
CABLE: A LANGUAGE BASED ON THE

ENTITY-RELATIONSHIP MODEL

"

ARIE SHOSHANI

JANUARY 1978

cm1PUTER SCIENCE AND APPLIED t1ATHEMATICS DEPARrr~ENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

UCID- 8005

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

.... \

"

I. Introduction

CABLE: A Language Based On The
Entity-Relationship Model

By
Arie Shoshani

Lawrence Berkeley Laboratory

Over the last several years the concepts of "data independence" and
"user-oriented" data languages have been emphasized in the data management
area. Briefly, these concepts refer to the separation of the physical organi
zation of a data base from its logical structure, and the development of data
models and languages based only on some logical model. The best known model
that emphasized these concepts is the relational model [1] ~nd the different
languages developed upon it such as SEQUEL [2] or QUEL [3J.

The introduction of the relational model triggered a controversy as to
its merit relative to the CODASYL network model [4] and more traditional hier
archical models (e.g. [5]). The issues are based on how "natural" the model
is, how easy it is to specify a request, and whether the model pror.1otes "non
procedurality" in the languages based upon it. Roughly speaking, a language
is considered non-procedural if it has facilities to specify what is wanted,
rather than how to get it. ~Je will discuss some of these issues in the next
section and argue that the Entity-Relationship model [6] provides a good basis
for "natural" user languages. The Entity-Relationship model was introduced in
an attempt to unify the different approaches. It includes a great deal of

semantics not present in the relational model.

In this paper we discuss a data language, called CABLE (01~in-~ased

languag~), that is desi gned to take advantage of the semanti cs present in the
Entity-Relationship model (the use of the term chain will become clear as we
proceed). In the next section we discuss the issue ~ of \'Jhat is a nutural model
and the concept of procedurality at a logical level, which leads to the notion
of ch.::in:;. In the following section we discuss the main features of the CABLE
language by way of examples and show how chains can be used to represent many
desirable constructs.

..

'.
, ,

II. On "Naturalness" and Non-Procedurality

The issue of whether a model is natural cannot be resolved at the level

of "what do most peo.ple like best." The preference that an individual has for

a data model depends not only on the application's data, but also on personal

biases and previous experience. Furthe~ the difficulty of using languages
based on the models seems to vary with the application [7J. We would propose
a criteria for what is natural based on the use of natural languages (English

in our case) as follows: A data language is considered natural ifit requires
no more parameters and constructs than would be required when using ordinary
English. A data model is natural if it can support a data language that is
natural.

Consider the following example: "Find all employees working for the

manager Jones." Assume that a relational model of the database contains the
relations:
DEPT (NAME, FLOOR, MGR)
EMPL (NAME, SAL, DEP)

In SEQUEL [2J the query would be:

SELECT NMIE
FRat·, HlP

\~HERE DEP =
SELECT NA~1E

FROf-1 DEPT
WHERE MGR = 'JONES'

and its equivalent in QUEL for the INGRES system [3J.

RANGE OF D IS DEPT

RANGE OF E IS Er~PL

RETRIEVE (E. NAME)
vJHERE D. MGR = 'JONES' Arm

E. DEP = D. NAi'1E
It will be more natural according to the definition above to use something like:

. SELECT EMPL. NAME
WHERE MGR = 'JONES'

-2-

.. '

This query has the parameters IIEMPL. NM'lE" which stems from lIerilployee"

in the English query, and r'1GR = 'JONES' which stems from "manager Jones." In

the QUEL query another item was required: E. DEP = D. NAME, which associates
explicitly the two relations. Similarly, the SEQUEL query required the addi

tional indented SELECT to do the same. The reason for this requirement stems
from the relational model, in which relationships are not specified explicitly.
As a result all associations must be specified in the relational language. We
claim that if relationships are known, the user should not be required to
specify them in the data language. In the English query the user did not

express this association since it was part of his model that employees work in
departments. In the Entity-Relationship model such associations can be made
explicit and therefore a language taking advantage of this semantic knowledge
can be developed. In the next sections we will discuss how this is done in
CABLE.

Note that in the previous example \I/e used MGR without mentioning that
it belongs to the relation DEPT. This is only possible if attribute names are
unique. Indeed, this condition holds true for relationships as well, and we

will later discuss how we deal with it.

The pro~erty of non-procedurality was discussed much in the context of
O-",.A

comparing data languages based on the relational model w the CODASYL Data
Manipulation Language (DML) [4J which is based on -a network model. However~

the detailed procedurality of this DML stems from it being a low level record
at-a-time manipulation language. A user of this language is expected to know
about the physical organization of the data base (for example, in terms of
pointer chains) and use this knowledge to move between records. The languages
based on the relational model are at a logical level and therefore this com
parison is not useful for the purpose of understanding non-procedurality. It
is more appropriate to ask what is procedurality at the logical level.

Consider the following query: "what are the parts used in projects of
the electron i cs depa rtment. " In thi s query we actua 11 y speci fy how the i nfor-

-3-

·. ,-
'.1

1//0\ e.x~f -€£ <or 0. ~o~d-f t~-a.t I.A f.~cekA.· ,aRl
..l. l~.. .e..J <CAl ~i J ~SL, k,o""Je.(<- [.aJ. j-j

mation is to be accessed; i.e. start with the electronics department, find all
projects in this department, then find all parts used by these projects. If

;\
'\
•

we were to specify only \-/hat we want. we would say "what are the parts used in \
\

the electronics department" not mentioning projects. Thus, the first .9..ue.ry can)
be considered procedural, at least relative to the second one.~;-th~ ~~e'-~i~--
natural languages. people would use the more procedural specification when they
are less familiar with the data base or when there may be more than one inter
pretation to the abbreviated form.

\~e believe that procedurality at the logical level is the detailed
specification of a chain through entities and relationships of the data base.
The less elements are specified in the chain, the less procedural the query
specification is. Further, how procedural a specification would be depends on
the user's view of the logical structure of the data base, and on hisexper
ience with it. Procedurality is a "natural" feature in the sense that it
exists in natural language. It is a valid feature to exist in data languages,
but should be required only if ambiguities arise. The concept of chains

representing procedurality at the logical level are the basis for the language
CABLE.

III. Features of CABLE

As mentioned earlier CABLE is designed to take advantage of semantic
knowledge provided by the Entity-Relationship model. At the same time, it
preserves an important feature of relational languages: the ability to relate
entities by value association. We will proceed by discussing features of the
language and illustrating them with examples. But first, we need to introduce
briefly the basic concepts of the Entity-Relationship model.

"Entities" represent "things" in the data bases, such as people, organ
izations or events. "Attributes" represent information about entities, such
as age and salary of a person. "Relationships" represent associations between

entities, such as the fact that employees are assigned to departments. Rela-

-4-

': .

tionships can exist between two or more entities and specify whether the
association is one-to one, one-to many or many-to-many. In most cases entities
have an independent existence (i .e. they would exist in the data base regard

less of whether other entities or relationships exist), while attributes and
relationships are always dependent. There are exceptions to the independence
of entities; for example, in a data base about employees and children, children
are entities whose existence can be defined to be dependent on employee. A

key feature of the model is that relationships can have attributes which rep-
resent information about the combination of entities involved in the relation
ship. For example, in a data base where students and courses are entities, a
relationship student-course can have an attribute grade. More details about
the model can be found in Chen [6J. Chen uses a diagramatic notation where
rectangles represent entities and diamonds represent relationships. Attributes
-are not represented so that the diagram does not get too ~usy. Thus the last
example would be diagrammed as follows:

STUDErIT COURSE

We will use the same notation for our examples below and will refer to

the following data base in Figure 1 (part of thp diagra~ in [6J) for exa~?les in
the rest of the paper.

~PROJ -.-;..;..N-f
TOOL

~--------~ ~--------~

PROJECT TOOL

FIGURE 1: An Entity-Relationship nodel Example

-5-

- '

..

The entities have the following attributes:
DEPARTMENT (NA~lE, BUILDING)

EMPLOYEE (NAME, AGE, SALARY)
DEPENDENT (NAfvlE, AGE)
PROJECT {NUMBER, FLOOR}
TOOL (NUMBER, QUANTITY)
In addition the relationship PROJ. WORK (which is many-to-many) has an attribute
TIME designating the portion of the employee's time spent on a given project.

We can now proceed to discuss the features of the CABLE language. The
basic selection elements are chains. Chains represent selection paths through
the entities and relationships of the data base. Chains are made of beads,
which are an elementary selection criteria. The following SELECT statement

'is an example of a chain:
El: find all projects which employ people from departm~nts in building 5.

SELECT PROJECT /EMPLOYEE/DEPARTHENT. BUILDING = '5'

where SELECT is a keyword (underl ine6\), beads of the chain are separated bl!
'I') and '.' standsrbetween an entity and one of its attributes. Note th~t

~t ~ °t
beads -ea-A be/.entity names only.

El represents only a selection criteria. To output elements one adds
an OUTPUT statement. The output can refer to any entities in the chain.
For example suppose that for El we want the following output:

E2: output the project numbers and floors as well as department names. The

corresponding OUTPUT statement will simply be: .IAN'£:

OUTPUT PROJECT. Nut~BER, PROJECT. FLOOR, DEPARTr~ENT. -NUP1BEIt"

Chains do not have to include all elements on their path as long as
no ambiguity arises (He will disc'JSS what can be done in such cases in
section 4). In addition, attributes do not have to be preceded by their
entities if they have a unique name in the data base. Thus the above request
could be represented in abbreviated form as follows (including El and E2)

,,,, f~ "" r
E3: OUTPUT PROJECT. NUMBER, FLOOR. DEPARTMENT. ~UMBER

SELECT BUILDING = '5'

-6-

..

.. '

In E3 all missing parameters can be added by the system. In such cases~
the complete statement can be optionally shown to the user before proceeding

to perform the request.

Note that in the previous examples no relationships were specified,
relying on the knowledge of their existence. E3 represents the minimum number
of parameters and constructs necessary to represent this request unambiguously.

There is no distinction in the language between entities or relationships
as elements of beads. This makes sense, since relationships can have attributes
that we may want to include in the qualification criteria. Before showing such
an example we should describe in more detail the composition of a bead. There
is one bead for each entity or relationship involved in the chain. Beads can

_have qualification criteria to be applied to its entity. -A bead m2.Y contain
no qualification criteria, just an entity or relationship name. An example
of a qualification bead is:

EMPLOYEE. AGE> 35 AND SALARY < 10000

Bead qualification can be applied anywhere along the chain as in the
following example:

E4: What projects have employees over 65 years old from the R4"'O department 7

OUTPUT PROJECT. NUMBER -SELECT EMPLOYEE. AGE> 65/DEPARTMENT. NAME = 'R~D'

An example where a relationship and its attribute are involved would be:
E5: What employees work in project number 7 more than half time?

OUTPUT G1PLOYEE. NAME
SELECT PROJ-WORK. TIME> O.5/PROJECT. NUMBER = 7

Chains can be connected by the logical operators AND/OR. It is often
the case that two or more conditions represented with an AND are equivalent
to a chain. For example E5 could be represented as two chains each having
one bead as follows:

E6: OUTPUT EMPLOYEE. NAME
SELECT PROJ -WORK. TI~lE > 0.5 AND PROJECT. NU~~BER = 7

-7-

".

This equivalence can easily be detected and both forms are permissible
depending on the user1s view.

Beads in chains can be used effectively to choose between two relation
ships existing between entities. For this purpose we will add a relationship
between EMPLOYEE and PROJECT that indicates which employees manage projects.
We now have two relationships as

EHPLOYEE PROJECT

We can choose to use one of the relationships by selecting the appropriate bead
as in the following example:

E7: Who is the manager of project 17?
OUTPUT EMPLOYEE. NAME
SELECT PROJ-MGR/PROJECT. NAME = 17

Entities and relationships can be traversed more than once using chains.
For example (refer again to Figure 1):

E8: What projects use the tools used by project 5?
OUTPUT PROJECT. NUMBER ---
SELECT PROJECT/TOOL/PROJECT. NUMBER = 5

One of the more difficult conditions to express in a data language is
the condition caused by ellipsis in natural languages, such as by the words
their, its, etc. For example: Who are the employees that went to the same
school as their children? This usually requires the designation of a variable
that is used in two parts of the query. In CABLE this is done by putting the
condition between two chains. To illustrate the point consider the following

diagram (see next page):

-8-

EMPLOYEE

SCHOOL

N

CHILDREN
1

For the example above the query is expressed by equating two chains as follows:
E9: Who are the employees that went to the same school as their children?

OUTPUT EMPLOYEE. NAME
SELECT [SCHOOL. NAr~E/EMPL~YEE] = [SCHOOL. NAt1E/CHILDREN/01PLOYEE]
The term Et1PLOYEE at the end of both chains serves as the linking variable.

The Entity-Relationship model allOl<ls relationships to be recursive,
i.e. defined on a single entity as in the I":emple below:

1

Er4PLOYEE r= __ -:-:-__ ?M:~
N ~

In such a case, MGR is considered not only a relationship name, but also
another name for the entity EMPLOYEE. Thus the following example can be
simply expressed as follows:

E10: What is the salary of the manager of Jones?
OUTPUT MGR. SALARY
SELECT EMPLOYEE. NAME = 'JONES'
The system can create two references for EMPLOYE[and use the relationship

MGR to express it internally as an eXJlicit chain:
OUTPUT EMPLOYEE 1. SALARY
SELECT EMPLOYEE l/MGR/EMPLOYEE 2 = 'JONES'
Similarly the next famous example can be expressed simply as follows:

-9-

' ..

Ell: Who are the employees that earn more than the; r managers?
OUTPUT EMPLOYEE. NAME
SELECT EMPLOYEE. SALARY> MGR. SALARY

. Finally. we discuss the ability to associate entities explicity, which
is an important feature in relational languages. In CABLE this can be done
by using a bead in a chain for that purpose. This feature is similar to the
LINK capability in LSL [8]. The bead is composed of the keyword LINK followed
by an association criteria. For example, suppose that we have a separate
entity of houses where one of its attributes is owner. Then the follovling

query can be experssed using the LINK bead.
vJh.o

E12: What is the salary of the employee 'i~AieA owns house NU~1BER 179?
OUTPUT EMPLOYEE. SALARY
.SELECT LINK EMPLOYEE. NAME = HOUSE. OWNER/HOUSE. NUMBER = 179.

The LINK bead is useful for entities that are not rel ated when we w; sh to
associate them by value. but can also be used between entities that are
a 1 ready related.

IV. Dealing With Ambiguities

The entity-relationship model represents a general network or graph.
Therefore. it is possible that if chains are not fully specified, multiple
choices arise. In such cases there is no way of knowing the user's inten
tion and he must be consulted. It seems intuitive that for most of the cases
the choice of the shortest path would be a good guess, but this assumption
will require substantiation. There are~possible approaches on how to
represent the response to a user in the case of multiple chains. Assuming
that the user is an interactive "casual" user, a reasonable technique seems

to be to ask him about the possible beads in chains one at a time, and
progressively eliminate chains not including the indicated beads. Also, the
presentation to the casual user of a chain selected by the system, must be

done using English formats similar to the way it is done in the Rendezvous
system [9J. We believe that only a small fraction of queries will require

-10-

.. . '~.. '

~M£·L.~4
disambiguation since it is Ret Ceffiffl6" that only the ends of long chains will

be specified by users, without their mentioning some beads in between.

V. Conclusion

~Jf .
We have described a language based on the Entity-Re1ationaH model, called

CABLE. The main feature of this language is that it requires a small number
of parameters and constructs in order to specify a query. This is particularly
true when compared to relational languages that are based on value association
in the queries. In fact, we believe that this language requires in most cases
no more parameters and constructs than used in natural language. Therefore,
the language is close to the conceptual constructs that (casual) users have.

'We also believe that the ability to use chains is a natural feature that
facilitates the expression of many constructs easily. At the same time an
experienced user can choose to express his queries in detailed chains for the
expression of complicated conditions.

We have not discussed many features that a data language should have,
such as update or modify facilities, since we wanted to concentrate on the
concepts of language design. There are many good ideas in the literature
that could be used with this approach, such as the definition and creation

of LINKs in LSL [8J, or the storing of results into temporary -efItHies as is
,.;.lr t'..A-.· r...

done in relational languages.

-11-

VI. References

1. Codd, E. F., IIA Relational Model of Data for Large Shared Data Banks,"

Comm. ACN 13, 1970, pp. 377-387.

2. Chamberlin. D. D., and Boyce, R. F., IISEQUEL: A Structured English

Query Language," Proc. ACrv1 SIGr~OD Horkshop, 1974, pp. 249-264.

3. Stonebraker, M. R., Wong, E., Kreps, P., and Held, G., liThe Design and

Implementation of INGRES,II ACM Trans. on Database Systems, Vol. 1,1976,

pp. 189-222.

4. CODASYL Data Base Task Group Report, 1971, ACM~ New York.

5. MRl Systems Corp., SYSTEM 2000 Publications, 1972, Austin, Texas.

6. Chen. P. P-s., liThe Entity-Relationship Model: Toward a Unified View

of Data," ACM Trans. on Database System~, Vol. 1,1976, pp. 9-36.

7. Lochovsky, F. H. t and Tsichritzis, D. C., "User Performance Considerations

in DBMS Selection," Proc. ACM-SIGMOD Conference, 1977. pp. 128-1.34.

8. Tsichritzis, D. C., "LSL: A Link and Selector Language," Proc. ACt1-

51 Gi'lOD Conference, 1976, pp. 123-133.

9. Codd, E. F., "Seven Steps to Rendezvous \<Jith the Casual User," in

Data Base t1anagement, Klimbie and Koffeman, ed., pp. 179-199, North

Holland. Amsterdam.

-12-

