp. 239-252, especially
p. 246.
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I=:E In cosn(8-wot),
n

(2.1)

Reprinted by permission of the American Institute of Physics.
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268 NEIL, JUDD, AND LASLETT

centrally located within a metallic chamber enclosing the
region

-w/2~ x~ w/2, -h/2~ y~ h/2,

gives rise to an image current distribution as follows:
On the top and bottom we have

[

R 7r h
P=7r(Jh - L sech2(2m+l)--

w m 2 W

R 7r W]
+- L sech2(2m+l)-- [L n!Jn

2
],

h m 2 h n
(2.4)

1 [ 7r h
I surf = -- LIn L sech(2m+l)--

w n m 2 W

in which R denotes the radius of the accelerator. If h«w,
the first of the two sums over m distinctly dominates, and
one may write

P:::~7r(Rl:[ieo SeCh2(7rh/W)tdt} ~ n1l n2

R
=(Rl- L n1l n2•. (2.5)

h n

Equation (2.5) could have been obtained directly from
the approximate expression, Eq. (2.3), which in this limit
was given for the surface-current density in the upper
and lower surfaces.

If desired the expressions just derived for the resistive
loss may alternatively be expressed in terms of the Fourier
coefficients of the linear charge density or of the number
of particles per radian at the orbit radius RB. Thus we may
write

Xcos(2m+1)7r:] cosn(O-wot); (2.2a)

and on the sides,

1 [ 7r W
I surf=-- LIn L sech(2m+l)--

h n m 2 h

Xcos(2m+ 1)7r~Icosn(O-wot), (2.2b)

directed azimuthally. For h«w, the expression for the
surface current in the top and bottom boundaries may be
simplified by writing it in the approximate form4,5

IsurP-:!:- ~ ~ I{i eo

sech(7rh/w)t COS(27rx/w)tdt]

Xcosn(O-wot) (2.3)
1 7rX

= -- LIn sech-- cosn(O-wot).
2h n h

A= LAn cosn(O-wot) charge per unit length
n

and

N = L N n cosn(O-wot) particles per radian,
"

(2.6a)

(2.6b)

The nonresonant contribution to the resistive loss is
immediately obtained from Eqs. (2.2a and b) in terms of
the surface resistances appropriate to the frequencies of
the individual harmonics,6 as

by use of the relations

and

(2.7a)

The electromotive force per turn associated with the
resistive loss, furthermore, is given by

(2.8)

(2.9)

(2.10)

(2.7b)

R 7r W][ Nn
2

]+- L sech2(2m+l)-- L n1- ,
h m 2 h n Nt

where Nt denotes the total number of particles in the beam.
Thus the nonresonant resistive loss alternatively may be
expressed conveniently in the forms

or for h«w,

4 W. Grobner and N. Hofreiter, Integraltafel (Springer-Verlag,
Vienna, 1950), Part II, Sec. 335, Eq. (lla), p. 136.

6 The result for the case w/h ---> 00 may also be obtained directly
by reference to a corresponding electrostatic problem treated by
William R. Smythe in his Static and Dynamic Electricity (McGraw
Hill Book Company, Inc., New York, 1950), 2nd ed. Sec. 4.20, p. 85,
for a line charge centrally located between a pair of parallel conducting
plates. From Smythe's result, the current density in the boundary
surfaces becomes

I.urf=-~ ~ I n{~[tan-{tanh;~)]} cosn(O-wot)

1 1rX
= - 2h ~ In sech7Z cosn(O-wot),

as found in our Eq. (2.3). This result also follows from the analysis
by W. K. H. Panofsky and M. Phillips in their Classical Electricity
and Magnetism (Addison Wesley Publishing Company, Inc., Reading,
Massachusetts, 1955), Chap. 3, Sec. 6, p. 45 If.

a The surface resistance is defined as the resistivity p divided by the
skin depth 0. It may be written CR=ni 6h, where the surface resistance
for the fundamental frequency is in mks units,

CR, =p/o, = (/lowop/2)!=/lowoo,j2.

Correspondingly, the skin depth for the fundamental frequency is

01 = (2p//lowo)i.
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ELECTROMAGNETIC FIELDS AND RESISTIVE LOSSES 269

III. FIELDS ASSOCIATED WITH A
RESONANT MODE

so that the power may be written as7

It is well known that in a straight wave guide, all
electromagnetic modes have phase velocities greater than
the velocity of light c. As shown in Appendix I, at any
radius within a toroidal cavity it is possible to find modes
that have, at that radius, azimuthal phase velocities less
than c. Such modes have eigenfrequencies that are very
high harmonics of the beam circulation frequency. It is
therefore possible for an azimuthally modulated beam of
relativistic particles to excite one or more electromagnetic
modes of the chamber.2 The fields of such high-order
modes may be large. The concomitant resistive losses
then warrant separate evaluation, despite the relatively
low magnitudes of the Fourier components responsible for
the excitation of these modes. The curvature of the
chamber is essential for the excitation of the resonant
modes, and these high-order solutions may well show a
radial dependence that differs materially from that of a
simple circular function. It is expedient, therefore, to use
cylindrical polar coordinates (r,O,z) and to consider the
fields expressed in terms of solutions (Z) of Bessel's
equation, with the imposition of boundary condi
tions at r= a, b appropriate to the type of mode under
consideration.

Rather than commencing with a general solution for
the electromagnetic fields excited by the beam and then
extracting a particular resonant term, it is convenient to
employ from the start only the field components that are
associated with the resonant mode of interest. Power will
be supplied to such a mode by the work that the beam
current performs against the longitudinal electric field
Eo. Excitation will be strongest if Eo is precisely out of
phase with the beam current. In the steady state, this
power may be equated to the resistive losses in the chamber
walls. Both the level of the electromagnetic excitation and
the power loss are thereby determined in terms of the
appropriate Fourier component of the beam current. In
what follows, we employ this procedure to obtain expres
sions for the power loss associated with a resonant TE
mode and, independently, for the loss arising from a
resonant TM mode. In each case the results are expressed
in terms of the loss factor Qof the chamber for the particu
lar mode under consideration.

We assume that the beam has a negligible cross-sectional
area and is located at r=RB , z=O. For a resonant mode
of angular frequency wr, the power is given by

p=l I(-Eo)ds=211'RB(-EoI)av. (3.1)
circumference

the subscript B denoting that the derivative IS to be
evaluated at r=RB • The stored energy is

(3.3)

(3.5)

(3.4e)

(3.4f)

(3.4c)

(3.4a)

(3.4d)

(3.4b)

In (dZJ(-EoI)av=-Awr - ,

2 dr B

E.=O.

Z
Bo= -Ank- sinkz cosn(O-wot)

r

Z
E r= - Anwr- coskz sinn (fJ-wot)

r

dZ
B r= - Ak- sinkz sinn(O-wot)

dr

B z =Aq2Z coskz sinn(O-wot)

dZ
Eo= - Awr- coskz cosn(O-wot)

dr

Here Z represents a solution of Bessel's equation,
d/dr[r(dZ/dr)J+[q2r- (n2/r)JZ=O, subject to the Neu
mann boundary conditions [dZ/drJa=[dZ/drJb= 0; q2+k2

=wNc2; k is an odd multiple of 1I'/h; Wr=nwo; and the
phase intentionally has been chosen so that - Eo is in phase
with the current In cosn(fJ-wot).

With these fields, then, we have

For a resonant TE mode within a chamber of inner and
outer radii a and b, one may employ a field configuration
of the form (mks units):

7 It will be noted that the convenience of this form lies in the fact
that it may be used to evaluate P in terms of I (or its Fourier com
ponent In) and Qwithout any special normalization of the fields which
describe the resonant mode of interest.

R B2 [dZ/drJB2
= 211'lJIn2

---- QTE,
(Wr/c)q2h fa brZ2dr

where;; denotes (/lo/€o)!=/loc=1201l'=377 ohms. In cases
for which the annular width of the chamber is small in

(3.2)

The loss factor is defined by

[stored energyJ
Q=w r'------

p
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w=-b-a.

comparison to the diameter (w«2R), this last result may
be written conveniently in the approximate form

The loss factor QTE may also be evaluated8 in the
conventional way from these fields and expressed in terms
of the relevant properties of the characteristic solution Z:

(3.13)

(3.12f)

(3.12e)

(3.12c)

(3.12d)

Z(a)=Z(b)=O.

Z
Ee= -Ank- coskz cosn(O-wot)

r

dZ
E r = -Ak- coskz sinn(O-wot)

dr

E.= -Aq2Z sinkz sinn(O-wot),

With these fields we have

in which the solution Z of Bessel's equation now must
conform to the Dirichlet boundary conditions

(3.9)r=- t(b+a)+ (w/2)u,

where the dimensionless variable u is such that

with

Again some simplification results for w«2R, for which
we have

(3.18)

(3.15)

(3.16)

(3.14)In [ZI(-EeI)av=-Ank - ,
2 R B

which, for w«2R, may be written

'lJ Wr { bh [ a (dZ/dr)a
2
]

QTM=--h 1+- 1+----
4<R C 4q2 b (dZ/drh2

(dZ/drh2 }-l
X ,

fabrZ2dr

Finally, the loss factor QTM may be evaluated8 for this
mode, with the result

and for w«2R,

Accordingly, we may write

and the stored energy is(3.10)

3 (wr/C)3h{ h [n2
( b [z(a)]2)

QTE=- 1+- - 1+---
4<R k2 4q2 b a [Z(b)]2

ifb( a [z(a)]2)J [Z(b)]2 }-l
+- 1+--- .

k2 b [Z(b)]2 fabrZ2dr

[Z( -1)]2 [Z(l)]2
-----C"'.:o:-0.85, "'0.52,

[Z(1)J2 f_ 1lZ2du

[dZ/duJB2
---~"'~O.42.

f_ 1lZ2du

and, for a beam centrally located within the aperture
(at u=O),

where the arguments of Z are now understood to represent
values of the dimensionless variable u.

Under potentially resonant conditions, the required
properties of the characteristic function Z can depend in a
fairly sensitive way on the parameters of the structure
and are best determined by computation. Typical values
(d. reference 8, Table IX) in a resonant situation are

8 L. Jackson Laslett and William Lewish, Ames Laboratory Report
IS-189, Iowa State University, Ames, Iowa, 1960 (unpublished work).

(3.19)

The required properties of the characteristic function Z
are again best determined by computation. Illustrative
values (reference 8, Table VIII) are

(3.12a)

(3.12b)
nwr Z

B r = -A- - sinkz sinn(O-wot)
c2 r

For a resonant TM mode, similarly, one may employ a
field configuration of the form (mks units) :

W r dZ
Be= - A- - sinkz cosn(O-wot)

c2 dr
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and, for a centrally located beam,

(dZ/du)_12
--------''''~0.04,

(dZ/du) 1
2

(dZ/du) 1
2

----"'8.4,
f_11Z2du

this series, we extend the results of Sec. II to obtain
required expressions for the longitudinal electric field.
Under resonant conditions, the longitudinal electric field
of a TE mode is of the form of Eq. (3.4d) in which coeffi
cient A is expressible through use of Eqs. (3.1) and (3.5) as

Here 1] denotes w/2R and the product 1]3n2 is a convenient
quantity to employ in estimating the location of the
resonances that may be excited in a chamber of small
transverse dimensions. Finally, if Eqs. (3.20) and (3.21)
are combined, respectively, with Eqs. (3.8) and (3.17),
the following resistive losses result:

(4.1)A=-----
7rInRBWr[dZjdr]B

By use of Eqs. (3.7) and (4.1), the longitudinal electric
field at resonance is found to be

oN= lVnei(nO-wt) ,

and gives the field generated by a current In cos(nO-wt),
or by tIn[ei(n9-wt)+e-i (n9-wt)]. For the perturbation
analysis of Part III, it is convenient to employ specifically
the complex field associated with a perturbation of the
number of particles per radian, expressed in the form of a
complex number. A perturbation

Eo= i1In-------
(wr/c)q2h fa brZ2dr

Equation (4.2) may be generalized for frequencies near
the resonant frequency by replacing

QTE cos (n()-wrt)

p

wherein we have not distinguished between wand W r ,

except in the arguments of the circular functions and in the
resonant term (W r

2_W2). With this substitution, Eq. (4.2)
may be written

(WNQTE) cos (nO-wt) +(WrL w2) sin(nO-wt)
w2------- _

(Wl-W2)2+ (W r
2/QTE)2

by

or an associated perturbed current

(3.21)
i1 W r

QTM"'- -h.
4CR e

---"'0.79.
f_ 11Z2du

Because q is of the order of nib (or n/R, for w«2R), and
n2(w/2R)3 is normally of the order of unity under resonant
circumstances, it may be seen that the second term in the
denominator of QTM will be very much smaller than unity.
In contrast, the second term in the denominator of QTE
could playa strong or even dominating role. This situation
may be regarded as arising in the following way. In the
TE mode, the B. field component is (for n sufficiently large
to attain resonance) by far the largest of the three com
ponents of B. The associated current, which is in the side
walls only, consequently dominates. For a TM mode, on
the other hand, component B z vanishes and there is no
such dominance as occurs in the TE mode. For the TM
resonance, the factor '!-11Z2du enters in estimating energy
stored and the resistive loss in the upper and lower surfaces.
It thus effectively cancels, in the evaluation of QTM. With
the TE fields, the energy involves this integral and the loss
is determined by the quantities [Z( -1)]2 and [Z(I)]2
which serve to specify the current density 10 associated
with B z at r= a, b.

It is appropriate, therefore, to simplify Eqs. (3.11) and
(3.19), which were applicable only for w«2R, as

i1 (wr/e)3w4 f_ 11Z2du
QTE"'- , (3.20)

16CR R1]3n2 [Z( -1)]2+[Z(I)]2
and

(3.22)
01= ewoNneilnO-wt),

should thus, from Eq. (4.3), have associated with it the
longitudinal field

eRB [dZ/dr]B2
Eo= 2ii1eNn-- w2

nq2h fa brZ2dr
IV. FIELDS NEAR RESONANCE

The stability of an intense beam will be' influenced by
the self-generated electric fields which are enhanced by
proximity to resonance. For the purposes of Part III of

ei(nO-wt)

X (4.4)
(W rL w2)-i(wNQTE)

When w«2R, q=n/R and Eq. (4.4) may be written in the
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somewhat simpler approximate form TABLE 1. Parameters of three accelerators and the nonresonant
energy loss per particle per turn. The circulating current assumed in
the calculation is I c, and fo=wo/21r is the particle circulation fre
quency. The parameters '" and «()2).v characterize the extent of
particles in rf phase.

ei(nO-wo

X (4.5)
(W r

2_W2) -i(wNQTE)

To proceed in a similar way to evaluate the longitudinal
electric field of a TM mode near resonance, we have

<Itt Ie fo oE
Machine (ohms) R/h (amp) (cps) '" «()2).v (ev)

Bevatron 3.14X10-s 50 4 2.5X106 1 3.56
CERN 1.37XlO-s lOS 1 4.8X106 0.1 24.6
Stanford 10 XlO-s 36 1 2.5X107 0.014 21.8

A=P/TrInnkZB (4.6)

from Eqs. (3.1) and (3.14). By use of Eqs. (3.16) and
(4.6), the resonance longitudinal electric field, Eq. (3.12d)
IS

QTMn2k2 ZB2
E8= - 2Mn cos(nO-wrt). (4.7)

(Wr/C)3q2RBh Ja brZ2dr

For frequencies near the resonant frequency, Eq. (4.7) is
generalized in the same manner as employed in connection
with the TE resonance to read

2N
N(0)=-[1- (0/a)2J!,

'IT'ma

in which N is the total number of particles. This distri
bution leads to Fourier coefficients of the current given by

2ewoN 41c
I n=--J1(na)=-Jr(na),

'IT'na na

for n an integral multiple of m. Other Fourier coefficients
are zero. The total circulating current is I c. The azimuthal
distribution of particles in the Stanford storage rings will
be taken as Gaussian. We thus have

The resistivity p of the conducting walls is taken some
what arbitrarily to be 10-4 ohm-em for all numerical
examples. If the true resistivity Pt of the walls is known,
the results in Table I should be altered by a factor 102pt!,

with Pt in ohm-centimeters.
We have calculated the resonant power loss for the

bevatron only, using Eq. (3.22). Inserting values R B =50
ft, b=52 ft, h= 1 ft, and 1'=6 into Eq. (A-18), we find that
resonance can occur for n=650. The ratio w/h is 4 for
this machine, and the resonant energy loss fiE is of the
order of 0.1 ev. For the strong focusing machine, we insert
R B =100 m, b=100.15 m, h=0.1 m, and 1'=25 into Eq.
(A-18), and find that resonance is possible at values of
n",8X 105• This is sufficiently high that the resonant
energy loss is negligible.

For the electron storage rings, we use R B = 142 em,
b= 150 em, h= 5 em, and 1'= 103• Resonance is found to be
possible with the 275th harmonic, but the 275th Fourier
component of the Gaussian distribution is so small that
resonant power losses do not warrant consideration.

APPENDIX I

Azimuthal Phase Velocities and
Possible Resonance

N (0) = (2'1T'(02)av)-! exp[-t02/ (02)avJ,

from which it follows that

The eigenfrequencies Wi of the cavity modes which can
be excited by the beam are given by (Wz/C)2=q2+(p'lT'/h)2

ei (n8-w O

X (~1~
(WrLW2)-i(wNQTM)

V. NUMERICAL EXAMPLES

E8= 'lJIn--------
(W r/C)3q2RBh fabrZ2dr

For a perturbation fiN = N nei (n8-wO, Eq. (4.8) gives the
associated field

ei (n8-wO

X ~~
(Wr2_W2)-i (W r2/QTM)

for w«2R, with q=n/R and k= (2m+1)'IT'/h, we have

We have calculated the nonresonant power loss using
the parameters of the Berkeley Bevatron, a typical strong
focusing machine such as the CERN proton synchrotron,
and the Stanford electron storage rings. Results are given
in Table I. For a proton machine in which the radio
frequency operates on a harmonic m, (m= 1 for the beva
tron, m= 20 for AGS) we take the azimuthal distribution
of particles to be
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with g the characteristic value of Bessel's equation and
p an odd integer. The angular phase velocity is simply
wl/n, and the azimuthal phase velocity ve is wlr/n. We thus
have

Obviously the second term may be made negligibly small
by choosing p= 1 and n»1rr/ h. For p> 1, this term may
still be made small, but only for much larger values of n.
With this term negligibly small, we may have ve<c at any
radius r within the vacuum tank for which gr/n< 1. It is
then possible for a relativistic beam of particles to be
circulating with a velocity coinciding with the phase
velocity of the mode. This is the resonant condition
referred to in this work. We now show that for sufficiently
large n it is possible to satisfy grjn< 1 at any radius within
a toroidal cavity.

For TE modes the appropriate solution of Bessel's
equation is

with the values of q determined by the boundary condition
Zn'(b)=O. In Fig. 1 we have plotted qualitatively the
function In'(X)/Yn'(x) vs x for large values of n. The
maximum of the curve occurs at x=n, and the half-width
is of the order of n t . The lowest characteristic value qo may
be found approximately by selecting qoa< nand
n<qob< j'nl such that

J n'(qoa)jYn'(qoa)=Jn'(qob)jYn'(qob).

The first zero of J n' is designated by jnl', and occurs
approximately at x=n+O.81n1 for large n. The ratio bja
is fixed and determines how far down the curve we must
place our values. Thus in Fig. 1, the portion of the vacuum
tank for which qor/n< 1 holds is represented by the region
of the abscissa between qoa and n.

For fixed bfa, the portion of the vacuum tank for which
qor/n<l does not hold diminishes to zero as n approaches
infinity. This can be seen by noting that go is of the order of
nib and thus qob-goa"-'n(l-ajb). For any bja, it is
possible to choose a value of n such that this quantity is
very much greater than the half-width of the curve, which
is of order nt. We must then place gob very close to its
maximum value jn/, while goa is located far to the left of n.
The portion of the vacuum vessel represented by the
region of the abscissa between nand jn/ therefore becomes
negligibly small, as n increases without limit, compared to
the portion between qoa and n. In the latter portion,
qor/n< 1 holds. More accurate values of go will be found
in Appendix II.

For TM modes, the appropriate solution of Bessel's
equation is

4-7

FIG. 1. Qualitative graph of J,,'(x)jYn'(x) for large n. The radial
aperture of the vacuum tank is represented by the region of the
abscissa between qoa and qob. The ith zero of J n' is jn;', and the ith
zero of Yn' is Yn/.

with the values of g determined by the boundary condition
Zn(b)=O. The lowest characteristic value may be found
approximately by a graphical technique analogous to that
used above. In Fig. 2 we have plotted qualitatively the
function J n(X)/Yn(X) vs x. For large n, the first zero
jnl of J n, occurs approximately at n+1.86nt, while Yn2,
the second zero of Y n, occurs approximately at n+2.54n1.

Hence for large n the first characteristic value for TM
modes always has the limits n+1.86n1<gb<n+2.54n1.

Again, more quantitative evaluation will be found in
Appendix II. We merely wish to point out here that, for
this first TM solution, the condition gr/n< 1 holds for
some portion of the vacuum-tank aperture.

APPENDIX II

High-Order Solutions of Bessel's
Equation for a Narrow Annulus

A. Introduction

The lowest characteristic values g, and the associated
characteristic functions Z(r), of interest here are those
which arise from Bessel's equation when n is large and
when (b-a)/(b+a)«1. As shown in Appendix I, the
lowest characteristic values will be in the neighborhood of
nib. To find whether a resonant electromagnetic mode will
be excited by a modulated beam moving within the
vacuum chamber, however, the characteristic values must
be determined with some accuracy, because of the strong
cancellation involved in computing the quantity
k=[(nwO/C)2_ q2Jt. This quantity assumes values which
are odd multiples of 1r/h in resonant modes. It is accord
ingly appropriate to examine directly8 the characteristic
solutions of Bessel's equation, subject to our particular
boundary conditions, without reference to the customary
Bessel and Neumann functions J nand Y n'
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B. Analysis

It is convenient to introduce the quantity

7J= (b-a)/ (b+a)=w/2Ro

and for the second Neumann solution (TE mode)

(A.Sa)

and, because of the strong cancellation mentioned above,
to define

and
u=2(r-Ro)/w.

(A.1a)

(A.1b)

7r ( 7r 2 7r)Z 0: sin-u-tTJ u sin-u+- cos-u
2 2 7r 2

1 [( 4 ) 7r 2 7r ]--rln2 1+--u2 cos-u+-u sin-u .
7r 7r2 27r 2

(A.Sb)

The region of applicability of the foregoing expressions is
that for which 1'/3n2«1. Of greater significance for our
present purposes, however, are the results for the case
7J3n2> 1, which we discuss below.

Since our interest here is confined to the case 7J«1, it is
convenient to approximate the differential equation for
Zby

In terms of these quantities, we have r=Ro(1 +7Ju), with
-1:::; u:::; 1, and Bessel's equation assumes the form

(A.2)

For 1'/«1, the characteristic values 0 and the charac
teristic functions for this equation may be obtained8 by a
perturbation method provided n is not too large. In this
way we find for the first Neumann solution (TE mode)

d2Z
-+[O+27J3n2u ]Z= O.
du2

(A.6)

Z 0: 1+7J3n2[U- (u3/3)J.

For the first Dirichlet solution (TM mode)

(A.3a)

(A.3b)

Solutions of this approximate equation may then be
written explicitly in terms of Bessel functions of order !.
Specifically, we take

(A.7)

The nature of the characteristic functions can be seen
conveniently from a graph (Fig. 3) of

where ~ denotes 0+ 27J3n2u. The particular ratio of the
coefficients of J~ and J-i is selected to ensure a decreasing
exponential solution to the left of the "classical turning
point," u c= -0/27J3n2. When 7J3n2 is fairly large in com
parison to unity, such a solution will drop sufficiently
rapidly in that region to satisfy the boundary condition
required at u= -1 (i.e., at r= a).

Asymptotic forms for the characteristic values of o·
may then be found immediately by application of the
desired boundary conditions at u= 1, with the aid of
published tables.9 The following estimates of 0, applicable
in cases in which 7J3n2is at least somewhat larger than unity,
are obtained. For the first Neumann solution (TE mode)

(A.8)

(A.9)

(A.10)

0"-' - 27J3n2+ 1.617247}2nt ,

for the first Dirichlet solution (TM mode)

~- 27J3n2+3. 711S17J2nt,

for the second Neumann solution (TE mode)

0"-' - 27J3n2+S.1S6191'/2nt .

(A.4a)

(A.4b)

FIG. 2. Qualitative graph of J n(X)/Yn(x) for large n. The radial
aperture of the vacuum tank is represented by the region of the
abscissa between qa and qb. The ith zero of J n is jni and the ith zero
of Yn is Yni.

9 National Bureau of Standards Computation Laboratory, Tables of
Bessel Functions of Fractional Order (Columbia University Press,
New York, 1948-49), Vols. I and II.
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or

(A.l7)

FIG. 3. Graph of the universal radial function Z(v), as
defined by Eqs. (A.11) and (A.12).

1.6

or

For RB=Ro, however, significant resonances may arise for
values of n sufficiently great that 1]3n2 is in the range 4 to
30. A convenient general expression is obtained from Eq.
(A.14b) by neglecting terms proportional to (1]3n2)i which
appear in Eqs. (A.8) through (A.lO). The first resonance
then is seen to occur for harmonic numbers such that

(A.H)

(A.12)

(A.13)

(A.14a)

Z cx:v![Ji(vJ)+Li(V!)] vs v,

with v defined by the relation

O+21]3n2u
v=---

The various characteristic solutions of interest are then
depicted by this curve, with the u= 1 boundary ap
propriately located at the maximum, zero, or minimum
of the function plotted. When 1]3n2is large, the solutions are
highly localized near u= 1. Their values exceed (l/e)Zmax
only in an interval t:.u of width 1.3S1]-l n- i , 2.391]-l n- i ,

or 3. 121]-ln- i , respectively, for the three characteristic
solutions discussed here. This property, and others useful
in the application of the characteristic solutions, depend
only upon the value of 1]3n2 and may be estimated from
the graph or evaluated computationally.s

C. The Possibility of Resonance

The possibility that an azimuthally modulated beam
may excite a resonant electromagnetic mode of a toroidal
vacuum chamber may be examined by reference to the
equation

where k= (2m+ 1)7r/h. In terms of the average radius of
the chamber, R o and the radius of the particle orbit R B ,

this relation may be written

(A.14b)

For a relativistic beam moving close to the center of
the aperture, (3Ro/RJJ will be close to unity. The ratio
w/h is normally greater than unity. For resonance to
occur, therefore, 0 must be somewhat negative and hence,
1]3n2 would be roughly of order unity for the lower-order
resonant modes. Somewhat lower values of n could give
rise to resonant excitation if RB<Ro, while (3 materially
less than unity will require larger values of n. There is,
in fact, a limiting value for the particle energy below
which resonance will not occur, even with RB=a, as can
be seen from the following argument. If we have

(A.IS)

(A.18a)

D. Salient Properties of the Characteristic Solution

With 1]3n2> 1, the characteristic solutions differ con
siderably from simple circular functions. This fact affects
the coupling between the beam and the electromagnetic
fields and modifies the numerical values of the loss factor
Q. For purposes of this paper it may suffice to state that
computational resultsS indicate

[dZ/du]N{[Z( -1)]2+[Z(I)]2}

we can write

(A.16)

and resonance certainly cannot occur in any mode if we
have

i.e., for
(32/(1-1])2- 1+21]<0,

(32< (1- 21]) (1-1])2,

does not appreciably exceed 0.40 for the first Neumann
solution (for rln2"'3). For the second Neumann solution,
this quantity assumes the value 1r2/8 for 1]3n2 small,
vanishes for 1]3n2"'6, attains a maximum value of approxi
mately 4.0 for 'YJ3n2", 20, and decreases thereafter. The
quantity [dZ/du]N f_ 1lZ2du for the first Neumann
solution has a maximum value of approximately 0.71 at
1]3n2"'4, drops to 0.41 at 1]3n2", 10, and becomes less than
0.13 for 1]3n2~ 20. For the second Neumann solution it is
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-r/4 for rln2 small, vanishes for rln2", 6, attains a maximum
value of approximately 4.5 for 'l)3n2", 20, and decreases
thereafter. Finally, for the first Dirichlet solution, the

4-10

quantity [Z(On/ f_ 1lZ2du drops steadily from a value
unity for rln2 small, to 0.79 for 'l)3n2"'4, 0.37 at 'l)3n2", 10,
and 0.10 at 'l)3n2"'20.
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The electromagnetic interaction of an intense relativistic coasting beam with itself, including the effect of a
nonperfectly conducting vacuum tank, or a quiescent rf cavity, is investigated theoretically. It is shown that the
resonances that may occur between harmonics of the particle circulation frequencies and the electromagnetic
modes of the cavities can lead to a longitudinal instability of the beam. A criterion for stability of the beam against
such longitudinal bunching is obtained as a restriction on the shunt impedance of the rf cavity, or the Q of the
vacuum tank. This criterion contains the energy spread and intensity of the coasting beam, as well as the parameters
of the accelerator. Numerical examples are given which indicate that, in general, the resonances with the vacuum
tank will not cause instabilities, while those with an rf cavity can be prevented from causing instabilities by
choosing the shunt impedance at a sufficiently low but still convenient value.

1. INTRODUCTION

I N the second article (Part II) of this series! it was
shown that a resonance can occur between a beam of

particles in an accelerator and the characteristic electro
magnetic modes of the vacuum tank. It is possible that
this resonance could lead to instabilities in an intense
relativistic coasting beam. This problem is distinguished
from the longitudinal instabilities investigated previously
by a number of authors2,3 because resonance can occur

only with modes characterized by short wavelengths in
the azimuthal direction. Thus we shall be dealing with
perturbation frequencies that are very high harmonics of
the particle circulation frequency.

We shall again take a toroid with rectangular cross
section as a model of the vacuum tank (Fig. 1), neglecting
all windows, discontinuities, and straight sections. The
conductivity of the walls is sufficiently high to allow the
vanishing of the tangential electric field to be used as a
boundary condition in the solution of Maxwell's equations.
Therefore, we can use the results in Part II of this series.

The stability of the coasting beam may also be affected
by the presence of an rf cavity through which the beam
must pass. If the cavity has an eigenfrequency near a
harmonic of the beam circulation frequency, a resonance
condition exists between the beam and the cavity. Such
a resonance generally occurs for a much !owi;r harmonic
than the resonance with the modes of the v'acuum tank.
For purposes of this calculation we assume that the cavity
is not driven externally.

Transverse particle motion wi]] be neglected throughout
this work, except insofar as it contributes to the cross
sectional area of the beam. The density of particles in
the unperturbed beam is taken as being uniform azimuth
ally. In Sec. II we assume an infinitesimal perturbation
that preserves the cross-sectional dimensions of the beam.

FIG, 1. Cutaway view of
toroidal cavity.
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where

Note that the perturbation does not affect the transverse
distribution of particles. Linearizing Eq. (2.3) leads to

(2.6)

(2.7)

a!'vo/aw
lh(n,W,w) = - 21rie(RE.p) . (2.5)

(w-n¢)

The electric field in Eq. (2.5) arises from the charge
and current densities of the perturbation only. The
particle density associated with the perturbation is

Since the unperturbed coasting beam is assumed to be
uniform in azimuth, the unperturbed distribution of
particles in W -ep space may be described by a function
!,V0 (W). We shall consider an infinitesimal perturbation
such that the total distribution function 'lr(ep,W,t) may
be written as

It is then possible to solve the linearized one-dimensional
Vlasov equation to obtain a dispersion relation that gives
the allowed values of the perturbation frequency. This
dispersion relation contains the azimuthal electric field
generated by the perturbation, and in Sec. III convenient
expressions are cited for this component of the electric
field, using results from Part II of this series.

Section IV is devoted to a discussion of the dispersion
relation. A criterion for stability is derived that places
an upper limit on the quality factor Q of the resonant
mode of the vacuum tank. If the beam is near a resonance
with the rf cavity, this criterion can be expressed as an
upper limit on the input impedance of the cavity. These
criteria contain the total number of particles in the
machine as well as the energy spread of the coasting
beam. Numerical estimates using the parameters of two
quite different accelerators are given in Sec. V and in
dicate that instabilities arising from excitation of vacuum
tank modes will not, in general, be a serious problem.
Instabilities induced by an rf cavity, on the other hand,
may place significant upper limits on the input impedance
of rf cavities used in beam stacking schemes.

II. DISPERSION RELATION
and the associated azimuthal electric field at the beam
center may be written as

It will be convenient in what follows to introduce the
action variable W, which is defined by

Here E is the energy of the particle andf the instantaneous
circulation frequency of the particle. The variable W is
canonically conjugate to the angle variable ep describing
the particle's position in azimuth. In the absence of an
applied radio-frequency voltage, the equations of motion
are given by

(2.8)

The quantity € thus defined will be investigated in the
next section. If we insert Eq. (2.8) into Eq. (2.5) and use
Eq. (2.7), the condition for a solution to the Vlasov
equation becomes

1= - 21rie€ f d!,Vo dW . (2.9)
dW (w-n¢)

The particular dependence of!,Vo upon W is not important
as long as dif;o/dW has no discontinuities. A completely
realistic distribution function would necessarily vanish
for values of W corresponding to particles moving faster
than the velocity of light. For convenience, however, we
shall take a Lorentz (resonance) line shape for !,VO and set

(2.1)

(2.2)
¢=27rf·

W=21reRE.p
and

This function falls off as W-2 for large values of W, and
this behavior should not appreciably affect the results of
the calculation. In Eq. (2.10), N is the total number of
particles circulating in the machine. The distribution is
centered about the value W = W o and has a characteristic
width AW. The integral in Eq. (2.9) may be evaluated
by integration along the W axis, if we assume that w has a
small positive imaginary part,3 and we use the relation

The effective azimuthal electric field is designated by E.p.
We may denote the distribution function for particles

in synchrotron phase space by 'lr(W,ep,t), and it can then
be shown3 that 'lr satisfies the one-dimensional Vlasov
equation,

in the well-justified approximation of ignoring collisions
between particles. In Eq. (2.3), (RE.p) involves the
longitudinal electric field averaged over the beam cross
section. For the investigation described here, we may
safely replace this average by the orbit radius times the
electric field at the center of the beam.

(2.10)
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One obtains

f
dy;o dW

dW (w-n¢)

nkN 1

27r (w-nwo+ir)2'
(2.11)

iew.,(,,} (ZclQc)NneiCn",-wt)
(rE"')=------

27rn(wl-w2-iwr2/Qc)

It follows immediately that

(4.4)

(3.5)

(4.2)

(3.4)

IV. CRITERION FOR STABILITY

with

with B given by Eqs. (3.2) or (3.5). One can see that the
fourth-order equation, Eq. (4.1), has various roots
corresponding to possible instabilities. One root is always
stable (w"-' -Wr), two correspond to the longitudinal
instability of a coasting beam treated previously, and the
root in which W"'W r corresponds to the possible instability
associated with the electromagnetic mode with eigen
frequency Wr. Setting W= Wr+ II, we solve for II by linearizing
the dispersion relation in II. The imaginary part of II is
then obtained as a function of Wr-nwO. The criterion for
stability is Imll <0, and since the Imll is largest for
wr-nwo""'±r, we make this substitution to obtain

Awr±2wrr2/Q
------------,

2(-~r-A )±i(2r+~~)r

where A =ekNnB. The plus or minus signs refer to the
choice of Wr-nwo=±r.

Observing that Q»1, we have as a criterion for stability

Either for resonance with a tank mode or resonance
with the rf cavity, we may write the dispersion relation,
Eq. (2.12), in the form

-1=ekNnBw{wr2_wLi;2Tl (w-nwo+ir)-2, (4.1)

or

±(_A±2;)<0.

By appropriate choice of the sign, depending upon whether
k is positive or negative (corresponding to the beam's
being below or above the transition energy), we obtain as
the most stringent requirement for stability5:

(3.1)

(3.2)

(2.12)

(3.3)

1=iekNne(w-nwo+ir)-2.

iw2

e=Bt,--------

(wl-w2)-i(wNQTE)'

in which k=27rfdf/dE, Wo is the central frequency of the
beam [equal to ¢(Wo)J, and r=n/k/.1W is n/2 times the
characteristic frequency spread of the distribution.

Having evaluated this integral, we have reduced
Eq. (2.9) to the form

with

The next section is devoted to a discussion of the
quantity e.

For resonances with the accelerator tank we may use
directly the result of Part II Eqs. (4.4), (4.5), (4.9), and
(4.10) to obtain

III. AZIMUTHAL ELECTRIC FIELD

for a resonance in the first possible mode. The notation is
is that of Part II of this series.

Although the contribution to the azimuthal electric
field from the resonant mode is the major contribution,
other contributions also arise from current and charge
distributions that vary as exp(in¢). These additional
contributions may be attributed to the excitation of
modes characterized by the same value of n, but having
more than one wavelength in the rand z directions. A
more general treatment of this problem, including the
excitation of nonresonant modes, shows that the non
resonant contributions to the electric field have little
effect on the results of the dispersion analysis. We shall
therefore use the expression for e of Eq. (3.1) in the
dispersion relation.

For resonance with an rf cavity, we may proceed from
Eq. (2.9) of Part I of this series,4 and write the effective
azimuthal electric field as

which is a valid expre~sion if the perturbation frequency
is exactly equal to th'e resonant frequency of the cavity.
If the cavity is being driven slightly off resonance, we
may write

4 V. K. Neil and A. M. Sessler, Rev. Sci. Instr. 32, 256 (1961).

5 If n is sufficiently large that resonances occur with higher-order
electromagnetic modes, the coupling factors which enter in the
coefficient B, of Eq. (3.2), and which appear in expressions for
evaluation of QTE, may be modified materially. From the WKB
form of the function Z (r), however, estimates of the relevant factors
can be obtained which suggest that the factor n4 in Eqs. (4.6) and
(4.7) will increase rapidly enough to ensure that no more stringent
limitations on particle number or wall conductivity will result from
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(4.8)

(4.5)

We now may use the definitions of k and T which, after
substitution of B for the case of a tank resonance yields

I
df I [b ]n4 - (tlE)2h f rZ2dr

1 dE a
Qt<- --- (4.6)

2 Nf(moc2)roR4 (dZ/dr)B2 '

where ro, the classical electron radius, is 2.8X 10-13 em.
For w«R this may be written as

Idf I [1]n4 - (tlE)2hw3 f Z2dx
1 dE -1

Qt<- --- . (4.7)
16 Nf(moc2)roR3 (dZ/dx)B2

A few illustrative values for the last bracket can be found
in Part II, while tables of values are in reference 8 of Part
II of this series.

For resonance with an rf cavity, we obtain as the
condition of stability from Eq. (4.5) that the shunt
impedance Zc must satisfy

nC31:~ I(tlE)2

Zc<------
(moc2)roNf2

The quantity 3 is the impedance of free space, which
is equal to 377 ohms in mks units, and 47r/c in cgs units.

The shunt impedance Zc must be less than 3200 ohms, to
prevent a longitudinal instability. This limit is sufficiently
high to ensure no difficulty.

As a second example, we might consider a hypothetical
proton storage ring for 15-Bev particles. As reasonable
parameters, we take

df/dE=0.70 Me,,1 see\

f= 106 seer,

n=10,

tlE=300 Mev,

N= 1014•

In this case the shunt impedance of an rf "maintaining
cavity" must be less than 5.1X105 ohms, which would
preclude the use of a very high Qcavity such as otherwise
might have been used in such a device. For example, the
cavities at the Cambridge electron accelerator have shunt
impedances of 107 ohms. 7

B. Tank Resonances

As a first example, we consider the MURA electron
model in which the vacuum tank has a height of 5 em, an
inner radius of 122 em, and an outer radius of 224 em.
The 38-Mev beam will be stacked at a radius of 203 em.
From Eq. (A-18) of Part II, the estimated n value for
the first resonance is approximately 200, but the coupling
factor

7 M. S. Livingston, Proceedings of the CERN Symposium on High
Energy Af;celerators, G"neva, 1959 (CERN, Geneva, 1959), p. 335.

1 (dZ)2JZ2dX/ -
-1 dx B

The first resonance is at n= 30 000, and once again there
need be no concern about a longitudinal instability for
any physically realizable cavity.

is so small that the restriction on Qt is satisfied by a
vacuum tank made of even the best conducting material
imaginable.

As a second example, we consider a full scale FFAG
accelerator for which the following parameters might be
typical:

f= 106 seer,

df/dE=0.70 Me,,1 seer,

E= 15 Bev, tlE=300 Mev,

N=1014 •

a=7X103em,

b=7300 em,

RB =7275 em,

h=15 em,

f(df/dE) = l.lX1012 Me,,1 see2,

f = 25 X 106 seer,

n=l,

tlE=3 Mev,

N = 1.5X 1013.

v. NUMERICAL EXAMPLES

A. rf Cavity Resonance

As an example of a resonance with an rf cavity, we take
the MURA 40-Mev electron mode16 :

the presence of such higher-order modes. With high-order resonances
present, of course, more than one resonance can occur within a
sufficiently small frequency interval that the coupling with the beam
is enhanced, and a somewhat stronger limitation can result. But if
n were high enough so that many resonances would fall within the
range where interaction with the beam occurs, variation of phase
amongst the several modes excited by the beam would appear
to suppress the reactive feature of the coupling which permits
instabilities to develop.

6 The MURA Staff, Proceedings of the CERN Symposium on High
Energy Accelerators, Geneva, 1959 (CERN, Geneva, 1959), p. 71.
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The transverse electromagnetic interaction of an intense azimuthally uniform beam of particles with itself,
including the effect of a resistive vacuum tank, is investigated theoretically. It is shown that a beam of particles all
having velocity v is unstable against the development of transverse waves having a phase velocity close to (l-vln)v,
where v is the number of transverse free betatron oscillations occurring in one revolution and n is a positive integer
greater than v. The growth rate for the instability is proportional to NIq', where N is the number of particles in the
beam and q is the conductivity of the surface material of the vacuum tank. Stabilizing mechanisms are examined
by means of the Vlasovequation and it is shown that a spread in the quantity (n - v)v, evaluated for particles in the
unperturbed beam, will prevent the instability. A criterion for the spread required is shown, in the limit of walls
of high conductivity, to depend upon the beam intensity and energy as well as upon certain geometrical properties
of the accelerator, but not upon the conductivity. Numerical examples covering a range of particle accelerators
are presented, and suggest that the theory is in agreement with the coherent beam behavior recently observed in a
number of accelerators.

1. INTRODUCTION

AMPLIFICATION of longitudinal density fluctuations
in an electron beam by the resistance in the surround

ing walls has been predicted theoretically and demon
strated experimentally.l.2 The companion paper3 to this
article treats the occurrence of this phenomenon in particle
accelerators. Recently a number of particle accelerators
have exhibited an instability that consists of a coherent
vertical oscillation of the particle beam.4- 6 The purpose of

* Research supported by the U. S. Atomic Energy Commission.
1 C. K. Birdsall, G. R. Brewer, and A. V. Haeff, Proc. IRE 41, 865

(1953).
2 J. R. Pierce, Bell System Tech. J. 30, 626 (1951).
3 V. K. Neil and A. M. Sessler, Rev. Sci. Instr. 36, 429 (1965).
4 C. P. Curtis et al., "Beam Experiments with the MURA 50 MeV

FFAG Accelerator," Proceedings of the International Conference on
High Energy Accelerators, Dubna, 1963 (Atomizdat, Moscow, 1964),
p.620.

6 F. E. Mills and G. K. O'Neil, "Vertical Instabilities in Electron
Storage Rings," Proceedings of the Brookhaven Summer Study on
Storaf!.e Rings, Accelerators and Experimentation at Super-High

our work is to develop a theory of the transverse instability
that is conceptually related to the theory of the resistive
wall amplifier. Our detailed investigation was suggested
by the earlier work of de Packh, 7 and is more general than
any of the above analyses in that details of the particle
dynamics are incorporated, although not in a strictly self
consistent manner. This sophistication is vital in obtaining
a threshold for the instability. The analysis follows that
of the companion paper on longitudinal resistive insta
bilities3 but is complicated by the more involved electro
magnetic fields associated with the transverse motion.

A beam of particles with angular-circulation frequency
Wo executing coherent vertical oscillations generates travel-

Energies (BNL-7534, 1963), pp. 368, 375 (Brookhaven National Lab
oratory, Upton, New York, 1963).

6 M. Q. Barton, J. G. Cottingham, and A. Tranis, Rev. Sci. Instr.
35, 624 (1964).

7 D. de Packh, Naval Research Laboratory, Washington, D. C.,
private communication to MURA, 2 May 1963.
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437 TRANSVERSE RESISTIVE INSTABILITIES

ing waves with angular frequency w= (n±v)wo, where n
is an integer and v is the number of betatron wavelengths
per revolution. In the absence of resistivity in the surround
ing walls these oscillations are stable. The associated
electromagnetic force on the beam is 90° out of phase with
the vertical velocity of the beam, and merely shifts the
betatron oscillation frequency. If this shift is sufficient to
change the betatron wavelength to a value corresponding
to an accelerator resonance, the beam becomes unstable.
Generally a change in v of about 0.25 is sufficient. This
methanism has been examined in detail in a recent publica
tion. 8 The resulting space-charge limit is ample in most
machines.

In the presence of resistive walls, the fields associated
with the wave having w= (n- v)wo exert a force on the
beam that has a component in phase with the coherent
vertical velocity. This is the "slow wave," or "negative
energy" wave. It has a phase velocity less than the directed
velocity of the particles, and may lead to an exponentially
growing transverse oscillation of the beam. Ultimately the
energy required for the transverse motion comes from the
longitudinal motion of the particles. The electromagnetic
force on the beam arising from the wave with w= (n+v)wo
has a component 1800 out of phase with the coherent
vertical velocity. This is the "fast wave," or "positive
energy wave." It has a phase velocity greater than the
directed velocity of the particles and leads to exponentially
damped vertical oscillations.

The crucial role of a dissipative mechanism in the
occurrence of an instability has been encountered in the
so-called "hose instability" of a stream of particles passing
through a plasma.9 In this instance it is collisions between
plasma particles that render the beam unstable against
transverse oscillations, and such a phenomenon could
occur in particle-accelerator beams. Our treatment assumes
that the beam is in vacuum so that the walls must supply
the dissipative mechanism. The presence of background
plasma could well have an effect upon the instability
considered here.

The analysis is given for a beam with uniform density
in the azimuthal direction, as is the physical situation in
Ref. 4. Most experimental observations have been made
with beams that are bunched by an externally driven rf
cavity. It is not clear whether bunching is unimportant,
but the methods invoked here are not powerful enough to

8 L. Jackson Laslett, "On Intensity Limitations Imposed by
Transverse Space-Charge Effects in Circular Particle Accelerators,"
Proceedings of the Brookhaven Summer Study on Storage Rings,
Accelerators and Experimentation at Super-High Energies (BNL-7534,
1963) p. 324 (Brookhaven National Laboratory, Upton, New York,
1963).

9 H. Chang, "The Hose Instability of a Finite, Pinched, Rela
tivistic, Electron Beam Penetrating an Infinite, Field-Free Tem
perature Plasma," Stanford Research Institute Technical Report
201 (Stanford Research Institute, Menlo Park, California, 1963)
(unpublished) .
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treat an azimuthally varying density in the unperturbed
beam. The perturbation considered is a small vertical
displacement of the beam. The displacement has the form
exp[i(nO-wt)], where 0 is the azimuthal angle around the
machine. In Sec. II approximate expressions for the electro
magnetic fields associated with the displacement are calcu
lated for vacuum tanks of circular cross section and
rectangular cross section. In the latter geometry, the con
ductivity of the side walls is assumed to be infinite. Finite
conductivity is considered present only in the top and
bottom surfaces. In Sec. III these fields are combined with
the Vlasov equation so that a dispersion relation for the
allowed values of the frequency w can be derived.

Seqtion IV is devoted to a discussion of the dispersion
relation. It is shown that for a beam of particles all having
the same values of v and Wo, finite conductivity always leads
to an instability. The characteristic growth time is given
by Eq. (5.2); it is a function of the geometry and beam
energy and is directly proportional to (Jt/N, where (J is the
conductivity of the wall material and N is the total
number of particles in the beam. The instability is sup
pressed if the particles have a sufficient spread in their
values of v and/or woo Both of these quantities are functions
of particle energy and of the betatron oscillation amplitude.
A criterion derived for stability shows that the requisite
spread is directly proportional to N. The required spread
is independent of (J in the limit of highly conducting walls.
In Sec. V we summarize the results of the calculation in a
form convenient for application to a large number of
existing and contemplated accelerators, and also present
some numerical examples.

II. ELECTROMAGNETIC FIELDS

As mentioned in Sec. I the treatment presented here is
not strictly self consistent. We use a simple model of the
beam as a sourcefor the fields. When the dispersion relation
is discussed in Sec. IV, various equilibrium distributions of
particles are considered. These do not in general give rise
to the same charge and current distributions used in this
section. The implications of this are discussed in greater
detail below. As the major curvature of the vacuum tank
has little influence on the results of this calculation, we
solve Maxwell's equations in a straight waveguide.

A. Rectangular Cross Section

The geometry we consider first is that illustrated m
Fig. 1. The current and charge densities in the unper
turbed beam are taken as uniform in the direction of
motion (y direction). The center of the beam is located at
z= 0 and the particle density is uniform in the region
- (7/2) <Z< (7/2). The position and shape of the beam in
the x direction is arbitrary at this stage. The equilibrium
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+----w----.....

FIG. 1. The geometry of the beam and vacuum tank
for the model with rectangular cross section.

charge density p and current density jy are thus

(2.5)V xEr=O,
V xBr=47rj/c.

for the perturbed fields:

V •EI= 47rPI,

v·Br=O,

Gaussian units are used throughout this work. Only the
contribution to Er from the finite conductivity [Eq.
(2.11) below] has nonzero curl. Solutions to the complete
Maxwell's equations also have been obtained, and the
resulting vertical force per unit charge is presented below
[Eq. (2.17b)]. Some of the numerical examples in Sec. V
utilize this complete expression. We first present field ex
pressions that satisfy the boundary conditions appropriate
to walls of infinite conductivity. Expressions for the fields
must satisfy Eq. (2.5) and the condition that the normal
component of Br and the tangential component of Er
vanish at the walls of the pipe (z= ±h/2, x=O, and x=w).
The fields must satisfy the appropriate discontinuity condi
tions at z=±r/2. We expand the function G(x) in a
Fourier series(2.1a)

Izl <r/1.

Izl>r/2,
p= {'AG(x)/r,

0,

"k

./
./

./

G(x) = (2/w) L: g, sin7/x, (2.6)

with 'A the charge per unit length. The function G(x) IS

normalized so that

~wG(x)dx= 1.

with 7/=s7r/w and S an integer. The dimensionless quanti
ties g. are given by

g.=~w G(x) sin7/xdx. (2.7)

PI = ('A/r)~G(x)[o(z- r/2)-o(z+r/2)]ei(k y- wn, (2.4a)

jIy=PIV, ' (2.4b)

Since the instability is characterized by frequencies and
wave numbers such that (w/kv)2<.<l, we treat w/kv as
negligible and solve the following quasistatic equations

where ~ is a constant and I;«r. The perturbation gives
rise to no azimuthal bunching. The electric and magnetic
fields arising from the perturbation have the following
sources

Er= L: Cs{sinhfz [7/ cos7/xi+ik sin7/xJJ
s

+f coshtz sin7/xk}, (2.9a)

Br= L: D.{ coshfz [7/ sin7/xi-ik COS7/xJJ
s ,

- f sinhtz COS7/xk}
87ri(kv-w) g.

+ 'A~ L: -[ik sin7/xl-7/ cos7/xJJ. (2.9b)
WT • £2c

Br= L: B.{coshf(z=Fh/2)[7/ sin7/xt-ik COS7/xJJ
s

-f sinht(z=Fh/2) cos7/xk}, (2.8b)

where i, j, and k are unit vectors along the coordinate
axes, and f2= k2+7/2. The upper signs apply for z> r/2 and
the lower signs for z<- T /2. In the region IzI<T/2 we
have

and

The subscript S on 7/ has been suppressed for brevity
throughout the rest of this report:

It may be verified that Eqs. (2.5) as well as the boundary
conditions are satisfied by the following expressions: In the
regions Izi >r/2 we have

Er= L: A.{sinhf(z=Fh/2)[7/ cos7/xt+ik sin7/xJJ
s

+f coshf(z=Fh/2) sin7/xk}, (2.8a)

The factor exp[i(ky-wt)] is understood to be appended to
each of the above expressions. In accordance with an

(2.2)

(2.4c)
Izl <r/2

Izl>r/2.

. {i(kV-W) (AIr)~G(x)ei(ky-wt),
J1z=

0,

All particles move in the y direction with speed v. For
purposes of this section it is assumed that the perturbation
consists of a rigid displacement of the entire beam. Every
particle in the beam at position y and time t is displaced a
distance LlZ given by

where a subscript t indicates the total quantity and a sub
script 1 a perturbed quantity. Equilibrium quantities
carry no subscript. It is apparent from the preceding
equations that
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In the next section we employ a vertical force per unit
charge (E1z -{3Bx> found by averaging the quantity
E lz -{3B Ix over the width of the beam. This average is
obtained by multiplying by G(x) and integrating over x.
The result of this operation is to replace the factor gs sin'l]x
by g82 in the expressions for E lz and Bix. Furthermore, we
consider the products fr and (z to first order only in these
expressions. Using Eqs. (2.9), (2.14b), and (2.16) with the
definition of Zs, and making some simplifications, we
obtain

87r1){3A~g8 { Sinh(fr/2)}
D. sinh[f(r-h)/2]-Zs.

f2wr sinh (fh/2) sinh (fh/2)

Since the boundary conditions [Eqs. (2.lOa) and (2.1Ob)]
are valid only to first order in CR, we keep Zs to first order
in D8 , which leaves

(2.16)

where 'Y-2= 1-{32. Note that the factor exp[i(ky-wt)] is
not included. Treating fh to all orders while keeping only
first-order terms in f r and fz is valid if r«h. In the
examples given in Sec. V, it turns out that it is also a good
approximation to treat fh to first order only; thus the re
striction r«h is really not imposed.

If the complete Maxwell's equations are solved with
the same sources and boundary conditions as above, the
following expression for (E tz -{3Bi ,) results:

with J.l.2=f2- (W/C)2 and {3w=w/kc. We have kept J.l.r to
first order only. Equation (2.17a) results if we set {3w= 0
in Eqs. (2.17b).

(2.12)

(2.14a)

(2.14b)

A,= (87rA/r)~g,sinh (fr/2)/wf sinh (fh/2),

C8 = (87rA/r)~g, sinh[£(r-h)/2]/we sinh (fh/2).

earlier remark, we neglect w/kv compared to unity in what
follows. The coefficients As, B s, Cs, and D, are to be deter
mined from the jump conditions at Z= ±r/2.

With finite conductivity in the top and bottom surfaces,
E1 and B1 must satisfy the conditions

E 1x= (1-i)CRB 1y, E Iy = - (1-i)CRB lx (2.10a)

on the top surface (z= h/2), and

E 1x= - (1-i)CRB 1y, E 1y= (1-i)CRB lx (2.10b)

on the bottom surface (z= -h/2), where CR= (w/8-1r(T)1
and (J" is the conductivity of the wall material in sec i •

Satisfaction of these conditions can be accomplished by
adding small corrections Er' and Br' to the fields in the
regions Izi >r/2. We may express Er' as

Er'==F(1-i)CRei\ky-wt) L: B 8 coshf(z=Fh/2)
S

we derive

X[ik COS1)xt:+1) sin1)xjJ, (2.11)

which is valid for Izl >r/2. This contribution to the elec
tric field has no component in the z direction and thus can
not contribute to the vertical force on the beam other
than through its effect on the coefficients A s and c.. The
effect is small compared to the contribution from Br',
and we shall in fact use only Eqs. (2.8a) to (2.9a) to deter
mine As and c.. The field given by Eq. (2.11) serves merely
to determine BI ' in the regions IzI> r/2. From the equation

Br'= =Feitky-wl) L: BsZs{sinh£(z=Fh/2)
s

X [1) sin1)xt:- ik cOS1)X jJ

-f coshf(z=Fh/2) cos1)xk}, (2.13)

where Z,= (1+i)CRcf/w. Note that BIz' and Bly' are zero
at z= ±h/2, so that Eqs. (2.10) remain satisfied.

Equation (2.9b) is sufficiently general to represent the
entire magnetic field (including the contribution from
finite conductivity) in the region r/2> I z1 provided the
coefficients D s are properly chosen. Using Eqs. (2.8a) and
(2.9a) for the electric field together with Eqs. (2.4a) and
(2.6) for the surface-charge density at Z= r/2, we obtain

Analogously, using Eqs. (2.8b), (2.9b), and (2.13) for the
magnetic field, we obtain

B. Circular Cross Section

The second geometry we consider is that of Fig. 2, in
which both the beam and the wave guide have circular
cross sections. If, as above, we consider a beam with uni
form density rigidly displaced in the z direction, it is
possible to derive simple expressions for the perturbed

(2.1Sa)

(2.1Sb)

87r1){3A~g, sinh (fr/2)
B, ,

rf2w[sinh(fh/2)+Z. cosh (fh/2)]

87r1){3A~gs{sinh[£(r-h)/2]- Zs cosh[f(r- h)/2]}

re2w[sinh(fh/2)+Z, cosh(fh/2)]
Ds
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fields. These expressions are valid provided second-order
terms in kb are negligible compared to unity; this is true
if the wavelength of the perturbation is very much larger
than the radius of the pipe. Except for the contribution
from finite wall conductivity, the following treatment does
not include components of EI and B1 along the pipe
(y components). These are indeed first order in kr, but
since they do not enter into the transverse force on the
beam, we shall not concern ourselves with them.

In cylindrical coordinates (r,O,y) we have the following
sources for the fields:

PI=PO~ cosO o(r-a)ei(ky-wt),

only to first order in ffi. We add a contribution Ely' that
satisfies Eq. (2.22), with Eqs. (2.20b) and (2.21b) inserted
for B lO • In the limit k~ 0, the expression for E I/ is simply

E l /= -47f{3poHa/b)2(1-i)ffi(r/b) cosOei(ky-wt), (2.23)

which is valid for all values of r. We determine Bl ' from
Eqs. (2.12) and (2.23),

B/= -47f{3poHa/b)2(1+i) (cffi/wb)
X (sinOr+cosOO)ei(ky-wt). (2.24)

Note that B/ is not equal to zero at r=b, and that is why
Eq. (2.22) is satisfied to first order only. This expression
is valid for all values of r.

The vertical force per unit charge E lz -{3B lx must now
include the contributions from Eqs. (2.19) and (2.24).
We again use brackets for consistent notation, although
in this geometry they do not imply any averaging process.
The factor exp[i(ky-wt)] is again omitted, and we have

(E lz -{3Blx)= -27fPo~b-2[1- (a/b)2]

- 2({3a/b )2(1+i) (cffi/wb)}. (2.25)

(2.22)

exactly, it is now possible to satisfy the condition

E I/= - (1-i)ffiB lO

(2.l8a)

(2.18b)

FIG. 2. The geometry of the
beam and vacuum tank for the
model with circular cross sec
tion.

(2.19a)

(2.19b)

with po the charge density in the unperturbed beam. It is
not necessary to include jlz as a source in order to obtain
the transverse force within the limits of this approxima
tion. We can in fact consider k=O except in the exponential
factor, since no first-order terms in k occur. Inside the beam
we have uniform E lz and B lx as the only field components
needed to satisfy Eqs. (2.5). In cylindrical coordinates
these components become

EI = E lz (cosOr- sinOO)ei(ky-wt),

BI = BlxCsinOr+cosOO)ei(ky-wt),

with rand 0unit vectors. In the region a<r<b we have

III. DERIVATION OF THE DISPERSION RELATION

In order to study the dynamics of particles in an accel
erator, we employ the Vlasov equation in cylindrical coordi
nates r, 0, z, instead of rectangular coordinates x, y, z. Here
oshould not be confused with the notation of Sec. n.B and
Fig. 2. We make the substitution ky~ nO, y~ Re in the
formulas for the vertical force, where R is the radius at
which the beam circulates. The particle-distribution func
tion If isa function of z, Pz, 0, and W, where W =27f(Po- Po)
is 27f times the deviation in canonical angular momentum
from the average value for particles in the beam. The
equation satisfied by the total distribution lft is

where, as in the previous section, brackets indicate an
average over the width of the beam when applicable.

In the equilibrium configuration, W is a constant of the
motion. We shall take the amplitude a of axial betatron
oscillations as the second constant of the motion, and
choose the equilibrium distribution function If of the form

EI = 8([(b/r)2+1] cosOr
+[(b/r)2-1] sinOO}ei(ky-wt), (2.20a)

B I =CB{[(b/r)L1] sinOr
-[(b/r)2+1] cosOO}ei(ky-wt). (2.20b)

The procedure we employ now deviates from that used
with rectangular geometry. We first evaluate the coeffi
cients in Eqs. (2.19) and (2.20), then add contributions
EI ' and B l ' arising from finite wall conductivity. The usual
conditions at r=a yield If=Nh(a)f(W)/ (27l')2R, (3.2)

where N is the total number of particles in the beam.
The functions hand f are normalized so that

Etz= -27l'Po~[1- (a/b)2], 8= 27fpoHa/b)2, (2.21a)

B I ",={3Elz , CB= -{38. (2.21b)

Whereas in the pipe of rectangular cross section it was
possible to satisfy the conditions Eqs. (2.lOa) and (2.10b)

!h(a)ada=l, If(W)dW=1, (3.3)
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Under the influence of the perturbation, we have

if;t = if; (W,a) +if;l (W,a)ei(n8-wt),

(P. t)= (PZ)+e(EIZ-(3BIX)ei(n8-wt),

(Wt)=(U\),

(3.4a)

(3.4b)

(3.4c)

From our perturbed distribution function if;l we now
compute a dipole moment per unit length P(8,t) = pei(n8-wt),
where

(3.11)

We now assume thatPz is linear in z so that the equations
of motion for a particle in the unperturbed beam are

where the appropriate expression, Eq. (2.17) or Eq. (2.25),
is to be used for (Elz-(3B1x). We are not considering
azimuthal density variations, in which case (WI) is negli
gible. Inserting Eqs. (3.4) into Eq. (3.1) and linearizing
leads to

aif;l . aif;l aif;
i(nfJ-w)if;I+Z-+(pz)-= -e(E1z-(3B1x)-. (3.5)

az aP. aP.

where Vz is the axial betatron wavenumber, wo is the
average particle circulation frequency, and ko is a char
acteristic parameter of the accelerator. Equation (3.6a) is
only approximate because Vz (as well as Q) is actually a
function of a and the motion is not simple harmonic. This
fact is very important, and in the next section is shown to
be the major stabilizing mechanism. However, for the
purpose of solving Eq. (3.5), it is sufficient to write the
solutions to Eqs. (3.6) as

Z+Vz2Q2Z=0,

I:i=Q=wo+koW,

(3.6a)

(3.6b)

Inserting Eqs. (3.10) and (3.7a) and performing the q., in
tegration, we have

p= (7re2/m) (Ejz-(3B 1x)/ (aif;/aa)a2dadW. (3.12)

We come now to the basic approximation in our treatment.
In general the distribution functions if; and if;l will not lead
to current and charge distributions consistent with
those assumed in Sec. II. Therefore the expressions for
(E lz-(3B1x) are not strictly applicable. In particular, the
perturbed force may have z dependence other than the
weak function coshtz, which we have approximated to
unity. A general self-consistent analytic treatment of an
arbitrary if; seems impossible. However, investigation has
shown that physically reasonable axial distributions of
particles in the unperturbed beam lead to a vertical force
that is quite well approximated by the treatment in
Sec. II, so long as the conditions £T<<l or ka«l are
satisfied. To complete the quasi-self-consistent treatment
here, we equate the dipole moment per unit length p with
the quantity A~ in Eq. (2.17) and with 7rpOa2~ in Eq. (2.25).

Inserting if; from Eq. (3.2) and (E 1z-(3B Jx) from Eq.
(2.17) into Eq. (3.13), we derive the dispersion relation

in which q.,= vzQt, and m is the average relativistic trans
verse mass of particles in the beam.

With the above approximations it is easy to show that
Eq. (3.5) may be written

i(nQ-w)lh+vzQ(aif;l/aq.,) = -e(Elz-(3Blx)(aif;/apz). (3.8)

where

1
_-/ h'(a)!(W)a2dadW.

(3.14)
[(w-nQ)2- v}Q2]

If Eq. (2.25) for (Ejz-(3B 1X) is employed, we obtain

(3.7a)

(3.7b)

(3.7c)

z=a sinq."

8=Qt,

It is convenient to introduce the quantities Urand V r by
the definitions

(3.16a)

(3.16b)

e2.1'1 { [(a)2J (CCR) ((3a)2}1=---- "1-2 1- - -2(1+i) - - .
27rmRa2 b wb b

(3.15)(3.9)

(3.10)

aif; aif; aa cosq., aif;

Furthermore, neglecting the dependence of v. on a, we have

This approximation omits terms in if;l that are first order
in the quantity (a2/v.)(av./aa2). These small terms have
little influence on the results. With Eq. (3.9) used in Eq.
(3.8), we have a first-order equation in one variable. After
some simplification, the solution may be written as
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Y

FIG. 3. The function fJ,(h/w,t./h), which is defined in Eq. (3.23a)
and expresses the long-wavelength part of the real frequency shift
arising from image effects. It can be seen that fJ, is almost inde
pendent of its first argument. For large y, fJ,(O,y) -t 1; the deviation
from unity being only 5% at y=4.0. For small y, yfJ, approaches a
constant of order-of-magnitude unity.

3.5

x =0

3.0

2.5

y[if
I

2.0

These general expressions may prove useful in some
applications. We have evaluated them for a particular
choice of G(x) that has two parameters, namely a beam
of width A with center located at Xo, as indicated in Fig. 1.

(3.19a)

(3.19b)

Ug = (eW/vzwo')'mowR) [Re- (2h2r) L gs2J,
$

Vg = (e2Nffi./v,wo')'mowR) 1m,

call these Ug and Vg • They are defined by

where

Re= ~ gS2{[;2+: ((3w-(3)2] cothCL;)}, (3.20a)

Im=(D~CJ[M4(32+ M2k2((3wL (32)

+ (kw/C)2((3w- (3)2J csch2(Mk/2). (3.20b)
3.53.02.52.01.5

If Ur and Vr are inserted into Eq. (3.18), it is identical
to Eq. (3.13). Alternatively, if Uo and V 0 are inserted,
Eq. (3.18) is identical to Eq. (3.15).

If we employ the more general expression, Eq. (2.17b)
for (E!z-(3B!x) in the pipe of rectangular cross section,
still another set of definitions for U and V results. We

Alternatively, for the pipe of circular cross section we
introduce U o and V o by the definitions

U 0= -e2N[l- (a/b )2J/211'v,wo')'3moRa2, (3.17a)

V o= eW(3ffi./lI'v,')'mowb3. (3.17b)

In Eqs. (3.16) and (3.17) we have replaced m by ')'mo,
where mo is the rest mass of the particle. In terms of these
equations, the dispersion relation becomes

1= vzwo[U+ (1+i)VJI. (3.18)
o L_-,---'--,----"--' ---'-------'-'----..J_L'-<------'-'----..J,-----L'-<-----,L'----..JL--l

o 2345678

v

FIG. 5. The function fJ3(h/w,t./h), which is defined in Eq. (3.23b)
and expresses the imaginary part of the frequency shift. The function
is relatively independent of its first argument, especially a.s in most
applications h/w <0.5. fJ3(0,0) is unity, and this affords an order-of
magnitude estimate unless y is greater than unity-which usually is
not the case.

f172

x=O.1

~
;

0.5 x =0.6 x= 0.4 -x=0.2

0
0 2 3 4 5 6 7 8

y

FIG. 4. The function fJ2(h/w,t:..!h), which is defined in Eq. (3.23a)
and expresses the dominant contribution in the relativistic limit to
the part of the real frequency shift arising from image effects. For
most applications x=h/w is small, and then fJ2(X,y) is approximately
equal to fJ2(O,0) = 1 and decreases linearly with increasing second
argument.

The functional form taken was

{
(1I'/2A) cos[lI'(x-xo)/AJ, Ix-xol <Al2

G(x)= (3.21)
0, Ix-xol ?A/2

and a 7094 FORTRAN Program was developed to evaluate
the quantities Re and Im. lO

In most applications k«l/w and l/k; and in this limit
the formulas for Re and 1m can be considerably simpli
fied. Simple neglect of the k2 terms in Eq. (3.20) would be
valid, however, only in the nonrelativistic limit because the
dominant k-independent term in Re varies as 1h2• In
order to obtain formulas valid at all energies in the small
k limit, we retain the k2 correction to the 1h2 term in Re,
but neglect k2 in all other occurrences. Thus W"" 71, and Eq.

10 IBM 7094 FORTRAN program MESS, Computer Center, Lawrence
Radiation Laboratory, University of California, Berkeley, 1963
(unpublished) .
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(3.24)

(3.25)

(3.23b)

I::.
h

), (3.23a)

WfWL gl=- G2(x)dx,
8 2 0

(3.20) yields

7r
2
W (h

Re=--~l -,
8hl::.'Y2 w

which for the distribution of Eq. (3.21) yields

Note that Eq. (3.22a) is not a valid expansion of Eq. (3.20)
through terms in k2•

For the beam configuration of Eq. (3.21), with xo=w/2,
and in the limit of n«R/w and R/h, Re and 1m depend
upon the geometrical parameters in a simple way. Thus we
may define functions ~i by

IV. ANALYSIS OF THE DISPERSION RELATION

Im= (C/12/W) L g82'f/2 csch2'f/h/2. (3.22b)
s

Combining Eqs. (3.19), (3.23), and (3.25), we have

1 'f/h 1 'f/h
Re=- L g,2'f/ coth-+k2(/1w-,B)2 L g}- coth-, (3.22a)

1'2 8 '2 8 'f/ 2

There is no T dependence in the ~i functions, graphs of
which are presented in Figs. 3, 4, and 5. In the figure
captions we summarize some of the properties of the ~i

functions and suggest various approximations that can be
employed to obtain convenient analytic formulas for Re
and 1m, and hence for all of the results of this paper.
Numerical comparisons of Eq. (3.23) and Eq. (3.20) are
presented for four very different examples in Table I, where
the agreement is seen to be excellent.

From the definition of gs [Eqs. (2.1a), (2.6), and (2.7)],
it follows that

In order to illustrate the characteristics of the instability,
we first consider a beam with no spread in canonical angular
momentum and take f(W)=o(W). We further neglect the
dependence of jJz and Q on a. The integral I defined by
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We now introduce some short-hand notation for use in
what follows. Let y=a2and let Sw and Sy be given by

Since we are searching for a solution to Eq. (4.6) in the
region w~ (n-v)wo, we define a quantity 0 by

Using this notation and noting that a2(dh/da)da
=y(dh/dy)dy, we may rewrite Eq. (4.6) as

2(U+ V -iV) f (dh/dy)ydy f(W)dW.
(4.11)

[(U+ V)2+ V2] [o-SwW-SyY]

Eq. (3.15) becomes simply

1= -2/[(w-nwo)Lv.2W02], (4.1)

[since fh'(a)a2da=-2], and from Eq. (3.18) we have

(W-nwO)2= v/woL2vzwo(U+ V+iV). (4.2)

This is a cubic equation in w in view of the factor 1/w in V.
However if V:$ U and U«v.wo (as is generally true), two
roots of Eq. (4.2) are given approximately by

w= (n±v.)wo=F(U+V+iV), (4.3)

with w= (n±v.) wo inserted in V. The upper signs represent
a "fast wave" that is damped. For n> vz, the lower signs
represent a "slow wave" that grows exponentially with
an e-folding time TO given by

sw=.as/aw= (n-v)ko-wo(avz/aW),

Sy=.as/ay= -wo(avz/ay).

o=w-(n-v)wo.

(4.9a)

(4.9b)

(4.10)

In general both Vz and 0 are functions of a and W. We may
write

The only mechanism effective in stabilizing the beam
against vertical oscillations is a spread in the quantity S
defined by

(4.12)

(4.13)

f(W)= (l/n"q)e-w2 /i ,

and Eq. (4.11) becomes

Swq(U+V-iV) 1100 e-x2dx
=F- --=. =F 3 (Xl)

[(U+ V)2+ V2] 1f' _00 X-Xl '

A spread in both Wand y can be treated only with great
difficulty, so we consider the effect of each separately.
First let Sy be zero, and consider a spread in W. There is
some question as to the validity of this,since the dynamics
of the W -8 motion were disregarded in the previous sec
tion when we neglected the W1 in the Vlasov equation. It
seems proper, however, to consider the stabilizing effect
of a spread in W, since the axial betatron frequency of a
particle does depend on its canonical angular momentum.
The choice of f(W) is fraught with pitfalls, as discussed
in the companion paper.s In particular, we must choose
f(W) such that f'(W) ~ 0 as f(W) ~ 0 for some maxi
mum value Wm in order that the stability criterion be valid
in the limit V~ O. However, a Gaussian distribution gives
a fairly realistic stability criterion. We choose

11 B. D. Fried and S. D. Conte, The Plasma Dispersion Function
(Academic Press Inc., New York, 1961).

in which x1=0/q/Swl. The minus sign on the right applies
if Sw>O and the plus sign for Sw<O. The stability criterion
is independent of the signs of Sw and U+ V. Equation
(4.13) is in general useful for specific numerical examples
and should be used in conjunction with tables of the
function 3(X1),u We are interested in solutions for real
Xl (real 0). The ratio V / (U+V) determines Xl, and the
value of q required for stability is then found from either
the real or imaginary parts of the equation.

As an example, consider the equation when IUI «V.
The real and imaginary parts of the left-hand side are both
approximately equal to Swq/2V. The value of Xl satisfying
Re3(x1)=Im3(x1) is x1=0.7. We have Re3(0.7)= 1.03,
and thus Swq~ 2.06V is the stability criterion. The fre
quency shift 0 is equal to 1.44V at the stability limit.

(4.4)

(4.7)

(4.6)

(4.8a)

(4.8b)

TO= V-1.

S=. (n-vz)O.

O=wo+ (ao/aW)w+ (ao/aa2)a2,

Vz= v+ (av./aW)W+ (avz/aa2)a2.

The singularity of the first term on the right-hand side is
of no interest, and dropping the term will have negligible
effect on the results. Further, we replace (2v zO)-1 by
(2vzWO)-1 in Eq. (4.5). The dispersion relation then
becomes

Jh' (a)a2da f(W)dW
2= - (U+ V+iV) .

[w- (n- vz)O]

For n <vz, the lower signs represent a wave that has phase
velocity in the negative (J direction. This wave is also
damped because V is negative.

We are therefore interested in values of w near (n- vz)wo.
The integrand in Eq. (3.14) may be separated by partial
fractions, which yields

[(w-nQ)L V.2Q2J-i= (2vzO)-1{[W- (n+ vz)O]-l

-[w-(n-vz)Q]-l}. (4.5)

The quantity ao/aw is equal to ko, where ko was defined
by Eq. (3.6b). The dependence of 0 on a2 is quite weak,
so we will neglect the a2 term in Eq. (4.8a). The quantities
U and V defined in the previous section are not independ
ent of w, but it is a good approximation to replace w by
(n-v)wo in these expressions. Further, whenever V z occurs
in U and V we shall replace it with v, thus neglecting the
dependence of U and Von a and W. For purposes of the
dispersion analysis, U and V are simply constants.
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An example of general interest is that for which IU I»V.
We must choose Xl such that IRe?1(Xl) I»Im ?1 (Xl), which
is satisfied for large Xl where the asymptotic expansion is
valid. This expansion is

that h' be zero at any other value of y, but the condition
yh'(y)~°as y~ 0 is necessary. It seems reasonable that
any realistic distribution of betatron amplitudes will have
these properties. As a useful example we choose

(4.14) (4.19)

(4.18)

(4.21)

(4.20)

(4.22)

(4.24)

SyYm(U+ V)

6[(U+ V)2+ V2J'

1 (l- P)+In -
(1-p) p

= -Sy7l"(U+ V)/VISyl,

(
l- P)

!-p+p(1-p)ln -p- =

1

2p(1-p)

Dividing Eq. (4.21) by Eq. (4.20), we have

a monotonically decreasing function of y. We shall examine
this form in detail, and then merely state the results ob
tained from other distributions. Differentiating Eq.(4.19)
with respect to y and inserting the result in Eq. (4.18)
yields

with p=yI/Ym. The principal-value integral is easily
evaluated, and from the real terms in Eq. (4.18) we have

a stability criterion independent of V. The frequency shift
0, which is equal to SYYI, is very nearly equal to SyYm' If
Sy(U+V)<O and !UI»V, the right-hand side of Eq.
(4.22) is a large positive number, and therefore p must be
very small compared to unity. The first term on the left
hand side of Eq. (4.22) dominates. We set p(l-p)=p in
both Eqs. (4.20) and (4.22) to again obtain ISy!Ym~3U

for the stability criterion. But notice that O=SyYmP is now
very much less (in absolute value) than SyYm. Thus in the
limit! UI»V the sign of Sy(U+ V) does not affect the
stability criterion, but it does determine the magnitude
of the frequency shift. Numerical analysis of Eq. (4.22)
shows that the above stability criterion is quite a good
approximation for /UI >5V.

We next consider the limit IUI «V. If Sy>O, the right
hand side of Eq. (4.22) is approximately equal to -71" and
a value of p""'0.8 results. If Sy>O, the right-hand side of
Eq. (4.22) is "'" +71" and a value of p""'0.2 results. But in
either case, the left-hand side of Eq. (4.20) is approxi
mately equal to 0.16, and the criterion for stability becomes

from which the appropriate value of p may be obtained.
Consider first the conditions Sy(U+ V) >0 and lUI»V.

The right-hand side of Eq. (4.22) is a large negative
number and therefore p must be very nearly unity. We
neglect the logarithm, set p(l-p) equal to 1-p in Eqs.
(4.20) and (4..22), and obtain

ISyIYm~3U, (4.23)

(4.15)

2Sy(U+ V-iV)

[(U+ V)2+ V2J

1'" (dh/dy)ydy . (dh)
=CP ±~7I"YI - ,

o Y- YI dy y~Yl

where CP indicates the principal value. The plus sign is
used if Sy>O, the minus sign if Sy<O. Equation (4.18)
will be satisfied only for those values of YI for which
h'(Yl) <0. In addition, U+ V may be positive or negative.
This fact caused no concern in the previous example where
the sign of Sw(U+ V) merely determined the sign of O.
Here the sign of Sy(U+ V) has a more important role, as
we shall see below.

In order that the theory be valid in the limit IUI»V,
the function h(y) must have the property that h'~°as
h~ 0 for some maximum value y= Ym. It is not necessary

We now consider stabilization by means of the non
linearities in the accelerator as characterized by SY' We
set Sw=O in Eq. (4.11) [or f(W)=o(W)J, which then
becomes

2Sy(U+ V-iV) =1'" (dhjdy)ydy
- (4.17)

[(U±V)2+ PJ 0 Y-YI'

for Xl and thus the value of q necessary for stability. How
ever, we note that the dispersion relation cannot be
satisfied if the frequency shift 0 lies outside the range of S
in the beam. Any realistic f(W) will extend over a finite
range, - W m < W < W m. Provided the condition IU I»V
holds, a necessary criterion for stability is ISwIWm >! UJ,
or

/(n-v)ko-wo(avjaW)lwm>!UI. (4.16)

with Yl=OjSy. As Sy may be either positive or negative,
care must be taken in evaluating the imaginary part of
the integral. We note that for real YI, solutions exist only
for YI>O, and therefore 0 has the sign of SY' ForSy>O,
Imo>°corresponds to ImYI> 0. Thus in the limit Imo~°
(the stability limit), the pole in the complex y plane
approaches the real axis from above. The opposite is
true if Sy<O. With this in mind we write Eq. (4.17) in a
form valid for real Yl,

and from the real part of Eq. (4.13) we have Xl"'" UjqISw!,
or 0= U. The frequency shift is the same as if no damping
were present. The criterion for stability may be found by
solving the transcendental equation
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independently of the sign of SY' In the.event that U+V«V,
the right-hand side of Eq. (4.22) is very small and the
equation is satisfied by p= 0.5. From Eq. (4.20) we obtain
the criterion

The spread in betatron amplitudes characterized by Y is
not instrumental in suppressing the instability.

Although the spread in S from a distribution in Wand
from a distribution in a have been treated separately, it
seems reasonable that the two contributions would occur
additively in the stability criterion. One attempt was
made to consider a distribution in both variables, and
results of the involved analysis did indeed exhibit the
additive property. We therefore state that, in the limit
IU I»V, the stability criterion is to a good approximation

(5.5a)

or (3.26b), and w~ (n- vz)wo. For circular geometry,

70=1rv.(n- vzhb3/roNRffic, (5.2)

where ro = e2/ moc2 is the classical electron (or proton)
radius. In rectangular geometry, and when n«R/u; and
Rjh, we have

70= 3vz(n- v,hh3/21rroNRffic;5s(h/w,Ll/h), (5.3)

which is in close agreement with Eq. (5.2) when h«w and
Ll«h so that 5'3 -71, and h is replaced by 2b. The most
general expression is that given by Eqs. (3.19b) and
(3.20b), but Eq. (5.3) with Fig. 5 should suffice for most
applications.

The second result of Sec. IV [Eqs. (4.27) and (4.28)J is
that the spread in the quantity S= (n- vz)Q necessary to
stabilize the coherent motion is approximately [U[ +V,
where U is defined by Eqs. (3.17a), (3.19a), and (3.20a)
or (3.26a). If the particles are not extremely relativistic,
IUI»V, and for circular geometry the criterion for
stability becomes

LlS>Nroc[1- (a/b)2J/21rvz{3"f3a2. (5.4)

For rectangular geometry with n<<R/w and R/h, we have
the criterion LlS> [Ugi +Vg, where

(4.25)

(4.26)

The numerical factors in Eqs. (4.23), (4.24), and (4.25)
result from the particular form of h(y) chosen. With the
one exception discussed below, the qualitative dependence
of the stability criterion upon U and V is not sensitive to
the form of h(y). The exception is a distribution h(y) that
is constant out to some value y= Y, then falls to zero at
y= Y+Ll, where Ll«Y. This distribution closely resembles
that experimentally determined for the stacked beam in
the MURA electron accelerator.4 Analysis of such a dis
tribution reveals that only the quantity Ll enters the
criterion for stability. In the investigation, only the
limit U»V was considered, and the resulting stability
criterion is

LlS> IU[, (4.27) (5.5b)

where V is defined by Eqs. (3.17b), (3.19b), and (3.20b)

where /1S is the total spread in S, including the contribu
tions from distributions in Wand a. In the limit V» IU I,
the criterion may be written

V. RESULTS AND EXAMPLES

The first result of Sec. IV is that the characteristic
growth time of the instabUity, for a beam with no spread
in Vz or wo, is given by Eq. (4.4), namely,

and in this limit our theory is completely self consistent.
The model used in Sec. II to calculate the vertical force
on the beam gives only an approximate expression for U.
In contrast, the electromagnetic force characterized by
V arises from charges and currents in the surrounding
walls. If the transverse dimensions of the beam are much
smaller than the dimensions of the vacuum tank, this latter
force is independent of the model chosen.

Re 1m (Uo/N)X109 (Vo/NX109)

N CRX105 (em-I) (em-I) (secl ) (secl )

3 0.346 0.034 1255 12 1.85
4 0.846 0.033 208 12 0.75
5 1.15 0.032 113 11 0.56
6 1.38 0.031 77 11 0.46

TABLE II. Computational results for the MURA accelerator.. The
sensitivity to parameters can be judged by the fact that changmg h
to 3 em makes Re",,0.060. This is the dominant term in Uo, so a
corresponding change would occur in the threshold criterion.

In the nonrelativistic case, Vg«U g and the term 5'2 is
negligible. For a beam that is thin vertically, 7«h and
5'1 can also be neglected and Eq. (5.5a) affords a con
venient analytic expression which is valid in a different
regime (ribbon beam) than that of Eq. (5.4) (circular
beam). The most general expression is that given by Eqs.
(3.19); Eq. (5.5) with Figs. 3, 4, and 5 suffices for most
considerations.

The application of the theory to actual accelerators is
severly restricted by the assumption that the unperturbed
beam is azimuthally uniform. The MURA accelerator4 is

(5.1)

(4.28)LlS> V,

70= 1/V,
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a case where this assumption is acceptable, as would be
proton-storage rings in which no rf is employed.

A. Azimuthally Uniform Beams

1. MURA 40 MeV Electron Accelerator
We take as parameters of the accelerator4,12:

n=4 comes from a sensitive cancellretion-an observa
tion first made by Swenson.12 If, for example, avz/ aE
= - 2.6X 10-3 MeV-I, then the threshold would agree
exactly with observation. The observation4 of instability
only for n> 2 is in good agreement with the general
theory, and TO agrees semiquantitatively with the observed
growth rates.

and employ Eq. (3.20) to obtain the results presented in
Table II. To estimate the nature of the instability we need
to evaluate ~S, which we write in the form

2. Proton-Storage Rings

The instabilities one might expect in a storage ring have
been studied by Hereward as part of the design study of
the CERN intersecting storage rings. We recommend his
paper13 for a detailed application of the theory. Here we
shall simply give an example having parameters that are
typical of relativistic proton-storage rings. We take

R=200 cm
h=5 cm
w=100 cm
xo=90 cm·
~=5 cm

T=l cm
')'= 70

wo= 1.58X 108 sec1

v.=2.8
u= 1017 sec-I,

(5.6)

R=130m

h=7 cm

w=15 cm

xo=7.5 cm

~=5 cm

')'=25

wo= 2.3X 106 sec1

vz=8.75

u= 1016 sec1 (stainless steel)

CR= 0.87X 10-5,

The various coefficients are,

an/aa2"",0;

aVzjaE= -3.0X 10-3 MeV-I, a measured quantity;

an/aE= -0.34X 106 sec1 MeV-I, theoretically derived;

avz/ aa2= LOX 10-2 cm-2, theoretically derived from non-
linear orbit studies.

The energy spread in the beam ~E, is observed to be 2.0
MeV; the full amplitude spread corresponds to ~a2= 1.0
cm2, but if the distribution is flat except for a small region
[as is discussed after Eq. (4.25)J, then that small region
would have a greatly reduced effective ~a2. From the
parameters given and from Table II we derive the results
in Table III. The observed instability would be damped
for all n values if ~a2"", 1.0 cm2, but for the smaller value
of ~a2 the observed threshold for n= 4 and N = 2X 1012 can
be explained by the theory. The reduced value of ~SE at

TABLE III. Comparison between AS and lUI +V
for the MURA accelerator.

Aa2=1 cm2 Aa2=0.01 cm2 N=2X1012

SEX 10-0
(IUI+V)

AS.2X 100 AS.2X10-0 X 10-0
7'0

n (secl ) (secl ) (secl ) (secl ) (msec)

3 0.81 -1.58 -0.016 0.028 0.27
4 0.13 0.025 0.67
5 -0.54 0.024 0.90
6 -1.22 0.023 1.1

12 D. A. Swenson, "On the Threshold for the Coherent Vertical
Instability," MURA TN-421, 2 July, 1963 (unpublished).

T=l cm

from which, for n= 17, we obtain by means of Eq. (3.23)
and Figs. 3, 4, and 5 the values Re=0.0016 cm-1 and
Im= 120 cm-1• The growth time for N = 2X 1014 photons
which is the CERN design goal-is 3.6 msec, so the in
stability must be damped if the storage rings are to
operate successfully. Hereward considers the various con
tributions to ~S that either occur in the ring design or
can be explicitly built into the design. One possibility for
stabilization is through nonlinearities, i.e., amplitude de
pendence of V z• From the above numbers (N = 2X 1014

) we
deduce that Ug = 1050 sec1 and Vg = 290 sec1• To stabilize
this with nonlinearities we would need

or a spread in tune within the beam of

~v= (avz/aa2)~a2""'5.8X 10-4• (5.8)

This is a relatively modest value, and presumably could
be designed into the storage rings. Of course, all values of
n> V z must be considered to obtain the most stringent
requirement on ~v.

B. Azimuthally Bunched Beams

Clearly the theory must be extended before it can be
rigorously applied to accelerators with longitudinally
bunched beams. On the other hand, the theory of this

13 H. Hereward, "Dissipative Transverse Instabilities in the Stora.ge
Rings," CERN AR/Int. SG 64-8, 16 April, 1964 (unpublishl;Q),
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As parameters for the phenomenon observed at the
Cosmotron we take
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where some parameters-such as ill-are only rough esti
mates. Employing the formulas for circular geometry
with n=l and taking a=l cm and b=8 cm, we find that
NTo=1.2X109sec, and AS/N=4.1XlO-6 secl • The ob
servations are that N = 5X 1011 protons is close to thresh
old, with a growth time of the order of 10 msec. The value
of TO at this intensity is 2.4 msec-in remarkably good
agreement with the observations. The threshold is ex
perimentally observed to be a strong function of operating
conditions, being lowest under those conditions where
av./aE is not zero but where a2v./aE2 is small. 6 Under
these conditions, if we ascribe the threshold to a av./aa2

term, then the threshold corresponds to a tune spread
across the beam Av= a2(av./aa2)",,0.22. This is comparable
with the amount needed to shift v. to the integral resonance
at v.= 1.0, and might well be representative of the beam
quality in the accelerator. Finally, we note that the mode
mixing expected for bunched beams has been observed. 6

It is possible to excite the instability by an applied rf with
frequency w= (1+v.)wo. This is in marked contrast with
the experience of MURA,4 where the beam is azimuthally
uniform and only the (n- v.)wo components, for n> V z,

are unstable.

report can be used to gain insight into the expected result
of such an analysis. We proceed in this ad hoc manner,
modifying the theory in three elementary regards:

(i) The local charge density in the bunch is employed
in all formulas so that if L is the length of a bunch and
there are h bunches, then whenever (N/21fR) appears it is
to be replaced by N/ Lh. This changes formulas by the
ratio Lh/21f-R, which is simply the bunching factor B of
Ref. 8.

(ii) If the beam is under the influence of rf, then
particles will sweep through a range of energies during a
synchrotron oscillation. If the growth time of the insta
bility is less than a synchrotron period, then the analysis
of this paper should apply, but if the instability growth
time is long compared to the synchrotron period, then the
evaluation of AS must be modified. In particular, the term
ASE will average to zero if (In/(JE and (Jvz/aE are inde
pendent of E (as they are, to first approximation). Thus
the effective stabilizing mechanisms are greatly restricted,
namely to intrinsic nonlinearities ASa2, external octupole
fields (not sextapoles), and nonlinear terms in the de
pendence of ~ upon E.

(iii) Clearly n is no longer a good mode number in the
case of a bunched beam and we expect different n values
to be coupled.

Phenomena for bunched beams, that are evidently the
analog of the instability treated in this report have been
observed in the Stanford electron rings,5 the Cosmotron,6
the Cornell electron synchotron,14 the Argonne zero-gradi
ent synchrotron,I5 and (possibly) in the Bevatron.I6 De
tailed analysis for some of these accelerators either appears
in the literature or will be published in the future. We
restrict ourselves here to one example, namely a crude
evaluation for the Cosmotron, where the phenomenon has
been studied in most detail and in fact has been suppressed
by a feedback technique.6 Stabilization by means of an
external octupole has been extremely effective both at
Cornell where it allowed a hundred-fold increase in in
tensity,14 and at Stanford where it allowed an eighty-fold
increase in intensityJ7 Both machines are now limited by
injection capabilities.

14 D. F. Edwards and R. R. Wilson, Department of Physics,
Cornell University (private communication, 1964).

16 F. E. Mills, MURA, Stoughton, Wisconsin (private communica
tion, 1963).

16 T. Elioff, Lawrence Radiation Laboratory (private communica
tion, 1963).

17 B. Gittleman, Department of Physics, Stanford University,
(private communication, 1963).

R=950 cm

w=65 cm

h= 16 cm

T=2cm

A=10.6 cm

f3=0.5

vz=0.875

10= 1.5X 106 secI

ill"" 1X 10-5

B=0.25,
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I. Introduction

The influence of space-charge forces on the frequency of betatron

oscillations has been recognized for many years as one mechanism which will

impose a limit on the number of particles that can be accommodated within a

circular accelerator. The implications of the space-charge forces which

1-3act on an individual particle have been discussed in several early papers

4and in a recent report by Teng. Attention has also been directed by a

number of workers, in particular by members of the Midwestern Universities

Research Association staff, to the importance of image forces in this

5phenomenon.

The intensity limit which arises because of the transverse space-charge

effect has prOVided a powerful argument for the use of high-energy injection,

since, because of the almost complete cancellation of the electric and

magnetic forces when the effect of image fields may be neglected, the number

1. D.W. Kerst, Phys. Rev. 60, 47 (1941).

2. J.P. Blewett, Phys. Rev. 69,87 (1946).

3. D.L. Judd, "A Study of the Injection Process in Betatrons and Synchro
trons", California Institute of Technology thesis (Pasadena, 1950).

4. L.C. Teng, "Transverse Space-Charge Effects", Argonne National Laboratory
Report ANLAD-59 (Argonne, Illinois; February 1, 1963). The papers
presented on August 26 by Drs. Lloyd Smith and p. Lapostolle at the
1963 International Accelerator Conference at Dubna are of interest for
obtaining self-consistent solutions to the transverse space-charge
behavior of a particle beam.

5. See, for example, J. van Bladel, "Image Forces in the Third MURA Model",
Midwestern Universities Research Association Report MURA-466
(Madison, Wisconsin; June 12, 1959).
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of particles which can be accepted is proportional to SZy3. As we shall

see, however, image forces can distort this energy dependence when the

ratio of the aperture to the transverse beam dimensions becomes comparable

to or less than Y, and the limit to the number of particles will become

proportional to Y at high energies. In seeking the attainment of high

intensity by means of high-energy injection, therefore, one must employ a

sufficiently large aperture to insure that image effects are suppressed or

inject at an energy considerably higher than would be required if image

effects were negligible. In practice, a careful optimization of the design

would be appropriate in order to achieve the best balance between aperture

and injection energy for achievement of the desired intensity.

In addition to the space-charge forces which act on an individual par

ticle in the beam, a second phenomenon, involving the transverse movement

of the beam as a whole, may be of importance. This latter effect, which

of course arises in its entirety from image forces, could lead to an insta-

bility for coherent transverse motion of an intense beam. Because, as will

be indicated in greater detail below, the forces which could lead to single

particle or to coherent instability are not identical, it may prove to be

quite complicated to provide compensating fields which will suppress both

of these phenomena.

In the sections which follow we shall give a general discussion of the

transverse space-charge phenomena, as they may affect axial stability in a

circular accelerator; present some field coefficients that represent the

image effects in certain particular geometrical configurations that a~e

analyzed in the Appendices; and finally give some illustrative numerical

examples. The influence of space-charge neutralization is ignored in the

present report, in the supposition that the time required for complete
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neutralization of the beam normally is long compared to the duration of the

injection process. The work reported here has benefited from discussions

which the writer has enjoyed with staff of the Brookhaven National Laboratory,

the Lawrence Radiation Laboratory, the Midwestern Universities Research

Association, and the Stanford Linear Accelerator Center.

II. Transverse Space-Charge Effects -- Axial Stability Limit

A. Single-Particle Stability

1. The Assumed Fields

The electric and magnetic fields which arise from the collective action

of a uniform isolated beam of elliptical cross section have been evaluated

4by Teng. In Gaussian units, the field strengths at a distance y above

the center of a beam with semi-major (radial) and semi-minor (axial) axes

denoted respectively by a and bare

....
E
unbunched

....
Hunbunched

= 4A Y !
b(a + b)

= -4Ae y t
b(a + b)

(y < b)

(la)

(lb)

for the transverse distribution of density assumed by Teng, where the linear

charge density (A) is related to the number of particles in the beam (N) and

to the orbit radius (R) by

Ne
A = 2TTR • (2)

The fields represented by Equations (la) and (lb) will be modified by

the presence of nearby conducting or ferromagnetic material through the
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supplementary effect of so-called image fields. In addition, for a given

total number of particles, the peak fields, experienced by some of the par-

ticles in the beam, will be enhanced - and the maximum attainable intensity

correspondingly reduced - if the beam is bunched azimuthally by action of

the rf acceleration system or if significant fine structure is otherwise

present in the density distribution.

The beam distribution accordingly will be characterized by a

"bunching factor", B (B ~ 1) representing the ratio of the average to the

maximum linear charge or particle density.

isolated beam accordingly will be taken as

..... .....
E = Eunbunched X (liB)

and
..... .....
H = Hunbunched X (liB) ,

of which
..... ....
Hdc = Hunbunched

The relevant fields for an

(3a)

(3b)

(3b I)

..... ....
Hac = Hunbunched X (liB - 1) . (3b")

To each of these fields [(3a), (3b'), and (3b")] must be appended appro-

priate correction factors to account for the supplemental image fields •
.....

The electrostatic field, E, will be modified by the presence of a

vacuum chamber with conducting walls through the addition of terms which

insure that the chamber surface (most simply taken as formed by parallel

conducting planes, a distance 2h apart) be an equipotential. Likewise,

.....
the dc component of the magnetic field, Hdc ' will be modified so as to

insure that, if possible, this field is directed perpendicular to the sur-

faces of ferromagnetic magnet poles (most simply taken as formed by parallel

pole surfaces, a distance 2g apart).

4-33
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will be influenced by skin-effect currents induced in the conducting walls

of the vacuum chamber, so as to result in a net ac field which is tangential

to this boundary, and the correction factor required in this case may be

expected to be identical to that applicable to the electrostatic field. For

a beam of reasonably small transverse dimensions, these various correction

fields may be considered as evaluated adequately without regard for the

cross-sectional size of the beam, and, for small displacements of the test

particle, will give rise to forces proportional to the displacement y.

The fields to be employed in analysis of single-particle stability

accordingly will be written

E = 4A [1 + e b(a+ b) ]
B 1 h2

y
b(a + b) '"J =

= 11 Ne [1 + e b(a + b)J
TT B R 1 h2

y /J..

b(a + b) J (4a)

and

....
-4A~ [1 - b(a + b)J Y tHdc = e

2 =2 b(a + b)
g

_l~Ne[l_e b(a + b)l Y A= l.
TT R 2 2 J b(a + b)

g
(4b' )

....
-4A~(t - 1) [1 +

b(a + b)J Y
b) tH = e

l =ac
h

2 b(a +

2 (1 - 1) ~ ~e[l+ b(a + b)J Y
b) t , (4b" )= - - e

lTT B h
2 b(a '"

where e
l

and e2 are numerical factors for which expressions applicable to

specific geometrical configurations of practical interest are given below

(sub-section 3) and where the lengths hand g respectively serve to charac-

terize conveniently the semi-apertures of the vacuum chamber and magnet gap.
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Because the effect of bunching has been explicitly taken into account in

writing Equations (4a-b"), the quantity A should be taken here as repre-

senting the average linear charge density, as given by Eq. (2). It may

be re~rked that in some configurations of possible practical interest the

dc component of the beam also gives rise to an axial magnetic field com-

ponent which effectively is independent of position; such a field component

is not considered to affect directly the frequency of axial betatron osci1-

lations, however, and is not included in Eq. (4b') or in the equation of

motion which follows.

2. The Equation of Motion

The linear equation for the steady-state axial betatron oscillation of

a test particle in the presence of a beam of N identical particles ~y be

written in the smooth approximation as

(5)

where n is the effective field index of the applied magnetic field and

in which

2 1 Nr R
[1 + t\ b(a + b)JKE = - -- P

11 B ~2.y b(a + b) h
2

2 Nr R
b) [ 1 - e2

b(a + b)J
~ = - P

11 Y b(a + 2
g

2 1
Nr R

b) [1 + e1
b(a + b)J 'K

S = - (- - 1) P
11 B Y b(a + h

2

(6a)

(6b)

(6c)

by use of Equations (4a), (4b'), and (4b").
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Kg represent respectively the electrostatic effect of the bunched beam,

the effect of the magnetostatic dc component of the beam, and the magnetic

effect of the ac component of the beam as modified by the skin-effect

currents induced in the chamber surface. The quantity r denotes the
p

2 -16
"classical radius" (_e_) for the particle, and may be taken as 1. 536 x 10

Mcc2

cm ~or a proton (rest mass equivalent to 938 Mev).

The shift of betatron frequency which results from the space-charge

terms included in Eq. (5) is given by

and leads to the space-charge limit

(7)

N = B !! b(a + b)
2 r R

p 1 + b(a +
h

2

2 2
\! - \!

Yo Y

2 2

h
2

\) - \!

TT Yo Y
= B- Y (8b)

2 r R 1 h
2

h
2

p 1e
l (B + 4y2) + e2B 2" + b(a + b) ~2y2

~ g

\! 2 _ 2

h
2

\)

TT Yo Y
=

h
2 Y ,2 r R

[1 +
1 J h

2
1p e

l B(y2 _
+ e2 2" + 2

1)
b(a + b)

1) g B(Y -

in which \) refers to the frequency (oscillations per revolution) of the
y

(8c)

nearest axial betatron oscillation resonance, below the low-intensity value,

to which the oscillation may be snifted.
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suitable for indicating the correction factor,

F (9)

that must be applied to the usual formula for the space-charge limit of

an isolated beam, but the form of Eq. (Be) may be more convenient for Com

putation (when h
2

/ab < By.2) and indicates more clearly the following charac-

teristics of the transverse space-charge limit at high energy:

(i) The space-charge limited intensity becomes substantially propor-

tional to Y;

(ii) The aperture dimensions become more important, and the beam dimen-

sions correspondingly less so, in determining the space-charge limit; and

(iii) The bunching factor (B) becomes relatively less important [due to

the almost complete elimination of liB from the sum of the coefficients KE

and KS' given respectively by Equations (6a) and (6c), when ~2 is near

unity and by virtue of the identity of the image-force coefficients (€l)

that appear in these equations].

3. The Image-Force Coefficients

The image-force coefficients, €l and €2' which have been introduced

in Equations (6a-c), can be evaluated directly by the use of image charges

or currents in certain simple two-dimensional configurations, and in other

two-dimensional cases use may be made of conformal transformations to obtain

an equivalent problem for which the solution by image techniques or other

means is readily apparent.
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a. The electrostatic image coefficient, e
l

(1) Plane-parallel conducting surfaces

The simplest configuration for the electrostatic problem - and hence

also for the equivalent problem concerning the ac magnetic field, in which

the boundary conditions are satisfied by virtue of skin-effect currents

induced in the conducting surfaces - is evidently that of two infinite

parallel conducting planes, at elevations h above and below a line charge

Al • The supplemental electric field at a point situated a distance y

directly above the line charge can be obtained immediately by summing the

effects produced by an infinite series of images, of alternating sign, or

by use of a simple conformal transformation (Appendix B). The additional

electric field at this point is vertically directed, of amount

E.
~mage

(10)

and hence is in the same direction as the field 2A
l
/y which arises directly

from a localized line charge.

Eq. (4a), is thus seen to be

The coefficient e
l

, which was introduced in

= (11)

for the boundary surfaces considered here.

(2) Elliptical boundary

It has been pointed out by Dr. John P.
6Blewett that use of a conduc-

ting vacuum chamber with a circular cross section would provide the advantage

6. J.P. Blewett, private conversation (July, 1963).
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of suppressing the coefficient e
l

which otherwise is of major importance

in determining the intensity limit which results from the requirement of

single-particle stability. Since use of a chamber with a strictly cir-

cular cross section may prove inconvenient because of other practical design

considerations, it is of interest to obtain the image-force coefficient for

a chamber of elliptical cross section. Unfortunately, as will be seen,

any substantial departure of the cross section from circularity results in

. 2
the coefficient el assuming a value that is comparable to the value TI /48

for the plane-parallel case. As will be noted in Section B, moreover, the

image forces that arise from a coherent transverse displacement of the beam

as a whole clearly will not vanish for a chamber of circular cross section.

The rather lengthy analysis of the image effects for an elliptical

boundary, of semi-axes w (radially) and h (axially), has been outlined

in Appendix D and leads to results expressible in terms of the complete

elliptic integral K(k) of the first kind and modulus k.

to be selected so that

The modulus k is

K'
K = 2 tanh-1 .h

TI w (12)

where K' denotes K(k') = K(~ - k
2
). In terms of this notation, the supple-

mental electric field at a distance y above a line charge at the center of

the ellipse is

E. =
l.rnage

(13)

and the image-force coefficient accordingly is

1

4-39
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This result includes, as limiting cases, the results for the case of

parallel planes and for a circular cylinder; approximate values of the

coeffficient €l for certain special cases of the axis ratio are listed in

Table I below (see also Fig. 1).

TABLE I

Values of the electrostatic image coefficient €l

for a cylinder of elliptical cross section

w/h

1 0 0

5/4 0.838 0.090

4/3 0.904 0.107

3/2 0.965
5

0.134

2/1 0.998 0.172

1
n 2 .

0.2056200 =
48

b. The magnetostatic image coefficien~ €2

(1) Plane-parallel magnet poles

For extended plane ferromagnetic poles, the magnetostatic image co-

efficient €2 can be obtained immediately by summing the effects produced

by an infinite set of current images of identical sign, or by use of a

simple conformal transformation (Appendix C). The additional magnetic

field at a point y directly above a line current 11 is parallel to the

pole surface and is oppositely directed to the field 21
l
/y (e.m.u.) which

arises from the line current alone. The strength of the supplemental
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FIG. 1.

Electrostatic image coefficients

for a cylinder of elliptical cross section
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field is

H. =
l.mage

(15)

The image-force coefficient e2, which was first introduced in Eq. (4b'),

accordingly becomes

(16)

*The

for the boundary surfaces considered here.

(2) Wedge-shaped magnet gap

Since in practice the magnet poles are commonly designed to p~ovide a

magnetic field whose strength in the median plane is characterized by a

b . 1 d . ( f' 1d . d R dH) . . f' t . .su stantl.a gra l.ent l.e l.n ex, n =-H dr ' l.t l.S 0 l.nteres to l.nvestl.-

gate whether the value of e2 is markedly modified in such circumstances.

The detailed equations for the magnetic field generated by the beam may be

different in form for various geometrical arrangements of the ferromagnetic

material, and, in special cases, application of the usual boundary condition

Ht = a may be incompatible with the necessary condition f H' d.l = 4n L:I.

In particular, it is found that, in addition to the expected radial compo-

nent of field above and below the beam, an axial field component which

effectively is independent of position may arise if the presence of the

magnet yoke or some other feature of the geometrical configuration produces

*a lack of symmetry with respect to a vertical plane through the beam.

presence of a substantially constant magnetic field component, typically
nIl

given approximately by --- j, may be noted in the work of van B1ade1g
(£E. cit.,5 Sect. III), wherein an image-field component of nj gauss is
shown in the neighborhood of a 50-amp beam (11 = 5 e.m.u.) when g = 5 cm.
In this same report van B1ade1 investigates, evidently successfully, means
of compensating the total image field in the median plane.
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A rather simple magnet configuration for the production of a non-

uniform field is that represented by a wedge-shaped gap, of half-angle a,

with the beam current situated a distance X from the vertex of the wedge.

The distance X may be identified with the reciprocal of the relative

field gradient,

H
X - --=--

dhldr
R
n

(17a)

and a may be related to the half-gap at the beam location by the equation

-1 0a = tan .c =
X

-1 --lL
tan Rln (17b)

By an analysis outlined in Appendix E, one finds an image field given

by

.... 1 1 { TT IT .:L '" TT [ TT x ] }H. = -X (- - 1) (- - 5) 6X i + (N" - 1) 1 + (- - 5) -6 t
~mage a ,a ... a X (18a)

* (l8b)

Since the image coefficient €Z serves to characterize the horizontal com-

ponent of the image field at points directly above the beam, we obtain

(19a)

(l9b)

Typically g« Rln (a« 1) and the coefficient €Z then becomes sub

stantially TT
Z

/Z4, in agreement with the result obtained in sub-section (1)

for plane-parallel magnet poles.

* TTI l ~
The presence of a constant field component approximately given by -- J

for g « Rln, of which mention was made in the footnote on g
p. 337, is evident from Eq. (18b).
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(3) Other pole configurations

Other idealized two-dimensional pole configurations also are suscep-

tible to analysis. The results would be of interest in permitting a

comparison to be made between the image fields which arise in such cases

and those present in the wedge-shaped gap that was considered in the pre-

ceding sub-section. In order that the gradient will be substantially

constant over a limited region in the neighborhood of the beam, it might

be considered desirable to locate the beam at a point of inflection for the

median-plane magnetic field that is produced by the application of a magneto-

motive force between the poles. Poles formed by two parallel circular

cylinders of ferromagnetic material afford the advantage of permitting one

to select independently both the semi-aperture (g) and the relative gradient

(n/R), while locating the beam at a point of inflection for the median-plane

fie1d.
7

Such a pole system suffers, however, from the omission of a yoke

structure to connect the two cylinders, as would be desirable in any prac-

tical application of this arrangement, and detailed analysis of the image

fields for this case appears to require, moreover, a formidable amount of

algebraic work.

Another pole configuration of possible interest for checking the

results found for the wedge-shaped gap is that in which the pole surfaces

are described by the hyperbolic cylinders
2

y
2

- x = s2 (asymptotes at ± 45 0
)

and by the vertical plane x = O. For determining the image fields for the

general case in which a line current is located at the point (X,y), it would

be convenient to average the results for the following two cases: (i) line

7. The magnetic field produced by a specified magnetomotance applied bet
ween the cylinders may be evaluated in a manner similar to that appro
priate for an analogous electrostatic problem discussed by Smythe:
W.R. Smythe, "Static and Dynamic Electricity" (McGraw-Hill Book Company,
Inc., New York, 1950) 2nd Ed., Sect. 4.17, pp. 80-82.
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currents 1 1 at (X,y) and at (X,-y); and (ii) a line current 1
1

at (X,y)

and -II at (X,-y). Analysis of this problem again involves considerable

algebraic effort, but for the simplified case in which the beam and field

point are located in the median plane, at X + 51 and X + 5 respectively,

the irrllige field can be shown to be

122
-+ 1 [s + 3X
Himage =)[ s2 + X2 (20a)

for 0 and 51 small.
-+

Application of the condition VxH = 0 permits gener-

alization of Eq. (20a) to include the case in which the field point is

located a small distance, y, from the x-axis:

-+

H.l.mage
yt+ 51J

X ,(20b)

for Yl = O. In limiting cases, Eq. (20b) may be simplified to

.....
H.l.mage

I
1 [,,>

TJ
yot + (5 + 51) jJ

2X '
for s » X (20b')

.....
H.l.mage

for s « X • (20b lt
)

The results expressed by Equations (20b') and (20blt
) are consistent with

those given for a wedge-shaped gap by Eq. (E.4a) of Appendix E, if in these

respective cases we set the half-angle ~ equal to TI/2 or TI/4, and if we

identify x with 5, xl with 51' and set Yl equal to zero. The image-force
2

coefficient, €2' accordingly assumes the value - ~ in these limiting

cases, as follows from Eq. (19a) with the substitution of TI/2 or TI/4 for ~;

in cases of practical importance, however, ~ would be taken as small

(g« R/n) and interest would be directed to the dominant term of Eq. (19b).
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B. Stability with Respect to a Collective Transverse Displacement

1. The Assumed Fields

In examining the stability of the beam with respect to a transverse

displacement of the beam as a whole, it again is appropriate to consider

separately the electrostatic field, the dc component of the magnetic field,

and the ac magnetic field which occur in the presence of conducting or

ferromagnetic boundaries. We now require these components of the image

fields at a point x,y which coincides with the location of a displaced beam

We shall characterize these image fields by coefficients,

Sl and S2' which, for consistency with the notation of Section A, are de

fined as follows in terms of the axial component of electric field from a

line charge Al and the radial component of magnetic field from a dc current

(2la)

(2lb)

2. The Equation of MOtion

In a manner analogous to the procedure followed in Section A2, especially

Equations (5) and (6a-c), we write the differential equation for axial

betatron oscillation of the beam centroid as

iY + (n + K' ..L KM + KS) Y = 0
de 2 E '

where

K'
2 1 N r p R

- - IT Be~ h2 SlE

(22)

(23a)
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2 N r R

~ - - P
S2TT 2

Y g

2 (1
N r R

K' = - - 1) P
SlS TT B

Y h
2

,

(23b)

(23c)

By again identifying D. (\) 2) with
y

K' + K' + K' one obtains the space-E -11 S'

charge limit imposed by the requirement of axial stability for coherent

transverse motion:

y * (24)

The result expressed by Eq, (24) is clearly of the same form as Eq, (Sc)

1 • h 2
when the self-field term is omitted from the denominator;

B(y2 _ 1) b(a + b)

as will Qe pointed out in the following sub-section, the numerical coeffi-

cients Sl and S2 will differ, however, from the coefficients el and eZ that

are employed in Eq. (Sc), Nevertheless, to the extent that the coefficients

Sl' S2 and e
l

, e2 are of a similar order of magnitude, the coherent and in

coherent space-charge limits that are respectively expressed by Equations

(24) and (Sc) will be comparable when Y is large CBY 2 » h2/ab).

(24" )

(24' )\) 2) Y (y 2 _ 1)
y

the beam location (Yl) is flopping on successive revolutions rapidly
(in comparison to the leakage time for ac fields of such frequencies
through the metallic chamber wall), the Yl-term in the so-called dc
component of the magnetic field will be alternating also and would
be subject to the boundary conditions imposed b~ the presence of the
vacuum chamber. In this case we may replace g by h2 and S2 by -Sl
in Eq. (24), with the result

TT h
2

B 2
N =2' r

p
R Sl (\)Yo

TT h
2

B
="2 r

p
R ~

*If

and note a consequent pronounced enhancement of the space-charge limit
for stability of collective transverse motion. We are indebted to
Dr, K,R. Symon for helpful discussion of this point.
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3. The Image-Force Coefficients

a. The electrostatic image coefficient, Sl

(1) Plane-parallel conducting surfaces

The supplemental image field for a line charge Al situated in a gap

of height 2h between infinite parallel conducting planes can be derived

directly by summing the contributions from an infinite series of images or

by use of a simple conformal transformation. From the results of work

described in Appendix B, the supplemental electric field is

E
Y

(25a)

for a line charge (AI) displaced a distance Yl from the median plane and

the field point located directly above the charge at a distance y from the

median plane. To obtain the image field at the center of the displaced

beam, we set Yl = Y and find

(25b' )

so that [see Eq. (2la)]

(25b")

It is noted that the value of Sl given by Eq. (25b") is three times the value

of €l given by Eq. (11) for the identical boundary configuration.

(2) Elliptical boundary

Similarly, with the notation introduced in sub-section A3a(2), the

results of Appendix D lead to the following expression for the electric

image field arising from small vertical displacements from the center of an

elliptical conducting cylinder:

E
Y

=
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Again setting Yl = y, this becomes

E
Y

(26b')

and

1 [K2 lJ
(w/h)2 _ 1 rr2 - 4

(26b")

The result (26b') includes as a limiting case the image field which

Approximate values

=(E.image

arises from the displacement of a line charge within a circular cylinder

211. 1 == 2\1 1
y, Sl = -2)' and also that for infinite parallelh2/y _ y h2

rr 2
conducting planes (Sl = 16' as obtained previously).

of the coefficient Sl for certain special cases of the axis ratio are listed

in Table II below:

TABLE II

Values of the electrostatic image coefficient Sl

for a cylinder of elliptical cross section

w/h k2
Sl

1 0 0.5

5/4 0.838 0.553

4/3 0.904 0.559

3/2 0.9655 0.575

2/1 0.998 0.599

rr 2
= 0.6168500 1 16

A remarkably small variation of Sl is evident from the values given in

Table II and from the graph shown in Fig. 1.
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b. The magnetostatic image coefficient, Sz

(1) Plane-parallel magnet poles

The supplemental image field for a current 11 situated in a gap of

height Zg between infinite plane-parallel ferromagnetic slabs can be

derived immediately by summing the contributions from an infinite set of

images or by use of a simple conformal transformation. From the results

of work described in Appendix C, the supplemental magnetic field is

(Z7a)

for a current (1
1

) displaced a distance Yl from the median plane and the

field point located directly over this current at a height y above the

median plane. To obtain the image field at the center of the displaced

beam, we set Yl = Y and find

so that [see Eq. (Zlb)]

H
x

(27b I)

(Z7b")

It is noted that the value of Sz given by Eq. (Z7b") is three-halves the

value of eZ given by Eq. (16) for the identical pole configuration.

(Z) Wedge-shaped magnet gap

With the same notation as employed in sub-section A3b(Z), the results

of Appendix E lead to the following expression for the image field arising

from small vertical displacements from the central plane of a wedge-shaped

magnet gap:

4-50



- 346 -

H. = ~ {(~ - l)(~ - 5)l ! + [(~/ + 2J IY2 l X 1l.mage X Q' Q' 6X Q'

[
I I 2

J
I+, IT I __(-1L) + _(-1L) - j

IT Rln 3 Rln g

where the coordinates of the current and field point are respectively

(28b)

(X + xl' YI ) and (X + X, y) with respect to the vertex of the wedge, X is

identified as Rln, and Q' = tan- l g/X = tan- l R1; [Equations (17a-b)].

The terms of interest for determination of S2 are those which involve

and

with YI set equal to Y, we obtain

II [IT 2 ]
H = - (-) - 4(~) + 4 Y

x 4X2 Q'
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2
~ ~ [1 !±(--&...\ +
- 16 - TT Rln'

1 2 2J2(3 + 2)(if-/ ) .
TT n

(JOb)

The dominant term in Eq. (30b) is seen to be in agreement with the value

S2 = rr2/l6 that is given by Eq. (27b") for plane-parallel poles (R -> 0).

III. Examples

To illustrate the relative importance of energy and aperture in deter-

mining the transverse space-charge limit, numerical examples are presented

in Table III for a proton synchrotron of 120 meters radius (as might be

representative of an AGS designed for a final energy in the neighborhood

of 30 or 35 Bev). The bunching factor, which plays an important role only

at the lower energies, is taken somewhat arbitrarily as 3/8. The frequency

of betatron oscillations is considered to be shifted by action of the space-

Beam dimensions such that

charge forces from 8.75 oscillations per revolution to the half-integral

2
b(a + b) = 5.25 cmresonant value of 8.50.

are assumed, although these dimensions influence the results strongly only

when the energy is low or the gap relatively large. The space-charge limits

as determined by single-particle stability were computed by use of Eq. (8c)

and the limits for the stability of coherent axial oscillation were evaluated

In all cases, plane-parallel magnet poles were assumed, so
'k

by Eq. (24).

2
that €Z = rr 124

2
and Sz = TT 116.

*Since the space-charge limits given in Table I for stability of coherent
beam displacement have been computed by use of Eq. (24), they may be
considered as more representative of limits imposed by proximity to an
integral resonance, for reasons indicated in the footnote to Eq. (Z4).
In addition, considerations which have been carried out by the CERN
group in regard to a multi-hundred Gev accelerator suggest that the
bunching factor (B) necessarily will differ from unity by a greater
amount than is the case in the example considered here.
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TABLE III

Illustrative values of transverse space-charge limits, for protons
a

2 2 2 2
a = 2 em, b = 1.5 em, R = 12,000 em, v - vy = (8.75) - (8.50)

Yo
[The limiting number of particles is given by the values in the Table times 10l4 .J

4.3125

oil.
I
til
W

Plane-Parallel Chamber 3:2 Chamber Aperture Circular Chamber Aperture

h = g: 3 em 6 em 10 cm 3 em 6 cm 10 cm 3 em 6 em 10 ern
w: <Xl <Xl <Xl 4.5 em 9 em 15 em 3 ern 6 em 10 em

Space-Charge Limit for Individual-Particle Stability

€1: ---- n 2/48 = 0.20562 ----- --------- 0.134 ---------- ----------- 0 ------------
€2: ---- n 2/24 = 0.41123 ----- -------- 0.41123 --------- -------- 0.41123 ---------

K.E· inj .

50 Mev 0.00735 0.00807 0.00824 0.00764 0.00815 0.00827 0.00826 0.00832 0.00833
200 Mev 0.0350 0.0396 0.0408 0.0365 0.0401 0.0409 0.0397 0.0410 0.0412

1 Bev 0.313 0.429 0.465 0.333 0.437 0.469 0.378 0.455 0.476
5 Bev 2.80 7.62 12.05 3.12 8.19 12.54 3.96 9.53 13.60

10 Bev 5.89 20.4 43.0 6.63 22.6 46.4 8.67 28.2 54.4

Space-Charge Limit for Stability of Coherent Beam Displacement

S1:
2

--------- 0.575 ---------- ---------- 0.5 --------------- n /16 = 0.61685 -----
S2: ---- n 2/16 = 0.61685 ----- -------- 0.61685 --------- -------- 0.61685 ---------

K.E· inj .
50 Mev 0.0214 0.0857 0.238 0.0229 0.0917 0.255 0.0262 0.105 0.291

200 Mev 0.0850 0.340 0.945 0.0904 0.361 1.00 0.102 0.407 1.13
1 Bev 0.393 1. 57 4.37 0.411 1.65 4.57 0.448 1. 79 4.98
5 Bev 1. 64 6.57 18.2 1.70 6.80 18.9 1.82 7.28 20.2

10 Bev 3.10 12.4 34.4-- 3.21 12.8 35.6 3.42 13.7 38.0

a -16r p = 1.536 X 10 em, for protons of rest mass equivalent to 938 Mev.
For the injection energies cited, we take Y respectively as 1.053, 1.213, 2.066, 6.330, and 11.66.

w
~
00
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Several characteristic features of the space-charge phenomenon are

apparent from the entries in Table III:

(i) At low energy, or for large apertures, the more stringent limita

tion is imposed by the requirement of single-particle stability, since the

direct action of the beam fields on the particle is then dominant. At

higher energies, when the image fields are of greater significance, the

requirement for collective stability becomes the more important, since the

image-field coefficients are greater for this case.

(ii) The number of particles is effectively proportional to ~Zy3 only

at the lower energies, but this dependence is followed over a somewhat more

extended range of energy if the aperture is large. (Note, for example,

that the ratio of ~Zy3 for 200 Mev and 50 Mev kinetic energy is 4.96.) At

high energies, the acceptable number of particles is substantially propor

tional to Y.

(iii) Similarly, the size of the aperture is of major importance at

high energies, where the number of particles may vary directly as h2• The

shape of the vacuum-chamber aperture, however, does not appear from the

examples considered (h = g) to be of great importance.
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APPENDIX A

APPLICATION OF CONFORMAL TRANSFORMATIONS

In two-dimensional electrostatic problems, the method of conformal

transformations employs a potential function that is the real or imaginary

part of an analytic function (W = U + iV) of the complex position vector

(z = x + iy). By virtue of the Cauchy-Riemann conditions, the potential

(U or V) satisfies the two-dimensional Laplace equation, and the magnitude

of the electric field strength is given by

E = f dwi
dZI

(A.l)

If, for an isolated line charge of strength A (e.s.u. per em), we take

W = -2A log Z (where Z denotes the position of the field point with res

*pect to the line charge), the potential function is

Potential = U = -2A log Izi

"..... r
E = - grad U = 2A ,and

r

IEI= 2A = IdWI.
r dz

(A.2a)

(A.2b')

(A.2b")

With steady line currents in a two-dimensional problem, the Cartesian

... A

magnetic-field components and the vector potential (A, with A = Ak) simi-

larly satisfy the two-dimensional Laplace equation. Again a complex ana

lytic function (W) may be employed, with H= curl A= k x (-grad A) and A

expressed by U or V. For an isolated line current of strength I (e.m.u.),

we may take W = 2 I log z, with

~r

We employ natural logarithms in this analysis.
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A = U = - 2 I log Iz)

1\ 1\
-+ A kxr
H = k x (-grad U) = 2 I -- andr

IHI= 2: = I:~l oersted.

(A.3a)

(A.3b')

(A. 3 b")

The usual boundary condition to be satisfied at the surface of ferromagnetic

material of high permeability is Ht = 0, or OA/on = ° and the orthogonal

function remains constant along the boundary. This requirement must be

abandoned, however, if its application would violate the basic equation

f li. d1 = 4rr 2:1, as would be the case for a current- carrying conductor

threading a tube of ferromagnetic material. The magnetic-field lines can

be visualized as a system orthogonal to the ~low lines in a current-flow or

heat-flow problem in which, with similar geometry, the line current becomes

a source and the ferromagnetic material assumes the property of very high

resistance to the flow of current or heat. The magnetic-field lines are

curves which then become, in this analogy, the electric or thermal equi-

potentials.

In the case of alternating currents, the phenomenon of skin effect

will prevent the ac magnetic field from penetrating into neighboring con-

ductors, and the magnetic field must be tangential at the surface of these

conductors. The magnetic-field lines of a two-dimensional problem involving

alternating currents directed exclusively in the z-direction thus constitute

a system orthogonal to that given by the electric-field lines of the geo-

metrically;similar electrostatic problem, and the magnitude of the magnetic

I ddWZIfield will be just I/A times the value of

static case.

for the corresponding electro-

In all cases, determination of the complex function W may be aided by
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use of intermediate conformal transformations in which the strength of

the sources remains unchanged. Electrostatic field lines which go to

infinity may, however, be interpreted as associated with a sink repre

sented by a negative charge, and this charge will have to be included

whenever the point at infinity is transformed to within the finite region

of the next complex plane; an analogous situation in a magnetostatic

problem would involve transforming a return current at infinity so that

this current would fall in the finite region of the complex plane.

APPENDIX B

IMAGES IN INFINITE PARALLEL CONDUCTING PLANES

1. Application of Conformal Transformation

The transformation

z' = exp n(z + ih)/2h (B.O

is useful for transforming the boundaries of interest to the real axis of

the z'-plane and carries the region between the plates into the upper half

of this new complex plane.

z

00 + ih

ih

-00

-ih

00 - ih
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With the line charge Al located at z = iYl and the field point at z = iy,

the electrostatic potential may be written directly by use of a single

image (-A )
1

in the zl-plane:

U = - 21..
1

log

= - 21.. 1 log

exp irr(y + h)/2h - exp irr(Yl + h)/2h

exp irr(y + h)/2h - exp -irr(Yl+ h)/2h

sin rry/2h - sin rrYl /2h\

1 + cos rr(y + Yl)/2h

2
rr 2 y + 4y Yl +

+ 48 h2

(B.2a)

(B.2b)

(B.2c)

2
rr Al 2

- --(y + 4yy
24 h2 1

(B.2d)

The image-field, as derived from the image-dependent term in Eq. (B.2d), then

is
-.
E.
~mage

for x = xl . (B.3)

This result is employed in the body of the present report in writing Equa-

tions (10) and (25a).

2. Direct Summation of Image Fields

The result expressed by Eq. (B.3) can be derived directly by summing

the field contributions of an infinite series of images of alternating sign.

The following system of images applies:
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Charge Distance from Field Point

Original Al Yl - Y above

-AI 2h - Y - Y above
1

-A 2h + Yl + y below1
+1..

1 4h - Yl + Y below

+1..
1 4h + Yl - Y above

-A 6h - y - y above1 1
-A 6h + Yl + y below1

The upward-directed electric field due to the images alone then is:

4h+~ _Y + 6h-~ _Y - 6h+
1

+ + •••J (B.4a)
1 1 Yl Y

Al f
~ -- [(y + y) + (1/9)(Yl + y) + (1/25)(Yl + y) + ••• ]

h2 L 1

+ [(1/4)(Yl - y) + (1/16)(Yl - y) +

... J (B.4b)

(B.4c)

Al [ -2 -2 -2 -2 -2 -2 J= 2 (y1+y) ( 1 + 3 + 5 + ••• ) + (1/4) (y1-y) (1 + 2 + 3 + ••• )
h

\ [ TT
2

TT~2= -- (y + y)-- + (y - y)--
h2 1 8 1 2

in agreement with Eq. (B.3).
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APPENDIX C

IMAGES IN INFINITE PLANE-PARALLEL FERROMAGNETIC POLES

1. Application of Conformal Transformation

The field which arises from the images of a line current (II) in

infinite plane-parallel ferromagnetic poles can be computed readily by

aid of the transformation (B.l) that was introduced in Appendix B. The

single image (-AI)' which was employed in the zl-plane for the purpose of

the electrostatic computation, now becomes replaced by a positive line

current (+1
1
). In addition, however, a line current -1

1
/2 at x = -ro in

the z-plane is transformed to Zl = O. This current, together with its

image (of like sign) in the xl-axis, constitute a current (-II) whose con

tribution to the potential must be included. [The significance of the

line current -1
1

/2 at x = -00 may be appreciated most clearly by visualizing

the analogous problem of conduction current or heat flow, in which half the

flow lines emerging from the given source II pass to the left to terminate

on a "sink" (of source strength -1/2) at x = -eo.]

With the line current II located at z = iYl and the field point at

z = iy, and with a pole separation of 2g, the potential function becomes

in this case:

A = U = -2 II log

[exp in(y + g)/2g - exp in(Yl + g)/2g] 1

x [exp in(y + g)/2g - exp -in(Yl + g)/2g] I
exp in(y + g) /2g I

(C.la)

= -2 II log [2 Isin ny/2g - sin nYl/2gj]

{nl yg - yll [1 TT
2 2 2

y + yYl +
Yl ]}= -2 II log 24 2

g

ly - y I n 2 I
2 21 ) + 1:!: -2 II log (TT (y + YYl + Yl )g 12

2
g
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The image field, as obtained by evaluation of k x (-grad U) for the image-

dependent terms in Eq. (C.ld), is in the x-direction and of the amount

H.
~mage

for x (C.2)

This result is employed in the body of the report in writing Equations

(15) and (27a).

2. Direct Summation of Image Fields

As in the electrostatic problem for infinite plane-parallel conducting

plates, the magnetostatic problem to which Eq. (C.2) applies also can be

solved directly by summing the field contributions of an infinite series of

images. The locations of the required image currents are the same as for

the line charges considered in Sect. 2 of Appendix B, but in the present

case the sign of each image is that of the original current (+1
1
),

....
The horizontal "magnetic field of the images (H = H t) is

x

H.
~mage

21 [ 1
1 2g-y-y

1

1

= 41 1 2 2
4g - (Yl + y)

Yl - Y Yl + Y
2 2+ 2 2+

l6g - (y - y) 36g - (y + y)
1 1

(C.3b)

~ I~ {[(Yl + y) + (1/9)(Yl + y) + (1/25)(Yl + y) + ... J
g

- [(1/4)(Yl - y) + (l/16)(Yl - y) + ... J}
I_ -l r -2 -2 -2 -2 -2 -2

- 2 L (Yl + y)(l + 3 + 5 + .•• ) - (1/4)(Yl - y)(l + 2 + 3 +
g

11 [ 2 2
= ~ (Yl + y)~ - (Yl - y)~iJ

g

(C.3c)

... )J
(C. 3d)

(C.3e)

in agreement with Eq. (C. 2). (C.3£)
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APPENDIX D

ELECTROSTATIC IMAGES IN AN ELLIPTICAL CONDUCTING CYLINDER

We are concerned here with the image fields which arise from an ellip-

tical conducting cylinder, of which the upper portion extends from the point

A (x = w) through B (y = h) to A
l

(x = -w). The center is at the origin

(0,0), and the foci F,F
l

are at x = ± Jw2 - h
2

• Sufficient generality will

be obtained for the work of this report by locating the line charge (A l )

and the field point (F.P.) on the y-axis, at z = iYl and z = iy, respectively.

In order that specific boundary conditions may be applied along the

line AA
l

, despite the asymmetry introduced when Yl ~ 0, it is convenient to

consider the potential in the z-plane as the average of the potentials

which would result in the following two cases:

Case I: The entire boundary, OFABA1F10, of the region contained within

the upper half of the ellipse is at constant (zero) potential.

Case II: The elliptical boundary is at constant (zero) potential, but

the horizontal axis, AA
l

is a stream line.

These two cases would respectively arise if identical charges (A l )

were located at z = ±iYl' or if charges of equal magnitude and opposite sign

(±A
l

) were located at these two symmetrical points. In either case, the

portions of the y-axis from Al to B and to a are stream lines.
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The transformation

Z ' • -1 ----===z=-== m s~n ~ 2
Vw~ - h

(D.l)

will transform the region within the upper half of the ellipse to that

within a rectangle in the z'-plane. A second transformation,

2K z'
z" = q sn(- - k)

n m'

( 2K . -1 z )
= q sn n s~n / 2 2' k ,

\' w - h

(D.2a)

(D.2a')

In Equations (D.2a,a'), K denotes the complete

in turn will transform this region to that above the x" -axis of the z" -plane.

The boundary point B lies at x" = ± co, the points A and Al at ±p, and the

points F and F
l

at ±q.

elliptic integral of the second kind,

k == q/p ,

and k is selected so that

K' = l tanh -1 .h
K n w

*

(D.2b)

(D.2c)

*K' denotes K(k'), where k' == Jl - k
2

• [For numerical values and helpful
relations concerning elliptic functions and integrals, see, for example,
E. Jahnke and F. Emde, "Tables of Functions (Funktionentafeln)"
(Dover Publications, New York, 1945), Chapters V and VI.]
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Point z ZI Z"

0 0 0 0

\1 iYl im
-1 Yl

iy "sinh Jw2
h

2 1-

F.P. iy im -1 y
iy"sinh Jw2 _ h2

B ih im -1 h ±ootanh -w

±w 'IT -1 h ±pA,A
l

m (±i + i tanh ;)

± Iw2
h

2 'IT
±qF,F

l
- ±m -

2

The location of the field point in the z" -plane is given by

z" = iy" ( 2iK . h- l Y k)
= q sn n S1.n j w2 _ h2 '

2K -1 y
= iq tn(-- sinh rry- , k'),

'IT vwZ _ h 2

(D.3a)

(D.3b)

charge.

and a similar equation relates the coordinates Yl" and Yl of the line

In Case I, for which the entire boundary, BAlOAB is at zero

potential, the required potential function can be written immediately in

terms of the coordinates in the z" -plane:

y" _ y "
1

y" + y "1
(D.4)

For Case II, in which the line segment AlF10FA is.a stream line while the

remainder of the x"-axis is at zero potential, additional transformations

are required. A possible systematic procedure employs the following:
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(i) the transformation

(D.S)

"I III [to bring the charge ~l to the origin of the z -plane with the result that

the stream line from z" = iy" to the origin of the z" -plane becomes a
1

portion (-t ~ x
m

~ t) of that segment (AA
l

, between the points XIII =

±t j (P/Yl,,)i~--{) of the XIII -axis which constitutes a stream line]; an

i~ge charge, AI' should also be imagined as located at the origin, an infi-

/II
nitesimal distance below the x -axis, in order that the strength of the

original source Al be confined, as it should, to the upper half of the

11/
z -plane;

(ii) the transformation

ivz 2u=-
TT

. -1
s~n

Zlll / t
(D.6a)

I ,,2 + ,,2
2u

sin
-11 z Yl

(D.6b)
TT / 2 ,,2

V p + Yl

o /II •
to fold upward by 90 the zero-potential portions of the x -ax~s; and

(iii) the transformation, analogous to that employed in Sect. 1 of Appen-

dix B,

[
iv

zv = v exp _i ~ (1 - zu )] (D. 7)

ivto bring the vertical equipotentials that extend between ±i~ at x = ±u

. into coincidence with the entire xV-axis. By Eq. (D.7), the zV-coordinates

of the line charge (strength 2A
l ) and of the field

resp ectively zv = iyv = iv and
1 1

v . v .z = ~y = ~v exp

4-65

point

!: yiv
2 u

above it become



- 361 -

For Case II, therefore, the potential function may be written

! v
vIvn = - 4.\ log :y

: v
,y + Vi

1T iv
4A

l
log ctnh - ~4 u

= 4A l log ctnh ~ sinh~1

(D.8a)

(D.8b)

(D.8c)

(D.8d)

By averaging the potentials VI and VII' given by Equations (D.4) and (D.8d),

we obtain the result

y,,2)1[y" + y " (M+ y,,2 + Jp2 +
V = Al log y"

1 (D.9a)
y " I y" 2 - ,,21 Yl

which may be expressed in terms of the coordinates y and Yl in the original

z-plane as

V

2(2K . h- l y k') 1 jk2 2(2K. h- l ~l k') + 1tn '"iTHn ~, + + tn IT'"s1.n I 2 2'
Vw--h- w -h

(D.9b)
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*The potential expressed by Eq. (D.9b) may be expanded, noting that

k' == .;;-~ k
2

, to give the result

~=)
I 2 zI

~/ w -h

and the vertical image field becomes

E. =
~mage

Al ·{2[2(2-k
2

)K
2

_ lJy + [4(1+k
2

)K
2

J }
2 2 2 2 -1 Yl '

3(w -h IT IT

(D.lO)

as has been employed in writing Equations (13) and (26a) in the body of the

report.

The results expressed by Eq. (D.lO) may be checked for two limiting

cases - that of parallel planes (w ~ 00), and that of a circular cylinder

(w-' h). In the first of these,

k := 1, , • ITK =-
. 2'

and
2

"" IT wK ---4 h'

* . k
2

+ 1 3 + k
4 + 14 k

2
+ 1 5sn(u, k) = u - """-6~";:;' u 120 u

as may be obtained by expanding the elliptic integral

Then

cn(u,k)

and

tn(u,k) := u -
k2 _ 2 3

6 u +
k4 _ 16 k2 + 16 5

120 u

In expanding factors
must be retained, in
the expansion after

of the form y" - Yl", terms through third order
order that terms of second order will remain in
y - Yl has been factored out.
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2 tanh- l h ~ 1 h.
TT W TTw

Then

in agreement with Eq. (B.3) or (B.4f) of Appendix B.

In the second limiting case,

k
2 ~ 8(w - h)/h,

Then

=

K' ~ log! 2h
w-h '

4h(w - h) YI =

and

as is directly obtainable from calculation of the image field which results

from an image charge situated a distance h
2

/YI from the center of a cir

cular cylinder of radius h [see the discussion in the text following

Eq. (26b")].

APPENDIX E

MAGNETIC IMAGES FOR A WEDGE-SHAPED GAP

We consider here a wedge-shaped gap, of half-angle a, between ferro-

magnetic poles. The reference point, which serves as the origin of the

vertex.

z-plane, is situated on the median plane of the gap a distance X from the

The current (1 1) and field point will be located with respect to

this reference point by coordinates, (xl'YI) or (x,y), which themselves are

small in comparison to the half-gap
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g = X tan Q' • (E.la)

Since the magnetostatic potential which would be generated by a pair of

magnet poles in this configuration is proportional to the angular coordinate

taken about the vertex as a center,8 the distance X would equal - dH~drlx

and we may set

RX=-
n '

(E.lb)

where n is the so-called "field index" which measures the relative gradient

of the magnetic field. With this simple pole configuration, however, the

field gradient may not be as constant as would be desirable in practice, but

the arrangement described may serve as a useful model for the investigation

of image forces resulting from the presence of a line current in the magnet

gap.

The transformation

z' = ia' (E.2)

will transform the region between the ferromagnetic boundaries into the

upper half of the z'-plane, with the vertex of the wedge (z = -X) trans-

formed to z' = 0 and the reference point to z' = iy' = ia'.

function then may be written

The potential

8. See, for example, Sir James Jeans, "The Mathematical Theory of
Electricity and Magnetism" (Cambridge University Press,
Cambridge, 1948), Sect. 318.
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A = U -21 1 lOgl[(X'+iY') - (Xl'+iY
l
')] [(X'+iY ' ) - (xl' -iyl')JI (E.3a)

rT I 2Ct

= -21
1

log {a,2 1[(1 + X+i y )rT
/

2Ct - (1 + Xl:i
Yl ) ]

12 . rT/2et I• rT Ct X -~Y

X [ (1 + ~~y) + (l + \ 1) J}

2 2 2 2

{
rT x+x l rT rT X +xl - Y -Y1

- I (- - l)-X- + (- -1)(- - 5)
1 Ct Ct Ct 12 X2

(E.3b)

By forming "k X (-grad U), one obtains the supplementary image field

-+ 1 1 { rT IT -:L" [IT 2 Jifxl AH. = - (- - 1)(- - 5) i + (-) + 2 i
~mage X Ct Ct 6X Ct 12 X

2 2
:!:: I {rT [1 6(-lL) + (2 + 5) ( g , ] :L I>

1""6 - IT Rln "3 2 W 2 ~
rT g
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where in going from Eq. (E.4a) to (E.4b) we have made use of Equations

(E.la) and (E.lb) to identify x with Rln and Q' -1 --&-
with tan Rln' and

have considered g small in comparison to R/n.

Equation (E.4a) may be checked in two limiting cases, of which the

first is that for which Q' ~ 0 and X - 00 so that Q'X ~ g. Physically this

corresponds to the magnet surfaces becoming the faces of plane-parallel

poles, with a yoke situated at a great distance to the left. In this

case the image field becomes

2y + Yl ,:}
2 ~

g

is consistent with theand (C.3f) of Appendix C, the term

In this result the horizontal field component agrees with Equations (C.2)

iT
2

1
__lex - xl) 1
6 g2

~ iTI l ~
condition ~ x H = 0, and the component --- J is the field expected from an

g

infinite set of current images in the yoke (images separated vertically by

2g and situated a large distance to the left).

iT
In the limiting case that Q' ~ 2' the distance -X represents the dis-

tance by which the reference point is located to the right of the face of

an infinite plane slab of ferromagnetic material. The field given by

Eq. (E.4a),

[
1 x + xl

1
1

(-X - ) "'J

2 X
2

t;..J
~ ,

is just the field to be expected at a point X+x to the right of the slab

by virtue of an image current (1 1) situated a distance X+x l to the left

of the slab when the difference in elevation is y-Yl:
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[
1 x + xl

. 11 X(1 - 2X ) j
Y - Y1 ]
--::2-=- t ,

2 X

as was obtained from Eq. (E.4a) for the case
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QUADRATIVE FORCES TF.AT DRIVE COHERENT RADIAL MOTION

*OF A BEAM IN THE NEIGHBORHOOD OF THIN, IMPERFECTLY-CONDUCTING SIDE PLATES

Glen R. Lambertson and L. Jackson Laslett

Lawrence Radiation Laboratory
University of California

Berkeley, California

July 8, 1971

I. INTRODUCTION

A coherent transverse instability of the electron ring has been

observed in some recent experiments with the LRL "Compressor IV" device.

This instability eVidently involves a radial collective motion, as is

indicated by probe measurements and by the detection of strong electro

magnetic signals with the characteristic frequency (1 - v ) . f .t The. r 0

radial instability has been observed at times for which the radius of

the ring beam is considerably less than the radius of the inflector struc-

ture or of similar devices that are situated near the outer boundary of the

vacuum chamber -- it is of interest, therefore, to investigate the extent

to which radially-directed forces in quadrature with the radial displacement

could arise from the presence of L~perfectly-conducting layers (~ 10 to 50

oh~s per square) on the side walls of the chamber.

In this report we present, in Sect. II, a simple analysis of the

radial quadrature forces that could act on the particles of a precessing

ring beam to drive the instability in question when poorly-conducting side

plates are situated near-by. The analysis takes no account of the presence

* Work supported by the U.S. Atomic Energy Commission.

t f denotes the cyclotron frequency, and
c8herent radial betatron oscillations.
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of dielectric walls (that themselves may be lossy) and, for simplicity,

considers first the case of a "straightened-out 1I beam that oscillates

transversely about an otherwise linear trajectory. An Appendix provides

a correction factor that should be applied to the magnetic component of

the force (the magnetic component typically being dominant) to allow for

the circular nature of the true equilibrium orbit. The dynamical impli

cations of these forces are discussed in Section III, and a numerical

example is given in Sect. IV.

It will be recognized that a complete dynamical analysis of the

collective motion requires, in addition, an evaluation of in-phase per

turbation forces that may arise from a small coherent transverse oscillation

of the beam and also must consider the Landau damping that can be introduced

by virtue of a spread in the energy or oscillation-amplitude of the particles

in the beam. The in-phase forces frequently may arise, however, from

"se lf-fields" that are independent of the surroundings and the Landau-damping

coefficients of course are determined by the cha.racter of the externally

applied magnetic field, so neither of these effects are treated in the

present report. It will be recalled, however, that evaluation of the

quadrature forces will lead directly to an estimate of growth rate for the

instability when (as may be the case in the recent Compressor IV experiments)

the Landau d&~ping is insufficient to suppress the instability.

II. ANALYSIS, FOR A STRAIGHTENED-OUT BEAM

A. Magnetic Forces

With a thin surface layer of resistive material, the thickness 6 is

sufficiently small, in relation to the characteristic skin-depth parameter

5 (~.~., by a factor of several thousand), that the magnetic field arising
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from an oscillating beam may be assumed to penetrate the layer virtually

unimpeded. The associated flux changes then permit the computation of

induced currents and of the asociated fields that then can react on the

beam.

We now consider a ring beam, of radius flail,

that is oscillating transversely with an amplitude

A. In a straightened-out geometry, this beam may

be regarded as providing a current I whose posi-

tion is described by

A co s (f.. - mt),
a

Where, in the lowest mode,

Z0--...,,-
I

m (1 - v ) (r3 c
)

r a

=(l-v)m.
r 0

With x, y, z denoting the coordinates of an observation point, the vector

potential for the magnetic field of this beam may be written as

with (in the long-wavelength limit)

t: = A e,
y y

A =
Y

IJ. I ,o .L-- f,n 
2:n: r

IJ. I 2 2
= - 4~ f, n [ (x - ~) + (z - zb) ]

and
IJ. I 2 2

Ay = - 4~ f,n [(x -~) + h ]

at the location of the side walls.
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Then

AI
Y z==±h

fl Io
= 2rc

x - ~

fl I
~mA
21t

x - ~
sin (l - wt),

a

and the induced current per unit width in each of the thin side plates

is

fl wIo
- 21tR A

s

x - ~
sin (~ - wt),

where Rs is the (d.c.) surface resistance (ohms per square) of the

side plates. Such a current distribution over the two side plates will

lead to a magnetic field component at the beam that, in terms of

X == x - ~,

~] sin (f... - wt)
a

J dX
y

2
fl wI

__0__ A

21t
2
Rs

is given by

2
fl wIo

=: - 4rrhR A
s

sin (f... - wt) ==
a

2
fl Io
41thR ~

s
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or
2

I-lo wI

4:n::hR
s

ix

if we adopt a complex notation (e -imt) for this field component and for the

displacement (x) at the point on the beam where this field is evaluated.

[These same results for a straightened-out beam are also obtained if the

conducting plates are not located to the side but are above and below the

be~~ (Appendix A), or if, alternatively, the beam is situated within a

circular tube (Appendix B).]

A result similar to that just written is obtained if one takes into

account the circular character of the orbit (see Appendix

only the inclusion of a dimensionless correction factor

and requires

that typically

might have a value in the neighborhood of 0.5 and that approaches unity as

These results moreover may be expressed conveniently

in terms of the "impedance of space",

length for the lowest mode]. We thus write

377 ohms, and the wave-z = r::;;-o '-J. f-' 0/ ~0

2:n::a
= 13(1 - v )

r
A = clf = 2:n:: clw [

*tends toward zero.h
a

2 2
wI

BZI I
I-l I

f(~) \
I-lo f( E) x0 i= - 4:n::hR = 4:n::hR as s

z=o

I-l Z I h . I-l wZ I h I-l Z I ho 0 o 0 o 0
= - 4:n::chR f(-a) ~ i 4:n::chR f( -) x = i 2hl\R f( -) x.

a a
s s s

* Values of the function f(E), as obtained by numerical integration, are
tabulated vs. hla at the e~d of Appendix C.
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B. El~ctric Forces

An effect of comparable, although usually of lesser importance arises

from the currents associated with the movement of electrostatic images

induced in the side walls by the ring charge. For the purposes of the

analysis that follows, the electrostatic images are considered to be

identical to those induced in perfectly conducting walls, but, by virtue

of the surface resistance, the currents associated with the movement of

these charges develop a tangential electric field that extends from the

surface of the plates into the interior region where the beam is situated.

For sufficiently resistive walls, the tangential fields can impede move-

ment of the L~age charges and reduce the electric forces.

With a straightened-out geometry, the electrostatic problem of a

charged ring in the presence of side walls at potential zero leads to

the scalar potential function

co
1

2k + 1
cos (2k + 1 )n

2h z
_ (2k + 1 )n

e 2h Ixi

where A denotes the charge per unit length and (as before) X x - ~ =

x - A co s (I - rut).
a

*The induced charge density accordingly is

(J = ± E
d<P

Iz=±b0 dZ

A co
k - (2k + l)n Ixl

2h L: ( -1) e 2h
k=O

* As a check of the result given for the induced charge density (J, one may
note that the total charge induced per unit width on one plate is correctly
given, by use of the above formula, as

co co

A r dX A f Sech u du
A

-J+h
J Cosh nX n - 2"

-co 2h 0
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1
nX

Cosh 2h

is the surface-current density associated with

Now a " - (~) ~
continuityll (conservation
d.Ix
--- = - 0, where .Ixox

since X = x - ~' and the "equation of

of charge) states that V' J + cr = 0, or

o.

We thus are led to the expected result

o . ~
1

nX
Cosh 2h

The surface resistance then requires a tangential electric field, at

the surfaces z = ± h, of the amount

Rs
s .I

x

1
nX

Cosh 2h

and, for later use, this may be developed as a Fourier integral

= :s[/
o

cos kX
Cosh kh

Because Ex,I is a Cartesian component of an electrostatic field, it is

a harmonic function in the region - h < z < h and in the present instance

is an even function of z. Accordingly
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Cosh ~Z cos kX dk] ~
Cosh kh

for - h < z < h, and at the location of the ring becomes

AR S [/

00

dk 1.
2n 0 CoSh2 khJ ~

= 2nE hc
o

Rs
Z ~.

o

For comparison with the results obtained in Sect. IIA for the quad-

rature magnetic field of a straightened-out beam, we may note here the

ratio of the electric to the magnetic forces suggested by this analysis:

FE Ex, I
.2... R 2 A R 22nh s

= 2
I

=-2FM ~ B I ~cI sz, fl c fl c
~c 4nhR

s

"

2 R 2 = 2 (:~J:;::

2~2 2 s
fl c

0

Normally this ratio will be considerably less than unity -- thus with

~ :;:: 0·98 and R :;:: 50 ohms per square, the ratio becomess

1
0.0366 :;:: 27.3 '
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and only for a surface resistance at least as high as 266 oh~s per square

does this ratio become as large as unity.

The foregoing analysis for these walls will apply under conditions

where the magnetic field penetrates the wall but electric images are

free to develop. We believe the applicable region is defined by

3 Javl-lo10 20 and

III. DYNAMICAL CONSEQUENCES

It has been shown in Sect. IIA that a magnetic field of magnitude
I-l (J.)Z III h
4~c~ A f (a) exists at the beam and has such a phase that it lags by

s
900 the displacement of the beam current. Thus the radial outward force

arising from this field attains its maximum value at any point when the

displacement is zero but the charged particles (considered for the moment

as having a charge +q) are moving outward with a radial velocity component

v = v (J.) A. There accordingly is a mechanism for energy to be added tor l' 0

the transverse mode of particle movement -- specifically at a rate

(

2 2 2 )
d Im v m A

p = __ 0 r 0
dt 2 2 2 dA ~ ~= 1m v m A dt = F vor 0 rr.tlme avg.

* In more specific detail, the motion of N particles
wave" collective oscillation may be described by the

21m
¢n = N + mot,

undergoing a "slow
equations

2:rt:M
x = A cos (v m t + ---N n + a)n r 0

A cos [M¢ - (M - v )m t + a], and
n r 0

• 2:rt:M
x = - v mAs in (v m t + -N n + a) = - v mAs in [M ¢ - (M - v )m t + a] .n ro ro ro n r 0

Since the displacement of the beam is then described by

~= A cos [M¢ - (M - v ) m t + a],oro
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Accordingly, by use of the magnetic field previously evaluated,

and introducing a factor 1
"2 to obtain the time average, we obtain

1 dA
A dt

mZ q~I
o

1m v (l) h Roro s

2
n q (l) Z

o

nr ~(l)Z
e 0

= '-4-rc-
I
-v--:-h---'::R-

r s

Thus, from the magnetic field alone,

where n represents the total number

particle radius (= q2 2 )
4rc E m c

o 0

of particles and r
e

is the classical

we expect an exponential growth of amplitude (in the absence of Landau

damping suppression) characterized by the lapse rate

1

'eM

Nr ~(l)Ze 0

4rc I v h Rr s

with (l) = (1 - v ) (l) for the lowest mode of collective radial oscillation.
r 0

The electric force has been seen (Sect. lIB) to be less than the

magnetic force, in the ratio
M - v(l) r

with an angular speed of precession given by M = ---M---

outwardly-directed force thus is of the form

F = F cos[M¢ - (M - v ) (l) t + ~2 + aJr max. r 0

-F sin[M¢ - (M - v ) (l) t + aJmax. r 0

(l) , a lagging
o

and attains its maxima in phase with the radial velocity componentsx of the particles.
n
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if the factor
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h
f(-) -- whose analogue was not evaluateda

for the electric field -- is ignored. We therefore estimate the corres-

ponding electric field contribution to the lapse rate as

1

"E
= 21f r3 )' v h Z

r 0

and take the total lapse rate to be

1
=

1+-
"E

with the greater contribution normally arising from the term

D1 . NUMERICAL EXAMPLE

As a numerical example, suppose

)' = 5, r3 = 0·98, r
e

50 oh.'lls per square,
8 -1ro = 4.4 x 10- sec

(as would correspond to 6 = 2 x 10-6cm and 6 = 6 x 10-3cm, if

p = 1.0 x 10-
4 ohm'cm),

h = 3.5 cm, and h
f (-) = 0.56.

a

Then the magnetic contribution to the lapse rate is characterized by

the e-folding time
41f )' v h R

r s

,N r r3 ro Z f (~)
e 0 a
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5 x i x 3·5 x 50

N x 0.98 x 2.82 x 10-13 x 4.4 x 10-8 x 377 x 0·56

sec.

11 1012 13Thus, for N = 10, , or 10 particles, one respectively obtains,

from the magnetic field alone, a growth time

TM = 3·2 ~sec, 320 ns, or 32 ns

in the absence of any suppression of the instability through the mechanism

of Landau d&~ping. One normally would expect the growth rate of the insta-

bility to be increased, and the characteristic growth time to be correspondingly

decreased, by a few percent due to the concurrent effect of the quadrature

electric field.
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APPENDIX A

The Quadrature Magnetic Field From A Straightened-Out Beam Oscillating

Vertically Between Thin Top and Bottom Imperfectly-Conducting Plates

As Dr. Sessler has reminded us, previous workers have investigated

again for a straightened-out geometry -- a problem similar to that con-

sidered in Sect. IIA of the present report but in which the resistive wall

complet~ly enclosed the beam current I. Thus it may be of some interest

here first to inquire whether the presence of resistive strips solely

above and below the bea.'ll (x = ± h) would lead to a quadrature component

of magnetic field, B I similar to that cited in the body of this
I z=o'

report. [In Appendix B a similar investigation is made for a transversely

oscillating beam centrally located within a thin-walled resistive tube of

circular cross-section.]

Proceeding as before, we have

f.l Io
± ~

h

f.l I h (l. - ill t)0 sin= ± 21l ill A
h

2
+

2 az

and
f.l I

J
- 0 h sin (l_illt).= + 21lR ill A

h
2 2Y as + z

Then, at the location of the beam, we have

B IzI
near beam

[ J I - J I ] dz
yl x=h y x=-h

-co
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2 [j h
2

dZ][10
(J) I

A sin (1. - (J)t)
2rc

2
R (h2 + z2)2 a

s
-00

2
I[10

(J)
A sin (~ - (J)t),

4rc h Rs

a result that is precisely identical to that found in the body of this

report (Sect. IIA) for a straightened-out beam oscillating transversely

between imperfectly-conducting side plates.
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APPENDIX B

The Quadrature Magnetic Field From A Straightened-Out Beam Oscillating

Transversely within a Thin-Walled Resistive Tube of Circular Cross-Section

The analysis of Appendix A, for a straight beam oscillating vertically

between top and bottom plates, led to the same quadrature magnetic-field

component (B ) as was obtained in the body of this report for the case
2I

in which the conducting plates were at the side. We now sketch a similar

analysis for a straight bea~ centrally located within a thin walled circular

tube and oscillating transversely in the x direction.

In the same spirit as in the preceding work we a.ccordingly write

A I
Y0 wall

f-l Io
2n:

x - ~

2
-~) +

f-l Io

2n:h
sin e ~

*with e measured from the positive 2 axis toward the positive x axis

and (in analogy to the notation for the previous planar situations) h

denotes the radius of the circular tube.

* i.e., 2 = h cos e and y = h sin e at the wall, so that a positive
rotation of e would advance a right-handed screw in the direction of
the positive y axis. Similarly r will denote here the plane-polar
radial coordinate in the transverse x, 2 plane.
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J =y

I.l Io

211:hRs

CD A sin 8 sin (f.. - CDt).a .

The local transverse variation of the magnetic field associated with J y

may be described in terms of a (harmonic) vector potential

411: R
s

sin 8 sin (l - CDt)
a

h~r

r~h

411: h Rs

and leads to a uniform (z-directed) field

2
I.l CD I

o A s in (I - CDt)
a

in the interior (r < h) -- as is characteristic of a first-harmonic surface-

current distribution on the surface of a circular cylinder. Again this

result is seen to be identical to the result obtained earlier for side

plates (Sect. IIA) and for top and bottom plates (Appendix A).
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APPENDIX C

The Quadrature Magnetic Field of a Ring Current Oscillating Transversely

Between Thin, Imperfectly-Conducting Side Plates

In Sect. IIA of this report the quadrature magnetic image field was

evaluated for a straightened-out be~~. We here revise that analysis to

take into account the curved (circular) character of the reference orbit.
~

The vector potential A = A¢e¢, that describes the magnetic field for an

isolated d.c. beam of current Ie¢ circulating about the z axis, may

be written
00

*where lIa ll denotes the rad:i.us of the ring current. If the beam has its

center displaced from the origin of the coordinate system to a point

with polar coordinates A, ¢b' this same result may be written
00

A
O

= ~o I a J "1 (ka) "1 (k [r - A cos (0 - 0b)] e-k1z1dk

o

for A small.

* As a check, one may note that the B field on the axis is given by
z

00

[~
"-

(rAo~
!-L o J (ka) e-k1z1dk

Bz Ir=o
L

d k J l= or "2
r~ 0

!-L o
= "2

2
I a

( 2 2)3/2a + z

by use of the formula cited, in agreement with the well known result
[MKS units] for the field on the axis of a circular current loop.
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If the beam is precessing, additional current components in principle

may be present, ~ut the expression just written still may represent a major

part of the vector potential -- with A denoting the radius of the circle

described by the orbit center as a result of the precession and ¢b advancing

at the angular rate of precession (ill). Under these circumstances, the time

derivative of the vector-potential component A¢ is given by

co

flo ill I a A

2 fo
where the prime on the second J

l
function denotes differentiation of this

function with respect to its argument. The induced surface-current density

(per unit Width) then is

J¢
1

A¢ IZ=±h= Rs

co

flo ill I a A f=
2 Rs 0

I -kh
k Jl(ka) J l (k[r - A cos (¢ - ¢b)])sin (¢ - ¢b)e Q

2 Rs

where we have introduced r
l

, ¢l as the polar coordinates of the observation

point relative to the precessing beam center.

Such a current distribution will give rist to a supplemental magnetic

field that can be derived from a vector potential
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C(k) is determined

H IIr l , z=h+
by the requirement

(an even function of z), where the coefficient

- H Ir
l

I _
, z=h

C(k) =

2
f..L

o
ill I a A

4 Rs

Thus, in the region Izi < h, the supplemental magnetic field may be

obtained from the vector potential

A =Q>n 2 Rs

00

J
o

Accordingly, by evaluating r
l

= a, z = 0 we obtain

sinf..L
o

2

ill I A [ 100

B =---
zI 2 R

s
o

-2kh
e 12](ka - ka) [Jl(ka)] dk

We denote the integral shown in the square brackets by

with the expectation that fCE:) ~ 1 for h« a [see below].
a

In terms

of this notation
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flo (I) I

4rr h R
s

- C4 -

A f(_h) . ( )a Sln ¢ - ¢b .

The radial coordinate of the be&~ at a particular point (as distinguished

from the coordinate of a particular particle in the beam) departs from

the reference value "a" by the amount A cos (¢ - ¢b)' for A« a, where

¢b advances at the angular rate (I). The quantity (I) A sin (¢ - ¢b)

accordingly is analogous to the transverse velocity *b of the line

current for which the magnetic field was evaluated in Sect. IIA. Thus

by re-writing the expression given immediately above as

4rr h Rs

f(E) .a ~,

the results previously obtained for this magnetic field component are

seen to be applicable if adjusted by inclusion of the correction factor

00

- 2rrh /

o

00

-2kh 1 2
e (ka - ka) [J1 (lm) ] dk

-2v
e dv.

o

The correction factor f(E)
a

*has been evaluated n~~erically for several

values of its argument, with the results tabulated below and

*

becoming

Teletype progr&~ ROMBES1, used in conjunction with BESTABl that contains
coeffcients for evaluating the Bessel function JJ' and the remote-submittable
program BESS1. The integration variable x in tnese programs is taken to
be given by v =~ , so that dv = dx and the range of integration is

l-x (1 _ x)2
o ~ x ~ 1. The required values of J are obtained by means of "polynominal
approximations" attributed to E.E. Al!en and quoted as equations 9.4.4 and
9.4.6 by F. W.J. Oliver in M. Abr&~owitz and I.A. Stegun (Eds.), "Handbook of
Mathematical Functions", Chap. 9, pp. 369-370.
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close to unity for E
a

h
a

O.OlO

0.020

0.025

0.030

0.040

0.05

0.10

0.15

0.20

0.25

0·30

0·35
0.40

0.45

0·50

- C5 -

small (as expected).

4-93

0.9698

0.94l4

0·9277

0.91429

0.88838

0.863479

0·75ll55

0.654l67

0.568507

0.491871

0.422817

0.360392

0.303924

0.252901

0.206901
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and

D. Mohl
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ABSTRACT

The theory of coherent transverse oscillation::; of "(,\-;,) parti.cle

species is extended to include strong species-species and irr~ge forces.

It is shmv~1 that in g~nE.:ral the species- speci.es force can conside;cably

alter the instability threshold. Conversely, it is shovrn that th<2 limit

on the perfor~J!e,nce of an electron ring accelerator ir.lposed by the

re1uirement of stable ion electron oscillations, is not significantly

liuprcved by the inclusio~ of L~a8es.

-l(-

Hert;. sUPT-Ort2:" by the U.S. Ator:.ic Ec.ergy CU:1'::~lsslon.
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1. INTRODUCTION

The transverse coupling instability of relativistic stabilized beams

has long been a subject of intensive study (e.g. ref. 1-5). Recently, it

has been emphasized,5) that this two-stream instability can impose a severe

limit to the acceleration rate attainable in an electron ring accelerator

(ERA) .

A similar type of instability can also occur in synchrotrons or

storage rings when particles of the opposite charge are trapped in the
main beam.6),7),8)

In the present note we extend the theory to include -- in an approxi

mate way -- the influence of space-charge forces acting between particles

of the same beam ("species-species forces"), as well as image forces due to

the presence of walls. For simplicity, and because they are the most un

stable modes, we shall concentrate on dipole oscillations.

We find that species-species forces and images can considerably -- and

in many cases adversely affect the instability threshold. In fact, to

explain the instability in the Bevatron it seems vital to include electron

electron forces in the theory.

In an electron ring accelerator acceleration column, where axial

focussing is provided only by ion-electron forces and electron images, we

hoped that the inclusion of images would relax the ion-electron instability

threshold. We shall show this is not the case.

2. OUTLINE OF THE SOLUTION

We start with the equation of motion for a test particle of each

species. We include three types of forces, a "single particle force", a

"coherent force" and a "coupling force". The single particle force is

proportional to the displacement of the test particle, the coherent force

is proportional to the displacement of the entire same beam of particles

similar to the test particle, and the coupling force is proportional to the

displacement of the other beam. Each of these force coefficients is modi

fied by images and/or species-species forces.

We assume harmonic oscillation of the beam centers and average the

single particle response over all beam particles. The averaging process

takes frequency spread into account. The eigenvalues and eigenvectors, of

the coupled system which describes the motion of the two beam centers,

4-97



determine the mode frequency (and hence thresholds and growth rates) and

the relative amplitudes of the two beams.

3. EQUATIONS OF MOTION

To be specific, and clearly without loss of generality, we take the

beam species to be electrons (the replacements for proton beams is made in

Section 7). We normalize all frequencies to the average electron revolu

tion frequency (00 ) and denote the beam (electron) frequencies by lower

case q's and the stationary species (proton) frequencies by capital Q's.

The equations of motion of the two test particles are

1

o 2
o

2 2- 2-
+ q x + ~ x - qc y = 0,

(1)

2 2-+Qy+Q y
u

2-
Q x = 0,c

where x and yare the transverse coordinates (in the same direction) of

the test electron and test ion.

The quantities q2, Q2, q~, etc. will be discussed in more detail in

the examples given below. We remark, here, that in the absence of species-

species forces and of images:

2 2 2 02 2 2 2q ;:;: qc + q
02 ( = Qe = Ql + A ),

0
0

2
0,

~ ==

2 2
(qc == Ql)'

Q2 Q2 my f 2 2
;:;: ;:: N qc (== Qi ) ,c

(2)
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and Zenkevitch5~

the (relativistic)

mass ratio betvreen electrons and ions, and

The extern~l focussing is characterized by

where we give in parentheses the notation of Koshkarev
2 my

Clo' 11 is
Ni

f =N the fractional ion
e

loading. The quantities qc and Qc are in this approximation -- the

electron and ion bounce frequencies in the potential well of the other beam.

The quantities q~ and Q~ are in general closely related to the coeffi

cient (u + V + iV) of Ref. 9) which determines single bea~ stability

(resistive wall effect, etc.). For the electrons .re have, e.g.,

2 -l(g ~ -2qn U + V + i V) •·u 0

LL SOLUTION

We solve (1) by ass~~ing that the bemn centers oscillate harmonically

in time and space:

(4)
y ;::; S" exp[ i (n8 - v.l1 t)],o

and regarding the x- and y- terms in (1) as driviGg forces. In finding

the response of the test particle we, as is usual in Landau damping calcula-

tions, ignore transients and take rm(v)?- + 0

the umitable rangE:.

hence concentrating on

In the case where nonlinearity in the oscillation direction is negli

gible the single particle response ~ and ~ is simply the steady state

solution of a driven harmonic oscillator. In the case of important non

linearity in the oE;cillation i'le use the results of Ref. 10) to obtain

D.l)Ilroximate expressions for ~ and S valid for sllB.ll amplitude and small

noDlineCi..rity.

'(Ie introduce normalized dist.ribll.tion functions f(p), g(a2 )) h(b2 )

for the electrons, and F(p), G(a2), H(b2 ) for the ions, that describe the

~omentw~ distrib~tion, and the distribution of the incoherent betatron

ampli tudes of the particles, '·7i th b referring to the direction of the

oscill.ation. He assUJne that the distributions are uncorrelated so that

the l,eu1:1 center is determined by:

4-99



s =~ S F(p)G(a
2

)H(b
2

)
2 2 (5)dpda db •

Thus we obtain:

1" (1 + i) - S i e = 0,

(6)

S (1 + I u ) - 1" Ie = 0,

"There

i =J~
f(p)[_b2h/(b2)]g(a2)

dpda2db2,u 2 ( .11 211 - v-n-)
no

(7)

i = J11;
f(p) [_b2h/(b2)]g(a2) dpda2db2

e 2 ( n 2
,

11 - v - n-)
no

and I u and Ie are similar dispersion integrals for the ions (with

.11 == 0).

5. APPROXJ}lATIONS

We know that the values of dispersion integrals, such as (7), are

primarily determined by the width of the distribution functions. 9),11)

Hence we approximate (7) by neglecting the variation of the 1l2-coefficients

in the numerator and keeping only the first-order variation of the co-'

efficients in the denominator. Furthermore, we circumvent Iluestions of

self-consistency and assume that the coefficients and the distribution

ftillctions can be independently selected. ThUS, we write the characteristic

equation, associated with (6), in the form

(8)

where:
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The combined effect of three spreads can be treated only with

difficulty. Double dispersion integrals have in fact been treated in Ref.

11). The result is that the spread effective for damping is not the sum

of the spreads, but rather the Landau damping is mainly determined by the

larger of the two spreads. Hence we shall consider only the effect of a

single spread; namely the largest.

Finally, one may make a further approximation which we call the "slow

wave approximation"; namely we expand the denominators of (9) in partial

fractions and keep the term which is largest when v ~ (n-q), and when

v ~ Q. In this approximation and by expanding q Gt ~ + S(dq/dS)o'

etc. -- (8) takes the form

(10)

with

and

~ [f F(s)ds 1-1

= Qo-v+6isJ '

": = Us ln t) -q (s))] .

,,~ = l~L

(11)

(12)

The quantity s is one of the spreading parameters 2 2
p, a or b , and

f(p)dp or

f(s) ds = g(a2)da2 or (13)

_b2 dh(b2) db2 [see ref. 8],
db2

f f(s)ds = 1.

Alternatively, we employ the term "improved slow wave approximation" for

the approximation in which we retain (8) but approximate the factors that
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arise from the fast-wave terms by the v-value (n-q) and Q.

6. STABILITY COlJDITIONS

A. Analytic Results

Stability conditions can be obtained from (8) or (10), by finding the

boundary (on which v is real) of the unstable zone (in which the imaginary

part of v is positive). To this end, the integrals of (9), or (11), need

to be evaluatedj and in Table I we summarize results, for the essential

component of (9) and (11), resulting from two different choices of distri

bution functions. The Lorentzian distribution is studied, despite its

unphysically long tails, because the analysis is simple and because it can

be employed to establish an interesting general result (see Sect. 8). For

accurate results, a truncated distribution is required.

In the case of 5-functions for f(s) and F(s) (no frequency spreads)

the eigenfrequencies are determined from

(14)

For a Lorentzian line, [f(s) ex: (4s2 + 6~rl: F(s) ex: (4s2 + ""'i)-lJ,

Vii th equal slow wave and fast wave frequency spread and ....l1th 6e and q
the full widths at half maximmo, equation (14) is valid with

v -, v + i 6e/2 in the first factor and v -7 v + i q/2 in the second

factor. If, in addition, 6e ~ 6 i :::: 6, the condition for stability is

where 1 01 is the growth rate in the absence of dispersion.

In the neie:;hborhood of a resonance we may use the improved slml-wave

approxir:!;.'-ttion. In the absence of frequency spread, (14) yields

Q d i
q~c iv :::: + ± 40--- - ,

(.q
(16)

"here
] ( .... ,.., )d :::: 2 n - q - Q ,

(17)
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(17)

and resonance occurs when d ~ O. For the Lorentzian line, and in improved

slow wave approximation,

[d_i (~)J2 , (18)

with 6p and 6 the full widths at half maximum in the frequencies Q
Q I eand In Q
o

- q. Stability of the solution (18) requires spreads such

that

2 2 [ 2] -1qcQc 4d
6 6. ~ - 1 + (1\ 1\.) .

e ~ qQ ~+-t

To suppress an instability that occurs within a narrow resonant frequency

band (where d will be close to zero), (19) provides the convenient

sufficient condition

(20)

For values of ~ etc. that are considered to be essentially known (~.~.,

from Table II). It is of interest to note, from (19) or (20), that both

6.e and 6 i must be non-zero to suppress the instability. 5)

Finally we turn to the case of the semi-circular distribution (see

Table I). For this distribution the damping is very different for the

fast and the slow waves and hence it is not reasonable to assume ~+ = 6_.

Rather, we employ the slow wave approximation and completely disregard the

non-resonant fast wave to obtain:

(21)
,± i

2 .,
Qu i

v = Q + Q + dl - "2 (Ze + ~)

2 2
qcQc
-- -

qQ

with

d1 = ~ [( n-q - :) - (Q + ~~)J, (22)
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:6 ~6; 2
= - (n-q-v) ,

e

(22)

6
1 = J6i 2- (Q-v)

After considerable algebraic manipulation it can be seen that stability

requires:

Again within a narrow band of instability, associated with the resonance

dl '::t 0 (where n - q - v ~ q~/q and IQ-v I ~ Q;/Q), we may write

~Q;
6e6 i ~ ~

or (24)

as a sufficient condition for suppression of the instability. The second

of the forms (24) clearly implies that we must require

6. > I~I
and (25)

The condition (23) is similar to the condition (19) found for the Lorentzian

distribution -- or (24) is suular to (20) -- but with the width parameters

modified to correct for the anon~lous results arising from the extensive

tails of the Lorentz distribution [~.~., in the manner suggested by (29) of

Sect. 6B below]. It is evident that for wave frequencies removed from the

central beam frequency there is reduced Landau damping. With the abruptly

terminated semi-circular distributions tha.t led to (23) et seq., this limita

tion is explicitly indicated by the conditions (2]). Again we note that

both 6 e and Z. must be non-zero to insure stability.
~
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B. Numerical Formulation

For numerical work we proceed directly from (8) and (9) and again

employ Lorentzian distributions in s, with 8± denoting full widths at

haLf maximum in the '1uantities \ n nn
o

±'1 \ for the fast and slow waves of

the electron component and ~ correspondingly for the ions. If we then

let

and write

x = v - (n + <10),
+

x = v ± Qo ,
+

(26)

we then find

g+ = x + i ~, G = X + ie:- ,
+ + + :+

(27)

h = g - g - 2'1
0

, H = G - G - 2Qo'+ - +

['1o(x_ + g_)(x+ + g+) + h~] [Qo(X_ + G_)(X+ + G+) + HQ~]

_ hH'12Q2 = o.
c c

(28)

The imaginary parts of the expressions written above for g_, G_ are seen
+ +

to imply a damping that is independent of the distance by which the actual

fre'1uency is displaced from the peak of the distribution. This results

from the unpbysically extensive tails of the Lorentz distributions that

were assumed for evaluation of 6<12 and ~2. For this reason we have

elected to replace, in the numerical work, these expressions by

g = x + i
+ +

G = X + i
:+ +

in the expectation that a more realistic type of distribution will be

described in this way. With this replacement we obtain an e'1uation for
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which roots have been sought computationally.12)

From computational tests that employed parameters similar to those

introduced in the example of the following Section, it was found (i) that

the values of the fast-wave dispersion parameters 5, /::, for the two species
+ ,-

had little effect on the stability threshold (although it may be necessary

that they be, for example, some 3% of the respective slow-wave quantities

0_, 6+), and (ii) that (19) [or (20)] can be safely taken as a stability

criterion to be applied to the slow-wave dispersion parameters after modifi

cation in the manner indicated by (29). It was confirmed, moreover, that,

as expected,5) stabilization could not be obtained by introducing dispersion

into just one of the two species.

7. PROTON SYNCHROTRONS AND STORAGE RING

We assume that electrons created by scattering with the background gas

remain trapped in the circulation beam. Further, we assume the electrons

to be uniformly distributed around the circumference, and we neglect the

influence of the background gas ions. We take the proton and electron minor

radii as equal.

The proton and electron frequencies relevant to this case are given in

Table II. In many situations of interest one can use, to a good approxima-

tion, simplified relations obtained by taking q ~ v ~~d neglecting images.
Zo

In this approximation the stability conditions (24) and (25) are con-

veniently expressed in terms of the 1/ space charge 9.- shift ll
, 9.1' so that one

requires

q 3
~1~ZZ > f 1

e p Vz
,

0

6 > If (30 )e f Cll m '

/::, >
CJ.1

2

P
-2-- ,
Y Vz0

where

2 N r R
(2/n) pp

(31 )Cll
:::: yb(a+b) •
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Let us, as an example, discuss the case of the Bevatron, where an in

stability of the debunched beam at 6 GeV has been observed, and has been

cured by the provision of clearing fields. 7)
For typical operating conditions at 6 GeV we find q12 = 4 x 10-3 and

~ 0.9. (More details ~y be found in Ref. 13.) Hence, for stabilityV zo
we require

//'e2 - (6.3f)2 ...... 2 5 lO-2f'V~ :::' . X •

If we assu.'ne the relatlvely large spreads 6e = 1.5, 6p :0: 0.04, we

fi~d a threshold neutralization f = 0.24. Neglecting electron-electron

forces, the thr73shold f 1lOUld be a tolerable f > 1. Hence, in the case

of' the; Bevatron, species- species forces appear to playa dominant role in

the determination of the threshold. This situation is generally the case

in a proton ring if' the proton frequency spread is large and/or )' is

sIlJall.

8. AXIAL STABD.1I'l'Y IN THE EBA

In the acceleration colvInn of an ERA, or of a':ly similar system in

which translation3.1 j.nvariance of the configuration can be legitimately

asswned, it follOl"s from e<}.uation (1) that

Q2 + Q 2 _ Q 2 = O.
u c

From (17), "He lJ1'J.y ','1'i te

..... 2 2
q - Clc

,

"'2 Q
c

2
Q = .

As 'de shall see be lo'i", the invariance conditions inply that images hardly

ef'fect the e.xio.l stabi Iity coneli tions in an ERA.

FreqUE.2ncy pa:r3.lneters for an ERI\ have been derived in Ref. (14). They

arc pl",,:~sented in Table III. 'l'hesc forr:mlas ceD be. simplified by assuming
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1 » f » 1
2

y

R2

b(a+b) »p/8,
E
e

in which case image contributions only appear in 'lu2 and ~.

For the Lorentzian distribution, e~uation (14) is valid with the re

placement discussed just following e~uation (14). In view of (33), this

e~uation is independent of images. Thresholds are as has been discussed

in the literature,5) and above threshold we have the stability condition

(20), which takes the image-independent form:

6 6. ~ qQ,.e :L c c

We note that the condition (36) will normally not be satisfied except

for working points with very small values of qc and/or Q,c. Such working

points, however, are unattractive because both qc and Q,c are "figures

of merit" of an ERA device -- since Q,c2 is a measure of the holding power

of the ring and ~c2 detennines the fractional ion loading.

For the semi-circular distribution, or the modified Lorentz distribution,

the thresholds and d~~ping conditions depend slightly upon the image terms.

VIe have undertaken numerical studies in order to ascertain the effect, on

the instability, of images and dispersion. We concentrate on the n ~ 1

parameters(dipole) instability and we refer to Table III and postulate
. . _ Il ) R2 -13

such that ,::: 40, Cl ::: 4(N
e

b(a+b)::: 5.0 x 10 ,

_ 4 ( 11 ) P 1 -13 Il €e -13C2 :.: He"B = 60:" x 10 , and C3 =4(N;) --"'""'2::: 0.05 x 10 •
(Se-l)

(Such coefficients might result, apprOXimately, from R = 3.5 em,

a ::: 0.30/[2 em, b = 0.15/J2 em, and ISe-l\ = 0.625/3.5). Then, with

M/m = 1836, we write

2q

= (Cl

2= qe

+ C2 - H.C 3) ·Hi

2
-~
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Q 2 = (40/1836)q2u c

Q 2 = (40/1836) (cl + C2 - 1(. C
3

) .Nec

and
Q2 = Q 2 2- Q ,c u

where 7i is a "flag" that, if set e<lual to unity, introduces the effect

of a strong electrostatic focussing. The dispersion may be controlled by

means of a parameter TJ such that 5 = 5 = TJ<l and 6. = 6. = TJQ.
- + - +

With these substitutions introduced into (28), as modified by (29),

one may solve for the roots computationally, along a trajectory on which

(for example) f = Ni/Ne is held constant, and so examine the variation of

the threshold~. the damping coefficient TJ. With the ratio ~i:Ne e<lual

to one and one-half percent, and with images absent (~= 0), one finds in

this way virtually no change of the threshold until TJ > 0.4, and even with

TJ as large as unity the particle abundances are permitted to increase by

only 43 percent. Under similar circumstances dispersion is found to be

somewhat more effective when image focussing is present (~= 1), but the

gains are trivial until TJ > 0.4 and TJ should exceed 0.93 to achieve a

doubling of the permissible particle numbers.

In examining an alternative trajectory on which the ratio Ni:Ne is

taken to be one-half of one percent, it appears desirable to have image

focussing present (H= 1) since the ion focussing can be expected to be

weak. Under these conditions the effect of the dispersion coefficient TJ

has been found to be somewhat greater than was the case for the trajectory

mentioned earlier, although the effect remains small until TJ exceeds 1/2.

Somewhat more striking effects do develop at the larger values of TJ--
thUS, with Ni/Ne = 0.005, dispersion characterized by TJ = 0.88 permits a

doubling of the particle numbers and, at TJ = 1 and Ne = 5 x 1013, stability

is obtained for Ni ~ 4.67 x lOll, i.e. for f ~ 0.0093 (cf. the Figure on p.

5 of ERAN_177,12) which suggests th~ ~bility of strong di~ersion to open

up a narrow stable corridor through a region of small Ni)'

In summary, the numerical studies have shown that with physically

achievable damping terms the stability threshold is only slightly changed

from that which obtains in the absence of damping; a result in accord with

(36) and with the conclusions of Zenkevich and Koshkarev. 5) We conclude

that neither Landau damping nor image effects and species-species forces

are capable of any considerable extension of the stable working range in an

ERA-column.
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Table I - The Dispersion Inte[ral I

a. ) Definitions

q qo
dq

= +- s
dS

n ()
dn

= + -, S"0 as

6. I~q 1

~: I= 81/ 2 ±
Do± ds

sl/2 is the half width of f(s) (full width at half maximum or half width

at bottom).

b.) Lorentzian Distribution

f(s)

I ~ -2~ [ 1 iD _ 1 ~...-]
-' 0 v- (n-Cd.o ) + T v- (n+q) + l~+

If I -
1

2 iL )2Cd. - (v+ -2- -n

c.) Se~i-circle Distribution

r(s) =

2
- s

o
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Table I (cant.)

I= l[ 1 ,_
Clo v- (n-'la) + iL_

1

v- (n+<lo) iE]+ +
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Table II- Frequencies of Vertical Oscillation of a Coasting Proton Beam

Partially Neutralized by Electrons*

1. Proton frequencies: t

2 0 Electron frequencies ((3 ::: 0):e

where:

* CurvattITe effects are ignored, and the beam is assigned to be centered in

the vaCUlli~ cha~ber.

t In vldting t~e proton frequencies, we have set (3 ;= 1, save in the last

(m.agnetostatic) term of the equation for qo2.

h: Half heiGht of vacmUi! chamber

g: Half height of IT~£net gap

r p : Classical proton radius
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1.

+
E (l-f)

e _ f32

2 [ R2 · P E
2

(8 ::)2]
e

qu ::: 4[J. +
(8 _1)2

+ P
b(a+b):r2 "B

e m

2 [ 2
(8

e
::)2]

4 f _ Rqc == [J. b(2.+-OJ

2. laD fre~uencies:

Q2 2 my
'u - qc H

Q2 2 my
- q

I,If ,
c c

vihere: N re e f
Ni

I-l :::: 2nRy , ""Ne

* Unifonn external guide field assumed.

t f3e ~ 0

P ::: 2 In[16RI(a+b)]

Se ::: Radius of Electric iL~ge cylinder/n

Sm ::: Radius of magnetic im.e.ge cylinder/n

Ee ~ ~ ~ 0.125 lllage coefficients

r e : Classical electron radius

tt We are indebted to Prof. M. Reiser for a recent communication concerning

his analysis of toroidal field gradients [Max-·Planck-Institute for Plasma

Physics Report IPP 0/14 (Munich-Garching, July 1972)] that called to our atten

tion the appropriate form of certain terms indicated in Table III.
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and

ERAN-209

SOME REMARKS CONCERNING THE COLLECTDlE TRANSVERSE OSCILLATION

*OF AD. C. BEAM IN THE PRESENCE OF RESISTIVE WALLS

L. Jackson Laslett

May 25, 1973

The "coherent force" to be applied in the case of an unbunched

beam oscillating transversely with a displacement y within a highly
1

conducting chamber is normally taken to be expressible as

F = 4Ae [ ~l

if D.C. magnetic image forces are negligible, where the'first term within

the square bracket arises from electric image terms and the second from

curreITtimages. The portion of the formula that involves ~l - €l is

regarded as arising from the vertical movement (within a conventional syn

chrotron chamber) of the longitudinal D.C. beam current, which results in

A.C. magnetic image fields (subject to boundary conditions appropriate to

A.C. fields). These A.C. magnetic fields are consicered to be derivable,
1

for a beam at y = Yl' from the image field computed at Yl (through use

of A.C. boundary conditions) for the beam at Yl (contribution proportional

to ~l) minus the field similarly computed at y for an undisplaced beam

(contribution proportional to €l)' For a pair of plane-parallel conduc

ting surfaces at ±h, €l = ~2/48 and ~l = n2/16; 2 for a circularly

cylindrical conducting tube of radius h surrounding a beam on its axis,
1 2

€l = 0 and ~l = 2

The terms shown in the expression for F thus represent the effect of

(i) a defocusing electric image field (e.s.u.)
y

E = 4A ~1-2
h

(ii) u. focu::.;in{'; mu.~~nl'i.ic field (e.m.u. )
y

II = 4 [ (~l - € ) ~
1 h

* Work supported by the U.S. Atomic Energy Commission.
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In certain cases of interest in which the chamber walls have

appreciable resistance, the magnetic image fields given by the expres

sion written immediately above will arise immediately from a step

displacement y but subsequently will decay (due to attenuation and

possible redistribution of the image currents) in a manner conveniently

characterized by the characteristic Maxwell velocity 3 v (v = R /2~
s 4

for surface resistance in e.m. u., or v = 2R /~l in the MKSA system)
s 0

and a characteristic dimension h of the structure. Thus, in particu-

lar, for an infinitesimal displacement of the beam from -the axis of a

thin circular cylinder of radius h, the decay is characterized by the

simple factor exp [-v.(t - t )/h]. For currents SUddenly established
o

(or displaced) between two thin plane-parallel side plates, the time

dependence may be more elaborate, but the important initial decay again

appears 5 to be reasonably well represented by the exponential factor

Just mentioned, with h now denoting the half-gap.

To obtain the time variation of the magnetic contribution FM to

the force l when the displacement y is an arbitrary (small) speci

fied function of time, it therefore may be appropriate as well as

convenient to write this contribution as arising from an image field

H =.4~ (~l - E l ) /y(-r) exp [- v·(t - -r)/hJ d-r
h -00

ana

For an oscillatory (SHM) variation of y, represented by the factor
•. exp(jillt), these expressions become 2 . v

4 ill -I- Jill h
H=--!(~ -E

l
) y

h
2 1 2 2

ill + t/h)

= 41 (~ r 2

2 v/h y~j
- E )

ill
Y +

h2 1 1 + (v/h)2 2 + (V/h )2
,

Lill ill

2 Nrc
2 + jill v/h2 2 ill

FM - - ;r Rh2
(m c ) $ ( ~ - E ) 2 + (V/h )2

Y , and
0 1 1 ill

2 Nrc 2 t1 ~ (32(~ _ E )
u} + jm Vjhl

F = --- (m c ) 2 2 Y
~ Rh2 0 1 1

+ (/h)ill
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The frequency dependence implied by the complex expression just given

for H, if applied to a thin circular cylinder of radius h and surface

resistance R, can be compared (and confirmed) by reference to earlier

reports 6 tha~ were specifically concerned with this particular geometrical

configuration (setting, for this purpose, El = 0 and t l = 1/2 in the above).

The imaginary part of F, as given by the last expression above, can

be converted to the quantity V, frequently employed in dispersion analyses

of collective motion, by mUltiplication of Im(-F/y) by the factor

1
2v(r3C!R)

1
1mo

to obtain

V =

with v = R /2~ (e.m.u.). The analysis of magnetic-field behavior thats
has led to the magnetic contributions contained in all of the foregoing

and a wallR « Zs 0

of space" (120 ~ ohms)

formulas is believed to be basically correct for

thickness <0 [where Z denotes the "impedance
o

and 0 is the "skin-depth" characteristic of the wall materialJ. The

result cited here for V has been checked 5 by comparison with results

obtained computationally [for a beam situated on the axis of a circular

stainless-steel cylinder of variable thickness and setting ru = (1 - v)ru J
7 ~from a program based on general methods developed at CERN by Zotter.

Excellent agreement was found for the range of th~cknesses limited by the

conqitions R < 0.12 Z and wall thickness < 0/1.7, and the physicals 0

principles employed in the preceding discussion thus should be applicable

throughout an extensive range of values for R that will comfortablys
include those of interest in the ERA program. [For approximate work the

range of applicability might be taken to extend between the limits

R < Z /2 and wall thickness < 1.7 o.Js 0

E for wallss
of rather low surface resistance -- 1.~" for Rs less than the value

From the form of the of the expression given for V, it is apparent

that this quantity will be inversely proportional to R when the wall
s

resistance is high, but should be directly proportional to
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I-l rw/2 = ~l h(M
o 0

maximum.

-4-

v)ill /2 (MKSA units) at which the va.lue of V is a
Q'

An early analysis 9 was made specifically for the magnetic effect

of image currents induced magnetically by a beam oscillating radially

between thin plane resistive side walls at z = ± h. The analysis

considered-the surface resistance R to be large (but« Z ). As 0

"curvature factor" f was introduced into the result, but shall be con-

sidered in the following discussion to be unity as would be the case

for an orbit radius that is large in comparison to the half-gap h. The

growth rate that was deduced in this work as arising from the image currents

induced in the side walls (with Landau damping ignored) was found to be

the same when the conducting plates are taken to be situated above and

below a stT3.ightened-out beam 10 and also when such a beam is situated near

th . f th' . 1 1 l' dr' 1 . t· tube. 11 The resulte aX1S 0 a ln Clrcu ar y-cy ln lca reS1S lve

for this growth rate, if identified with V, reads (after an adaptation of

notation that includes replacement of Rs by l-lov/2 and Zo by I-loc)

1
V = - =

'1M

Nr ~ce
2:1!vyhv

with v again denoting the Maxwell velocity. The law governing the decay

of induced image-current effects is exactly known in simple terms as

exp [-v·(t - to)/hl only for the cylindrical geometry, and the formula just
9-11

given for V will be seen to agree exactly in the limit v/h » (J.)

with the formula given previously for V with El = 0 and ~l = l;f

(as is appropriate for the cylindrical geometry). The result obtained

in Ref. 9, in which V oc l/Rs ' thus is seen to be applicable for large

values of R (but for R not as great as Z), and presumably retains
s s 0

its validity until v becomes comparable to or less than wh -- ~.~.,

until R becomes comparable to or less than Cl /2)wh (MKSA units).s 0

More generally (until the resistance is so low that the skin depth becomes

comparable to the wall thicknessh it might be reasonable to apply the

factor

to the results of Ref. 9·
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Transport of intense beams of heavy ions over long distances may be restricted by space-charge induced
transverse instabilities. The stability of the microcanonical, or K-V, distribution is analyzed with the help of
the Vlasov equation, and reduced to a study of the characteristics of solutions for a set of ordinary
differential equations with periodic coefficients. Numerical solutions for various periodic solenoid and
quadrupole focusing channels are derived and provide information concerning stable regions of propagation
in terms of betatron tune depression. The results are compared with computer simulation examples of beams
in solenoid and quadrupole focusing channels to check linear growth rates and establish nonlinear saturation
levels of instabilities. Conclusions are drawn for the design of a quadrupole lattice providing stable
transport.

I. INTRODUCTION

The possibility of using high-energy heavy ions as the igniting mechanism for
inertiaIIy confined fusion has necessitated a consideration of transporting currents in
the kilo-ampere range for distances of the order of kilometers without significant
degradation of beam emittance. In addition to the usual problems of field and
alignment tolerances, there arises the question of the stability of beam propagation in
a vacuum against fluctuation in self-forces arising from initial deviations from the
desired distribution of the beam in the four-dimensional transverse phase space.

The most powerful analytic technique for investigating this problem is a lineariza
tion of the Vlasov equation about a known stationary solution, coupled with the
appropriate equations for the perturbed electromagnetic fields. If the external focusing
force is constant, an infinite variety of stationary solutions can readily be, generated,
since any function of the Hamiltonian is a solution of the Vlasov equation and the
corresponding self electrostatic potential can be obtained by integrating Poisson's
equation. l It furthermore is possible to show2 that a large class of such stationary
solutions is stable against arbitrary fluctuations.

For the more realistic situation of a focusing channel consisting of quadrupoles or
discrete solenoids, however, the Hamiltonian function is not a constant of the motion
and hence cannot be used directly to provide a stationary solution of the Vlasov
equation. To our knowledge, the microcanonical distribution investigated by

t This work was supported by the Assistant Secretary for Defense Programs, Office of Inertial Fusiqn,
Laser Fusion Division, U.S. Department of Energy, under Contract No. DE-AC03-76SFOOO98.

~ Max-Planck-Institut fur Plasmaphysik, 8046 Garching, West Germany.
I Naval Research Laboratory, Washington, D.C.
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146 I. HOFMANN, L. 1. LASLETT, L. SMITH, AND I. HABER

Kapchinskij and Vladimirskij3 (K-V), for which individual-particle restoring forces are
linear functions of the displacement, is the only distribution for which a stationary (i.e.,
periodic) solution can be constructed. Because of its singular character, it is probably
more susceptible to instability than real beams and so we have performed the present
investigation concerning its stability characteristics in the hope that the results may
serve as a conservative guide to identifying regions in parameter space that might be
dangerous.

We proceed by presenting in Sect. II the general framework of the linearized Vlasov
analysis. This is followed in Sect. III by application to periodic solenoid and to
quadrupole focusing systems. Specific results are given (Sect. IV) for several per
turbation modes in such systems (with the governing equations becoming increasingly
complex for modes of high order) and suggest the particular importance of a "third
order" mode. In Sect. V, we compare the linear growth of the third-order mode found in
both the analytic theory and in computer simulation. Simulation will also be used to
establish the practical significance of the remaining instabilities. The implications of
these results are discussed in Sect. VI.

We observe that intensity is frequently related to the ratio vivo for beams in a
continuous solenoid and to cr/cro in a periodic channel. Here v denotes the betatron
oscillation "frequency" (with time replaced by distance), and cr the phase advance of
betatron oscillations per focusing period; vo, cro are the corresponding values for zero
intensity.

II. GENERAL FORMULATION OF THE LINEARIZED VLASOV ANALYSIS

We use the distance s along the transport channel as the independent variable and write
the total Hamiltonian function as

(1)

where

Q Q
ICx = K x - a(a + b)' ICy = Ky - b(a + b)'

Kx,y represent the external force constants [± B'(s)/[Bp] for quadrupoles, and
HB/[Bp])2 for solenoids in the Larmor frame],

qe is the ion charge, A is the ion mass/proton mass, N is the number of ions per unit
length, rp is the classical proton radius, e2/(41t€oMp•oc2

) (MKSA units), a(s) and b(s) are
respectively the x and y half widths of the matched (periodic) beam envelope [as
determined by the K-V envelope equations-Ref. 3, Eqs. (46) and (47)], and

v = !i 41t€t~/e x electrostatic potential function due to perturbations.
A ~ Y
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KV STABILITY IN LONG SYSTEMS 147

The first two terms in Eq. (1) represent the unperturbed Hamiltonian, which is not a
constant of the motion for s-dependent focusing, and the terms proportional to Q
describe the effect of transverse components of the space-charge force for a K-V
distribution.

We now make use of the Courant-Snyder4 functions ~(s) and ct(s) for the un
perturbed orbits, for which (with dots denoting d!ds)

1. Iii 1. 2ctx.y = - 2 ~x.y, 2 I-'x,y - 4 ~X,y!~x.y - 1!~x,y = - ~x.yJ(x.y,

where 1t€ represents the emittance (assumed to be identical in the two transverse
planes). The form of the governing Hamiltonian function can thereby be simplified
through introduction of a transformation defined by the generating function

(2)

followed by a scaling transformation x = x!€ 1/2, Px = Px!€ 1/2, etc., so that

(3)

(4)

and similarly for y, py • The new Hamiltonian function then becomes

H- 1 (N 2 N2) 1 (N 2 N2) 1 V.
= 2~x Px + x + 2~y Py + Y + € .

In the remainder of this work we shaH omit, for brevity, the tilde that distinguishes
these new (dimensionless) phase-space variables. In terms of these variables the
unperturbed orbits can now be written as pseudo-harmonic oscillations

x(s') = x(s) cos [ljIx(s') - IjIAs)] + pAs) sin [ljIx(s') - IjIAS)],} (5)
Px(s') = pAs) cos [ljIx(s') - IjIx(s)] - x(s) sin [IjIAs') - IjIx(s)],

with IjIAs) = JS dz!~x(z), and similarly for y(s') and Py(s').
From Eqs. (5) it is evident that x 2 + p/ and y2 + p/ are individualIy constants of
the unperturbed motion. The unperturbed K-V distribution function, moreover, may
now be written as

!o = ~ O(x2 + p/ + y2 + p/ - 1),
1t

(6)

with 0 denoting the Dirac delta function.
With the introduction of a perturbing distribution function!l, the linearized Vlasov

equation provides the total derivative along the unperturbed trajectories in phase
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D/1 == {~+ ~[Px~ -X~J +~[py~ - y~J}/1
Ds AS ~x OX oPx ~y oy oPy

_ 2N [OV OVJ' 2 2 2·-1t2€ PX ox +pyay.o (x +Px +Y+Py -1),

(7)

wherein 0' denotes the derivative of the delta function with respect to its argument.
Eq. (7) can be solved by integrating over the unperturbed trajectories. Introducing
\jf~.y == \jfx,y(s') as ancillary variables, Eq. (7) thus leads to

/1 = ~~ [f ds' (O~x' + O~;) V(x', y'; S')J o'(x
2 + Px

2+ yl + p/ - 1), (8)

and (when we neglect the longitudinal field component) Poisson's equation becomes, in
terms of our scaled variables and the associated distribution function,

(9)

subject to the boundary condition that the external fields vanish at infinity.S By noting
that

fOO dgldz g(z)o'(z - zo) = - -d - g(O) o(zo),
o Z %=%0

we see that Poisson's equation, as expressed by Eq. (9), leads to (i)

1 02V 1 02V
--+--a2 ox2 b2 oy2

=~ fS ds' (_0 +~) [_d f2" d9V(x' Y" S')J I
1twb o\jfx' o\jf; d(p2) 0 "p2:t-x2 _ y2

(10)

(11)

(12)

in the interior of the beam, and (ii) to a relation that reflects the presence of an effective
surface charge (that describes the effect of an infinitesimal perturbation of the beam
boundary)

1 02V 1 02V
--+--
a2 ox2 b2 oyl

- 2Q [fS d ' ( a a ) V(' '. ')J I s: 2 2)- €ab S o\jfx' + o\jf; x, Y, S p=o u(1 - x - Y .
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KV STABILITY IN LONG SYSTEMS 149

By introducing elliptic coordinates (E" s) defined (in terms of our scaled coordinates, for
a> b) by

x = (hja) Cosh E, cos sand y = (hjb) Sinh E, sin S (13)

(where h2 = a2 - b2, and with Cosh E, = ajh, Sinh E, = bjh at the boundary x2 +
y2 = 1), Eq. (12) may be written as

02V 02V 2Qh2

oE, 2 + as 2 = €ab (Cosh~ E, - cos
2

s)

x [f' dS'(o~x' + o~J V(X',Y';S')l=o 8(1 - x
2

- yl). (14)

The discontinuity of the electric field at the beam boundary accordingly becomes

oV Q fS , ( 0 0 ) ,
~ ~ = € ds oljlx' + oljl/ V(cos 1; cos(ljtx - IjIx),

sin Scos(ljt/ - ljIy); s'). (15)

A consistent solution is obtained if we can find a function V(x, y; s) that satisfies Eqs.
(11) and (15), where ~(oVjoE,) is such as to match the solution interior to the beam to a
harmonic (02VjoE,2 + o2Vjos2 = 0) outwardly decreasing solution external to the
beam.

III. APPLICATION TO SOLENOID AND QUADRUPOLE FOCUSING

Finding a closed expression for the solutions of Eqs. (11) and (15) appears hopeless, but
a brief inspection of these equations shows that they can be satisfied by potential
functions that are finite polynominals in x and Y interior to the beam and finite sums of
e - n~ e± in< exterior to the beam. Finite polynominals emerge as a resul t of our choice of
a K-V distribution for the stationary beam. The derivative of the delta function in
Eq. (7) suggests that the perturbations describe distortions of the hyper-ellipsoid in
four-dimensional phase space (ef final sentence in Sect. III of Ref. 6).

(a) Solenoidfoeusing

In the simplest case of continuous s-independent focusing, with Kx = Ky = K,
~x = ~y = ~ and both K and ~ independent of s, then IjIx = ljIy = sj~ and solutions
are of the form V ct:. eiws G(x, y). Gluckstern6 has concluded that in this case G(x, y) can
be expressed by means of hypergeometric functions

(,)rn (cos mq,) (. . ,2)
G =; sin mq, II - J, m+ J, m+ 1; a2 (16)

in terms of unsealed polar coordinates, where a is the radius of the unperturbed beam
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j = 0, 1,2, ... , m = 0, 1,2 ... ,excludingj = m = O.

The "order" of the mode (highest power of r appearing in the function G) is 2j + m.
Gluckstern has also indicated 7 the manner in which this solution may be employed to
obtain an algebraic equation whose roots must all be real to insure stability of the
matched K-V beam. Stability limits for the modes described here can be conveniently
described in terms of the factor vivo by which space-charge forces may be permitted to
depress the individual-particle oscillation frequency within the matched beam (Table 0.
It is clear that intensities limited to values such that vivo> 0.3985 are those for
which the m = 0 modes may be expected to be stable, and the results presented in
Table I suggest that this restriction may also be sufficient to insure stability of the
higher-order modes for an uninterrupted solenoid transport system.

When the focusing strength of the solenoid is not constant but is periodically s
dependent, the matched beam radius (a) becomes a (periodic) function of s. The
function a(s) may be sought computationally in such cases, and the entire investigation
of beam stability conducted in a manner analogous to that adopted for quadrupole
focusing systems.

(b) Quadrupole focusing

For the case of alternating-gradient quadrupole focusing [Ky(s) = - Kx(s)], we have
.not found a general closed form for the potential analogous to that indicated by
Eq. (16). The analysis of Sect. II leads, however, to a procedure that can be followed
to determine the stability characteristics of individual perturbation modes. As will
be shown, moreover, the eigenvalues that characterize the stability or instability of a
mode can be determined by reference solely to terms of the highest power in x and y
and of highest harmonic order in Sin Eqs. (11) and (15).

(i) Example:

To illustrate this procedure we first consider a simple example that will be seen to
correspond to a coherent oscillation of the beam as-a-whole. In this example the
internal potential is assumed to be, in terms of the scaled coordinate x, V; = A(s)x.

It is seen that Eq. (11) is trivially satisfied by this potential function, since \72 V = 0
and

d f2n d f2n
d(p2) 0 de x' = d(p2) 0 de [x cos (1jIx' - IjIx) + P cos esin (1jIx' - IjIx)] = O.

To treat the boundary Eq. (15), we employ the elliptic coordinates introduced earlier,
writing V; as V; = A(s) (Cosh ~/Cosh ~o) cos Sand taking the exterior potential to be
Vo = A(s)e-({~{o) cos S, where ~o is such that Cosh ~o = alh. By employing these
forms, ~ (a Vla~) = - A(s)(1 + bla) cos sand Eq. (15) leads to the integral equation

a+b Qfs .
-- A(s) = - ds' A(s') sm(ljIx' - IjIx)'

a €
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KV STABILITY IN LONG SYSTEMS lSI

Then by differentiating twice the integral (I(s)) that appears in Eq. (17), one finds that it
satisfies the differential equation

d21
d'!Jx 2 = - [I + ~xA(s)]

-[I + g~JI
£ a + b

= - [1 + ~/Q ] I.
a(a + b)

(18)

With the quantities a, b, ~x, and '!Jx determinable (e.g., numerically) as periodic
functions of s, numerical integrations of Eq. (18) through one period of the transport
channel will provide the elements of the matrix that advances the vector I, dljds
through this interval. The eigenvalues of this matrix provide the frequency of the
perturbation mode, and none may have an absolute value exceeding unity if this mode
is to be stable.

We note that, by use of the previously cited relation connecting the Courant-Synder
parameter ~x (and its derivatives) to the force constant Kx , the differential Eq. (18) for I
in this case may be transformed to

(19)

-which will be recognized as of the form expected for a simple coherent oscillation.
Similarly, adoption of a potential function whose dependence on the scaled coor
dinates is of the form V; = A(s) x 2 + B(s)y2 will lead to a pair of coupled second order
equations equivalent to those customarily taken to represent a linear perturbation of
the envelope equations.

(ii) General Treatment:

More generally, we assume a potential function of the form

n n-2
v" = I Am(s) xn-mym + L Am(l)(s) xn- m- 2 ym + ...

m=O m=O
(20)

in the interior. For a given order n, "even" and "odd" modes conveniently may be
treated separately on the basis of whether the index m in Eq. (20) is restricted to even or
to odd integer values.

For the stability analysis, Eq. (11) provides a set of coupled algebraic equations that
relate the functions Am(s) to integrals of the form

(21)
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while Eq. (15) provides a second set of such equations, and these equations taken
together can be solved (at any 5 for which a(5), b(5) are known) to express each
individual Aj in terms of the integrals defined by Eq. (21). From Eq. (21), moreover, one
finds that

where

d [ dIj,k.l]Ck1(5) -d Ck ,(5) -d- + I)"k' = - Ck ,(5) A).,, 5 ' 5 .. .
(22a)

(22b)

With the A j obtainable (as just mentioned) in terms of the Ij':k,l' Eqs. (na) constitute
a set of coupled second order differential equations for the latter quantities, and
numerical integrations through one period of the structure will provide the elements of
the matrix that advances such quantities (and their first derivatives) through one period
of the transport channel.

(iii) Computational Procedures:

Computational programs have been devised to perform the computations outlined
above, for various modes of order up through n = 6. Computations of this nature for
quite large values of n may not be of practical importance. In a realistic beam with a
natural spread of individual particle wavelengths (as may result from a nonlinear
space-charge force), it is very unlikely that fine-grained transverse density variations
(large n) persist through several periods. Computational results of Sect. IlIa pertain
ing to focusing in a continuous (5 independent) solenoid-focusing system indicate,
moreover, that the most stringent stability conditions are those imposed by modes of
order less than 6 or 8.

To summarize the procedure followed in examining the stability of any particular
perturbation mode, one first specifies the type of periodic lattice one wishes to employ9
and a value of beam intensity (e.g., Q-or the parameter Q' -cited in Ref. 8). By a
convergent iterative procedure one then determines initial conditions (for a, b, and their
first derivatives) that lead to periodic (matched) solutions of the envelope equations,
and, with this solution obtained, the individual-particle tune cr is also obtainable (i.e.,
from solutions of the equations of motion for individual particles, or as crx =
€ gL d5/a2etc). With this information available, the computations are then repeated
to include (for various initial values of the Ip,l and their first derivatives) integration of
the differential equations for the integrals Ij,k.I' [Note that integration of these
equations requires repeated evaluations of the relations that express the quantities A j

in terms of the I/;k.l-as can be done by use of a matrix-inversion/simultaneous
equation-solver routine.] Such integrations yield the elements of the matrix that
advances these integrals (and their first derivatives) through one period of the structure,
and the eigenvalues A (and eigenvectors, if desired) of such a matrix are then
determined. The occurrence of any eigenvalue of magnitude greater than unity then is
indicative of instability for the perturbation mode under consideration, and the
magnitude of such an eigenvalue denotes the factor, per period, by which such a
perturbation ultimately (in the linear regime) will be expected to grow.
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KV STABILITY IN LONG SYSTEMS 153

IV. COMPUTATIONAL RESULTS

Based on the analysis of Sect. III, we have examined computationally the behavior of
several types of modes~bothfor a periodically interrupted solenoid system (Fig. la)
and for a periodic alternating-gradient quadrupole (FODO) transport channel
(Fig. Ib), although with greater emphasis on the quadrupole systems. 10 It is convenient
and efficient, in all such cases, to employ "scaled variables." Useful parameters for·
describing a particular situation are the phase advances ero and er (of individual
particle transverse oscillations per period of the structure, respectively for a zero
intensity beam and for a beam of intensity characterized by the parameter Q'8), and (for
a given lattice) the "tune depression" factor er/ero will serve as a useful index of beam
intensity.

In addition to the magnitudes of the eigenvalues that characterize the behavior of a
perturbation mode, their phase angles, <I> [defined, with an ambiguity of 360°, as tan- 1

(1m A./Re A.) and evaluated so that -180° < <I> ~ 180°] also are of interest. Thus, with
eigenvalues occurring as complex-conjugate and as reciprocal pairs, the development
of an instability indicated by an eigenvalue moving away from the unit circle in the
complex plane can occur either (i) when eigenvalues become real, or (ii) when at least

a)

---I
I
I
1.- _

FIGURE 1. Assumed periodic transport lattice, (a) with interrupted solenoid elements and (b) with
quadrupole lenses. 11 denotes the fraction of the lattice occupied by lens elements.
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two pairs are present, as a result of a confluence having occurred at the threshold of
instability. In the first of these cases (and if $ =I: 0), the mode frequency becomes locked
to the period of the lattice ("inhomogenous" or "structure" resonance).

Results are best presented as regions of instability on a plot'of 0" vs. Q', since it has
been found that the locations of these regions and the associated growth rates within
them depend primarily on 0"/0"0 and are remarkably insensitive to changes of the lattice
structure-particularly for instabilities that arise as a result of a confluence of
eigenvalues.

(a) Interrupted-solenoidfocusing

The solenoid modes we have studied can be classified in terms of indices corresponding
to those introduced by Gluckstern. 6 We present specific results for symmetric
interrupted solenoid systems with an occupancy factor of 1/2 (11 = 1/2 in Fig. la).

(i) Envelope Modes:

J. = 1 m = 0 with V oc r2 and Oa = Oa .
" Y x'

j = 0, m = 2, with Voc r2 sin 2<1> and Oay = -oax '

At zero intensity the true phases of the eigenvalues for these modes are 1<1>1 = 20"0 and
the phase will decrease as the intensity is increased. Accordingly, if 0"0 > 90°, there thus
is the opportunity, with either type of mode, for an instability to develop at an intensity
such that 1$1 becomes 180° (an example of a structure resonance). This behavior is
illustrated by the curves of 1$1 vs. Q' on Fig. 2 for the case in which 0"0 = 120°, and by

200

.....-
~<P for cay =cox

~Unstoble---:7

<P for cay =- cox

100

50
b

FIGURE 2. Behavior of envelope modes for an interrupted-solenoid system for which 11 = 1/2 and
00 = 120°, with regions of instability indicated by heavy lines on plots of <I> vs. Q'.
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10

155

100

FIGURE 3. Behavior of envelope modes for interrupted-solenoid systems for which 11 = 1/2 and
<To = 120°, 100°,90°, and 60°.

the regions of instability shown on the curves of 0' vs. Q' in Fig. 3. From Fig. 3 it is seen
that, as expected, the envelope instabilities occur only for 0'0 > 90°. The instability
region for the oay = oax mode becomes quite extensive, moreover, when 0'0 is as large
as 120°.

(ii) "Fourth Order" and "Sixth Order" Modes:

j = 2, m = 0, with V oc r4 + terms of lower order;
j = 3, m = 0, with V oc r6 + ....

As illustrated by Figs. 4 and 5, each of these modes exhibits minor patches of
instability-which may not warrant concern. More significant are the extended
regions of instability that are seen to develop for values of 0'/0'0 close to the values of
vivo shown in Table I for modes of 4th or 6th order respectively (and m = 0).

(iii) R4 cos 2<1> and R4 cos 4<1> Modes:

j = 1, m = 2, with Voc r4 cos 2<1> + terms of lower order;
j = 0, m = 4; with V oc r4 cos 4<1>.

Examination of stability of these modes (choosing 0'0 = 120°,90°, and 60°) indicates
the occurrence only of short patches of instability-as are expected to become possible
(for 0'0 > 45°) when eigenvalues with initial phase angles of 40'0 (or 20'0) cross the real
axis as the intensity is increased, but that have been seen also to arise as a result of a
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=1200

100

---cj"l
Q)

""0
'-'

b
50

Q'
FIGURE 4. Behavior of fourth-order mode (j = 2, m = 0) for interrupted-solenoid systems for which
11 = 1/2 and ao = 120°,90°, and 60°.

b

Q'
FIGURE 5. Behavior of sixth-order mode (j = 3 m = 0) for interrupted-solenoid systems for which
11 = 1/2 and a o = 120°,90°, and 60°.
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TABLE I

Threshold Values of vivo

a) For Modes of Even Order b) For Modes of Odd Order

Order, m Order, m
2j + m 0 2 4 2j + m 3 5

2 Stable Stable Stable

4 0.2425 Stable Stable 3 Stable Stable
6 0.3859 0.1741 Stable 5 Stable Stable Stable
8 0.3985 0.2582 0.1384 7 0.2874 0.2184 Stable

10 0.3972 0.2314- 0.1396 9 0.3235 0.3124 0.2038
12 0.3921 0.1885 0.2940 11 0.3373- 0.3246+ 0.2608
14 0.3861 0.1971 + 0.3205- 13 0.3425 0.3148 0.2248
16 0.3798 0.1898- 0.3263 15 0.3439- 0.2968 0.2072
18 0.3728- 0.2062- 17 0.3432 0.2757
20 0.3680 0.2305 19 0.3415

confluence. No extensive regions of instability are found, however, and one notes that
no instability of these modes is expected in a continuous solenoid (see Table I).

(b) FODO quadrupole focusing

We have investigated the behaviour of several modes, for different values of the
occupancy factor Tl, in the symmetrical lattice of Fig. lb. It is noticeable that for
quadrupole focusing the instabilities of a given order become more numerous than
those found for the m = 0 solenoid modes. This occurs because, for example, the
solenoid modes (j = 3, m = 0), (j = 2, m = 2), (j.= 1, m = 4), and (j = 0, m = 6) are
all contained in the sixth order quadrupole case, but extended regions of instability
appear in close analogy to the solenoid case. It appears, however, that the onset of
regions of pronounced instability can be associated either with a definite value of
eigenvector phase <I> (as in the case of the envelope instability) or with a value of cr/cro
that depends only slightly on the occupancy factor(Tl) of the lattice and on the value of
0"0' so that specific results will be cited here chiefly for Tl = 1/2 (Fig. lb). We first
present results for modes of even order.

(i) Envelope ("Second-Order Even") Mode:

As was found to be the case for the envelope modes in an interrupted solenoid transport
system (Sect. IV, a, i), we find that envelope instabilities in a FODO focusing structure
occur only if cro > 90°. This behavior is illustrated in Fig. 6 for Tl = 1/2, wherefrom it
is evident that very extensive regions of instability for this mode develop when cro is
substantially greater than 90°.

(ii) Second-Order Odd Mode:

The second-order odd mode will not lead to instabilities in a symmetrical FODO
structure if (as is customary) cro < 180°.

(iii) Fourth-Order Even Mode:

Computations pertaining to the fourth-order even mode (requiring evaluation of the
eigenvalues of a 14 x 14 matrix) indicate the appearance of a substantial number of
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90

b 60

30

0,2 0,5 2
Q'

5 10 20 50

FIGURE 6. Behavior of envelope mode for quadrupole systems with 11 = 1/2 and 0'0 = 180°,150°,130°,
110°, 100°, and 90°,

•

regions of instability that are of somewhat limited extent (Fig. 7). [In Fig. 7, or in
similar graphs, regions of very restricted instability may not always be fully depicted.]
For 0'0 < 90° [as appears desirable in order to avoid potential envelope instabilities
(Sub-sect i)], however, the most substantial instability is that which on Fig. 7 is shown
to occur for Q' :> 3. The particular unstable fourth-order mode just mentioned is one in
which the eigenvalue A. has assumed a real (positive) value.

This significant extended instability of a fourth-order even mode provides an
opportunity to illustrate that the threshold for such a mode is given almost uniquely by
0'/0'0 (Table II) and that such a threshold value of 0'/0'0 is surprisingly close to a
corresponding threshold value of vivo for a continuous solenoid (namely, in this
instance, to the value 0.2425 shown in Table I for the mode j = 2, m = 0, for which the
associated phase advance also is zero).

(iv) Sixth-Order Even Mode:

As with the fourth-order even mode, the sixth-order even mode exhibits a substantial
number of patches of instability and ultimately develops an extended instability when
the tune depression is sufficiently great (Fig. 8). As was found for the fourth-order even
instability, the onset of this extended instability is given almost uniquely by 0'/0'0' The
threshold value of 0'/0'0 for this mode again is close to a threshold value of vivo for a
continuous solenoid-specifically to the value 0.3859 shown in Table I for j = 3,
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Q'
20 50 100

FIGURE 7. Behavior of fourth-order even mode for quadrupole systems with 11 = 1/2 and 0 0 = 120',
90c

, 80c
, and 60'.

TABLE II

Instability Thresholds for Extended 4th Order Even Mode

Occupancy For 0 0 = 60° For ero = 90°
Factor

11 Q' o(deg.) 0/00 Q' o(deg.) a/a

1 3.055 14.58 0.2430 3.713 22.03 0.2448

1(2 2.572 14.58 0.2430 3.130 22.03 0.2448

1/4 1.925 14.58 0.2430 2.347 22.02 0.2447

1/6 1.598 14.58 0.2430 1.950 22.02 0.2447

m = O. [It is of interest to note that the maximum threshold value of vivo shown in
Table I for m = 0 modes is not markedly greater than the value cited here, namely the
value 0.3985 for j = 4, vs. 0.3859 for j = 3.J

(v) Third-Order Modes:

The third-ord~rmode shows regions of pronounced instability, that appear to account
for simulation results presented in the following Section (Sect. V). Because the
quadrupole lenses were taken to be very short in the simulation work, we present our
results for cases in which 11 = 1/6 or 11 = 1/10.

The instabilities are shown in Fig. 9 for a FODO lattice with 0'0 = 900 and 11 =
1/10. The small region of instability shown on Fig. 9 as originating at 0' ::::: 57.30 and
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100

b 50

0,2 0,5 2 5 10 20 50 100

FIGURE 8. Behavior·of sixth-order even mode for quadrupole systems with" = 1/2 and 0'0 = 80° and
60°.

0.30 r-------r----.----,------r--------,

35

180°
mode~o'--_--'-'---L--'-- -'-- -'-- -'---'-__--'

60

Confluent mode

"'"0,10

0,20

55 50 45 40

- a- (deg.)

Increasing intensity -
FIGURE 9. Behavior of third-order mode for a quadrupole system with" = 1/10 and 0'0 = 90°.
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the major instability centered near cr = 45° are attributable to eigenvalue phases
having been depressed from <1>0 = 3cro = 270° to become 180°, thus indicating a
structure resonance, while the instability that originates for cr :::=: 56° arises from a
confluence of eigenvalues. With 1"-1 seen to become as large as approximately 1.27, it is
of interest to examine the possibility of avoiding such a strong instability. The "180
degree" modes may be avoided by use of a lattice for which cro ::;; 60°, and it appears
also that no confluent third-order mode then will occur (Fig. 10). We remark in passing
that in an interrupted-solenoid focusing system we also have found 11 (Fig. 11) unstable
180-degree modes similar to those shown in Fig. 9 for the FODO quadrupole transport
system.

(vi) Fifth-Order Mode:

Our computations pertaining to the fifth-order mode did not indicate any substantial
instabilities that would account for the simulation results. We find that a quadrupole
lattice with cro = 60° exhibits only moderate patches of instability for the fifth-order
mode until the tune has been markedly depressed to cr :::=: 10° (Fig. 12).

120

........
cjl
(])
"0 90'-"

t&

60
"'- 1<p1 = (JO

30

150

180..-------,-------,-------,---------,

2.01.51.0

Q'
0.5

OL-- --L --'- --'- ---'

o

FIGURE 10. Depression of eigenvalue phase, 1<1>1, for third-order modes of a quadrupole system with
11 = 1/6, and (10 = 60°.
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0.10 .-------,-----~-------.------,

0.05
7] =1/2

7] =1/6

7] =1/2

4555 50
~ CT (deg.)

Increasing intensity

0~__...L.J___'_1__~ _..l....___L~_____1....l.._L_ ____l

60

FIGURE 11. Behavior of third-order mode for interrupted-solenoid systems for which '1 = 1/2 or
'1 = 1/6 and 00 = 90°.

V. COMPARISON WITH SIMULATION RESULTS

Computer simulation provides a possibility of testing the results obtained from
analytic theory (and vice versa). The simulation programs used here are based on the
particle-in-cell method; they employ typically of the order of 104 simulation particles
and solve Poisson's equation with a fast Poisson solver. Results obtained from different
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10010
0'--_-'--__-'--_-'-_----'-__----'-__'--_--'-__-'--_----'
0,1

b

QI
FIGURE 12. Behavior of fifth-order even mode for a quadrupole system with 11 = 1/6 and 0"0 = 60~.

simulation programs developed independently12-18 have been found to yield es
sentially the same conclusions (apart from variations due to different statistical sets for
the initial distribution).

Simulation not only allows the study of the initial growth of an instability within the
validity of the linearized theory [section V (a)J; it also provides information on
the nonlinear saturation of an instability and its effect on beam quality (for instance the
r.m.s. emittance). In section V (b) it will be seen that large linear growth rates do not
necessarily induce deterioration of beam quality.

(a) Growth of third-order mode within the linearized theory

The theoretical results obtained for the third-order even mode strongly suggested that
this mode could account for the strong instability observed in simulation com
putations15 (see also following section) with a K-V beam whose tune is depressed from
0"0 = 90° to 0" ~ 45°. The expected strong instability is characterized by an eigenvalue
that is real, but negative-a feature indicated by the simulation results, wherein
distortions of projected phase-space distributions (and their boundaries) were
observed to oscillate with respect to the origin with a period twice that of the structure,
while the centroid of the distribution remained essentially undisturbed. A quantitative
check of the correspondence between theory and the simulation work accordingly was
undertaken in order to establish the validity of each of these approaches. We compared
both the relative magnitudes of various moments of the distribution (e.g., (xP/)av.,
etc.) and the shape of the evolving distortion of projections of the distribution (e.g., for
a projection onto the Py , y plane). Such comparisons were undertaken both at "full
period" points (i.e., at the centers of F-quadrupole lenses) and at "half-period" points
(centers of D lenses).

In making such a comparison it will be realized that the growing perturbation will be
characterized by an arbitrary initial amplitude and phase, so that "x-like" (even)
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moments «x3 >av., <xl>av., etc.) may be intercompared at full-period points but
separately from "y-like" (odd) moments «i>av., <x2 y>Uv., etc.). The growing
magnitudes of x-like moments at half-period points in a symmetrical FODO lattice
may be compared, however, with the growth of y-like moments at full-period points.
All such moments, of course, should grow in magnitude in proportion to p,t, where P
denotes the number of periods traversed by the beam, and should alternate in sign once
per period. Simulation data appropriate for evaluation will be restricted to an interval
wherein the perturbation has grown sufficiently to dominate statistical noise, but has
not become significantly influenced by the onset of (nonlinear) saturation. In practice,
certain moments are more pronounced than others and the most pronounced moments
accordingly are the most suitable for statistically significant intercomparison.

The theoretical description of a developing instability requires retention of terms
beyond the leading term in the expression for the perturbation potential. Since the
coefficients that determine the moments depend significantly on the value assigned to cr
within the zone of instability, the trajectories of the individual simulation particles
were examined to establish a value of cr ~ 45.7° (with an associated theoretical
eigenvalue A ~ -1.27, for 11 = 1/6). The theoretical values of the coefficients required
for the present comparison were then evaluated for these conditions.

(i) Comparison of moments

The growth and satisfactory intercomparison of x-like moments at full-period points is
illustrated by Figs. 13-15, where we have used a value of A = -1.26. Curves (a) are
based on individual fits of the moments <x3>av.' etc., to curves of the form Y = SAP

-
18

,

while curves (b) are drawn with the values of S for the respective moments constrained
to be in the theoretically expected ratio. Figures 16-18 similarly indicate the behavior
of three y-like moments at full-period points. Analogous plots (not shown) have
indicated similar performance for moments evaluated at half-period points, and the
values of the respective y-like or x-like moments moreover were found to be correctly
related to the values of the corresponding x-like or y-like moments at the full-period
points.

(ii) Comparison of boundary curves

We investigated the form of significantly distorted boundary curves for a two
dimensional projection of the simulation results arising from a perturbed four
dimensional phase-space distribution. Such simulation results are influenced by
statistical fluctuations and may be sensitive to the development of nonlinearities in the
dynamics. Comparisons with theory are most effectively made for the (Px, x) or (Py, y)
projections and we have considered these both at full-period points and at half-period
points, since fitting the boundary to the expected theoretical forms for such
projections requires adjustment of only one ~oefficient, namely that giving the initial
value of the perturbation. Empirically, the values of this coefficient found from such fits
appear to be somewhat better characterized by a growth factor A ~ - 1.22 than by
A = -1.26 (possibly because of an incipient nonlinearity), but the values inferred
from data that pertain to periods near P = 11 have been found to agree within a few
percent with those expected from examination of the moments. Afit to the (Py, y)
projection of the simulation results is shown in Fig. 19 for P = 16. Other projections
(i.e., y vs. x and Py vs. Px) have also shown agreement between the computation and
simulation results.
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FIGURE 13. Growth of the moment Y = <xp/>••. at integer period numbers, from simulation
computations. Curve (a) is based on a fit of this individual moment to the form Y = SAP-lB. while the curve
(b) is such that the values of S for this and other moments of the same type are constrained to be in the
theoretically expected ratio. .
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FIGURE 14. Growth of the moment Y = (x 2px>.,.

(b) Simulation of beams in long transport systems

The question of (nonlinear) saturation of an unstable mode is beyond the capabilities
of a linearized theory and is most convincingly investigated by computer simulation.
To this end, we present below characteristic examples which shed light on the
continuous solenoid K-V instabilities and the "structure" resonances found in periodic
focusing.

(i) Solenoid Focusing

The findings of Section III (a) have been checked by simulating an initial K-V
distribution beam matched to a continuous solenoid focusing system. The intensity is
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2X105.----..,---.,....-----r----,----~-~-___.
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00
6 8 10 12 14 16 18 20

p
FIGURE 15. Growth of the moment Y = <x 5 ).v.

described by the factor vivo, which is assumed to be 0.16 for the example shown in
Fig. 20. Azimuthal symmetry has been imposed on the beam and hence all modes
evaluated in the first column of Table I (m = 0) are expected to be unstable. There is
evidence for rapid growth of instabilities of rather low order (j = 2, 3). The saturation
of these instabilities leads to a different phase-space distribution, but evidently to no
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FIGURE 16. Growth of the moment Y = (yp,z>••.

noticeable increase of phase-space volume. The r.m.s. emittance even remains constant
within < 1%. This supports the conclusion that the K-V instabilities found for
vivo < 0)9 (similar in periodic focusing to alao < 0.39) have no effect on beam
quality, but only emerge as a result of a non-monotonic distribution function.

(ii) FODO quadrupole focusing

In Fig. 21 we show an initial K-V distribution in a FODO channel with ao = 90° and
a = 45.7°. According to Section IV (b), this case is in the center of a third-order
"structure" resonance, and projections onto the x - p" and y - Pv planes clearly show
the dominant character of this particular mode. The r.m.s. emittances have grown by a
factor of 2.0 in x - p" and 2.5 in y - Py after 50 cells (with no further growth).
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FIGURE 17. Growth of the moment Y= (y2p,>••.
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FIGURE 18. Growth of the moment Y = (y5)uv.

The third-order "structure" resonance is evidently suppressed in a FODO channel
with ero = 60°. Furthermore simulations of such a 60° system exhibit a qualitative
behavior resembling that of a continuous solenoid. Thus even for systems with
strongly depressed tune (cases with er as low as 6° have been simulated) the instabilities
result in a rearranged phase-space distribution but saturate before any growth in the
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FIGURE 19. Boundary of py vs. y projection, at period number 16. The dots denote simulation results
and the curve represents the theoretically expected boundary.

r.m.s. emittance is observed. These results suggest that although the system is unstable,
in agreement with the analytic predictions, no restriction on allowable tune depression
is imposed if r.m.s. emittance is a proper measure of beam quality.19.2o This conclusion
is illustrated in Fig. 22 with <1 = 12.7° and an initial "waterbag" distribution (in
contrast to the K-V distribution it is assumed that the interior of a hyper-ellipsoid in
four-dimensional phase-space is uniformly filled, which produces a more realistic
beam). Initial matching has been performed by assuming the same r.m.s. quantities as
would apply for an exactly matched K-V distribution. This gave rise to 10% r.m.s.
emittance growth, due to lack of detailed matching, but no further emittance growth
over 100 focusing periods.

Figures 23 and 24 demonstrate the importance of <10 in a more direct way. Figure 23
gives the ratio of r.m.s. emittance to initial emittance for a K-V distribution initially
depressed from <10 = 90° to <1 = 7°. The emittance is seen to grow rapidly at first and
then more slowly for the duration of the run. In Fig. 24 the tune is initially depressed
from <10 = 60° to <1 = 6°; there is no detectable change in r.m.s. emittance.
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FIGURE 20. Phase space projections of initial K-V distribution in a continuous solenoid with vivo = 0.16. The beam isassumed azimuthally
symmetric with 1.3. 1O~ simulation particles. Frames are in time steps of lllOth of a betatron period.
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VI. CONCLUSION

The special character of the microcanonical or K-V distribution assumed in the present
work may lead to instabilities that would not arise with other, more realistic,
distributions. Simulations16 do, however, suggest that in regions where instability is
strong (i.e., lead to substantial growth in r.m.s. emittance) the behavior of non-KV
systems does not differ substantially. Some insight into the physical mechanism causing
instability for the K-V and other distributions can be obtained from a fluid modeP3
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and by invoking the concept of negative-energy waves. In particular, the extended
regions of instability found for continuous solenoid focusing (which also occur for
periodic focusing at the same threshold values in terms of tune depression) can be
interpreted as coupling of positive and negative energy osciIIations14 and are a
characteristic feature of a distribution function that is a non-monotonic function of the
Hamiltonian. These instabilities cause a marked redistribution of density in phase
space, but do not lead to a growth in r.m.s. emittance. For quadrupole transport, on
the other hand, the strength of the focusing force seems to provide a mechanism which
causes emittance growth for 0'0 > 60°; for smaIIer values of 0'0 the saturated state is
very similar to that reached in the case of continuous focusing. If one disregards the
minor patches of instability found analyticalIy as peculiar to the K-V distribution, the
results of the linear analysis seem to provide a valid guide for design of periodic
transport systems for high intensity beams and are particularly significant for 0'0 >
60°.

In this spirit, it appears prudent not merely to require that 0'0 < 90° (in order to
avoid significant envelope instabilities), but to impose the restriction 0'0 ;S; 60° with the
object of avoiding a pronounced instability of the third-order mode. If the restriction
0'0 ;S; 60° is adopted, one may expect that beam intensities wiII be limited only by
potential instabilities of fourth or higher order and that significant instabilities of this
nature wiII not occur for 0'/0'0 ~ 0.4 (see Sect. IV, b, iv, and Table I)-e.g., for 0' ~ 24°
if 0'0 = 60°.

Simulation work indicates that, for 0'0 ;S; 60°, the remaining instabilities saturate at
low levels and the r.m.s. emittance is not affected by the rearrangement in phase space.
If r.m.s. emittance is an adequate measure of beam quality there is then no limit on
aIIowable tune depression. However, if the transported beam is to be delivered to a
smalI focal spot, a practical limit then would be set ultimately by aberrations in the final
focusing system.

The expected transportable intensities or beam power, based on a 60°- 24° transport
line and the associated maximum beam radii in symmetric FODO quadrupole
transport systems are then given by the scaled-variable entries of Table III. The

TABLE III
Scaled-Variable Parameters

for a Tune Depression from 0'0 = 60° to 0' = 24°

Occupancy
Factor 9 Q' Uo [FM]

1 1.32 1.66 3.20 .764

2/3 1.42 1.54 3.34 .688

1/2 1.57 1.40 3.54 .601

1/3 1.84 1.19 3.87 .481

1/4 209 1.04 4.13 .405

1/5 2.32 .944 4.36 .354

1/6 2.52 .867 4.56 .315

1/8 2.89 .757 4.89 .263

1/10 3.22 .680 5.16 .228

1/20 4.51 .485 6.13 .145
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quantities tabulated in Table III are

e = K 1
/2. L, where L is the half-period of the lattice;

Q' = 4q2 Nrp where 1t€ is the (un-normalized) emittance
A ~2y3€K 1/2' in either plane (meter radians);

Uo = K 1/4 € -1/2 a (maximum scaled beam radius); and

177

[FM] == Q'juo2/3 is a "figure of merit" that enters into a formula of the type
proposed by Maschke21 and analyzed by Reiser22 for the maximum transportable
beam current or power [Eq. (23)]. (The maximum beam radius becomes less if the
intensity is reduced.)

where

p = Cs (Ajq)4/3 (y - 1) (~y)7/3 €2/3 BQ
2/3• [FM]

= Cs (Ajq)4/3 (y - 1) (~y)S/3 €N2/3 BQ2I3. [FM],

Cs = (1tjJ.!o)C- 1/3 (Mp•o c2je)4/3 = 3.43 x 10 15 (MKSA units),

€,v = ~y€ (meter-radians),

(23)

and BQ is the quadrupole pole-tip field (Tesla).
The figure of merit [FM] in Table III increases as cr- 2/3 as cr is decreased from 24°,

but the required aperture increases also and care must be taken in transporting very
high currents that the aperture to length ratio of the quadrupoles does not become too
large.8 •22
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fi·on, a pot,mtial or, if it is, the potential from which it may be derived
is not necessarily constant over the electrodes.

In ter-rns of any assurned enlergent current distribution, Jnl at one of

the electrodes (designated as electrode number two), it is appropriate
to consider the current distribution throughout the resistive medium to
be
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where 11. 1 is a Green I S function, of '1 and J.7i, such that

L. Jackson Laslett

Department of Physics and Institute for Atofilic Research
Iowa State College, A=es

1r" p grad 551fl Jnds,

1:[ 1 thus represents the potential ansmg from a point source of unit
current when electrode numbe r one serve s as the sink.

a <1; =0

a'l.

o on ele ct rode nu=be r 1, and

KEY

RESISTIVE MATERIAL

INSULATING BOUNDARY
PERFECTLY- CONDUCTING
ELECTRODES

fZ?LZI
c:=J-

grad 1: d = - 6(1-1'),

= 0 on the other boundaries of the resistive
=aterial.

1
div(-

p

11 1 =

'J 11 1

an(iii)

(ii)

(i)

~."o
41'1.

2

In a paper by Carlson and Hendrickson l use has been made of
variational =ethods to secure uppe r and lower li=its for electrical
resistance. These methods, as presented, were based on technique s
forfilulated by Schwinger and involved con s ide ration of an integral equa
tion for the current- or potential-distribution at a boundary surface.
The presentation of Carlson and Hendrickson has the advantage of sug
gesting the applicability of similar technique s to problems in other fie Ids
of physics but, for this reason, =ay suffer from a lack of obvious physi
cal motivation for the detailed =athematical steps. It is the pu rpo se of
the present note to indicate that the sarne technique filay be introduced
for resistance problems, in what rnay appear to be a more natural way,
by use of well-known extre=al theorems for resistance. It may be sup
posed that analogous extre=al theore=s exist in other fields of physics
and that in so=e cases direct application of these theorems will lead to
useful alternative methods of solution for specific problefils.

INTRODUCTION

B. UPPER LIMIT TO RESISTANCE

(Jl
I-

By the nature of f/ 1 as a source-function, the expression considered for J will, of
course, be consistent with the I n assumed at the electrode.

It will be noted that the expression considered for -:r is such that, if I n were the

true distribution of the emergent current, the expression - SS hi I n ds would

•
repre sent the true potential function fa r the problem, save for an arbitrary constant
tern1. That this is so is seen from the use of Green 1 s theorem (equivalent to a

reciprocation theorem for currents):

= VI - S~· .fl, I n d •.

Use is made of the theorem 2 that an upper-limit, R u .2.' is given by

R (J = jjj P J2 d T

U.C TSSy. dtr J

-4
where fJ is the resistivity of the material and J is an assumed current

distribution(forwhich div T= 0) such thatpfis not necessarily derivable

Contribution No. 668.
J. F. Carlson and T. J. Hendrickson. 1953. Variational methods for
problems in reslstance. Ames Laboratory Manuscript LR-132: Jour.
App!. Physics 24: 1462-1465.

2 Cf. W.R. Smythe. Static and Dynamic Electricity (McGraw-Hill Book
Company, Inc., New York, 1950) second edition, sect. 6.11, p. 233;
or see Appendix 1. This theorem is analogous to Thomson's theorem
in electrostatic s.

v = _ SS Vi) J.1 1 ';Jn d.

p
+ sr If. ? V /3 n

d.
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the integration being only ove r the surface of electrode numb er 2, since
either I n or f:i 1 will vanish on the other boundaries of the medium. To
obtain an estimate' for the resistance one assumes a functional form for
the erne rgent cu rrent di stribution, J n' which is presumed not to depart
violently from the correct distribution and which is sufficiently simple
to permit pe rforming the indi cated integrations without undue difficulty.
Since the expression for Ru.~. is homogeneous of degree zero in I n , no
further normalization is required.

~.O;,.

. Z
Vo

(grad V)Z d T

I
~.o3•

SSS ~

C. LOWER LIMIT TO RESISTANCE

1

R Q• Q.. -

where V is a scalar function of position which assumes the specified
values for the potential on the two electrodes and V 0 represents the
potential difference between the electrodes.

It is desirable to consider in this case, in addition to electrodes 1 and
2, a third surface, number 3, which physically forms a natural extension
of electrode 2 but wh :h constitute s an in sulating boundary in the re sist
ance problem of interest.

III analogy with the procedure of section B, use is made of the theo
rern 3 that a lower limit, R 2.2.' is given by

(since div J = 0
throughout the
volume)(SSJndS jz

SS ds' SSJn , HI (~,i) I n ds

[ SS I n ds 1z

SjS (1- grad S~· 2i 1 I n ds) dT

LSS I n ds r
SSS div (i 5I J:f 1 I n ds) dT

z

Ru.t' .

Accordingly

(Jl
I

N

2i z thus represents the potential ansmg from a point source of unit cur
rent when surface s 1, 2, and 3 serve as sinks at potential zero.

For use in the expression for RtQ. a potential distribution V = Vl+V Z
is employed, where

The potentials of electrodes 1 and 2 are then taken to be V o and zero,
re spectively; the actual potential distribution over surface 3 is not known,
but will be considered to be given by an assumed trial function, <II

Following again the procedure of Carlson and Hendrickson l , use is
made of a Green's function, 1:1. z' such that

(iii) ;) i[J z/:J n = 0 on the other boundaries of the
resistive medium.

(i) div (~ grad 11 z) = - 8 (j7 - rV)

(ii) 2i z = 0 on surfaces 1, 2, and 3; and

(i. e., at electrode numbe r 2). andat z = fI..

[Sx(r)rdrr

[Sx{r) r dr ]'

SS r X (r) [Kdr, r') + 1 1r' X (r') dr dr'

5j' X (r') r' G,(r'. r) r X (r) dr' dr

G, - 11

Trb'

d

r
Trb'

K, = T

Ru.f. = p

G , = _1_ SU, del> ,
lTrp ,

X (r) ex: In(r)

Hence, for that case,

By way of cOInparison with the example of Carlson and Hendricksonl , it is noted
that

II [1 + rJ , in agreement with eq. (22) of the paper
Trb' cited (LR-132).

3 See Appendix II; an essentially similar result in electrostatics is pre
sented by H. Bateman, "Partial Differential Equations of Mathematical
Physics" (Dover Publications, New York, 1944), sect. 2.41, p. 152.
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It is noted by use of Green' 5 theorem or by the reciprocation theorem for currents,
that V, represents the potential distribution which would be obtained if electrode 1
were at potential V 0' surfaces 2 and 3 at zero potential, and the remaining surfaces
remained current barriers; similarly V 2 is the potential corresponding to a distri
bution iii over surface 3, with electrodes 1 and 2 grounded and with the remaining
surfaces impervious. The composite potential distribution V would be, in fact, the
correct potential function for the problem at hand if the actual potential distribution
over surface 3 were substituted for iii •

This last expression gives an upper li=it to the conductance, and hence
a lower limit to the resistance, in the problem of interest, through the
use of various trial distributions for the potential on surface 3. In the
form written it suffers, however, from the disadvantage that not only
should a reasonable choice be made for the form of the trial potential,
but also the scaling factor is of importance. For a given trial function,
X, a scaling factor f may be introduced such that Ilf = fX and the last two

terms in the expression for

whereupon

~ dsds'
p'

rrrr~~
JJJJ P JnJn

3 3

become
1

Ri.R.

(\ rr ~ 2)2 if? ds ds' _
JJ JJ PI" J n '.1 n'

1
R - 2

o

1

RR.Q.

VoSS ..!:. 'J }JZ/d n ds
P

jJ 'P ? J/2
--- ds
P d n

VI

and V z

By making use of the form adopted for V ,

=SSJ~ (VVd
2

dT +2 555~VVI'VVldT + SSS~ (VV 2)ldT

V 2
o

The optimum choice of f, for a given X is
l

§SS X 'J Hl ,
-,~ dsds

3 I
PI' J n n

f = -
jj SS -;/ i:.t lX Xl

- <J1l<Jn' - ds ds'
P pi

Ul
I

W

R, n
J. ~ •

SSS (VV1 + VVl)l

P
2

Vo

dT
- 2f SSSS X

pp'

d l t!
___~l. d

d n "J n' s d s' - fl SSSS~
d l};( l

;} n ani
X' ds ds' .
P'

+ 55 V
l

3
Vl

ds-- ---
l P

V o ' Cln

SS 55
l

2
~ -0 V l

- - ds ds'
R o V o

, "0 ndn'
3 I pp

l

_1 SJ SS!- d J:jl ~

V l P d n d n'
-; dsds',
P

0

and the expression for --- assumes the convenient homogeneous form:
RR.R.

will thl'n be ZL'ro at eitch point of surfaCl" 3. In tht· prt:>St:nl l:aSl' the trial function

X has been ticaled in such away th.d tilt' intl'grul \.) \]tJ n ds vanislwo; i.t~ .• ::>0 that

.,.

TIH_~ physical significanct' of tht' cho1<'l.' of sl:ale fal..:lor may be seen in the follow
ing, mil:lIler: Fur the ~~ distribution of voltage O\lt;' r surface 3, the currl;'nt
density, I n 0 -(L tJ)«()V."dn), will be z~ro at each point on surface 3; thus

'5.5 I , . I sr ",' ,.- -,(~:.J l"l l1,1n') ds' + - } -, (J :! l,JnJ n' )ds'
., -'I P II ;- fl

ds ds'X'
--r
p

ds ds' ] l
J z1:I

l

d n dn'

J l1/l

;} non'
X

P

X

pp

3

+[5~5f

55SS

1

R
oR".X.

V l dVI ds
-~
p55

Vo

~Vl

Cl n ds +p

VI

55ds + -l
V oan

'dVI

p55Vo

[hh conditIon illlpO,H·d Oil '11 Ih,~tJ .,"l(·..lrly jlll"Iudl·::> the C.iSt~ til which '1t

th t ' tl"U\" \'<tllll'S of -lJ, Vl1 •

where R o is the resistance obtained when electrode 1 is at the potential
V 0 and both surfaces 2 and 3 are grounded.

It is convenient to introduce the relative distribution of potential on
surface 3:

JJ jI ~.
l.f..( ,

) .... 1. ds ds t

,; 11 an'
r ,.' [f .'.lS J)~ ,;nJI~' -;,

, I

d::> ds'

Ilf ;; ~ Iv0 '
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p ::; canst.,

3 3

involving integrations only over the surface 3.

For comparison with the example of Carlson and Hendrickson l
, one notes that

for that case

and

0.0 b,O

o on the other boundaries.

o at y = L,

= - p 6 (x, Y ;x' , y'),

D. EXAMPLE

0,0

O.L

G1

2 G
1V x,y

(ii)

(iii) d Gd3 n

(i)

1. Upper limit:
In view of the two-dimensional character of this example, it suffices

to use a Green's functi on, G I , such that

As an example consider the following "two dimensional" problem,
which also may be solved rigorously by a simple Schwarz-Christoffel
transformation when L is large:

A slab of homogeneous resistive material, of height h, extends from
x = 0 to band y = 0 to L. Current enters the specimen at y = L by an
electrode extending from x = 0 to b and leaves at y = 0 by an electrode
extending from x = 0 to a.

-1/£ ,

55 X a VI I SS X-- ds, becomes - - ds and we obtain
V o

p on L p
3 3

[ S~ X ] 2

+

-;; ds

R,e.f. R o
2 2

L SSSS; 2-Y....L ~ ds ds'
;) na n' p

!..- -aV,_
V o <J n -

A · l'f" I' h ' I ha I JV I
, . d dsImp 1 ,cat,on resu ts In t e spec1a case t t - -- IS In epen en!

V an
o

of position on surface 3 and (say) equals - IlL. This situation arises,
for example, in a problen1 in whi ch V I repre sents the potential in a con
ductor of constant cross-section and of constant resistivity across the
cross-section, as in the example of reference 1. In this case the double
surface integral which appears in the numerator above, and which is
identical with

(.It
I...

G z =

K z

2: p5 .if z d<j> ,

[-I _ Tlbz..e oZdz)
dndn'

at z = -e (i. e., at electrode 3),

55 In(x) G I (x, x') In(x ' ) dx dx'

Then R --€. = r
u. . h[JJn(x)dx) 2

A suitable form for the Green's function will be

Hence, for the example chosen,

PR
1T bZ = R o .and

R,l'.ll.. R o

(5 x{r) r dr )z

R "So J rx (r) [Kz(r,r') + I] r' x(r') dr dr'

00

A o (L-y') + L An cos ntrx/b cosh ntry/b sinh ntr(L-y')/b. for y'::" y'

00

A o (L-y) + L An cos ntrx/n sinh ntr(L-y)/b cosh ntr y'/b, for y:> y'

in consistency with eq. (35) of the referenced
paper (LR-132).

55 rx (r) Kz(r, r') r' X (r') dr dr'

R o

R o

55 rx

A

A +

(r) Kz(r, r') r' X (r') dr dr' + l5 x
(r)

rdrr with b [;;' I
y=y'_ E

aGl

dY ]
= P 6

y=y'+ E

(x-x') •
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If one selects an assumed approximate distribution function I n = const.
(0-<:. x L.. a) and performs the requisite integrations termwise.

[
LaZ bZ 1 ]P - + Z'3~ - sinz nll alb tanh n lIL/b

b 11 k n3

Accordingly, A o = p/b,

A
_ z P cos n lrx'/b

n -

co

11' n cosh n 11' Lib

X (x') dx dx'

l5x(x) dx r
55 X(x) [Gz" + :b]

h' [ SX(x) dx1z

5S [d'GZ(X,YiX"Y')]
h X (x) , X(x')dxdx'

CJyO y y,y'=o

pZ

hb
Z

+
R

o
LZ

R o -

Then

Ri. ,f.

R i . .('.

A formal expression for the Green's function may be written as

or

(n ~ 1), and

4

cos nlrx/b cos nlrx'/n tanh nllL/ b] .
n= P [~+~ L

b 11
G1(x, OjX', 0)

00

A o y (L-y') + L
1

Ru.i.

for L large,

P[L Z
- +

h b 11' 3

b Z

a Z

h a Z

L 3
n

sinz n lIa/b tanh nlr L/b ] , and

A o y' (L-y) +
co

L
I

An cos n lr x/b sinh n lr y/b sinh n 1T (L-y')/b, for YL. y';

An cos n1Tx/n sinh n1T(L-y)/b sinh n1Ty'/b, for y:7 y';

The term supplementing :~ represents the estimated addition to the

~
I
~

R u •.('. ~
P

h [~ +
Z
11'3

b Z

a Z L ~
sin

z
nlr alb 1 with A =o

An

P

Lb

Z P

1T

cos n1Tx'/b

n sinh n 1T Lib

(n ~ 1) .

For a trial function, X (x), one might prefer to employ a distribution
which near the electrode is proportional to ~; for illustrative con
venience, however, the function

resistance of the sample as a result of limiting the area of electrode
number Z.

Z. Lower Limit:
One again makes use of a two-dimensional Green's function, G z, which

is now required to satisfy the conditions:
x (x) =

n x-a

Z b-a

is selected. By formal integration* in the case that L is large, one is
led to the result

(i) z G = - P 6 (x,y;x',y'),V x,y z

(ii) G z = 0 at y = 0, y = L, and

(iii) dGz = 0 at x = 0, x = b
ox

P"'-/ R +-Rn - 0 Z1Th,cR. ----------, for a non-integral
00 cosz n 1T alb value of

~ n [1 _(Zn bba)Z]Z

b--,
Z(b -a)

4 It should be remarked that Professor Carlson has pointed out that in
this case the series may be summed, when L is large, to

G1 (x, O:x', 0) <><: p [~ - ;. .Rn(Z I cOS1lx/b - cos 11' x'/b I )]
(Private communication.)

-. Despite the poor performance, with respect to convergence, of the
series for Gz" it is felt that the character of the series obtained after
the double integration warrants confidence in the result of proceeding
formally in this mannt.-r (with the particular trial function selected).
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and

Rp.fJ..
AJ P

R o + 2 trh 00
trz. Z

m _ +"~ cos n tra/b
16 ~ n -;:----~=--

n/m [1 - (2n b~a )zF

TABLE I

Values of the Supplemental Resistance,
R-Ro • in units p/2 7t h.

3. Exact Solution:
As was mentioned in the introductory paragraph of section D, the

pre sent problem admits of a simple exact solution for L large. A suit
able Schwarz-Christoffel transformation is 5 3.842

1.386

0.317

RexactR u.i. R.R•.R.
7t x-a

Trial Function J n = const. X = sin--
2 b-a

alb = 1/4 4.26 3.04

alb = 1/2 1. 70 1. 15

alb = 3/4 0.392 0.26 8]
1 lTZ

I
2 b
1 tra
2 b

equals an integer, m

W _ . 1 rsin
- sln- t sin

b

2(b-a)
when

At large distances above the x-axis. the potential function is

Ul
I

C'I
V ~ IT Y n. tr a

- - - - .I(n Sln --
2 b 2b

and the change of the stream function in traver sing the electrode is

AU = !.
2

Accordingly, the exact resistance for L large is

R ~ £.
h [~ 2

IT
in sin ~J

2b

4. Numerical Results:
Values for the supplemental resistance, obtained from the approxi

mate formulas by numerical summation, are given in Table 1.

5 W.R. Smythe. !..:..£.•• sect. 4.22, pp. 90-91.
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APPENDIX I APPENDIX II

Proof of the theorem that the current distribution is such that the

"heating," SSS PJZ dT , is a minimum for fixed total current:

-4 ~

Let J 0 be the correct current di stribution, and J any other solenoidal
current distribution corresponding to the same total current, I, at the
electrodes.

Proof of the theorem that the potential distribution is such that the

heating, SJI (lIP )(grad V)z dT, is a minimum for a fixed interelectrode

potential difference:
Let Vo be the correct potential distribution, for which

(iii) dVol~ n = 0 on the other boundaries.

I
div (- grad Va) = 0,

p

(ii) V 0 assumes the prescribed potentials at the electrodes,

(i)

andand

.....o = div J

±r = SS 1·~,
.."..

div J o

5S
~ ~
Jo'ds(ii)

(i)Then

+ SSS p (j_~)Z d T

- - 2ifv(1-J':,)· d: + 2 srs V div(1-~) d T

_ - 2 ill div [V(J-~) J d T + 2 SSS V div(J-J:) d T

SSSp(JZ
- Joz)dT == 2 S.ITp~·(1-~)dT +.ITS p(J-:J:/dT

_ - 2 srs (~). (j-io ) d T + .ITS p (1_Yo)Z dT

_ 2 SSS div [(V - V 0) gra: V 0 Jd T

-2 SSS (V -V0) div (~ grad V 0) d T

+ SSS [\7(V-Vo)Jz dT

P

5S V - V J V0 JIJ ( ). (grad V0 )_ 2 __0 __ ds - 2 V-Yo dlV ---- dT
p <3 n p

+ SSS [\7 (V-Vo)]Z dT
P

SiS [\7 (v - V 0)] 2 d T ~ 0,
p

2 SSS \7 V 0 . \7 (V - V 0) d T +j}S [\7 (V - V 0) J Z d T

P P

(\7V o)z
dT

SSS (\7V)z -

p

V is taken to correspond to the same potential difference between the
electrodes and, for convenience, might be considered to assume the same
values as Va on the electrodes. It then follows that

P~ is derivable from a potential:

~ ~
P J o = - grad V , with V constant on the

ele ctrode s.

(iii)

It then follows that

Ul
I

.......

+ JJS p (?-~f dT
and the heating is least for the correct potential distribution.

= SSS p (1_~)Z d T ~ 0 ,

and the heating is least for the correct current distribution.
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EVALUATION OF THE ZEROS OF

CROSS-PRODUCT BESSEL FUNCTIONS

L. Jackson l..aslett and William Lewish*

ABSTRACT

5

Computational results for the characteristic values and characteristic

solutions of Bessel's equation are presented. Specifically, the results

pertain to the first two solutions subject to the Neumann boundary condi-

tion at r = a, b and to the first solution subject to the Dirichlet condition,

when (b-a)/(b+a) is small (0.1,0.01,0.001). Approximate analytic for-

mulas are derived to complement the computational results. The possible

application of the data to phenomena involving the interaction of an intense

circulating beam and the electromagnetic fields within a particle accelera-

tor is indicated, as is also the utility of the results for estimation of the

loss -factor, 0, for resonant electromagnetic modes of possibly high order

within a toroidal vacuum chamber of rectangular cross section.

I. INTRODUCTION

In a number of physical or engineering problems in which use of

cylindrical coordinates is appropriate, separation of variables leads to

Bessel's differential equation,

1 d [ dZ] fZ n
Z

]--r-+q--zZ=Or dr dr r '
(I)

* Associated with the Department of Statistics, Iowa State University,

Ames, Iowa

A resume of the results reported here has been submitted to Mathematics

of Computation.

5-11



6

for the radial dependence of the variable of interest. Solutions are typi-

cally sought which satisfy the Dirichlet boundary condition (Z =0) or

the Neumann boundary condition (dZ! dr =0) at r =a ~nd r = b. If the

solution to Eq. (1) is written as a linear combination of Bessel and Neu-

mann functions, application of the Dirichlet or Neumann boundary condi-

tions respectively leads to the following equations for determining the eigen-

values, q:

or

J '( q a) Y '( q b) - J '( q b) Y '( q a) = O.n n n n

(2a)

(2b)

The zeros of the cross-product Bessel functions which appear on the

left-hand side of Eqs. (2 a~ b) are frequently sought for cases in which n

is not large, because of the interest in the lower-order modes which are

possible in the physical problem under consideration. Cases may also arise,

however, in which attention should be directed to the higher-order modes

in order to determine the circumstances in which such possibly-unwanted

modes may become excited. An example of the latter situation is the

interest which is currently attached to the resonant electromagnetic

modes which may be excited
l

within a toroidal vacuum chamber of rec-

tangular cross section by an aztmuthally-modulated circulating beam

such as that of a particle accelerator.

1 V. Kelvin Neil, "A Study of Some Coherent Electromagnetic Effects

in High Current Particle Accelerators", Ph. D. thesis (Physics, Uni-

versity of California and Lawrence Radiation Laboratory, Berkeley,

California, 1960, UCRL-9124).

5-12



7

Solutions to Eqs. (Za) and (Zb) have been discussed by a number of

2-7
writers and results presented in the form of approximate algebraic

formulas, in tables or graphically. For application to problems in

b-a
which b+a is small and in which n may be large, however, it appeared

appropriate to make an independent investigation of the initial roots of

Eqs. (Za) and (lb) by study of characteristic solutions to Beseel's equa-

Hon (l) in the interval a ~ r ~ b without explicit reference to the usual

Bessel and Neumann functions. Approximate analytic formulas have

been obtained for the first characteristic value and function associated

with the Dirichlet boundary condition and for the first,two eigenvalues

and functions associated with the Neumann boundary condition. An 1n-

Z
James McMahon, Ann. of Math. 1. 23-30 (1894).

3 A. Kallihne, Zeits. fUr Math. ~. Physik 54, 55-86 (1907).

4 William Marshall, Ann. £! Math. .!.!.. 153 .. 160 (1910).

5
Rohn Truell, J. Appl. Phys . .!.!. 350-352 (1943).

6 Don Kirkham, J. Math. and Phys. 36,371-377 (1958).

7 W. N. Wong, "Electromagnetic Fields in a Donut Space", Midwe·stern

Universities Research Association internal report MURA-555. Madison,

Wisconsin, 1960.
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dependent systematic determination of these characteristic values and func-

tions has also been made numerically with the CYCLONE digital elec

tronic computer at Iowa State University for cases in which ~: was as

signed the values 0.001,0.01, and 0.1 and for a special set of cases in

which this quantity was given the value O. 0001. It is the purpose of this

report to summarize the results of this analytic work and to present the

results of the numerical investigation.

II. TRANSFORMATION OF BESSEL'S EQUATION

It may be noted that, due to the nature of the customary Bessel func-

tions of high order, and in particular because the function I n remains

quite small until its argument is comparable to its order, the lowest

c;haracteristic values, q, will be in the neighborhood of nIb for n large.

For this reason and to focus attention on the interval a ~ r ~ b, it is

convenient to define

JI _ b-a
, b+a

t "rZ [(q b;a )Z _ nZ]

and

x = Z r - (b+a)/Z
b-a

In terms of these quantities+

(3a)

(3b)

(3c)

+Physically, it is seen that the quantity'( which is introduced here, re
presents the ratio of the width (b-a) to the diameter (b+a) of the annular
region under consideration. For t only slightly less than unity, this re
gion extends substantially from r =0 to r =b, and the roots qb~a of Eqs.
(Za) or (2b) may then be expected to approach one-half the corresponding
roots,,..ee.- , of the simpler equations Jnv<- ) =0 or I n ' (~) =0, respectively.

5-14



r = b ~ a (I + i x ). with -I ~ x ~ I.

and Bessel's equation (1) assumes the form

9

(4)

d f (1 +k x ) dZ] + [(1 +1 x ')1+~ . ;,3 nZ . xl Z = O. (5)d7l dx l+fx"' J
The solutions to Eq. (5) which are of interest are those for which the

Dirichlet boundary condition (Z = 0) or, alternatively, the Neumann boun-

dary condition (dZ/dx =0) applies at x =.±.l. In the case that the Dirichlet

boundary condition is to be applied, it is convenient for some purposes to

make the transformation

lIzs = ( I +1 x) Z

in terms of which Eq. (.5) may be written

with 5(,:,1) =O.

(6)

(7)

For t ~ '" I, the terms in Eqs. (5) and (7) which contain"z • save

in some cases those which involve the combination ~3nZ, may be

treated as a perturbation or, in some approximations, ignored.

III. APPROXIMATE ANALYTIC FORMULAS

In a preliminary investigation of the present problem, estimates

of the characteristic values and an indication of the nature of the charac-

teristic functions were obtained by a variational solution of Eqs. (5) or

(7). For the present purposes, however, it appears preferable to em-

5-15
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ploy, where applicable, a standard perturbation procedure, 8 since a

solution consistent to a certain order of smallness may thereby automati-

cally be obtained. We assume throughout that 1..L L 1 and cC)mmence

by considering the case in which "t3n Z also is small.

(a) Application of Perturbation Method, with 1t. 3n
Z

Small

The differential Eqs. (5) and (7) may be put into an appropriate

form, to which the standard perturbation procedure
8

is directly appli-

cable, by regarding n . as the small parameter in terms of which the

perturbation development is performed, but regarding n as possibly

sufficiently large that quantities such as
Z ZIt n or 't,3n

Z
are not neces-

sarily negligible. Equations (5) and (7) accordingly are written

and

(8)

dZS [z Z 1 . 3 Z 1 Z 1 '- +1 Z1 (n - - ) . x . S - 3 'l (n - -) x S =-( +
dxZ 4 4

(9)

where the quantities contained within the square brackets are to be re-

garded as the perturbation Hamiltonian acting on the dependent variable-

1. e., H' Z or H'S, respectively--and the quantities - I and -( I + 4)
which appear on the right-hand sides of Eqs. (8) and (9) play the role

8 L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Co., Inc., New

York, 1955), Ed. Z, Chapt. VII, Sect. Z5, pp. 151-154. We gratefully

acknowledge the assistance provided by Dr. C. L. Hammer in discus-

sing with us the use of the perturbation method for which results are de-

scribed in Sect. III(a) of this report.

5-16



11

normally filled by the energy in quantum-mechanical applications of the

perturbation technique.

The basic solutions to the unperturbed equation,

= - ;l u

adjusted to be orthonormal in the interval -I! x J. 1, are-
(10)

with

1 1T
urn =yz, sin T x . cos 1I"X, sin~

2
x , cos 211"x , .. . .. . .,

2 1 3;l m= (m1l"), m=O, '2,1, '2' Z, ... ,

for the case that the Neumann boundary condition applies, and

with

11" •
urn = cos Z x, S ln 11" x

311"
, cos T x , sin Z11" x , ...,

). m = (m1l")Z, m = .!., 1, !, 2, ... ,
2 2

for use with the Dirichlet boundary condition. The results of a pertur-

bation analysis of Eq. (8) are then to be obtained from the formulas
8

- ( = - 1 + 'l H' + A Z ~o m m m,m rc
m

or

d m = (m1l")Z - It H'm, m - '{2 ~
k ~m

and

5-17

H' H'm,k k, m

}.k - ;l m

(lla)

(llb)



12

with analogous expressions for use with Eq. (9). The matrix elements

H'k, m in Eqs. lila, b) represent the integral i l
"kH'um <Ix.

(i) Results for the first Neumann solution: .

With m = 0, the matrix elements for Eq. (8) are found, to the desired

order, to be

H' 0,0 - -

and

"l.3n2
from the x 2 term in H',

3
( 12a)

(l2b)

from the x term in H', where~=2k assumes odd values (1,3, ... ) and

in which the result has been Simplified by anticipating the result that d

will be very small (v.i.).

By use of Eqs. (lla, b) it then follows that

(13a)

and

1-1 IJ
(-~~ sin 1- "'x

(13b)

9a The summation of 1/)6 for ,todd, may be determined in terms of the
Riemann zeta function (Ref. 12, Sect. IX, p. 269):

~ 1 = 63" (6) = 63 ".6 = ".6
.l.tcr:dJ;6 64 (' 64 945 (64)(15)

(cont. )
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For small values of 1 3n
2

, the characteristic solution of concern

here is, of course, nearly constant. From Eq. (13b), moreover, it is

seen that in particular,

for ~3n2 small, and the slope at x = 0 similarly is given by

ZI(O)/ Z(o) == I[n2

(l3c)

(l3d)

The features of the solution indicated by Eqs. (13c, d) will be checked in

Sect. IV(a)by comparison with computational results.

(ii) Results for the first Dirichlet solution:

1With m = 2" and by use of Eq. (9), results of the desired degree of

approximation are obtained by application of the perturbation method

through first order. The desired matrix elements for Eq. (9) are

HI l 1 =- (l - -A )1 3 (n2 - 1. )
_'_ 1T 4
2 2

and

(l4a)

(14b)

Eq.

9a whereupon

8(~)6 L A, =
1T .1-odd~

(13a) of the text.

(8) (64)
1T6 (64) (15)

8
= 15 , as employed in

9b One may readily verify, for the interval -1 ~ x ~ 1, the Fourier

development

!. ( ! )4 ( x
4 2

• 1T
Sln - x

2

I . 31T 1. 51T I . 71T
- '34 sm T x + 54 810"2 x - '74 8m T x + ... ,

which is used in obtaining Eq. (13b) of the text.
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with k : 1,2,3,. .. . Accordingly, by formulas analogous to Eqs. (l1a, b),

( 15a)

and
00

5:: cos.!. x - I6( ~ )4Ji3(n2 _!.)~ (_)k (
4k

t.
I

)3 sin klfX
2 If 4 k= 1

=cos ; x + ; (nZ • ~ ) J( 3[(1 • xZ)sln ; x • ~ . x· cos; x 19c (ISh)

The corresponding form for Z is given by 51 .j 1 +'( x Eq. (6) and when

~ 4 '1, will differ little from the form of 5 itself. To the order con

sidered in the present analysis, the factors (n2 - ~ ) , 4 and (n2 _ ~ ) Jt 3

which appear in Eqs. (15a, b) might well be replaced by Jt4n2 and J/n2,

respectively; we leave the results in the present form. however, since

these expressions are exact in the case n =!. , for which
2

If
cos 7 x Jt

Z = . With F( small, the following simple characteristics of the
f1 +1 x

derivative are suggested by Eq. (I5b):

9c The Fourier development

lf3 2 . If lf2
256 (1 - x )sm Z x - 128 . x

If
cosZx

for -1' x , I, is employed to obtain Eq. (I5b) of the text.
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and

..J1Jlvm ·
15

(15c)

(15d)

(15d I)

(iii) Re suIts for the second Neumatm solution:

With m = ~ the matrix elements for Eq. (8) are found, to th~ desired

order, to be

HI - HI.!. ,0 - o,!
z z

(16a)

(16b)

80 that _ ~1

H . H = 64 16
! ,k k,!
Z z

1
(16e)

where k =I, Z, 3, ... and in which Eq. (16d) has been obtained through

use of the fact that, for the present purpose, J is substantially

5-21
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It then follows. by application of the formulas (lla) and (11 b), that

9d,e
( 17a)

. 11' 4 8 2 2
Z ~ S In I x - ;2 Jr ( 1 +;2 Jt n )

8 ~ k[ 1 8 2 4k2 + 17- ;It~ (-) (4k2-I )2 - ;2 'l2n (4k2_1)~ cos kll'x

= sl'n -2'iT x - (-11'2 )2r1 + 2 k~= (_)k 1 cos kll' xJ"L (4k2 - 1) l ] ."

9d Use may be made of the Fourier development

11'3 11' 311' 11'2 11' 311'2
_ x 2 cos- x (1 +-) cos - x __ . x
128 2 32 12 2 64

11' . 1
sin - x T-

2 2

~
oo (_)k 1 k

= (4k2-I)3 cos 11'X
=1

to simplify the result leading to Eq. (l7a) of the text: By setting x =1

in this development it follows that

and

~wYk=I (4k
l

- 1)1

5-22
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'IT 1 'IT Z Ti'
= sin Z x - 2" J( (x sin 2" x + -; cos l x )

ge Use may also be made of the Fourier development

1 ['lT4
3 . 'IT 'lT4

4 .' 'IT 'IT1- _ - x Sln - x - - (I - -z)· x sm - x + 'IT cos -
3Z Z4 Z 8 'IT Z Z

~ k k Z
= 8 (;, (-) (4k l _I)4 cos k'ITx ,

in which setting x = I leads to the result
Q)

.". k Z 'lT4 'lTZ
8 m (4kZ - 1)4 =384 - 64 .

By combining this result with the sum found in Ref. (9d) above it follows

that

and

I Z 8 Z
=-+-Z+-Z+-3 'IT 'IT 3

10
=I+;Z ,

as was employed to obtain Eq. (17a) in the form cited in the text.
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. 11'Sin _ x
2

] .91, g ( l7b)

The form of the solution given by Eq. (17b) is such as to suggest

Z( 1) : Z( -1) = - (l7c)

and

Z(o): Z(-l):: *1 +; (1 +;2) Jt3n 2

;; o. 318310 }( + O. 447316 1,3n 2

( l7d)

(17d')

9f The Fourier development

!2 . x . sin.! x +.! cos .!x
8 2 4 2

005 k 1
= 1 + 2 f;'l (-) (4kl _l)2 cos k1l'x

is employed in obtaining the coefficient of Jt in Eq. (l7b) of the text.

9g The Fourier development

11'3 2 11' + _11' (I + _11'2 ) 11' 11'2
- 32 x co s Z x 8 4 co s Z x + 16 . x .

~ k 4kZ + 1
= 1 - Z L (-) (4k2 _ 1)3 cos k1l'x

k=l

is likewise employed in obtaining the coefficient of Jt3n 2 in Eq. (17b) of

the text.
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The results described in the sub-section (Sect. III(a) may be con

sidered applicable for If3n Z«1; of equal or greater interest, however,

are the results discussed below for 1n2> 1.

(b) Character of Solution When ,3n 2 is Large

In cases for which.tzl t 1 but i(n2 is not small, the main features

of the solutions to Eq. (5) may be obtained conveniently by consideration

of the simpler equation

Solutions of this approximate equation, (18), may be written explicitly in

"1
terms of Bessel and Neumann functions of order '3 or equivalently, in

terms of Bessel functions of order.+ ~ :

(18)

where

To the extent that Eq. (20) adequately represents the solution to the

exact differential Eq. (5), the desired eigenvalues, I , may be deter-

mined by solution of

or

for the Dirichlet or Neumann boundary conditions respectively, where

5-25

(19)

(20)
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.: { J + 2 q,3n 2 )3/2
y+ - 3 Jf n 2

={/-2fn2)3/2

y - - 3 " n 2

and the solutions would be sought by trial, aided by published tables of

(22a)

(22b)

J / and J .10,11 In the event that {.( 2,en2, Eqs. (21a, b) may be
+1 3 +2/3

expressed more conveniently in terms of the associated Bessel functions as

(23a)

or

(23b)

for the Bessel and Neumann conditions respectively, and with

={2 Iln 2 + J' )3/2
t+ - 3 1 3n 2 (24a)

_ (2 dn2 - i )3/ 2

t_ = 3 'l?n l (24b)

In any case, of course, characteristic values of i for solutions to Eq. (18)

must necessarily be somewhat les s negative than -2 Jt3n 2 in order that the

coefficient of Z in Eq. (18) be positive for some values of x in the interval

-1'x ~l.

For the purpose of obtaining convenient approximate formulas for the

characteristic values of ;, it is useful to note that for 11.3n 2 somewhat

10 National Bureau of Standards Computation Laboratory, Tables of Bessel

Functions of Fractional Order, (Columbia University Press, New York,

1948-49). vols. I and II.

11 G. N. Watson, Theory of Bessel Functions, (Cambridge University Press

and MacMillan Co., New York, 1948). Ed. 2. ~: Y 1 / 3 = [J1/3-2J-1/J/n.
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greater than unity (f. ex., for ,.lnZ > 6) the argument t_ which appears in

Eqs. (23a, b) becomes sufficiently large that these equations effectively

reduce to

(ZSa)

or

(2Sb)

respectively. This simplification, which very materially assists the es-

timation of I , corresponds to setting A =B in Eq. (19) for the solution Z.

Under these circumstances, then, the solution of interest is taken as

substantially of the form

~ lIz 'J l/3( 3~;n~ ) + J -1/3( 3~~~ )~. for ~ ~ 0,

11.1 3 / 2
(3 i4/3It/1/2 H (1) (i~3 ), for #. ~ 0

Z '? 1/3 '( n ..,

in which the first Hankel function becomes sufficiently small at x = -1

(Z6a)

(Z6b)

as to satisfy adequately the boundary condition normally imposed at that

point. The Eqs. (ZSa) or (ZSb) for the characteristic values J may then

be considered as arising simply by application of the desired boundary con-

dition at x =+1. A reasonably good description of the solution Z( x) for

x <- Z'l.~nZ --that is, for 4< O--is afforded by replacing Eq. (Z6b)

by its asymptotic form,
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and, with less accuracy, the Eq. (26a) for ~ > 0 may likewise be written

_~1t3/2n

~ ~ 1/4

~ 3/2 'Tf
--)4 (~>o) . (27b)

by use of the W-K-B procedure Ref. 8, Sect. 28, pp. 184 ff

These asymptotic forms, Eqs. (Z7a, b), may alternatively be obtained directly
+
+

Solution of Eqs. (25a) and (Z5b) by aid of published tables 10,.11 leads to

the following simple estimates for the characteristic values S , applicable

in cases for which It·3n2 is at least somewhat large in comparison to unity:

For the first Neumann root: d ~ - 2 .,3n 2 + 1. 617Z41( 2n4 /3

For the first Dirichlet root: d -; -Z ,,3n 2 +.3. 71151.f2n4 /3

For the second Neumann root: S~ -2 '7.3n2 + 5. 156191(2n4/3

(Z8a)

(Z8b)

(28c)

The numerical factors associated with J(2n4/3 in Eqs. (Z8a, b) are seen,

as could be expected, to be twice the numerical coefficients given in series

developments for the first maximum and first zero of J n when n is large lZ

(Ref. 11, Sect. 15.83, p. 521; Ref. 12, Sect. VIII. 3.6, p. 143]. The

values of 1(3n 2, at which i = 0 for the first Dirichlet root and for the

second Neumann root, also may be estimated directly from Eqs. (23a) and

(23b), again by reference to published tables, 10, 11 as 6.412 and 17.133,

respectively, which do not differ greatly from the values suggested by the

approximate Eqs. (28b, c).

The nature of the characteristic solutions is such that, for large values

+ .+ The authors are mdebted to Dr. A. M. Sessler for calling attention to

this point.

12 E. Jahnke and F. Emde, Funktionentafeln,OJover Publications, New York,
1945), Ed. 4.
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of 1?3n2 , the magnitude of the solutions is large only for x near +1. A

more quantitative statement concerning this feature can be made by refer-

ence to a universal curve which is constructed by plotting (Fig. I) a solu-

tion of the form of Eqs. (26a, b),

Z 0( yl/2 [JI/3(y3/2) + J_1/3(y3/21] VB. y

with v regarded as linearly dependent upon x in accordance with the rela-

tion

(30)

The various characteristic solutions of interest may then be considered as

depicted by the curve of Fig. I with the x = 1 boundary located at A

(v = 0.7775), B (v = 1.7843), or C (v = 2.4788), corresponding respectively

to the three roots listed in Eqs. (28a, b, c). This representation will be

substantially correct if q3n 2 is sufficiently large that the boundary x =-1

lies well to the left in Fig. 1 in a region where the function has become

quite small in accord with the Hankel-function form of Eq. (29) appropri

I
ate for v (0. The function plotted in Fig. 1 is seen to be less than - of its

e

maximum value for v <-0.52 and thus becomes small in this sense for

displacements

~v= 1.3,2.3.3.0

to the left of the points A, B, C, respectively. The corresponding annular

regions. within which the solution Z assumes prominence. are then,

delimite d by
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(l 1. 35 ) ~ x ~ 1 (for the first Neumann (31a)- 1 n 2 / 3 -
eigenfunction) ,

(1 - 2.39 ) x f 1 (for the first Dirichlet (31 b)If n 2 / 3 ~ eigenfunction) ,
and

(1 -
3.12

I.'1 n273)~ x 1 (for the second Neumann (31 c)....
eigenfunction)

IV. COMPUTATIONAL RESULTS

The differential Eq. (5), suitably scaled, was integrated with the CY-

CLONE digital computer at Iowa State University by use of the Runge-

Kutta process. 13, 14 The primary purpose of the work was to determine

characteristic values of I and to tabulate the corresponding functions for

solutions satisfying the Neumann or Dirichlet boundary conditions at

x =2:,1, for a number of representative values of n and for -t given in

turn the values 0.001, 0.01, and O. 1. In each case the value of i (or in

two instances the value of n) was adjusted by trial, to give solutions of the

des ired form, conforming to the prescribed boundary conditions.

In performing the integration a larger number of steps was employed

to traverse the interval -1 ~ x "1 in cases in which 13n2 was large

since more rapid changes of the function occur in certain portions of that

inte rval in such cases. The effect of truncation error was found by tests

13 S. Gill, Proc. Cambridge Phil. Soc. 47, 96-108 (1951).

14 D. J. Wheeler, "Solution of a System of Ordinary Differential Equations",

Unive rsity of Illinois Computer Laboratory sub-routine F 1-114, (Uni-

versity of Illinois, Urbana, 1953).
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in which the interval size was halved, to be sufficiently small that use of

the finer interval only affected the final value of the function or its deri

vative (in the Dirichlet or Neumann cases, respectively) by less than 10-6

of the maximum value and the consequent errors in , could thus be

judged when tabulating the results of the computations.

In addition to the tabulation of results from the computations outlined

above, an opportunity was taken to make a limited number of checks of

the approximate analytic results described in Sect. II!. For the purpose

of obtaining tables of certain integrals of interest in physical application

of the eigensolutions, a special series of runs was also made with Jt as

signed the small value 0.0001 and 1(3n 2 given various values in the in

teresting range extending from 112 to 20.

We make below, first a brief comparison between some of the compu

tational re suIts and the analytic theory for the form of the eigenfunctions,

following which the main body of numerical results is presented in tabu

lar and graphical form.

(a) Computational Checks of Theoretical Results for the Eigenfunctions

To permit a comparison of the computational results with the theo

retical expressions for the form of the characteristic solutions when 1(3n 2

is small, Table I lists 2(+ 1)1 2( -1) and 2' (0)/2(0) for the first Neumann

solutions, Table I! gives 2' (+ 1)/2' (-1) and 2'(0)/2(0) for the first Dirichlet

solution, and Table II! contains 2(+1)/2(-1) and 2(0)/Z(-I) for the second

Dirichlet solution, for examples in which 1 assumes the values 0.1, O. aI,
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Table I. Comparison of observed and theoretical eigenfunctions for first
Neumann solution.

Z(+I) /Z(-I)
Computer Theory

Z'(o)/ Z(o)
Computer Theory

O. 1

0.01

0.001

0.0001

O. 1

0.04

0.1

0.5

1.14303

1.054769

1. 14249

1.9205

1. 14286

1. 054795

1. 14286

2.0000

0.0997

0.03998

0.09986

0.4841

O. 1000

0.04000

O. 10000

0.5000

Table II. Comparison of observed and theoretical eigenfunctions for first
Dirichlet solution.

13n2
Z'(+I)/Z'(-I) z' (0)/ Z(o)

Computer .Theory Computer Theory

O. 1 O. 1 -0.94213 -0.94195 -0.02022 -0.02026

0.01 0.04 -1. 0062312 -1. 0062307 +0.00689435 +0.00689431

0.001 0.1 -1. 040319 -1. 040326 +0.0292346 +0.0292358

0.0001 0.5 -1. 2244 -1. 2254 +0.14851 +0.14863
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Table III. Comparison of observed and theoretical eigenfunctions for second
Neumann solution.

Jt3n 2
Z(+l)/Z(-I) Z(o)/Z(-l)

Computer Theory Computer Theory

O. 1 O. 1 -0.8697 -0.8687 0.0717 0.0766

0.01 0.04 -0.974146 -0.974128 0.0208 0.0211

0.001 O. 1 -0.95944 -0.95932 0.0441 0.0450

0.0001 0.5 ':'0.8281 -0.8159 0.199 0.224

0.001. and 0.0001. The theoretical results listed in Tables I-III are cal-

culated from Eqs. (l3c. d). (15c, d), and (17c, d) of Sect. III(a).

The most striking feature of the solutions for large values of J( 3n2

is the localization of such solutions to a region close to x = 1. Table IV

1
presents values of the coordinate x at which the solution equals - of itse

maximum value as determined computationally and as calculated from

Eqs. (3la. c) of Sect.III(b) for Jt = 0.0001 and 3 2Jt n =20.

1
Table IV. Coordinate at which the characteristic solutions equal e of

their maximum value for It =0.0001 and Jt3n 2 = 20.

x
Solution Computer Theory

1st Neumann 0.509 0.503

1st Dirichlet O. 123 O. 120

2nd Neumann -0. 143 -0. 149
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(b) Tabulation of the Eigenvalues and Characteristic Solutions

The computational results for the eigenvalues for a series of values

of n and with it given the values 0.001,' O. 01, and O. I, are listed in Table V.

Included in Table V, for comparative purposes, are also characteristic

values of i for It = 1, obtained from published tables l5 of. Bessel func-

tions of the first kind. Entries are also given for "7= 0.001,' which indi

cate the values of n at which the values of I for the first Dirichlet solu-

tion and for the second Neumann solution pass through zero (n =80110 and

130953, respectively); from the discussion of Sect.III(b) it was to be ex

pected that with '1 small, these roots would occur when ;/n2 = 6.412

'and 17.133, or at n~ 8. 007 x 104 and 1. 309 x 105 in the case k =0.001.

The general dependence of the eigenvalues on n is depicted in Fig. 2, in

which hyperbolic scales l6 are used for the ordinates and abscisae, in

order to provide a substantially linear scale near the origin.

The character of the solutions associated with the computational re-

suIts summarized in Table V, is described by the reproductions of the

teleprinter output from the computer, which are included with this report,

and in the accompanying graphs (Figs. 3-20) of selected eigenfunctions.

15 Harvard University Computation Laboratory, Tables of Bessel Func-

tions of the First Kind, (Harvard University Press, Cambridge, Mas-

sachusetts, 1948), vols. III, IV, V, VII, & IX.

16
R. Legros, Ann. phys.

,
{Ser. 12)1.., 335-356 (1946).
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Table V. Valuell of & for the first Neumann eigenvalue. the firllt Dirichlet eigenvalue. and the lIecond Neumann eigenvalue.

....
o

"1.:
Root: N

1

/{,- 0.001
0

1
N

Z
N

I

1'-0.01
o

1
N

Z
N

l

1(_ O. I
0

1
N

Z
N

l

.,.1. Oa
o

I
N

Z

O.OOOOOOOZ Z.4674011 Z.46740Z17 -0.0007Z0 Z.4674Z1
0.00000004 Z.4674015 Z.46740Z6 -0.03Z070 Z.463969

.O.OOOOOOZO Z. 4674014 Z.4674046 .0. 4560z5 Z.40150Z
-1.717081 Z.130Z64

-0.000007Z0 Z.4674015 Z.4674169 -3.876713 1. 441630
-6.9Z1675 O. 145494

-10.857817 -1. 875544
-ZI. 440133 -8.Z8747Z

-0.0003Z495 Z.467367 Z.4677163 -35.68lZ79 -17.9938ZZ
-0.005Z90 z.466738 Z.4718184
-0.08z838 Z.456331 Z.533433
.Z.030430 Z.04Z788 3.787091
-6. lZ7374 0.515508 4.811675

0
-IZ.476797 -Z.763631 3.907135

0
-3Z.066830 -15.395587 -3.890509
-60.999918 -36.537911 -19.6573Z7

Ul
I

Yo!
Q'I

n=O
lIZ
I
Z
5
10
ZO
30
40
50
75
100
150
ZOO
500
1000
1500
lOOO
l500
3000
4000
5000
10000
ZOOOO
50000
75000
80110
100000
130953
150000
ZOOOOO

o
o
o
o
o
o
o

o

o

Z.4674011 Z.46740Z09 0

z.46740Z1 " .000001Z

Z.4674011 Z.46740Z10 .0000050

z.4674011 Z.46740ZII.0.0000ZO

Z.467376

Z.467377
z.467378

z.467386

Z.467409

Z.467476 0
.00000839

0.0000330
0.0001Z55
0.0005019

z.467478 -0.0019893
Z.467484 -0.0680405

-0.335704
-0.905569

Z.4675Z9 -I. 799Z05
-5.418144

Z. 4677Z0 -ll.00931Z
-Z8.lI08Z4

z.468957 -53.56333
Z.498479
Z.835Z14
3. 6578Z7
4. 53500Z
4.843058
4.303889
0.8Z8077

-5.740178

Z.4648915
Z.4649013
Z.4649308
Z.4650481
Z.465833Z
Z.4681Z54
Z.46934Z6
Z.4435640
Z.3513Z68
Z. 1435Z3
0.80Z4951

oZ. 103147
.13.Z85380
-31. 9561ZZ

Z.4749309 (0) 1. 445797
Z.474989 0.089633 Z.Z17401 1
Z.4751343 -0. 15Z511 Z.670493
Z.4757499 -1.667909 Z.593654
Z.480Z714 -14.709967 -5. 765Z68
Z.4994189 -65. 36161Z -47.614970
l. 618911Z -z76. 5774 -Z38.49Z
Z.9Z76509
3.4493650
4.0878Z74
5. 14Z091
4.361139

-Z. 541564
-16.514506

3.670493
5.049703
6. 106071
7.243048
z.666867

-3Z.367035
-Z08.010

a
From publillhed tablell. 15
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FIG.3 '1 =0.001 ; nil: 2000

8 =-0.0000072 FOR NI
-1.0 • 2.4674015 FOR 0

=2.4674169 FOR N2
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The output format for the Neumann solutions is to be interpreted as

follows, where the subscripts I and Z serve to distinguish two compu-

tations, for identical values of Jt and n, made in the course of a single

run, and s is an integer employed in scaling the program:

IRun NO., Total Steps

[iJ I'l !Zs-I

1ZS-I(x+I)1I Zl

~teps

between Z-S(Total steps)
orints

I
I

p--~--- zs- l ll'

dZ,-dx

For the Dirichlet solutions the same format is used except DZ' ZZ' and P Z

are omitted.

A comparison between the computationally-determined values of ,J

and the predictions of the approximate theoretical results of Sect. III is

provided by Table VI. A similar comparison of the characteristic func-

tions was presented previously, in connection with Tables I-IV.
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Table VI. Characteristic values, d , as determined computationally and as estimated by theoretical formulas.

~
First Neumann Eigenvalue First Dirichlet Eigenvalue Second Neumann Eigenvalue

n Small-n Computer Large-n Sm.all-n Cotnputer Large- n Small.n Computer Large-n
Formula Result Formula Formula Result Formula Formula Result Formula

0.001 0 0 2.467400850 2.4674011 2.467401850 2.46740209
20 0 2.467400850 2.4674021 2.467401851 2.46740209
50 0 2.467400851 2.4674011 2.467401855 2.46740210
75 2.467400852 2.46740186
100 0.000000003 0 2.467400854 2.4674011 2.46740187 2.46740211
200 0.000000012 0.00000002 2.467400866 2.4674011 2.46740193 2.46740211
500 0.000000050 0.00000004 2.467400948 2.4674015 2.46140235 2.4614026
1000 -0.0000002 -0.00000020 2.467401242 2.4674014 2.46740386 2.4614046
2000 -0.0000012 -O.ooooono 2.467402419 2.4614015 2.46140990 2.4674169
5000 -0.000325 -0.00032495 2.467410652 2.467367 2.46145218 2.4677163
10000 -0.0053 -0.005290 2.467440058 2.466738 2.46160317 2.4118184
20000 -0.0852 -0.082838 +0.07797 2.467551679 2.456331 I. 2149 2.46820114 2.533433 I. 9992
50000 -3.3325 -2.030430 -2.0210 2.468381033 2.042788 1. 8367 2.41243490 3.187091 4.4978
100000 -12.476797 -12.4934 -2.763631 -2.1121 3.907135 3.9329
200000 -60.999918 .61.0846 -36.531911 -36. 5899 -19.651327 -19.6928

0.01 0 0 0 2.4673161 2.467376 2.4674761 2.461416
1/2 2.4673161 2.467376 2.4674761

til 1 2.4673761 2.467376 2.4674761 2.461476
I 2 2.4673761 2.4674762 2.467416
til
.....:I 5 0 2.4673762 2.467376 2.4674166 2.461416

10 0 2.4673165 2.467377 2.4674781 2.461478
20 0.0000012 2.4673777 2.467378 2.4674842 2.467484
50 +0.000005 0.0000050 2.4673859 2.467386 2.4675264 2.461529
100 -0.00002 -0.000020 2.4674153 2.467409 2.4616774 2.467120
200 -0.0007Z -0.000120 2.4675329 2.467421 2.4682814 2.468957
500 -0.0325 -0.032070 2.4683563 2.463969 2.4125091 2.498419
1000 -0.530 -0.456025 -0.38278 2.4712968 2.401502 1.1115 2.4876083 2.835214 3. 1562
1500 -2.6925 -1. 717081 -1. 7Z31 2.4761977 2.130264 1.8129 2.5127735 3.657827 4.3535
2000 -3.876113 -3.9248 2.4830590 1. 441630 1.3524 (2. 5480048) 4. 535002 4.9928
2500 -6.921615 -7.0127 O. 145494 0.0932 4.843058 4.9951
3000 -10.857817 -11. 0026 -1. 875544 -1. 9412 4. 303889 4. 3095
4000 -21. 440133 -21.7312 -8.287412 -8.4334 0.828011 0.7398
5000 -35.682279 -36. 1128 -17. 9938ZZ -18.2610 .5.140178 -5.9152

0.1 0 0 0 2.4648913 2.4648915 2.4149011 2.4149309
1/2 0.0000083 0.00000839 2.4649011 2.4649013 2.4749514 2.474989
1 0.0000328 0.0000330 2.4649305 2.4649308 2.4151024 2.4151343
2 0.0001248 0.0001255 2.4650481 2.4650481 2.4751064 2.4757499
5 0.0005 0.0005019 2.4658115 2.4658332 2.4199341 2.4802714
10 -0.002 -0.0019893 2.4688120 2.4681254 2.4950333 2.4994189
20 -0.012 -0.0680405 +0.07797 2.4805742 2.4693426 1. 2149 2. 5554298 2.6189112 1. 9992
30 -0.402 -0.335104 -0.29l5 2.5001779 2.4435640 1. 6598 2.6560908 2.9216509 3.0064
40 -I. 312 -0.905569 -0.9876 2.5276230 2.3513268 1. 8773 2.7970160 3.4493650 3.8536
50 -3.25 -1. 799205 -2.0210 2.5629095 2.143523 1. 8367 (2.9 782051) 4.0878274 4.4978
75 -5.418144 -6. 1349 (2.6854323) 0.8024951 0.4890 5.142091 5.0584
100 -11.009312 -12.4934 -2.103241 -2.1127 4.361139 3.9329
150 -28.210824 -32. 1107 -13.285380 -15.4195 -2.541564 .3.9055 '"
200 -53. 563133 -61.0846 -31. 956122 -36.5899 -16.514506 -19.6928
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(c) Integrals of the Eigenfunctions

In particular physical applications such as occur in determining the

feedback between a centrally-located beam and the electromagnetic fields

within a toroidal vacuum chamber or in estimating the loss figure (0) for

a resonant mode, certain integrals of the characteristic solutions will be

found useful and in a sense may be regarded as providing a normalization

factor for solutions of otherwise arbitrary magnitude. To obtain such in-

tegra1s as would be generally useful, in an approximate sense, when 't

is small, three special series of computer runs were made, with It =0.0001

and with 1l3n2 assigned values generally in the range ~ to 20, from the

results of which the requisite integrals were evaluated by an approximate

hand calculation. The character of some of the solutions obtained in these

runs is illustrated by Figs. 21, 22, and 23. The salient features of the so-

lutions and the values determined for the integrals are summarized in

The particular quantities denoted

also**t L/_ 2 2 dZ/dx
, and F = ( -) 0

2 11' (1 Z2 dx

1-1

Tables VII, VIII, and IX.

F ={~)2 &Z/dx 1£.
1 'Il' [1 2Z dx

-1

G=~-r Z2 dx

J_ 1

are plotted in Figs. 24, 25, and 26, for the first Neumann solution, the

** ..The quanhhes F and G are seen to be so defined that if Z were a simple

. 1 f .. 'Il' 11'
ClrCU ar unchon, un Z x or cos Z x , respectively, these quantities

would become equal to unity.
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first Dirichlet solution, and the second Neumann solution, respectively.

Table VII. Salient features and integrated square of first characteristic so-
lution subject to the Neumann boundary condition. 't = 0.0001.

2
Z·a &Z/dxJ-E £1 Z2dx ~ 2 ~ZIdx]..Q..2~3n 1 ("I £1 2
Zf Zf Zdx

Zl -1

1/2 -0. 127783 0.52069 0.3576 1. 1780 0.0440

1 -0.46206 0.28920 0.5228 0.8719 O. 1270

2 -1. 4544 0.11072 0.6245 0.6531 0.2420

3 -2.6424 0.05144 0.6273 0.5634 0.2831

4 -3.927 0.02681 0.6015 0.5102 0.2874

5 -5.2714 0.01506 0.56655 0.4732 0.2749

6 -6.6595 0.00893 0.5293 0.4451 0.2551

8 -9.5299 0.00352 0.4575 0.4044 0.2098

10 -12.492 0.00154 0.3942 0.3754 O. 1678

15 -20.161 0.00026 0.2738 0.3279 0.0926

20 -28.081 0.00006 0.1941 0.2979 0.0512

a The subscripts i and f refer to the initial and final values, at x = -1 and x =+1,

respectively; the subscript 0 refers to the midpoint of the interval, at x = o.
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Table VIII. Salient features and integrated square of first characteristic
solution subject to the Dirichlet boundary condition. ~ =0.0001.

Jt.3n2 [dZ/dx]-L: Z(o) L 1
Z2 dx ~

(dZ/dxJ f @.Z/dX[f -1
CdZ/dx'f? It Z2 dx

-1

1/2 2.44989 -0 81674 -0.57593 0.3330 7 0.9959

1 2. 39757 -0.66744 -0.52222 0.27734 0.9833

2 2.19214 -0.44766 -0.43275 O. 19993 0.9367

3 1.86207 -0.30299 -0.36266 0.15139 0.8688

4 1. 42218 -0.20749 -0.30734 0.11964 0.7895

5 0.88798 -0.14394 -0.26319 0.0979
4

0.7073

6 0.27375 -0.10118 -0.22752 0.0824
9

0.6275

8 -1. 14815 -0.05192 -0.17412 0.06234 0.4863

10 -2.77031 -0.02786 -0.13669 0.04997
0.3739

15 -7.42438 -0.00686 -0.08063 0.03287 O. 1978

20 -12.6550 -0.00199 -0.05119 0.02500 O. 1048

a
The subscripts i and f refer to the initial and final values. at x =-1

and x = +1. respectively.
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Table IX. Salient features and integrated square of second characteristic
solution subject to the Neumann boundary condition. It = 0.0001.

3 2
~n f ~Z/dxJ 0

Zf 11 Z2dx

-1
Z 2

f

2 2 ~Z/dxJ 0

2

(; )L1 2Z dx
-1

1/2 2.5405 -1. 2076 1. 7294 1. 2822 0.9454

1 2.8182 -1. 3666 1.8363 1. 6454 0.8306

2 3.4688 -1. 4092 1. 7648 2. 131 1 0.5923

3 4.0673 -1. 2001 1.3936 2.141 9 0.3675

4 4.5023 -0.9222 0.8964 1. 9347 0.1683

5 4.7470 -0.6744 0.3950 1. 6864 0.0375

6 4.8154 -0.4846 -0.0546 1.5420 0.0008

8 4.5447 -0.2525 -0.7599 1.329
7

0.1760

10 3.9027 -0.1371 -1. 2495 1. 2103 0.5288

15 1.3587 -0.0352 -1. 8894 1. 0466 1. 382
5

20 -2.0086 -0.0107 -2.0731 0.9500 1. 833
4

30 -10.2162 -0. 00136 -1. 9083 0.8298 1.779

a The subscripts i and f refer to the initial and final values t at x = -1 and

x = +I, respectively; the subscript 0 refers to the midpoint of the interval,

at x = O.
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V. CONCLUSION

The analytic and computational work presented in this report provides

information concerning the characteristic values of J , and for the

shape of the first characteristic functions when the parameter 1 is small.

Since the contribution from I makes a relatively small change in the

characteristic value for the original Bessel equation when n is large, use

of Eq. (3b) in connection with the values of i found here should afford

accurate characteristic values for q in such cases.

In application of these results to the excitation of electromagnetic

modes by an aZimuthally-modulated beam circulating within the vacuum

chamber of a particle accelerator, however, the quantity J enters essen-

tially directly in determining whether or not a resonant electromagnetic

mode is excited by the beam. With a modulated coasting beam moving at

a radius R o with an angular speed W 0 =p c IRB , the 4>, t dependence of the

charge -current density and hence of the electromagnetic fields, may be

expressed in terms of circular functions of argument n(4)-W ot). For

the radial dependence of the fields one employs, of course, Bessel func-

tions (or their derivatives), Zn(qr). The axial variation, finally, may be

expressed in terms of circular functions, whose argument we may denote

by 'k z. Maxwell's equations for the electromagnetic field then require

the relation

1{2 = n2W 0
2

q2
c Z

=
n 2 p 2

q2
RB

2
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By introducing the average radius of the chamber, R =b + a this rela-Av - 2

tion may be put in the convenient form

Resonant excitation of the chamber will occur if 1( times the chamber

height, h, is an odd multiple of 11":

~ = (2m + 1)1I"/h

The resonant values of q are thus such that

IqR
AV

)2 = n2( (J R:AV )2 _ [12m + l)w R::v ] 2

. of r,)'I (-_- bb +- aa ) (b )or, ln terms a "' ' and the chamber width w = - a ,

cf = 1'1 n)2 [(~RRBAV )2 - ~ - [1m + ~)" ~r
Typically (3 RAv/RB will be close to unity (for a relativistic beam moving

close to the center of the aperture) and w Ih, although normally greater

than unity, will not be large. For resonance to occur then, it usually may

be expected that t would have to be somewhat negative, and hence, for the

lower-order resonant modes, 'l3n~ would be roughly of order unity.

As one example of resonance associated with the first Neumann root

corresponding to a transverse -electric (TE) mode of oscillation, one may

note that It =0.01 and n =2000 leads to an eigenvalue J =-3.88. If

, RAv/RB = I, resonance would occur in this case with m = 0 for

_5 hw =4 . For this example 't n =20 and 1'I3n2 =4. If

quite large, of course, the mutual coupling between the beam and the
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electromagnetic fields (involving the factors F or G shown in Figs. 24-26 i'lnd

listed in Tables VII-IX) may be greatly reduced, due to the local' zation

of the characteristic functions close to the outer wall of the vacuum cham-

ber. In any case, with Jt quite small as is typical of modern high-energy

accelerators, the values of the harmonic number, n, which could lead to

resonance will necessarily be quite large. The possibility of a self-gener-

ated instability resulting from the mutual interaction between an intense

coasting beam and the associated electromagnetic fields, however, lends

interest to a study of these high-order modes.

The los s -factor, Q, associated with the resonant electromagnetic

modes of a toroidal vacuum chamber, can also be estimated, when ~ is

small and (in particular) with n large," from the results given in this re-

port. The evaluation of

.!. ::
o

<power Loss) Av

&oJ (Energy Stored)

for a transverse electric (TE) mode leads to 17

(32)

(1+ !. fZ(al] ~ J[Z(bl]
2 ~.

b Z(b)J JrbZ2r d<
1a J

(33a)

h - W R - resistivity _& W . (k' d th)
were K = -;-, surf. - skin depth - 2 s in ep

Zspace =y"""'ol ( 0 =~oc =41T X 10- 7 x 3 x 108 = l201T = 377 ohms, and Z(r)

satisfies the Neumann boundary condition at r = a, b. When a and b

are nearly equal (>t < < I), the result given by Eq. (33a) can be simplified

17
The lOSS-factor, 0, of a toroidal cavity can be obtained for the TE modes

(Q>nt. on pg. 67)
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(Ref. 17 cont. )

by use of the field components (rationalized MKS units)

Bcj> = -n ~ sin 'k;.. sin n cj> cos IAJ t

B dZ .
r = d;' sm 1()- cos n cj> cos IItI t

2
Bz=-~ Zcos'1r)- cosncj>coswt

Ecj> = ~ :~ cos 1(r cos n cj> sin w t

E =n J!L. ~ cos Tr l. sin n ..l.. sin I4J tr 1c r t:r 't'

E z = 0, with q 2 + 'k 2 = ( W I c) 2 = K
2

representing standing waves of a resonant TE mode. Application of Eq. (32)

then leads to Eq. (33a) of the text. In the special case of a pill box (a =0

and Z(r) = In(qr)] , Eq. (33a) simplifies to

.!. = 4 Rsurf. .!.. ["k2 +..!... q4b 2 + n2 1( 2
Q Z K 3 h 2b q b2 - n2

space

which may be seen to agree with a result given by Smythe 18 (Sect. 15. 17,

Eq. (8), p. 535) in which his a becomes our b, d becomes h, m becomes

n, p becomes 1<h/rr, f1 mn becomes q, ~ mnp becomes K, and his

.,Ar .R 1'"Jmay be identified as R fl Z . Similarly with a circular-fune-
/ sur space

3 2
tion distribution for Z, as could be the case for hand >i n both small,

Eq. (33b) of the text may be expressed as

I ;, 4 Rsurf. J, r1(2 + ,,2k 2++ (k
2

r + k
2;~ ]

Q Zspace K rh (k2r + k2cj» w

in which kcj> has been employed to denote n/R, and we note q2 ~ k 2r + k 2cj>'

This result too, may be seen to agree with a formula given by Smythe 18

(Sect. 15. 16, Eq. (9), p. 534) for a rectangular resonator, in which his
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(R<..t. ~l e.-.A-.)

a becomes our w , d becomes h, m becomes k r w Irr, n becomes ket>b/ rr ,

p becomes "Ie h/rr, and we let his b.-. 00 to eliminate inclusion of losses

from the end walls of Smythe's cavity.

18 William R. Smythe. Static and Dynamic Electricity (McGraw-Hill Book

Co., Inc., New York, 1950), Ed. 2.
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(33b)~2l1i0 h +
.!. ~ 4 Rsurf.
Q Zspace

to

1 2 4 [zL P 72 [z(1)]ll
- (RZn

+h)(I+L~l )jlZldx:'
2q2w ~ )

-1
b+a

where R denotes the average radius, w represents the width, b - a,
2

and Z is now regarded as a function of x. Values of Z( -1)/ Z(+ 1) and of

r. ]2/'(1 2 3 lLZ(l) ) _ Z dx for representative values of '7 n , are obtainable from

-1
Tables VIII and IX for the first two solutions conforming to the Neumann boun-

dary condition.

Similarly, the result for a transverse magnetic (TM) mode is 19

1. =4 Rsurf. 1. [1. + b [1 + ~ (dZ/ dr)a 2] (dZ! dr)b
2 J

Q Zspace K h 4q l b (dZ/dr) l jb 2
b Z rdr

a

(34a)

where Z(r) satisfies the Dirichlet boundary condition at r = a, b. Again,

when a and b are nearly equal, Eq. (34a) may conveniently be simplified

to

1. ~ 4 Rsurf. ! {1. + _2_ [I +~ (dZ/ dxh2] (dZ! dx)lJ (34b)
Q Zspace K h q2 w 3 b (dZ! dx}f2 r I Z2

dx

(dZ!dx)' (dZ/dx)f2 1-1 3 l
Values of 1 and of , for representative values of " n ,

(dZ/ dx)f /' I Z2dx .(

I-I
are obtainable from Table VIII for the first Dirichlet solution.

19 The loss -factor for a TM mode can be obtained by use of the field compo-

nents

Bet> =c!!f7< ~~ sin'k:rcos net> sinwt

B = n r"J Zr sin}(":L sin n et> sin fIJ t
r ~ tr

B z = 0
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(Ref. 19 cont. )

E =z

Z
- n -;-cos 1r;., sin n 4> cos Ie) t

dZ .
- cos 1("f.. cos n 4> cos w t
dr (T

2
~ Z sin'1rJ- cos n 4> cos W t,

.!. (.!.+ _1 )
K h Zb

. 2 2 2 2wIth q + 1( = (W / c) = K. Application of Eq. (32) then leads to Eq. (34a)

of the text. In the special case of a pill box (a = 0 and' Z(r) : J n (qr») , Eq.

(34a) simplifies to

1 = 4 Rsurf.
Q Zspace

in agreement with a result given by Smythe, 18 for p (orl() ;. 0 (Sect. 15. 17,

Eq. (9), p. 535 ). Similarly for Z represented by a simple circular function,

Eq. (34b) may be written

.!. ::: 4 Rsurf. .!. [.!. + k~ 1
Q K h '

Zspace (k~ + k~)w

with kcj> denoting n/R and use of qZ~ k~ + k~ . This result is consistent with

an expression given by Smythe 18 (Sect. 15.16, Eq. (10), p. 534' when his

b is permitted to approach infinity after his n is replaced by kcj>b/lT and other

appropriate identifications are made in the notation.
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LONGITUDINAL COUPLING IMPEDANCE OF A STATIONARY
ELECTRON RING IN A CYLINDRICAL GEOMETRYt

ANDRIS FALTENS AND L. JACKSON LASLETT

Lawrence Berkeley Laboratory, University of California, Berkeley, California, USA

The longitudinal (azimuthal) coupling impedance is investigated for a stationary electron-ring beam circulating
between a co-axial pair of conducting tubes. Proximity of the beam to the inner tube is found to be advantageous
for reducing (I ZlIl/n)max. Similar results are shown to be attainable with operation near the the outer tube,
provided the quality factors Q for higher-order resonant modes are deliberately made small. Illustrative computa
tional results are presented graphically and a convenient approximate formula is suggested that may serve to guide
the selection of desirable parameters for a typical fully-compressed electron ring.

I. INTRODUCTION

In evaluating the effectiveness of electron rings
for the useful acceleration of ions, the requirement
of longitudinal (azimuthal) stability appears to
constitute a severe constraint. Another paper!
appearing in this issue is concerned with the selec
tion of parameters for an electron-ring accelerator,
and considers explicitly the stability requirements
for a fully-compressed loaded ring at the time of
release from the magnetic well. That paper re
iferates the necessity of strongly limiting the self
generated azimuthal electric fields, that could excite
an unstable azimuthal modulation of the electron
ring beam, if rings of useful holding power are to be
obtained. Such electric fields may be expected to be
reduced by the presence of nearby conducting
material, that in a magnetic acceleration column
might conveniently take the form of conducting
tubes co-axial with the electron ring. It may be of
interest, therefore, to report in the present paper
results from an analysis of the longitudinal coupling
impedance of a toroidal electron beam situated co
axially between a pair of infinitely long conducting
tubes. The analysis for a pair of tubes constitutes
an extension of previous work2 - 5 concerned with
an electron ring situated interior to a single tube, a
ring inside a compressor chamber,6

•
7 and of similar

works relating to a cylindrical layer of electrons
situated between two walls. A two-tube configura
tion may represent a better approximation to

t Work supported by the U.S. Atomic Energy Commission.
Editor's Note: A resume of this paper was presented at

the Symposium on Collective Methods of Acceleration,
Dubna, USSR, September 1972.
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arrangements for magnetic acceleration that would
be attractive on other grounds and, in addition, may
aid in suppression of the longitudinal instability.

2. COMPUTATIONAL PROCEDURE

The present analysis is restricted to rings that are
essentially stationary with respect to the tube
structure, and (when losses are present) would
require revision for application to rings with an
axial speed comparable to that of light. No di
electric material is considered to be present, and no
special frequency-sensitive elements are intro
duced (save for such as may aid in controlling the
'quality factor', Q).

The longitudinal coupling impedance, associated
with an electron-ring beam of major radius R
and with a postulated current modulation In =
Io exp [j(wt-mp)], is defined in terms of the corre
sponding longitudinal (azimuthal) electric field
E4> as Zn = -2rrRE4>lln• Perturbation analyses9

have suggested the relation between IZn lin and the
amount of Landau damping that must be present
(e.g., from energy spread) if longitudinal stability
is to be assured.

We commence the analysis, for determination of
Zm by making a formal series development for the
steady-state electromagnetic fields associated with
a current distribution 10 b(r- R) b(z)exp [j(wt- n¢)],
subject to boundary conditions that correspond to
outgoing (or damped) waves for Iz !large and to
conducting surfaces at r = R 1N, ROUT' Radial co
ordinates can be expressed conveniently in terms of
the radius of the inner tube, so that, in these units,
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the radial interval of interest extends from unity to
f = RoL'T/ R1N and the ring beam is situated at
R = pR1N (I < p <f). The angular frequency is
w = n[3c/R = n[3c/(pR 1N ). The series development
of the electromagnetic field then employs charac
teristic functions, Rm, and characteristic values, gm'
of the Bessel equation

x~(xdd:m)+(9m2X2-n2)Rm = 0

with RmIx= I = RmIx=! = 0 for the transverse
magnetic (TM) modes-and correspondingly the
functions Sm and values hm, with S~ Ix= I =
S~ Ix =! = 0 for the transverse-electric (TE) modes. I 0

The z-dependence of the fields is contained in
factors that, for the TM modes, are circular func
tions of wt-kml z I-n¢ with

km= [(w/c)2-(gm/R IN)2F/2

and w = nW0 = n[3c/R for frequencies above cut
off, and are of the form exp( - am Iz I) times a
circular function of wt-n¢ with am = [(gm/RIN)2
(W/C)2]1/2 for frequencies below cut-off-and
similarly for the TE modes.

The azimuthal electric field is found in these
terms to be such that

! z. = 2rrZop {:z= [(n/p)2 - (9m/[3/] 1/2FTM
n m

+~ [(n/p)2-(hm/[3)2]-1/2F TE },

where Zo = ,,/po/eo = 120rr ohms, the 'coupling
factors' FTM , FTE are

and

F [S~(p)Y
TE - (Phm

2- n2)[S~(f)]2'---(-:-:-h~m2'-----n--'-2)~[Sm(1)l'

and the coefficients before these factors have the
character - j and +j respectively when the charac
teristic values gm or hm exceed n[3/p. The formal
expression written above for Z./n clearly requires
modification to take account of a non-vanishing
transverse extent of the beam and to make allow
ance for losses that will prevent the factors
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[(n/p)2_(gml[3)2]1/2 and [(n/p/-(hmf[3)2r l
:
2 from

becoming exactly zero or infinite under 'resonant"
conditions.

With respect to the first of the modification~ iust
mentioned, we may note that for a large In, a
combination of two of the terms just written will
make a contribution that can be estimated as
- j(Zo/f3',/)(I/m), a capacitive impedance by virtue
of the factor - j. Such terms, summed over large
m to a limiting value that will depend on the minor
dimensions of the ring, will provide a contribution
to Z./n of the form - j(Zo/[3y2) times a logarithmic
factor in which the minor dimensions of the ring
appear in the argument. This result is concordant
with the expected low-frequency inductive imped
ance whose dominant (logarithmic) term is given
approximately by 2rr[3cj[(Zo/2rrc) In (8R/a)] for a
circular ring of round wire (major and minor radii:
R, a), combined with the corresponding capacitive
contribution (larger, by a factor 1/[32) of opposite
sign-or (more generally) with a contribution to
Z./n of the form - j(Zo/[3y2) In (D/a), where D is
related to a major dimension of dominant impor
tance7 (such as R, A, or the spacing to the wall). In
practice, terms of high In value were diminished by a
'convergence factor' that served to suppress terms
for which mrr ~ outer tube radius/minor radius, and
the details of this procedure did not appear to affect
the results materially for parameter values of
interest in the present work.

With respect to the potentially resonant factors
[(n/p)2 - (gm/[3)2] I /2 and [(n/p)2 - (hml[3/r 1/2, for
the TM and TE modes respectively, these were
replaced by

{en!p)2 - [(1 +j/2QTM)gm/[3Y J I /2

and
{(n/p)2 _ [(I +j /2QTE)hm![3Y} - 1;2.

Such a replacement, although leading to a typical
resonant-factor behavior, perhaps can be justified
rigorously only if (i) the boundary condition at a
resistive wall can be correctly written in terms of a
surface resistance PAs as E<f>/Hz = (I +.i)~, and (ii)
the corresponding complex characteristic value
(gm or hOI) is given with sufficient accuracy by a first
order development from the case in which ~s = O.
With the exception of cases in which the quality
factors are very low (e.g., < 10), however, the
resonant factors written above are believed to be
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suitable in applications of the present work. In
performing the computations, one has the option
of either (i) computing for each n the QTM and QTE
values for the tn-value lying closest to resonance in
each case, using a specified specific volume

resistivity PI' for the tube material (~s = -!PowPv/2),
or (ii) simply specifying a single value of Q to be
used throughout (thereby permitting the user to
represent loss mechanisms deliberately introduced
into the structure).

3. EXPECTED CHARACTER OF THE
COUPLING IMPEDANCE

The selection of geometrical configurations for
which the longitudinal coupling impedance can be
expected to be favorable or unfavorable for electron
ring stability may be guided by some general
considerations. A ring beam enclosed within a
structure with highly-conducting walls potentially
can excite resonances that will lead to unacceptably
high values of the coupling impedance. Reflections
may be expected to be suppressed for certain (high
n) modes, however, if the boundary is poorly
reflecting and is situated in the radiation-field zone
for such modes-with the result that the corre
sponding impedance then should be close to that
cited for a beam in free space (Zn/n ~ 354i1

/
3 n- 2

/
3

ohms, 7 ,12,13 for n well below a critical harmonic
nurnber that is of the order of y3). 13 - 15 For lower
n, where the free-space coupling impedance would
be unacceptably high, a surface of high conductivity
close to the beam should serve to lower E", at the
beam and so act to reduce the coupling impedance
substantially if resonant responses are avoided for
such n-values.

In a computational investigation of coupling
impedance for a ring beam in the presence of one or
two co-axial tubes, it is of interest, therefore, to
include an examination of cases in which the beam
is situated only a small distance outside an inner
conducting tube, in an effort to provide coupling
impedances that for low n will be well below the
free-space values. If, with such geometry, mechani
cal considerations require the presence of an
additional tube exterior to the beam, one may
anticipate that the selection of a suitably large
radius for this outer tube will preclude the excitation
of dangerous low-order resonances. Under such

P.A. A4
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conditions, the provision of only moderate losses,
by anyone of several means at the outer radius, may
suffice to suppress adequately the contributions of
high-order (possibly resonant) TEnm modes (high
m)-for which the m-I sign reversals of E",(r)
ultimately must serve to reduce the coupling
between the electromagnetic field and a beam of
appreciable radial extent.

For purposes of comparison, there also is interest
in cases in which the beam is located just inside an
outer tube, with an inner tube either absent or
assigned a considerably smaller radius. Under
these latter circumstances the surface conductivity
of the wall should be high for the low-frequency
(low-n) modes, but the resonances that can occur
for larger values of n should be suppressed by a
deliberate reduction of the quality factor ('deQ-ing')
for high-frequency fields.

4. COMPUTATIONAL RESULTS

The possibility of attaining undesirably large
values of coupling impedance as a result of reson
ances is illustrated in Fig. I for a two-tube structure

100pOO'.....~----.,.----~-------o

10POOe-

i
o..
o
E

,('
<

N

1000

10~0-'/""'3~-----:l4:-----"";5---------;!6

Rb/Ri

FIG. I. Maximum longitudinal coupling imped
ance, divided by n, for the first 12 azimuthal modes
for coaxial copper tubes of radius ratio 6. For wall
resistivity Pt' = 1.8 X 10- 6 a-em the Q's are in the
range of 104 _lOs. Beam locations were chosen to
excite the TEn, 1 and TEn.2 resonances and to
exhibit resonant behavior.
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FIG. 2. Resonant beam radii for coaxial tubes with radius ratio 6. For a given n the TEnm and TMnm resonances
alternate, with m increasing to the left.

with a radius ratio 1 : 6 and high values of Q which
would be appropriate for tubes constructed of a
good conductor such as copper. By reference to a
mode chart (Fig. 2) that shows the beam radii for
resonant excitation of the wave-guide modes in such
a geometry (with fJ = vIc = 0'999703), it is evident
that the largest value of I2 nlIn occurs when the
beam is located so as to excite the TE1,1 resonance,
the second highest value corresponds to excitation
of the TEl,1 mode, etc" with the low-n TEn,1 modes
dominating the coupling impedance in the region
where the TEn,1 modes are excited-that is, from
approximately midgap to the outer wall. The TEn,1
modes are distinctive 15-and can be particularly
troublesome-because the associated £",(r)-field
experiences no sign reversal. The TE1,1 resonant
beam radius for the case of a single tube is
R B ~ fJRouT/l.8412 and the corresponding resonant
radius for a pair of tubes whose radius ratio does
not greatly exceed unity is close to RB ~

f3(R 1N +RouT)/2, while the resonant radii for other
TEn,! modes will be progressively larger. The
existence of these potentially-resonant modes thus
deserves recognition when considering operation
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with the ring beam fairly close to an outer cylindrical
wall.

The curves of Fig. 3 again indicate the behavior
of 2 1 vs. RB for RouTIRIN = 6, and illustrate the
influence of the quality factor Q. One notes that. as
expected, for Q sufficiently large,

(i) For W < wresonant [p > nf3/(characteristic
value, h)]

2n.Rcal is relatively small (in comparison to
2 n,Imag) and is approximately proportional to 1/Q
(as may be interpreted as due to wall resistance
acting on image currents), while 2 n,lmag. is rather
insensitive to Q;

(ii) For W = wresonant

2n.Real ~ I2 n,lmag.l, each assuming large values
rxJQ;

(iii) For W > wresonant

2 n,Real is large (in comparison to 2n.lmag) and is
rather insensitive to Q-corresponding to power
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with a moderate value of Q and situating the beam
close to an inner tube (so that excitation of low
order resonances is precluded), or (ii) by operating
with the beam close to an outer tube, with Q
deliberately caused to decrease at the higher
frequencies in order to reduce the extent to which
the higher-order resonances can be excited. In
performing computations pertaining to this latter
type of operation, the computations (with selected
Q values) were extended to sufficiently large values
of n that IZn lin appeared to have become distinctly
a monotonically decreasing function of n that
essentially merged into the free-space curve for this
quantity. Two illustrative examples of the compu
tational results for the two cases described are
shown in Figs. 5 and 6.

It will be recognized that, in the selection of
parameters for an electron-ring device, a decision
to operate with a ring situated close to a conducting
tube necessarily restricts the amount of energy
spread (arid attendant radial spread) that can be
present and that also could act to suppress the

Inner tube

2nd TE resonance ~

FIG. 3. Longitudinal coupling impedance for n= I,
for coaxial tubes with a radius ratio of 6. For this
case, )' = 41, and the minor dimensions a and b
are 0.02 R inn.,.

0.5

1.0

'".::
·u
o
a.
o

U

<> 100.0
""0

.E

'" 10.0::

radiated down the tubes (and ultimately absorbed,
remotely, in the tube walls or emerging from the
ends).

The curves of Fig. 4 depict the results ofcomputa
tions intended to indicate how (I Zn !/n)ma. can be
held to reasonably low values either (i) by operating

FIG. 4. Maximum longitudinal coupling imped
ance divided by n. A-Beam located close to an
outer wall at 4 em and Q(n) adjusted to minimize
IZnl nt. B-Beam located between two walls at
3 em and 4 em and Q(n) adjusted to minimize; Znln .
C-Beam located close to an inner wall at 3 em and
Q made high for all n.

5-79
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longitudinal instability. As a guide for finding
suitable parameters, therefore, it is convenient to
have at hand a simple relationship that relates
(I Zn lin) max to the 'clearance' throughout the
range of possible practical interest for these par
ameters. The results shown in Fig. 4 for a beam
situated at a small distance outside an inner con
ducting tube suggest that with reasonable accuracy
one may write (IZn!ln)max8;'300(RB-R,N)IR,N
ohms, for R1N/30 ~ R B - R1N ~ R 1N /3, under these
circumstances. Thus, with (RB-R,N)IR,N = 0.2
that should provide sufficient clearance for a beam
with a radial spread arising from !lEIE <: 10 per
cent (full width at half maximum)-we should
expect to achieve a longitudinal coupling impedance
such that IZn lin 8;' 60 ohms. The results shown
in Fig. 4 are quite insensitive to 'Y, decreasing
typically by about 2 per cent when ';I is increased

III

E
.&;
o

~
co

N

10

oo!<--1:±o,.----;::!2o~----:3-:-0:-----::40;;;------;5~0,.---;::-;!60

n

FIG. 5. Typicalcurves of ;Zn/n: versus n for a beam
radius Rb = 3.4 em near an inner tube at 3 em and
an outer tube at 27 em, with Q as a parameter.
)' = 41 and the minor dimensions a and b are I mm.
At this radius, resonant behavior (due to the
presence of the outer tube) is seen to be developing
at n ~ 27, whereas the iZnln 1m.. of the first peak is
at n ~ 10. For min: Zn/n! for all n at this radius, Q
should decrease from,." 1000 at n~ 10 to ,." 30 at
n ~ 27. iZnlnim.. for this case was taken as 40Q in
the construction of curve C in Fig. 4.
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FIG. 6. Typical curves of Zn/n! versus n for a beam
radius Rb = 3.6 cm near an outer tube at 4 em, and
an inner tube at 0.444 em, with Q as a parameter.
The clearance to the wall, 4 mm, is the same as in
Fig. 5, )' = 41, and the minor dimensions a and b
are I mm. At this radius, resonant behavior is seen
at n = 20, therefore minimuml Zn/n: for all n would
be obtained by switching from high Q to low Q at
n ~ 13. !Zn/n ;max for this case was taken as 60 Q in
the construction of curve A in Fig. 4.

from 20 to 82. The minor dimensions of the beam
have a larger effect on Znln than the 'Y dependence,
because the self field term and the term due to
excitation of high m modes decrease as the beam
minor dimensions are increased. The curve C in
Fig. 4 is moved approximately 0.05 cm to the left as
the minor dimensions are decreased from 0.1 cm to
0.05 cm, and approximately 0.15 cm to the right as
the minor dimensions are increased to 0.2 cm, for a
< 10 per cent change of IZn lin in the region around
60 Q. At much greater spacings from the inner
tube the dependence of IZn lin on the minor dimen
sions becomes negligible because of the dominance
of the low nand m modes.

5. CONCLUSIONS

An examination of the longitudinal coupling
impedance that can be attained for a ring beam
between a pair of co-axial conducting tubes has
indicated that low values of IZn lin may be con
veniently attained by situating the beam a small
distance outside an inner conducting tube. If,
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alternatively, the beam is close to an outer tube,
similar results may be obtained if the quality
factors for higher multiples of the circulating
frequency are reduced so as to suppress potentially
resonant fields. For an electron beam with y = 41
and a 3.5-cm orbit radius surrounding a tube of
radius 2.9 or 3.2 em, it should be possible in this
way to achieve values of <I Zn I/n)max that are
approximately 62 or 28 ohms, respectively.
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AN ESTIMATE OF LIMITS TO THE LONGITUDINAL COUPLING IMPEDANCE

A. Faltens and L.J. Laslett

Lawrence Berkeley Laboratory

Various simple models of structures in a storage ring and

their contributions to the longitudinal coupling impedance are

considered in an attempt to focus attention on possible problem

areas and their solutions. In all cases emphasis is placed on

the physical mechanism which is the source of the undesirable

impedance. None of the mechanisms or structures considered pre

vent the attainment of a low Iz Inl, of the order of 10, if suf-
n

ficient care is taken over the frequency range from 0.1 ~lliz to

about 10 GHz.
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corresponding limits for ISABELLE are less than 10. Also, as in

recent results from CERN, it was found that stability was deter

mined by the instantaneous local energy spread in a beam filament.

Multiturn injection of a beam with an instantaneous energy spread

plus an energy ramp in time gave the same high-frequency thresholds

as injection without the ramp, thereby imposing more stringent

limits on allowable coupling impedances.

Before considering the effects of boxes and bends in the

vacuum chamber, it may be appropriate to ask why a metallic

vacuum chamber is necessary. The coupling impedance of a COm

pletely unshielded beam in free space may be obtained from syn

chrotron radiation results. The power radiated by an electron

in a circular orbit, as derived by J. Schwinger,3 is:

for w < < wi' independently of particle energy and thereforecr t
presumably the type of particle, and,

W (2". times the revolution frequency), and w " =
o 2 3 cr~t

(E/mc ) , or in our notation the harmonic number of

frequency is n "t ~ (3/2) y3.
cr~

(
. \1/2 -w/w . [ 55w' t ]__~w~\ e cr~t 1 + cr~ +

) )( 72 •••wcrit w

P (w, t)

the

( W )1/3
\2w. + .. J

cr~t

Wo ) x
wcrit

(
--.!!:!....)1/3[ r (f.\

W 1 - _3)
o -

( ;". )1/2:2 (~:2Y (3
4

31/6r(~)e2

".R
P (w,t)

for w > >

(3/2) w
o

critical

The various results and views in this note evolved mainly

during the time of the Berkeley Electron Ring Accelerator project,

in which a substantial effort was devoted to calculating, esti

mating, and measuring the properties of various beam-surrounding

geometries which would simultaneously satisfy longitudinal and

transverse stability requirements, and allow penetration of slow

ly increasing magnetic guide fields and fast inflection fields.

Initially, interest centered on the low harmonic "inductive wall"

effects, and later shifted to the microwave frequency region. It

was shown that there are practical limits to attainable impedances,

with the longitudinal impedance being the limiting one, with the

limits manifesting themselves in the frequency region where free

space wavelength and chamber dimensions are comparable. A value

of Iz Inl of about 300 was the lowest which might be attained in

the g~ometries considered for electron ring accelerators. 1,2The
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A. Faltens, G.R. Lambertson, J.M. Peterson, J.B. Rechen
Proc. IXth Int. Conf. on High Energy Accelerators, 1974,
p. 226.
A. Faltens and L.J. Laslett, Particle Accelerators 4, 151,
lY73. -

3. J. Schwinger, Phys. Rev. Zl, 1912 (1949).
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In the nonphysical model of a perfectly smooth pipe bent

into a circle, there will be resonances which for an aluminum

wall could have high Q values, leading to higher coupling imped

ances than the free space values if the beam is able to excite

them. Analogous problems using the eigenfunctions of a pill box

cavity, coaxial cylinders, or a single cylinder showed that reso

nance that could be excited by a beam would occur at harmonic

numbers n where

489
radius pipe of 2960 meter circumference is n ~ 2960/A ~ 28 325,• co co
at which harmonic the Iz Inl of free space has dropped to about

n
0.380. Right at cutoff the impedance of the idealized smooth

pipe is much less than this, but eventually, with increasing

frequency many modes will propagate and the impedance should

approach the free space values. The question regarding the beam

pipe is: '~t what frequency will it give behavior similar to

free space, that is, for which wavelengths will the changes in

pipe direction, wall losses, imperfections, clearing electrodes,

etc. destroy the coherence of the radiated- waves and scatter

them randomly into the chamber until their energy is dissipated?"

A reasonable estimate for this wavelength is about a centimeter,

for which Iz Inl ~ 0.1 O. Taking into account the local curva-
n

ture of the particles only in the magnets, n
crit

~ 105 at injec-

tion and ~ 3 X 107 at final energy, so we are interested in wave

lengths down to centimeters and microns respectively.

In L< - j40na -

354 n-2/3(~ + j t).Z
n
n

amplitude,
2

p = I
n n4result:

Zn ~ _ (jZ ley2)
n 0

The power raditated at any harmonic, n, may be related to
thand the n harmon-the real part of the coupling impedance, R ,

n
I , of a 5-function charge travel

n
R 12. Inclusion of the reactive

n

ic current Fourier

ing in a circle as

terms leads to the

One shielding geometry of interest is a metallic pipe sur

rounding the beam. Such a pipe is an effective shield for wave

lengths longer than its waveguide-cutoff wavelength, which for a

circular pipe is given by

obtained by using the static inductance and capacity of a beam,

and also greater than the tolerable impedance for ISABELLE. S The

beam must, therefore, be shielded to suppress the low-harmonic

radiation.

At very low harmonics, the more precise result is ~bout 10%

smaller, about 3200 for n = 1, but very much larger than the "long
wavelength limit",

VI
I

00
A

A. co
2rra

2.405
for TM or E-type waves. r beam I

eRouter wall I + 0.80862n-2/3 '
The harmonic number at which propagation begins for a 4 cm

4.

5.

A.G. Bonch-Osmolovsky, P9-63l8, J.I.N.R., Dubna, 1972.
W. Schnell, "Stacking & Acceleration", Summary Report of
Working Group, Vol. I, p. 126.

where the required slowing of the phase velocity of the wave may

be thought of as arising from the wave traveling at a slightly

larger radius than the beam. In a straight,_ smooth pipe this

synchronism does not occur because the phase velocity of any
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mode is always greater than c, and the beam in vacuum will al-

ways travel at less than the velocity of light. The waves of

course can be slowed down by loading of various types, and in

ISABELLE this will undoubtedly be more important than the curva

ture effects, but the point is that even with smooth walls reso

nant effects may occur for n ~ 106 at high y.

One such "smooth wall" resonance is illustrated in the Appen

dix, where the properties of an 8 cm X 8 cm square cross sectioned

aluminum chamber of 2960 meter circumference have been computed.

The results of this computation are that a beam of y = 200 will

resonate at harmonic numbers of about 2.5 X 106 with modes having

a Q '" 3 X 105. Fortunately, the Iz In\ of these modes is only
n

0.20, or about a factor of 10 above what radiation into space

would give at that frequency, and no resonances at all are ex

cited at the injection energy.

Returning to the real geometry of a beam pipe with bends,

discontinuities, etc., resonances may be expected at the cutoff

harmonic, n and even lower if resonant structures are intro-
co

duced into the chamber. A rule of thumb for attainable cavity

impedances is: R ~~f (MHz)' M O/meter. The maximum useful

length for a cavity is i ~ A/2 before transit time effects start

to decrease R; if the cavity length is much longer than A/2, the

net interaction with a beam is due to a length of A/2 or less,

with the remainder of the length acting as a load on the cavity.

Combining the above yields an estimate for single, simple cavi

ties of:

UI
I

QCI
UI

R
n

n
:$: 4.7 X 10

8 (2~) -3/2
n
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diameter pipe inserted in the standard 8 cm pipe in order to join

beam pipes and provide a space for clearing electrodes and moni

tors (Fig. 1). The R /n for such an empty cavity could be as
n

high as 500. If this structure is complicated by insertion of

clearing electrodes suspended at their midpoints, then this object

is expected to resonate in a lower Q, half-wave TEM mode, coupling

to the beam with the longitudinal fringing fields at its ends.

Capacitive bypassing of such a clearing electrode is unattractive

because a very large capacity, C '" 400 ~, is required for the

L ~ 12nH inductances which are to be bypassed. A well conduct

ing clearing electrode at a 4 cm radius and", 30 cm long will reso

nate near n = 4500 with a Q of '" 3000, and also produce an R In
n

of a few tens of ohms. By contrast, the contribution to Z In
n

from inductive wall effects is almost negligible. At low frequen-

cies, the "inductance" of the empty box is due to the capacity of

the fringing fields at the corners, which is effective over a dis

tance comparable to the step size, Ii ~ b - a. The "inductance'"

of the box with clearing electrodes is approximately the induct

ance of the electrostatically shielded volume between the clear

ing electrode and the chamber outer wall. The impedances may be

estimated as:

z . .
n J~owo ( b) ( ) JWo~o ( b) ( );;- ~ --z:;- in; b-a ~ j 0.00 ill ,and --z:;- .tn; .t ~ j 0.01530

respectively. The impedance due to the use of bellows for the

outer wall certainly is small compared to the latter value, but

could be reduced by bridging the bellow convolutions with longi

tudinally conducting strips of metaL The precise value of the
6low-n (z In) may be measured.

n

As an example of the sort of structure which should be

avoided or modified, we consider a 30 cm long section of 12 cm 6. A. Faltens, E.C. Hartwig, D. Mohl, and A.M. Sessler, 8th
Int. Conf. on High Energy Accelerators, 1971, p. 338



After the obvious resonant structures are eliminated or

otherwise made harmless, the beam pipe is still left with bends

and other discontinuities. If no lossy materials are introduced

at the discontinuities, then each junction simply transmits and

reflects the incident waves, making each section of beam pipe

no worse than an approximately 5 meter long cavity, for which a

resonance at n ~n is expected with an R In ~~. A longco n
structure such as this poses questions which can only be answer-

ed statistically: will one of the cavity resonances fall exactly

on some beam harmonic; what will be the transit time factor; and

how many cavities will be resonant at the same frequency? Taking

the worst case limit.for each would make Z In ~ 500 for an esti-
n

mated total of 500 beam pipe sections. The Z of an n = 28 000

resonance can be expected to be less than 30 000, so the proba

bility of some harmonic hitting it is essentially 1. The trans

it time factor as used here oscillates as sin
2 (TT1,/~) with increas

ing cavity length, giving an expected value of 1/2. Simultaneous

resonance of many sections is more likely at the cutoff frequency

than at higher frequencies, therefore the potential problem is

serious. However, the problem is easily overcome as only a small

amount of loss, attainable by numerous means, will lower the Q's

sufficiently to make the impedance very low. If the de-Qing is

very successful, then the coupling impedance will approach the

free space limits again, as any radiated energy from the beam

would be absorbed. As the problem area is right around the cut-

~~j: : :C~~ 0

Z ~ 170 ,

As an example, for a = 3 em, b = 4 em.

Zo b
- 1,n 
2TT aZ

and only one such obstacle would be effective per beam pipe

junction. The total impedance for wavelengths of 1 em or less,

for which the above mechanism might apply is ~ 8.5 kG, and

In the frequency region far abov.e cutoff, that is, where modes

are simultaneously propagating, the quality factors of individual

resonances will be smaller than perhaps expected because any dis

continuity, unless it is specially designed to counteract the ef

fect, will scatter energy into other propagating moqes. Likewise,

the Q's of single resonators may be expected to be high only for

frequencies below the cutoff frequency of the beam pipe. At

these very high frequencies and at high y the beam fields tra-

vel essentially as plane waves, parallel to the beam, with near

ly identical fields to the fields of a TEM wave in a coaxial

transmission line, and their scattering at obstacles may be esti

mated geometrically. Given a beam incident upon a number of ob

stacles, the reflection of the fields at the first obstacle will

be higher than at subsequent ones because of the time required to

re-establish the fields. In the rest frame of the particle the

fields would be re-established with a transverse speed of c or

less, which in the laboratory frame would be Vt~ ely. The impe

dance of an isolated obstacle in the shape of a concentric disc

with inner and outer radii a and b, respectively, based on the

above considerations is:

493

off frequency region, the \Z Inl thus would tend towards 0.380,
n

perhaps enhanced by a small factor due to weak resonances remain-

ing after de-Qing.

BOX WITH
ELECTRODES

( b) JUNCTION
CLEARING

Fig. 1

(a) JUNCTION BOX

I--- 30 em -----t

~~=l 12:cm m~~
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SINGLE CAVITY RESONANCES
an- 3/2

the heavy line, and stay below 10 for all frequencies except
tA
I the first two harmonics. On the other hand, any resonant object 10300
~

in a wide frequency band is potentially very harmful and should 10° 101

be avoided. The graph was constructed to show the large possible
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The preceding limits and the harmonic range over which they

are important may be all combined on one graph (Fig. 2). Some

specific items such as rf cavities and kicker magnets have been

excluded here because they are treated separately elsewhere fnd

because their impedances can be made small. The expected Iz Inl
n

curve, after elimination of low frequency resonances and diminu-

tion of wall inductances due to discontinuities, should follow

the injection energy.

The ordinary skin resistance contributes a term Z In =
n

(l+j) Iw ~72n (tI2na), which is important only at low harmonics,
o

with a peak magnitude of 1.70, and decreasing as n-
1/2 . A small

amount of wall impedance, of the order of jlO, is desirable to

offset the space charge term Z In ~ jZ ISy2 (£n b/w ~ - jlO at
n 0

494
z In ~ 0.0280, and therefore no suprises or high impedances are

n
expected for very high frequencies (n> 105).

variation of coupling impedance. The single cavity approximation

assumes only one cavity in the ring at any harmonic, and the pres

ence of harmful low-harmonic resonances is unlikely in any event.

The value of Z In for vacuum chamber resonances is an estimate for
n

the worst case of ~ 500 sections acting similarly.

Fig. 2. Estimate of Coupling Impedance Limits

The general recipe for obtaining low Iz Inl for all n is
n

therefore to shield the beam with a nearby good conductor to de-

crease the low harmonic free space impedance. The shielding geo

metry will in most practical cases introduce resonances at higher

frequencies, and at that point it is beneficial to provide attenu

ation, which, in the limit of sufficient attenuation at high fre

quencies will make the impedance approach the free space values

(see Ref. 2 for some computed examples). There is a trade-off

between low-n and high-n Iz Inl's, as measures taken to move the
n
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resonant behavior to higher frequencies by decreasing the shield-

ing pipe diameter tend to increase the very low harmonic surface

impedance. For the parameters of interest to ISABELLE, a maximum

Iz Inl of the order of 10 is estimated to be possible for all n.
n
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APPENDIX

Coupling Impedance Contribution From the Electromagnetic

Modes of a Toroidal Vacuum Chamber

The electromagnetic modes of a number of structures such as

cylinders, pillbox cavities, and toroidal vacuum chambers may

couple resonantly with an azimuthal current and produce a contri

bution to the longitudinal coupling impedance. The effect of

such modes is computed for a toroidal aluminum vacuum chamber of

square cross section of 8 cm X 8 cm and major radius of 471

meters such as might approximate the ISABELLE vacuum chamber if

it were smoothly bent in a circle. Resonant behavior is exhibit

ed only for y > y .. , and a contrib4tion to Z In of 0.20 is com-
~nJ n

puted for y = 200.

The solution of the electromagnetic modes for the geometry:

Z
I
I

is described by Laslet~ and Lewish. 7

R=a

x=-l o

R=b

x=1

The solution for the TE fields at high azimuthal harmonic

numbers is depicted in Fig. A-I, where the functions Z and Z' ,

which are proportional to the Band E fields, are plotted across

the normalized chamber radius, x. A beam located in the chamber

midplane has a peak normalized coupling impedance on resonance of

7. L.J. Laslett and W. Lewish, Iowa State Report IS-189, 1960.
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Z & Z' functions vs normalized chamber radius for n = 2.47 X 10
6

,
~ = 8.49 X 10-5 , ~ = (b-a)/(b+a), and square chamber cross section.

I r=a r=b

EJ----j .-e--

A handier version of this formula, in terms of the chamber Q is:

~
b+a

(
dZJ2

dX/beam

TTH ' and Tl

+ li { n
2

(Z2outer + Z2inner ')
4 <R> 1 + 'T]x 1 + 'T]x.

o 1
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2
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2
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"dZ)2411Z Q x (dx beam!3:.=
0

n 2 H < R >2T]3 Jl(1+11x )Z2dxnq
-1

Either formula, evaluated at the first resonance, which occurs
6 .

for n =2.5 X 10 for a beam at the center with y =200, re-

sults in a value of(R I~ ~ 0.20. The resonant radii for success-. n

ive azimuthal resonances in this region are spaced by only 16

nanometers, which in combination with the high QI S of these

resonances (> 105) may warrant reexamination of the usual re

lations between the peak value Iz /nl and longitudinal stability.
n
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TRANSPORT OF INTENSE ION BEAMS*

G. Lambertson, L.J. Laslett, L. Smith

Lawrence Berkeley Laboratory
University of California

Berkeley, Calfornia 94720

(1)

Summary

The possibility of using intense bursts of heavy
ions to initiate an inertially confined fusion reaction
has stimulated interest in the transport of intense un
neutralized heavy ion beams by quadrupole or solenoid
systems. We have examined this problem in some detail,
using numerical integration of the coupled envelope
equations for the quadrupole case. The general rela
tions which emerge are used to develop examples of high
energy transport systems and as a basis for discussing
the limitations imposed by a transport system on achiev
able intensities for initial acceleration.

Solution of the Envelope Equations

The envelope equations of Kapchinskij and Vladimir
skij (KV) are1).

d
2
ax = _) e;2 il~ 1

ds2 Kx(s ax + 132 2 3 +ul\ ~1333 a+a
y ax y x y

d2a e;2 il Nr 1
~ = - Ky(s)ay + 2 2 3 + A n a+a '

ds 13 y ay 13 y x y

where ax = beam half-width, height; ne; = normalized
emittance'~n either plane, q and A are the ion charge
state and atomic weight, N is the number of particles
per unit length, rp is the classical proton radius and

'S<,y = ! ~~H) for quadrupoles

=1[Bs (S)1
2

for s~lenoids (in a frame
4 IBPrj rotatlng at the Larmor

frequency) .

If K(s) is a step-wise function of s, of constant mag
nitude or zero, Eqns. (1) can be put into dimension
less form by setting

s = K- l/ 2e and a = K- l / 4e;1/2(l3y)-1/2u:

d2u-:T = - Sx(e)ux + -\ + u:2u
de Ux x y

(2)

2 Nr
where Q =~ 2 ~72 and S(e) is a step function

Bye;K
of unit amplitude. If S(e) is periodic, the necessary
aperture and the current for a matched beam can be
expressed as functions of Q. For quadrupoles,

* Work supported by the U.S. Energy Research and
Development Administration.

(3 )

[~lKSA uni ts]

5/6 (Gl c
2
)1/6

C2 =! (~:) ~ = 3.66 x 10
6

B
BQ and a are defined by K= [BP~a' and um is the
maximun value of Ux y for the periodic solution of
Eqns. (2). BQ is in Teslas, a and e; in meters and I
in electrical amperes.

For a continuous solenoid, let u~ = uy = u, a con
stant for a matched beam. Equations (2) yle1d the re1a-'
tion Q = 2(u2 - 1/u2), from which one obtains:

A)1/2 -1/2 1/2
a=c3 (Q Bs e; u (4)

I = C4Bs (l3y)e;(u
2-7) = C:~ (tl (I3Y)B/a

2
(1- u~)

(
2m C)1/2

where C3 = 7- = 2.50188

C4 =!(~:) = 2.5 x 10
6

.

Q, or the corresponding um or u, can be regarded as
a free parameter measuring the influence of the space
charge force on particle motion. In the quadrupole
case the relation between Q and Urn depends on the
lattice structure. It is convenient to use the phase

advance per period, \.l = J d: = J de 2 =J de 2 ' as the
Ux uy

space charge parameter, since it has a more immediate
physical sign~ficance t~an Qor um' In Fig. 1 is
plotted Q/um and um4/ for a FOOD lattice with equal
drift and magnet lengths and a phase advance per period
of 1200 at zero intensity. It is evident from the
figure and from the foro of Eqns. (4) for the
solenoid case that, on the basis of these simple consi
derations, there is no limit to the current which can
be transported, provided that the aperture can be made
large enough and the variation in individual particle
motion with intensity is tolerable.

6-1



TABLE I

Examples of High Energy Transport

Ion Type +1 +1U238 1127
Energy (GeV) 100 40 40 10

Ipeak(kA) 3.0 1. 25 7.5 5

£(10-5 m-radians) 4.0 1.8 3.0 1.6

BQ(T) 3 3

a (em) 4.2 3.0 2.1 2.6

I1ldeg) 107 100 92 44

n .95 .92 .89 .67

1/2(m c
2

)1/2where C ,,_1_141T) ...2..:- = 1. 9 x 106
5 16 \110 r p

Eqns. (4) then demand very high fields and large aper
tures.

Transport at Low Energy

Equations (3) and (4) indicate that particle current
must be much reduced at lower energy. Hence, to provide
a final high current, the accelerator system is required
to build up the current by orders of magnitude by some
combination of stacking in transverse space and longi
tudinal compression.

Additional considerations will affect the applica
tion of Eqns. (3) and (4). We assume that there is no
need to transport a reduced current as well as the
highest current through the same system, or equivalent
ly, that the lower current portion may have a lower
emittance. This would then permit the zero-intensity
phase shift 110 to approach the pass-band limit of 1800

and 11 to be made as small as allowed by the aperture or
other considerations. However, a strong field BQ may
result in quadrupole lengths and drift lengths tnat are
too short, relative to the aperture, to permit fields
that are reasonably linear and defined in length (as
was assumed in the analysis). For the strong quadru
pole case, then, we introduce the additional require
ment that the ratio of aperture radius to quadrupole
length not exceed a limiting value R and this results
in the following limit on particle current in the FODO
lattice with equal drift and quadrupole lengths:

and 28 is the cell length in the scaled variable, 8.

The quantity e2
~ will depend on the phase ad
um

vances, but has a maximum value close to unity.
Two other limitations should be kept in mind. First,

the electrostatic potential in the beam can become com
parable to the kinetic energy and, second, if Bs or BQ
approaches ~, ions entering a lens at radius a,
will be turned back at low intensity for a quadrupole
and at any intensity for a solenoid. Both potentia1/
kinetic energy and Ba/2[Bp] must be much less than
unity for the paraxial ray approximation used in this
paper to be valid.

For a numerical example, we consider a beam of
U+~ at a kinetic energy of 1.0 MeV and the same nor
m&f~zed emittance as the 100-GeV example of Table I.
With a strong BQ and no restriction on R, the first
column of Table II shows that a current of 4.65 amperes
can be transported by the FODO system. Restricting R
to about 0.5 reduces the current to 1.0 ampere (column
2); with reduced BQ' a better compromise is found at
2.42 ampere in column 3 but with somewhat larger aper
ture rouQh1y proportional to the ratio I/Bo in consis
ten2y with Eqns. (3) and the approximate canstancy of
Q/um·

o

10
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Transport at High Energy

As an application of these equations, we consider
a situation in which a beam is extracted from an accel
erator, passed through a buncher and allowed to drift
some distance to shorten the pulse and increase the
current to meet the targeting requirements. It is
assumed that the rate of increase of current with dis
tance is sufficiently slow that the transverse motion
will adjust itself adiabatically to the matched condi
tions if it is matched at the entrance to the channel,
where the current is low. We further assume that the
elements at the end which focus the beam onto the pellet
are adjusted to accept the phase-space configuration of
the peak of the current pulse, which requires that there
be a substantial overlap of the phase space ellipses for
peak and lower intensities. The quantity, n, also shown
in Figure 1, is the fraction of the zero intensity phase
space area lying inside the higher intensity ellipse,
assuming an emittance independent of intensity. It can
be seen that requiring n to be larger than, say, 50%
sets a definite limit on peak current for a given quad
rupole field. Table I gives four examples: e2ergy, peak
current and emittance are

1
target requirements, BQ was

chosen arbitrarily for U~38 and as high as seemed real
istic for It~7 because of the constraint on n.

Solenoid focusing does not look favorable for the
cases considered. It is not difficult to show that

4 -1 u-1 2 f 5n = 1 - TI tan u+r' whence u < .5 or n > • O.

2

6-2



TABLE II

Ion Type +1U238
Energy (MeV) 1.0

E(10- 5 m-radian) 4.0

BQ(tes1a) 3.0 3.0 1.5

R 0.68 0.52 0.50

I (Ampere) 4.65 1.0 2.42

a (em) 41.4 21. 5 45.0

]10 (deg) 160.0 120.0 160.0

]1 (deg) 35.3 87.7 44.7

. At th~s energy! the solenoid becomes comparable
ln effectlveness wlth quadrupoles. A choice between
the two will depend on special features of the trans
port problem to be solved.

Critique of the Envelope Equation Approach

Although the phase-space distribution underlying
the KV envelope equations is not very realistic. the
results are known to provide a useful guide for moder
ate intensities. However. since we are interested in
understanding beam behavior under extreme space charge
conditions. we have investigated a number of effects
not described by Egns. (1).

a) Incoherent image forces should be taken into
account in any case other than that of a round beam in
a round pipe. since both economic and focusing field
strength limitations demand that these beams substan
tially fill the vacuum channel. A simple. if somewhat
academic. test can be made by assuming an elliptical
chamber, confocal with an elliptical be~m; in this
situation.the image forces are linear. 3) but change
the functlona1 form of the space charge terms in Eqns.
(1). It was found that even if the chamber coincides
everywhere with the beam edge. the relations described
by Fig. (1) change very little. In the more realistic
case of an elliptical beam in a round pipe. we have
found by numerical computation that the non-linear
part of the image fields is small compared to non
linear fields due to a degree of non-uniformity one
might reasonably expect in the charge distribution.

Coherent image forces. which attract the beam to
the enclosing pipe. come into play if the beam is
steered improperly or is deflected by a lens placement
error. We find that a coherent motion of the beam is
stable. but with a reduction in phase advance compar
able to the reduction in the incoherent motion.

b) For a round beam. born in a field free region
but uransported by a continuous solenoid. there exists
an infinity of stationary self-consistent phase space
distributions in addition to the KV distribution. We
have examined a broade~ class of these distributions
than in previous work4J and find that in all cases the
spati~l distribution tends toward uniformity with in
creaslng current. although the individual particle
motion becomes highly non-linear except for the KV dis
tribution. Moreover. the dependence of current and a
~erture on A/q, Bs. By and E is as given in Eqns. (4).
lndependent of the form of the distribution function
in the high-intensity limit. It is not clear to us.
however. whether any of the distributions examined
offers a better description of a real beam than the

3
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KV distribution. It is known that a large sub-class
of these distributions 1s stable for small perturbation
of initial conditions. 5} but we found that the KV dis
tribution is unstable. with a threshold in current,
fOi a large number of modes (see also Ref. 4). The
lowest threshold occurs at u = 1.6. which would imply
that Eqns. (4) have a very limited range of validity.
On the other hand. the KV distribution has special
mathematical properties and we prefer to believe that
Eqns. (4) are probably qual itatively correct for more
realistic distributions which are probably stable.

c) Since the Hamiltonian is not a constant of the
motion for a quadrupole transport line. it is not
P?ssible to construct stationary (i.e .• periodic) solu
tlons by the technique outlined in the previous para
graph. As a partial step away from the KV distribution
we examined a "self-inconsistent" problem by tracing
individual particle trajectories in a field with a
linear part generated by the periodic solution of the
envelope equation, plus cubic terms appropriate to a
parabolic density profile of the same outer dimensions.
For intensities such that ].l is less than ~20°. we find
a large growth in amplitude of some particles and the
development of an island structure in their phase
space. indicative of resonant behavior in the periodic
non-linear field. We are thereby led to suspect that
a quadrupole transport system may be subject to un
stable behavior at high intensity.
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LONG-TERM STABILITY FOR PARTICLE ORBITS

This report contains the lecture delivered by Dr. L. J. Laslett

at a one-day conference on The Mathematical and Computational

Aspects of Accelerator Design, and a discussion by Dr. J. Moser

of some of the points raised by Dr. Laslett. Two appendices

contain some further comments by Dr. Laslett and Dr. E. McMillan.

In addition to the talks reported here, the Conference also

heard a report by Dr. G. Parzen on the iterative techniques

used to calculate the eigenfrequencies in recent cavities in

connection with linear accelerator design. He reported on the

difficulties caused by shapes that consist of two nearly dis-

connected domains of unequal size, and of methods for over

coming these difficulties. Dr. Symon reportedl on non-linear

resonance phenomena due to the coupling of two particles, and

Dr. E. Courant reported 2 on the effect of coupling in many

particles. Dr. A. Garren described some sophisticated features

of automation in codes used in accelerator design.

We thank all participants of the Conference for their

contribution, and hope that this report will stimulate mathemati

cians to concern themselves with aspects of long-range stability.

1 See H. Meier and K. R. Symon, "Analytical and Computational
Studies on the Interaction of a Sum and a Difference Resonance,"
Proc. of the Intern. Conf. on High-Energy Accelerators and

Instrumentation - CERN 1959
2 See E. D. Courant and A. M. Sessler, "Transverse Coherent

Resistive Instabilities of Azimuthally Bunched Beams in

Particle Accelerators," The Review of Scientific Instruments,

Vol. 37, No. 11, 1579-1588, Nov., 1966.
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LONG-TERM STABILITY FOR PARTICLE ORBITS

*L. Jackson Laslett

The three accelerator papers on the program for this

afternoon will be concerned with types of dynamical problems

that arise in the study of particle accelerators, although

the same mathematical problems may well arise also in other

contexts. The accelerators with which we are concerned

presumably will be of the "alternating-gradient" type, in

which -- for very good reasons -- the functional character

of the focusing force experienced by an individua1 disp1aced

particle changes periodica1ly as the particle proceeds on its

way. Dr. Symon will review some of the quite striking effects

that can develop from "coupling resonances," when the equations

of motion are non-1inear, and Dr. Courant will summarize the

comp1ications that deve10p with beam intensities sufficiently

great that inter-particle forces must be considered.

My own paper is intended to report results on some

computer experiments that I had hoped might cast light on

the question of long-term stability -- specifically, in my

work, for motion with only one spatial degree of freedom.

For most accelerator projects this question may not be one

of as immediate importance as the questions to be discussed

by my colleagues this afternoon, but the answers cou1d be

vital for the proton storage-ring devices now being considered

* Lawrence Radiation Laboratory, University of California,
Berkeley, California
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or under construction. The general problem appears to be a

very interesting and quite difficult one, and I would look

forward to comments from our mathematician friends concerning

what one can say at this time in simple terms with respect

to this problem.

Thus, for my own part, I would like this afternoon to

call to your attention this question of long-term stability

and report on a few elementary computational experiments that

I performed last summer for my own orientation and amusement.

As for motivation, the first Figure indicates some of the

numbers that may be relevant for characterizing modern

accelerators with respect to the interval over which one would

wish them to exhibit stability of the particle motion. We

note in particular that a representative particle may be called

upon to traverse some 107 periods of the alternating-gradient

(A-G) focusing structure. These parameters are indeed

essentially the same as the number of oscillations or periods

successfully experienced by the beams of existing high-energy

synchrotrons, and so we have the opportunity of concluding from

experience that treacherous long-term instabilities need not

be troublesome in a conventional A-G design.
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PRESENT AND FUTURE A-G SYNCHROTRONS

Oscillation Wavelength:One to Several Hundred Meters

Period of Structure:

Time Interval:

10 to 100 m.

'V 1 sec.

No. of Periods Traversed:

(3 x 10
8 mjsec) (1 sec) 'V 107

(10 to 100 m)

Fig. 1

It would not be out of the question, moreover, to think of

computational experiments that would subject particles with

a limited number of selected initial conditions to algebraic

transformations that could simulate passage through some 107

periods of the A-G structure, although one would have to be

attentive to the possibility of obtaining misleading results

as a consequence of round-off or truncation errors -- especially

if the structure of the problem is such that the distinction

between the initial conditions for stable vs. unstable motion

is very fine grained.

A storage ring, on the other hand, might be of comparable

7-5



dimensions -- or at lea.st involve a similar number of

oscillations per second and number of periods traversed per

second -- but would be intended to retain particles for hours.

Thus, as we see on Fig. 2, one's interest in long-ra.nge stability

becomes extended to intervals some 104 times as great i.e.,

possibly to lOll periods, or even to 5 x lOll periods of the

structure.

PRESENT AND FUTURE A-G SYNCHROTRONS

Oscillation Wavelength:One to Several Hundred Meters

Period of Structure:

Time Interval:

10 to 100 m.

tV 1 sec.

No. of Periods Traversed:

(3 x 10
8m/sec) (1 sec) tV 107

(10 to 100 m)

STORAGE RINGS

Time Interval: tV 3 hrs. or sec.

No. of Periods Traversed: tV lOll

Fig. 2
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Here past experience is not particularly helpful, since the

stora.ge rings that have been operated to date have been electron

rings (or electron-positron rings) in which radiation damping

can helpfUlly playa dominant role that is effectively absent

(by a relative factor of ten orders-of-magnitude or more) for

protons.

Cosmologically, the universe is supposed to be only

some 5 x 109 years old, corresponding to no more than that

many planetary periods at the present rate, so astronomical

evidence may provide little assurance to the storage-ring

designer unless we are prepared to be relatively restrained

in our non-linearities, and unless we have some theoretical

scaling laws that then could be applied to relate the long

term stability of our proposed device to that of another system

that observationally has appeared to be stable.

I could illustrate the mathematical form in which one

might pose this problem in our application by considering

explicitly the case of a single spatial degree of freedom

such as the transverse particle displacement,in the median

plane of the accelerator, measured from the equilibrium orbit

(Fig. 3).

In the ideal case of an A-G accelerator that is perfectly

constructed and aligned, the linearized equations of motion

would. be a simple equation of the form of Hill's equation

(to which the Floquet theory would apply) as shown at the

top of' the Figure, where F(e) is periodic in e and in practice
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might be represented simply by one of the two forms indicated.

LINEARIZED EQUATIONS
2
~ + F(e)u = 0
de

where F(e) =

Periodic Square Wave

or

a + b cos Ne

TYPICAL NON-LINEAR EQUATIONS

One degree of Freedom

2
d u + (a+b cosNe)u + a(sin Ne)u2 - ~(cos Ne)u3 = 0
~

Two coupled degrees of Freedom

d2u 2 2 3 2+ (a+b cos Ne)u + a(sin Ne)(u -v )-~(cos Ne)(u -3uv )=0
de2

2
d v + (a'-b cos Ne)v - 2a(sin Ne)uv + 3~(cos Ne)u2v = 0
de

2

Fig. 3

In actuality, some non-linearity of the restoring (focusing)

force will be present, either deliberately or inadvertently

introduced. My own interest in the effect of non-linearities

arose in connection with designs for fixed-field alternating

gradient (FFAG) accelerators, as proposed by Symon and others
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of the Midwestern Universities Research Association (M.U.R.A.),

in which non-linearities necessarily would be prominent at

the amplitudes of interest. Representative terms that could

be added to account for quadratic and cubic components to the

force would, in that application, be of the form shown in the

middle of the Figure, and below it one sees the Hamiltonian

pair of equations that one could take to describe the corre

sponding motion in two spatial degrees of freedom.

The inclusion of a periodic e-dependent coefficient for

the linear terms in these equations is not significant, since

that feature can be transformed away by an explicit, well

behaved transformation. What is important is that we do not

have linear equations, to which the well-behaved properties

of the Floquet solutions apply, nor do we have a e-independent

Hamiltonian that could be taken as a constant of the motion.

(As is of course known, Dr. Moser has investigated the

possibility of systematically introducing a series of trans

formations for the working variables such that the e-dependence

of the Hamiltonian function becomes displaced to higher and

higher order -- this is done with the expectation, as I

understand it, that the new Hamiltonian functions will

progressively become better approximations to a constant of

the motion, as in fact certainly seems to be the case in

limited applications of this technique to the study of solutions

over moderately long intervals.)

One has the impression that the essential features of

solutions to equations of this form can be exhibited by suitably
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constructed non-linear algebraic transformations whose

short-term phase-plane characteristics would be qualitatively

similar to those implied by the differential equations, and

for which computational studies would be both faster and less

affected by numerical error. Such transformations can, in

fact, be regarded as special cases of the differential

equations, with the periodic coefficients becoming periodic

delta functions of the independent variable (discrete,

localized lenses). What is required of the transformation is

simplythat·the iterated values of the coordinate and conjugate....;

momentum variables, as functions of the previous values of

these variables, satisfy the Poisson-bracket conditions

or any other of the several alternative forms in which one

can express the necessary and sufficient conditions for a

system to be Hamiltonian. In one spatial degree of freedom,

this condition can be simply stated as requiring that the

transformation be area preserving in the two-dimensional q,p

phase plane.

A simple transformation in which I became interested

some ten years ago at M.U.R.A. pertained to motion in one

spatial degree of freedom and was believed to simulate the

solution to the radial motion in the median plane. of a spirally

ridged FFAG accelerator if the coordinate and momentum for this

case are plotted at one-period intervals of the structure.

This transformation is shown in Fig. 4, in which A is a

constant and I regard :x: and y respectively as a coordinate
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and its canonically-conjugate momentum.

X' = Ax + (1_A2)y + (l-A)[x + (1_A)y]2

T:
y' = + x +Ay + [x + (1_A)y]2

If T(xl'Yl) = (x2 'Y2)' then T-l(xl'~Yl) = (x2 '-Y2)

Sketch for A = - 5/8

cos-1A ~ (0.35745)(2~)

Area ~ 5.5 x 10-3

(would shrink to zero
if A -+ - 1/2)

Fl : (- 1lIT-5 , 0) = (-0.053966· .. , 0)
26

F (2...
2,3: 26

Fig. 4

(0 .03846· .• , + 0.05688···)

The upper and lower signs can be taken as referring to the

forward. or inverse transformation, respectively. The constant

A can be interpreted as the cosine of the phase advance per

iteration that would be exhibited by solutions to the linearized

transformation, and A normally would be taken to have an

. absolute value less than unity. It also turns out that to

7-11



avoid being exactly at a one-third resonance when the quadratic

terms are present, one likewise should avoid the value

A = -1/2 (for which cOS-lA ='2~/3).

This transformation, as written, was intended to simulate

the solutions in a spirally-ridged FFAG accelerator when viewed

at a suitable point of symmetry in the structure (and at

homologous points, spaced at intervals, 2rr/N, equal to one

period of the structure). In this form the transformation

(T) has the great convenience of exhibiting a symmetry about

the x-axis, as has been noted on the Figure and as is evident

from inspection of the transformation equations. The phase

diagram, as revealed by short-term computations -- or roughly

by application of Moser's methods or in some respects by more

simple analytic considerations -- looks somewhat as sketched

on the Figure /for A = -5/8, cos-IA ~ O.35745(2w.) ~ 128.7 deg~7,

and in this respect the proposed transformation appears con-

sistent with trajectories computed for some typical FFAG

structures in which one would plan to employ the greater part

of the apparently stable region that is situated within the

roughly triangular boundary shown.

What appears to be a stable area is bounded by the curves

that I have drawn through the three unstable fixed points of

order 3 (Fl , F2 , F
3

), that are rigorous fixed points whose

coordinates can be explicitly obtained from the roots of a

quadratic equation. In calling your attention to transformations

of this form (and to the analogous non-linear differential
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equations). I do not mean to imply that present accelerator·

or storage-ring projects visualize such pronounced excursions

·toward the boundaries of regions so obviously influenced by

non-linear resonant effects, but smaller non-linearities may

well be present in practice and future accelerator concepts

may again involve strongly non-linear restoring forces. I

also would not wish to imply that the most important problems

to pursue in this connection are those that involve only one

spatial degree of freedom. It may well be that results of

some computational experiments and theoretical work by

Kolmogorov and others that I hope Dr. Moser will rev:i,.ew for

us -- can set the design~r's mind at rest with respect to

possible long-range instability in one degree of freedom and

that emphasis should be given in this context to the much

more difficult problems that arise with systems having two

(or more) spatial degrees of freedom.

In any event, I thought last spring that for me it

would prove instructive to examine the performance of the

transformation just shown, using the CDc-66oo computer in

double precision, since my previous look at this problem had

been with the earlier IBM-704. This work was undertaken at

Berkeley with the programming assistance of Mrs. Levine and

with helpful advice from Eric Beals and Loren Meissner. By

using double precision, we had available some 96 bits -

although truncation rather than true rounding was used in

the arithmetic operations -- and it was possible to investigate
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spurious fluctuations and drifts both by computational

experiments and/or by a rough analysis.

In investigating the behavior of an algebraic transfor

mation such as the one just proposed, one of course has a

wide choice of working variables. Thus, if desired, new

variables could be introduced that would result in a

transformation having symmetry about the +45 0 diagonal, or

one could select variables that would reduce the number of

computational steps (and hence improve the speed and accuracy

of the work) required to perform each iteration. One may

merely regard the introduction of such new variables as a

mathematical operation, but, in some instances, use of the

new variables rather easily can be interpreted as viewing

the dynamics at some other reference point within the lattice

of the physical structure.

For my own computational experiments, it was convenient

to introduce new ("working II) variables defined in Fig. 5 for

the direct or inverse transformations, respectively. In

terms of these variables the transformation assumed the form

shown at the bottom of the Figure.
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By introduction of the working variables

q = x + (l-A)y

p = + Y

for the direct transformation T or its inverse,

q' = Cp + q

pI = (q'-l)q' + P

with

C = 2(1-A)

Fig. 5

This transformation seemed particularly suitable for repeated

iteration, but phase diagrams plotted in terms of these

working variables (q,p) do not show any apparent symmetry

and it therefore was convenient to express results in terms

of the original x,y variables whenever output data were printed.

The parameter A (= -5/8, a binary fraction) and derived

parameters LSuch as (I-A) = 13/8 and C = 2(1-A) = 13/~ were

stored exactly in the computer memory, and double-precision

octal 1-0 was available if required for resumption of any

particular run.

An initial attempt to reveal erratic or stochastic

behavior gave negative results, in that for runs of as many

as 107 forward iterations,t starting with x = +0.026 = 0.85 xI'

there appeared to be no computationally significant anomolous

t 941.169 sec of CP time were required for a run consisting

of 107 forward iterations followed by 107 reverse iterations.
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drift -- e.g., after correction for computational drift and

allowance for computational fluctuations, the +x intercept

of the apparent invariant phase curves could be said to remain

constant to an absolute accuracy of about 10-27 , or a relative

accuracy of about 4 x 10-26 in this example.

A positive, and hence more dramatic, effect can be

obtained, however, by examining in some detail the character

of the apparent separatrix. For this purpose we note that

the transformation T3 will return a phase point to any

one of the unstable third-order fixed points (Fl , F2, F3 ),

and that the "separatrices" drawn through the fixed points

can represent at these points the directions of outgoing and

ingoing eigenvectors for the transformation T3 when the latter

is linearized about the fixed points. If a true separatrix

F2F
3

exists, a line segment formed of points situated very

near to F2 and that lie on a curve whose slope is that of

the appropriate (outgoing) eigenvector through that point

should iterate under T3 so as to approach F
3

along a

similar eigenvector direction and, in the process, should

generate a single smooth curve (F2F
3

). The symmetry of the

present transformation (with respect to the x-axis) would

imply, therefore, that the curve so generated cross the x-axis

with a vertical slope.

Numerically, forward iteration of a line segment from

the neighborhood of F2 down toward the x-axis should be

favorable with respect to unavoidable computational errors,
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and detection of a nQn-vertical crossing would imply the non

existence of a firm separatrix between F2 and F
3

(and, by

application of T or -1T , correspondingly also

would imply the absence of firm separatrices F
3

Fl and FI F2 -)

Our work with double-precision arithmetic made it

unambigously clear that extension of the eigenvector direction

at F2 led to non-vertical crossing of the x-axis (at crossing,

slope ~ +106), although if single-precision arithmetic had

been employed the results might have been ambiguous in this

case. /Checks of the computational process could be made by

use of different compiler systems, writing the algebraic

statements in a different order or form, influencing the

truncation errors (as by introducing intermediate steps such

as "times 3" followed by " divide by 3" into one or more

equations for each iteration), and by use of varied starting

conditions. Although some of these steps affected noticeably

the location of individual iterates (x,y) near the x-axis,

they had no significant effect on the curve that was generated

in this process~7

As is indicated in Fig_ 6, the situation thus is such

that a line segment QRS originating at F2 with the eigenvector

slope will transform, after repeated iterations of T3 , to

generate the S-curve shown just below the x-axis (initially

with an eigenvalue, for T3 , AI ~ 2.102).
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x -

Fig. 6

A similar sequence of inverse iterations from F
3

will

generate the dashed curve, and forward iteration would cause

points on the dashed curve to approach F
3

in the absence of

computational errors. Thus only particular points (e.g.:

Q, R, and their iterates) that lie on both curves can originate

arbitrarily close to F2 and ultimately approach F3 .. The

area 1 transforms to the equal area 3 (unit Jacobian) and

areas 1 and 2 are equal by virtue of the symmetry of the

transformation, so all the loops shown -- and their iterates

under the transformation T -- are equal in this example.

It will be recognized that points, such as Q' and R',

that approach F
3

ultimately do so in smaller and smaller
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-I
steps (~II = ~I = 0.48). Conservation of the areas mentioned

thus requires that the curve bounding the transforms of the

areas 2 and 3 correspondingly must become increasingly

elongated laterally, and (as suggested by Fig. 7) the solid

curve Q'R'S'Q" will become increasingly sinuous .
•

...

Fig. 7

The areas shown (transforms of regions 2 and-3) each

have the approximate magnitude 4.8 x 10-11 , or roughly 1/108

times the area of the entire superficially-stable region

FI F2F
3

. The uniqueness of the transformation precludes that

a finger such as that shown extending to the left will be

intersected by one of its iterates, although such an iterate

could well cross the dashed line. If the transformation

continues to be applied, these fingers thus cannot remain
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at all times within the finite area that at first might have

been supposed to be a stable region, and an observed means of

escape is that in which an iterate of this finger does cross

the dashed line to enter a loop extending to the right.

It will be appreciated that the evolution of these

fingers necessarily will become quite complex, and certainly

they will make inroads into the ostensible "interior" region,

but at this point it is by no means clear that the entire

"interior" region need be consumed in this way. What is clear

is that the non-smooth joining of the forward and backward

eigenvector directions from F2 and F
3

, respectively-

either by a disparity of slope (as in the present example)

or by a disparity of some higher derivative -- will imply that

these curves do not generate a true separatrix and the truly

stable area (if one exists) consequently is somewhat smaller.

In the "interior, n closer to the "stable" fixed point

at the origin, other (higher-order) fixed-point systems may

be found. It can become increasingly difficult in such cases,

however, to examine whether smooth or non-smooth intersection

of their extended eigenvectors occurs, and a computational

investigation wou.ld offer .little hope of establishing absolute

smooth joining.

It is interesting and somewhat informative to examine

other area-preserving transformations in these respects.

Professor deVogelaere, who is now at Berkeley and has be?n

very generous in discussion of these points, has for some time
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been directing attention to a very simple transformation that

requires little calculational precision to exhibit the failure

of eigenvectors, when extended, to join smoothly. In its

original form this transformation was of the form shown at

the top of Fig. 8,

De Vogelaere's Transformation

Xl 2
= Y + X

yl = -x + x,2

1 Tr. o."2 =

Modified De Vogelaere Transformation

Xl y + Tx + (l-T)x2
=

2yl = -x + Tx l + (l-T)x'

1 Tr. T."2 =

Fig. 8

and can be shown to possess the same symmetry property with

resp~ct to the x-axis that was noted for the transformation

I mentioned originally. This particular form may be somewhat

distressing to a physicist, since the trace of the matrix

for the linearized transformation vanishes (phase advance = 7f/2),

and one would be situated at a "quarter-integral resonance."

A simple generalization of this transformation can be made,

however, without affecting the interesting features by adopting

the form shown at the bottom of the Figure. For either
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LE.g., for T = -1/8:

transformation, an unstable fixed point, of order 1, occurs

at the point (1,0), and the eigenvector directions extended

from this point show a gross failure to join smoothly on

crossing the negative x axis. This behavior is indicated

on Fig. 9.

Although this transformation may not be representative

in any evident way of accelerator-orbit behavior, its study

can be informative concerning features that can arise in

non-linear problems. One can find, for example with

T = -1/8, systems of unstable fixed points for which the eigen-

values are negative and that do not appear to have associated

with them a corresponding system of stable fixed points.

Order 4/1, with eigenvalues -3.197
and -0.3128 at x = 0.5615983, y = OJ

Order 8/2, with eigenvalues -8.369
and -0.1195 at x = 0.4562733, y = 0.:7

Also, with T > 0 (e.g., +1/8), one finds for example a system

of unstable and stable fixed points of order 19/4 in the I I interior Ii

that roughly exhibits the classical" island structure" but for

which the extended eigenvectors very easily can be shown not

to intersect smoothly (both on ,the inner and on the outer

island boundaries). f!5ne member of the stable and of the

unstable fixed-point systems of this family will be found

respectively at x = -0.38429776, y = 0 and x = +0.50736937,

y = O. The eigenvalues for the latter are Ar = l/Arr ~ 3. 2217
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1
T = '8

Fig. 9

Somewhat closer to the origin, however, one finds a similar

system of order 9/2 (indicated on Fig. 10), for which the

intersections appeared completely smooth to the limit of my

computational accuracy /fixed-points at x = -0.29000009, y = 0

and at x = +0.32176070, y = 0 (with Ar = l/Arr ~ 1.179)-7.
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+ ltV1 9/4
J------iI-----=:4---+-----"'"*"---

+

1
T = 8

Fig. 10

Experience with each of the transformations mentioned

could be said to be not inconsistent with the view that some

of the curves commonly regarded as stability boundaries are

not firm and imply a sort of stochastic behavior of phase points

in their neighborhood, but, so far as we can tell, others may

be perfect barriers and indeed may have true invarient phase

curves nearby (ignoring, of course, the fluctuations of the

parameters that in practice would be present as a result of

"noise II in a physical system). The designer of particle

accelerators -- or, more particularly, of storage rings --
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of course would like to know whether any regularity of behavior

can be anticipated in this regard, and whether quantitative

or reasonably-accurate semi-quantitative estimates can be

made of diffusion rate in a region that possibly is characterized

by stochastic behavior. It may be, of course, that such detailed

and subtle features of behavior are highly sensitive to the

exact values of the physical parameters that determine the

transformation, and as such would be beyond the precise

physical control of the experimenter.

(I might add that the systems of unstable fixed points

that have been found for both my transformation and·for that

of Professor deVogelaere appear to show what to me is a quite

surprising regularity: I believe that deVogelaere noticed

empirically that for his transformation, linearized about the

Ifixed points of a certain class, the quantity ~ Trace - I

showed an exponential dependence on the fixed-point order.

It may be that other interesting features of such transformations

can also be found to exhibit regularities such as that

suggested by Mel'nikov in regard to the dimensions of the

areas that are developed by the failure of separatrices to

join smoothly -- and that some of these regularities might

permit one to draw inferences that would have practical

application. )

An interesting class of transformations has been proposed

by Dr. McMillan, for which it is possible to establish that the

eigenvectors through the fixed point or fixed points do form
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a true impenetrable separatrix. He finds it convenient in

this connection to consider the transformations to be written

in a form showing symmetry about the +45 0 axis (rather than

about the x-axis) a form in which each of the transformations

previously mentioned can be written by a suitable change of

variables. This form is taken to be, for the forward trans

formation, that which will be seen on Fig. 11 in the upper

left-hand corner. Such a transformation has a simple physical

x' = y

y' = -x + f(y)

Fig. 11
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interpretation in terms of a structure formed simply from a

periodic sequence of identical non-linear lenses ffiy = -x + f(x17

placed with unit separation just before the measurement planes and

with linear lenses L6y = -!7 situated just after each of these

planes. For a fixed point of order one, the trace of the matrix

for the transformation linearized about that point is just the

derivative of f at that point, and stability of the linearized

system requires I~ fl I < 1.

The transformation in the form shown can be executed by a

simple graphica.l construction, in which one first mirrors the

initial point about the diagonal and then vertically reflects

the resulting y-value about the curve 1
Y = 2 f(x) . A fixed

point of order 1 is synonymous with the intersection of the

diagonal with this latter curve. Referring to Fig. 12,

McMillan has pointed out LUCRL-177957 that if the function

f(y) can be expressed as ¢(y) + ¢-l(y), where ¢-l is the

inverse of ¢, then x = ¢(y) will be an invariant curve.

The phase diagram shown in the Figure is for an example in which

¢(y) a 1 and f(y) 2yx = = - =,
80
2 2 ,

y + a - y

with fixed points at x = y = + ~2 - 1 (Ia I > 1).
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Example in which

f(y) = ¢(y) + ¢-l(y)

i;"
ty'-!

I

<\
i{

f (~) = --,.,-2..;2..~----....
a2 ~2

1a ---
~ + a

[Plot for a = 5/4]

Fig. 12

An interesting and simple, although perhaps artificial,

example of this class is one suggested by Dr. JUdd, for which,

as indicated on Fig. 13, one employs a step-wise linear f(x).
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a = 0.6

Fig. 13

Here the broken-line sepa.ratrix shown is a rigorous barrier.

Also, of course, motion of sufficiently small amplitude to

remain within the dotted square will trace the perfect

elliptical invariant phase trajectories that are characteristic

of truly linear motion. Outside of this dotted squa.re, moreover,

stable fixed points can be found Lfor example, with a = 0.6:
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an order-6 FP at x = y = 9/13 and an order-7 FP at

-x = y = 378/6837 that are surrounded by an elliptical

boundary within which the motion is again truly linear (and

truly stable "in the small'~. In Fig. 14 one such region is

shown as the hatched area in the upper right-hand portion of

the diagram -- the motion being controlled in such .a case in

a periodic way by definite values of f' at successive

STABLE AREA
with fixed point

of Order b

Fig. 14
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iterations. Other points, including those neighboring unstable

fixed points of the same family, however, show the failure of

extended eigenvector directions to intersect smoothly and

evidently are characterized by a sort of stochastic behavior

that is confined to a finite region. T Nonetheless, the motion

within the diamond is not completely ergotic, since, as we

ha.ve seen, there exist in this area regions of limited extent

within which the motion follows true simple invariant phase

trajectories.

In presenting this material I do not mean to imply that

it contains much information that is new to the mathematicians

who have been following recent developments of the theory.

I am afraid that some of the computational results fail, as

might be expected, to give definitive experimental answers

to some of the significant questions, and my own work has

neglected entirely the more important (and more difficult)

problems that arise with motion in more than one spatial

degree of freedom. I also would not wish to claim that the

questions of long-range stability are of quite as immediate

importance to the accelerator designer as those, for example,

1 In this transformation (and also in a similar trans
formation with fey) analytic), some cases were found in

which the eigenvectors, when extended, generated a double-S

(or double-Z), rather than a single S (or Z) between
successive iterates.
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that concern collective motion. I would like to suggest,

however, that the properties of such transformations as the

one I mentioned at the beginning suggest questions that

inherently are quite fascinating, and that it would be quite

helpful for future design work if our mathematical colleagues

could assist us in obtaining a better -- and hopefully somewhat

quantitative understanding of these properties.
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Appendix A

I would like to call specifically to your attention a

situation we encountered in which an area-preserving algebraic

transformation, when linearized about certain high-order fixed

points, exhibited negative eigenvalues. This phenomenon arose

in connection with some runs that I made using a modification

of Professor deVogelaere's transformation, namely

2

{

X' = y + Tx + Cx

T:
2

y' =-x + Tx' + Cx'

with C = 1 - T and T = -1/8.

This transformation, whose phase plots are symmetrical

about the x-axis, has an unstable fixed point of order 1 at

the point (1,0) and the eigenvector-directions extended from

this point develop loops in the familiar way (as qualitatively

sketched in Fig. 1). In seeking higher-order fixed points in

the" interior" of this diagram, the following families of

unstable fixed points appeared for which the eigenvalues are

negative:

Family 1 (" Tune II = 1/4):

x y
--"'-----

0.5615983
0.2846170

-0.4504872
0.2846170

o
-0.5060428

o
0.5060428

Eigenvalues: A = -3.197, -0.3128

7-34



Fig. 1
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Family 2 (II Tune" = 2/8):

x y

0.4562733
0.1771744

-0.4299377
0.3462146
0.6130793
0.3462146

-0.4299377
0.1771744

Eigenvalues: A

o
-0.4431055
0.0845201
0.5215085

o
-0.5215085
-0.0845201
0.4431055

= -8.369, -0.1195

Phase trajectories formed by extending the eigenvector

directions for the system described as Family 2 are shown in

Fig. 2 in the region near the points

(0.6130793, 0) and (0.4562733, 0).

It does not appear necessary to have an associated

family of stable fixed points in such a negative-A case, and

none was found.

With reference to Fig. 2, we may consider a point such

as An' that lies at the intersection of a phase trajectory

that approaches the right-hand one of the two fixed points

shown and a trajectory that is directed away from the left

hand point in the figure. After 8 applications of the trans-

formation, this point moves so as to lie closer to the right-

hand fixed point (but on the extended eigenvector segment that

lies on the opposite side of this fixed point, since
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0.2

0.1

o

-0.1

-0.2

Fig. 2

T

O. 0 0·50
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~ ~ -0.1195 < 0), while it also comes to lie more remotely

from the left-hand fixed point (and on the extension of the

eigenvector segment on the opposite side of this fixed point,

since ~ 2: -8.369 < 0). This new point is designated An+8
on the drawing.

The point Bn lies on the intersection of outward- and

inward-directed eigenvectors from the left-hand fixed point.

Its T8 iterate is seen to lie on another such intersection

closer in on the eigenvector for which I~I < 1 and more

remotely on the extension of the vector for which I~I > 1.

This performance may suggest that it is not necessary for a

loop such as that shown between B and the left-hand fixedn

point to enclose another (e.g., stable) fixed point of this

rotation number. I thus wonder whether the behavior of such

fixed points (with ~ real and negative) may be qualitatively

distinct from that expected in cases for which ~ > ° (and

for which one expects to find a "string of islands"such that

one then inquires concerning the smoothness or lack of smoothness

with which eigenvector directions, when extended, intersect).

The type of phase trajectories indicated in Fig. 2 may be most

readily adaptable to fit in with the rather gross loops that

develop in this region of the phase plot from the eigenvectors

extended from the order-l fixed point at (1,0). [To avoid

confusion on the drawing of Fig. 2, I have not shown there

the order-4 unstable fixed point (0.5615983, 0), of Family 1,

that falls in this region of the diagram. This point does not
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lie on the intersection of any of the Family-2 trajectories

shown in the Figure -- it lies on the x-axis some three-and-

one-half or four millimeters to the right of the point ~.

The features illustrated in this diagram can be exhibited

without any exceptional computational accuracy, and I have

found it convenient to ad lib runs by sitting at a readily-

programmed Olivetti-Underwood" 101 Programma ". J

As a second point, I neglected to mention on Tuesday,

during the discussion concerning "my" transformation, that

this transformation also has an order-l fixed point at (1,0).

The transformation in question had the form

Ax + (1 - A2 )y + (1 - A)[x + (1 - A) yJ 2

(1 - A) yJ 2.{

X' =

y' = -x + Ay + [x +

The extensions of the eigenvectors from this order-l fixed

point also develop gross loops, as might be expected. This

behavior is sketched in Fig. 3, where the hatched area is the

triangular area (with order-3 fixed points at its vertices)

to which I directed attention in my talk. As before, the

constant A has been given the value -5/8.

This same transformation, but with A = -1/4, shows a

quite striking approximate constancy of the "tune" with respect

to amplitude. With this value of A (A = -1/4) the small

amplitude tune corresponds to about 0.2902 (2rr) radians

phase advance per iteration, and a. system of 7 stable and

7 unstable fixed points (tune = 2/7 ::: 0.2857) develops at a
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rather large amplitude. [The x-coordinates of the fixed

points that lie on the x-axis are given below:

stable F.P.: -0.123211 58766 12485 36429 040273;

U~S. F.P.: +0.2 (exact), (half trace + 1.05078125).

Reasonably-appearing phase curves can be drawn inside and

outside this system (Fig. 4).J

As a final point, you may recall that during my talk I

mentioned in passing that certain regularities appeared to be

present in the eigenvalues (or, more simply, in the matrix

trace) for the successive families of fixed points of a

particular class. You might be interested in the results for

for Professor deVogelaere'smfixed points of tune
4m + 1

transformation (the transformation T, with the parameter

T set equal to zero). These results, from the CDc-6600,

are given in the attached Table, titled "TRACE", and apply

to this transformation after linearization about the fixed

points in question.

It will be noted that the amount by which ~ Trace

differs from unity is closely the same in absolute value for

the stable and unstable fixed-point families of the same order,

particularly for those with a tune having a large denominator.

As Professor deVogelaere has pointed out, a plot of

logll - ~ Tracel vs this denominator is highly linear through

many decades. Somewhat similar regularities also appeared

with my transformation (taking A = -5/8).
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FIXED POINTS OF ORDER 7
(Tune = 2/7 )

+ Unstable

-..J
I
~
N

.-,, ,
I I

-~,-,., 1
,- .I, ,

\ ,

o Stable

Fig. 4

A = _ 1
4



~ -- with Characteristic Exponent or Eigenvalue

Rotation 11 - t Trace I p (rad lans and degrees)
or AI

4/17 Stable 1.4425105233511725112475209 2.0291926112 rad. = 116.26417 deg.
Unstable 1.43969121690663246936442793 3.66502113263853697319254146

5/21 Stable 5.7813842878779832846897813 x 10-1 1.1352987670 65.04783
Unstable 5.8036264715679285844257943 x 10-1 1.80410530659480794010475635

6/25 Stable 2.1759794076036170323557400 x 10-1 0.6722827659 38.'>1897
Unstable 2.1788566763236692069200659 x 10-1 9.1304428221204405827208083 x 10-1

7/29 Stable 7.829060692954532623645218 x 10-2 0.3983316626 22.82272
Unstable 7.831797137551201910136569 x 10-2 4.8176517658506550100501700 x 10-1

--l,
x 10-2"" Stable 2.728644682248974445483034 0.2341429028 13 .41540~ 8/33

Unstable 2.728895164746296854366273 x 10-2 2.6249649867124260506989502 x 10- 1

9/37 Stable 9.29792427831269351629599 x 10-3 0.1364724784 7.81930
Unstable 9.29815526758626295733878 x 10-3 1.459830711381850496853179 x 10-1

10/41 Stable 3.11733627966553849389897 x 10-3 0.0789804692 4.52525
Unstable 3.11735776570024232911098 x 10-3 8.21390854792845376708780 x 10-2

11/45 Stable 1.03289297698264626685582 x 10-3 0.0454548311 2.60437
Unstable 1.03289498665285647336435 x 10-3 4.64955922818988299371776 x 10- 2

12/49 Stable 3.3928393819586502370257 x 10-4 0.0260500720 1.49256
Unstable 3.3928412689282888627246 x 10-4 2.6390836240047607322398 x 10-2

13/53 Stable 1.1073874588761127191517 x 10-4 0.0148822572 0.85269
Unstable 1.107387636632479404429 x 10-4 1.4993271827637053389945 x 10-2



TRACE -- Continued

14/57 Stable 3.597507701874426428512 x 10-5 0.0084823691 0.48600
Unstable 3.597507869862235287326 x 10-5 8.518395228840448345675 x 10-3

15/61 Stable 1.164736575122263454806 x 10-5 0.0048264663 0.27654
Unstable 1.164736591051033262679 x 10-5 4.838123045135810082937 x 10-3

16/65 Stable 3.76188982802960206947 x 10-6 0.0027429518 0.15716
Unstable 3.76188984318697930160 x 10-6 2.74671537799954849551 x 10-3

17/69 Stable 1.21302583785923977869 x 10-6 0.0015575789 0.08924
Unstable 1.21302583930697271578 x 10-6 1.55879228547447310154 x 10-3

18/73 Stable 3.9073431514620690060 x 10-7 0.0008840072 0.05065
Unstable 3.9073431528502623898 x 10-7 8.843979646269819787 x 10-4

-.l
I

x 10-7"'" 19/77 Stable 1.2579061979687540848 0.0005015788 0.02874"'" Unstable 1.2579061981024041544 x 10-7 5.017045535711146920 x 10-4

20/81 Stable 4.048890866188331620 x 10-8 0.0002845660 0.01630
Unstable 4.048890866317540574 x 10-8 2.846065075505638042 x 10-4

21/85 Stable 1.303401892994049370 x 10-8 0.0001614560 0.00925
Unstable 1.303401893006593882 x 10-8 1.614690281164473223 x 10-4

22/89 Stable 4.19742353638860984 x 10-9 oo916234סס.0 0.00525
Unstable 4.1974235364008412 x 10-9 9.1627595583722791 x 10-5

23/93 Stable 1.35249829376673101 x 10-9 oo520096סס.0 0.00298
Unstable 1.3524982937679288 x 10-9 5Q2010934205562950 x 10-5

24/97 Stable 4.3612513115999777 x 10-10 0.0000295340 0.00169
Unstable 4.3612513116011556 x 10-10 2.9534319420601064 x 10-5



STABLE FIXED POINTS .- Coordinates of Fixed Points on x-axis

Rotation Xo

-..)
I
".
UI

4/17
5/21
6/25
7/29
8/33
9/37

10/41
11/45
12/49
13/53
14/57
15/61
16/65
17/69
18/73
19/77
20/81
21/85
22/89
23/93
24/97

-0.405787495533527606179670330
-0.3898327790576272411210745517
-0.376256564258982703826351991
-0.364375876292784753973866988
-0.353849991897727178101212375
-0.344454467825082214779278635
-0.3360136625106348627695919205
-0.328382766046255557958214443
-0.321441972573218211407301229
-0.315092612636619870929695716
-0.309253536442459300884027290
-0.303857827005765909029891050
-0.298850010528990438538647972
-0.294183791444198337338681611
-0.289820254666633978578222174
-0.285726451504977016300760846
-0.281874288628402645655758688
-0.27823965234541592668327308
-0.274801714559297280796278695
-0.271542379067610302194439393
-0.268445836701300885933631152



UNSTABLE FIXED POINTS -- Coordinates and Eigenvector-Slopes of Fixed Points on x-axis

Rotation Xo _ Eigenvector Slope _~ _

-J
I

",.
0'1

4/17
5/21
6/25
7/29
8/33
9/37

10/41
11/45
12/49
13/53
14/57
15/61
16/65
17/69
18/73
19/77
20/81
21/85
22/89
23/93
24/97

0.496506084637672571858047332
0.462456818522159807417166287
0.434919899202634068763276322
0.4129712543411046777982053091
0.395143181201283923562103066
0.38028378479061446738668478
0.367615693398945789225052500
0.356618501511893262559214861
0.346933293897475164157287819
0.338303540926722169037576515
0.330539854025521833310535365
0.323498535361983972920093128
0.31706804409355469021833772
0.311160132509971989083355634
0.30570384083580695724148746
0.300641307899366821915148229
0.295924774533113647798361329
0.29151439360049880578482880
0.287376599445981434654903827
0.283482873883316580042953742
0.279808798677119570429068096

+ 1.19087319776336072103372725
+ 1.98025640724266507001182499
+ 3.6448303715138160554898096
+ 6.71149665458175416010959
+ 12.13194932674224587711334
+ 21.65256874244943270658525
+ 38.3974228188253509576353
+ 67.899195745219753844038
+ 119.930944670210285412930
+ 211.74390558804250663261
+ 373.77790810525522489253
+ 659.72253985475741663301
+ 1164.23127759143813146135
+ 2054.08906983771121440622
+ 3623~0142160560248067746

+ 6387.950458569018040897
+ 11258.14336841298826259
+ 19831.80650990849558229
+ 34916.28816384722538324
+ 61439.461613242624541
+108045.428556521895602



UNSTABLE FIXED POINTS -- Coordinates and Eigenvector-Slopes of Fixed Points near Negative x-axis

Rotation Xo Yo Eigenvector Slopes, from upper F.P.,
for A~ 1

4/17 -0.374963547975391591167940018 +0.10592~6297719378880335235985
0.915486568783131693553300896
2.643243716380710957237796760

5/21 -0.3709792222736135823472685995 +0.076240725638902658433412233 1.29658202546409954392340036
2.69794367031100718218121146

6/25 -0.363360430000666384442227247 +0.057124516632160203007080502 1.62198974578660483326242039
2.59545656091817951642492881

7/29 -0.354799885030699916627188833 +0.044662298494267490408919155 1.8831866989852810751563540
2.5294029554032894752569088

~
I
~ 8/33 -0.346384947641954153109214825 +0.036155601696951380707060071 2.0958394793051152906058737
~

2.5203670128578479810549472

9/37 -0.338456350459898304615153470 +0.030063055808040875997004950 2.2735196256654867498100389
2.5501109094473573751463494

10/41 -0.331089352530756057848620544 +0.02552113867392451901906386 2.425483218694276943146054
2.603884480416832690781204

11/45 -0.324270647171535629173200926 +0.022025303003541669253251617 2.5584286643518998960738116
2.6722903765866525976589024

12/49 -0.317958929780800613936981251 +0.019264829387199782429528874 2.6774112341632897363909809
2.7493648481699475750699039

13/53 -0.312106262884832988816311803 +0.017038966471621903572171853 2.786211224111726315951442
2.831281990313632622526412



UNSTABLE FIXED POINTS -- near negative x-axis -- Continued

14/57 -0.306665846880174961760996189 +0.015212653456478366785589701 2.8875759592867647514946485
2.9155921632160939962612297

15/61 -0.301594745181758972978848546 +0.013691912060098667750220235 2.98344770709623458485973
3.00074835801797030168621

16/65 -0.29685461990371039921986437 +00012409479227135966967667072 3.075172816638866086836259
3.085796178029668174989598

17/69 -0.292411664472703019119058302 +0.011316046543926678118726977 3.163674983099432211082672
3.170166636821707266037392

18/73 -0.288236227231789099079304058 +0.010374715612948833543028581 3.2495872938313320205429
3.2535376525569821477697

19/77 -0.284302340581867119271190549 +0.009557375155113915940587013 3.33334713195506387450208
3.33574239886664091863436

~
I
~ 20/81 -0.280587249052701960844405559 +0.008842267851511150343049067 3.4152617043102799591962oc

3.4167095355863915233517

21/85 .0.27707097468107878695467275 +0.00821231666554353688336967 3.4955520696750023864899
3.4964248555929535977352

22/89 -0.27373593262040534223520233 +0.007653949101572963481466505 3.574382187359892100404
3.575907087079015179917

23/93 -0.27056659828187875545358686 +0.00715625567931681763591264 3.6518778642681330455689

• 3.6521928967283763252765

24/97 -0.267549222310577829183807391 +0.006710377458137833432946976 3.728139039631599455481
3.728327777110349067290



DISCUSSION FOLLOWING LASLETT'S PAPER

" *Jurgen Moser

I should like to add some comments about some recent

theoretical work on the problems of the type discussed by

Laslett as well as mention some numerical experiments

conducted by other people.

It is hard to believe that these questions have their

origin in the theory of accelerator design. In fact, orig-

inally the basic principle for the orbit stability of the

Alternating Gradient Synchrotron depends to a large extent on

the linear theory. However, in the course of deeper studies

of the particle orbits in an accelerator, the nonlinear

effects became more and more important and a source of concern.

It was crucial to have some guarantee that the nonlinear terms

would not destroy the stabilj.ty which was so carefully provided

for by the linear theory. This led to very delicate and

difficult theoretical problems which also were approached with

numerical experiments conducted on simplified model equations

as we have just learned from Dr. Laslett's presentation.

First, to mention some numerical studies of quadratic

measure preserving mappings, I want to refer to the interesting

work of Henon, "Numerical Study of Quadratic Area-Preserving

Mappings ", 1967, to be published. He studied simple quadratic

mappings of the same nature as Laslett mentioned toward the

end of his talk (transformation by Dr. McMillan). The main

* Courant Institute of Mathematical Sciences, New York
University
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results are the following:

In the neighborhood of an elliptic fixed point, one

finds well organized curve patterns which disintegrate at

larger distances. Immediately the problem arises to determine

the s"ize of this " stability region" as well as determine this

curve pattern possibly by analytic procedure. Henon restricted

himself to the description of the computations and comparison

of his results with asymptotic series obtained by G. D. Birkhoff.

The remarkable fact is that the agreement between the numerical

results and these asymptotic series is tremendously close.

However, no clear indication for the size of this stability

region is in sight.

It would require more space to refer to various theoret-

ical studies which have been made in this direction. First

of all, it is to be mentioned that the curve pattern observed

in most of these problems in general does not exist in the

mathematically rigorous sense as a continuous family of

invariant curves. This fact was known to Poincare and is

closely related to his nonexistence proof of integrals. Of

course, one can easily construct examples for which such

family of closed curves does exist; however, this is an

exceptional situation. For a rigorous proof of this last

statement we refer to R~ssmannl. The situation is actually
ff

1 H. RUBsmann, 'Vber die Existenz einer Normalform inhaltstreuer

elliptischer Transformationen," Math. Ann. 137, 1967,
pp. 64-67.
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very delicate insofar as arbitrarily small changes of the

mapping lead to a distribution of the curve pattern. On

the other hand, by changes of sufficiently high order terms,

one can force the existence of a family of smooth closed

curves. The situation is somewhat reminiscent of the distri-

bution of rational numbers on the real line. Both the

rational numbers on the real line. Both the rationals as

well as the irrationals are dense yet the irrationals form

the majority.

To continue this analogy: it is rather easy to establish

the existence of irrational numbers and, similarly, it is not

too hard to establish the existence of mappings which do not

possess such a continuous curve pattern. It is usually a

more difficult problem to decide whether a preassigned number,

say rr is irrational. Therefore, one would expect it should

be difficult to decide whether a given mapping of this sort

belongs to one class or the other. In this connection, I

want to refer to a paper of mine2 in which it is shown

rigorously that even the simple polynomial mappings do not

possess a family of closed curves. This includes, in

particular, the example by McMillan.

2 J. Moser, "On the Integrability of Area-preserving Cremona
Mappings near an Elliptic Fixed Point," Bol. Soc. Mat.

Mexicana, 1961, pp. 176-180.
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At this point, it seems confusing that the numerical

evidence does not match the theoretical prediction of non-

existence of such a curve pattern. It turns out that this

paradox can be resolved: even though there is no continuous

family of closed invariant curves there does exist a large

set of closed curves which, however, do not join together

into a continuous family. They are interrupted by

infinitely many gaps so that one obtains a "Cantor set" of

closed curves. This was proven in my paper3 as well as in
4Arnold's paper. It is to be emphasized that the closed

curves so obtained are by no means pathological, they are

differentiable, and, in fact, analytic curves. However,

their distribution is pathological. The crucial point of

these investigations is that they insure stability of the

elliptic fixed point since points starting in the interior

of such curves are forced to remain there.

What happens in the gaps left by the invariant curves

mentioned above is only partially understood. These regions

contain, in general, infinitely many fixed points of the

3

4

J. Moser, "On Invariant Curves of Area-preserving Mappings

of an Annulus," Nachr. Akad. Wiss., G'dttingen, Math. Phys.

Kl. IIa, Nr. 1, 1~62, pp. 1-20.

v. I. Arnold, "Proof of A. N. Kolmogorov's Theorem on the

Preservation of Quasi-periodic Motions under Small

Perturbations of the Hamiltonian", Uspekhi Mat. Nauk

U.S.S.,R. 18, Sere 5 (113), 1963, pp. 13-40.
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mapping or one of its higher iterates. However, the behavior

of the consecutive iterates in these regions is quite irratic

and irregular, in particular near unstable fixed points. These

domains are often referred to as "regions of instability". For

an instructive schematic picture we refer to the paper by

Arnold5 . There are conjectures, more or less informal, that

these regions of instability contain open invariant sets in

which the mappings are ergodic. Nothing of this sort has

been proven and there is some numerical evidence, especially

in the work of John M. Greene, Forrestal Research Center,

princeton,6 for extremely ergodic behavior in these domains.

In fact, he expressed the opinion that there are invariant

domains in which the unstable fixed points are dense. Since

this situation is typical for ergodicity, one may take this

as an indication for the existence of ergodic domains.

Comparing the numerical and theoretical results, one

has to be very careful: the theoretical results are strictly

applicable only in extremely small neighborhoods of elliptic

fixed points (in some paper, Henon estimates a radius of

validity of the proof as about lO-300!). This is due to the

5

6

v. 1. Arnold, "Small Divisor and Stability Problems in

Classical and Celestial Mechanics,"Uspekhi Mat. Nauk, 18,

No. 6 (114), 1963, pp. 81-192.

Private communication.
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shortcoming of proofs which are very crude in the details of

the estimate. One would have to resort to numerical experiments,

such as Laslett presented here, to obtain the feeling for the

actual size of the stability region. In all these numerical

studies one finds,in fact, a sizeable neighborhood covered

to a large extent by invariant curves. On which parameters

or properties the size of this stability region depends seems

still to be quite in the dark. For this reason, I consider

the closer study of numerical experiments extremely worthwhile

and instructive.
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ADDENDUM TO UCRL 17795, "SOME THOUGHTS ON STABILITY IN

NONLINEAR PERIODIC FOCUSING SYSTEMS ", Sept. 5, 1967.

Edwin M. McMillan*

March 29, 1968

1.) Introduction

In UCRL 17795, it was shown that curves in the x,y

plane having reflection symmetry about the positive diagonal

are invariant under the transformation:

Xl = Y
(1).

YI = _x+f ( y) ,

where fey) is the sum of the two values of x corresponding

to the given y. It is required that there be just two values,

but the two branches on which they occur are not required to

have a common analytic form. An example given was the pair

of rectangular hyperbolas y = 1 -a/(x+l) and y = -1 +a/(l-x),

with 2f(y) = 2 ay/(l-y ), mentioned in paragraph 3 and illus-

trated in Fig. 1. The question whether there are other

invariant curves belonging to the same fey) was left open.

This question was answered by John M. Greene in a letter

to L. Jackson Laslett (March 8, 1968). He pointed out that

all curves of the form (1_x2 )(1_y2) + 2 axy = const. are
2such invariants. If the constant has the value 2a-a, the

equation factors into two equations representing the rectangular

hyperbolas, 'which are now seen to be simply the separatrices

* Lawrence Radiation Laboratory, University of California,
Berkeley, California
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of a family of invariant curves. In the course of checking

the invariance of "Green's function" by the methods of

UCRL 17795, I found that it is a special case of a broader

class, which can be called" double quadratic" curves.

2.) "Double quadratic n curves

Any equation which is quadratic in x can be solved

explicitly for x. If x and y occur in it symmetrically,

it represents a curve with the required symmetry about the

positive diagonal. The most general equation with these

properties is:

whose solution is:

1x = --.,...------
2(Ay2 + By + C)

The sum of the two values of x gives f(y):

f(y) =
2By + Dy + E

Ay2 + By + C
(4) •

Since f(y) does not depend on F, all members of the family

generated by giving different values to F are invariant under

the transformation (1), with f(y) given by (4).
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We thus have the remarkable result that an f(y) which

is the ratio of any two quadratic functions of y leads to

a family of invariant curves, with the single restriction

that the coefficients of 2
Y in the numerator and of y in

the denominator must be of equal magnitude and opposite in

sign.

The first order fixed points, if they exist, are at

f(y} = 2y, and are therefore the solutions of:

2 A-? + 3 By2 + (2C+D) Y + E = 0

The number of parameters in (4) is easily reduced;

E can be eliminated by a eoordinate displacement along the

positive diagonal, either A or B can be made equal to

D or E by a change of scale, and anyone of the remaining

parameters can be set equal to unity. Thus we have a two-

parameter system. Some interesting cases are:

(5) •

(l) A = 1, B = 0, C = -1, D = 2a, E = 0, F = c.
2 2 2 2x Y x -y + 2a x y + c = O. ("Green's function")

fey) 2 a y
= 2

1 - Y

The first order fixed points are at y = 0, ~ VI=a.
The separatrices are displaced rectangular hyperbolas, as

pointed out above.
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fey)

(2) A = 1, B = 0, C = 1, D = -2a, E = 0, F = c.

x2y2 + x2+y2 + 2a x y + C = o.

= 2 a y
1 + y2

The first order fixed points are at y = 0, + Ja-1

The separatrix is the ~. by setting c = o.curve glven

In cases (1) and (2), if a is negative, the curve is rotated

by 900 , and the first order fixed points (except the one

at x = 0) become second order fixed points. (See paragraph 6

and Fig. 3b of UCRL 17795)

(3) A = 0, B = 1, C = -1, D = 0, E = 0, F = c.
2 222x y + xy . - x - y + C = o.

fey) = y2
1 - Y

The first order fixed points are at 2
y = 0, 3

The separatrices are the curve given by setting 8c =- ,
27

the line x+y+2 = 0, and the curve xy -x-y + 2 = o.

(I thank Dr. Las1ett for finding the last two of these. )

(4) A = 1, B = -2, C = 1, D = 0, E = 0, F = c.

x2y2 -2 (x2y+xy2) + x2+y2 + c = o.
2 2

fey) = y 2
(l-y)

The first order fixed points are at. y = 0, ~ (3 2: v'5).
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ERAN-51

STRUCTURE IN R.F. PHASE PLOTS *

L. Jackson Laslett

10 February 1970

I. Introduction

Phase plots that depict the results of repeated applications of various

non-linear area-preserving transforma.tions have been found to develop a re

markable complexity of structure. l This behavior, and the associated ques

tion concerning the existence of invaria.nt phase curves, have posed challeng

ing problems to the mathematicians. Contributions to the theory have come
2 3 4 5 6from H. Poincare, J. Moser, R. deVogelaere, H. Russmann, A.N. Kolmogorov,

V.I. Arnol'd,7 V.K. Mel'nikov,8 and B.V. Chirikov,9 to mention the names of

a few who have worked on these problems.

The subject just described holds a certain fasclna.tion for the accele

rator designer who is interested in the long-term stability of betatron os

cillations in a cyclic accelerator or storage ring. In this application

the use of a (periodic) alternating-gra.dient structure precludes the Hamil

tonian function serving as a constant of the motion, and the possible presence

f 1 , 't' t f dr t'· 't f 10,n ho non- lnearl les preven s use 0 a qua a lC lnvarlan orm suc as

can be obtained from the Floquet theory for Hill's equation. In such a

situation it may be convenient, particularly for computational work, to re

place the non-linear differcntinl equations of the system by a transfor

mation whose successive iterations may typify passage through successive

periods of the alternating-gradient structure. Such transformations fre

quently can be interpreted, if desired, a.s describing the passage of a par

ticle through a sequence of linear focussing elements and localized non

linear lenses. Transformations that are algebraic frequently are chosen as

examples for specific study -- again partly for reasons of convenience, and

in the expectation that the a,lgebraic nature of these transformations should

* Work supported by the U.S. Atomic Energy Commission.

7-59



not in itself give to the results any particularly distinctive character.

The possible connection of non-linear transformations with accelerator

performance, in fact, motivated the studies of the present writer that are

described in reference 12.

The theory of energy oscillations, or "synchrotron oscillations," in

a synChrotron13 should describe the energy and phase oscillations that occur

when a charged particle pa.sses repetitively through one or more "accelerating

cavities" situated at localized points around the accelerator ring. Since

these oscillations normally are of a relatively low frequency, it often is

legitimate as well as convenient to analyze them theoretically on the basis

of differential equations derived on the supposition that the a.ccelerating

field is uniformly distributed around the orbit. lO,l4,l5 Strictly, however,

the energy changes experienced by a particle are essentially impulsive,

and depend on the sine of the electrical phase angle ~ at which the par

ticle traverses the cavity, so that the motion in this degree of freedom

(assumed uncoupled to the betatron motion) is basically described by the

repeated applioation of a non-linear (and non-algebraic) transformation

connecting the energy variation and phase to values pertaining to the pre

vious transit.

The differential-equation approach to the theory of synchrotron oscil

lations leads to a Hamiltonian that constitutes a constant of the motion

for an individual particle and to a critical value for this function that

defines a stability boundary enclosing a region (''bucket'') that is truly

stable under the assumptions introduced. The fact that the particle

motion in this degree of freedom is more properly described by a sequence

of transformations (due to localized forces, virtually of a delta-function

character) suggests, however, that it would be of interest to examine the

extent to Which the complex phenomena arising from repeated application of

non-linear transformations may make their appearance in this situation.

This question has been examined computationally, for a specific example,

in the work described in this report. The complex character of what

appears superficially to be a separatrix between stable and unstable regions

has been seen to be present, although not to a degree that would provide

grounds for concern for the customary use of radio-frequency acceleration

systems in present accelerator technology.
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II. Derivation of the Transformation

We consider here the case of a stationary bucket with no acceleration

(stable phase angle, ~s= ~). To obtain the working transformation, we

consider a single cavity operating at a harmonic number b. The quantities

denoted En and ~n are respectively the energy with which a particle enters

the cavity and the electrical phase angle present at the time of transit.

With 7 denoting the transition energy in rest-energy units, we have
T

dE
F.

and the transformations may be written

AJ. A.J. [I (1 1) 6En+l]W'f' ~ op + ill..._ht 1 + --- - - - -n+l n .K.I!' RF I=l. 2 2 2 E
~s r T 1s B

A.J. [ I (I 1) bEn+l]~ ~ + 2~h I + --- --- - ---n I=l. 2 2 . 2 . E
~s 1T 1s s •

The latter equation equivalently can be written

AJ. = AJ. + 2~h (..l- _..l-) tEn+l
~n+l ~n I=l. 2 2 2 E

~s 1T 1s s

I£ one now sets ~8. ~ and defines

•

y =~ ,
s

the trans£ormation becomes

eV

Y - Y - ~ sin(~x )n+l- n E
s

n
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the transformation
'

and A' = ~1{ ,
eVo

0::- ,

E
S

"lC 21{h (-L _-L )
2 2 2

~s "IT "IS

finally assumes the form

With K

This transformation is a.rea-preserving (unit Jacobian) and phase trajectories

are expected to be symmetrical with respect to reflection in the origin (x -t

-x and y ---i -y). No attempt ha.s been made to effect e. change of ve.riables

that would result in further symmetries.

In x,y-space, the stable fixed point is at the origin, unstable fixed

points at x =+ 1, Y = 0, and the phase advance per transit of small

amplitude oscillations is

-l( AK) -1 "I'AK ...~
I) = cos' 1- 2" = 2 sin 2 ='V AK

with the synchrotron oscillation frequency becoming

in terms of the going-around-frequency (I).
o

If one linearizes the transformation about the unstable fixed points,

one finds the eigenvalue factors

and the corresponding eigenvector slopes

In the limiting case that the transformation may be replaced by a pair

of differential equations,

-K sin 1{X
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the motion is described by the Hamiltonian function

, 2
H=:A Y

G
K
1! cos 1!X,

which is a constant of the motion and has the va.lue H lit K/1C at the

stability boundary. In this latter case, the complete bucket area is

16/K
easily f'ound to be J lit 1C '" ~ in x,y units.

For numerical work we have taken

1! 1! , 1
K - 10 and A =: 10' so Ii. = 10 .

One then expects 8 =: 2 sin-pi ~ ~ 0.3155rad, or about 20 transits per

oscillation when the oscillation-amplitude is small. In addition, by

reference to the differential-equation formulation, one estimates the maxi

mum permissible value of y for "stable" oscillations (half bucket height)

to be approximately 2, and the full bucket area to be close to 16 ~ 5.092958.
1!

Similarly, the eigenvalues for this specific transformation, when it is linea-

rized about the unstable fixed points, are found to be

E ~ 1.36736, 0.731336,

with the corresponding eigenvector slopes

dy __. 2.68663, 3 67357dx - • ,

respectively. A sketch is shown in Fig. 1.
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III. Computational Results

The transformation was programed for execution on the C.D.c.-6600

computer, in single-precision, using the LRL BRF teletype system. To

demonstrate the presence of structure in an ostensibly smooth separatrix,

one can begin with a line segment that is situated very close ~o the left

hand unstable fixed point and coincides in direction with the outward eigen

vector for that point. A segment whose extremities differ in their distance

from the unstable fixed point by a fa.ctor E is suitable, and the evo

lution of points along this line segment can be folJnwed, by repeated ap

plications of the transformation, as the iterates a.pproach the right-hand

unstable fixed point. The development of loops in the iterated line seg

ment, tha.t are cut by extensions from the right-hand fixed point of the

growing eigenvector direction for the inverse transformation, constitutes

evidence for the existence of the type of structure in question.

Loops of this character were found to develop with the transformation

described here, as is illustrated in Fig. 2. To expedite the plotting

that lack of symmetry otherwise would make inconvenient, the plotted

quantities were derived from x,y by an a.rea-preserving coordinate trans

formation

With

~ == A(x - 1) + By

yp = C(x - 1) + Dy

1\ -- . 1.3!1705lJ~!~68 B -. o•36668!~8!~50

C -- -1.15197!~!1·15 2 D == 0.1~287797927

[This transformation has the effect of transforming the eigenvectors through

the point (1,0) so that they coincide with the new coordinate axes.]

The points Q, Q' indicated at the intersections shown on Fig. 2 are

"Queen points", with rt the iterate of Q.* The invariant area of each of

the half loops shown can be estimated from the graph as about 10-11 in x,y

units, which may be contrasted with an area of approximately 5 within the

entire apparent bucket of Fig. 1.

* The approximate x,y coordinates of these points are (0.9999~·602, 1.983053

x 10-5 ) for Q and (0.999996052, 1.1~50287 x 10-5 ) for Q'.
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Some computational check of the work can be obtained by repeating the

itera.tions with a line segment that initially is situated closer to the

left-hand unstable fixed point by some orders of magnitude (~.~., by a

-8 N ",0 8 -16 ... 066rv::.)factor E = O.vul 35 or E = 0.0 /U9. This check was made in the

work reported here and did not affect the results shown on Fig. 2.

Confirmatory work should be able to demonstra.te the existence of

loop structure by showing a non-smooth intersection of the extended eigen

vector directions in a region near the top of the bucket (where x ~ 0 and

y ~ 2). Numerical accuracy of the computations made from the neighborhood

of the points (+ 1,0), with the forward and inverse transformations re

spectively, should be good in this region near x = 0, but the effects to

be sought are quantitatively more subtle. Details of the intersection at

a Queen point for which x ~ 0.10d~234, y ~ 2.009464315 are shown in

Fig. 3.* To construct this plot it again was necessary to employ a co

ordinate transformation designed to eliminate most of the curvature and

**slope from the line segments iterated to the neighborhood of this point.

The scale of the plot shown as Fig. 3 is sufficiently expanded that some

truncation noise from single-precision computations is noticeable, but

the failure of the two phase-trajectories to intersect smoothly is evident.

Double-precision computations were also made on the C.D.c.-6600 computer

to check this point, with results shown on Fig. l~ that fully confirm this

inference concerning the non-smooth intersection.

From Fig. 3 or Fig. 4 one can estimate that the angle of intersection

of the two curves shown is roughly characterized by a difference of slope

*

**

The points designated by Q and Q' on Fig. 2 occur respectively 39
and 40 iterations following attainment of the point Q on Fig. 3.

The (area-preserving) coordinate transformation employed for
this purpose in the present work was

~P= x - xQ

YDP= Y - YQ+ (2.564861730 x ~p+ 0.000038665) x ~p ,

with

XQ = 0.10043075210

YQ = 2. 009461~31485 •
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6 (~) ~ 7.2 x 10-9 • With a postulated parabolic or sinusoidal trend for

the difference between the curves and a separation h ~ 0.099 between their

successive intersections in this region, the area of a half loop could be

estimated as roughly

in adequa.te

of Fig. 2.

0.18 h2 6(~) = 0.18(0.099)2(7.2 x 10-9 )

~ 1.3 x 10-1\

('" -11)agreement.with the estimate = 10 obtained from inspection

It is of some interest to observe the evolution, for a short time, of

a (curved) line segment that starts near the left-hand unstable fixed point,

but just inside (i.~., to the right of) the eigenvector of positive slope

that pa.sses through the point (-1,0). As such an example, we have t.aken a

line segment of which one end is situated at (-1+£, 0) and the other at or
*near the transform of this last-mentioned point. The evolution of such a

-6line segment with E = 2.5 x 10 is indicated by the dashed lines on Figs.

5 and 6.
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* The ~~anSform of (-l+€, 0) is at Yo=~o

~ (1+ 100)€-1. We have taken intermedia.te

2€
sin rc€ ~ L..

10
points with

1
, xo= E+ roYo- 1

coordinates

L/2 1 1 2
y = f. yo ' x = 20 + v€ + (~ + 400)Y -1,

\ 1C

with 0::; f ~ 1.
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MCMillan's form of an area-preserving transformation,

has the tangential-mapping transformation characterized by the matrix

of which cumulative products are to be formed (starting with the identit,y

matrix) as the transformation proceeds. If the cumulative matrix is

denoted

(with AD-BC = 1), one will have real eigenvalues (a reciprocal pair)

1 1 ( )if 2" Trace == 2" A+D is such that I~ Trace I ~ 1. The magnitude

of the eigenvalue of larger magnitude then will be

'~l =
I! Trace I + ~ H Trace)2 - 1 ,

with 7Jrl ::'loglOII\~, and the sign of 1\1 will be the same as the sign

of 12" Trace.

This transformation -- for the dynamical variables x, y and for

the matrix elements A, B, C, D of the corresponding tangential trans-

formation -- has been programmed as a double-precision interactive (TTY)
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program. ("FIG8D") for the L.B.L. c:oc:-6600 computer for the specific

particular case in which*

f(£) 1= '2 (3£-1) - ~

a1.though data are entered (and printed) in single precision.

The program normally prints x, y; the matrix elementlJ A, B, C,. D

of the tangential transformation; 'l/rl; and a flag (LF) whose sign indicates

the sign of "1 when l"lJ > 0 (specifically the sign of ~ Trace). If

the value of AD-BC departs from unity by·as much as TEST (= 1.0 x 10-9)

-- presumably because of these matrix elements becoming large -- printing

occurs (with asterisk flags) and the elements are then restored to

provide the unit matrix (; ~) for continuation of execution of the

transformation of x. y. If desired, "noise" can also be introduced into

the program (by use of the external Library function RANF) as a random-

number addition to x and to y immediately after each application of the

transformation. Also, if desired, a quantity "OSC" can be printed that

provides at least a rough measure (for k ~ 0.1)* of the amount of

oscillation and that becomes unity for points lying on the separatrix

in this case (k = 0.1).

It will be recalled that, for the particular transfor~tion cited,

McMillan has demonstrated the existance of a firm separatrix,

&

* See Fig. 8 of McMillan's paper in "Topics in Modern Physics -- A
Tribute to Edward U. Condon", p. 234.
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but that wi thin the region so enclosed a computational run launched with

Xo = Yo = 0.25 (for k = 0.1) led to a highly scattered distribution of

phase points (confined to that region). We have found, within the region

enclosed by the separatrix just men~ioned, a number of families of fixed poin~

-- notably families of order 5, 6, & 7 -- in addition to the order-l

fixed point at

x = y = - 0.32837 02811 6359

A run, performed with the program FIGBD, launched at Xo = Yo = 0.25

again showed a striking scatter of phase points, and in addition it was

noted that the sign of A (for the cumulative tangential transformation)

continued to alternate during the course of the run. The results of this

run .i.ndical.eu. (in uu general disagreem.'imt with the results previously

reported) a general outward drift of the phase points as the number of

iterations (N) approached 1000, and this appeared to be followed by an

inward movement as N ~ 2000; further iterations led to large amplitudes

near N = 3000, 6000, 10000 and smaller amplitudes near (for example)

N = 5000 and 20000.
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TYPE INITIAL XIY (SINGLE PRECISION)
-0.328370281163591-0.32837f2128116359!

K = 1.f210f210E-01

N = x = -3.28370281164E-01 Y a -3.283713281164E-01

TO CONTINUE VJIl'H THESE DATA.. TYPE 1 -- OTHERWISE 0
1 !

TO ADD NOI SE.. TYPE 1 -- OTHER\OJISE 0
13 !

TO PRINT OSC. MAGNITUDE.. TYPE 1 -- OTHERWISE 0
0!

TYPE NUMBER OF PRINT STEPS
1 !

TYPE ITERATIONS PER PRINT (.LE. 131070)
1 !

LOG 10 LAM LFN X Y A OR C

0 -3.2837E-01 -3.2837E-f211 1.0f21f210E+00
0.

1 -3.2837E-01 -3.2837E-01

TYPE ADDITIONAL NUMBER OF PRI~T STEPS
o !

B OR D

13. 0.
1. 0000E+f210

1

~ = 1.. X = -3.28370281164E-01 Y = -3.283713281164E-01
A = 0. B = 1.0f21f21f210000000E+f210
C = -1.000f210f2100000E+00 D = 5.54460160127E-01

DET = 1.f21000f21000f21f210E+00
LOG 10 LAM = 0. LF = 1
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TYPE INITIAL XIY (SINGLE PREeISIO~)

0.9949874371066110.994987437106611

K = 1.0eJ00E-01

N = x = 9.94987437107E-01 Y = 9.94987437107E-01

TO CONTINUE WITH THESE DATAl TYPE 1 -- OTHERwISE 0
1 !

TO ADD NOISEI TYPE 1 -- OTBERWISE 0
o !

TO PRINT osee MAGNITUDEI TYPE 1 -- OTHERWISE 0
0!

TYPE NUMBER OF PRINT STEPS
1 !

TYPE ITERATIONS PER PRINT (.LE. 131070)
1 !

x y A OR e B OR D LOG 10 LAM LF

o 9.9499E-01 9.9499E-01 1.0000E+00 0. 0.
0. 1.0000E+00

1 9.9499E-01 9.9499E-01

TyPE ADDI1IONAL NuMBER OF PRINT STEPS
o !

N = 11 X = 9.949~7437107E-01 Y = 9.94987437107E-01
A = 0. B = 1.00000000000E+00
C = -1.00000000000E+00 D = 2.49624372644E+00

DET = 1.00000000000E+00
LOG 10 LAM = 2.99940165179£-01 LF = 1

7-85

1



TYPE l:-JITIAL X"Y (SINGLE PRECISION>
-0.99498743710661,,-0.99498743710661!

K = 1.0000E-01

N = x = -9.94987437107E-01 Y = -9.94987437107£-01

TO CONTINUE WITH THESE DATA" TYPE 1 -- OTHERWISE 0
1 !

TO ADD NOISE" TYPE 1 -- OTHERWISE 0
01

TO PRINT OSC. MAGNITUDE" TYPE 1 -- OTHERwISE 0
0!

TYPE NUMBER OF PRINT STEPS
1 !

TYPE ITERATIONS PER PRINT (.LE. 131070>
1 !

x Y Pi OR C B OR D LOG 10 LAM LF

o -9.9499E-01 -9.9499E-01 1.0000E+00 0. 0.
0. 1.0000E+00

1 -9.9499E-01 -9.9499E-01

1

TYPE ADntrlo~AL NUMBER OF PRINT
0!

~'T'lO'OC:-.-. -

N = I" X = -9.94987437107E-01 Y = -9.94987437104E-01
A = 0. B = 1.00000000000E+00
C = -1.00000000000E+00 D = 1.99503756273E+02

DET = 1.00000000000E+00
LOG 10 LAM = 2.29994016518E+00 LF = 1
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It is probably not surprising that during any epoch (of, say, 100

iterations) the phase points follow a motion that does not depart

markedly from a curve similar to a reduced replica of the separatrix.

Diffusion -- if that is the proper term -- outward or inward from

such a curve might be expected to occur gradually. It is, however,

important to be aware of the extent to which limited computational accuracy

(even with double-precision computations) can distort these results.

This question of computational accuracy perhaps can be judged by a com-

putational experiment in which uniformly distributed "noise" between

1 -28the limits ± "2 10 was introduced into x and into y after each iteration.

The results agreed substantially with those for a noise-free run for

N ~700(through 5 decimal figures), but thereafter departed markedly from

the results obtained without the deliberate introduction of this small

amount of noise. The occurrence of scattering in the points thus aprears to

be valid, but the slow throb of amplitude observed in the first run of

this series may be influenced by computational errors.

Because of the effects just mentioned, it may be particularly

useful to examine the characteristics of the higher-order fixed points

that have been identified. The locations of fixed points of orders

5, 6, and 7 are tabulated below, with the coordinates of one member

of each family given to approximately 12-decimal precision
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Order 5 -- stable

Xo = Yo = - 0.0471 1132 93761
x Y

-0.047 111
-0.047 111
-0.41826

-0.65883
-0.41826

-0.047 111
-0.41826

-0.65883
-0.41826
-0.047111

Order 5 -- Unstable

Xo = Yo = - 0.5724 7793 9150

x Y

-0.57248 -0.57248
-0.57248 -0.21679
-0.21679 -0.020348
-0.020348 -0.21679
-0.21679 -0.57248

Order 6 -- stable

Xo = 0.2820 4836 6504,

x

0.28205
0.10921

-0.47466
-0.84564
-0.47466
0.10921

7-88

Yo =0.1092 1187 0733

Y

0.10921
-0.47466
-0.84564
-0.47466
0.10921
0.28205



Order 6 -- Unstable

x

0.23633
0.23633

-0.12927
-0.77254
-0.77254
-0.12927

Y

0.23633
-0.12927
-0.77254
-0.77254
-0.12927
0.23633

Order 7 -- stable

x Y

0.43652 0.43652
0.43652 0.16261
0.16261 -0.50601

-0.50601 -0.91595
-0.91595 -0.50601
-0.50601 0.16261
0.16261 0.43652

Order 7 -- Unstable

Xc = Yo = - 0.8592 6979 47273

x

-0.85927
-0.85927
-0.10009
0.34506
0.47323
0.34506

-0.10009

Y

-0.85927
-0.10009
0.34506

0.47323
0.34506

-0.10009
-0.85927
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The matrix elements A, B, C, D, printed f'or runs starting at the values of' Xc, Yo just recorded

and returning (after 5, 6, or 7 applications of' the transformation, were found to be the

f'ollowing:

A B C D

I
Order 5
Stable I 0.9214 3239 7260 -0.2950 43522058 0.2950 4352 2059 0.9907 9359 7887
Unstable

I
0.7299 4894 2218 -0~1794 5685 0052 0.1794 5685 0052 1.3258 3963 480

Order 6

-.J Stable I 1.3380 6309 073 -0.9080 0152 9533 2.4018 1063 234 -0.8825 0526 8993I
IoC
~

Unstable

I
0.1905 3887 1258 0.5967 7888 7825 -0.5967 7888 7823 3.3791 2655 195

Order 7

Stable I 1.1863 9656 723 -1. 5747 2725 767 1. 5747 2725 767 -1.2472 7766 156

Unstable I -0.7764 3655 5686 -2.3874 1929 306 2.3874 1029 307 6.0529 4518 014

-
Certain expected symmetries will be evident; in many of' these results.



.......
~
N

From these results the characteristics of the fixed-point families listed below follow.

Half Trace -\ 'l}rl1-1. = cos Half Trace) 1\1

'Order 5

stable 0.956 112 997 574- 17.0375 deg. = 0.0473265 rev. I
Unstable 1. 027 894 288 51 J 1.265 731 772 0.102 341 682

I
Order 6

stable 0.227 778 910 87 76.8337 deg. = 0.213427 rev.

Unstable 1.784 832 711 604 3.263 219 606 0.513 646 3016

Order 7

stable -0.030 440 5472 91.7444 deg. ~ 0.254846- rev.

Unstable 2.638 254 31223 5.079 644 452 0.705 833 3151



other fixed points, of higher order, of course exist. Thus, in

the region that may be of particular interest we have the following

systems:

2/11 Systems:

Order 11 -- Stable

Order-ll -- Unstable

x = y = 0.1315 4928 98819o 0

2/13 Systems:

Order 13 -- Stable

x = y = - 0.8224 4803 18007o 0

Order 13 -- Unstable

xo = Yo = 0.3136 4321 59384

~l = 0.7955 5975, . Al ~ + 6. 2454

7-93



TYPE INITIAL XIY (SINGLE PRECISION)
-f21.7f2149251f21978331-f21.7049251f2197833!

K = 1.12100I21E-01

N = x = -7.1214925109783£-1211 Y = -7.04925109783E-f211

TO CONTINUE WITH THESE DATAl TYPE 1 -- OTHER~ISE 121
1 !

TO ADD ~OISEI TYPE 1 -- OTHERWISE 0
121 !

TO PRI~T OSC. MAGNITUDE, TYPE 1 -- OTHERWISE 121
1211

TYPE NUMBER OF PRINT STEPS
II!

TYPE ITERATIONS PEh PRINT (.LE. 1311217121)
1 !

N X Y A OR C B OR D LOG 1121 LAi"1 LF

121 -7.f21493E-f211 -7.f21493E-f211 1.000f21E+0f21 0. 0. 1
0. 1.f210'1f21E+f21f21

1 -7.'1493E-01 -1.5742E-f211

2 -1.5742E-I2I1 1.4935E-01

3 1.4935£-01 5.6~47E-f212

4 5.6847E-f212 -4.5379E-01

5 -4.5379E-f211 -7.82f211E-01

6 -7.8201E-01 -4.5379E-I2I1

7 -4.5379E-01 5.6847E-f212

8 5.6847E-02 1.4935E-01

9 1.4935E-f211 -1.5742E-01

1121 -1.5742E-01 -7.0493E-I2I1

11 -7.121493E-131 -7.13493E-f211

TYPE ADDITIONAL NUMBER OF PRINT STEPS
0!

.>,J = III X = -7.1214925109783E-01 '{ = -7.04925112197~3E-01

A = -3.32314195875E-01 B = -1. 18574894794E+f21f21
C = 1.18574894794E+00 D = 1.2217371215659E+l2lf21

DET = 1.0f210006121f210121f21E+f21f21
LOG 1121 LA£1 = 6. LF = 1
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TYPE INIT1AL X~Y (SINGLE PhECISION)
0.1315492898819~0.1315492898819!

K = 1.0000E-131

x = 1.31549289882E-01 Y = 1.31549289882E-01

TO CONTINUE WITH THESE DATA~ TYPE 1 -- OTHERwISE 13
1 !

TO ADD NOISE~ TYPE 1 -- OTHERWISE 13
o !

TO PRI~T.OSC. MAGNITUDE~ TYPE 1 -- OTHERWISE 13
o !

TYPE NUMBER OF PRINT STEPS
II!

TYPE ITERATIO~S PER PRINT (.LE. 131(713)
1 !

N X Y A OR C B OR D LOG 10 LAM LF

0 1.3155E-01 1.3155E-01 1.00013E+00 0. 0. 1
13. 1.01300E+130

1 1.3155E-01 -2.7340E-01

2 -2.7340E-131 -7.5742E-01

3 -7.57 'J2E-01 -6. 1935E-131

4 -6. 1935E-01 -5.7370E-02

5 -5.7370E-02 1.4327E-01

6 1.4327E-131 -5.7370E-02

7 -5.73713E-02 -6.1935E-01

8 -6. 1935E-01 -7.5742E-01

9 -7. 5742E-131 -2.7340E-01

10 -2. 73413E";'01 1.3155E-01

11 1.3155E-01 1.3155E-01

TYPE ADDITIONAL NUt-lEER OF PRINT STEPS
0!

N = 1l~ X = 1.31549289882E-01 Y = 1.31549289882E-131
A = 3.38972357076E-131 B = -2.27898226816£-01
C = 2.27898226815E-01 D = 2.796872313662E+00

DET = 1.00000000~0~E+00

LOG 113 LAM = 4.43350082393E-01 LF = 1
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TYPE INITIAL X,Y (SINGLE PRECISION)
-0.B22448031tl007,-0.822448031tl007!

K = 1.0000E-01

N = x = -8.22448031801E-01 Y = -B.2244B031801E-101

TO CONTINUE wITH THESE DATA, TYPE 1 -- OTHERWISE 0
1 !

TO ADD NOISE, TYPE 1 -- OTHERWISE 0
IO!

TO PRINT OSC. MAGNITUDE, TYPE 1 -- OTHERWISE 0
0!

TYPE NUMBER OF PRINT STEPS
13 !

TYPE ITERATIONS PER PRINT (.LE. 131070)
1 !

N X Y PI. OR C B OR D LOG 10 LAM LF

0 -8.2245E-01 -B.2245E-01 1.0000E+00 10. g. t
g. 1.0000E+00

1 -B.2245E-01 -1.1088E-01

2 -1.1088E-101 2.9982E-01

3 2.9982E-01 3.7281E-01

" 3.7281E-01 1.4175E-01...
5 1.4175E-01 -4.9108E-01

6 -4.9108E-01 -8.B704E-f211

7 -6.B704E-f211 -4.91f21BE-01

B -4.910BE-01 1.4175E-01

9 1.4175E-01 3.7281E-01

10 3.7281E-01 2.9982E-01

11 2.9982E-01 -1.1088E-01

12 -1.1088E-01 -8.2245E-01

13 -8.2245E-01 -8.2245E-01

TYPE ADDITIONAL NUMBER OF PRINT STEPS
13 !

N = 13, X = -B.224~8031801E-01 Y = -8.22448f2131B01E-01
A = -5.79649985966E-f211 B ::: -8.52506469794E-01
C = 8.52506469794E-01 D = -4.71375356811E-01

DET = 1.00000000000E+00
LOG 110 LAM ::: 10. LF = -1
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TYPE INITIAL XIY CSI~GLE PRECISION)
0.313643215936410.3136432159384!

K = 1.0000£-01

N = x = 3. 13643215938E-01 Y = 3.13643215938E-01

TO CONTINUE WITH THESE DATAl TYPE 1 -- OTHERWISE 0
1 !

TO ADD NOISE, TYPE 1 -- OTHERWISE 0
0!

TO PRINT OSC. MAGNITUDEI TYPE 1 -M OTHERWISE 0
0!

TYPE NUMBER OF PRI~T STEPS
13 !

TYPE ITERATIONS PER PRINT (.LE. 131070>
1 !

N X Y A OR C B OR D LOG 10 LAM LF

o 3. 1364E-1211 3.1364E-01 1.0000E+00 0. 0. 1
0. 1.0000E+00

1 3.1364E-01 -1.7785E-02

2 -1.7785E-02 -7.4384E-01

3 -7.4384E-el -8.6696E-01

4 -8.6696E-01 -2.2147E-01

5 -2.2147E-01 2.7133E-01

6 2.7133E-01 4.1372E-01

7 4.1372E-01 2.7133E-01

8 2.7133E~01 -2.2147E-01

9 -2.2147E-01 -8.6696E-01

10 -8.6696E-01 -7.4384E-Ol

11 -7.4384E-01 -1.7785E-02

12 -1.7785E-02 3.1364E-01

13 3.1364E-01 3.1364E-01

TYPE ADDITIONAL NUMBER OF PRINT STEPS
0!

N = 131 X = 3.13643215933E-01 Y = 3.13643215938E-01
A = 1.45205244129E-01 B = 3.01613679064E-01
C = -3.01613679070E-01 D = 6.26030550105E+00

DEl' = 1.00000000000E+00
LOG 10 LAM = 7.95559752095E-01 LF = 1
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Expanding eigenvector directions, extended from such unstable fixed

points as (for example) those of orders 6 and 7 may fail to form simple

curves that would generate simple island structures surrounding the stable

fixed points of the same order. The extended eigenvector segments then

develop into increasingly thin and increasingly long curved fingers that

cover an extensive region of phase space. Phase points near these fingers

also would be expected to move in an apparently erratic manner, and small

changes in coordinate values ("::o~. from '.'noise" or from truncation errors)

*could lead to pronounced changes after a few additional iterations.

There nevertheless may be apparently firm smooth invariant curves in

certain regions of limited extent surrounding stable fixed points such as

those of order 7, and points executing what appears to be erratic motion

may avoid intruding into these "protected" regions.

* a -~)For example in some trials with noise ± ~ (1.0 x 10- ) or ± ~ (1.0 x 10

added to x and to y after each execution of the transformation, valid runs

(say N 5-decimal accuracy) could not extend beyond some 300-400 or circa

200 iterations, respectively.
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A further examinatipn of the regions "enclosed" by the loops associated

with the order-7 unstable fixed points revealed the presence of two curious

fixed-point families of order 28 ("tune" = 4/28). There thus are four

numbers of the "stable" order-28 family and four members of the associated

unstable fixed-point family within each of the seven regions. The stable

family of order 28 can be generated by launching a computation at the point

on the positive principal diagonal, or, alternatively, by launching the

computations at a point (14 iterations removed) at

x = y = 0.3978 1128 9467o 0

(also on the positive principal diagonal). For this family,

The unstable family can be generated by computations launched at

x = - 0.9101 2951 4108o

on the curve

removed)

Yo = - 0.5026 1156 6232

y =~ rex), or, alternatively, at the point (14 iterations

Xo = - 0.9215 6710 68096

Yo = - 0.5095 6132 70580

[also on the curve y = ~ f(x)]. For this family

and

(for the 28-iteration period).
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-M . - Z to- E W c::
ZCII ... to- Z :::> to- O

22 4.21i)06E-1i)1 1.Ql931E-1i)1 .... r-. ::>: Q .... Z .... X
M 0 Q 0:: rn

W\o II U <I: ll. W lzl

23 1.1i)931E-01 -6.1244E-01 ll. ... ll. ll. a::
>-q ~ :7- 0 0 0 >-->- 0
to- • to-- to-- to-- to-oo to--.I<.

ISl lSl ISl CII CII
24 -6.1244E-01 -9.2033E-Ql1

25 -9.2033E-1i)1 -4.0506E-01

26 -4.051i)6E-01 2.2155E-Qll
X = 4.76372313614E-Ql1 Y = 4.76372313614£-

27 2.2155E-01 4.7637E-CH A 6.8256274ti217E-01 B = 3.dlIi)5596':11)19£-
C = -3.810559691i)19E-01 D 1.252333724:20£+

26 4.7637E-1i)1 4.7637E-01 DET 1.1i)000000001i)Ii)E+00
LOG 113 LAM = 13. .LF =

TYPE ADDITIO;>JAL ;>JUl':BER OF PRI;>JT STEPS
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N X '( A OR C B OR D LOG Hi'LAM LF

'" -9.1013E-01 -5.0261E-01 1.0G00E+00 0. 0.
0. 1.0000E+00

-S.f0261E-IH 1.5862E-01

2 1.5862E-01 4.2374E-01

3 4.2374E-01 4.0886E-01 C'?

~
4 4.0886E-01 1.0692E-01 0- ..
5 1.0692E-01 -6.0661E-01 lSI til

I
l&l ..

-6. 0661E-liH
til -6 -9.147SE-01 C'?
til l&l
\0 a.

7 -9. 1475E-01 -4.0396E-01 \0 >-
If) I--8 -4.0396E-01 2.1657E-01 - lSI
\0
til l&l

2.16S7E-01 4.6325E-01
lSI U1 ..J9 • ... CSl ..J
If) :;0 ::J
I a: CiI lz.

10 4.6325E-01 4.4860E-01 CiI Itl
II :I: ... a:

I- :;0 0
11 4.4880E-01 1.6631E-01 >0 0 X

CiI " ..
:I: CSl u

12 1.6631E-01 -5.0956E-01 l- I-- ...
lSI 0 lSI l-
I - lSI U1

2 CiI C'? 0
13 -S.0956E-01 -9.2157E-01 0 co !f CiI z... IS! :Il Cl

;"i- >0 ... . <J;

14 -9.2157E-01 -5.0956E-01 ... t11 q I- :;0 l&l ....
u(") - ~. CiI ..J Cl
CilC11 If) .. l&l a. •a: \0 0- <J; :I: >- '-' :I:15 -5.0956E-01 1.6631E-01 0.\0 til l- I'" I- Itl I-

If) <J; 0 a. I'" ...
l&l- IS! Cl .. CiI 2 ::<

16 1.6631E-01 4.4880E-01 ..J- l&l I- ....
Cl\O • CiI Cl Itl a: I-
?C11 0- Itl ::J a. a:

17 4.4880E-01 4.6325E-01 .... IS! I l&l I'" I- 0
Itlltl :I: ... 2 ~ :I:
'-' . n I- CiI ~ ... til V}

·4.6325E-01 2.1657E-01
CSl a. Cl a: a.18 >01 - X :I: >- <C a. .... .. CSl I'" I'" ~ V} I-,<co I lz. 2 z

19 2.1657E-01 -4.0396E-01 CSl l&l 3 .. • 0 0 ...
..J- Gl .. CiI U - X
<J;q CSl IS! l&l U1 U1 a: I- a.

20 -4.0396E-01 -9.1475E-01 -- CSl ::> ... 0 CiI <J;
I"'Itl IS! 2 0 m IX: ....
-0- . - 2 I'" :E til ;l:;

21 -9.1475E-01 -6.0661E-01 2 til - I'" Z ::J I- 0-- ~
Cl ... Z - X

IS! Cl ~ (J)
CiI- u " u <C a. til til

22 -6.0661E-01 1.0692E-01 0.0- a. a. J::
>0 • :s: ? 0 0 0 )0 _. >0

0
I"'IS! 1"'- 1"'-1"'-I-COI--iz.

23 1.0692E-01 4.0B86E-01 I lSI lSI CII til

24 4.0886E-01 4.2374E-01

25 4.2374E-01 1.5862E-01

26 1.5B62E-01 -5.0261E-01
X -9.10129514108E-01 Y = -5.02611566232=':

27 -5.0261E-01 -9.U/l13E-01 A = 1.01~65564575E+00 B = -7. 1~027277 337E
C = -4.37385946307E+00 D = 1.01156625466£

28 -9.1013E-01 -5.0261E-01 DET = 1.00000000000E+00
LOG 10 LA/1 7.66391376290E-02 LF =

TYPE ADDITIONAL NUMBER OF PftI:'Jl STEPS

7-105



~. :~; :;:f~g::~ ':~ ::::F-': 0::: ~~: ~;::~:':: ~=:::~ ==~.::,;:.::= ::i' ~~t:-:::;: :~: ::,: :::: :::~ :::: ::::: :;::: 'oJ": :::t:: ::'::'::'
:::~~ :;': :~!' :~: :::: :::' ~:: :::: ;;; :::: .::: "':~: =:;, 0' ;;~ ==:::: ::.:; ::; ::=:[:::;:=.::;::: ::::C: :::: :;::::: ::: :'f:' :::1> <t.:-= ::': :'=: !
:: ::::7,:: :::; :;:: :::: :::: :::: ';:: :::: =::: ::~: :::= :::' :::: :::, :~~ :::: :::' :::: .:::4:::r:=: ::,: :::: :;:, ::,: ::~ :< : .;; :::1=::

7-106



These fixed points are seen to group in tight clusters and might merge

for a somewhat different value of the parameterk (here we have retained

the value k = 0.1).

Additional fixed-point systems of course can be found. Thus, there.

exists an unstable ~stem of order 8 that can be computed by commencing at

Xo = Yo = 0.5939 6695 4780

on the positive principal diagonal or, alternatively, at the point (4

iterations removed)

on the negative principal diagonal. For this family

and

Al = + 6.904 7971

(for the 8-iterationperiod). An associated (stable) order-8 family

(1/2 trace = 0.297 627 29025) has also been found. The fIxed points of

this latter family can be obtained. computationally by launching a solution

at

Xo = 0.608 997 372 7356' y = .~ f(x) = 0.513 770 756 622o 0

or at a point (4 iterations removed) with coordinates

Xo = - 0.952 316 214 05917

Yo = ~ f(xo) = - 0.537 889794 977
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TYPE I~I1IAL XIY (SI~GLE PREClSrO~)

0.59396695478010.5939669547551

K 1.0000E-01

N II X.. S.939669547B0E-01 y.. 5.93966954780E-01

TO CONTINUE wITH THESE DATAl TYPE 1 -- OTHER~ISE 0
1 !

TO ADD NOISEI TYPE 1 -- OTHERwISE 0
0!

TO PRINT OSC. MAGNITUDEI TYPE 1 -- OTHERWISE 0
0!

TYPE NU~BEH OF PRI~T STEPS
8 !

TYPE ITERATIONS PER PRI~T (.LE. 131070)
1 I

F'OR SHORT PRL\ll, SHORT vJlTH DIAGNOSTIC, OR FULL -- TYPE I, 2, OR 3
3!

N X Y A OR C B OR D LOG 10 LAM LF

0 5.9397E-01 5.9397E-01 1.0000E+00 0. 0.
0. 1.000I:lE+00

1 5.9397E-01 3.9617E-01 0. 1.001:l0E+01:l 2.9756E-01
-1. 0000E+ 00 2.4tHSlE+1:l0

2 3.9617E-01 -9.4690E-02 -1.0000E+00 2.4f:HSlE+00 5.9041E-01
-2.4722E+00 5. 15 09EH-J0

3 -9.4690E-e2 -9.0601E-01 -2.4722E+00 S.150.9E+0" '" -1"'.
-1.0235E+00 1.7281E+00

4 -9.0601E-01 -9.0601E-01 -1.0235E+00 1.7281E+00 6.1029E-01 -1
1.3749E+00 -3.2983E+00

5 -9.0601E-01 -9.4690E-02 1.3749E+00 -3.2983E+00 5.5780E-01 -1
2.4975E+00 -5.2641E+00

6 -9.4690E-02 3.9617E-01 2.4975E+00 -5.2641E+00 0.
6.6941E-01 -1.0106E+00

7 3.9617E-01 5.9397E-01 6.6941E-01 -1.0106E+00 4.9334E-01
-8.4259E-01 2.7658E+00

6 5.9397E-01 5.9397E-01 -8.4259E-01 2.7658E+00 8.3915E-01
-2.7658E+00 7.8922E+00

TYPE ADDITIONAL NUM8ER OF PR1.'JT STEPS
01

N .. 8, X .. 5.93966954780E-01 Y .. 5.93966954780E-01
A .. -8.42585004407E-01 B 2.76583747427E+00
C = -2.76583747427E+00 D 7.89220897514E+00

DET = 1. 00000000000E+00
LOG 10 LAM 8.39150922660E-01 LF

1921.500 COMPUTING UNITS REMAIN*

FOR NEi·j K, COORDS., OR TERMVJATE, TYPE I, 2, OR 9
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FOR Y=0.5*F, TYPE 1 -- OTHERwI~E 0
1 !

TYPE INITIAL X (SINGLE P~ECISION)

0.60899737273561

K = 1.0000E-01

N = 0, X = 6.08997372736E-01 Y = 5.13770756622E-01

TO Ca~TINUE ~ITH THESE DATA, TYPE 1 -- OTHERwISE 0
1 !

TO ADD NOISE, TYPE 1 -- OTHERwISE 0
01

TO P~I~T osee MAGNITUDE, TYPE 1 -- OTHERWISE 0
01
TYPE ~UMBER OF PRINT STEPS
8 r

TYPE nE~ATIO:\lS PER P~INT (.LE. 131070)
1 r

FOR SHOHT PRINT, SHOHT wITH DIAGNOSTIC, OR FULL
3 !

TYPE I, 2, Oli 3

N X Y A OR C B OR D LOG 10 LAM LF

0 6.0900E-01 5. 1377E-01 1.0000E+00 0. 0. 1
0. J.0000E+00

1 S.J377E-01 1.8177E-01 0. J.0000E+00 2.9629E-01
-1.0000E+00 2.4838E+00

2 1.8177E-01 -S.3789E-01 -1.~000E+00 P..4838E+00 5.6058E-~1

-2.3797E+00 4.9107E+00

3 -S.3789E-01 -9.5232E-01 -2.3797E+00 4.9107E+00 J.9752E-01 -1
-2.856BE-CH 1.6930E-01

4 -9.S232E-01 -S.3789E-01 -2.856BE-0J 1.6930E-01 6.5486E-01 -1
1.6071E+00 -4.4528E+00

5 -S.3789E-01 1.8177E-01 1.6071E+00 -4.4528E+00 0. -1
1.1S39E+00 -2.5750E+00

6 1.8177E-01 5.1377E-01 1.1539E+00 -2.5750E+00 0. -1
1.1390E+00 -1.6750E+00

7 5.1377E-01 6.0900E-01 1.1390E+00 -1.6750E+00 0. -1
1.6750E+00 -1.S852E+00

6 6.0900E-01 5.1377E-01 1.6750E+00 -1.5852E+00 0. -1
3.0296E+00 -2.2702E+00

TYPE ADDITIONAL NUMBER OF PRINT STEPS
01

N = 8, X =
A =
C =

DET =
LOG 10 LAt'i =

6.08997372736E-01
1.67496915691E+00
3.02955960102E+00
1.00000000000E+00
0.

Y = 5.13770756622E-01
B = -1.58523197160E+00
D = -2.27022373740E+00

LF = -1

1977.160 COMPuTING UNITS REMAIN*
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EIV\N-2.%

A Remark Concerning a Transfon~tion

Examined by Froeschle~*

L. Jackson Laslett

Lawrence Berkeley Laboratory
University of California

Berkeley, California

March 6, 1974

Froeschle
/

(1-3) has examined certain area-preserving mappings with

the object of gaining insight into the stochastic, or apparently stochastic,

behavior of such mappings 1n cer"l:ain regions. He directs atteuiJiou lu

this connection to the behavior of ~n = 10glO An and of quantities

related to ~n' where IAnl is an eigenvalue (or magnitude greater than

unity) of the cumulative matrix f'or the tangential mapping. In attempting

to relate the behavior of a transformation to that of a C-system, however,

it is also of interest to ing~ire into the sign of An -- ~.~., into the

sign of' the trace of the cumulative tangential-mapping transformation --

and this matter we pursue in the present note with respect to the trans-

fonr~tion denoted by Froeschl~as Tl in our Rer. 1.

The transformation Tl of Froeschle/(l) is cited by him as associated

with the earlier work of H~non (cited here as our Ref'. 4) and is written

·x-
Work supported by the U.S. Atomic Energy Con~ission.
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= x cos ex n
2(y -x )n n sin 0:

= x sin 0: + (y -x 2) cos ex,
n n n

where ex is a constant (taken to be such that cos ex = 0.22 in the

work of Ref. 1 and throughout the numerical work reported in the present

Note). We consider it convenient to express the transformation Tl in

terms of other variables, so that the transformation assumes the form

advocated by McMillan. (5) To this end we write

~sin ex Y X
x

.vsin exx == == cos ::{ +y
~sin ex

ri

X Y cos ex x-y == Y = ,
~::;in c; ~sin Q

for which the functional determinant (Jacobian) is -1. The transformation

Tl applied to x,y is then found to be equivalent to the following

transformation for X,Y:

== -X + 2Y cos ex + Y 2 sin3/ 2 ex,
n n n

which will be recognized as being of McMillanfs (area-preserving) form(5)

Y 1 ~ -X + f(Y )n+ n n
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where

fey) = 2Y cos a + y
2 sin3/ 2 a

in this instance.

The matrix of the tangential-mapping associated with this transfor-

mation -- _L~., the matrix taking dX ,dY into dX 1,dY. l -- isn n n+ n+

with

f'(y) = 2(cos a + Y sin3/ 2 a)

and the half~trace is

htr = ~(a+d)

= cos a + Y sin3/ 2 a.

From a cumulative-product matrix, formed by the repeated multiplication

of such tangential-mapping matrices -- ~.~., from

1
-- we form HTR == "2 (A+D) and then, when IHTR I ~ 1, the eigenvalues

are(6) HTR ± '~(HTR)2_1 and
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with the sign of A identical to the sign of HTR. Related ~uantities
-- n

of interest to Froeschle~(l) in addition to

are

and the "Cesaro mean"

~ =n

n
e •m

The transformation specified above has a first-order stable fixed

point at the origin, with HTR: cos a. There also is an order-l fixed

point on the principal diagonal at

x=y= 2(1-cos ex)

sin3/ 2 ex

that (for cos ex = 0.22) is unstable and lies at

x = y . 1.619137656439

(with the larger eigenvalue A ~ 3.252548810736). In addition, for cos ex = 0.22,

there is a family of five stable and five unstable order-5 fixed points --

with the approximate co-ordinates listed below:
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Order-5 Fixed Points

(cos ex = 0.22)

Stable Family Unstable Family(a)

X Y X Y

0.669716 0.669716 -0.382322 -0.382322

0.669716 0.057097 -0.382322 0.354932

0.057097 -0.641453 0.354932 0.6598tQ3

-0.641453 0.057097 0.659868 0.354932

0.057097 0.669716 0.354932 -0.382322

a) A ~ 1. 774 for the total of 5 iterations.

Half Trace ~ .0.7528856

O-=t7'tt=mc-rj'Z· .. _-~- ......_.-.- "r---··-·

Half Trace ~ 1.1689567

In executing the transformation (which we have done computationally

*in double precision on the LBL C.D.c.-6600 computer) we find, as noted

by Froeschle/,(l) certain regions of apparent smooth stable behavior (in

the neighborhood of the stable fixed points mentioned) that are surrounded

by regions of irregular (stochastic!) and in some cases eVidently unstable

behavior. Froeschlehas chosen(l) to identify these regions by means of

starting values Yo = 0, Xo = 0, 0.01, 0.02, etc. and notes(l) erratic

behavior for

and for 0.81 ~ xo •

Corresponding starting values

~
See Fig. J.. For starting values of the type Xo,o in Froeschl{'s notation,

the corresponding values X,Y were entered to single-precision
accuracy (and the succeeding computaticns executed in double
precision) •
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FOR t=0.5*FI TY~E 1 -- OTJEh~I~E 0
0!

TYPE I~IIIAL K & Y (F-FOriMAl J~Ltl 2 LI~ES)

((). 6 6 ') { 1 6 ~1 0 2 6 !
0.6697163~26!

SI~ = 9.7550E-01

N = x = 6.69116362600E-01 t = 6.697163d2600E-01

TO CO~lI~JE ~Ild TdESE DATAl IYPE 1 -- OT~Erl~ISE 0
1 !

iO ADC ~JrSEI TYPE 1 -- Jr~Eh~ISS 0
0!

TYPE ~JMnEH OF ?rlI~T STEPS
5!
Ti~E IrEriATIJ~S ?EH PHI~l (.LE. 131070)

1 !
FOn TTt OUTPUll TtPE 1 FOrt FLorI TtPE 2

l!
FOH SHOrtT PhI~TI ~~Jrtr ~lTri DIAG~J~iICI OR FULL -- liFE 11 2, Ort 3

21

:J X- i PSI PSI/.'J CESAriO LF

0 6.69716E-01 6.69716£-tH 0.

1 6.69'116£-01 5.70970E:-J2

2 5.7097:1£-132 - 6. L114 5 3£ - 'J 1

3 -6.41453E-'Jl 5.70Y70E-02

4 5.70970E-02 6.6·n 16E-01

5 6.6~716t:-01 6.69716£-01

TYPE ADDITIJ~AL ~JMBEk OF PriI~l ST£PS
0!

:J = 51 X = 6.697163326657469975426668814D-01
i = 6.697163625924d90~3954451756SD-01

'\j = 51 ,{ = 6.697163d2606E-01 y = 6.69716302592£-01
A = 1.3~~~71423'l2E+u0 D = -S.d2547j09256E-01
C = d.d254700Y716E-01 D = 1 .6409975105d£-01

DEI = 1.J0J000000JJ~+00

LOG 10 LAlv; = 0- LF' :: 1
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FOri Y=0.5*F, TYPE 1 -- OrHEriWI~E 0
0!

TYPE l~lTIAL X & r (F-FOHMAT Q~Lr, 2 LI~ES)

- 0. ~i ci 2:3 2 23 1 -, :2. -) !
-0.3d83223172SJ!

0, X = -3.82322317290E-01 r = -3.02322317290E-01

TJ CO '11' I,-J.) E: V; I hi THE.:>!:: DATA,! 'fPE 1
1 !

OTHEHiri I ~E 0

TO ADD .~ J I SE, TYPE 1 - - JTHEtit·i!:3£ 6
0!

T:{ PE .lJiJi18EH OF PH I :ill 51 EPS
5!

T Yr:-E I T E i~i1T I 0 :-i S .lj~ Ii ? HL\l f (. LE. 1 3 1 07 0 )
1 !
FOh TTt OJTPJT, TYPE 1 FOH PLOT, TYPE 2

1 !
FOH SHOHT PIH ~l, SdOHT \d Ii-! DI AG :-.]O::'T Ie, OB FuLL -- TYPE 1, 2, OH 3

2!

~ x: 'f PSI PSI/.il CESArl.O LF

f1 -3.()232~F.:-Gl -3.i:5?322~-~11 ~; .
1 -3.62322E-iJl 3.5LJ932E-01

2 3.5LJ932E-Jl 6.59ts6dE-01

3 6.59860£-(31 3.5 LJY32£-01

4 3.54932E-01 -3.d2322£-01

5 -3.82322E-iOl -3.82322E-01

lrPE ADDIIIO~AL ~JMBEH OF paI~i STEPS
6!

\J = 5, X = -3.o2322317297LJ06Y5645d3717612D-01
i = -3.823223172J12120446023~613tslD-01

:'1 = 5, v = -3.02322317297£-01 'f = -3.82322317261£-01"
i~ = d.56J56324152E-J2 B = -d.')8196232046£-01
C = d.~jl~E232d66~-~1 D = 2.25210772118£+00

DET - 1 • ';H5 (3 0 (j ~3 ;j ~j 0 til ~j ~ + 0 ~j

LJG 10 LAt"i = 8.~9030~26d20S-~1 LF = 1
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xo

~sin ex
, x =o

cos ex
r-;-

IIJs~n ex
x = y COS ex

o 0

of course show the same behavior when introduced into the McMillan form

of the transformation under consideration.

(
0.118055) ~

0.536614 (:) (

001269651

0!577114j
(

0.180424)1 "..,
and ~

0.820109

The starting point Xo = 0.30, Yo = 0, for which some specific detailed

results are given by Froeschle/ in Ref. 1, corresponds essentially to

x ~0.06682367053919,

and exhibits very smooth behavior.

We have made computational runs -- usually of 2000 iterations duration,

unless terminated (in a case corresponding to x = 0.55, y = 0) byo 0

IY I becoming very large (IY I > 10160) -- for starting values similar

to those mentioned above, namely for Xc, Yo corresponding to Yo = ° and

Xo = 0.30; 0.52, 0.53, ..• 0.57, 0.58; 0.80, 0.81

The quantity 'lrn = l.oglolAI (when IHTRI ~ 1) and the sign of A

(LF = sign of HTR) were printed, but with a diagnostic warning and a

re-initialization of the cumulative matrix (~~) to the unit matrix

(10
. 10 ) IA B I' \ (whenever the determinant C D came to differ from unity as

a result of the matrix elements themselves becoming very large) by as

much as 10-9• There also was exercised an option to print growth factors

for cumulative differential distance growth:
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(and their common logarithms), although these quantities are not

invariant to a canonical change of variables (as, for example, a

sDnple scaling of X by a constant factor and of Y by the reciprocal

of that factor) and also, in fact, their logarithms do not differ

markedly (understandably) from V= 10giAI when V is large.

We tabulate below an account of these various runs (in which, of

course, printing was not requested at each iteration). Tests of

program accuracy with respect to co-ordinate values (X,Y) were made by

repeating a run and introducing noise (uniform, in the range ± 0.5 x 10-28 )

into each of the co-ordinates af'tc:i:' each itc:::'aticn and eXar=l.~n~ng

resultant difference in the co-ordinate values at the end of the two

runs. Throughout all these runs (inclUding those in which phase plots

were definitely erratic and suggested a stochastic behavior) the sign

of An [LF = Sign (HTR)] continued to flip, so that the true stochastic

behavior required for a C-system (a lower positive bound to An)(7) does

not appear to be established.
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Length of Run
(Iterations)

Did IDET-li I
exceed 10-91 (a)!

Co-ordinate Errorlo/n = loglol~nl
at Ead of Run(b) Inear End of Run(c)

i

10000 No 6 x 10-24 I > 2, (2.6)

No

No

3, (3.8)

6, (6.8)

2, (2.7)

2 to 3, (2.9)

Co-ordinates
became large

6 x 10- 5

6 x 10-24

7 x 10-22

6 x 10-25

1 x 10-24

1 x 10-8

No (us)

No

@ N=998 I

\
@ N=484(us):

I
@ N=763

97~

2000

2000

2000

2000

2000

2000

0.52

0.53

0.54

0.55

0.80

0.81

2000

2000

No

No

8 x 10-27

1 x 10-19

C'l, (1.4)

8, (8.6)

(a) If Yes, the cumulative tangential-mapping matrix (~ ~l was re-initialized.

(b) The larger of the errors in X and in Y, resulting from noise.

(c) Estimated typical \~lue, for runs in which matrix not re-initialized.

As a partial check of the work, graphs similar to those published

by Froeschle/ (Ref. 1, Figs. 2 and 4a) were constructed, and appeared to

depict results in complete agreement with those curves. Specifically,

the graph of our Fig. 2 shows the evolution of the Cesaro mean ~, through

10000 iterations, for xo = 0.3, Yo = 0 (and cos a =0.22), and is to be

compared with Froeschle',s Fig. 2. Likewise, our Figs. 3 & 4 show ~ vs.

xo ' as evaluated after 200, 300, 500, 900, 1000, 2000, 5000, and 10000

iterations -- of which the results for n = 2000 (on our Fig. 4) may be

compared with the corresponding curve of Froeschle"s Fig. 4a.
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It has seemed of interest also to construct curves showing the

evolution of ~, vs. n, for a sequence of starting values Xo (with Yo = 0),

namely x = 0.20, 0.30, 0.40, 0.50, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57,a

0.58, 0.60, 0.70, 0.80, and 0.81 -- see Figs. 5-8. Computation of results

required for such

normally taken to

plots was terminated if IHTR - 11 ~ TEST, with TEST

-9be 10 although some dotted-line extentions of the

r.esults were obtained (for Fig. 7) by setting TEST = 5.0 x 10-5.

As noted by Froeschle', (1) the use of the Cesaro mean, 11, for constructjni~

*such plots (or, perhaps preferably, usc of the similar quantity 11

introduced in Sect. IV, p. 20,of Ref. 1) certainly removes the distressing

fluctuations that would be seen on plots of 0/ or of 8 vs. n. It may

be noteworthy, however, that the plot of ~ vs. n for Xo = 0.53

a case for which erratic phase plots have been obtained(l) -- appears

to show a monotonic ~ecreasc of ~ with incrnasing n, extending from n ~ 60

through to the end of the run (n = 10000). This behavior seems somewhat

at variance with that seen by Froeschle' for his transformation 1'2, in

which a run leading to "ergotic" coverage of the phase plane appeared to

*give values of 11 (and of 8) that did not, tend to zero (sec upper curves

on Fig. 1 of Ref. 1). Returning to the transformation under consideration

in the present Note (equivalent to Froeschle',s transformation 1'1), we also

notice from Fig. 7 that the curve of ~~. n for the starting condition

Xo = 0.57 -- that also exhibits erratic phase-plane behavior -- shows a

slow rise (at a very modest rate) only after the computations have progressed

to fairly large n values. ~ vs. n plots of other cases leading to

erratic behavior (e.g., with Xo = 0.54, 0.56, and 0.81l, moreover, fail

to provide any clear evidence of "leveling off" before it was judged

advisable to terminate computation of 11 in the interest of computational

accuracy (as judged by IHTR - 11).
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In view of the remarks of the preceding paragraph, it may be

suspected that the Cesaro mean, as introduced by Frocscll1c~,(I)

p
n =

1
n

n
L

m=l

e
m

is a bit sluggish in its response to changes (£.R" to growth) of o orm

of 11'111' A possible alternative indicator, namely

n n-m
L - -- ee T

V'
m=l m

=n
n n-m- --
L e

'(

m:;:l

n 10g10 lAI
L

n-m m- -- -------
m=l e T m

=
n n-m
L --e T

m=l

might serve desirably to give relatively greater emphasis to recent values

of e -- taking, for example, T = 50 (iterations). Por comparison with

some of the results obtained for p, we have made evaluations of un (as

defined above) for x = 0.52, 0.53, ... 0.58, 0.80, and 0.81 -- taking. a

liT = 0.02 (and cos a = 0.22, as before).

The results, in the form of plots of v v~ n -- rigs. 9-11 --

may be compared with those given previollsly for 11 vs. n on similar scales

(Figs. 6-8). Plotting typically was at intervals of 50, 100, or 200
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iterations as the runs progressed, and the fluctuations do not generally

appear to be particularly troublesome in the plots of 'J vs. n. The

greater responsiveness of the 'J vs. n graphs is apparent and may be

helfpul thus the runs begun with x = 0.52 and with x = 0.53 arc ~eeno 0

to drop to lower values during the course of 10000-iteration runs and, indeed,

show less distinction between them (despite the erratic character assigned

to the phase plots of the xo = 0.53 run). The succeeding runs -- with x
o

::

.54, 0.55, 0.56, and 0.57 -- also arc more responsive, so that their eventual

up-turns may be more evident.

sequence, that commenced with

Similarly, in the final two runs of this

x = 0.80 clearly drops further on the 'Jo

vs. n plots and the run with x = 0.81 gives some indication of a developingo

upward trend before evaluations of 10[10 I~I were terminated. It is of

interest to note [see Ref. 9, Sect. 4 (which refers in that Section to a

pair of non-linear differential equations derived from a time-independent

Hamiltonian function) -- esp. the two paragraphs beginning ncar the bottom

of p. 8 and continuing through p. 10] that an approach of an eigenvalue

pair (A 1 & ~ 2 = 1/ ~ 1) to a common value of magnitude uni ty can be

associated with, a confluence of eigenv~ctor directions, since the eigenvector

slopes are given(9,6) by ~ - A
-8--' The general circulation of points within or

around the quite simple phase diagram shown as Fig. I in Ref. 9 appears to

be sufficient reason to cause, in that case, such confluences to occur

(more frequently when the circulation about the phase plane is more rapid)

and in In 1~1 I having no positive lower bound.

In conclusion, we may say that the evolution of the Cesaro mean U,

employed by Froeschle~, or (perhaps preferably) the evolution of the similar

quantity v suggested here, provides a helpful indication of the development

of the magnitude of the (greater) eigenvalue of the cumulative tangential-mapping
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matrix. From the examples rpeorted in the present note,

however. graphs of such quantities evidently do not always

provide a completely clear early means of distinguishing runs

leading to apparently stochastic phase plots from those that

do not -- see. for example. our graphs pertaining to a run

commenced with = 0.53 and y o = o.

Of particular significance. moreover. may be observation

that in all the cases examined there continued to be reversals

in the sign of the eigenvalue. so that the motion under examination

can be said to be not strictly that of a C-system. Such sign

reversals have been seen also to occur in previous studies --

both with non-linear area-preserving algebraic transformations

(with or without the region of interest enclosed by a firm separa-

( sn
t r i x ) ~ Jan d a 1so for a non - lin ear pair 0 f fir s t - 0 r d e r II ami 1ton i an

differential equations (with or without explict time dependence

in the equations). (9)

7-130



Re'ferenccs

1. C. Froeschlc.... , Astron. & Astrophys. 2., 15 (1970).

2 . C. Fro esc h 1 c.... & .J. - P. Sc h e ide eke r, J. Comput. Phys. .!l. ' 3 (l 9 7 3) .

3 . C. Fro esc hI c'" & J. - P. Sc he ide c kc r, Pap c r I V-I (S e s s ion I V,

IS Sept. 1973) of the International Conference on Point

Transformations and their Applications (Laboratory of Automation

and of System Analysis, Toulouse, Fraricc; 10-14 Sept. 1973).

4.
/

M. Henon, Q. Appl. Math. 27, No.3 (1969).

S. E. M. McMillan, in "Topics in Modern Physics A Tribute to

Edward U. Condon." (Colorado Assoc.University Press, Boulder, Colo.; 1971).

6. The eigcn-vcctor slopes arc given by

[and when

dy A - A
dx = B

A = 0 and B = 1

C
= A - D

arc simply given by dy
dx- = A

(with the two values of A of course constituting a reciprocal

pair)].

7. The writer is indebted to Mr. Paul J. Channell (LBL) for

advice on this point concerning C-system properties.

8. Sec ERAN-224 (U.C. Lawrence Berkeley Laboratory, Berkeley

California; January 1974) and a related similar report now

in preparation.

9. ERAN-223 (U.C. Lawrence Berkeley Laboratory, Berkeley,

California; 26 November 1973).

7-131



....,.....".". ' ....

.r.r... ..1•

..+ J. I . I' . ~~. i 'i-'i:,j ..~; J·H
/-.....,/-,--1....;..--......-!-:-__ ....._._L__,... ----~ ~-' -__ t---':"-"-"+-'-'.'.--'Q~(ex]. =0 0 • .2..2 '
f"j" ' I ,.' ; ; : !--, -;- . ';-----!: .: ~c .. , "', .. i.:....!
h-+--+--b--l

1
! ; ; '~I-;- , -;---r-:----j-.----;----r--;.~~Q.J....~..~j..'-.--""." .. ",'-'''1 t , !', 1 :.. : I"! I" .. 1 ': ,. 1 ;' i . I ...-

I-'--!-'--J'--l---'-+'--i-I-~-:--:--:--r--,---:--r--7---,----r--+--t-- . ' 1

'- ···~··~:-,-:~t=_1~~:E+;j.-t:t:}j~(~:tEtci~d:+-~t;±
+_L ..,;'-t--H-~·+--c.+'-' -:,-,j -',- ·-+·:-i---,i-~_+--+-H---·..:~"'H- ...++~, 'i .,.

. . .: '!..J"'+' I' . I : ': : i' j I' '+ t
1).003 H-\----./-""-.-+'_--'-',--1H-;.--t·_··-_:'-+'-'_-'--+!_'....;..'_'_'-+r_-'-~,--Ir-'-~---1'!---,-+i--,----+! __'+-_',--1,...-,...;_--;i_'_'...-..;.,'_'-""'_'+1_:-+'_.+1===~==~===:=~.,-1.,'J

1-\· :+--+-H~--:+-:.--+·"-+- +--+-+~-h+.:."". --;-+-~+-~-+~,+·~-~..,...-t--+-~-b-;-\-+ :,--'1.,

:~ : c---,... --~-+-T-+--:....H-'r-~-i-Ti-+--t--H-i-···t±·-h-t-l-·* -+ '---1,-'-'--+-;-':-+:-1
Ii' i_~'1 ' L L . : .; . I ,+' ii' i' . i" : '. I,iTil:; I ':-'-i ~~-,i i', -- I I, ,
'j ! . i i.i....;....i I I '1' 1 ' i . ,I"I I. ,: ,,'

" . ;---'--~-.,..------i--+-'-' 1,...'-..;.'----.--;-'--'--j
II-'+:~.'-I\-i~"":-f-,!..--i.:-'f-,:'-;--t-+~--+-h'-+:"":--i-"---f-' : H-+-II-'-'-;- --+---'-4--'--+1-'"-,-t,

!

I
I ' i
i .,.,

,

~ i !
i , ! I
i , , , , , !,

i , ,,'I
i, .·11·1 . i ,I.' I·j .-i-- :: . ' .I 11Pf=!-I"\if'-"''-''l-;-+-'--'-''!. !. I ,. I i-'-+--+-,-f-,-+-,".;-!""---t-'i+-+--+-r.+-,-+,~-!f-,-+-,'J--i--+---f-'+--'-r+-ri--!-~l

fe· ·1: . \, :i I.
i 1 ! I

I" .' ,\ ,
i

I" . i
.: . :' I !.; ! 'j

, i
j.

: I

I=HH;"'.• ·-t·,.....;-.-+•. -++'\",,-'-;-;---; , : I :'; 1 ,I: i I: .': ;,Trb
H----t--tl----t---;--,-t--i----t--i.-'i-k=· ...L....: Ii :1 :....L jl. ~_+_;_jb·.-;-1-+--+--t---+.!'--t

, I'" I . ,; ! [ I'! .It; "',

I
./

i

10.001

7·132



.......
I
~

~
~

u. ~ 20 X 20 TO THE INCH 46 1240
n.p.~ 7 X 10 INCHES "AC! IN ll. S.....

KEUFFEL ell ESSER CO.

t
~

0.03 ::~! ~;I, ',~: ::,: ,':I'!': \"1 ': I::!
"1'

Ii-
~ • t

0.02.

0.01

Frc,.3.

o
o 0.5' .x-o



K.:>:E ;ox ~02~~~~E~HE iNCH ::~ IN ~~(.,.

KEUFFEL a r:::SSER co.

r.n;, 4.

1.0

" ,
'j". I' !.; I 1.:/:: I: I'I"'" . I··" !. , , :

o
o

:::: :i:,;U iii:T ;:: :4±i':Y:' .::~;:!: :;:;1" .:'. :',:;' :.:1:.1::.i: . ;-.::- --:l~:---:-r-~!--'-" -'r -.r--!~ I,: ii:,: ! :Ii:!, it: 'lL".':'£f h!1 iF ~L,-"',~ "...."-' '-+, .~} ,'-, -...+, '~ :-c ; ." ,," -I' ': "1' I : I •

:~::-~:i"n ::::::,~ :T1T '::: ../ ::~~ ~:'l' :.::: •. ....: .+- :.- -'~~. ;~;-_. -- :-._;-'- !--1-- ... i '1 __:-'_'
f).03 ~ i., .". ,"".,. . :'. \." ., '\., '1" "I', ' I .J , . I' , .'_1 .. 'j 1

: I . :.. , ! . !, .. ' :L: ,;.~-. "--, .----.. ::, .. ~~_. __ :.:.. :" ""'1,--- T-: ""'T'I-::: i -: , '. !',:... :.. --- :-1::;: ..- ..- ';-'-1·, I' . .:,..... ...., III" ;:1': H+' __1 _.. .1__ .. __. " .: "£.' ', .. ! ;!!: ,:. . .... ' .. : I _.:-'~ .. ,: -·--r----;-f----i----- -- 1--- -- j-; I I' ~
1--+-'1'-:- -'-' - j' "f-'~ ~ ! Ii!· i' I ! . ,r I 1 ..:. • I - I ... ._ I _. --: -: 1 :..!

1 .. ·~l:·· '" ':,: ~;[:.;~:.:. ·1--.. :-.:-.- ·-l-· .. ·i --I· i I;,: l i : '__ .: .L_' ill I ~ I I" " . 1 ., ' , .- . -- ._-..-- I' -- - _. I .!':: -:':. "- .: i'·. ' , . I--r---' I ---;:r- '-'-I' I : I , i--'--/-. - --r-r-'- , ., ", 'i'. ,; ,', ., '''''!...;I,· Ii'" I, I ,: :,' , ,I : - __ .. ....:. -.1.. ·_·1---. --.1. . , 1 i ! i' . :, " '," .•• -- - ~-. --, h--_ ---1-- . , I '" 1---1-':':'-·_·' ---~~ .. ;,,;. -T(r,:. "," :',,:, I I, 1.:1·[ ~ ---L_-_..l ... _._L._. __.;._.
' , :!:, T· ", t ' . I--- --'--- -,--.- I I ''I" "',' i, .11 "':.,L" , .. " ., ----r-.- I I 'j' I i Ii

t--t":"':" ..-; -,.-;- --:t-:-:-. -1-'-- ..' ';: I'. ',! I ... .;. :'. j ' I 'I " . __ I .... -. ',' 'I [, --. i _., 'I, ,I:,:; ,.;: ~·:_!l~~~"·I"__ '':'''··'' -...:::...- -..:.·f- --. - .:. -:.. ~....- ---1-- -lor " I I i II-·::l~-- --1"·': ·~~,ll-" ':\'! --: :;!II!'I .·i, ' '.1 ' I: ;._1._ --' -:-__·1·__'·__ '_';_'''_j __ I_
I' ,! "",' : ',I. . !.......... ---j-.- -;.,.- , I, I . ,

0.021--..l_--. ---'-:~f--i"- 1"1 . 1 I 1 '[ 1 ±: I --1--" I .. .1 ... !.,
j , ", , ..,. .... -- --, - .I' ,'j. ,." ,,', j 1: " .. , .. '1- .Lt-I. . -"1-" q' .. --' - --- i -. : I I I I I.,--. '~";B'- ~... _- .~ ---- -..:.H+t..;....; ...;--~- .---:--;- ':-;--1 'I I ,i -t-

J
-- ,_~_.+~I~ .

. ,I ., ': 'b "ii: t· i· I - - -_..,.- - ------1- - I "iI' ~ ',I ': ~ - -" , --1--.,,: . I , ! I
1- .......- --- " .1 '!, ,. Ii. I I . __ .. .. . ,._ . I j.. !.I· '.'!',: ' . I . I I! :' It" . .:.....:.1._ .. J: _ -- L_ I'" -.. j _,'--1 _ 1___ -. I 1'\I I I 'I ' " '. I I ' ~-i-+-- c ..'- --. -- ---- ---. _ . ' , . I ' I I ;

I - '.- -.- ~., ' ..-- - -_ .... -.~-:- "I' -;, i . , I L ' 1 P , --+-----._-.---I ' ". . I 'I :" , I 1 _ _._ __._ -r '_. I
' • '1' I. . '- .- --~ -.- I ., 1
' .' " , , . - ,----- I' I· I ! I "- -.- .. , I '. .. I I ....r- +-~~. .' ,,,. , . . .." . '" ' .. . _ .. 1 __ , 1 i___J~ .... ::ij.:~ ;~L J~I~ ~ :.'. 'ill"~¥t--J~ ~:...:\~_: -:-:t-~ -~'- .. ---'1'· .;:..1

1

_ 1 _..-, - 2F-.~ I,,! ". i !_LJL.:.._
'1' 1 "I' , li::[L' r 1 ~ , , '.-- .- '--'--' ._-.-- l' I :I '1'1. t.! I' 't!! --I-- ~_ __ __ _ I _ -_ i-

1
I I I , ,

" -4--. --;~'l---1- -:-1--- .. ~-: ,.--- [ I I: : I !Ii! I .. I _ : _ ; , ! I : __
T "" Y .[. I I ' ....... 1•. 1---1. ., . ,-....

'" I, I: 2. : ":1::--;: ,: :.. ::(i.:.~t+..· . --1 ... · ..... --- ----. .;- : ' : ','

001 I,,· I'-'i-f-~ .•.. .• , ...., .. t LH'1:." .. ',II
• ~' .. ,::: .. : •. I';" .• ' '·:i;:. 'I' . . ,. i '-" .. !....- 'p ~ 1

:1:,1: ':'. _..~ --'~ri-'--t--·- ·-·-..:..·-:.......+--:-:-----1-- -·+:·"·-'--Tr-,-:-j. ;1 "'" I I 'iIOOO~"!eriu I

.-;.±-. ""j; " 'r-' , I' :;; ,,I ' I I .' ·'1' _;_L__ n-,-- T~ -\ --i----
: . . . ::1 . J_-.-,...-, " . . 1 -, I' I J II.. . ., i, . "~- .- f--- '-:-:r:--- j---- .• ,. ". , .. ',' i ' . 'I I '.hi: '\ [ 'fl" ;i:: '::'l .\: i --I~---. ~-~--TI'--- L: ... ':_")-~-' --.--t-.---_. _. --. ~"- ~. 1["'---""-[000 I I: , . ·-·f·":· -: --- .-I-'-'---.~-; -' ..-- ---- - + , '''. ' . ' "I I

--- - --- . -- .. . ", . 'I 'I , , ", f' _'_' __ __ _ . _. __
. ! ~. I i I" ,: I '- ·-t ) I +-~\-. _. -- ,III! I, ,I
. . '. . '-:-; -_. ---'-, --i~---' ,: • ;: i "":::.,: i I ~-~: I . '" \ j l' n __ _ ; _ ! _.. I i I _ I

~:::\".:';.: ., .:- ~_:~!~.i: 'I: ::1.'" E:'.c 34J:I:'~+f4,-"-f,r,+I\ ~I , E'+~ !.': ' I __.
:",F FJ L L,' -:{!I"; J~~-r:::~="i'-ri--~~~;:-5~~~!--r-

',: ': I..: I .<~.:...::...r---..=-=-1, .-rr-:-....-1.--- 1 ...,.---,-"" ! '~r--- . 1........,-;-10000:
';':, 'I·t ' . I ' '---=c:t=,. 'j'''i''''j---:-J . I . I j I: ~ !. "U:I 1:'1 fe". i'" '. ..", . I 0,5 I , X

o

~

.......
(M....



.61·
~ o-!.L.. ~r" ..:-:-:h-+-~-'-

~P=E~2'5''S'===:S=S====Ei1
~f-+-+~~--i~

'. ++-~;-r--~-+

""i

:-!

; ;., i
h t.:L·i~::i ._. j. ,_'-...

~t±t:;d~-:;,±~.~
-- ~!

";--.. ...:
!

--'--+--!-_.

.!

.+~_.+-

':j

t+J;~=~~==t~~-~=t:-==-~~~;t:~ii-~·~·-L-
f'Tt. T' ~ -, ~- .... ' ~ 1 'i -~f-"" ----:

-H----t---r--;--;-----t

! 1

.+..
~A . i

~ ::.;! : J

-:~~~
'"

.. ,.

, .., i
'. ,_. .[,

',.j

r :

. .., . .r-",
I

; '-'.'
I.' I.-
I .. : h:''=~:

I·:,·:,
! I I •

.; ..

t.. ., :

. "j

,j.1

. !. ~ I
_......,

I

-, .--1 c. I..'
I. :

\-"

:.!

';-1..

" .j ..

-j"

1
....

,.
. ,

._i !
~ ..

.•-;-!.

I.· ,_:

t·:.

. ;;

~i ' ;. i

I . ..i
'-l... i. -r

~,,;; . I

;.. :1

. - f

I •

'--.

~d7-;-'-;-!_ri,i_+--,_+_+- "'--+I~--;I""" -,---,'-:-r--h--'i'-'--t-t+-;-,-;--.f-'-:--;--+.,....;-.'-~I

I -!---.i_+-+ I -~l,...L-,....t--':

..
o
o
.;

7-135



; .j

, ;

_f. ~ I ~·-,-l- --
Cd. ' " " I·' '
~t~; ~~~.:; ." .. t-=~~.~~ ~~_~~:.~;-.- 1-:_~.: -.~~ ...-f-.--;..:-:-------"--

~-j-:-~ _.--+- .-----~-.-, ,,'--+--. -- ,--~·--~_:d-.-l--~~~-~~- ~~=
I , _. _. _ :.._; ~ ~ ._~ __ ~ .. :.--t . . i I . , .'. I

~'-__ .~..L~_-' T'.~L -:.-'U' '-:~: I 'i -.~~;~~--~~~;I3=f=
~~--+-.-. -._-..-..-:---~.---- --7. -+- t--:----+---!--:I ~~-r--~~-~

1--0--'-- c-- •.-.-------:--~- --:--.:....----:. ----:--, --,·1 f-~·-'--~___:__r_

8--'-r--;--'--;-'--T-.---i----;--+::--+--i--.-~--. - -T-!-----'-',--'--'--''--if-'--l

.. r

:: ~._+-:-'--'--~
t ,..L. ~ ..

.: .!
,·1

: !; ~

i.
J

! :

L
i

1

8-+. i" ' !--~-~-:--.-,I-,-'--fc-~-,--_;...,~.-,~,-...;::....;.:-il-'-.;.....-'--~+-:.;...;....;....j

; , ,

'J

. -j.

-·f--;
----1··_·\-·

~~'I
I i

~.: t-:Y: .-/ - ,_-'----l.i---'----'----'--'--I

r-;--rt:~~~~~~1~~.--:;"',-'r-:~I=t--I-~·=tl~-l~+
h-i-;"'!-0-~'-/';"'--;"'- ~-_:_l-,l -;,---~--;--+- :--~.,-+--!_-+_ ..~

~ of
a "a ~

"Itl0 ..1.1'1 r) ci

7-136



.;~

! . i

1
I, I

:-+

-+
I I ;

+-t---+---+-+---~.+-; ~-
I ; ';---r---'-f- -;,-- ~

'. -H--:-+ . f .-+ L._
;~~~.+-.t--... :-:1.---!:.'-....;....;..+-...:...'_:Gi':::":]

I "j .;"._~

/

/

I·

: .\
;

; .
~j

--'-----'
!

++
!

;:'.

"~l----t"'7-.·.,"r-.'.~.: ",' . ' . /. .~ ~_.. ~'-+-+_.~- j---. ---~-~.; ,+

i·'

t-:
I _!-' I.:

j>

i"
:--:-ttf-f-.:-

i-H-

:rf-'
oft:-~

H·

L .., '

i,'
/.

.,.'
i
I
i''.,

.~

i
./

·'-.i,

_i.. j. ../

I
./

i-i

j,.'
j

! ! i -, ,~h-

,/ I "I ,., ~ ~~'L-

~+_-1-~+---'i.:-4Jmli~,~:+ ~' I bHf-
C

';,'!

"L'
Id:. . ; '. ! ..

i:;,! :U ..
ft: :Iri

.:' -,.!

~•.; . "

7-137



~l' ~++-~-~': ·.f:--r--'--:-~--r-+-i: ->
, ! .; 0+--; In

1l4Jc~~$t,·.5~~: .• ;;;.·~=!fE:
~-i-T~~=+l-L-~-_;_~--i=L:=_tt~l_- -~ -,--,--t~~~=t~t=:-- ~

'~H~$h!F~~t: '-Tl ':: !
;-++-~+-,- j-;- -----.-- --'-.-:-0- ,-.-+--,---:-.-;- -~- +~--j--,--H _,~ ;,

. 1 ~ '---,-;-.---t~--It~

,. -r =-'---- .. ..

...._~

+- -l--:

'"'I

, ;

i. ;

l'

1::-1

i .
• I

. :~ :H"'r~g

"of V)

t-,
--+----T,.-r-;-t-:,:T-H-fd"--

. 'f ,., ,
~.

. '!

·1

-f· ~ - [

::: !-t
i· i

;-f
1

"'J i
I •-i----'--!-'-i-:---+-'-+--'-+

f---F-;-;~~

:.< :~
".; ·f

I:; I

.;

~ ...
·1,

7-138



•
f·' ,

.,.+~,

i i

H :; I ;.+'';-"+--.1-'--,-''H-

• '.1. e'"

"

i- ;:; • ;
r--

: : _ : 1

.~~

H-+'.....,,·!i-++-41·-f-+-+: ~!
• 1 : I

+-+-;---t--++. / :-H:-,~fH-c:- I
M-rH-+-t-'-!-· . •-'-+ +--+--+ + .,~+-t--i :;! I ~

;;:~:;! H!ndj H+ H+ I· H.~;(i4i
/ ,

f' i' ~ 1 • •.. --t

H- -+--h+-+ ~+_._.,C,_+;-.-! __+_...;_,__, -;-~"-+ ;' ; +
-+ .; .-' :.~_.+~+

! ; !-:-t
~ c-L+-' +,-1--'--+-_--;-,..,
'. ;+~.
'r

j i

.-4-

'---H
;,~+ l,--t-+--

; -'-[-J...,; fi-;+t-
/

i

I:

-+ 4:~';

:,H+··-t-H·.

:+-

-r '---+--,-. ·-,-+-;--r-:-+--t
'..l.
, I

, .. j "

.

/,
'j

i:
i . 1-

i:+-Ffi ;:' i 't
::+ j. ! :j .! ',H ; +rl·~

I·~ I" f--'+-:-+ ~'-4+t---~

.1,

!!'-H-t----hl :. i,·; ~e I, i / '- +~fJf--L++-b

I. r~ : .• ;-1--:-; '-H" ·~+-/,·'
P-t~4'r'-;-"..,I",··'j-' I ;.. ,H'-'; ,~ ! , ', L....d • I.., ::,' H-t-~

I I; r ~..; ;-: t~'i-c~+'R=i ,..J, +-j-, :H,

I

'J
!

1
j
j
1
i
I

7-139



:-'-
,-

-:-I
;-:-1

-0__ lU

- Q
Q

i '"

~-=+=
: .I

"

-+-

: i

. ·1

+

I
I,

'.~_~ .. 1 :-~:-_:!

! _:: -:-'--t I ' ;~_ ; i!

I
"__L.

: !

-~

;~

f t-H-+ ~t-;
: !

:r

I:.:

>·1

-itf' 1
I

.. ,-
T
' ..~
~-i ,.-
-- - ..;~

.....
I

7-140



i--+ ........ ~---+~r-t-l-;'"

,--,--I----'--.J- _.-J -- -- -+-~ :J--=:j

:. f'j ,:
; -

I';: '1

_i-,''r;
I i ~~ 1::'- 1..: . j j- !

,-- ....~~ "~-'~'1' ~·~:~+~~_·ri.~~-~:~~~-,

;

~!-++:

, ..:..J ;'i, t." ,'. I -
!i-' I,:!;""r

-i----i--+--+ ,-

•'i

F+';""'>--r--,-+-i-'--\-'---8-t-'--',
-+:.! :~:·--I-~-~: -:-r~ir~-

u! ~ _-,_L_ _ i. _ '--t -j_ • -i--'-r-r-.',: _L..-l-_ . ; - +-.;.-1--+-,- ; : uFir-:- ' I : --r 'I. ill ! ;' I : : .~ !-~,

i'. : +-. -~+-~ :-b-H-. I ~ ;:+-+-+-1-++--+++'
R-+--;--++"~:~··-:-+-r-r~t-~-·-·I--~·-7·---:---+-t-+-r: ~ I !

I --i-.' t·_:~ .~ t---t-+~--t ~; t-;! i +
~ , n-:-H- t-+·+-;+-:-: :H+

Etl±; '.
l*H:- -'

f---;-~-

,.. d.....i.
!

",I:
! i._;

, ·-++-+-·.....;.....-l-'-i--'----LHI

. of-

'++-t.
lli~

:-+ '
t.'

- !

.- ~ -
I ",;"

<+-H-,
--+ .+-+,

+.. .1

I '-I--

.. !

+ -'-!-d---'- r
j I

..i:::: __~
!-+--h-+-H';'+-I-'-"-+--H-'!-'·L:.-.;..'..;:..;.-'-1--+1

'..+ , .'
,- .

-1-++ ;.'--f-+''+-'+
i' .

" 1::

!
:·1

".1 :.'

:1

!.

\.

"1 , .1

_.; c,i.' '. "!
·I.:i,

I..

iii

t+ :-: :-~+; --+: i h--+~++ f-'-! ;H-

7-141





ERAN-237

On A Form of McMillan's Transformation

Suggested by P. Channell*

L. Jackson Laslett

Lawrence Berkeley Laboratory
Uuiversi ty of California

Berkeley, California

April 19, 1974

Paul Channell has indicated an interest in the McMillan transformation

:: : ~ x + fey) }

in which, in particular, he proposes taking t;he function f to be

such that

f (r;) ~.

Since fUJ can be written in th is case as

* Work supported by the U.S. Ato~ic Energy Commission.

7-143



where ~(~) = ~~, the condition expressed by Eqn. (11) of McMillan's

Chapter in the Condon Festschrift is fulfilled and we have the assured

firm invariant curves (parabolas)

and

connecting the order-l fixed points at 1,1 and at 0,0 (as is readily

confirmed) •

Within these boundaries we have the order-l fixed points on the

principal diagonal:

x,y: (3 - /5)/2 ~ 0.381966

O.

1.

and outside,

(3 + 15) /2 ~ 2.618034

The differential transformation is characterized by the matrix

1

12y +
2 .;y ),

1
=)

f~ (y) I
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with a half-trace

htr = y +
1

41;

The values of htr at the three interior order-1 fixed points listed are

13 - 3 IS '"
--8-·-

ClO

0.78647451

5/4.

For the first of these, we have cos ~ = 0.78647451 ... and

~ ~ 0.106 (2n) = 0.106 osc.;

For the fixed IJoints at 0,0 &1,1 there are the respective (growing)

eigenvalues and eigenvector slopes

dy/dx = ,\ = [htr] + /[htrl 2
- 1

00

2

and

Within the area bounded by the curves
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manyapparantly smooth invariant curves appear to exist [Interactive

TTY Program FIRMB]. Some complexity has appcared to arise, howevcr,

as a result of some ordcr-22 fixcd-point systems that have been found

to occur. Approximate co-ordinates for the fixed points of the stable

and unstable order-22 fixed-point systems are appended. To determine

i.vhether phase-plane traj ectories launched in the neighborhood of one of

these unstable order-22 fixed points exhibit erratic behaviour may

require careful attention to the accuracy of (double-precision) computations

performed in this region of the phase plane, since it has been found (Program

FIRMB) that significant vlaues for phase-plane coordinates are obtained

(with double precision) in this region only for computational runs that

do not exceed some 6000 iterations.
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STABi:..E ORDER-22 FIXED POINTS

0.9908313351
0.990833351

N X 't A OR C B JR D LOG 10 LAM LF

0 9.91384£-131 9.91064£-01 1.0000E+00 0. 0. 1
0. 1.00eJ0E+00

1 9.90d4E-01 9.d633£-01

2 9.8633E-01 9.7515E-01

3 9.7515E-01 "J.5209E-01

4 9.52eJ9E-01 9·ld707E-01 -CS) - --51 CS)~

9.0707E-01 13.230':1£-01
,

I I I5 Cr:I Cr:I Cr:IW(SI - """-Sl
"""

("'-0\
6 8.2309E-tOl 6.7166E-01 Sl 0\ '1'0- lSI C"')~

In -- \f'l C\1\O
7 6.7766E-01 4.5932£-01 C"') (SICS) M ('''-In

"'0 , , '0 \0 ."C"') 00 M It'l\O

d 4.5932E-01 2.1105E-01
'X)

~lSI "0 "0"0CS)
"""-0 lSI 0\\0

~ M'1 ')\ ~Lfl• -C\l • • •9 2. l1eJ5E-01 4.462·~E-02 0\ M- '" 0\- -C\l'1 I

" ~'"10 4.4629£-102 2.1917£-03 \0'" II II " II

>- C\1\C
0\\0 ,.. 000 £z.

11 201917E-03 2.1917E-03 M'.;r ...J
.;rlt'l- \OC\l - --lSICSl .;rM :';l .~ CSl lSI

12 2.1917E-:J3 4.462:JE-02 I
~"""

I I , +w ,')\ ~ r.zJ WWCr:IS) Sl- - ~\OSl

13 4.4629£-02 201105E-161 lSI It'l'''''' In "'("'-lSISl M~ M \O'OCSl- -Sl - ~\OCSl
Lfl It'l:fl l/') "J\MSl
~

M~ M lSl'OSl
14 2.1105E-01 4.5932£-01 "0 "0"0 "0 M\OSlC"') C"')M M ,:.\] It'l Sl

"0 ':0"0 "0 ')\"OSl

6.7766E-01
is) s)Sl IS) C\lO\Sl15 4.5932E-01 0\ :l\0\ "J\ \OC\lSl• • • • • • • •
" :l\O\ :l\ ,Xl 0\ - CSl

16 6.7766E-01 8.23091::-01
II n II II II II II II

17 8.23139E-01 9.0707E-31
~ ~). ~ <CUf-o:F.

Cr:I<t

18 9.eJ707E-01 9.5209£-01 O...J

.. .. .. lSI
CSl C\l ~ -19 9.5209£-01 9.75151::-01 C\l C\l

~
n

20 9.7515E-01 ;j.d633E-01 ..l

21 9.8633E-01 '). ':H~d4£-01 II II "Z ~ ?:

22 9.9084E-01 9. ')034E-01
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UNSTABLE ORDER-22 FIXED POINTS

FJH t = ~}. '3 "q.- , 'i''(PC: 1 -- n:i£H~dSE J
1 !

rtP£ LHTIAL ;{ (F-FJrlL-:iAT ).'~L t)
0.00065513151 !

.\,J x: '{ A JR C B Jrt D LJG 10 LAM LF

0 6.55~2E-0q 1.2d05E-02 1.0000E+':.Ik:l "'. 0. 1
0. 1.0000E+00

1 1. 8005E- 02 1.1261~-01

2 1.1261E-01 3.3555E-01

3 3.3555£-101 5.791-iE-01
aJ (\)(\)lSI
~ lSIlSIlSl

4 5.7919£-01 "'.60~6E-01
I I I +

r..J r..JCzJW
--r r-LOC\- aJlSI--r

5 7.60~6E-01 d.7220£-01 - lSI-lSl
\0 0\\0'"
'0 --raJ C\!LO-

6 tj·7220E-01 -i.3369E-01 LO !'Sl'Sl ~lSIr-

\0 I I \Or-r-
--r QQ 'l'r-.;;r

7 9.3369E-01 9.6585E-01 lSI --r- ~\OlO
'0 G'" 'O"fr-
C\! ro ." aJSl\O
• 0- • • •B 9.651:)5E-101 -i.81::15E-01 - (" l.... --- -C\l 'i'

("')0.3
9 9.8195E-01 -i.8::131E-01 II Q'" II II II II

(",)LO
>- "0 (;\] ').oC:OQ Lt.

10 9.8::131E-01 9.·}lq2E-ill C\lYJ ..J
C\lLO

'i' "0'" --r -lSI C\: :s)-

11 9.9142E-01 9.d-i31E-01 :9 r-\O Sl -$I tS> lSI:s)
• (J\~ I + + + •r..J """'0 CzJCzJW r..J til

lSI --r", lOLO- ~YJ

12 9.8931£-01 ':1.0195£-01 .:$1 "''Xl \O"fC'? 0'3'
,$I \OS) \0 ...... r- lSI \0
'Sl r-", !"- '0 C\I lSlYJ

13 9.d1-}5£-01 -i.65d5E-01 'Sl r-:IJ ..... \Otf\ lSle--- !SIlO 'Sl 0-1 '0 lSIC\I
t/'l t/'l'" t/'l ':'0 - lSI-- ---r -SIC'? tSlr-

14 9.6585E-01 9.3369E-01 "0 YJlSl :0-'" lSlC\!
t/'l t/'l"O t/'l ..... '" :s)tf'l
t/'l LO<:\! 'f)~M lSI"f

15 9.3369F;-01 8.7220E-01 • • • • • • • •
\0 \0- \0-- ---r

16 £:3-7820E-01 7.6096£-01 II II n II II II II II

~ ;<:'>0 ~<I:U E-E
17 7.6096E-01 5.7::119E-01 W<I:

Q..J

18 5.'1919!!;-01 3.3555£-01 .. .. .. lSI
Sl (;\] OJ -C\I OJ

19 3.3555£-01 1.1267£-101 t::I
(")

..J
80 1.1267£-01 1.8tS05£-'.12

II II "21 1.2805E-02 6.5502E-'14 ~ ::>. '=':

28 6.55d2E-0q 1.2d05E-02
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UNSTABLE ORDER-22 FIXED POINTS (""ith different starting point)

TYPE I'JITIAL X CF-FJRMAT J'1LY)
0.9914196378!

M X Y A OR C B OR D LOG 10 LAM LF

0 9.9142E-01 9.8931E-01 1.0000E+00 0. 0. 1
0. 1.00'1IOE+0'1

1 9.8931E-01 9.dI95E-01

2 9.81'::15E-01 9.6585£-01

3 9.651:$5£-101 9.3369E-101

4 9.3369E-01 8.7220E-01 - ... -ISI

5 8.722IOE-101 7.61096£-01 lSI iSllSllSl
I I I +

[.Il www
7.61096£-01 5.791~E-01

~ '1' ... \0
6 '" III 0\ lSI

C\! (") ..... C")
..... r--C")C\!

7 5.1919£-01 3.3555E-01 C") ...... C")'Sl\()
r-- .S) iSl ..... 'Sl ."
\0 I I \O'OC")

8 3.3555E-'1l 1.1267E-01 lSI QQ CSl--
C") '0\0 (") '" ''0

'" ..... C") o\-<Sl

9 1.1267£-01 1.8d05E-eJ2 :::0 ~~ "0 ..... .:::
• OJ'" • • •

0\ 'X'l- 0\ \Q C\J -OJ'%'
10 1.2d05E-102 6.5582E-104 " .....II :niSI II II II n

-Ill

1 1 6.55d2E-104 1.2:::105E-iJ2 >< -I,() >dIl Cl ~
iSlC\! ..]
'I''Sl- ~(") --"5) Sl-

12 1.28eJ5E-02 1.1267E-01 lSI 0\- CSlGlSl iSliSl
I :J'l0\ I I + + I

W (")'1' W W iLl WW
:S) -'I' --"0 'Sl\O
iSl -In -inC\! Sl\O

13 1.1267E-01 3.3555E-01 :0 "0(") tOO\Ui iSl!)\
..... .......... ..... ..... l.., Sl .....
C") (")(") (")C\! ..... 'Sl'%'

14 3.3555E-01 5.7919E-01 \0 \0 ..... \OUilSl \SI'Sl

'" (1\1,() O\,%,C\! 003- -CSl -(\)(\) ~ .....
15 5.7919E-01 7.60~6E-eJl

'%' '%'(") '%''%'f'O !SI(\)- -0\ -:nUi 'Sltn
0\ 0\ to 0\(")- CSl,%,
• • • • • • • •

0\ 0\0\ "' ..... - -'%'
16 7.6i096E-eJl 8.7220E-01

II II II II II II II II

17 8.722'1E-01 9. 3369E-~.)1 X ~)., ~<CU E-~

w<c
~..]

18 ::.J.3369E-01 9.65d5£-Ji:)I .. .. .. Sl
CSl C\! C\l -(\) C\!

(!J
19 9.65:35E-01 9.8195£-01 ~

..]

210 9.dI95E-01 9.8931£-01
II II II

~ ~ ~

21 9.8931E-01 9.9142E-01

22 9.9142£-01 9.8931E-01
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008. SCALE -- 0.985 TO 0.995
0eS. 0.99
008. 0.991
eea. 0.9903
008. 09393,O.9914
C~3. 00:DC::R 227
008 STABLE ORDER-22 FP HT CIRCA A-Y-0990838351

*ROLL01. DH 02
ROLLIN ':Of'lPLETE M
KILLED BY REGUEST

JOB ENDED - DISCOtlNECTED

_...... ::.~.\ k, '" -"" .: ..'.:,-- )'J. ,'#- ,
'..~''''' .... .''t"" ,

, ~ • '" ""l I .'~ " .:: ,. :' '-
'~....... \. ~ "

.Z-- .,' • \.:Of I,.' .- ," .~ ..... ." .; ..'
.~•••••••.J" .~... ..,

I,O#\~)

~:~,
t r. .. ".II •.. '., .,

:' '!., .:, ,
t ,

r 4 (
~ ~ I

4 ,:.
, I
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Computations extending the approximate (circa 100 accuracy)

outgoing eigenvector direction from the unstable order-22 fixed point

at 0.9914196379. 0.9893067373 (approximately) toward the positive

principal diagonal (by double-precision computations. as in Program

FIRMB)* did suggest. however. that such an extension docs not intersect

the principal diagonal at right angles (and hence would lead to the

development of loops.). The results of such computations arc conveniently

examined through use of the variables

8M ::: x + y

12
and DF = x - y

12

For which one can examine whether or not the extension of the

eigenvector direction traverses the line Dr = 0 vertically.

The skeptical reader may wish a more thorough examination of this

question -- as certainly could be undertaken in an entirely straight-

forward manner -- hut it appears quite likely that loops of increasing

elongation will develop as the eigenvector-directions extended approach

the mirror point at 0.9893 ...• 0.9914. In the case that has been ten-

tatively examined here, the crossing of the principal diagonal occurs in

the neighborhood of x = y ::: 0.9918 -- l.~.. further from the origin than

the stable order-22 fixed point at 0.9908 "', 0.9908 ...

* The starting values in these computations lay in the range

0.99141963895 < X < 0.9914196407

0.9893067405 < X < 0.9893067458
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ERAN- 241

*Structure in R.F. Phase Plots

BRAN-57 Continued

L. Jackson Laslett

Lawrence Berkeley Laboratory
University of California

Berkeley, California

May 20, 1974

In ERAN-57 we gave some examples of the structure that caT}. develop in
...:-

R.F. phase plots if the s~lchrotron oscillations are described (for a

coastL~g beam) not by differential equations of the fvrm

~ = - K Sin(7TX)

~ = ).'y

but by a discrete transformation

* Work supported by the U.S. Atomic Energy Commission
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[Here K = eVo/Es ' for <Ps = 1T, and AI = A/1T = 2h(dt/t)/(dE/E) if we

identify X as the electrical-phase error (.6.<p) divided by 1T and Y as

.6.E/E
S
'] The transfol1nation is seen to be area-preserving, and we accordingly

may regard X,Y as a canonically-conjugate pair of variables. The computa

tional results reported in ERAN-S7 were confined to examples in which K/1T = 0.1

and AI = ~/1T = 0.1

We recently have returned to examine this problem somewhat further,

aided by the availability of a TEKTRONICS memory •scope available for interactive

use with the LBL CDC-6600 computer (double-precision program RFBUK). For

mathematical or computational reasons it has proven convenient to empioy the

new variables

x = X

y = Y - } K sin(nX)

in this recent work, so that, in terms of these new variables, the transformation

assumes the form

x = x + AI [y - 1:. K Sin(1TX)]n+l n n 2 n

The change of variaoles, from X,Y to x,y is characterized by a functional

determinant of unity and the trallsformation written in terms of the new

variables again is area preserving. It will be seen that in terms of these

new variables possible phase-point trajectories will be symmetrical about both

the x- and the y-axes. In execution of the program RFBUK, the generalized
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coordinate x is moduloed so as always to remain between -1 and +1.
.. 2

For fixed-points of order-I, such as occur at :': 1,0 (and at ± 1, mIf ),

the eigenvalues are given by

EIGl ,2 = 1 - Q ~ SQ

and the associated eigenvector slopes by

(dy/dx)l 2 = + SQ/A',,

where

Q = ~ KA' cos (7fXpp) and SQ = v'Q (Q-2)

The transformation employed here of course pennits harmonic passage

through the (thin)cavity, with homologous phase trajectories occurring at

intervals !J.y = 2/A'. With A' = 0.1 and K/rr - 0.1 (as in BRAN-57),

buckets with fairly clean sepatrices (and apparent half-height Oy =1.98331)

make their appearance. The eigenvalues and eigenvector slopes associated

with the unstable fixed point at -1,0 are, in this case,

EIG = 1.36735945464072 (and its reciprocal)

and

dy/dx = : 3.18011432635279,

respectively. Additional structures are present in the phase diagram, however,

as is illustrated by the order-2 fixed-point systems that develop at y = 10.

These order-2 systems become more clearly evident on plots made to a larger

scale -- the stable fixed points are
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0,10 and ! 1,10,

while the unstable fixed points are close to

± 0.507851592430673, 10.

The apparent separatrix formed by extension of the outgoing eigenvector

direction from the fixed point at -1,0 (with K/TI = 0.1 and A' = 0.1) is

found, on close examination, to be not a simple smooth curve traversing the

vertical axis at right angles -- and hence does not join smoothly with the

reverse extension of the ingoing eigenvector direction that approaches 1,0.

This failure to intersect smoothly is made evident by a large-scale graph

showing the extended eigenvector-directions in the immediate neighborhood

of the y-axis. [To achieve a reasonable graph, some of the curvature has

been removed by plotting

Yc = 1011 (y-l.98330928669 + 2.34ll7x2) vs. 10Sx.]

By virtue of the synnnetry of the transformation, the reverse extension of

the incoming eigenvector direction to 1,0 can be constructed by reversing

the sign of x, and it is apparent that the two curves cross at x = 0

with an angle 2(dy/dx) ~ 7 x 10-9• Such a failure of these curves to join

smoothly' of course necessarily will require that their further extensions

(fonvard or backward, respectively) will lead to the development of loops

that become increasingly slender and elongated -- see BRAN-57, esp. Figs. 2

or 6. This irregularity, for the parameters mentioned, seems, however, to

be rather minor -- the area of one of the half-loops just mentioned has been

estimated in ERAN-57 as roughly 10-11 x,y-units in this case.

If we now increase considerably the value of the parameter K in the

transformation, the dimension of the main buckets will become a larger fraction

of the distance between such buckets, and the smoothness (or lack of smoothness)
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KIIT = 0.1

AI = 0.1
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K/rr = 0.1

AI = 0.1

.2.1.1 r-

-e'"" .

-

.' ...
-2.. t L..

-1.0
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<: )
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Klrr = 0.1

At = 0.1

/I ••

SCALE·
X' 0.4
'I' 9.S

TO
TO

0.6
10.2 .2

10. r

..

9.81..
0.4

. ..... '.

.- .. :..

: .' ...'.. .. . ... .. ~ : ..······5..·_····· .
..." 5·· ........:..... . : ,
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K/Tf = 0.1

A' = 0.1

SCALE'
X' -1.0 TO
v· 9.8 TO

1.0
10.2 "

U~.A. r

..

..\
.
:.

..
""t

9.8L.
-1.0

' ...
~..

'.

. .. .. ...
..

7-160

.
~

, .....

i/\.. .: ~· .· .· ,· .· .· ., .. ,, .
\. i
"-"

......

" .

'.
... .., :.. .

x. .
l \.. .. .. .. .

,

..

/.
:••··••••
\

..
-'
1.0



K/rr = 0.1

A' = 0.1

SCALE'
X, -1.0
V' -2.1

TO 1.0
TO 2.1

~./r
.,

'.
I---t--------+---------.-)

...

-2./ L

-1.0
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of the apparent separatrices can become significantly modified.* This is

illustrated by computations in which K/rr was increased eight-fold** to the

value 0.8 (wl1ile A' remained equal to 0.1).

In computational work with these parameters (K/~ = 0.8, A' = 0.1 -

again \'lith Program RFBUK) we immediately find that phase traj ectories latmched

near the lIDstable fixed points of the main bucket system (e•.&,., near -1,0 or

-1, 20) are distinctly ragged (although this raggedness does not appear to

extend much into the interior of the bucket region). The fixed-point system

of order-2 (~•.&., near y = 10), moreover, opens up so that its general

structure appears evident on a phase diagram that extends from y = -6 to

y = + 26. The lIDstable fixed points of this system at y = 10 appear to lie

approximately at x = ± 0.5616567 and evidence for higher-order systems is

readily found (e.g., with stable fixed point near 0,6.6l)~

In summary, we have confinued the existarr.ce of the somewhat subtle

structure of the R.F. phase plots described in ERAN-57 and have indicated,

by an example, that this structure and the complexity of the phase diagram

become more obvious as the heights of the major buckets become an increasingly

large fraction of the spacing between these buckets.t

* A situation of this nature has been discussed by G.M. Zas1avskij and
B.V. Chirikov, Soviet Physics Uspekhi 14 (No.5), 549-672 OMarch-Apri1
1972); Usp. Fix. Nauk lei, 3-39 (Septemoer 1971)0

** The result, quite roughly, should be an increase of the height of the
"bucket" by the square root of this factor.

t Reference was made to synchrotron-oscillation modes that might arise in
a rather more complicated R.F. acceleration system in L. Jackson Laslett,
"Problems and Advances in High-Energy Accelerator Design", Physics Today
(Novo 1964), pp. 42-48, esp. p. 44 and Fig. 5.
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K/rr = 0.1

AI = 0.1
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where y measures the fractional departure of energy
from the reference value, 1TX measures the electrical
phase angle at which the particle traverses the cavity,
and K is proportional to the cavity voltage; and

Detailed examination of computed particle trajec
tories has revealed a complexity and disorder that is
of increasing interest to accelerator specialists. To
introduce this topic, I would like you to consider for
a moment the analysis of synchrotron oscillations for a
particle in a coasting beam, regarded as a problem in
one degree of freedom. A simple analysis replaces the
electric field of the RF-cavity system by a traveling
wave, having the speed of a synchronous reference parti
cle, and leads to a pair of differential equations of
the form

dy/dn = -K sin 1TX, (la)

ing variables Y = Y - (K/2) SIll 1TX, X = x, so that the
transformation assumes the form

~+l = ~ + A' [Yn - (K/2) sin 1T~] }

(3a',b ' )
Yn+l = Yn - (K/2) [sin 1T~ + sin 1T~+~ ,

with the result that the resulting phase diagrams will
necessarily have a desirable symmetry about both the
X- and Y-axes. With K/1T = 0.1 and A' = 0.1 we find
what appear to be conventional bucket diagrams with
buckets separated in Y by 2/A' for successive harmonic
modes, although we may wish to return to the question of
whether the bucket boundaries are as simple and definite
as appears on Fig. 1.

in which A' is proportional to the change of revolu
tion period with respect to particle energy. It will
be recognized that these equations can be derived from
a Hamiltonian function

Because this Hamiltonian function does not contain the
independent variable explicitly, it will constitute a
constant of the motion and possible trajectories in the
x,yphase space will be just the curves defined by H =
Constant, namely the familiar simple curves in phase
space that are characteristic of a physical (non-linear)
pendulum.

dx/dn = A'y,

H = (1/2) AIy2 - (KI1T) cos 1TX.

(lb)

(2)
22.1 -

c:::

R F Phase Plot

C:::. '.:::.'

K /.". =0.1
IA =0.1

. ':>..

~-----~"-"-'+-"-"~-----'-'..:.'~.... ...... ..-

Fig. 1. - X,Y phase plot for a coasting beam under the
influence of an R.F. cavity with K/1T = 0.1, A' = 0.1
as computed by Eqns. (3a' ,b ' ). X is plotted mod. 2.

If we note, however, that a localized cavity can
affect the energy of a particle only when the particle
encounters the cavity, it is natural to replace the
differential equations by difference equations. Thus,
measuring energy Yn at the nttl entry to the cavity,
we write the transformation

Yn+l = Yn - KSin'ITXJl}
(3a,b)

xn+l = ~ + A'Yn+l

(which can readily be shown to be area-preserving).
Although alternatively the motion in this case could
again be expressed by differential equations derivable
from a Hamiltonian function, the Hamiltonian now would
contain a periodic o-function of the independent varia
ble as a factor multiplying the term - (KI1T) cos 1TX and
hence could not be taken as a constant of the motion.
(The differential equations, moreover, would be non
linear, so that Floquet theory could not be applied.)
The use of such a Hamiltonian formulation nonetheless
can be helpfUl in analytic work, but difference equa
tions of course are attractive for computational inves
tigations.

- 2.1
- 1.0 1.0

It is of interest to take a quick look at some com
putational results obtained through use of a transforma
tion equivalent to (3a,b) but written in terms of work-

* Work supported by the U.S. Atomic Energy Commission.
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We also find evidence of some "sub-harmonic" structure
(with higher order fixed points) that, i! enlarged some
60X, has the appearance shown in Fig. 2.



10.2

RF Phase Plots
K/.". =0.1
>:=0.1

that is immediately apparent in the phase plot. Of
particular interest is the evident diffuse character of
phase trajectories generated by points launched close to
the first-order unstable fixed POlllts situated at
X = ±1, since the bucket boundary in consequence no
longer appears clearly defined.

(4)
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In the first example (Kin = 0.1), on the other hand,
where the bucket width is some two and one-half times
smaller in relation to the bucket separation, the pre
sence of structure in the separatrix can be lievealed
computationally only with considerable care. To do
this, one can extend from the unstable fixed points the
eigenvector directions of the transformation linearized
about these fixed points, and examine whether such
curves intersect smoothly. One finds in fact that they
do not quite do so, but generate loops (of a nature to
be illustrated later) that in this instance (Kin = 0.1)
have a very small area that amounts to only about
1/(5 x lOll) of the area of the bucket itself .

Similar questions concerning the character of phase
trajectories and the possible erratic or stochastic be
havior of canonical mappings can arise in problems with
more than one degree of freedom. As an examole, Henon
and Hiles5 and subsequently Walker and Fordb' studied a
model of an astronomical system, for which the Hamilton
ian function was taken to be

H = ~(P12 +PZ2+q12+qz2) + q12 qz - i qZ3

Fig. 2. - Circa 60-fold vertical enlargement of central
portion of Fig. 1, near Y = 10.0, showing sub-harmonic
structure.

If the cavity voltage is increased eight-fold (so
Kin = 0.8), the bucket 8reas are expected to become
larger, and we indeed find this to be the case (Fig. 3),
with an accompanying very marked increase of complexity

P2

IE=O.l2500000

P2

E=0.10629166E=0.083333

The cubic terms appearing here as coupling terms become
increasingly significant for increasingly large values
of H -- which is itself a constant of the motion. With
the coupling terms present, however, and in the absence
of any simple constant of the motion other than H, a
given phase trajectory might be expected to wander
(ergodically) over virtually all of a three-dimensional
surface specified by H = Constant (and that will be a
closed surface for values of H below the dissociation
energy). If, on the other hand, some additional inte
gral of the motion were in fact also acting, the phase

points of a given trajectory then would be constrained
to lie on a two-dimensional surface, and graphs of the
intersection of such surfaces with some selected plane
or other surface (a "surface-of-section") would lead to
simple curves in this plane rather than to a scattering
of points. Computations of this nature indicated that
for sufficiently small values of energy (~.. &.., H~ 1/lZ)
only curves that to computer accuracy were smooth (and
relatively simple) were formed by intersection with the
plane ql = 0 (and PI ~ 0). Examples in which the energy
of the particles was successively raised, however, re
sulted in the development of ragged island structures or
of apparent stochastic behavior over increasingly large
portions of this surface-of-section (Fig. 4).

Fig. 4. - Phase plots, in the surface of section ql =
resulting from the equations implied by the Hamiltonian
function (4) -- for increasing values of the energy.
[After Walker and Ford. 6]
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1.0
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K /.". =0.8
/

A =0.1
PlotsPhaseRF
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26.0

-6.0
- 1.0

Fig. 3. - Phase plot similar to Fig. 1, but for opera
tion with KIn = 0.8, showing the obvious development of
complex structure.



It should be pointed out that some non-linear trans
formations -- say for a system with one degree of free
dom - - will not lead to the disappearance of some or all
of the invariant phase curves at substantial amplitudes.
Thus for transformations of the form

ox-

..'.:~----
" ./.

I •

H'"-..L---'------' L.-.....-......J..__ -'----:'---'_-'-------'-----'-----'-.-'-------L
H I l ,

r -

-I

1-

x--

..
.:....'!..., ,

...':.:.:.~!:.... \'
--11-..,1'--:...-------

>-0

Fig. S. - Phase diagram for the transformation (Sa,b),
with fey) given by Eqn. (6a). The scattered points
result from computations initiated with Xo = Yo = 0.2S,
but must remain within the separatrix defined by the
function ~ [Eqn. (6b)].

(6a)

and

Such behavior appears concordant with the "KAM"
(Kolmogorov-Arnol'd-Moser) theory (see Refs.' 58, 59, &
60 of our Ref. lc), which suggests that many of the in
variant curves or surfaces present in the absence of
the perturbation will persist, with only minor distor
tion, in the presence of a sufficiently small perturba
tion (see, however, Note 7). It is of interest, of
course, to determine or to estimate the circumstances
(~.K" perturbation strength) at which the KAM theory
becomes inapplicable and extended regions of erratic
(or stochastic) behavior develop. As was suggested by
our first examples, and has been erg0lrded more exten
sevely by Zaslavskij and Chirikov, ' one means for
obtaining such estimates may be by determining the ratio
of resonance width [ow=(dw/dI)roI] to the distance (~w)

to the nearest neighboring resonance.

Additional tests (to be mentioned below) may be re
quired to determine the degree of disorder associated
with the movement of phase points in such stochastic
regions. We may first note, however, that the existence
of nested closed invariant curves in a plane -- as
suggested by the KAM theorem for a problem in one degree
of freedom -- prevents phase points from moving outward
or inward to regions of substantially different "ampli
tude" (in the absence of noise). With more than one
degree of freedom, however, stochastic layers may inter
sect, to form an intricate system of channels along
which a phase point can slowly diffuse and result in
instability. The possibility of such "Arnol'd diffu
sion" has been demonstrated by Arnol'd [Ref. 35 of our
Ref. lc; stated simply the example considered by Arnol'd
is comprised of a physical pendulum and a simple-harmonic
oscillator, with a time-dependent coupling (that also
depends on the phases, or angle variables, of these
oscillations)] •

~+1 = Yn; Yn+l = -~ + f(yn), (5a,b)

McMillan9 has shown that if fey) can be written as
~(y) + ~-l(y) (where ~-l denotes the function inverse to
~), then the curves y = ~(x) and x = ~(y) will consti
tute invariant curves. Such curves will pass through
the first-order fixed point(s) situated at the inter
section(s) of y = (1/2)f(x) with the principal diagonal.
An enclosed area can thereby be formed from which phase
points cannot escape even if the behavior in portions of
the interior becomes highly stochastic. This is illus
trated by an example (Fig. 5) in which

f() 1 (3 1) __1 _k2 + 1:2712+Y = -2 y- yy TK2 y+1

S~ch a.situation also can develop when fey) is a step
Wlse llnear function of y with discontinuities of
slope, as has been noted by Dr. Judd [see, for example,
Figs. 13 and 14 (pp. 27-28) of Ref. 10]. If fey) is
of the form

~(x) = x-I +~ . (6b) Fig. 6. - Invariant curves for the transformation (Sa,b)
with fey) = 2ky/ (1+y2) and k = 2/3. [Figs. 6-10 after
McMillan. g]

fey) = - (By2 + Dy)/ (Ay2 + By + C), (7)

moreover, the entire phase plane will be covered by a
family of simple invariant curves -- see, for example,
the cases9 fey) = 2ky/(1+y2), with the invariants
X

2y2 + x2 + y2 - 2kxy = Constant, and fey) = 2ky/(1-y2),
with the in~ariants X2y2_x2_y2+2kxy = Constant, illus
trated by FlgS. 6-8.
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(9)A = 2 ± 13, dy/dx = A.

-06

1.4

1.2

10

08

0.6

04

0.2

t
>-

-0.2

Fig. 9. - Plot of the extensions of the eigenvector
directions from the unstable fixed point at (1,1), for
the deVogelaere transformation expressed in McMillan's
variables [Eqns. (Sa,b) and (8), with T = 0]. The areas
of the loops marked L are all equal, by virtue of the
area-preserving character of the transformation and the
inherent symmetry about the principal diagonal.

A line segment extending downward from the fixed point
(1,1) with the slope 2 + 13, if subjected to repeated
applications of the transformation, generates the loops
shown in Fig. 9; similarly a line segment of slope
2 - 13, if extended by the inverse transformation, gen
erates the mirror-image curve (mirrored about the prin
cipal diagonal). Points such as A, B, C··· progress
toward the fixed point in smaller and smaller steps and,
since the transformation is area-preserving, the associ
ated loops clearly must become increasingly elongated
as they become increasingly narrow from repeated appli
cations of the forward transformation. The evolution
of such loops clearly will become quite intricate (Fig.
10) ,

(8)fey) = 2[Ty + (1 - T)y2].

t

o
x--

-)

Fig. 7. - Invariant curves for the same transformation
as in Fig. 6, but with k = 1.36.

Fig. 8. - Invariant curves for the transformation (Sa,b)
with fey) = 2ky/(1-y2) and k = 0.64.

It is of interest to examine the mechanism whereby ir
regular behavior can develop in the neighborhood of un
stable fixed points, taking as an illustration an exam
ple suggested by Progessor deVogelaere that [when gen
eralized and rewritten in variables leading to the form
(Sa,b) advocated by McMillan] employs -04

First-order fixed points appear at (0,0) and at (1,1).
For T = 0, this transformation, when linearized about
the unstable fixed 10int at (1,1), can be represented

by the matrix (_~ ~J' with eigenvalues and eigenvector
slopes

-08

-1°1.0 -08 -0.6 -04 -0.2 0 02 0.4 06 08 10 I2 14

x-
Fig. 10. - A partial extension of the curves shown on
Fig. 9.
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but the loops apparently need no~ permeate the entire
"interior" -- portions of an inward loop can, in fact,
enter, on a later iteration, into the interiollof an
outward-lying loop (as indicated on Fig. 10). It is
clear, however, that the development of such a loop
system can readily give rise to an apparent stochastic
motion of phase points in portions of the phase diagram
- - most particularly near an unstable fixed point such
as that mentioned here.

[Evidently15 further analytic work in fact has now
established that the n-particle Toda lattice with per
iodic boundary conditions (or with fixed ends) is a
"completely integrable" system.]

It is of some interest to seek means for anticipating
whether stochastic behavior will occur in various por
tions of a phase diagram and to examine the character of
such stochastic behavior as does occur. What we here
have loosely termed stochastic behavior can be catalogued
with respect to a hierachy of properties (ergodicity,
mixing, "'), indicative of increasing disorder, that
are fundamentally significant for statistical mechan
ics. a,e Of particular interest to the accelerator de
signer, of course, is the determination of a threshold
beyond which stochastic behavior will set in and may .
act to carry a phase point to unacceptably large ampll
tudes. As noted earlier, stochastic behaviorlappears
to be associated with overlapping resonances, c and this
concept has served as the basis for some analytic esti-

The existence of a firm separatrix, or of anexten
sive family of invariant curves generally, can be ex
tremely sensitive to the exa~t fo:m of the t::ansfsnna
tion. 12 A case of some physlcal lnterest arlses ln
computational studies relating to the Toda Lattice,13
This one-dimensional lattice consists of particles
interacting through exponential pair potentials and can
propagate certain non-linear wave forms ("solitons")
without change of shape. One computational investiga
tion14 of stability for a three-particle lattice (with
periodic boundary conditions) has commenced with a
Hamiltonian function

H ~ l(p 2+p 2+p 2)+e-(Ql-Q3)+e-(QrQl)+e-(Q3-QZ) (10)
Z 1 Z 3 •

By a canonical transformation of variables, in recog
nition of the invariance of this system to translation
-- so that II ~ PI + PZ.+ P3. constitutes a constant.
of the motion -- the Hamlltonlan (10) becomes expresslble
as a function of two pair of conjugate variables in the
form

H - l(p 2 +P 2 )+ 1...[e (ZqZ+Zl3"ql) +e (ZQrZI3Ql) +e -4QZ] (11)
- Z 1 Z Z4 '

which is identical to the Henon-Heiles Hamiltonian
function (4) through terms of third order. It is of
interest to examine whether in the present case con
stants of the motion other than H act to restrict the
motion. Computationally it was found -- again using
the surface-of-section Ql ~ O(PI > 0) -- that in this
case simple invariant curves apparently continued to
exist in the qzpz, plane, even for veryl~arge values
of H. Stimulatea by this result, Henon has directed
attention to an additional integral of the motion that
is valid in this case; the constants of the motion for
the three-particle lattice then can be ~~itten in a form
that we may express as16 (13a,b)

mates of stochasticity limits.lc,l? It has been noted
by Rene ~eVogelaere and confirmed in subsequent compu
tations l that for a particular class of fixed-point
families -- say those with rotation of the form m/(4m+l)
-- there is a closely linear relationshiplbetween the
order of the resonance (4m+l) and ~nll - 7 Tracel
through many decades ("Trace" denoting the trace of the
tangential-mapping or differential matrix associated
with the 4m+l iterations required to map a given fixed
point onto itself). Such regularities, and others re
lating to the apparent size of the stable areas about
high-order fixed points (e.R., as estimated from the
intersection angle of eigenvectors), have been consider
ed u~eful indica~ors of. the ch~g8 ~B character of a
mapplng at certaln amplltudes. "

A computational procedure of considerable interest
for recognizing stochasticity is that in which one
follows the evolution of the distance between two ini
tially very close points in phase space. In practice
it can prove desirable to reduce the separation from
time to time by a recorded factor whenever the separa
tion becomes excessive during the computations, or,
perhaps preferably, to evaluate the growth of an infin
itesimal vector through use of the cumulative tangential
mapping matrix. A high degree of stochasticity can be
ascribed to the behavior of the transformation if there
are such vectors whose length generally grows beyond the
first iteration by a factor greater than unity (while
others may similarly contract). (Ref. la, p. 55; for
examples~ see Ref. Zl.) An analogous procedure -- that
can be more attractive, although possibly of a less
direct basic significance -- is an investigation of the
growth of the eigenvalue(s) of the cumulative tangential
mapping. Such eigenvalues can change sign repeatedly
during the course of many iterations, and hence will be
seen to decrease from time to time, but an exponentially
increasing trend in eigenvalue magnitude is likely to be
associated with a similar type of increase for the len"
gths of the vectors mentioned previously. The nature ZZ
of eigenvalue growth h23 been illustrated by Froeschle
for the transformation

xn+l ~ ~cosa - (Yn-~2)Sina}

Yn+l ~ xn sina + (Yn-~2) Cosa .

The general characteristics of this transformation,
expressed in variables such that the transformation has
the symmetry of McMillan's form, is seen on Fig. 11.
On an expanded scale (XlO) , we see (Fig. lZ) the sudden
onset of erratic behavior as the starting values for the
transformation are successively increased (in steps
6x~ 0.00Z5, for Yo ~ 0), and on a scale expanded by
a ~urther factor 100/6 we see (Fig. 13) the presence of
a great deal of additional structure within a portion
of this "stochastic" region. Associated with the tran
sition to the stochastic region there appears to be a
marked change in the manner of growth of ~ = loglAnl
(linear, vs. n, in the stochastic case -- ~ndicative
of an exponential trend for IAni) or of the "Cesaro

1 n 1
mean"]J ~ - L: - ~ (constancy in the stochastic case,

n n m~l m m

monotonically decreasing otherwise -- Fig. l4).Z4 Such
methods indeed may prove useful in investigating compu
tationally the possible development of stochastic motion
in storage-ring devices. Extended computations of this
nature can present challenging problems with respect to
computer accuracy.Z~

(lZa)

(lZb)

- P e-(QZ-Ql) ~
3

(lZc)

H ~ Constant

PI + Pz + P3 = Constant, and

P
l
P

Z
P

3
- P

l
e-(Q3-QZ) - PZe-(Ql-Q3)

~ Constant.
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Fig. 11. - Apparantly-smooth phase curves and a scatter
ing of points resulting from iteration of the transfor~

mation (lla, b), with cos ct = 0.22 and coordinates X, Y
appropriate to expressing the transformation in the
form (5a,b).23 Five islands of stability (containing
stable fixed points of order 5) are seen surrounding
the area associated with the order-l fixed point at the
origin. The outermost smooth curve, shown as bounding
this inner area, resulted from the starting values
x = 0.5350, Yo = 0 (Frosch Ie notation), and the scatt
e~ed points result from Xo = 0.5375, Yo = O. Scale
(as indicated by the coordinate axes): -1.0 to 1.0

Fig. 13. - Detailed multiple-island structure in the
immediate neighborhood of an order-65 stable fixed
point (shown here just below the center of the diagram)
of which mention has been made in the caption to Fig. 12.
Scales: 0.470 to 0.482 for X, 0.516 to 0.528 for Y.

cos a =0.22
Xo=0.5375
Matrix elements
become inaccurate

cos a =0.22
Xo=0.5350
Continued downward

through 106 iterations

Fig. 12. - Enlarged portion (lOX) of Fig. 11, showing
seven smooth phase trajectories resulting from starting
values Xo = 0.5200, 0.5225, '" 0.5350 (and Yo = 0)
and a scattering of points resulting from Xo = 0.5375,
Yo = O. Note the occurrence of open areas within the
region covered by the scattered points -- for example
the area surrounding an (unplotted) stable fixed point
of order 65 at X ~ 0.476, Y ~ 0.521
Scale: 0.38 to 0.58

Fig. 14. - Plots of the "sliding mean", \in (Note 24),
vs. n, obtained from computations begun (i) with initial
conditions leading to the last smooth curve of Fig. 12
(xo = 0.5350) and (ii) with initial conditions leading
to the scattered points on that Figure (xo = 0.5375),
of which only the results for the latter case indicate
a general exponential upward trend of IAnl.
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EVOLUTION OF THE AMPLITUDE DISTRIBUTION FUNCTION

FOR A BEAM SUBJECTED TO STOCHASTIC COOLING

L. Jackson Laslett

U.C. Lawrence Berkeley Laboratory*

Berkeley, California, U.S.A.

I. INTRODUCTION. The suggestion of S. van der Meer{l) for stochastic cooling or
feedback damping of a circulating charged particle beam offers promise of increas
ing the luminosity of a storage ring and may be a particularly attractive technique
if antiprotons are to be employed as one of the beams in such a device. Encourag
ing initial tests of such a system have been reported from CERN by P. Bramham
et al.,(2) and further tests are in progress in that Laboratory. (3)

The original report of van der Meer{l) considered the repeated use of a
kicker to suppress the transverse phase-space displacement of the centroid of a
group of particles detected at a pick-up station situated up-stream (e.g., by
SA

S/ 4) ,(2) and the report estimated the expected r~te of damping of the mean-square
oscillation amplitude. In the present report we extend this analysis so as topro
vide information on the manner in which the character of the amplitude distribution
function may be affected by the damping procedure mentioned above. It is believed
that information concerning the evolution of the form of the distribution function
may be of particular interest in cases in which a "halo" is imposed on the distri
bution by injection of a group of particles to supplement those in a beam that has
already been subjected to appreciable feedback damping. Results of the analytic
work will be illustrated, and compared with the results of simulation computations.

For consistency with the approach of van der Meer, we continue to assume that
the kicker truly results in a zero transverse phase-space displacement for the
centroid of the group of particles to which it is applied--although with a single
pick-up device, capable of detecting spatial displacements only, the time scale of
the damping process in fact may be doubled. We further ignore such potentially
significant complications as imperfect amplifier performance, extraneous noise, or
loss of particles to the chamber walls, and we restrict the analysis to the case
in which complete "mixing" (or phase decoherence) is assumed to occur between suc
cessive applications of the correction procedure.

II. ANALYSIS. A single application of the full van der Meer correction .leads to
new particle amplitudes Ai given, for N particles, by

,2 2
Ai = Ai - {2/N)A.E.A. cos (<j>.-<j>.) + (1/N2 )E.E

k
A.A

k
cos (<j>.-<j>k). (l)

J. J J J. J J J J

Thus, for random relative phases and N » 1, the average change of the A~ is
expected to be J.

< !l{A2 » = -(2/N) < A2 > + (liN) < A2 > = -(liN) < A2 >, (2)

as given by van der Meer. (l) Accordingly, with u = A2 , T = tiN, and time (t) meas
ured in units of the time between successive corrections,

(3)

(4)

d < u >IdT = - < u >

with the solution < u> = C exp{-T) [where C = < u >I ]t=o
--regardless of the form of the initial distribution, provided only that complete
phase mixing occurs between successive corrections. A similar analysis [AppendixA]
can be performed for a beam considered to be composed of (say) two groups for
which the evolution of their individual mean square amplitudes is of interest.

A binominal development of Eq. (l) to obtain !l{u. P ) suggests the relations
J.

To be presented at International
Accelerator Conference, Institute
for High Energy Physics, Serpukhov,
Moscow Region, July 11-17, 1977
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d< UP>/dT = -2p < uP> + p2 < U> < up- l >, (5)

at least for integer p ~ 0, thus providing a soluble sequence of ordinary differen
tial equations for the (even) amplitude moments [with < u>, corresponding to p=l,
given by Eq. (4)]. A distribution function f(u;T), of squared amplitude that sat
isfies the partial differential equation

a f/ aT = 2 a (uf) / a u + C exp (-T) a (u a f/ au) / au (6)

will be found (by integration over the distribution and the assumption of reason-'
able characteristics for f and for a f/ a u at the limits) to'be c~risI$tent with the
moment equation (5).(4) Numerical or analytic solution of Eq. (6) thus may provide
a useful means for predicting the evolution of the form of a prescribed initial
distribution and indeed (Sect. III) has been found in test examples to provide re
sults consistent with simulation computations.

A formal analytic solution to Eq. (6) can be written in terms of Laguerre poly
nominals in the form(6,7)

f(u;T) = < u>-l exp (-v) 1: a. exp(-mT) L (v) (7a)
m=O m m

(as can be readily confirmed, term-by-term, by reference only to the Laguerre diff
erential equation), where we have written

v = u/ < u> and < u> is as given by Eq. (4) • (7b)

(7c)

With the adoption of this solution, the coefficients a. are to be evaluated in
terms of the initial distribution function (making usemof the weighted orthonormal
ity of the Laguerre polynominals) as(S)

00

a. = f f (u; 0) L (u/C) duo
m m

o

The formal solution, Eq.(7a), is attractive, and informative, in that it immediate
ly suggests that as time increases (and the higher order factors exp(-mT) become
increasingly small), the form of the distribution f(u;T) will approach a pure ex
ponential function, of width characterized by < A2 > = < u> = C exp (-T) -- as was
found in initial simulation computations. We note, however, the alternative
closed form solution given in(7).

III. EXAMPLE. As an example we consider the evolution of the two-group distri
bution function

f (Ui 0) = n exp (-u/C ) + n exp (-u/C ),
112 2

(Sa)

= 1 and the initial mean square amplitude then given bywith n
1

+ n
2

c=<u>1 =nC +
T=O 1 1

n C .
2 2

(Sb)

Such an initial distribution may typify a beam composed of a core and a halo com
ponent, of which mention has been made in the Introduction. Simulation computa
tions performed with the initial distribution specified by Eq. (Sa) indicate the
expected melding of the groups to form ultimately a composite group of simple ex
ponential form whose mean square amplitude continues to damp in the expected manner
( < u> = C exp (-T». Figures la-d illustrate this behavior, with results for the
individual groups indicated by dashed lines and results for the total distribution
shown by a solid line. [Note that, because of the shrinkage of amplitude as the
damping progresses, we have plotted < u> f(u;T) ~ u/< u>.]

Results in agreement with those depicted on Figs.la-d are obtained through use
of the formula given in(7) for f(U;T). With the initial distribution considered
here, this formula gives (9) (with < u> = C exp (-T»

2
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-u/ < u>

[~ C
exp(-

C-C

)f (U;T) e __1_ u

< u> (l-e-T) C -T
C -T -T+ e C (l-e )C + e C1 1

lJC
exp (-

C-C
+ n

__2_ u
2 -T -T -T -T(l-e )C + e C C (l-e )C + e C

2 2 (9)

The distribution f(UiT) can also be computed, with identical results, from Eqs.(7)
in cases for which the convergence of Eq. (7a) permits numerical evaluation. (10)
The change of form of the distribution function for the composite beam is directly
shown, by a comparison of results for T = 0 and for T = 1.0, on Fig.2. The ap
~roach of this distribution function to an exponential form is most clearly appa
rent from the semi-logarithmic plot of Fig.3.

The behavior of the mean square amplitudes of the individual groups is most
readily computed from the results presented i.n Appendix A. The convergence of the
associated root-mean-square amplitudes, for the individual groups and for the com
posite group, to a cornmon value is illustrated graphically in Fig.4. Similarly,

< (A(T»2 >~and higher root-moments approach constant ratios, characteristic of an
exponential distribution function f(uit) as illustrated in Fig.5.

IV. ACKNOWLEDGEMENTS. It is a pleasure to acknowledge the encouragement and help
received, through many discussions, from P. Channell, A. Faltens, Glen Lambertson,
H. Levine, and Lloyd Smith. We also are indebted to Dr. Smith for suggesting the
form of the two-group distribution adopted in Eq. (8a) for purposes of illustration.

APPENDIX A

Evolution of the Mean Square Amplitudes
of the Individual Groups of a Two-Group Distribution

For a distribution regarded as comprised of two groups,

1':!.[\A~1»2] = -(2/N) (1) ~.A~llcos(<p~l)_cp~l» +~.A~2)cos(cp~1)_<p~2»
~1 Ai J J ~ J J J 1 J

1 11 1 1 22 1 2

+ (1/N2)~j~kAj~ cos (CPj-CPk)

for the i1bparticle of Group 1. The random phase assumption then leads to
1

or

solution of these equations as

:r < (A(1l)2>= _2«A(1l)2>+ [n < (A(tl)2> + n «A(2»2>]
1 2

and N(2) = n N), and similarly for d«A(2»2>/dT.
2

the initial respective mean square amplitudes of

(where, as in the text, N(l)= n N
1

Accordingly, with C ,C denoting
1 2

groups 1 and 2, we may write the

4
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APPENDIX B

Equation (6) as a Fokker-Planck Equation

with frUiT) denoting the distribution function for u = A2 and ~(U,OU) denot
ing the probability of an increment ou to the quantity u in a time interval ot,

00

fruit + ot) = 1f(U-OUit) ~(U-OU,ou) d(Ou),
-u

as is characteristic of a Markoff process. A Taylor development of this relation
then leads to

af a [ 1 a 2
-= -- f· <ou>]+--[f. «ou)2>],
a tau 2 a u2

where the quantities < Ou> and < (Ou) 2> are functions of u that represent aver
ages (over the permissible range of ou) of changes or squared changes of u expected
per unit interval ot.

I th t 1 " t' . h ~ f .th . 1 . bn e presen app 1ca 10n, W1t uU or an 1-- part1c e g1ven y

ou= O(A2) = -(2/N)A.L:.A. cos (CP.-cp.) + (1/N2 )L:L: A.A cos (CP -cp ),
1JJ 1 J ll\nmn m n

the presumption of random phase leads to

<ou>=-2A2 /N+ <A2 >/N=-(2/N)u+ <u>/N.

Similarly,
< o(u2 » = -(4/N)u2 + (4/N)u < u>.

Accordingly,

< (OU)2>= <O(u2» -2u <Ou>= (2/N)u <u>.

[It may be worth noting that we have found < (ou)p>to be zero through order
liN for all integer p > 2.] The partial differential equation then becomes

(2 U <U>f
N

or

af' a a afat = 2 a u (uf) + < u> a u (u ~) ,

wherein (as given originally by van der Meer (1» < u > may be taken [consistently
with Eq. (6)] to be given by Eq. (4) of the text.
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; T)] that should satisfy the partial differential equation

Clg/ClT = Cl (Ag)/ClA + (C/4) exp(-T) Cl[ACl(g/A)/ClA]/ClA.

We then wrote z = (A2/C) exp(T) and regarded g(A;T) as a function G(ZiT) to
obtain a partial differential equation in which none of the coefficients was
explicitly T-dependent. We next replaced G by the dependent variable
S = [(l/~) exp(z -,/2)]G to obtain a partial differential equation that, by
separation of variables, led to a solution in terms of Laguerre polynominals.
Transcription of this solution into the original variables led to a result
equivalent to Eq. (7a). For numerical solution of the partial differential
equation, it may be convenient to introduce the independent variable
w = A exp(T/2) and to employ as the dependent variable a function
H(w;,) = [exp(-T/2)]g. The partial differential equation for H is

ClH/ClT = (1/2) Cl (wH)/Clw+ (c/4) Cl[wCl(H/w)/Clw]/Clw

--again an equation in which none of the coefficients is T-dependent--and it
is expedient to seek solutions that have the formal character of being odd
with respect to w.

00

7. An alternative, closed-form solution may be written
1 [-T -1 ]

f(U;T) = < u>- exp( -u/< u » exp -(1 -e ) u/c X
1 _e-T

J exp[ -(e'-l)-l x/ C] I (2(1 _e-')-l vux/C)f(XiO)dx,
o

where I is the zero-order modified Bessel function of the first kind--see
o

I. S. Gr~dshteyn and I. M. Ryzhik, Table of Integrals ... (Ac~aemic Press,
New York; 1965), Sec. 8.976 (1), p.1038 (with a = 0) to relate this solution
to that proposed by Eq. (7) in the text.

8. Since f(u) is normalized to unity and L (u/C)
o

initial value of < u> is C and L (u/C)-L(U/C)
o 1

1, a 1. Also, since the
o

u/c, we find a -a = 1 and,
o 1

hence, a O.
1

00

9. Note that J -Sxe I
o

(Yyx) dx = (liS) exp (~y2/(3) •

evaluation of Eq. (7c) leads to a = n (1 -C IC)m +
mil

and Ryzhik (cited in (7», Sec. 7.414 (6),

For the example of Sec. III,

n (1 -C IC)m_- see Gradshteyn
2 2

p. 844. The resultant Eq. (7a) may not have suitable convergence characteris
tics for small T under certain circumstances however--thus consider, for ex
ample, an initial distribution (8a) with n = 0.75, n = 0.25, C = 4.0, and

121
7.0), for which the factor 1 -C IC = -9/7 and the coefficients

2
increase essentially in geometrical progression (with alternat-

C = 16.0 (C =
2

a ultimately
m

ing sign).

10.

*Work supported by the U.S. Energy Research and Development Administration.
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Presented at the Workshop on
Non-Linear Dynamics, La Jolla, CA,
December 27-30, 1977 SOME ILLUSTRATIONS OF STOCHASTICITY

L. Jackson Laslett
University of California Lawrence Berkeley Laboratory

Berkeley, California*

LBL-7247

A complex, and apparently stochastic, character frequently can be seen

to occur in the solutions to simple Hamiltonian problems. Such behavior is

of interest, and potentially of importance, to designers of particle acceler

ators -- as well as to workers in other fields of physics and related disci

plines. Even a slow development of disorder in the motion of particles in a

circular accelerator or storage ring could be troublesome, because a practi

cal design requires the beam particles to remain confined in an orderly manner

within a narrow beam tube for literally tens of billions of revolutions. The

material I shall present is primarily the result of computer calculations I

and others have made to investigate the occurrence of II stochasticity,1I and is

organized in a manner similar to that adopted for presentation at a 1974 accel

erator conference. l

As an introductory example, one can consider the longitudinal motion of

a particle subjected to the radio-frequency electric fields employed to bunch,

and sometimes accelerate, a beam within a synchrotron type of accelerator. If

the electric field is regarded as equivalent to a simple travelling wave, having

the, speed of a reference particle in a "coasting beam," the motion is character-

ized by the pair of differential equations.

s!l = -K s imrxdn
(la)

dx = A'y (lb)
dn

wherein y - fractional departure of energy from the reference value,

TIX = electrical phase angle of field vs.particle,

K0C app1ied voltage, and

X' ex: derivative of revolution period with respect to energy.

* Uork supported by the U.S. Dept. of Energy, Office of Energy Research.
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Kand AI will be regarded as specified constants. The differential equations

will be recognized qS derivable from a Hamiltonian function

H 1 '\' 2 K= - I\. Y - - cos TIX2 TI '
(2)

in which the independent variable (n) is the revolution number and does not

appear explicitly in the Hamiltonian. Because n does not appear explicitly,

the Hamiltonian of course is a constant of the motion. One accordingly obtains

simple phase trajectories (in x,y space) -- of the familiar type character

istic of a physical (non-linear) pendulum (as was recognized by McMillan in

connection with discovery of the principle of phase stabi1ity4).

In practice, however, the radio-frequency fields in fact are provided by

localized cavities, so that the travelling-wave description constitutes an

idealization and the motion is more appropriately represented by difference

equations:

(3a)

(3b)x =x +A'yn+1 n n+1'
with Yn measuring energy at the entrance to the nth cavity. These transfor-

mation equations are readily shown to be area preserving [3 (Xn+1'Yn+1)/

a (xn'Yn) = 1J -- the motion in fact could be described through use of a

Hamiltonian function, but one that would contain a periodic o-function of

the independent variable as a factor multiplying the term - ~ cos TIX. There

thus is no evident simple constant of the motion, and the non-linearity of

the equations precludes application of F10quet theory to this problem. (The

use of a Hamiltonian formulation nonetheless can be helpful in analytic work,

but difference equations of course are convenient for computational investi

gations.)

It is of interest to take a quick look at some computational results

obtained through use of a transformation equivalent to (3a,b) but written in
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terms of working variables V = Y - (K/2) sinwx. X = x. so that the trans

formation assumes the form

Xn+l = Xn + A'[Vn- (K/2) sinwXn] }

Vn+l = Vn -(K/2)[sinwXn + sinwXn+1J •

(3a I)

(3b I)

with the result that the resulting phase diagrams will necessarily have a

desirable symmetry about both the X- and V-axes. With K/w = 0.1 and

A' = 0.1 we find what appear to be conventional bucket diagrams with buckets

separated in V by 2/A' for successive harmonic modes. although we may wish

to return to the question of whether the bucket boundaries are as simple and

definite as appears on Fig. 1.

R F Phase Plot
K /.". =0.1

IX = 0.1

22.1 -
C;'" '

" .

- - .

< ,
.........

-

..:>-. ..

-

~. e.". -=---~~~--~..-....
- 2.1

- 1.0 1.0

XBL 744-741

Fig. 1 -- X, Y phase plot for a coasting bea~ under the influence of an
R.F. cavity with K/w = 0.1, AI = 0.1 -- as computed by Eqns.
(3a'.b'). X is plotted mod •.2.
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We also find evidence of some "sub-harmonic" structure (with higher order
5

fixed points) that, if enlarged some 60X, has the appearance shown in Fig. 2.

10.2

RF Phase Plots

....
" ..

K/ Tr =0.1
X' = 0.1

.. ,..

.:
"

9.8
- 1.0

i'"\
t :· ,, .
" .· , ., .· ,· .· .1 :

~i

·...

I
I

l ..

"
.-.
1.0

XBL 744-737

Fig o 2 -- Circa 60-fold vertical enlargement of central portion of F"
near Y= 10.0, showing sub-harmonic structure. 19. 1,

If the cavity voltage is increased eight-fold (so K/~ = 0.8), the

bucket areas are expected to become larger, and we indeed find this to be the

case (Fig. 3), with an accompanying very marked increase of complexity
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RF Phase Plots
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Fig. 3. - Phase plot similar to Fig. 1, but for operation with KIn = 0.8,
showing the obvious development of complex structure.

that is immediately apparent in the phase plot. Of particular interest is the

evident diffuse character of phase trajectories generated by points launched

close to the first-order unstable fixed points .situated at X = ±l, since the

bucket boundary in consequence no longer appears clearly defined.

In the first example (KIn = 0.1), on the other hand, where the bucket

width is some two and one-half times smaller in relation to the bucket

separation, the presence of structure in the separatrix can be revealed com

putationally only with considerable care. 6 To do this, one can extend from

the unstable fixed points the eigenvector directions of the transformation

linearized about these fixed points, and examine whether such curves intersect
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smoothly. One finds in fact that they do not quite do so, but generate

loops (of a nature to be illustrated later) that in this instance (K/n = 0.1)

have a very small area that amounts to only about 1/(5 x 1011) of the area

of the bucket itself.

Another example of a "time-dependent" non-linear problem in the phase

plane arose in connection with the development of spiral-sector fixed-field

accelerators (as have now evolved into very effective cyclotrons for physical

research). The equations for particle motion in these devices again required

a time-dependent Hamiltonian and were distinctly non-linear. The limitations

of computer performance at that time (1956) understandably motivated us to

study the behavior of simple algebraic transformations that at least would

duplicate approximately the short-term particle motion. Such an area

preserving transformation is

xn+1 = Ax ± (1 - A2)y + (1 - A) [x ± (l-A)y ]2 (4a)n n n n

Yn+1 =;xn + AYn ± [xn ± (1-A)Yn]2, (4b)

where the ± signs refer to the forward or inverse transformation, respec-

tive1y, and A represents the cosine of the phase advance per iteration for

solutions to the linearized (small-amplitude) transformations. The constant A

normally would be taken to have an absolute value less than unity and, to

avoid a one-third resonance when the quadratic terms are present, one also

should avoid the value A = -1/2 (for which cos-1A = 2TI/3).
The region of interest to the accelerator designer at that time is that

contained within the roughly triangular area indicated on Fig. 4, sketched for

A = -5/8 [cos-1 A = (O.35745)(2TI)], wherein the apparent separatrices through

the fixed points F1, F2, F3 are associated with the 2/3 resonance and also illus

trate the synmetry of the transformation (4a,b) with respect to the x-axis. It

was only by rather careful computations [aided by Mrs. H. (Barbara) levine --

see Ref. 12] that I could establish that the trajectories extending from the

fixed points F1, F2, F3 do not intersect smoothly and hence give rise to (rather

modest) regions of erratic behavior similar to those seen in phase diagrams for

the earlier example. Outside the area F1, F2, F3 indicated in Fig. 4, however,
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Sketch for A = - 5/8

cos-1A ~ (0.35745)(211")

Area ~ 5.5 x 10-3

(would shrink to zero
if A~ - 1/2 )

, + 414i-16 ) =
- 169

(0.03846···, + 0.05688···)

XBL 7712-11142

Fig. 4 - Apparent separatrices through the third-order unstable fixed points
of the transformation (4a,b), with A = -5/80

E=Q083333

P2

E=QI0629166

P2

E=Q.12500000

XBL 744-740

Fig. 5 - Phase plots, in the surface of section q1 = 0, resulting from the equation
implied by the Hamiltonian function (5) -- for increasing values of the
energy. [After Ua 1ker and Ford. 8]
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the transformation (4a,b) develops gross loops in phase trajectories extending

from an order-l fixed point at (1,0), and in this respect exhibits a behavior

similar to that shown by a transformation of deVogelaere which will be mentioned

later.

Similar questions concerning the character of phase trajectories and the

possible erratic or stochastic behavior of canonical mappings can arise in

problems with more than one degree of freedom. As an example, H~non and Hiles7

and subsequently Walker and Ford8 studied a model of an astronomical system, for

which the Hamiltonian function was taken to be

(5)

The cubic terms appearing here as coupling terms become increasingly significant

for increasingly large values of H -- which is itself a constant of the motion.

With the coupling terms present, however, and in the absence of any simple con

stant of the motion other than H, a given phase trajectory might be expected to

wander (ergodically) over virtually all of a three-dimensional surface specified

by H= Constant (and that will be a closed surface for values of H below the.

dissociation energy). If, on the other hand, some additional integral of the

motion were in fact also acting, the phase points of a given trajectory then would

be constrained to lie on a two-dimensional surface, and graphs of the intersection

of such surfaces with some selected plane or other surface (a "surface-of-section")

would lead to simple curves in this plane rather than to a scattering of points.

Computations of this nature indicated that for sufficiently small values of

energy (~.~., H < 1/12) only curves that to computer accuracy were smooth (and

relatively simple) were formed by intersection with the plane ql = 0 (and p, > 0).

Examples in which the energy of the particles was successively raised, however, re

sulted in the development of ragged island structures or of apparent stochastic

behavior over increasingly large portions of this surface-of-section (Fig. 5).
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Fig. 6 - Phase diagram for the transformation (6a, b), with f(y) given by Eqn. (7a).
The scattered points result from computations initiated with Xo = Yo = 0.25,
but must remain within the separatrix defined by the function ~ [Eqn. (7b)].
k = 0.1.

Such behavior appears concordant with the "KAM" (Kolmogorov-Arnol1d-Moser)

theory (see Ref. 58, 59. &60 of our Ref. 2c), which suggests that many of the in-

variant curves or surfaces present in the absence of the perturbation will

persist, with only minor distortion, in the presence of a sufficiently small

perturbation (see, however, Note 9). It is of interest, of course, to determine

or to estimate the circumstances (~.~., perturbation strength) at which the

KAM theory becomes inapplicable and extended regions of erratic (or stochastic)

behavior develop. As we suggested by our first examples, and has been expounded

more exten~ively by Zaslavskij and Chirikov,2c,10one means for obtaining such

estimates may be by determining the ratio of resonance width [ow=(dw/dI) 01] tor

the distance (6w) to the nearest neighboring resonance.

Additional tests (to be mentioned below) may be required to determine

the degree of disorder associated with the movement of phase points in such
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stochastic regions. We may first note, however, that the existence of nested

closed invariant curves in a plane -- as suggested by the KAM theorem for a

problem in one degree of freedom -- prevents phase points from moving outward

or inward to regions of substantially different "amp litude" (in the absence of

noise). With more than one degree of freedom, however, stochastic layers may

intersect, to form an intricate system of channels along which a phase point

can slowly diffuse and result in instability. The possibility of such "Arnol ' d

diffusion" has been demonstrated by Arnol'd [Ref. 35 of our Ref. 2c; stated

simply the example considered by Arnol'd is comprised of a physical pendulum

and a simple-harmonic oscillator, with a time-dependent coupling (that also

depends on the phases, or angle variables, of these oscillations)].

It should be pointed out that some non-linear transformations -- say for

a system with one degree of freedom -- will not lead to the disappearance of

some or all of the invariant phase curves at substantial amplitudes. Thus for

transformations of the form

xn+l =Yn; Yn+1 =-xn + f(Yn)' (6a,b)

McMi1lan ll has shown that if f(y) can be written as ~(y) + ~-l(y) (where ~-1

denotes the function inverse to ~), then the curves y = ~(x) and x = ~(y)

will constitute invariant curves. Such curves will pass through the first-

order fixed point(s) situated at the intersections(s) of y = (1/2)f(x) with

the principal diagonal. An enclosed area can thereby be formed from which

phase points cannot escape even if the behavior in portions of the interior

becomes

and

highly stochastic. This is illustrated by an example

1 1 k2 /2-2
f(y) = 2(3y-1) - 2 y+1 + Vy- + k

r-----· ._..-
~(x) = x - 1 + vx2 + k2 •

(Fig. 6) in which

(7a)

(7b)

Such a situation also can develop when f(y) is a stepwise linear function

of y with discontinuities of slope, as has been noted by Drs. Judd and
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McMillian [see, for example, Figs. 13 and 14 (pp. 27-28) of Ref. 12]. If

f(y) is of the form

f(y) = _( By2 + Oy)/ (Ay2 + By + C), (8)

moreover, the entire phase plane will be covered by a family of simple in

variant curves -- see, for example, the cases11 f(y) = 2ky/(1+y2), with the

invariants x2y2 + x2 + y2 _ 2kxy = Constant, and f(y) = 2ky/(1-y2), with the

irtv<H·itHI1... //./-/f'l.kXY Constdnt, illustrated by Figs. 7-8.

It is of interest to examine the mechanism whereby irregular behavior can

develop in the neighborhood of unstable fixed points. taking as an illustration

an example suggested by Professor deVoge1aere that [when generalized and re

written in variables leading to the form (Sa,b) advocated by McMillan] employs

f(y) = 2[Ty + (1 - T)y2]. (9)

(,

" -

1 •

1-

I 1-

," yoX

8:H~ ---':--~~--'--"""~--L...-oo:O~...LI-..I--....L...""""-.L-....L..--L

x--
XBL 744-680

Fig. 7 - Invariant curves for the transformation (Sa, b) with f(y) = 2ky/(1+y2) and
k = 2/3. [Figs. 7 - 11 after McMil1an. 1l ]
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XBL 744-681
Fig. 8 - Invariant curves for the same transformation as in Fig. 7, but with

k -= 1.36.

0, f?/ I/
I
I

-2 ·1 () 2
X.--

XHT. 744-682
Fig. 9 - Invariant curves for the transformation (6a, b) with f(y) 2ky/(1-y2)

and k = 00 64.
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Fig. 10 - Plot of the extensions of the eigenvector directions from the unstable

fixed point at (1,1), for the deVoge1aere transfonmation expressed in
McMi11an i s variables [Eqns. (Ga, b) and (9)~ with T = OJ. The areas
of the loops marked L are all equal, by virtue of the area-preserving
character of the transfornlation and the inherent symmetry about the
principal diagonal.

First-order fixed points appear at (0,0) and at (1,1). For T = 0, this

transformation, when linearized about the unstable fixed point at (1,1), can
-a a

be represented by the rna tri x:-1 4 ' with eigenvalues and eigenvector slopes

A = 2 ± 13, dy/dx = A.

A line segment extending downward from the fixed point (1,1) with the slope

2 + 13, if subjected to repeated applications of the transformation, generates

the loops shown in Fig. 10; similarly a line segment of slope 2 - 13, if

extended by the inverse transformation, generates the mirror-image curve

(mirrored about the principal diagonal). Points such as A, B, C ... progress

toward the fixed point in smaller and smaller steps and, since the transformation

is area-preserving, the associated loops clearly must become increasingly

elongated as they become increasingly narrow from repeated applications of the

forward transformation. The evolution of such loops clearly will become quite

intricate (Fig. 11), but the loops apparently need not permeate the entire
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lIinterior ll
• Portions of an inward loop can, in fact, enter, on a later

iteration, into the interior of an outward-lying loop, as indicated on Fig. 11.

A wealth of island structure, of course, can develop throughout the area of

such phase diagrams.

14
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t
0>-
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10 -08 -0.6 -04 -0.2 0 02 04 0.608 10 12 14
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XBL 744-679

Fig. 11 - A partial extension of the curves shown on Fig. 10.
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(11)

In some instances a family of unstable fixed points for which the

eigenvalues are negative may arise (in place of a stable family, for which A

is purely imaginary), and the appearance of phase trajectories can thereby

be drastically affected. Phase trajectories in the neighborhood of two such

eighth-order ("tune" = 2/8) fixed points are shown on Fig. 12 for the trans

formation of deVogelaere written to exhibit symmetry about the x-axis

xn+l = y + Tx + (l - T)x 2 (lOa)n n· n

Yn+l = -xn + TXn+l + (1-T)xn+1
2, (lOb)

with T = -1/8. In any case it is clear, however, that the development of a

loop system such as that shown on Fig. 11, can readily give rise to an apparent

stochastic motion of phase points in portions of the phase diagram -- most par

ticularly near an unstable fixed point.

The existence of a firm separatrix, or of an extensive family of invariant

curves generally, can be extremely sensitive to the exact form of the transforma

tion. 14 A case of some physical interest arises in computational studies relating

to the Toda Lattice. 15 This one-dimensional lattice consists of particles

interacting through exponential pair potentials and can propagate certain non

linear wave forms (" s01itons") without change of shape. One computational in

vestigation16 of stability for a three-particle lattice (with periodic boundary

conditions) has commenced with a Hamiltonian function

) ( ) -(Q -Q )
H = l(p 2 + P 2 + P 2) + e - (Ql-Q3 + e - Q2-Ql +e 3 2.

2 1 2 3

Bya canonical transformationofvariables, in recognition 'of the invariance of
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this system to translation -- so that 11 = Pl + P2 + P3 constitutes a constant

of the motion -- the Hamiltonian (ll) becomes expressible as a function of

two pa4r of conjugate variables in the form

(l2)

which is identical to the H~non-Heiles Hamiltonian function (5) through terms

of third order. It is of interest to examine whether in the present case con

stants of the motion other than Hact to restrict the motion. Computationally it

was found -- again using the surface-of-section ql = O(Pl > O} -- that in this

case simple invariant c~rves apparently continue to exist in the q2P2' plane,

even for very large values of H. Stimulated by this result, H~non17 has directed

attention to an additional integral of the motion that is valid in this case;

the constants of the motion for the three-particle lattice then can be written
18in a form that we may express as

H = Constant

Pl + P2 + P3 = Constant, and

P P P - P e-(Q3-Q2} - P e-(Ql-Q3} P e-(Q2-Ql}= Constant1231 2 -3 •

(13a)

(13b)

(13c)

Evidently17 further analytic work in fact has now esfablished that the

n-particle Toda lattice with periodic boundary conditions (or with fixed ends)

is a "completely integrable" system.

It is of some interest to seek means for anticipating whether stochastic

behavior will occur in various portions of a phase diagram and to examine the

character of such stochastic behavior as does occur. What we here have loosely

termed stochastic behavior can be catalogued with respect to a hierarchy of properties

(ergodicity, mixing, "'), indicative of increasing disorder, that are fundamentally

significant for statistical mechanics. 2a ,e Of particular interest to the

accelerator designer, of course, is the determination of a threshold beyond
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Fig. 12 - Phase trajectories for the transformation (lOa,b) with T = -1/8, in
the neighborhood of two fixed points for which the eigenvalue is negative.
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which stochastic behavior will set in and may act to carry a phase point to

unacceptably large amplitudes. As noted earlier, stochastic behavior

appears to be associated with overlapping resonances,2c and this concept

has served as the basis for some analytic estimates of stochasticity limits. 2c ,19

It has been noted by Ren~ deVogelaere and confirmed in subsequent computations 20

that for a particular class of fixed-point families say those with rotation

of the form m/(4m+l) -- there is a closely linear relationship between the

order of the resonance (4m+1) and .Q,nll - ~ Trace I through many decades ("Trace"

denoting the trace of the tangential-mapping or differential matrix associated

with the 4m+l iterations required to map a given fixed point onto itself). Such

regularities, and others relating to the apparent size of the stable areas about

high-order fixed points (~.~., as estimated from the intersection angle of

eigenvectors), have been considered useful indicators of the change in character

of a mapping at certain amplitudes. 2l ,lO,22

A computational procedure of considerable interest for recognizing stochasticity

is that in which one follows the evolution of the distance between two initially

very close points in phase space. In practice it can prove desirable to reduce

the separation from time to time by a recorded factor whenever the separation

becomes excessive during the computations, or, perhaps preferably, to evaluate

the growth of an infinitesimal vector through use of the cumulative tangetial

mapping matrix. A high degree of stochasticity can be ascribed to the behavior

of the transformation if there are such vectors whose length generally grows

beyond the first iteration by a factor greater than unity (while others may

similarly contract). (Ref. 2a, p. 55; for examples, see Ref. 23.) An analogous

procedure -- that can be more attractive, although possibly of a less direct basic

significance -- is an investigation of the growth of the eigenvalue(s) of the

cumulative tangential mapping. Such eigenvalues can change sign repeatedly

during the course of many interations, and hence will be seen to decrease from
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time to time, but an exponentially increasing trend in eigenvalue magnitude

is likely to be associated with a similar type of increase for the lengths

of the vectors mentioned previously. The nature of eigenvalue growth has

been illustrated by Froeschle24 for the transformation25

Y +1 = x sin Ct + (y - x 2) cos Ctn n . n n

(14a)

(14b)

The general characteristics of this transformation, expressed in variables

such that the transformation has the symmetry of McMillan's form, is seen

on Fig. 13. On an expanded scale (X10), we see (Fig. 14) the sudden onset

of erratic behavior as the starting values for the transformation are successively

increased (in steps ~x = 0.0025, for y = 0), and on a scale expanded byo 0

a further factor 100/6 we see (Fig. 15) the presence of a great deal of additional

structure within a portion of this "stochastic" region. Associated with the tran-

sition to the stochastic region there appears to be a marked change in the manner

of growth of ~n = 10glAnl (linear, vs. n, in the stochastic case -- indicative

of an exponential trend for IAnl) or of the "Cesaro

mean" 1.1 = 1
n n

otherwise

n
L k~m (constancy in the stochastic case, monotonically decreasing

m=l

Fig. 16).26 Such methods indeed may prove useful in investigating

computationally the possible development of stochastic motion in storage-ring

devices. Extended computations of this nature can present challenging problems

. h t t· 27Wlt respec 0 computer accuracy.
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XBB 744-2448

Fig. 13 - Apparently smooth phase curves and a scattering of points resulting
from iteration of the transformation (14a,b), with cos a = 0.22 and
coordinates X~Y appropriate to expressing the transformation in the
form (6a,b).2~ Five islands of stability (containing stable fixed
points of order 5) are seen surrounding the area associated with
the order-l fixed point at the origin. The outermost smooth curve,
shown as bounding this inner area, resulted from the starting values
Xo = 0.5350, Yo = 0 (Froschle notation), and the scattered points
result from Xo = 0.5375, Yo = O. Scale (as indicated by the coordin
ate axes): -1.0 to 1.0
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XBE 744-2446

Fig. 14 - Enlarged portion (lOX) of Fig. 13, showing seven smooth phase
trajectories resulting from starting values Xo = 0.5200, 0.5225,
••• 0.5350 (and Yo = 0) and a scattering of points resulting from
Xo = 0.5375, Yo = O. Note the occurrence of open areas within the
region covered by the scattered points -- for example the area
surrounding an (unplotted) stable fixed point of order 65 at
X ~ 0.476, y ~ 0.521
Scale: 0.38 to 0.58
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XBB 744-2447

Fig. 15 - Detailed multiple-island structure in the immediate neighborhood
of an order-65 stable fixed point (shown here just below the center
of the diagram) of which mention has been made in the caption to
Fig. 14.
Scales: 0.470 to 0.482 for X, 0.516 to 0.528 for Y.
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cos a =0.22
Xo=0.5350
Continued downward

through 106 iterations

iterationsNumber

cos a =0.22---.¥ Xo=0.5375

Matrix elements
become inaccurate

XIL744- 2114

Fig. 16 - Plots of the "s1iding mean", v n (Note 26), ~. n, obtained from
computations begun (i) with initial conditions leading to the last
smooth curve of Fig. 14 (xo = 0.5350) and (ii) with initial conditions
leading to the scattered points on that Figure (xo = 0.5357), of
which only the results for the latter case indicate a general exponen
tial upward trend of IAn I.
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NONLINEAR DYNAMICS
A PERSONAL PERSPECTIVE*

L. Jackson Laslett
Lawrence Berkeley Laboratory

University of California
Berkeley. California 94720

INTRODUCTION AND OUTLINE

The earlier talks in this Conference have given us a welcome insight into the

phenomena that I shall call collectively by the term stochasticity. It is good to
see the attention that this field now is receiving, since I have had the feeling
that for many years it was rather unfashionable in the West. The increasing
availability of digital computers during the last few decades certainly has
assisted in providing illustrative examples that serve to spread an awareness of
the characteristics of these phenomena, but we should not overlook that many of
the basic features and concepts were appreciated by early workers such as
poincar~, Maxwell,(l)t and the elder Birkhoff.

I was asked to present a "Personal Perspective" relating to work in this
field, which might be interpreted as an invitation to mention historical instances
in which, of my personal knowledge, the evolution of accelerator technology led to
accelerator designers developing certain specific issues related to possible sto
chastic behavior. The phenomena encountered in studying such issues have a very
captivating intrinsic interest; with the increasing availability of personal com
puters and interactive terminals, some may wish to review such issues or to pursue
related issues partly for enlightenment but also partly for fun.

In this connection, a few comments or caviats may be in order:
(1) For execution of some problems, a high-precision capability may be

essential, but
(2) There are some issues that (as we shall see) can be illustrated

quite usefully with the aid of no more than a simple desk calcula
tor;

(3) An interactive graphic capability can be exceedingly convenient,
and revealing ("serendipity");

(4) Algebraic transformations can be more convenient to study than the
evolution of solutions to differential equations, and yet provide

*This work was supported by the Office of Energy Research, Office of Basic Energy
Sciences, Department of Energy under Contract No. DE-AC03-76SF00098.

tReferences are given at the end of the this Introduction (p. 3).
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equally valid illustrations of significant phenomena, but
(5) If one wishes to examine solutions to differential equations,

adoption of a "Hamiltonian" or "canonical" integration

algorithm would be reassuring. Such an algorithm has been pre

sented, as a 3rd -order algorithm, by R. Ruth, (2) and it is un

derstood that Dr. Ruth has since developed a similar 4
th-order

integration algorithm -- at least for equations derivable from a

Hamiltonian function of the form

~ +
H = f(p) t V(q, t)

With integration procedures of more conventional type (e.g., for Runge-Kutta al
gorithms), features such as conservation of phase-space area are not precisely

maintained for Hamiltonian systems, and one must guard against the development of

significant consistent spurious damping of phase-space area in extended runs. One

may reasonably presume that physical systems of interest to us may differ, perhaps

inadvertently, from those postulated for our computations but that, nonetheless,

the physical systems in fact will be canonical.

The phenomena we have heard discussed in these recent sessions of our Confer

ence of course have their implications in fields that extend far beyond the dy
namics of particles in accelerators and storage rings. The field of astronomy

certainly presents situations of obvious interest in this regard. To move outside

of fields of physical science, it is noteworthy that quite simple and reasonable

models for the annual change of populations of prey and predator can lead to as

tonishing oscillatory or erratic variations of the representative popula
tions. (3) I suspect that similar effects might be seen in economic models. The

sensitivity of behavior with respect to details of even quite simple models, as we

have begun to recognize in some of our own work, surely should lead model makers

to view their results with less than complete assurance.

Issues I hope to discuss are:(4)

Development of Stochasticity

from Area-Preserving Transformations;

Limiting (Resonant) Frequencies

for Particle Motion in the Median Plane

of a Strong-Focusing Ring -- Examples;

Bifurcation.
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I. CANONICAL TRANSFORMATIONS

The direct use of canonical transformations can be convenient for the in

vestigation and illustration of trajectory behavior in particle accelerators or

storage rings ("tracking studies"). McMillan has proposed(l) a convenient form

for a transformation. that we shall generalize to several degrees of freedom. and

is such that

(1) it is canonical.

(2) it is readily obtained from a transformation for which there is a

simple particle-optics interpretation. and

(3) it exhibits interesting (and useful) symmetries.

One may start by considering a linear homogeneous transformation followed by

a thin-lens abrupt non-linear change of slope (or "momentum"):

I

Qi aiQ i + biP i

wherein primes denote iterates. We requi re that

a
i

bi

c i di

and

aF i ~-, = I

3Q
j

3Q
i

l ( 1)

(la)

( 1b)

(so that, if one wishes, one may write Fi

in order that the transformation be canonical.

[In numerical work with transformations such as (1) it is desirable that the co

efficients a1 , bl , etc., and coefficients entering into the functions Fi in

multi-dimensional cases, be so selected and employed that the above conditions for

canonical behavior are satisfied exactly. Small errors in the specification of

such constants can result ina troublesome progress he and cons i s tent fa il ure of

solutions to satisfy conservation theorems (such as those that pertain to phase

space areas or volume).]
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One may now rewrite the transformation (1) in terms of other variables, in
troducing

Xi b-l /2 Q )i i

-1/2 Qi + bl /2 PiYi '" aib i i

to obtain

xi '" Yi

).Yi '" -xi + f i (Y i 'Y2' ... )

where f i (yl ,y2,···) '"
1/2 1/2 1/2 ... )(a i+ di)Yi + bi Fi(bl Yl , b2 Y2'

(2)

(3)

(3a)

and wherein we require (in multi-dimensional cases, in correspondence to

Eqn. (lb» that

( 3b)

The transformation (3) is in the McMillan form, generalized to permit its applica
tion in cases that involve more than a single conjugate pair of variables.(2)

As an area-preserving transformation for a single pair of canonical variables,
the McMillan transformation (3) has several interesting and potentially helpful
simple characteristics:(l)

(l) Geometrically, an application of the transformation can be repre
sented on the X,Y diagram by a reflection about the principal diago
nal followed by a vertical reflection (parallel to the Y axis) about
the curve Y '" 1/2 f(x).

(2) If two points are iteratively related, by one application of the
transformation, such points mirrored about the principal diagonal
also are ~teratively related (in the inverse order).

(3) If two points are iteratively related, by one application of the
transformation, such points mirrored vertically about the curve Y
1/2 f(x) also are iteratively related (in the inverse order).

(4) Order-l fixed point(s) lie on the intersection of the curve y '"
1/2 f(x) with the principal diagonal y '" x.
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(5) If the function f(n) = <t>(n) + ctJ- 1(n), where et:>-1 denotes the .1ll
verse function, then curves y = <t> (x) and x = <t> (y) each constitute

Invariant curves (Intersecting at order-1 fixed points). When such

curves completely enclose an area of the phase plane, phase points of

course then are unable to move into or out from such an area as a re

sult of applications of the transformation (although erratic motion

nonetheless may develop within the area) -- see Fig. 1.1.(4)

It is Interesting that several area-preserving transformations of which use

has been made In the past can be put Into McMillan's form (3) by means of some

simple (sometimes linear) change of variables. We list some examples of this

equivalence In Note 5 at the end of this Chapter.

It can be informative to employ a simple algebraic transformation to Illus

trate a mechanism for the development of stochasticity. It is convenient for this

purpose to consider a quadratically nonlinear transformation proposed by de-

Vogelaere and rewritten in McMillan's form (with f(y) 2y2):

x

I

Y

y

-x + (4)

This transformation possesses a stable order-l fixed point at the origin and

an unstable (hyberbolic) order-l fixed point at 1, 1 -- as illustrated in Fig. 1.2

by intersections of the curve y=ll2 f(x) = i with the principal diagonal. The

motion of points In the itmlediate neighborhood of the unstable fixed point Is

governed by the tangential-mapping transformation evaluated at that point. This

local linearization leads to eigenvector directions dy/dx = 2± [3 along which

points will move directly away from or directly toward the fixed point, with dis

tances from the fixed point then changing by the respective factors A = 2 ± 13
per iteration.

It Is now instructive to depict, as on Fig. 1.2, the evolutionary track fol

lowed by line segments originating with these slopes close to the unstable fixed

point and extended by repeated applications of the transformation or its Inverse.

A line segment such as GFE thus transforms to a segment EOC as a result of one ap

pl icatlon of the forward transformation, and the points COE llkewl se lead to

points EFG under the application of the Inverse transformation. The line segments

that in this way are extended from the fixed point, by repeated application of

this transformation and of its inverse, do not, however, intersect smoothly (e.g.,

at points such as 0 on Fig. 1.2) and thus result in the formation of the "loops"

designated by L on Fig. 1.2. Such loops are all of equal area, as a result of the

area-preservation and diagonal sytmletry of the transformation. Accordingly, as a

line segment such as GFE Is advanced by repeated applications of the forward

transformation, it will develop loops that become increasingly elongated as their

intersection points (such as points C, B, and A) approach the
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ox-
X8L 8410-4188

fig. 1.1. The case f(x) = (3x - 1)/2 - k2/2(x + 1)

+~x2 + k2, with 0.1 as the value of k. The
invariant boundary consists of two hyperbo
las. The results of two computer runs are
shown. A run starting at x = y = -0.5 gen
erates the apparently smooth curve sur
rounding the stable fixed point at x
y ~ -0.328, and a run starting at x = y =
0.25 gives, for the first 400 iterations,
the scattered points indicated as dots.
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Fig. 1.2 Initial portion of trajectories under the
transformation x' = y, yO = -x + 2y2,
leading away from (or toward) the unstable
fixed point at x = 1, Y = 1. The arrows
indicate the directions in which points are
moved by the transformation. The point
pairs AG, BF, CE illustrate the first sym
metry, the point pairs AE, BD the second
sYllmetry. The areas of the loops marked l
are all equa 1.
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fixed point with a closer and closer spacing.
As a result of these loops developing into ·worms" that are progressively nar

rower and more elongated, the phase-plane diagram can rapidly develop a great com
plexity (Fig. 1.3) and repeated applications of the transformation to a phase
point situated in this region will lead to a "stochastic· or apparently irregular
scatter of its iterates. The region affected by such stochastic behavior need
not, however, extend fully into the "interior" of the diagram. Thus, smooth
closed phase trajectories may exist in this example at small amplitudes, as is
suggested by 'some simple curves drawn near the origin on Fig. 1.3. [These latter
curves are characterized by a distinctive four-pointed shape as a result of the
phase advance per iteration for this transformation approaching 2./4 as the ampli
tude approaches zero.]

Similar stochastic behavior of course can originate in association with un
stable fixed points of higher order. Fig. 1.4 illustrates such features of the
H~non-Froeschl~ mapping(5b,7) (with cos Q = 0.22), re-expressed in the McMillan
form. Additional details of this example have been shown in Refs. (10) (Figures
on p. 399) and(ll) (Figures on pp.342 and 343).

Synchrotron motion, although frequently described by means of simple nonlinear
differential equations, is most appropriately described by means of a transforma
tion that recognizes the impulsive character of the forces applied at discrete
cavity locations. The construction of a Hamiltonian function for such a problem
thus strictly requires the inclusion of ~-functions or similar location-dependent
functions to specify the localization of these forces and the Hamiltonian will not
constitute a constant of the motion.

A transformation to describe synchrotron motion for a coasting beam may be
written, in the form of the .standard mapping",(5C,8) as

wherein

y = y - K sin

I

X = X + ky

(5)

y Fractional departure of energy from the reference
value at the entrance to the cavity,

.x" electrical phase angle of field relative to the
part icl e,

K ~ applied voltage, and

k ~ derivative of revolution period with respect to
energy.

To obtain a convenient symmetry in the phase plots, it is useful to introduce the

variables X = x and Y = y - (K/2) sin .x, thereby measuring energy departures at
mid-passage through the cavities. One accordingly then employs the transformation
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Fig. 1.3 A partial extension of the curves of
Fig. 1.2, showing "tentacles" reaching off
the figure and "worms· in the interior.
Since the entrance channe 1 for the "worms·
becomes very narrow, the figure becomes
difficult to draw completely as the itera
tion progresses. Some apparently closed
curves around the stable fixed point at x =
0, y = 0 are also shown. The peculiar be
havior near the orgin seems less mysterious
if one recalls that the function
y = l/2f(x) approaches the limit of zero
s lope, where the curve degenerates to four
points, and where the slightest perturba
tion can cause a slow migration about the
center and a concomitant slow change in ra
dius.
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XBB 840-7763

Fig. 1.4. Apparently ~mooth phd~e curve~ and a ~cat

tering of point~ re~ulting from iteration
of the Henon-Froe~chle transformation, with
cos c:s '" 0.22 and coordinate~ x,y appro-
priate to expressing the transformation in
the McMillan form. Five island~ of ~tabi

lity (containing stable fixed point~ of or
der 5) are ~een surrounding the area as
~ociated with the order-l fixed point at
the orgin. The outermo~t smooth curve,
shown a~ bounding this inner area, re~ulted

from the starting values Xo 0.5350,
Yo 0 (Froeschle notation), and the
scattered points result from Xo '" 0.5'.l,?:,
Yo '" O. Scale (as indicated ll~: ".:~,C co
ordinate axe~): -1.0 to 1.0.
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I

X

I

Y

x + k [ Y - (K/2) sin .X ]

I

Y - (K/2) [ sin .X + sin .X

(6)

and plots Y vs. X modulo 2. A stable first-order fixed point occurs at X = 0,

Y = 0; other similar fixed points, that correspond to harmonic operation, occur at

X = 0 and Y equal to any integer mUltiple of 2/k.

For K and k small, the phase advance of small-amplitude synchrotron oscilla

tions from one cavity transit to the next is approximately as = Jill radian and

substantially-smooth separatrices appear to extend between unstable fixed points

at X = ±l to enclose stable ·bucket areas· of half height H I'! 2 JK/'II'k -- see

Fig. 1.5, plotted for K = 0.1'11' and k = 0.1, wherein one also sees depicted indica

tions of sub-harmonic trajectories in the region between the major buckets shown

at Y = 0 and at Y = 20. The ratio of bucket height to the separation of major

2
buckets thus may be measured by - a and will be small when the phase advance a is• s s
small.

For substantially larger values of K (or of k), corresponding to values of

a very much greater than normally employed in accelerator operation, buckets
heights may become comparable with the separation between major buckets. The de-

velopment of stochasticity, especially in the neighborhood of the unstable fixed

points at X = ±l, then becomes very pronounced -- see Fig. 1.6, plotted for K =
0.811' and with k = 0.1 (as before). In the case to which Fig. 1.5 applies (K =
0.1'11', k = 0.1), however, the development of stochasticity is so subtle that it can

be demonstrated computationally only with considerable care and it results in the

formation of loops whose estimated individual areas are a fraction only

- 1/(5·x lOll) of the full area of a major bucket [result reported in unpub

lished 1960 lawrence Berkeley laboratory Report [RAN-57 and cited in A.I.P. Pro

ceedings No. 46, p. 226 (1978)(11)].

An algebraic transformation may be employed as a means of obtaining an ap

proximate representation of solutions to differential equations. As an example,

we may note a transformation cited earlier (5d,9).

'22
X = AX + (l-A )Y + (l-A)[ X + (l-A)Y] l
y' = -X + AY + [ X + (l-A)Y ]2 J

(7)

that was originally introduced in the expectation that it would depict approxi

mately the median-plane motion of charged particles in a spiral-sector accelera

tor. First-order fixed points occur at the origin (0,0) and at (1,0). With the

parameter A assigned the value A = -5/8, the fixed point at the origin is stable
-1

(small-amplitude tune, 0
0

= cos A;: 128.68 deg., or approximately 0.35745

times 2... radian), while the point at (l,0) is unstable. The region
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Fig. 1.5 X, Y phase plot for a coasting beam under the
influence of an R.F. cavity with K/... = 0.1,
k = 0.1 -- as computed by Eqs. (6). X is
plotted mod. 2.
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Fig. 1.6 Phase plot similar to Fig. 1.5, but for
operation with Khr = 0.8, showing the ob
vious development of complex structure.

7-223



considered to be of interest for accelerator operation was the roughly triangular

region enclosed by the apparent separatrices that connect the third-order unstable

fixed i)oints Fl , F2, F3 shown on Figs. 1.7 and 1.8 (and for which the area

approaches zero if the small-amplitude tune approaches 2~/3).

It then was of interest to inquire whether these curves can be demonstrated to

be imperfect separatrices and, 1f so, to investigate the extent to which the re

sulting stochasticHy permeates into the interior. Eigenvector directions ex

tended toward the x-axis from the fixed points F
2

, F
3

, were found, (6) upon

careful examination, not to intersect smoothly. The areas of the loops so genera-
8ted constHuted, .however, only a very small fraction (circa 1/10 ) of the area

F
l

F
2

F
3

and no evidence was found to indicate stochasticHy wHhin any sig

nificant portion of the region of interest.
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-0.5

c" XBL 851.9721

Fig. 1.7 Phase diagram for the area-preserving
transformation (7) with A = -5/B. Large
loops are seen to develop from eigenvector
directions extended from the first-order
unstable fixed point situated at (1,0).
Points denoted by squares (8) are related
by the transformation. as are also points
denoted by diamonds (0'). Our interest
will be confined primarily, however, to
the roughly triangular area sketched near
the thi rd-order unstable fixed points
Fl. F2• F3 shown by small circles
near the center of the diagram. Points
denoted by c ros ses (X) are th i rd-order
fixed points that are strongly unstable
with reflection.

7-225



Sketch for A. - 5/8

cos-1A ~ (0.35745)(2w)

~ Area ~ 5.5 x 10-3

(would shrink to zero
if A -+ - 1/2)

(- ~-5 , 0) = (-0.053966··., 0)F1 : 26

F (..!... , + 4&-16) • (0.03846···, _+ 0.05688···)
2,3: 26 - 169

XBL 851-824

Fig. 1.8. Detail of Fig. 7, showing the apparently
stab1e area bounded by the th i rd-order fixed
points Fl' F2' F3' [Transformation (7), with
A = -5/8.]

7-226



REFERENCES AND NOTES

1. Edwin M. McMillan, "A Problem in the Stability of Periodic Systems," .i!!.
"Topics in Modern Physics--A Tribute to Edward V. Condon," pp. 219-244 (Colo
rado Assoc. University Press, Boulder, Colorado; 1971).

2. McMillian's original work, (1) pertaining to a single pair of working varia
bles, introduced the change of variables

1= Qx

of Y vs. x os

cillatory motion is given, for small amplitude motion by cos a = 1/2 QL1yl1
dy y=O

and, if F(y) is restricted to terms of order higher than the first, cos a

= (a + d)l2. The canonical character of the transformation (3) given in the
text can be verified through evaluation of the fundamental Poisson bracket ex
pressions or, alternatively, by rewriting the equations (3) in the form

y = cQ + bP
(a "scaling" transformation, for which the Jacobian although constant is not
necessarily equal to unity) to obtain his form

;: • -~ + fly) l.
with f(y) = (a + d)y + bF(y). The phase advance a per iteration

xi -Yi + f i (Y1'Y2"")

-Yi - aV(Yl'Y2,···)/ aY i

xi = Yi

and noting that such equations are derivable from a generating function

, ,
G(Y1'Y2""; Y1'Y2"")

by application of the relations

As a multi-dimensional illustration of a transformation of the form (1) intro

duced in the text, we may refer to a form that (with a change of notation, includ

ing Interchange of "old" with "new" variables) was employed by Meier and

symon(3) in a study of coupling resonances:
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,
Q1 (cos 01)Q1 + (sin 01)P1

I

Q2 ; (cos 02)Q2 + (sin 02)P2

I , ,

P2 ; (-sin 02)Q2 + (cos 02)P2 - kQ1Q2

I I I '2
This transformation is seen to be of the form (1) with V(Q1,Q2) (kl2)Q1 (Q2) •

3. H. Meier and K. R. Symon, Proc. 1959 Internat. Conf. on High-Energy Accelera
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4. Figure 1.1 has been presented by McMillan as Fig. 8 of Ref. (1). The trans-
. 2

yrmatiO(l illustrated is for f(x) ; (112) (3x - 1) - (ll2)k I(x + 1) +

x2.+ k
2

with 0.1 as the value of k. This function is expressible as f(x)
-1 I 2 2 -1

= <l> (x) + ¢l (x), with ¢l(x) ; x - 1 + ,IX + k and <l> (x) = (112) (x + 1) -

(112)k
2
/(x + 1). The curves y ; <l>(x) and y = <l>-l(x) are shown as bound

ary curves passing through the two order-1 unstable fixed points. The erratic

distribution of points that fall within a portion of the region interior to

this boundary originated from Xo = Yo = 0.25. McMillan has also shown,

and illustrated by Figs. 4-7 of Ref.(l), that a function of the form f(x) =
_(Bx

2
+ DX)/(Ai + Bx + C) employed in his area-preserving transformation

will lead to the phase plane being covered by nested invariant curves of the

form

5. We list here several area-preserving transformations that can be put into

McMillan's form by means of a suitable change of variables.

a.) The DeVogelaere Transformation (generalized, cf Refs. 1 and 6):

,
X = Y + F(X)

, I

Y = -X + F(X )

With introduction of variables such that

X = x

Y = Y - F(x)

the transformation assumes the area-preserving McMillan form with

f(y) = 2 F(y).
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With introduction of variables x,y such that

Y = (sin 01) -1/2

x 1/2(sin 01) y

(x - y ,os .j1
(a linear
transformation),

the transformation assumes the area-preserving McMi llan form with
f(y) = 2 (cos OI)y + (sin 01)3/2 y2.

c.) A "Generalized Standard Mapping":(8)

I

I = I + g(9) }

I I

9 = 9 + I

With the linear change of variables given by

9 = y l
I = Y - x J

we obtain the area-preserving McMillan transformation with F(y)

= 2y + g(y).

d.) A transformation cited in Note 9:

I 2 2 }X = AX + (1 - A )Y + (1 - A) [ X + (1 - A)Y ]

I 2
Y = -X + AY + [ X + (1 - A)Y ]

We introduce variables x,y by a linear "scaling transformation" such that

X 1 (1 + A )3/4
+ y)

4 114 (x
(1 - A )

Y = 1 (1 + A )3/4
(-x + y)4 ( 1 - A )5/4
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II. LIMITING (RESONANT) FREQUENCIES FOR PARTICLE MOTION IN THE MEDIAN PLANE

Erratic dynamical behavior can impose definite limits to the permissible am
plitudes of individual-particle oscillations in alternating-gradient focusing sys
tems when non1inearities are present. Thus, the limiting amplitude for motion in
the median plane of a strong focusing ring typically occurs in association with a
system of fixed points in the phase plane, with a detectable stochasticity fi rst
making its appearance in the neighborhood of the unstable fixed points of the sys
tem.

Stochasticity in the phase plane for motion with a single spatial degree of
freedom of course may be contained by the occurrence of a surrounding KAM (Ko1mo
gorov-Arno1'd-Moser) closed curve, but regions of sufficient amp1 itude can be
found wherein stochastic behavior will carry a phase point to markedly greater,
and totally unacceptable, amplitudes. [An associated phenomenon is that of pe
riod-doubling bifurcation (to be illustrated in Chapter III), wherein a change of
a parameter of a focusing system leads to a previously stable fixed-point system
becoming unstable with reflection and to a new fixed-point system of double period
becomi ng created. A sequence of such peri od-doub1i ng bifurcat ions, occurri ng for
smaller and smaller increments of the governing parameter, results in a bifurca
tion lattice or "tree" that may be claimed to terminate in ·chaos·.]

Informative illustrations of amplitude limitations for stable motion accord
ingly may be obtained by the examination of solutions to simple differential equa
tions representative of median-plane motion in an idealized alternating-gradient
ring. Examples of such equations, for which results are presented below, are

and

d2x 2= - A (x + 1/8 x ) cos Z
dZ2

d2x--- = - A (x + 1/12 x + 1/384 x ) cos Z,
dZ2

( 1)

( 2)

wherein the factor cos Z results in a alternating gradient focusing action with a
period scaled to 2.. With appropriate scaling of the dependent variable, Eqn. (1)
is intended to represent the effect of a1ternati~g sextupo1e fields (to supplement

• ~J

the quadrupole focusing), while Eqn. (2) represents x motion (suitably scaled) in

a Maxwellian magnetic field for which the y component in the median plane is taken

to be proportional to I
2

(X)/X prior to truncation. (1) It will be recognized
that, for simplicity in constructing these equations, the obliquity of the tra

jectories has been neglected to the extent that the longitudinal component of ve
locity is treated as constant. Trajectories computed from such equations should
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be strictly area-preserving when plotted on a x, x' £ dx/d1 plane. Use of a ca
nonical integration algorithm thus in principle would be preferable for such com
putations, but application of a fourth-order Runge-Kutta-Gill algorithm with a
suitably small step size has appeared also to be satisfactory for the present il
lustrative purposes.

The coefficient A that appears in Eqns. (1) and (2) serves to determine the
Mtune M (or the phase advance, dO' per period) for small-amplitude oscillations.
For a fixed value of A that results in reasonable stable motion about the origin,
the solutions to Eqn.(l) are found to exhibit tunes that decrease with increasing
amplitude, while the tunes for solutions to Eqn. (2) become greater for large
amplitude solutions. In either case, it is of interest to examine, for various
values of dO' the extent to which the tune assumes a different value at the
limit of stable motion and to attempt to identify the fixed-point system that ap
pears to be associated with the onset of instability in such cases. (2) Such in
vestigations are conveniently conducted by means of phase plots wherein values of
x, x' for solutions to the equation of interest are plotted at one-period inter
vals -- ~.~., for the present equations, at 1 = 0 mod. 2•.

With Eqn. (1), the symmetry is such that plots made at 1=0 mod. 2_ (or, al
ternatively , at 1 = _ mod. 2_) will exhibit a symmetry in x' about the x axis,
and solutions to Eqn. (2) when so plotted will exhibit also a symmetry in x about
the x' axis. In directing attention here to instabilities associated with motion
confined to the x, 1 plane, one, of course, must recognize that motion occurring
in two transverse directions will be subject to additional limitations, perhaps of
a different character (Arnol'd diffusion?), that well may merit investigation.

d2x -A(x + 1/8 x2) cos 1
dZ2

Median-plane motion of the type of interest here is illustrated by Fig. 11.1
for solutions to Eqn. (1) with A = 0,2136, for which the small-amplitude tune is
such that dO $; 14.59 deg. One notes the appearance of a pronounced order 5/1

fixed-point system (d = 12 deg.) at an intermediate amplitude. Some stochasticity
indeed may be present in association with this system -- and, if so, might be de
monstrable computationally with sufficient care -- but one sees that in any case
this system is surrounded by an apparently smooth closed phase trajectory
(launched at Xo = 1.55, x'o = 0). At a somewhat larger amplitude, however, an
order 16/3 system (d = 61.5 deg.) becomes evident, for which some small loops may

be seen on the Figure near the stable fixed points of this system, but for which
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XBL 851-827

Fig. ILl X' vs. x phase plot, at Z=O mod.2", for
solutions to Eqn. (1) with A= 0.2736
(ao ~ 74.59 deg.) to the scales:

Horizontal: -3.0 to 3.0, for X;
Vertical: -0.3 to 0.3, for x'.

Instability is seen to arise from sto
chasticity associated with a fixed-point
sys tem of order 16/3 (a = 3 X 360/16 =
67.5 deg.). The apparently smooth phase
trajectory situated somewhat inside this
fixed-point system resulted from a com
putation launched at Xo = 1.55, xo '
= O.
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Fig. II.2 Phase plot for the runs of Fig. 1.
plotted at Z = ./2 mod. 2.. Scales:

Horizontal: -2.0 to 2.0, for x;
Vertical: -0.& to 0.&, for x'.
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it is more notable that stochasticity associated with the unstable fixed points
develops to reveal a gross instability.

Figure II. 2 illustrates the manner in which the computational runs portrayed
in Fig. II.l appear if plotted at the quarter-period points Z = fr/2 mod 2". One
expects maximum spatial excursions to occur near the centers of focusing regions,
and phase plots constructed for Z .. 0 mod. 2fr accordingly seem most appropriate
for the present work.

It is of interest to examine in a similar manner the character of solutions

to Eqn. (1) for various values of the parameter A. Results are shown by a se

quence of phase plots (Figs. II.3-II.8a) and are summarized in the following Table.

In some instances the fixed-point system associated with the first onset of gross

stochastic instabil ity appears to be of a rather high order (and indeed in such
cases may become more difficult to specify). It may be particularly notable that

with variations of A covering a fairly small range in this sequence of cases, many

distinctly different fixed-point systems appear to be associated in turn with the
stability limit.

Parameter Sma ll-Ampli tude Estimated Range of x Nearby Fixed-Point
A Tune, dO (deg) at z=o mod. 2" & System Order, &Tune(deg)

Associated Tune (deg)

0.23 61.303217 -2.4 to 1.69 7/1, 1 X 360/7=51.4286
(-52.6 deg)

0.24 64.265071 -2.3 to 1.72 13/2, 2 X 360/13=55.3846
(-56.0 deg)

0.25 67.273942 -1.7 to 1.43 6/1, 1 X 360/6=60.
(-61.6 deg)

0.26 70.334408 -1.89 or - 1.9 to 23/4, 4 X 360/23=62.6087
1. 61 (-62.8 deg)

0.26525 71 .963493 -1.86 to 1.65 39/7 , 7 X 360/39=64.6154
(-64.7 deg) 28/5, 5 X 360/28=64.2857

0.26670 72.416288 -1.82 to 1.57 11/2 , 2 X 360/11=65.4545
(-65.9 deg)
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Fig. 11.3 Phase plot for A = 0.23; Scales:
Horizontal: -3.25 to 3.25 for x;
Vertical: -0.30 to 0.30, for x'.

Shown are an apparently limiting phase tra
jectory (launched with Xo -2.4, x~
= 0), a sequence of order 7/1 stable fixed
points, and an erratic run resulting from a
launch SUbstantially at an order 7/1 un
stable fixed point (taken to be at approxi
mately Xo = -2.465, x~ = 0).
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Fig. II.3a Detail related to Fig. 11.3 (A=0.23); Scales:
Horizontal: -3.0 to -2.0, for x;
Vertical: -0.08 to 0.08, for x'.

Shown are a portion of the apparently limit
ing trajectory launched with Xo = -2.4,
two members of the stable order 7/1 fixed
point system (with surrounding loops), and
an unstable sequence of points resulting
from a launch sUbstantially at an unstable
order 7/1 fixed point.

7-237



XBL 851-B31

Fig. II.4 Phase Plot for A = 0.24; Scales:
Horizontal -3.25 to 3.25, for x;
Vertical: -0.30 to 0.30, for Xl.

An apparently stable limiting trajectory is
shown that results from a launch with Xo =
-2.3, x~ = O. Features of stable and un
stable order 13/2 fixed-point systems also are
shown. A run launched substantially at an un
stable fixed point of this system (xo =
-2.3844070663' x~ 0) shows evident
stochasticity and a run launched on the x-axis
at Xo = -2.5 shows a pronounced blow up in
the course of traversing some 714 periods of
the structure (see Detail, Fig. II.4a).
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Fig. 11.4a Detail related to Fig. 11.4 (A = 0.24); Scales:
Horizontal -3.0 to -2.0, for x;
Vertical -0.08 to 0.08, for x'.

Shown are a portion of the apparently stable
trajectory launched with Xo = -2.3, two mem
bers of the stable order 13/2 fixed-point sys
tem (with surrounding loops), an evidently
stochastic trajectory originatlng near an un
stable order 13/2 fixed polnt, and the pro
nounced instab1lity of a run launched on the
x-axis at Xo = -2.5 (a small dlstance beyond
the order 13/2 system).

7-239



A • 0.25

XBL 851-833

Fig. 11.5 Phase plot for A = 0.25; Scales:
Horizontal: -3.25 to 3.25, for x;
Vertical: -0.30 to 0.30, for Xl.

A limiting apparently stable phase trajectory
is shown, as a result of a launch at Xo =
-1.7, x~ = O. Stable order 6/1 fixed
points also are shown, together with the re
sults of a clearly stochastic run originating
in the invnediate neighborhood of an unstable
fixed point of the order 6/1 system.
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Fig. II.5a Detail related to Fig. 11.5 CA·= 0.25); Scales:
Horizontal: -3.0 to -1.5, for x;
Vertical: -0.08 to 0.08, for x'.

Shown are a portion of the limiting stable
trajectory launched with Xo = -1.7, a member
of the stable order 6/1 fixed-point system,
(with a surrounding small loop), and the sto
chastic instability resulting from a launch at
an unstable fixed point of order 6/1.
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A • 0.26

Fig. IL6

XBL 851-835

Phase plot for A = 0.26; Scales:
Horizontal: -3.25 to 3~or x;
Vertical: -0.30 to 0.30, for x'.

A limiting apparently stable phase trajectory
is shown, as a result of a launch at Xo =
-1.9 and x~ = O. Also shown is a sur
rounding order 23/4 fixed-point system from
which stochastic instability is seen to de
velop.
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Fig. 11.6a Detail related to Fig. 11.6 (A '" 0.26); Scales:
Horizontal: -2.10 to -1.85, for x;
Vertical: -0.05 to 0.05, for x'.

An apparently smooth phase trajectory, ori
ginating on the x-axis at Xo = -1.89, is
shown and evidently indicates sUbstantially
the 1imit of stab 11 ity. Port ions of an order
40/7 system have been added, at smaller ampli
tude, to the right of this trajectory seg
ment. At larger amplitude a distinctly sto
chastic motion. ultimately leading to blow-up,
is seen to result from a launch at Xo =
-1.903935420 and x~ 0 from an unstable
fixed point of the order 23/4 system.
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Fig. 11.7 Phase plot for A = 0.26525; Scales:
Horizontal: -3.25 to 3.25, for x;
Vertical: -0.30 to 0.30, for x'.

For this value of A, the small-amplitude tune is such that
" = 71.963493 deg. When examined on an enlarged scale
(see Figs. I(.7a-d), several fixed-point systems become
evi dent at amplitudes near to the stabil ity boundary -
e.g., systems of order 1112, 50/9, 3917, and 28/5, for
which the respective tunes become " ~ 65.4545, 64.80,
64.6154, and 64.2857 degrees. A limiting boundary curve
appears to result from a launch with Xo = -1.86, x~
= 0, just outside the system of order 50/9, and is shown as
the outermost closed curve on this figure (together with
two additional closed curves, of considerably smaller am
plitudes, that are also shown encircling the origin). The
presence of stable fixed points of an order 11/2 system
(together with small surrounding loops) and of unstable or
der 11/2 fixed points also is indicated; some stochasticity
may be associated with these unstable order -11/2 fixed
poi nts (see Fig. I I. 7d), but the order 11/2 system is con
tained within the apparently smooth limiting boundary curve
mentioned above. The features of the order 50/9 fixed
point system are not readily depicted on the present rather
coarse sea 1e, but one· sees an evident ins tabil ity that re
sults from a run originating near an unstable fixed point
of the order 28/5 system (here taken to be at Xo =
-2.05607625, x~ = 0.0520677).
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Fig. II.7a Detail related to Fig. 11.7 (A = 0.26525); Scales:
Horizontal: -2.00 to -1.80, for x;
Vertical: -0.02 to 0.02, for x'.

This figure shows a portion of the presumed
smooth "limiting boundary curve" that results
from a launch at Xo = -1.86, x.~ = 0,
and to which reference was made in the caption
to Fig. 11.7. At smaller amplitudes, to the
right of this trajectory segment, one sees
portions of order 50/9 fixed-point systems,
with some evident stochasticity noticeable in
the neighborhood of the unstable fixed points
of this system. It of course is a matter of
judgement whether the so-called boundary
curve, as computed here, is truly sufficiently
smooth that phase points are precluded from
crossing into regions of larger amplitude.
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Fig. 11.7b Detail related to Fig. 11.7 (A = 0,26525); Scales:
Horizontal: -2.00 to -l.BO, for x;
Vertical: -0.02 to 0.02, for ~I.

Portions of order 39/7 fixed-point systems,
with evidence of some stochastic behavior in
the nei ghborhood of the uns tab1e fixed poi nt
shown for this system.
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Fig. II.7c Detail related to Fig. 11.7 (A = 0.26525); Scales:
Horizontal: -2.00 to -l.BO. for x;
Vertical: -0.02 to 0.02, for x'.

Highly stochastic instabi lity associated with
unstable fixed points of an order 2B/5 system.
shown together with a stable fixed point (and
surrounding loop) of this same order.
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Fig. 11.7d Detail related to Fig. 11.7 (A = 0.26525); Scales:
Horizontal: -2.00 to -1.50, for x;
Vertical: -0.06 to 0.06, for x".

Detail of fixed points of order 1112 systems,
indicating possible stochasticity near the un
stable order 11/2 fixed point. Also shown is a
portion of an apparently smooth phase tra
jectory of somewhat smaller amplitude that
results from a launch with Xo = -1.7, x~ = O.
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A • 0.C!S670

XBL 851-842

Fig. 11.8 Phase plot for A = 0.26670; Scales:
Horizontal: -3.25 to 3.25, for x;
Vertical: -0.30 to 0.30, for Xl.

Shown is the erratic and clearly unstable phase
motion that results from a launch with Xo =
-1 .8377526, X~ 0, jus t beyond an un
stable fixed point of order 1112. Also shown
are stable fixed points (and encircling loops)
of order 1112. The limiting closed phase tra
jectory appears to be that which results from a
launch with Xo = -1.82, x~ = 0 -- shown
here together with additional curves that en
circle the origin with a smaller amplitude.

7-249



A • O,Z667e

, ,,~:.
",~, ....... ':... '., ,, ,,": "(2)\,..:. \

' '. .... .... . -, . "
'. " \

, ~

"':'\, ' ,
• : 't, ,- :'
" ' ,,~,

: ,.,,' ~:
.' 1

0
I.

: ,
.;: ...

,:():; j
" . ., .. ' I, ,

,:" "", r.· ..'." .
• Itt. •
• I.':' 4' ..

II ,I :\."I ....

XBL 851-843

Fig. IL8a Detail related to Fig. 11.8 (A = 0.26670); Scales:
Horizontal: -2.50 to -1.50. for x;
Vertical: -0.08 to 0.08, for X'.

This detail shows a portion of the apparently
smooth curve, resulting from a launch at Xo
= -1 .82, x~ = 0, that may be regarded as
situated at the edge of the region of stabi
lity [plotted for 2500 periods]. At only
slightly greater amplitude clearly unstable
stochastic motion is seen to develop from a
launch at an unstable order 11/2 fixed point
(xo = -1.83775252, x~ = 0). Two of the
stable order 11/2 fixed points also are shown,
together with small surrounding loops,
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3 5
-A ( x + 1/12 X + 1/384 X ) cos Z

The character of solutions to EQn.(2) also could be examined in the manner in

which solutions to EQn. (1) were examined in the preceding sub-section. An over

all indication of the nature of solutions to EQn. (2) is shown, for A = 0.2088, in

Fig. 11.9. With this value of the parameter A, the tune for small-amplitude mo

tion is such that 0
0

= 55.1621 degrees and 0 increases with increasing amplitude

with the result that a pronounced order 6/1 fixed-poi nt system (0 = 60 deg.) is

seen to occur at intermediate amplitudes.

The largest simple, apparently smooth, closed phase trajectory shown on Fig.,
11.9 resulted from a launch with Xo = 1.6 and Xo = 0 (0 "" 68.87 deg.), and

shortly beyond this curve systems of order 5/1 fixed points make their appear

ance. It is of interest to note that there are, in fact, two systems of stable

order 511 fixed points (and similarly two systems of unstable order 5/1 fixed

points). Thus, one system of stable order 5/1 fixed points has one member of this

family situated on the positive x-axis (x "" 1.782071) and the remaining four mem

bers situated symmetrically above and below the x-axis, while the second family

has its members similarly situated save for a reversal of sign for the x-coordi

nate of each member. With respect to the unstable order 5/1 fixed points, one

member of one family is situated on the positive x'-axis (x' "" 0.19289322) with

other members of that family symmetrically situated to the right and left of that

axis, while the second unstable family is similar save for a reversal of sign of

x' for each member. The mapping of phase points in the neighborhood of the un

stable order 5/1 fixed points presents, moreover, a distinctly stochastic charac

ter, and a run launched on the x-axis with Xo = 1.89 is found to lead to a gross

instability ("blow-up", not shown).

At still larger amplitudes on Fig. II.9 one finally sees the locations of

stable and unstable fixed points of order 14/3 (0"" 77.1429 deg.), with two mem

bers of the stable system lying on the x'-axis at x' ; ± 0.22460743 and two mem

bers of the unstable system on the x-axis at x = ± 1.99832577. The unstable order

14/3 system 1s locally very strongly unstable (half trace of tangential-mapping

transformation = 16.2579), while the stable family (HTR "" 0.9102(484) can be of

interest in giving rise to a bifurcation (without period dOUbling) when the para

meter A is slightly reduced (Chapter III).

Figure II.9a shows some detail of the phase plane in the near neighborhood of

the stable order 5/1 fixed point situated (as on Fig. 11.9) on the x-axis at x ""

1.782071. The outermost trajectories indicate the presence of 11 stable and 11

unstable order 55/11 fixed points, arranged to surround the order 5/1 fixed
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XBL 851-844

Fig. 11.9 Phase plot, at Z = 0 mod. 2", for solutions to Eqn. (2)
with A = 0.2088 (00 = 55.1621 deg.). Scales:

Horizontal: -2.25 to 2.25, for x;
Vertical: -0.25 to 0.25, for x'.

Distinctive features include systems of stable
and unstable order 6/1 fixed points, two sta
b1e and two uns tab1e order 5/1 systems, and
the locations of stable and unstable order
14/3 fixed points. The largest simple, ap
parently smooth, closed phase trajectory ori
ginated from a launch with Xo = 1.6 and
x~ = o.
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point situated near the center of this diagram. The stochastic evolution of phase

points for a run launched near an unstable order 5/1 fixed point (e.g., near x
I . 0

'" 1.68129339, X
o

= O.04744n8) would carry such points to regions further re-

moved from the stable order 5/1 fixed point shown here.
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Fig. 11.9a Detail related to Fig. 11.9, for Eqn.(2) with
A = 0.2088, Scales:
Horizontal: 1.60 to 2.00, for x;
Vertical: -0.06 to 0.06, for x'.

Phase trajectories surrounding a stable order
5/1 fixed point are shown, together with indica
tions of stable and unstable fixed points of or
der 55/11 in this vicinity.
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REFERENCES OR NOTES

1. A curl~free, divergence-free magnetic field that is longitudinally peri
odic with period P and is of a Quadrupole character with respect to its
dependence on • can be constructed from terms of the form

I

Br = k 12 (kr) cos kZ sin 2.

B. = (2/r) I2(kr) cos kZ cos 2.

BZ = -k I2(kr) sin kZ sin 2.

with k any integer multiple of 2~/P. The nonlinearities necessarily in
troduced thereby into median-plane motion (. = 0) accordingly are such as
arise from terms of the form I2(kr)/r.

2. Convergence to a numerical evaluation of phase-plane coordinates for
fixed points of interest, and the evaluation of the local tune or stabi
lity characteristics for small-amplitude oscillations about the periodic
orbit corresponding to any such fixed point, can make use conveniently of
the Htangential~mapping transformation" that tracks an infinitesimal dis
placement (6X, 6x ") through the appropri ate i nterva1 in Z. For other
phase trajectories, estimates of tune are obtainable by the technique of
counting axis crossings in the x, x' phase plane.

7-255



III. BIFURCATION -- ILLUSTRATIONS

For Area-Preserving Transformations and Solutions to Differential Equations

A distinct change can occur in the nature of the fixed-point systems charac
terizing area-preserving transformations, or solutions to canonical differential
equat ions, as a pa rameter of the trans format ion is changed. One fi nds such
changes to occur when a fixed-point system that previously was locally stable be
comes unstable as a result of a parameter change and new (stable) fixed points
split off to make their appearance. In cases such that the previously stable sys
tem becomes unstable with reflection, the new system is found to have a period
twi ce that of its predecessor. A sequence of such period-doubli ng bifurcat ions,
occurring for smaller and smaller changes of the governing parameter, results in
a bifurcation lattice or "tree" that may be claimed to terminate in ·chaos".

Illustrations of bifurcation are conveniently obtained by examination of sim

ple area-preserving algebraic mappings, (1) and also can be found in phase-plane
mappings that represent solutions to canonical differential equations characteris

tic of median-plane motion in alternating-gradient particle accelerators or stor
age rings.

A. An Area-Preserving Quadratic Mapping

The area-preserving quadratic mapping (M)

( 1 )

with F(x) = Tx + (l-T)i [a generalized deVogelaere form, with parameter 1],

serves conveniently to illustrate the development of a sequence of period-doubling
bifurcations as the parameter T is varied. The transformation (1) results in
phase diagrams that exhibit a convenient symmetry about the x-axis. For

IT I < 1 the origin constitutes a stable first-order fixed point and the point

(1, 0) is an unstable first-order fixed point.

For T somewhat negative, phase points representing small-amplitude motion en-
. -1

circle the origin somewhat more rapidly than once per four iterations (cos
T > 90 deg.), but at larger amplitudes one can find solutions that are locked into
order -4/1 fixed-point systems. Such order- 4/1 fixed-point systems are illus
trated on Fig. 1 for T = -0.1030. The half-trace (HTR) for the tangential-mapping

transformations, for M4 linearized about a stable fixed point of the sys
tem, (2) then may be computed to be circa -0.9883

57
so that while
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this fixed-point system is stable, it is close to being unstable with reflection.

It accordingly becomes of interest to examine the structure of the phase-space

diagram, in the vicinity of such a stable fixed point as that seen in Fig. 111.1

to lie on the positive x-axis, as the parameter T is varied (to become somewhat

more negative).

For T = -0.1030 (as in Fig. 111.1) the character of the phase trajectories in

the neighborhood of the stable order - 4/1 fixed point on the positive x-axis is

shown to an enlarged scale on Fig. 111.2. One notes close to this stable fixed

point the occurrence of apparently smooth surrounding phase trajectories that in

dicate the general nature of flow under action of H4 in this region of phase
space.
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Fig. 111.1 T = -0.1030 Oe-Vogelaere Variables
Scales: -0.60 to +0.60
Locations of 4-th Order unstable and stable fixed
points.
The 4 stable fixed points are indicated by arrows.
We shall follow the behavior in the neighborhood
of the fixed point on the positive x-axis (x =
0.532268206310) as T becomes more negative.
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Fig. 111.2. T = -0.1030 Oe-Vogelaere Variables
Enlarged plot of neighborhood about stable fixed
point on the positive x-axis
(x-scale: 0.45 to 0.60).
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For T assigned the slightly more negative value T '" -0.1034, the order - 4/1

fixed point on the positive real axis not only shifts its location slightly but,

more significantly, becomes locally unstable, with reflection (HTR < -1). Because

of this local instabllity, phase points tend to move away from (or toward) the

fixed point, along eigenvector directions, whlle jumping from one side of the

fixed point to the other in the manner characteristic of motion in the neighbor

hood of a hyperbolic fixed point with reflection (negative eigenvalues). The

general circulatory character that was noted earlier for flow in this region evi

dently remains, however, to take effect at an appreciable distance from the fixed

point and results in the diagrams shown (for T = -0.1034) on Fig. 111.3 and (to a

further enlarged scale) on Fig. 111.4.

New (stable) fixed points are seen to occur within the loops of the "lazy-B"

features that Figs. 111.3 and 111.4 show developing from the unstable fixed point.

Because the unstable fixed point is unstable with reflection (under action of

H
4
), the phase-space coordinates will jump from one of these new stable fixed

points to the other under action of H4. The new fixed-point system (of which

two members are seen on each of Figs. III.3 and III.4) thus constitutes a system

of order - B/l (period = 8) and illustrates the occurrence of a period-doubling

bifurcation.

It is of some interest to note the qualitative change in character of a dia

gram such as Fig. 111.4 when further reductions are made in the parameter T. Such

a change is illustrated by Figs. IlI.5 - IlI.14, with T = -0.11125 for the final

Figure of this sequence. One notices, in progressing through this sequence, the

development of an increasingly pronounced stochasticity about the unstable order 

4/1 fixed points and an enlargement of the area of the lazy-B loops that surround

the stable order - 8/2 fixed points.

When the existence of the order - 8/2 fixed-point system first became ap

parent (~.!l., for T = -0.1034), the half-trace of the tangential-mapping trans

formation for the order - 4/1 system was just slightly more negative than -1 (for
4

H) and the half trace for the new order - 8/2 system was just slightly less
8than +1 (for M ). With selection of increasingly negative values of the para-

meter T, the half-trace for the order - 4/1 system becomes driven to increasingly

negative values and the half-trace of the order - 8/1 system is driven from values

near +1 downward toward the critical value HTR = -1.

For T = -0.11126, the order - B/2 fixed points have themselves become un-·

stable (HTR < -1 for H
B

) and generate loops within which new fixed points of an

order - 16/4 system can be found. Such loops are illustrated in Figs. 111.15 and

III.16 for fixed points situated on the positive x-axis near x = 0.581 and

x = 0.4B6.
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Fig. 111.3 T = -0.1034 De-Vogelaere Variables
Scales: 0.45 to 0.60

±O.003

{

1/4: Unstable
Development of bifurcation

2/8: Stable
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XBL 851-849

Fig. 111.4 T = -0.1034 Oe-Vogelaere Variables
Scales: 0.48 to 0.56

±0.0025
Enlarged view of bifurcation.

7-262



Fig. 111.5 T = -0.1035
Scales: 0.45 to 0.60
-- ±0.003
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Fig. I1I.6 T = -0.0136
Scales: 0.45 to 0.60

±0.003
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XBL 851-852

Fig. 111.7 T = -0.1040
Scales: 0.45 to 0.60
-- ±0.003

Oe-Voge1aere Variables

Note extensions of eigenvector directions from the unstable
fixed point appear to form smooth closed curves.
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Fig. III.B. T = -0.1040 De-Voge1aere Variables
Scales: 0.45 to 0.60

±0.003
Plot with inclusion of stochastic boundary.
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Fig. III.9. T = -0.1045

Scales: 0.45 to 0.60
-- ±0.003

De-Voge1aere Variables

Note development of evident stochasticity about
the unstdble fixed point at x = 0.534416773867
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De-Vogelaere Variables

Detail -- to emphasize stochastic region about
the unstable fixed point at x = .534416773867

7-268



.. ,.

...

.,. . ....}• 0.. ... ". •. ..o· ... .

.· .. ... .· ..\: :.... .'.... . ....".; ... ...., ',: .:~.;
• , '...&. • •••• • ,......•.-: . ~. - . ',.'.' '.

. .:}:'. :. ' : .:.~
•••• A~_l'·'" \ ~'. .' ...

• • II I".'4>.- \ o\-
iI. •.. .;.-
~ ,:.-
-~....~
J '-•• "J' ...
··=~r~, .."" ''';...:.' .V.. '.. .... ",0 .-" 1

~ I· .... "
" " " " .. ... .'. ,..." "

.• t
• •

'10 \(.,....\. .
o ••

·" .. :.. :;. ~ .....,,)

\..

XBL 851-856

Fig. 111.11. T = -0.1050
Scales: 0.45 to 0.60
-- :1:0.003

Oe-Vogelaere Variables

Note the violent instabi lity at the fixed point
(x = 0.535127642205).
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Fig. 111.12. T; -0.1075 De-Vogelaere Variables
Scales: 0.45 to 0.60
--- ±0.003

Some stochastic points, associated with the unstable fixed
point, are shown (x ; 0.538642977693 for this fixed point).
Also shown are two of the stable 8-th order fixed points, to
gether with a surrounding phase trajectory.
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Scales: 0.45 to 0.60
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Fig. 111.14. T = -0.11125 Oe-Vogelaere Variables
Scales: 0.45 to 0.60
-- ±O.003

Neighborhood of 4th order (unstable) and 8-th order (stable)
fixed points just prior to additional bifurcation.
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XBL 851-860

fig. III.15. T = -0.11126 Oe-Vogelaere Variables
Scales: 0.581340 to 0.581355

±0.0002
After the second bifurcation (leading to Order-16
fixed points), one of the (now unstable) Order-8
f1xed points develops vertical loops, that con
tain stable Order-16 fixed points.

The fixed points shown are
2/8: 0.581347619364, O.
4/16: 0.581346959845, ±0.000068014914

7-273



XBL 851-861

Fig. 111.16 T = -0.11126 Oe-Vogelaere Variables
Scales: 0.4852 to 0.4860

± 0.000001
After the second bifurcation (leading to Order-16
fixed points), one of the (now unstable) Order-8
fixed points develops horizontal loops, that con
tain stable Order-16 fixed points.

The fixed points shown are
2/8: 0.485601872680, O.
4/16: 0.485356977954, O.

0.485849305665, O.
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Following this second bifurcation, a further reduction of T leads to a third
period-doubling bifurcation, generating a fixed-point system of order - 32/8, that

is illustrated for T = -0.11223 by Figs. 111.17 and 111.18.

As new stable fixed-point systems become created and then are driven toward

instability (with reflection) by continued change of the parameter T, a regular

convergent sequence of success i ve period doub 11 ngs appears to become es tab li shed

-- as is suggested schematically by the sketch of Fig. III.19. Some sequential
regularity in the locations or separations of the fixed points also may develop,

as is indicated for the present example by the bifurcation tree shown In
Fig. 111.20 to depict the locations of such fixed points as are situated on the

positive x-axis. Under circumstances such that a sequence of this nature has been
carried to completion, one may expect the phase-plane motion In such a region to
appear particularly "chaotic".

8. A Differential Equation with Quadratic Nonlinearity

The differential equation

2 2
~ = -A (x + 1/8 x) cos Z,

dZ 2
( 2)

that has been used to show the effect of a quadratic nonlinearity, can be used to

provide solutions that Illustrate the occurrence of bifurcations. Such examples

inclUde, for the parameter A in the range 0.265 < A < 0.275, fixed-point systems

that develop from fixed points of order 6/1 (tune: 0 = 1 X 360/6 = 60 deg.) and of

order 11/2 (tune: 2 X 360/11 = 65.45 ... deg.).
It must be stated, with respect to each of the systems mentioned, that the

bHurcat i on process occurs somewhat outs Ide of the norma 1 region of stability in

the x, x' phase plane. ThUS, with A = 0.2651, for which the small-amplitude tune

is 0
0

$ 71.9167, the range of stable motion may be judged to be given by -1.93 <

x < 1.67 (measured for x' = 0, at Z = 0 mod. 2_) and the tune has dropped to 0 s

64 deg. at such amplitudes. With this value of A, two members of the stable order

- 6/1 fixed-point system that Is close to becoming unstable and generating a pe

riod-doubling bifurcation, are found to lie on the x-axis at X= -2.6916782 and at

x = 2.0097530. Similarly, with A = 0.2735 (0 s 74.5570) the range of stability
o

may be estimated as lying within the limits -1.72 < x < 1.64 and the tune has

dropped to a s 68.1 deg. at such amplitudes. With this value of A one member of

the stable order - 11/2 fixed-point system that is close to giving rise to a pe

riod-doubling bifurcation Is found to lie on the positive x-axis at x = 1.80151231.
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XBL 851-862

Fig. 111.17. T = -0.11223 Oe-Vogelaere Variables
Scales: 0.4965 to 0.4990

±0.000002
After the third bifurcation (leading to Order-32
fixed points), one of the (now unstable) Order-16
fixed points develops horizontal loops, that con
tain stable Order-32 fixed points.

The fixed points shown are
4/16: 0.497936225267, O.
8/32: 0.497335279454, O.

0.498484243334, O.
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T = -0.11223 De-Voge1aere Variables
Scales: 0.4737 to 0.4738

±0.0001
After the thj rd bifurcation (leading to Order-32
fixed points), one of the (now unstable) Order-16
fixed points develops vertical loops, that con
tain stable Order-32 fixed points.

The fixed points shown are
4/16: 0.473728930908, O.
8/32: 0.473741772757, ±0.000044371638
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Characteristics of fixed-point systems of order-6/1 are listed in Table I for
0.2650 ~ A ~ 0.2670, together with the values of small-amplitude tune (00) asso
ciated with these values of A. The values given for HTR refer to the half trace

of the tangential-mapping transformation (for 6 periods, AZ = 6(2_». For the un
stable systems with HTR > +1, phase-plane coordinates are given as xo' ±x~ for
such order-6/1 fixed-points lying close to the negative x-axis. For the systems
with HTR < +1, x coordinates are given for the members of such systems that lie on
the negative x-axis and for the members that lie on the positive x-axis. It is

this latter type of fixed-point system for which, when HTR becomes less than -1,
the order-61l system becomes unstable with reflection and an additional (origi
nally stable) system of order 12/2 becomes created. x-values for fixed points of
such a fixed-point system, and that lie on the negative x-axis, are tabulated in
Table II (together with the half trace of the 12-period tangential-mapping trans
formation). Such an order 12/2 system will in turn become unstable, with reflec
tion. for A SUfficiently great -- leading to a fixed point system of order 24/4.

Fixed points situated on the negative x-axis are given in Table III for a few ~a

lues of the parameter A, and it is seen that one may expect a further period
doubling bifurcation to develop from this order - 24/4 system for values of A
slightly greater than 0.266847.
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TABLE I

Order-6/1 Systems

Small-Amp'l. HTR > +1 HTR < +1
A Tune. 00

(Deg.)
IXo :I:xo HTR xleft Xright HTR

0.2650 71.8856 -2.343555 0.072379 2.409455 -2.688509 2.008182 -0.980123

0.2651 71. 9167 -2.346288 0.072410 2.421250 -2.691678 2.009753 -0.998529

0.2652 71. 9479 -2.349017 0.072441 2.433116 -2.694840 2.011317 -1.017065

0.2653 71. 9791 -2.351741 0.072472 2.445054 -2.697996 2.012874 -1.035730

0.2654 72.0103 -2.354459 0.072502 2.457065 -2.701145 2.014424 -1.054527

0.2655 72.0415 -2.357173 0.072533 2.469148 -2.704288 2.015968 -1.073454

0.2657 72.1039 -2.362587 0.072593 2.493531 -2.710553 2.019035 -1.111705

0.2660 72.1975 -2.370672 0.072682 2.530658 -2.719902 2.023585 -1.170082

0.2665 72.3538 -2.384051 0.072827 2.594021 -2.735355 2.031037 -1.270082

0.2666 72.3850 -2.386713 0.072856 2.606920 -2.738426 2.032508 -1.290493

0.2667 72.4163 -2.389371 0.072884 2.619894 -2.741491 2.033972 -1.311043

0.2670 72.5101 -2.397315 0.072969 2.659276 -2.750648 2.038326 -1.373531



TABLE II

Order - 12/2 System, incl. FP's on negative x-axis

A xl x2 HTR

0.2652 -2.738676 -2.646999 0.864839

0.2653 -2.759982 -2.62766B 0.720072

0.2654 -2.776328 -2.613297 0.577487

0.2655 -2.790168 -2.601434 0.437093

0.2657 -2.813553 -2.582010 0.162918

0.2660 -2.842510 -2.559010 -0.231660

0.2665 -2.882070 -2.529416 -0.844114

0.2666 -2.889138 -2.524347 -0.959735

0.26662 -2.890526 -2.523360 -0.982582

0.26663 -2.891216 -2.522870 -0.993971

0.26664 -2.891904 -2.522381 -1.005336

0.26665 -2.892591 -2.521895 -1.016678

0.2667 -2.895992 -2.519495 -1.073042

0.2670 -2.915447 -2.506055 -1.398966
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Table III

Order 24/4 System, iocl. FP's on negative x-axis

A Xl x2 HTR

0.26664 -2.529700 -2.515630 0.95723

0.26665 -2.535224 -2.510339 0.86600

0.26670 -2.549481 -2.497244 0.40488

0.26675 -2.558737 -2.489151 -0.06446

0.26680 -2.566240 -2.482813 -0.54199

0.26684 -2.571515 -2.478471 -0.92988

0.266843 -2.571891 -2.478165 -0.95918

0.266844 -2.572015 -2.478064 -0.96896

0.266846 -2.572264 -2.477862 -0.98851

0.266847 -2.572388 -2.477761 -0.99830

0.266848 -2.572512 -2.477661 -1.0081

0.26685 -2.572759 -2.477461 -1.028
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0.2651, shows the order - 6/1 fixed point (stable for this
I

-2.691678 ... , Xo = 0, together with two surrounding

Figure 111.21, sketched for A = 0.2667, indicates the locations of such as
sociated fixed points as lie in the neighborhood of the order - 6/1 fixed point

situated on the negative x-axis at x = -2.741491. This plot is to the scales:

Horizontal: -3.0 to -2.4, for x;

Vertical: -0.002 to 0.002, for x'.

The fixed points shown on the negative x-axis are explicitly:

For order - 6/1 system: x; -2.741491

For order - 12/2 system: x =-2.895992 &x ~ -2.519495

For order - 24/4 system: x =-2.549481 &x =-2.497244

The development of the order - 1212 system is illustrated by Figs. III.22 

111.24, each plotted to the scales:

Horizontal: -3.0 to -2.5, for x;

Vertical: -0.005 to 0.005, for x'.

Fig. II1.22, for A =
value of A) at Xo
phase trajectories.

Fig. 111.23, for A = 0.2652, shows the order - 6/1 fixed point (now unstable,

for this value of A) and two of the order - 12/2 fixed points that result from the

period-doubling bifurcation. Also evident is the presence of nine small order 
54/9 islands surrounding the fixed points in this region of the phase plane.

Fig. 111.24, for A = 0.2653, presents a diagram similar to that shown (for A

= 0.2652) in Fig. 111.23, wherein the unstable order - 6/1 fixed point and two or

der - 12/2 stable fixed points are again seen and for which some stochasticity ap

pears evjdent in the neighborhood of the unstable fixed points of the order - 54/9
system.
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Fig. III.21 A = 0.2667
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Fig. 111.22 A = 0.2651
6th order fixed point is stable.
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Fig. III.24 A '" 0.2653
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Somewhat more detail may be seen on Figs. 111.25 and 111.26, with the scales:

Horizontal: -2.9 to -2.5, for x;

Vertical: -0.003 to 0.003, for x'.

Fig. III.25, for A = 0.26520, is similar to Fig. 111.23 (to a somewhat enlarged

scale), but also suggests the presence of members of an order - 96/16 fixed-point
system at the outer edge of the plot.

Fig. 111.26 for A = 0.26525, illustrates in somewhat greater detail features
such as were evident (for A = 0.26520) on Fig. 111.25. The strong scatter of
points seen on the present figure results from a run launched substantially at one
of the fixed points of the unstable order - 96/16 fixed-point system.

The bifurcation leading to an order - 24/4 system is illustrated by

Figs. 111.27 and 111.28, to the scales:

Horizontal: -2.60 to -2.45, for x;

Vertical: -0.0002 to 0.0002, for x'.

Fig. 111.27 for A = 0.26663, shows an order - 12/2 fixed point (stable for this

value of A) situated on the negative x' axis (at x ~ -2.522870) and two surround
ing phase trajectories.

Fig. 111.28, for A '" 0.26665, shows the order - 12/2 fixed point (now un
stable, and situated at x := -2.521895) and the associated development through

o
bifurcation of an order - 24/4 system of which two fixed points are shown.

Figure 111.29 shows the trend, vs. A. of the tang.ential-mapping half trace

for the fixed-point systems just discussed. On sees, as the half trace of one
sys tem passes to values more negat i ve than -1, the genes i s of a new system of

double period.
Figure 111.30 indicates the development of a bifurcation tree that depicts,

for fixed points situated on the negative x-axis, the locations (and hence the

spacings) of the fixed points for the systems just discussed.

One also finds a fixed-point system of order 11/2 (d = 2x360/11 '" 65.4545 ... )
from which, as the parameter A is increased, period-doubling bifurcations develop

-- see Tables IV and V. The. transition leading to the birth of an o!"der - 22/4
system is illustrated by Figs. 111.31 and 111.32, to the scales:

Horizontal: 1.795 to 1.805, for x;

Vertical: -0.01 to 0.01, for xI.
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Fig. 111.27 A = O.2ti663
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Table IV

Coordinates on x-axis of Order -- 11/2 fixed-Point Systems

Small-Amp'l HTR > +1 HTR < +1
A Tune, 00

(Oeg.) x HTR x HTR

0.2500 67.27394 -0.999353 1.000189 0.903246 0.999810

0.2550 68.79742 -1.347417 1.005812 1.193517 0.994174

0.2600 70.33441 -1.600037 1.050365 1.409902 0.949182

0.2650 71.88555 -1.786583 1.247550 1.581892 0.746606

0.2667 72.41629 -1.837753 1.391772 1.632457 0.595998

0.2668 72.44756 -1.840593 1.402071 1.635320 0.585177

0.2670 72.51013 -1.846219 1.423348 1.641007 0.562794

0.2675 72.66665 -1.859973 1.480681 1.655016 0.502310

0.2680 72.82332 -1.873297 1.544336 1.668729 0.434871

0.2700 73.45155 -1.922605 1.873355 1.720731 0.081897

0.2725 74.24035 -1.976496 2.500251 1.779691 -0.608400

0.2734 74.52529 -1.994150 2.800794 1.799374 -0.946613

0.2735 74.55698 -1.996062 2.837019 1.801512 -0.987672

0.27355 74.57283 -1.997014 2.855352 1.802578 -1.008476

0.2736 74.58868 -1.997964 2.873835 1.803641 -1.029466

0.2737 74.62039 -1.999857 2.911251 1.805761 -1.072004

0.2738 74.65210 -2.001741 2.949273 1.807871 -1.115298

0.2739 74.68382 -2.0036]5 2.987909 1.809971 -1.159359

0.2740 74.71554 -2.005481 3.027166 1.812062 -1.204199

0.27425 74.79488 -2.010106 3.128075 1.817249 -1.319776

0.2745 74.87426 -2.014678 3.233031 1.822377 -1.440468

0.2750 75.03314 -2.023668 3.455560 1.832462 -1.697941
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TABLE V

Some Coordinates of Order - 22/4 Systems

Sma 11 Amp'l
A Tune, "0 x ±x' HTR

(Oeg.)

0.27355 74.57283 1.801872 0.003584 0.932590

0.2736 74.58868 1.801200 0.006667 0.769102

0.2737 74.62039 1.799858 0.010374 0.452546

0.2738 74.65210 1.798516 0.013068 0.150275

0.2739 74.68382 1. 797176 0.015292 -0.137238

0.2740 74.71554 1.795837 0.017231 -0.409504

0.2742 74.77901 1.793162 0.020564 -0.906304

0.27424 74.79171 1.792627 0.021167 -0.997749

0.27425 74.79488 1.792494 0.021315 -1.020187

0.2745 74.87426 1.789158 0.024729 -1.524411

Fig. 111.31, for A '" 0.27350, shows a stable order - 11/2 fixed point situ

ated on the positive x-axis and surrounded by a small closed phase trajectory.
Fig. 111.32, for A = 0.27360, shows the evolution of eigenvector directions

extended from the order - 11/2 fixed point (now unstable, with reflection) situ

ated on the positive x-axis. Small loops are seen to be generated in this way,

within which one sees two fixed points (and surrounding curves) of a stable order

- 22/4 system that has come into existence for this value of A.

Fig. 111.33, again for A = 0.27360, presents information related to that of

Fig. 111.32, but to the somewhat more extended scale:

Horizontal: 1.1 to 1.9, for x;

Vertical: -0.15 to 0.15, for x'.

One sees 'now three small loops of the type for which one was shown on Fig. 111.32,

save that now the width of the loops is scarcely noticeable on the present scale.

Also shown are two order - 11/2 fixed points for which HTR > +1 (indicated by
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Fig. 111.32 A = 0.27360
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Fig. 111.33 A = 0.27360
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arrows) and an indication of the stochastic behavior that rapidly develops from a
launch in such a region of the phase plane.

The fixed-point system of order 22/4 itself becomes unstable, with reflec

tion, when the parameter A becomes as large as 0.27425 (as may be seen from Table

V). The resulting additional bifurcatIon is illustrated on Fig. III.34 to the
scales:

Horizontal: 1.785 to 1.800, for x;

Vertical: 0.015 to 0.025, for x',

Fig. III.34, for A = 0.27425, shows a narrow loop that develops from an ex

tension of the eigenvector directions associated with the unstable order - 22/4
fixed point (unstable with reflection) situated near the center of the diagram.
Such loops encircle stable fixed points of an order - 44/8 system, of which two

are seen on the diagram (as indicated by arrows at, approximately,

and
x = 1.789457, x'

x = 1.795888, x'

0.022340

0.020075

The trend, vs. A, of HTR (the tangential-mapping half trace) for the order - 11/2
and order - 22/4 systems mentioned above is illustrated by the graph of

Fig. III.35.
Additional fixed-point systems that lead to period-doubling bifurcatIon of

course also can be found. We cite here, without further illustration, an order 

23/4 system that becomes unstable with reflection for A as great as 0.2628:

A

0.2627

0.2628

Small Amp' 1
Tune, "0

(Oeg.)

71 .17022

71.20126

Coordinate on
Positive x axis

1.673931

1.675894

HTR

-0.970413

-1.057670

For A = 0.2628 an order - 46/8 stable system is formed (with HTR

which one fixed point is found to be situated at

X ~ 1.674 101, x' ~ 0.006399

7-301
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C. A Differential Equation with Cubic and Quintic Nonlinearity

The differential equation

d2x - A ( x + 1/12 x3 + 1/384 X
5

dZ 2
cos Z

a1so can be used to provide sol ut ions that ill us trate the occurrence of bifurca

tions. One sequence of examples can be introduced conveniently by considering two

systems of o~der - 14/3 fixed-points for a range of values of the parameter A such
that 0.200 ~ A ~ 0.2088. One of these fixed-point systems will be strongly un
stable for any value of A within the range mentioned, and for such a system two of
the 14 fixed-points can be found to lie on the x-axis (at equal values of Ixl).
The other of these fixed-point systems is such that two members of any such system

1ie on the x'-axis (at equal values of Ix'I) and will be locally stable for the
larger values of A (such as A = 0.2087 and A = 0.2088). For values of A equal to
0.208& or less, however, this second system also becomes locally unstable (HTR >

+1) and one finds, as shall be illustrated, that additional fixed-point systems
(at first, once again, only of order 14/3) then occur. Characteristics of the two
order - 14/3 fixed-point systems mentioned earlier are listed in Table VI, wherein
the columns headed HTR provide the half trace of the tangential-mapping trans

formation (for lJ.Z = 14(211'». [For the second type of fixed-point system cited in
Table VI, it is of interest to note that further increases of the parameter A
carry the value of HTR to -1.0 (at A ~ 0.21619) but not beyond, since further in
creases of A then lead to HTR becoming less negative!]
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Table VI

Order -- 14/3 Systems

Small-Amp'l Fixed point at xo=o Fixed point
at x=O

A Tune, ao
(Oeg. ) ±x HTR ±x' HTR

0.200 52.6619 2.132726 48.025758 0.242921 17 .885314

0.201 52.9447 2.117613 42.423693 0.240836 14.320294

0.202 53.2278 2.102467 37.475516 0.238752 11.318874

0.203 53.5113 2.087283 33.107939 0.236670 8.806001

0.204 53.7951 2.072057 29.255340 0.234589 6.715351

0.205 54.0792 2.056788 25.859036 0.232509 4.988429

0.206 54.3637 2.041473 22.066618 0.230429 3.573762

o.206B 54.5915 2.029186 20.731897 0.22B7li6 2.636284

0.2069 54.6200 2.027648 20.4B0026 0.228558 2.530064

0.207 54.6485 2.026109 20.231347 0.228350 2.426151

0.2075 54.7911 2.018409 19.034446 0.227310 1.939918

0.20B 54.9337 2.010695 17.911591 0.226271 1.506006

0.2081 54.9623 2.009151 17.695506 0.226063 1.425130

0.2082 54.990B 2.007606 1"1.482168 0.225855 1.346147

0.2083 55.0194 2.006061 17.271542 0.225647 1.269025

0.2084 55.0479 2.004515 17.063595 0.225439 1.193734

0.2085 55.0765 2.002968 16.858294 0.225231 1 .120243

0.2086 55.1050 2.001421 16.665604 0.225023 1.048520

0.2087 55.1336 1 .999874 16.455495 0.224815 0.978538

0.2088 55.1621 1.998326 16.257932 0.224607 0.910265

0.209 55.2193 1.995228 15.870323 0.224192 0.778733

0.210 55.5052 1.979704 14.074649 0.222112 0.214188
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A change in the character of phase-plane motion in the neighborhood of an or
der - 14/3 fixed-point is indicated on Figs. 111.36-111.39 as a consequence of the

system becoming unstable (HTR > +1) when the parameter A is reduced from A =

0.2087 to A = 0.2086. These plots are to the scales:

Horizontal: -0.001 to 0.001, for x;

Vertical: 0.223 to 0.227, for x'.

Fig. 111.36, for A = 0.2087, shows three small smooth phase trajector~es

encircling the stable order - 14/3 fixed point situated on the positive x' axis.
Fig. 111.37, for A = 0.2086, shows a single loop that develops from a launch

quite close to the now unstable order - 14/3 fixed-point situated on the x' axis

at x' 55 0.225023. Because this fixed point has become unstable without reflec
tion, it is possible for a single loop to be formed in this way.

Fig. 111.38, again for A = 0.2086, shows the addition of an additional loop
that arises from a separate run launched from the neighborhood of the unstable or
der - 14/3 fixed point. Each of these two loops encircles a fixed point of a new
fixed-point system, but such fixed points constitute separate periodic orbits--and
hence are members of separate new fixed-point systems, each of order 14/3 (no pe
riod doubling).

Fig. 111.39, again for A = 0.2086, shows further detail in the motion of

phase points close to the unstable order - 14/3 fixed point and to the two new

(stable) order - 14/3 fixed points present on this diagram.

The result of the change from A = 0.2087 to A = 0.2086 thus has been seen to
involve the change of one order - 14/3 system from stable to unstable (HTR > +1)

and the creation of two new stable systems of the same order. It is of interest

now to follow the locations and stability characteristics of these new systems as
the parameter A is further reduced. The fixed points of one of the new systems

have phase-plane coordinates identical to coordinates of the other system, save
for a reversal of sign for x'. Thus, for one of the stable fixed points shown on
Fig. 111.38 (for A = 0.2086) the coordinates are approximately

x = 0, x' = 0.226004

with a second member of this family at

x = 0, x' = -0.223995,

while for the other stable family fixed points occur at

x=O,x' 0.223995

and, for a second member of this family at

x = 0, x' = -0.226004
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A = 0.2087. with cubic and quintic nonlinearity.
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Fig. III.37 A = 0.2086, with cubic and Quintic nonlinearity.
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Fig. III.38 A = 0.2086, with cubic and quintic nonlinearity.
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Fig. 111.39 A 0.2086, with cubic and quintic nonlinearity.

Scales:
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The locations of such fixed points on the positive Xl axis are plotted, vs.
A, on Fig. III.40 (together with similar information for one of the systems pre

sented in Table VI). Table VII lists these x' values for the new order - 14/3

system, together with the associated value of the half trace (HTR) for the tan
gential-mapping transformation. It Is seen from this tabulation that with reduc

tions of the parameter A to 0.2069, and beyond, the value of HTR for these systems

becomes less than -1. Associated with this transition into instability with re

flection one may now expect to find (as will be illustrated) the occurrence of pe

riod-doubling bifurcation.

TABLE VIr

Additional Order - 14/3 Fixed Points on x'-Axis

Small Amp'l
A Tune, (/0 ±x' +x' HTR

(Deg.)

0.2068 54.5915 0.233266 0.222992 -1.090469

0.2069 54.6200 0.232957 0.222952 -1.007070

0.2070 54.6485 0.232643 0.22291li -0.920183

0.2075 54.7911 0.230997 0.222818 -0.435180

0.2080 54.9331 0.229147 0.222930 0.129613

0.2085 55.0765 0.226742 0.223602 0.768309

0.2086 55.1050 0.226004 0.223995 0.904419
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Figures III.41 and III.42, for A = 0.2070, respectively indicate the phase
motion about the fixed points that Table VII shows to be situated on the x" axis
at x" 5 0.232643 and at x" =0.222916 -- plotted to the scales:

For Fig. III .41 Horizontal: -0.004 to 0.004, for x;

Vertical: 0.2326 to 0.2327, for x".

For Fig. IIl.42 Horizontal: -0.0005 to 0.0005, for x;

Vertical: 0.22235 to 0.22345, for x".

For A = 0.2069, the fixed points shown on Figs. 111.41 and 111.42 have become

unstable with reflection, and are situated on the x" axis at the respective loca

tions x" '" 0.232957 and x" '" 0.222952. The extension of eigenvector directions

from such fixed points then indicates that each has given rise to an order - 28/6

fixed-point system (period·-doubling bifurcation). The stable order - 28/6 fixed

points close to x = 0, x" = 0.232957, are found to lie at x = ± 0.001123, x" =
0.232949, as indicated on Figs. 111.43 and 111.44 to the scales:·

Horizontal: -0.004 to 0.004, for x;

Vertical: 0.2329 to 0.2330, for x'.

The stable order - 28/6 fixed points close to X= 0, x" =0~222952 are found to lie

on the x"-axis at x' = 0.223175 and x" '; 0.222750 (constituting a second stable

system of order 28/6), as can be seen on Figs. 111.45 and 111.46 to the scales:

Horizontal: -0.0001 to 0.0001, for x;

Vertical: 0.2224 to 0.2235, for x".
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Fig. 111.41 A ; 0.2070, with cubic and quintic nonlinearity.
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Fig. III.42 A = 0.2070, with cubic and quintic nonlinearity.
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Fig. III.43 A = 0.2069, with cubic and Quintic nonlinearity.
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Fig. III.44

XBL 851-870
A 0.2069, with cubic and quintic nonlinearity.
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A = 0.2069, with cubic and quintic nonlinearity.
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The Application of a Magnetic Lens Spectrometer to the Measurement
of Gamma-Radiation from Zn65 and Co60

. ERLING N. JENSEN, L. JACKSON LASLETT, AND WILLIAM W. PRATT

Instttutefor Atomic Research and Department of Physics, Iowa State College, Ames, Iowa·

(Received September 29, 1948)

A thin' magnetic lens spectrometer for the investigation of gamma-ray spectra is described.
:he effect of the thickness of the radiator used for the production of photoelectrons and the
mfluence of the earth's magnetic field are reported. Based on a calibration of the instrument
by means of annihilation radiation and the F line of ThB, energy values of 1.10& Mev for the
gam~-ra~of Zn&6, and 1.15& and 1.31 7 Mev for the two lines of Cooo are obtained. The probable
error IS estimated as 0.5 percent.

gamma-ray shields, which are of lead sheathed
with aluminum. Baffle C, which is adjustable by
means of a brass rod passing out of the chamber
through a Wilson seal, serves to delimit the
electrons analyzed and so, for a given diameter
of source and counter window, determines the
intensity and resolution obtained. The lead
shield surrounding the counter is primarily for
the purpose of absorbing scattered gamma
radiation and was designed to lie within the
shadow of the lead shield in the center of the
spectrometer. An indication of the small extent
of electron scattering obtained with the arrange-
ment described is seen from the fact that, with
no current in the coil, the counting rates ob
tained with and without a 10 microcurie beta
ray source in the instrument were, respectively,
21.1±O.4 and 20.7±0.2 cts/min.

Radioactive sources are mounted on Lucite
holders at the end of a brass tube which enters
the upper end of the spectrometer through a
Wilson seal and through a 2t-inch gate valve
modified to be suitable for vacuum service. The
counter is mounted within a similar brass tube
at the lower end of the instrument, where Wilson
seals are again used to facilitate assembly and
adjustment. The counter was originally used
with a mica window of 4 mg/cm2 surface density;
for the ThB measurements a 1.1 mg/cm2 window
was used and for the most recent work a thin
Formvar-polystyrene film (:::0.3 mg/cm2) was
employed.

The coil for producing the magnetic field con
sists of 2799 turns of No. 12 single cotton
covered enameled copper wire, wound on a
form consisting of a brass hub and two aluminum

458

I. INTRODUCTION

THE use of a thin magnetic lens spectrom-
eter for the study of beta- and gamma

radiations has been reported by several investi
gators.1- 4 The flexibility of such an instrument
and, if iron-free, the convenience of its linearity
have been pre~iously indicated. I It is the pur
pose of this paper to describe briefly a magnetic
lens spectrometer which we have constructed, to
present the results of studies to determine the
corrections which should be made to data ob
tained with it, and to give the energies found
for the gamma-radiations from 2n66 and Co60•

n. DESCRIPTION OF SPECTROMETER

The spectrometer is shown in Figs. 1 and 2.
The design is similar to that employed by previ
ous workers,1-3 save that the instrument is
mounted with its axis parallel to the magnetic
field of the earth and, to minimize scattering,
the chamber proper has been constructed of
aluminum tubing. To preserve linearity, nonfer
romagnetic materials have been used throughout.

The spectrometer chamber is 7 inches in
diameter and 40 inches long, evacuated by means
of a two-stage oil diffusion pump backed by a
mechanical pump. The baffles, shown in Fig. 2,
are of micarta, i-inch thick, except for the

* Paper No. 42 from the Institute for Atomic Research.
Work performed at the Ames Laboratory of the Atomic
Energy Commission.

1 M. Deutsch, L. G. Elliott, and R. D. Evans, Rev. Sci.
lost. 15, 178 (1944).

2 W. RaIl and R. G. Wilkinson, Phys. Rev 71 321
(1947). . ,

8 L. C. Miller and L. F. Curtiss, J. Research Nat. Bur.
of Standards 38, 359 (1947).

4 E. A. Quade and D. Halliday, (a) Phys. Rev. 72,
181(A) (1947); (b) Rev. Sci. Inst. 19, 234 (1948).

Reprinted by permission of the American Institute of Physics.
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459 MAGNETIC LENS SPECTROMETER

castings. Every fourth layer of wire is followed
by a copper sheet, 0.030-inch thick, provided
with 12 tabs which are soldered to water-cooled
brass blocks mounted on the exterior surface of
the castings. The completed coil has an inside
radius of 9.9 cm, an outside radius of 28.3 cm,
and an axial length of 10 cm. When the full
number of turns is used with 220 volts across the
coil, a focal length of 25 cm is obtained for
electrons of approximately 3.4 Mev energy.

The focusing current for the coil is provided
by a 2 kw motor-generator set. To stabilize the
current, a portion of it is passed through a
bridge circuit which has as one of its elements a
60-watt tungsten lamp bulb to serve as a non
linear resistance. Changes in the coil current
affect the balance of the bridge and the resulting
error-signal, when amplified, is used to. correct
the generator field. The magnetic field is thereby
maintained constant within a probable error of
0.1 percent. The coil current is measured by
means of a series resistance and a potentiometer.

FIG. 2. Diagram of spectrometer chamber.
Insert: Source holder.

FIG. 1. The magnetic lens spectrometer, aligned with its
axis paralIel to the magnetic field of the earth.

be proportional to the strength of the field and,
if the field in question is proportional to the coil
current, we may write for this momentum

(1)P=I·F,

where I is the current in the coil and F is de
pendent upon the shape of the field. In the
presence of an additional magnetic field H, super
posed upon that produced by the coil current, F
may be regarded as a function of the ratio HII,
since the shape of the field would remain un-

m. DETERMINATION OF GAMMA-RAY ENERGmS

A. General Method. In the work described in
this paper, the gamma-ray energies were deter
mined by a study of the spectra of photoelectrons
produced in radiator foils. For calibration, use
was made of photoelectrons produced by the
annihilation radiation from Zn 65 and of con
version electrons from ThB (F line). Each
gamma-ray source S (Fig. 2), a few mm thick,
was mounted in a Lucite holder H and covered
by an aluminum cap G, which carried the
radiator R.

The spectra obtained from Zn65 and C0 60

sources are shown in Figs. 3 and 4. In addition
to the photoelectric conversion lines generated in
the lead by gamma- and annihilation radiation,
a broad distribution of Compton electrons is also
obtained.

To permit an accurate determination of the
energies of the photoelectrons ejected from the
radiator, attention must be given to the effect of
radiator thickness and to the influence of the
earth's magnetic field, which is in the direction
of the spectrometer axis.

B. Effect of the Magnetic Field of the Earth.
For a focusing field of a given shape the momen
tum' of the focused electrons will quite generally

8-2



J ENS EN, L A-S LET T, AND P RAT T 460

applied because of the presence of the magnetic
field of the earth has been taken as ±0.OO6 amp.

C. Effect of Radiator Thickness. The photo
electrons ejected from a radiator will, for a
particular gamma-ray energy, have energies
which depend upon the depth of the point from.
which they originate. The momentum distribu
tion of the emergent electrons will, to a first
approximation, be rectangular, with a width
equal to the momentum loss associated with a
full traversal of the radiator foi!.** Figure 5(A)
shows a momentum distribution of this type,
which extends from a momentum P (J to the
maximum momentum Pm. The result of the
comhination of this distribution function with
the transmission curve of the spectrometer must
be considered and will indicate the manner by
which the experimental data may be corrected
in cases for which the effect of radiator thickness
is not completely negligible. The result of an
analysis of this character will be applicable with
equal validity to internal conversion lines which
arise from a source of non-vanishing thickness.

The transmission curve of a magnetic lens
spectrometer has been investigated by Deutsch

(2)

.. 10' ttr

.[

11F(H/11) =10F(0).

FIG. 3. Spectrum of Zn66, showing the photoelectric
conversion peaks produced in a lead radiator by annihila
tion radiation and the 1.11 Mev gamma-ray, in addition
to the broad distribution of Compton electrons. The sharper
peaks shown separately were obtained with an adjustment
which permitted the K and L lines to be resolved. The
annulus is the width of the electron beam at the center of
the spectrometer.
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changed if H and I were to vary in a mutually
proportional manner. The relation between the
current II required to focus electrons of a given
energy in the presence of the field H, and the
current 10 required in its absence may therefore
be written,

300

z,.·S""" 0.4 me
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One then finds, to a first approximation, that

400.-------------,-•."".=--....,

indicating that this difference is independent of
the energy of the electrons. This is in agreement
with the conclusions of Quade and Halliday,4b
who have shown experimentally that for their
spectrometer very little error is made by apply
ing Eq. (3) to electron energies as low as 10 kev.

In the use of the spectrometer, it is the current
necessary to focus electrons in the absence of an ex
ternal field which is to be taken as proportional to
the momentum, so the difference 11 - 10 must be
determined and applied as a correction. This
correction is most readily found by observing
the change in the focusing current required
when the €urrent in the coil is reversed. It is,
however, of interest to note that an approximate
calculation, described in the Appendix, leads to
a value for the correction which is independent
of the energy and is in good numerical agreement
with that found empirically. When all the turns
on the focusing coil are employed, the current
required to focus a particular conversion line
is found to change by 0.012 amp when the cur
rent is reversed, so the correction then to be

11-10 = -HF'(O)/F(O), (3)
60

......
i 50
i
0:

~ 40

'"...z
g 30
u

~
ell 20
Q...
0:
Q

~ 10
:I:

FIG. 4. Spectrum of C060, showing the photoelectric
conversion peaks produced in a lead radiator by the two
gamma-rays present.

.. To a higher order of approximation it might be sup
posed that, because of the change of the rate of momentum
loss as the electrons lose energy in the foil, a trapezoidal
distribution should be considered. In addition, the scatter
ing of electrons in their passage through the foil would
cause the distribution to drop and tail off on the low mo
mentum side. An approximate analysis of these phenomena,
as well as the experimental results reported here, indicates,
however, that these effects are not of importance in the
energy range with which we are concerned in the present
paper. At lower energies scattering will certainly playa
prominent role [cL Bethe, Rose, and Smith, Proc. Am.
Phil. Soc. 78, 573 (1938)J.
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461 MAGNETIC LENS SPECTROMETER

Po,::::-(Pa+Pm)/2, (4)

neglecting terms small compared to Pm-Po.
Thus

Pm'::::-Po+a/2, (5)
where

a=Pm-Pa• (6)

The effect of radiator thickness is, therefore,
to give maximum transmission at a momentum
which is less than the maximum momentum of
the electrons by an amount which is equal in a
first approximation to one-half the momentum
loss experienced by electrons which traverse the
full thickness of the radiator.

For a thick radiator, for which Pm-Pa >2b,
maximum transmission is to be expected when
the transmission curve lies just inside the mo
mentum distribution, if terms in K2 are neg
lected. Thus

H,
Pm

'tEL'
c --.. ..

" "'" '"~ ~

H, Hp
P. Pm

B 0 --

FIG. 5. Momentum distribution and transmission curve
of spectrometer, as assumed for the purposes of the
analysis given in the text.

In determining, from the current correspond
ing to maximum transmission, the upper limit
of the momentum distribution of electrons gen
erated by an unknown gamma-ray, the factor
(1+K) may be absorbed into the calibration
constant of the spectrometer provided the radia
tor thickness is such that Eq. (7) is applicable.
It should be noted that, owing to the variation
of the rate of momentum loss, a radiator which
can be correctly regarded as a thin foil for high
energies may, on the other hand, be effectively a
thick,foil at lower energies. We shall, therefore,
apply the correction indicated by Eq. (7) in an
explicit fashion in those cases to which it applies.
In analyzing the data reported in this paper, we
have based the energy determinations on the
positions of the maxima of the curves obtained,
subject to the corrections indicated above, since
the maximum appears to be the point most
accurately located for every line.

The complete line shape which results from a
combination of a rectangular momentum dis
tribution and a triangular transmission curve
has been calculated for the case that a/Pm, the
relative momentum spread from the radiator, is
0.03 and the resolution of the spectrometer is
such that K =0.021. The calculated curve is
represented by the broken line in Fig. 6 and may
be compared with the solid line, which gives the
results experimentally obtained under these con
ditions with photoelectrons produced in lead
by Zn 6• radiation (Pm'::::-4800 gauss-em). The(8)

(7)

K=b/Pe•

P m'::::-Po(1+K),

et al. l and has approximately the shape of an
isosceles triangle for the case in which the image
and counter windows have the same size. As the
current is changed in the coil of the spectrometer,
the width of the transmission curve will vary in
direct proportion to the momentum of the elec
trons which it passes. For a triangular transmis
sion curve, we therefore take the half-width b
as equal to a constant K multiplied by the mo
mentum Po corresponding to the point of maxi
mum transmission. This is illustrated by Fig.
5(B). The constant K evidently serves as a
measure of the resolution of the instrument.
When, in order to obtain the expected line shape,
we pass such a transmission curve across the
momentum distribution for the electrons, there
are two cases to consider. The first of these is
that for which the momentum spread of the
electrons is less than the full width of the trans
mission curve, as illustrated by Fig. 5(C); the
other is that for which the momentum spread is
greater than the width of the transmission curve
and is shown in Fig. 5(D).

In the case of a thin radiator, specifically one
for which the momentum spread Pm-Pa is less
than 2b, the maximum transmission is found to
occur when

where
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200,---------~
Experimental
Theoretical

momentum loss of 3.5 gauss-cm/mg-cm-2 and,
when compared with the slope of the experi
mental curve, affords confirmation of the state
ment that the peaks should be shifted by an
amount which is half the momentum loss associ
ated with a full traversal of the radiator foil.

The horizontal portion of the curve of Fig. 8
occurs at a current value which is 2.3 percent
below the extrapolated value for zero foil thick
ness. This implies that K = 0.023, which is con
sistent with the expected resolution for the
spectrometer at the time the data were obtained.
The break in the curve of Fig. 8 occurs, as ex
pected, at a radiator thickness for which a = 2b.
Similar data obtained with a lower energy
gamma-ray, for which the photoelectrons have
.an energy of 0.177 Mev, indicate that the break
occurs for a foil thickness between 6.6 and 11.3
mg/cm2• In this case the condition a = 2b would
imply a thickness of 10 mg/cm2•

IV. RESULTS

The photoelectric conversion lines obtained
with lead radiators were measured for the 2n66

and C060 radiations at each of two settings of
the adjustable baffie. For these baffie positions,
the radial width of the effective aperture at the
center of the spectrometer assumed the values
2.1 and 1.4 cm. The resolution of the spec
trometer was characterized by K =0.023 and
K =0.021 in these two cases. As may be seen
from Figs. 3 and 4, lines were obtained from
both the K and L shells of the lead in the second
series of measurements.

For calibration, the F line of ThB and the
photoelectric line produced by the 2n66 annihila
tion radiation were measured at each of the two
adjustments of the instrument. For the two ad
justments the calibrations from the annihilation
radiation and the F line of ThB agree to 0.1
percent and 0.3 percent, respectively. The ThB
sample was deposited on an aluminum foil
0.00025 inch thick and mounted on the Lucite
source holder by means of a thin Formvar
polystyrene film. The line obtained with this
source is shown in Fig. 9.

The results of the measurements are summar
ized in Table 1. Lines which are similar in char
acter and for which the intensity measurements
are made with equal precision can, presumably,

Pm'IO
Po·9.7
o • 0.3

K' 0.021

,
I
I

~

/ \
o4!-::.2,....-.;4~.3:---:4.":-4-4J.,.5,.......:~4.6.,....-4...J.7

AMPERES

40
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a::
~ 100..
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<>

FIG.. 6. Resultant line shape obtained with electrons
for w.hlch Pm~4800 gauss-cm. The dotted curve represents
the lint; shape calculated for a/Pm =0.03 and K=0.021;
the solid curve represents the shape obtained experi
mentally under comparable conditions.

two curves were made to fit at their peaks and
it is felt that their shapes are in satisfactory
agreement. The somewhat larger counting rate
obtained experimentally on the low momentum
side of the line may be ascribable to straggling
and scattering phenomena, the importance of
which is indicated, for example, by the work of
White and Millington. 6

An experimental study was made of the posi
tions of the points of maximum intensity when
various radiator thickness are used. For this
purpose the 1.1 Mev gamma-ray of 2n66 was
again used, with the results shown in Figs. 7 and
8. It is seen that, in agreement with our previous
discussion, the shift of the peaks obtained with
thin foils is proportional to the thickness of the
radiator, but becomes constant when the foil
thickness exceeds a value of approximately
65 mg/cm2• The slope of the initial part of the
curve in Fig. 8 corresponds to 1. 76 gauss-cm/
mg-cm-2• The theoretical rate of energy loss in
lead, as obtained from a formula given by
Heitler,6 is 1.0 Mev/gm-cm-2 for electrons of
the energy with which we are concerned here.
This theoretical energy loss corresponds to a

o B. A. White and B. A. Millington Proc. Roy Soc
(London) A120, 701 (1928). ' ..

6.W. ~eitler, The Quantum Theory of Radiation (Oxford
University Press, London, 1936), p. 219.
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LEAD FOIL - mg/cm'
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FIG. 8. Current values corresponding to t?e peaks of
the lines of Fig. 7, as a function of r~dia~or thlck~ess. The
results of additional data, not shown m Fig. 7, are m~luded.
In determining the slope of the line, the pomts desl~nated

by the heavy solid circles were given half the weight of
those marked by open circles.

the values of the gamma-ray energies is ±0.5
percent. The constant of the spectrometer has
the values 1063 and 1074 gauss-em/amp. for the
two adjustments used.

It is that seen the value found for the energy
of the ZnS5 radiation is below the energy for either
of the Coso gamma-rays. Because of the possible
interest7 in the use of these radiations as stand
ards, a direct comparison of the energies was felt
to be desirable. To this end a source with both
activities was put into the spectrometer. As re
ported8 previously, the individual peaks in the
composite spectrum were readily identified and

Z S5' findicated that the gamma-ray from n IS 0

lower energy than either of the Coso lines.
The energies found for the Coso gamma-rays

are in good agreement with those give~ by
Miller and Curtiss,3 although somewhat higher
than the values of Deutsch et al. 7 The energy
found for the ZnS5 gamma-ray is lower than the
value given in an early report by Deutsch,Coso, II, 1.317 Mev.

A conservative estimate of the probable error for

1.10s Mev;
I, 1.155 Mev;

be located with the same relative accuracy,
although the lines are of different momenta and
occur at different current values. In the work
reported here, however, the data obtained were
such that the location of the various lines could
not be determined in all cases with the same
relative accuracy; accordingly, the estimated
weighting factors indicated in Table I were
applied to the current/momentum ratios.

In calculating, from the data of Table I, the
momenta of the photoelectrons generated in the
lead radiator by the ZnS5 gamma-ray, a correc
tion of 74 gauss-em was taken as appropriate to
the foil thickness employed. For the Coso deter
minations the correction was assigned the values
51 and 64 gauss-em for the thinner and thicker
Pb radiators, respectively. The correction made
for the Th radiator was 48 gauss-em and that
for the U foil was 70 gauss-em. Upon converting
from the resulting momenta to the corresponding
energy values and adding the binding energy
appropriate to the photoelectric process in
volved, the gamma-ray energies shown in the
final column of Table I resulted. Averaging for
each line the energy values so found, taking into
account the weights assigned to the individual
determinations and to the calibration measure
ments, the following gamma-ray energies are
obtained:

and

Th B: .'85 HI
AnnurUl: 1.4c",
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CUk\ENt~_o~~.r••1.0
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I- A 0 55.2:>z
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G 6.4.....
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0
u
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500..----.....,,;:-----,
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FIG. 7. Photoelectric lines obtained from the 1.11 Mev
gamma-ray of Zn66 with various thicknesses of the lead
radiator.

FIG. 9. The F line of ThB.

7 M. Deutsch, L. G. Elliott, and A. Roberts, Phys. Rev.
68, 193 (1945).

8 E. N. Jensen, L. J. Laslett, and W. W. Pratt, Phys.
Rev. 73, 529 (1948).
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we then write the approximate relation for the
total field as

The currents 11 and 10, which are respectively
required to focus electrons of a given momentum
in the presence and abSence of the external field,
are then, by Eq. (i), connected by the relation

APPENDIX: APPROXIMATE CALCOLATION OF THE
CORRECTION FOR THE MAGNETIC FmLD

OF THE EARTH

The solution of the differential equations for
the trajectories of paraxial electrons in an axial
magnetic field H z =Ho/[1+(z/a)2J has been
given by Glaser." When the object distance and
image distance are equal (u=v=2!), the focal
length! may be written

(i)

(ii)

(iv)

(iii)

I UH2
coildZ=AJ2,

-u

A 1
0
2

[ I U J 1---= Al,2+2H Hcoildz ---.
AU/a) -u A(f/a')

where A is a numerical coefficient, calculable in
terms of !/a; which takes on values extending
from A=4 for !/a large (thin lens) to 11"2 for !/a
small (solenoid). Here [Hpj serves as a measure
of the momenta of the electrons in question in
terms of their radius of curvature in a uniform
magnetic field.

Assuming that to a field of the shape men
tioned above, there is added a small constant
axial field H, one can attempt to fit the resultant
field in an approximate way to an equation of
the original form and so obtain new values, H o'
and a' for the parameters. In this way we find
that H o'-Horoo..J8H/7 and a'-a':::::.(12a/7)(H/Ho).

Introducing a constant A which connects the
current in the coil with the magnetic field pro
duced, so that

Roberts, and Elliott9 and that obtained by
Mandeville and FulbrightlO through a study of
Compton electrons.

Relative
weigbt Gamma-

Aperture Radiator Coil (of curr./ ray
Momentum widtb thickness current momentum energy

Line (gall8S-em) (cm) (mg/cm') (amp.)' ratio) (Mev)

Annih. 2608/1.023" 2.1 42.5 Pb 2.401 (av.) 5
TbB 1385t Negligible 1.303 10
Zn"(K) 42.5 Pb 4.454tt 20 1.10.
CrJIl, I (Kl 29.7 Pb 4.624 10 1.150
CrJIl, II (K) 29.7 Pb 5.174 10 1.317

Annih. 2608/1.021" 1.4 42.5 Pb 2.374 3
ThB 1385t Negligible 1.291 10
Zn"(K) 42.5 Pb 4.409 10 1.10.

(L) 42.5 Pb 4.644 5 1.10.
Co", I (K) 42.0 U 4.501 10 1.160

(K) 28.5 Th 4.524 10 1.15.
(K) 37.0 Pb 4.583 10 1.15,
(K) 29.7 Pb 4.594' 10 1.150
(Ll 29.7 Pb 4.849 5 1.16,

CrJIl, II (Kl 42.0U 5.011 10 1.310
(K) 28.5 Tb 5.045 10 1.31,
(Kl 37.0 Pb 5.104 10 1.3h
(K) 29.7 Pb 5.134 10 1.32,
(L) 29.7 Pb 5.369 5 1.32,

• 0.006 amp. has been subtracted from the observed current values to correct
ror the magnetic field of tbe eartb.

•• Since tbe radiator is thick, in tbe aenae a>2b, Jor electrons of tbe energy witb
whicb we are concerned bere, the momentum value of 2608 glIl18S-em corresponding
to 0.5108 Mev must bs divided by 1+K to correct for radiator thickness.

t C. D. Ellis, Proc. Roy. Soc. (London) A138. 318 (1932).
tt Obtained from tbe sloping portion of tbe curve of Fig. 8. so tbat data ob

tained with several roil tbicknesses are, in effect, included.

TABLE I. Positions of conversion lines measured in
magnetic-lens spectrometer.
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g M. Deutsch, A. Roberts, and L. G. Elliott, Phys. Rev.
71, 389(A) (1942).

10 C. E. Mandeville and H. W. Fulbright, Phys. Rev.
64. 265 (1943).

From this it follows that the difference 10-11 is

11 W. Glaser, Zeits. f. Physik 117, 285 (1941).
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MAGNETIC LENS SPECTROMETER

turns on the coil are employed:

Through the use of Eqs. (i) and (ii) an approxi
mate value of A is readily estimated experi
mentally by fucusing electrons of known energy,
while H o/ I and f..::u (Hcoil/1)dz may be calcu
lated from the geometry of the coil, the latter
quantity being given closely by 411/10 times the
number of turns on the coil.

For the spectrometer described in the present
paper, the following values apply when all the

1o-1l=H[(~)i~(Hcoil/1)dZ

dinA]+ (6/7) (I/Ho) •
d In(f/a)

(v)

f=25 em, a:::::13.6 em, f/a= 1.84,

dinA
A=5.1, dA/d(f/a) = -0.65, = -0.23,

d In(f/a)

A =2.27XI05 gauss2-cm/amp.2,

H o/1=93.5 gauss/amp.,

J"(HCOil/1)dZ=3230 gauss-em/amp.,
-u

and H = 0.56 gauss.

With the substitution of these values in Eq. (v)
we find 10-11 =0.007 amp., in close agreement
with the correction found experimentally.
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On the Ifalf-Life of Na22

L. JACKSON LASLETT

Institute for Atomic Research and Department of Physics.
Iowa Slate College, A meso Iowa*

August 8, 1949

nesium target was subsequently mounted in the recess of a brass
plate, covered with a mica sheet hermetically sealed to the brass,
and, by means of a Lauritsen electroscope,s its activity was com
pared at intervals with that from a standard uranium oxide source

The resultant decay curves, for two different source positions,
are shown in Fig. 1 and indicate a half-life of 948 days or 2.66

years. 6 It should be mentioned that diffusion of the active material
from the surface into the magnesium metal would, if appreciable,
result in an underestimation of the half-life, since the greater
portion of the activity measured was readily absorbable (posi
trons). Some confirmation of the belief that diffusion and similar
processes played no significant role in the present work is afforded,
however, by the observation that absorption curves taken at the
beginning and end of the measurements (curves 1 and 2 of the
insert, Fig. 1) appeared entirely similar and were in agreement
with one obtained3 shortly after the sample was first prepared.

It is a pleasure for the writer to indicate once again his gratitude
to Professor Lawrence for the privilege of using the cyclotron in
connection with the preparation of the sample used in the work
reported here.

* Contribution No. 80 from the Institute for Atomic Research. Work
performed at the Ames Laboratory of the AEC.

10. R. Frisch. Nature 136, 220 (1935).
'L. J. Laslett, Phys. Rev. 50, 388(A) (1936).
• L. J. Laslett. Phys. Rev. 52, 529 (1937).
• N. K. Saha. Trans. Bose Res. Inst. (Calcutta) 14. 57 (1939-41): cited

in Chern. Abstracts 42, 450i (1948).
• The electroscope, manufactured by the F. C. Henson Company

(Pasadena), was used to measure the ionization in a chamber approximately
2t inches in diameter and 3 inches long. into which the radiation passed
through an aluminum window of 1.2 mg/cm' surface density. The surface
density of the mica covering the source was 5.2 mg/cm'. We are indebted
to Dr. A. F. Voigt for making available to us this electroscope in its
modified form.

• A value of 2.6 years was provisionally communicated to Dr. G. T.
Seaborg during the course of this work and has subsequently appeared in
the review article of Seaborg and Perlman (Rev. Mod. Phys. 20. 585 (1948»).

e...

600400200

>- 0.9
!::
<IIz 0.8l!!
~

0.7....
>;::
<[ 0.6...J....
a:

0.5

04

0

T HE radioactivity of Na=, first discovered by Frisch,l has been
described by the present writer 3 as producible by the

deuteron bombardment of magnesium and the half-life estimated
as 3.0 years. 3 More recently, Saha4 has given a value of 2.8 years
for the half-life of this activity. During the past three years the
decay of a Na= sample has been followed in this laboratory and
it is the purpose of the present note to report the value obtained
for the half-life.

The Nail sample used was produced in 1937 by the bombard
ment of magnesium metal with deuterons produced by the cyclo
tron in Professor Lawrence's laboratory at Berkeley. The mag-

800 1000
TIME (Ooy.)

FIG. I. Logarithmic decay curves of Na" activity, measured with respect
to that of an uranium oxide standard. for two source positions, I nserl :
Aluminum absorption curves (logarithmic scale of ordinates) taken (l) at
the beginning and (2) after completion of the decay measurements.
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Secondary Electron Spectrum of PrI42t
ERLING N. JENSEN. L. JACKSON LASLETT, AND D. J. ZAFFARANO
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Iowa State College. Ames. Iowa

(Received April 21.1952)

SOI~"

I Na previous publication concerning the radiations of Prl42, the
authorsl reported the presence of one gamma-ray, having an

energy of 1.576 Mev, and two beta-groups, with maximum energies
of 2.154 Mev and O.63e Mev. Other investigators2 have reported
a number of low energy gamma-rays for Prl42. In the original
work of the present authorsl a search was made for low energy
gamma-rays, but none was found. If these gamma-rays existed,
however, they would have been observed as photoelectric lines
superposed on a broad distribution of electrons which was ascribed
to secondary electrons produced by bremsstrahlung.

Dr. Alburger of Brookhaven National Laboratory has sug
gested that the broad distribution of electrons ascribed to second
ary electrons produced by bremsstrahlung, as reported in our
original paper,l might be due to beta-rays that have passed
through part of the Lucite holder and then scattered from another
part of the source holder. On repeating the experiment with
Sr90- YVO it was found that a substantial fraction, but not all,
of the electron distribution attributed to bremsstrahlung was,
in fact, due to scattered beta-particles, as suggested.

It seemed worthwhile, therefore, to re-examine the secondary
electron spectrum of Prl42 in order to make a search for low energy
gamma-rays under more favorable circumstances and also to
determine the existence or nonexistence of an appreciable number
of secondary electrons produced by bremsstrahlung. A sample of
spectrographically pure (contaminants of Nd, La, and Ce less
than 0.1 percent) PreOn made available through the courtesy of
Dr. F. H. Spedding and Mr. T. A. Butler of this laboratory was
irradiated in the Argonne pile and then examined with a thin-lens
spectrometer4 modified to incorporate ring focusing.5

The irradiated praseodymium was placed in a brass holder and
covered with a copper cap, of surface density 2.92 g/cm2, on
which was fastened a uranium foil of surface density 42 mg/cm2.
The secondary electron spectrum obtained with this source is

1800

1600

1400

1200

FIG. 1. The solid line, given by the circles. is the secondary electron
spectrum of PrU ' as obtained with the arrangement shown in the insert.
The broken line. given by squares, was obtained from the·Compton distri
bution produced by the Zn" gamma·ray (1.12 Mev) normalized to the
Compton distribution from Pru,. N is the number of counts per minute.

shown by the solid line in Fig. 1. The insert in Fig. 1 shows a
scale drawing of the arrangement of the Prl42, brass holder, copper
cap, and uranium foil. Spectra were obtained with and without
the solder ring on the shoulder of the brass holder and no change
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FIG. 2. The curve given by the solid circles Is the secondary electron spec
trum from the copper capsule and uranium foil. as produced by bremsstrah
lung arising in the copper capsule due to the absorption the of beta·particles
from Sr"-Y". The arrangement of source, copper capsule. and uranium
foil is shown in the insert. N is the number of counts per minute for this
distribution. The triangles were obtained by subtracting the two curves
shown in Fig. 1 and multiplying by an appropriate normalizing factor.

in the shape of the spectrum was observed. Only one gamma-ray
was observed, having an energy of 1.576 Mev as reported pre
viously.1

Since no low energy gamma-rays were observed and the material
surrounding the source was sufficient to absorb completely elec
trons with an energy greater than 5 Mev, it was concluded that
the broad distribution of electrons observed at the low energy
end of the spectrum, in addition to the expected Compton dis
tribution, is due to secondary electrons that are produced in the
copper cap and uranium foil by the bremsstrahlung arising in the
copper cap as a result of the absorption of the beta-particles.

As a check of the foregoing interpretation for the broad distri
bution of electrvns at the low energy end of the spectrum shown
in Fig. 1, a source of Sr90- YVO was placed in a copper capsule to
which was fastened the same uranium foil as that used with the
Prl42 source. This copper capsule had the same diameter as the
copper cap used with the praseodymium source. The Sr90- y90

source, which is gamma-free and emits beta-particles with a
maximum energy6 (2.23 Mev) close to that for Pr142, was found to
give a secondary electron spectrum as shown by the circles and
solid line in Fig. 2. The insert in Fig. 2 shows a scale drawing of
the arrangement of source, copper capsule, and uranium foil.
The end of the capsule on which the uranium foil was fastened
had a surface density of 2.43 g/cm2while the sides of the capsule
had a surface density of 2.12 g/cm2. This was sufficient to absorb
completely electrons with an energy of about 4 Mev.
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2 LETTERS TO THE EDITOR

The broken line shown in Fig. 1 was obtained from the Compton
distribution produced by the Zn6li gamma-ray (1.12 Mev).' This
was obtained under conditions similar to those for the Compton
distribution for Pr!42. The scale of the Znlli curve has been ad
justed to match the Pr142 Compton distribution at the maximum
ordinate and at the Compton high energy "edge." The triangles
shown in Fig. 2 were obtained by substracting the two curves
shown in Fig. 1" and normalizing the ordinates. It may be seen
that the two secondary electron distributions produced by
bremmstrahlung are in good agreement. It appears, then, that
the broad distribution of electrons at the low energy end of the
Pr!42 spectrum shown in Fig. 1 is due to bremsstrahlung.

The secondary electron spectrum of Pr142, shown in Fig. 1,
is therefore regarded as a composite of the photoelectrons and
Compton electrons arising from a single gamma-ray, plus the
electrons produced by bremsstrahlung. This conclusion; accord-

8-12

ingly, in no way alters the final results and conclusions regarding
the radiations from Pr142 nor the decay scheme reported in the
previous publication.!

The authors wish to express their appreciation to Messrs. Earl
W. McMurry and James T. Jones, Jr. for their assistance in
obtaining part of the data.

t Contribution No. 183 from the Institute for Atomic Research and
Department of Physics. Iowa State College. Ames. Iowa. Work was per
formed in the Ames Laboratory of the AEC.

1 Jensen. Laslett. and Zaffarano. Phys. Rev. 80. 862 (1950).
• C. E. Mandeville. Phys. Rev. 75. 1287 (1949); Cork. Schreffler, and

Fowler. Phys. Rev. 74.1657 (1948); E. R. Rae. Proc. Phys. Soc. (London)
63A. 292 (1950) .

• D. E. Alburger (private communication).
• Jensen. Laslett. and Pratt. Phys. Rev. 75. 458 (1949).
• Pratt. Boley. and Nichols. Rev. Sci. Instr. 22. 92 (1951); Keller.

Koenigsberg. and Paskin. Rev. Sci. Instr. 21. 713 (1950).
• E. N. Jensen and L. J. Laslett. Phys. Rev. 75. 1949 (1949).
7 Jensen. Laslett. and Pratt. Phys. Rev. 76. 430 (1949).



Reprinted from THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, Vol. 28, No.4, 724, July, 1956
Copyript, 1956 by tbe Acoustical Society of America.

Printed in U. S. A.

Reprinted by permission of the American Institute of Physics.

On the Electromagnetic Analogy
to Sound Propagation

L. JACKSON LASLIlTT*

Department of Physics and I nslilule for Atomic Research,
Iowa Stale College, Ames, Iowa

(Received April 8, 1956)

There is an evident correspondence between Eqs. (2) and (4) if

and is constant in magnitude (since no work is done on the
particle). This last equation may then be written

* Presently at the University of Illinois. on leave from Iowa State College.
to work with the Midwestern Universities Research Association.

1 R. H. Kraichnan, J. Acoust. Soc. Am. 27, 527 (1955).

Sound rays are accordingly seen to be influenced by the fluid
motion if V Xw~O; the relation between the vorticity (W) of
the fluid motion and the magnetic field governing the analogous
particle trajectory is obtained by forming the curl of Eq. (5). We
thus find

(4)

(5)

(7)

(6)

w/e=-qAlp.

Wle= -qB/p

B= - (plq)(WIe)
=-[Bp](WIe),

8f (ds+qds·Alp) =0.

where CBp] denotes the magnetic rigidity of the charged particle
whose trajectory is under consideration. This result is identical
with that of Kraichnan, who considers a charge e=eoq.

The writer would like to express his appreciation to Dr. K. U.
Ingard and Mr. W. W. Lang for their interest in the development
presented here.

or

KRAICHNANl has developed an interesting correspondence
between the paths of sound rays in fluids undergoing shear

flow and the trajectories of charged particles in magnetic fields.
To establish this analogy one assumes (i) the eddy size to be large
compared to the sound wavelength and (ii) the velocity (w) of
the fluid flow to be small in comparison to the speed of sound (e).
Kraichnan's development then makes use of the wave equation
for sound propagation and the Hamilton-Jacobi theory of particle
dynamics, while referring in the. discussion to the associated
principles of Fermat and of least action. It is felt that the
following brief derivation, which proceeds directly from these two
variational principles, may be of interest.

For the ray description of sound propagation, one may employ
Fermat's principle

8f ds O' (1)
e+w cos (w,ds) ,

for w«e, this becomes

8f(ds-ds. w/e) =0. (2)

Similarly, for the trajectory of a particle of charge q (emu or mks
units) in a magnetic field B=VXA, the principle of least action
may be applied in the form

8f(p+qA)·ds=O, (3)

where p, denoting the mechanical momentum, is parallel to ds
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Attainment of Very High Energy by Means
of Intersecting Beams of Particles

D. W. KERST,· F. T. COLE,t H. R. CRANE,t L. W. JONEs,t L. J.
LASLETT,§ T. OHKAWA,II A. M. SESSLER,1f K. R. SYMON,··

K. M. TERWILUGER,t AND NILS VOGT NILSENtt

Midwestern Universities Research Association,n University
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(Received January 23, 1956)

I N planning accelerators of higher and higher energy,
it is well appreciated that the energy which will

be available for interactions in the center-of-mass
coordinate system will increase only as the square root
of the energy of the accelerator. The possibility of
producing interactions in stationary coordinates by
directing beams against each other has often been
considered, but the intensities of beams so far available
have made the idea impractical. Fixed-field alternating
gradient accelerators1 offer the possibility of obtaining
sufficiently intense beams so that it may now be
reasonable to reconsider directing two beams of
approximately equal energy at each other. In this
circumstance, two 21.6-Bev accelerators are equivalent
to one machine of 1000 Bev.

The two fixed-field alternating-gradient accelerators
could be arranged so that their high-energy beams
circulate in opposite directions over a common path in
a straight section which is common to the two accele
rators, as shown in Fig. 1. The reaction yield is propor
tional to the product of the number of particles which
can be accumulated in each machine. As an example,
suppose we want 107 interactions per second from
to-Bev beams passing through a target volume 100 cm
long and 1 cm2 in cross section. Using 5Xl0-26 cm2 for
the nucleon interaction cross section, we find that we
need 5X 1014 particles circulating in machines of
radius 104 cm.

There is a background from the residual gas propor
tional to the number of particles accelerated. With
10-6 mm nitrogen gas, we would have 15 times as
many encounters with nitrogen nucleons in the target
volume as we would have with beam protons. Since
the products of the collisions with gas nuclei will be in
a moving coordinate system, they will be largely
confined to the orbital plane. Many of the desired pop
interaction products would come out at large angles to
the orbital plane since their center of mass need not
have high speed in the beam direction, thus helping
to avoid background effects.

FIG. 1. The target straight section. B and A can be adjacent
or concentric fixed-field alternating-gradient accelerators.

Multiple scattering at 10-6 mm pressure is not
troublesome above one Bev j but beam life is limited
by nuclear interaction with residual gas to "'1300
seconds. Consequently, in about 1000 seconds the high
energy beam of 5X 1014 particles must be established
in each accelerator. The fixed-field nature of the accel
erator allows it to contain beams of different energy
simultaneously. It may be possible to obtain this high
beam current in this time by using "'loa successive
frequency modulation cycles of radio-frequency accel
eration, each cycle bringing up 5X 1011 particles. It is
encouraging to learn that Alvarez and Crawford2

succeeded in building up a ring of protons by succes
sively bringing up several groups of particles to the
same final energy by frequency modulation in the 184
in. Berkeley cyclotron.

The number of particle groups which may be suc
cessively accelerated without leading to excessive beam
spread can be estimated by means of Liouville's
theorem.3 One can readily convince himself that there
is adequate phase space at high energy to accommodate
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the necessary number, N, of particle groups. Assume
for simplicity that synchrotron and betatron phase
space are separately conserved, so that for the former

(l1pM~)J=N(l1pM~)i,

where l1S and l1p are the· arc length and momentum
spread at injection and final energy. Then, employing
the fact that P",R*\ whereR is the radius and k is
the field index, one obtains

N = 2(k+ 1) (l1R/R) (PJ/Pi) (l1SJ/~i) (Ei/ l1Ei).

Using typical numbers such as

(PJ/pi)",l00, k",l00, R"'0.5 cm,
R"'104 cm, (l1E;jEi) '"10-3,

one finds that there is room for N",103 frequency
modulation cycles.

The betatron phase space available is so large that
it cannot be filled in one turn by the type of injectors

used in the past which can inject 1011 particles. Thus
there is the possibility of attaining and exceeding the
yield used for this example by improving injection.

The more difficult problem of whether one can, in
fact, use all of the synchrotron and betatron phase
space depends in detail upon the dynamics of the
proposed scheme and this is presently under study.

*University of Illinois, Urbana, Illinois.
t State University of Iowa, Iowa City, Iowa.
t University of Michigan, Ann Arbor, Michigan.

tIowa State College, Ames, Iowa.
University of Tokyo, Tokyo, Japan.

, The Ohio State University, Columbus, Ohio.
** University of Wisconsin, Madison, Wisconsin.
tt Norwegian Institute of Technology, Trondheim, Norway.
U Supported by the National Science Foundation.
1 Keith R. Symon, Phys. Rev. 98, 1152(A) (1955); L. W. Jones

ef oJ., Phys. Rev. 98, 1153(A) (1955); K. M. Terwilliger et aI.,
Phys. Rev. 98, 1153(A) (1955); D. W. Kerst et aI., Phys. Rev. 98,
1153(A) (1955).

2 L. Alvarez and F. S. Crawford, private communication.
aWe are indebted to Professor E. Wigner who pointed out to

us the importance of this consideration.
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d'." 21
dT' + -4- ~ e sin 2'1 = 0 (8)

1 d'1, 212' (di) - -8 -~ e cos 2'7 =C (9)

When "I is small, Eq. 5 may be linear
ized, to assume the form

for which one may write the first in
tegral

(4)

(6)

(7a)

d"'r/ 3
dT' +2 ~ (2 COST + 7e - e cos 2T)'r/

3(. 1'2)
=-I~ SInT-I esIn '1'

3
IJ ='2'1' + 'l7,

sO that Eq. 3 becomes

cJ2'r/ 3[ 7
dT' + 2" ~ (COST + '2 e-

i e cos 2T)sin 2'r/ +

(sinT-i esin2T)cos2'r/]=O (5)

where c is a constant. With the excur
sions of "I limited to ± 71'12 for oscilla
tory motion, the maximum value that

3 '( . I.
'1 =2" Sin '1' - 8'e Sin 2T) +

. [( 21 ) 1 ]010 Sin 2" ~e ''1' + 0<1

in the sense that neighboring solutions
describe oscillatory motion about these
periodic solutions.

We consider, specifically; solutions
for which

dlJ/dt,.,. (3/2)(271'/T)

and write

or, for 01" ~ 71',

For )..2 ~ 1, an approximate particular
integral to the inhomogeneous Eq. 6 is
readily obtained, and the solution to
the corresponding linear homogeneous
equation may be derived (8) by ignor
ing terms of average value zero in the
coefficient of "I' The solution thus in
cludes a periodic motion, of period T,
and a long-period oscillation of am·
plitude 01,,:

ht 3 . 211"t 1 . 411"t
IJ = T + I A( Sin T -8' e SIO T) +

o<"Sin[(¥~e);2;t+"'J (7b)

where 0111 and 011 are arbitrary constants.
If 0111 is not small. so that the slow

excursions of "I preclude linearization, a
similar averaging of the coefficient of
sin 271 in Eq. 5 suggests that these oscil
lations are essentially described by an
equation of the form applicable to the
motion of a physical pendulum:

with the largest of the principal mo
ments of inertia (C) taken perpendic
ular to the orbital plane, ).. == (8 
A) 1C measuring the difference between
the two smaller moments of inertia (8
and A). and f denoting the true an
omaly. (Since damping effects have
been ignored in this analysis, Eq. 1
is derivable from a simple Hamiltonian
function. with periodic coefficients. in
which p = dB / dT is the canonical mo
mentum conjugate to B, and Liouville's
theorem concerning the conservation of
phase-space area applies to the variables
(J and p.)

Substitution of the explicit variation
of the true anomaly with time, as given
by

cJ21J + ~, [1 + e cos f( T) ] 3

dT' 2" 1 _ c' X

to the equations that govern the rotation
of a rigid distorted planet has been dem
onstrated by Liu and O'Keefe by means
of digital computations. In this report
we present approximate analytic for
mulas that may afford further physical
insight into the character of locked-in
motion, that could facilitate the inter
pretation of observational data, and that
indicate the dependence of the results
upon the various parameters of the
model. For simplicity, and for clarity
in exposition, the analysis is carried to
no higher order than is required to
exhibit the salient features of the phe
nomenon.

The differential equation for the
orientation, B, of the planet is given by
equation 4 of the report by Liu and
O'Keefe (4). In terms of the variable
'1' = 27rtl T it becomes, after inset:tion
of the equation for the Keplerian orbit
(7) of eccentricity e.

f( d = '1' + 2e sin '1' (2)

through the first-order term in e, con
verts Eq. I to the approximate form

d'lJ 3 [( I 3 . 2
dT'+2~ + ecosT)SIn (0-'1')-

4cSinTcOS2(IJ-d]=0 (3)

which forms the basis of the remainder
of our analysis. [It is noted, from Eq. 2,
that '1' is to be regarded as measured
from the time of perihelion passage,
and () is the angle made by the smallest
of the moments of inertia (A) with the
major axis of the orbit.] One expects
that there may be periodic (locked-in)
solutions to Eqs. 1 or 3 that are stable,

sin2[O-f(T)]=O (I)

Rotation of Mercury: Theoretical
Analysis of the Dynamics of a
Rigid Ellipsoidal Planet

Reprinted by permission

from SCIENCE.

Radar (1) and visual (2) observa
tions of the planet Mercury indicate a
rotation period T r = 58.4 ± 0.4 days.
close to 2/;J of the orbit period T =
87.97 days. Colombo (3) and Liu and
O'Keefe (4) have surmised that a
stable "locked-in" motion of this type
can occur as a result of the inverse
cube term in the planetary potential
(5, 6) that arises for a body with un
equal moments of inertia in the orbital
plane. The existence of such a solution

Abstract. The second-order nonlinear
differential equation for the rotation of
Mercury implies locked-in motion when
the period is within the range

2T [ 211"t 2 ]3 1 - ~ cos t- .:!: 3 (21~eI2)l

where e is the eccentricity and T is the
period of Mercury's orbit, the time t

is measured from perihelion, and ).. is
a measure of the planet's distortion. For
values near 2T13, the instantaneous
period oscillates ahoul .?T/ 3 wilh period
(21Ael2)-!T.
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TIIb=(~f>.e)-:T (11)

211"
T, = do7dt

2 ! 211"(" 2 21 •=- 1 - >. cos-- - -an (-he)' X
3 I T 3 2

for ao small, and, for any a" compatible
with locked-in motion, would lie be
.tween the limits obtained from Eq. 10:

have been considerably greater than
that now observed. Lower limits. which
depend on A. can be set to the rate of
decrease of the rotational energy
through the agency of damping if the
rotational motion has passed through
the higher-order modes during the past
history of the planet. Similarly, an up
per limit can be set on the amount of
damping that will permit the rotation
to remain locked in to the mode ana
lyzed in this report. Other work (11) in
dicates, moreover, that damping torques
acting at present would shift the phase
of the periodic solutions presented here.
and this result suggests that information
concerning the current magnitude of
such torques may be inferred from
more detailed observation of the rota
tional motion,
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[T,] =
max.nl in

2 211"t--r hCOS ;F

in Eq. 12 will represent the largcr con
tribution to the variation of the instan
taneous period.

Substitution of the values T = 87.971
365 yr, e = 0.2, and A = 5 X IO-~', as
suggested by Liu and O'Keefe (4), into
Eq. I I leads to a libration period Till>

= 23.5 yr for small-amplitude varia
tions, in substantial agreement with
their computational results. Correspond
ingly, from the last term of Eq. 13, the
maximum variation of the instantaneous
period of rotation that could arise from
this libratory motion would be approx
imately ± 0.40 day. in good agreement
with recent computational results of Liu
and O'Keefe (10). It is highly unlikely.
of course. that such large variations are
now actually occurring. because of the
damping that would have resulted from
tidal effects.

Although the detailed results pre
sented in this report have been with
reference to motion for which the rota
tion period is close to 213 the period
of revolution, the existence of other
stable modes of locked-in motion
should not be overlooked. The possible
range of variati!Jn for the rotational
speed in general will be substantially
smaller for the higher-order modes, for
reasonable values of the parameter A,
and this feature will have significant
implications concerning the magnitude
of the damping present at times when
the speed of planetary rotation may

2 [ 271"t 2 21 , ]3" 1 - >. cos T ::;::: 3 (-2>.e)' T (13)

For favorable values of ao a determina
tion of >.. may be feasible through ob
servation of the slow libratory motion,
with a period close to that expressed by
Eq. I I, that is represented by the last
term of Eq, 12. If, however, ao is very
small-as could well result from the
action of damping mechanisms-the
term

(12)

( 10)

[
21 211"t ]1 1

cos (Z>.e)ly+a, JT

when the amplitude (a,,) of this libra
tion is not large. An expression of the
form given by Eq. 7b may be useful
for interpretation of data obtained by
the sequential observation of surface
features on the planet. More simply, the
instantaneous periods-as could be in
ferred from radar observations-would
be (by differentiation of Eq. 7b when
the term proportional to Ae is neglected)

where we have neglected the tcrm pro
portional to Ae.

The -foregoing analysis serves to con
firm that locked-in rotational motion
with a period approximately 213 the
period of revolution is dynamically
possible. The form of the solution
shown in Eq. 7b suggests, however, that
observations of the rotation will indi
cate rates that vary during the course
of a planetary year and that, in addi
tion, slower variations of the rotational
rate may occur with a period given by

dr/ dr can assume for locked-in motion
(9) occurs when 'TJ = 0, and is

!d1]/drl..,u = (22
1

>.e)!

With inclusion of the contributions
from the first terms on the right-hand
side of Eq. 7b, therefore, the values of
dOl dt for locked-in motion are ex
pected to lie between the limits

[-~~ 1...x •..". =

311" [ 211"t 20 ( 21 , ]T 1 + >. COS-j :!: 3-2 >.e)'
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Trajectory for Minimum Transit Time
Through the Earth

L. JACKSON LASLETT

Lawrence Radiation Laboratory* and Department of Physics,
University of California, Berkeley, California,

Copyright

(2b)

T HE tantalizing theoretical possibility of very rapid
transit between points on the Earth's surface by

gravitational fall through frictionless tunnelsl- 3 has
recently been discussed by Cooper.4 The differential equa
tion for the plane curve leading to a minimum transit time
between two given points on the surface is given in Cooper's
note, and the results a of computer solution are presented
graphically. The differential equation may be written
conveniently in a form that expresses the dependence of IJ
as a function of r, and in these terms it becomes

(d/dr){r2[R2 -r2J-l[1 +r2(dlJ/dr)2J-l(dO/dr)} =0. (1)

A solution to Eq. (1), symmetric about IJ=O, may then be
obtained as

(2a)

= ±{sin_I[!!.(r
2
-r

02 )lJ _~sin_l(r2-r02 )l},
r R2_ r02 R R2-r02

in which the constant of integration ro may be identified
with the radius of closest approach to the Earth's center.

For class presentation, Eq. (1) is most directly obtained
from the variational statement

[in which we neglect the rotation of the earth and employ
the speed acquired from the potential-energy change
~ v= -lmg(R2-r2)/RJ by writing the Euler-Lagrange
equation that results from regarding r as the independent
variable. The first integral

r2[RL r2J-l[r2+(dr/dlJ)2J-l = ro[R2 -r02J-. (4)

then follows immediately, and the resulting explicit
expression for dO/dr may be integrated as shown by Eqs.
(2a,b). The solution given by Eq. (2b) corresponds to a
diametrical trajectory (IJ= ±1r/2) in the limiting case for
which ro vanishes.

For journeys between points separated by more than a
few kilometers, very high maximum speeds will be attained
on a path of the form given by Eq. (2b). An interesting
problem for the student is an evaluation of the "number of
g's" experienced by a passenger (or the force with which
he presses on the seat of the train) at the lowest point of the
trajectory. In addition, an elementary evaluation of the
integral in Eq. (3) provides the transit time as a function
of roo

*Work assisted by the U. S. Atomic Energy Commission.
1 L. K. Edwards, Sci. American 213, 30 (Aug. 1965).
• M. Gardner, Sci. American 213, 10 (Sept. 1965)•
• See, L. Lessing, Fortune 71, 124 (Apr. 1965)•
• P. W. Cooper, Am• .T. Phys. 34, 68 (1966).
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