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ABSTRACT 

Lie transforms are developed as a practical tool for perturbation 

theory in classical mechanics. The spirit of the presentation is 

pedagogical. In order to define the general context of Lie transform 

perturbation methods, an extensive discussion is given of traditional 

perturbation methods in Hamiltonian and other systems, with an emphasis 

on averaging techniques . 

*Work supported by the U.S. Department of Energy. 
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1. Introduction 

This paper concerns perturbation theory in classical mechanics and especially 

the use of Lie transforms in the Hamiltonian subset thereof. The characteristic 

\J feature of the Lie transform method in perturbation theory is the exploitation 

~ 

\, 

of the group structure of the set of canonical transformations. In the Lie 

transform method, Lie operators are used to generate canonical transformations, 

so that canonical transformations are in effect parametrized by their Lie 

generators. This parametrization turns out to provide a compact notation for 

the transformations themselves as well as for the various formulas which naturally 

arise in perturbation theory. 

The use of Lie transforms as a practical computational tool has only come 

about in the last ten years or so. The tardiness of the discovery of this 

application of Lie groups might seem surprising, since classical mechanics 

is an old subject, and the basic theory of Lie groups has been in existence 

since the late nineteenth century. Actually, there have been a number of 

workers throughout the years who have come close to discovering the Lie transform 

method. In one of the earliest papers on quantum mechanics, Heisenberg, Born 

1 and Jordan developed a perturbation theory for quantum mechanics which is 

similar in spirit to the classical theory presented here. These authors failed 

to make the necessary changes to transcribe their theory into classical mechanics, 

perhaps in part because they did not know how to effect that transcription. 

The first use of the Lie transform method in classical mechanics was made by 

Hori,2 a worker in celestial mechanics, and his ideas were developed and extended. 

b D . 3 D 4 d h y epr1t, ewar, an ot ers. 

The object of this paper is to make the Lie transform method as accessible 
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as possible to those with a minimum of experience with classical perturbation 

theory, group theory, etc. Therefore the theory will not be developed in 

its most abstract form, and general formulas will not be given; but some 

idea of the general theory will be indicated from place to place. For a more 

5 rigorous and complete presentation of Lie transforms, the work of Cary may 

be consulted. 

The level of knowledge of Hamiltonian mechanics required for this paper 

is that of a graduate level course in classical mechanics. For the less 

experienced reader,a section on Hamiltonian mechanics has been included 

which can serve as a reminder or a reference for certain basic, well-known 

facts. Nevertheless, there is no pretense that this survey is complete. 

In the development of Lie transforms, a few theorems of Hamiltonian mechanics 

are required which are not so well-known. These will be developed and proved 

as they are needed • 

1.2 
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2.1 

2. Ordinary Differential Equations In Classical Mechanics 

fi,. 
, In this section we discuss some mathematical properties of ordinary 

differential equations which are relevant to classical mechanics, and especially , 
those properties which will be needed for later developments in this paper. 

We begin by emphasizing the fruitfulness of thinking in terms of first order 

differential equations. A phase plane analysis is given of a differential 

equation arising in a physical context in order to show the power of the 

phase space concept. We next define autonomous and non-autonomous systems, 

and discuss the differences. Then we establIsh the connection between systems 

of ordinary differential equations and families of mappings of phase space 

onto itself. Finally, we discuss constants of integration, and their use 

as a means of solving differential equations. 

A central mathematical problem of classical mechanics is the solution 

of systems of ordinary differential equations. If these equations are derived 

from Newton's laws or from a Lagrangian formulation of mechanics, then they 

will typically be second order differential equations in the independent 

variable, which is time. On the other hand, the mathematical theory of 

differential equations is best developed around systems which are first 

order in the independent variable. There is no loss of generality in such 

r't\ 
a development, since any system of differential equations of any order 

can be easily transformed into another system of first order equations. In 

• physical applications, the change from a system of second order differential 

equations to a system of first order equations most often corresponds to a 

change of interpretational emphasis from configuration space to phase space. 
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The phase space in question may be the familiar phase space of Hami1toni'an 

mechanics, or it may be something somewhat more general, as the following 

example will show. 

As an example to illustrate the great conceptual utility of phase space, 

we consider the motion of a body falling near the earth's surface, subject 

to a frictional drag due to the atmosphere.. In order to make a simple 

model of this physical system, we assume that the motion is purely in the 

vertical direction, and that the force of friction is proportional to the 

velocity. We let x represent the height of the body above the ground, and 

we let m, k and g represent respectively the mass of the body, the propor-

tionality constant in the friction law, and the acceleration of gravity. 

Then Newton's laws give the following differential equation for the motion: 

"M." + I<:X. + m~ = 0 (2.1) 

Although this equation is easily solved in closed form, we wish instead to 

analyze it in phase space to gain information of a qualitative nature about 

the solution. 

The configuration space implied by (2.1) is one-dimensional. We may 

transform (2.1) into a pair of coupled, first order differential equations 

via the substitution 

. 
~\ 

'\J = X (2.2) 

"' 
.... ' which gives for the transformed set 

-' " 
(2.3) . 

v = _ 
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2.3 

The two-dimensional (x,v) space in which the solution to (2.3) evolves may 

be considered to be a kind of generalized phase space. By "generalized" 

we mean that there is no necessary connection with Hamiltonian mechanics; 

'~ the phase space in question is nothing more than a compound configuration-

velocity space. 

A number of properties stem from the fact that the system (2.3) consists 

of first order equations. We note that a complete set of initial conditions 

for the system (2.3) consists of a point (x ,v ) in phase space. It does not 
o 0 

matter at what time the initial conditions are given, since the right-hand 

sides of equations (2.3) are independent of time. Thus, there is a unique 

trajectory passing through every point in phase space. This property is 

not shared by configuration space, where many trajectories will pass through 

a given point. One can use this property of phase space to assign a vector 

to each point, indicating the direction of the trajectory passing through 

that point and, by its magnitude, the rate of the flow along the trajectory. 

In other words, a set of first order differential equations such as (2.3) 

can be used to define a vector field in phase space, representing the flow 

generated by the equations. 

The flow field of the set (2.3) is shown graphically in Fig. 1. In this 

figure, the flow vectors have all been normalized to a standard length, so that 

the vector field shows only the direction of the flow, not its magnitude. 

In order to emphasize the value of the phase space concept, we note the 

following properties of the system (2.3) which can be seen from Fig. 1. 

First, the invariance of the flow field with respect to translations in the 

x coordinate is obvious. This fact can be used to construct a constant of 
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integration. Next, we see that there is a limiting velocity vo ' given by 

=~ 
K 

(2.4) 

No matter what the initial conditions, all trajectories evolve so that the 

velocity approaches -va as t ~~. This is the terminal velocity for fall 

in the atmosphere. A body falling with v > -va is accelerated downward, 

2.4 

while one falling with v < -va is accelerated upward, i.e. its fall is braked 

by the atmosphere. Finally, we note that ,the shape of the actual trajectories 

can be filled in by eye by looking at the flow field. Although it happens 

that (2.3) can be solved in closed form, it is easy to imagine slight modifi-

cations to (2.3) which would result in a system that could not be easily 

solved. The plot of the phase flow, however, would hardly be any more 

difficult to generate or interpret. 

We return now to the more general problem of an arbitrary set of ordinary 

differential equations. It is easy to see that by some simple substitution, 

analogous to (2.2), the set can be transformed into a system of first order 

equations which describe a flow in a generalized phase space of some finite 

dimensionality. We denote the dimensionality of the phase space by D, and 

we let ~ be an D-vector which represents a point in that space. The flow 

field will be a D-dimensional vector field, which we denote by E(~,t); in 

general, it will depend explicitly on the time. The equations of motion 

will take on the following very general form: 

~ = E (~, f) (2.5) 

In the case that the functions F are independent of time, the set (2.5) 
'" 

is said to be autonomous. (In Hamiltonian mechanics, an autonomous set 



• 

,II 

• 

2.5 

corresponds to a conservative system.) For an autonomous set of differential 

equations, there is a unique trajectory passing through every point of phase 

space, as in the example just given above. Furthermore, different trajectories 

never intersect one another, although a given trajectory may close on itself, 

* in the form of a smooth, simply connected loop. For a non-autonomous set, 

none of these properties hold, since the flow field changes as time progresses. 

In a later section we shall use non-autonomous Hamiltonian equations of motion 

to generate canonical. transformations. 

It is frequently useful to associate the system (2.5) with a family of 

mappings of phase space onto itself. To make this correspondence, consider 

some initial time to and some initial point in phase space ~ = ~o (an initial 

condition). At a later time tl the phase point ~ will have evolved along a 

trajectory to a new position = = ~l' If the initial point ~o is now regarded 

as a variable which ranges over all of phase space, then we have associated 

with the set (2.5) and the two times to and tl a certain mapping of phase 

space onto itself, which we denote by M(tO,t
l
). To illustrate the action of 

this mapping we write 

(2.6) 

This mapping can be regarded as a time evolution operator. 

For an autonomous system of differential equations, the associated 

mapping of phase space onto itself M(tO,t
l

) depends only on the time difference 

'( = tl-t
O

. Furthermore, the 'set of all such mappings for all possible time 

differences '( forms a one-parameter Lie group, in which '( may be chosen as 

* These two statements depend on certain continuity and differentiability 
requirements on the functions;[. These requirements almost always hold for 
systems of physical interest, except possibly at singular points such as the 
origin in the Kepler problem. 
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2.6 

the parameter. The group multiplication law is expressed by 

(2.7) 

This result is intuitively obvious; in a later section, a similar line of 

reasoning will be followed in the development of direct canonical transformations. 

Let us now consider the actual solution of a system of differential 

equations such as (2.5). Of course, the general solution for arbitrary 

functions [ cannot be written down, but the general form will be 

(2.8) 

In this expression the vector a represents the D constants of integration 
.v 

which necessarily appear in the general solution, and Y is a vector function 
'" 

which causes the differential equations to be satisfied. The constants of 

integration may be the initial conditions Zo at some time to' or they may be 

other quantities of interest, such as the energy, momentum, etc. 

It is often useful to consider the inverse of (2.8). Regarding the time 

t as a parameter, (2.8) can be inverted, giving the D quantities a as functions 
.v 

of the D quantities z. The result is a relation of the form ,.. 

(2.9) 

This expression shows that the constants of integration can be regarded 

as time-dependent phase functions. Alternatively, we can interpret" (2.9) 

as a time-dependent change of variables, taking z into a, and taking the set '" ,., 

of differential equations (2.5) into the new set 

• a. =. 0 (2.10) 
"" 
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2.7 

Of course, it is trivial to solve the new set (2.10). 

Clearly, finding the transformation of variables (2.9) is equivalent 

to solving the original system of equations. Indeed, the whole of Hamilton-

Jacobi theory is built around this idea, that differential equations can be 

solved by finding the right coordinate transformation. This philosophy will 

be further developed in the next section, where we discuss Hamiltonian mechanics • 

• 
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3.1 

3. An Overview of Hamiltonian Mechanics 

In this section we review some standard results of Hamiltonian mechanics, 

and we introduce some notation which, while not quite standard, will be useful 

for later work. The review of Hamiltonian mechanics presented here is not 

intended to be complete; it is only included in order to enhance the continuity 

of the presentation of this paper. In particular, w~ only state, and do not 

prove, certain well-known theorems. For a more thorough discussion of Hamil

tonian mechanics, the standard references6 ,7,8 on classical mechanics may 

be consulted. 

In the last section we used the term "phase space" to mean a compound 

configuration-velocity space, or, more loosely, any space in which the evolution 

of a system of first order differential equations takes place. In the context 

of Hamiltonian mechanics, the term phase space has a more restricted meaning, 

which we now proceed to elaborate upon. 

Hamiltonian phase space always has an even number of dimensions, which we 

denote by 2N. The quantity N is called the number of degrees of freedom. A 

point in phase space is represented by a 2N-vector z. It is customary to 
'" 

divide the 2N components of z into N components, called the q's, and N more 
'" 

components, called the p's. The q's and p's can be regarded as two N-vectors, 

q and p. The convention we shall adopt for the decomposition of z into q 
N iJ ,.., ,.., 

and p is as follows: ,.., 

z = (zl' •• '" zN' zN+ l' ••• ,z2N) 
N 

= (q1"" ,qN,P1"" ,PN) 

= (q,p) (3.1) .., .., 
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The q's are called generalized coordinates and the p's generalized momenta. 

We shall often call the z's, including both the q's and p's, simply 

"coordinates", meaning coordinates in phase space. 

In Hamiltonian mechanics, the equations of motion for the coordinates 

z or (q,p) take on a special form. The equations of motion are derivable from 

a certain scalar function on phase space, the Hamiltonian, denoted by H(q,p,t). ,.,.., 
In general, the Hamiltonian will be time-dependent. The equations of motion" 

are given by 

. ~H , = dl' "" N 

(3.2) . 'OH 
f :: ---
N O'\-

These equations are a special case of (2.5), in that the functions F appearing 

there can be written in terms of the derivatives of the scalar H. This is 

a strong restriction on the form of the functions F, and gives rise to numerous 
N 

properties of Hamiltonian systems which are not shared by more general sets 

of differential equations. In view of these properties, flow fields F which ,.., 

have the form of the right hand side in (3.2) are called Hamiltonian flows. 

It is customary to derive the Hamiltonian equations of motion (3.2) by 

proceeding from a Lagrangian through the Legendre transformation. Here they 

have simply been posited, in effect as a definition of a special case of 

systems of first order differe~tial equations. This has been done for several 

reasons. First, it is assumed that the customary procedure is familiar. 

Next, we wish here to emphasize the connection between Hamiltonian mechanics 

, '\ 
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and the theory of ordinary differential equations, as outlined in the last 

section. And finally, we want to play down the interpretation of the q's 

as physical coordinates and the p's as physical momenta, since canonical 

transformations will in general mix the q's and p's in such a way as to make 

this interpretation no longer valid. 

It is often convenient to employ the symbol z for a point in phase space, 
'" 

instead of the more usual (q,p). Not only does this notation treat the q's 
'" '" 

and p's on an equal footing, thereby giving rise to more compact formulas, 

but it also clarifies the connection with the theory presented in section 2. 

Nevertheless, the usual (q,p) notation is sometimes more transparent, and in 
,.. N 

this paper we shall use the two notations interchangeably. In this section, 

we will present the standard theorems of Hamiltonian mechanics in both the 

(q,p) notation and the z notation. 
"'N ,.. 

We begin with the equations of motion, (3.2). To rewrite these in the 

z notation, it is convenient to introduce a certain 2Nx2N matrix y, which 
N ~ 

is defined by its partition into four NxN matrices: 

o I 

" = 
- - - - -1- ___ _ 

I 

-I 0 

Using the matrix y, (3.2) can be rewritten as follows: 
~ 

. 
~ -

In component form, this is 

. r 'tIi.J 
~H 

l; = 4x' .J 
';=i 

(3.3) 

(3.4a) 

(3.4b) 

3.3 
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The following properties of yare important to note. First, the components 
~ 

of yare real constants. Second, y is antisymmetric: - -- -
(3.Sa) 

And finally, ~ is orthogonal: 

= (3.Sb) 

Equations (3.2) or (3.4) are special uses of the Poisson Bracket. In 

(q,p) notation, the Poisson Bracket is defined as follows. Given any two ,.. ... 
* phase functions A(q,p,t) and B(q,p,t), the Poisson Bracket of these two 

""~ IV"" 

functions, written {A,B}, is another phase function, given by 

(3.6a) 

In z notation, the definition of the Poisson Bracket reads ,.. 

{A, B} 'dA • ~. 
~-s 

= 'i>~ 02 ... '" 

(3.6b) 

or, in component form, 

{A "~} f ()A 
¥':j 

}~ 
= o i!i oi!J (3.6c) 

i,j 
=1 

.. * By "phase function" we mean a real-valued function on phase space, which may 
depend additionally on time. For functions of physical interest, the term 
"dynamical variable" is virtually synonymous. 



.,. 

u . I 
.", 

Using the Poisson Bracket notation, the equations of motion (3.4) can be 

compactly written as follows: 

! = {~, H} 

* 

(3.7) 

The Poisson Bracket has the following important properties. For any 

phase functions A, B, C and for any real numbers A, ~ we have, first, the 

linearity of the Poisson Bracket in its two operands: 

3.5 

{AA+llB,C} = A{A,C} + ~{B,C} 

{A,AB+~C} = A{A,B} + ~{A,C} 

(3.8a) 

(3.8b) 

Next, the Poisson Bracket is anti-symmetric in its two operands: 

. {A,B} -{B,A} (3.8c) 

Finally, it obeys the Jacobi identity: 

{A,{B,C}} + {B,{C,A}} + {C,{A,B}} = 0 (3.8d) 

We now introduce an alternative notation for the Poi~son Bracket, which 

will be of great use when we discuss the development of direct canonical 

transformations in terms of their associated Lie generators. Since the Poisson 

Bracket {A,B} is linear in the second operand B~ it may be regarded as a 

linear operator, specified by A, which takes the phase function B into the 

new phase function {A,B}. We denote the operator by LA' and write 

* The properties (3.8) are exactly the pr§perties required to classify the set 
of all phase functions as a Lie algebra, with the Poisson Bracket acting as 
the Lie product. The corresponding Lie group is the group of canonical trans
formations .• 
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3.6 

(3.9a) 

(3.9b) 

The symbol L is a mnemonic for "Lie"; the L operators are elements of a Lie 

algebra. To illustrate the use of the L operators, we transcribe properties 

(3.8) into th~ alternative notation. First, the linearity property: 

L(AA+]JB) = ALA + ]JLB 

LA(AB+]JC) = ALAB + ]JLAC 

Next, anti-symmetry: 

L B = -L A 
A B 

Finally, the Jacobi identity: 

(3.l0a) 

(3.l0b) 

(3.l0c) 

(3.l0d) 

In (3.l0d) the square brackets represent the usual commutator of two linear 

operators. 

We now recall some facts about canonical transformations, and develop 

upon them. A coordinate transformation of the form 

q' 
N 

q'(q,p,t) 
#'fI IV,...,· 

(3.11) 

is said to be a canonical transformation, by definition, if the following 

relations hold: 

{qi,qjJ 
{qi,Pj} (i,j .. 1, ••• ,N). (3.12) 
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This definition is transcribed into z notation as follows. The transformation -
z' = ~'(~,t) (3.13) 

is {;anonica1 if 

{z!,z!} = Yij 
(i,j 1, ... ,2N) (3.14a) 

l. J 

i. e. , if 

t ';} i!; 
yl(.( 

4) ~/. 
Yij - .:::...!:..L :-

di!", ale. (3.l4b) 
1<;1 
.. 1 

Canonical transformations have the following properties. First, the 

Jacobian of a canonical transformation is unity: 

= 1 (3.15) 

This fact is of use in transforming density functions in phase space to a new 

set of canonical coordinates,since it implies dz = dz'. It also means that 
.., N 

every canonical transformation has an inverse. Concerning the inverse we have 

* another property: the inverse of a canonical transformation is also a canonical 

transformation, i.e. if (3.14b) holds, then we have 

f = (3.16) 

1(,1 
=1. 

* This property and the next one are required in the proof that the set of 
canonical transformations forms a group. 



Finally, we have the important property that the product of two canonical 

·transformations is ·another canonical transformation. That is, if z -+ z' - -
and z' -+ z" are canonical transformations, then so is z -+ z". N - _ 

Canonical transformations and the Poisson Bracket operation are closely 

connected. We note here one important relation between the two, namely, the 

invariance of the Poisson Bracket with respect to canonical transformations. 

By this we mean that if z -+ z' 
N ,.. 

is a canonical transformation, then 

3.8 

= (3.17) 

Thus the value of a Poisson Bracket expression is independent of the set of 

canonical variables which are used to compute the derivatives appearing therein. 

The importance of canonical transformations lies in the following theorem. 

We consider a Hamiltonian H(z,t), and a possibly time-dependent coordinate 
'" 

transformation z -+ z'. ,., Due to the time evolution of the coordinates z engendered 
'" 

by H(z,t) through the equations (3.4), there will be a corresponding time 
N 

evolution of the new coordinates z'. The theorem in question states that there 
"" 

will exist a function K(z',t) such that ... 

. , 
Ii! L :: (3.18) 

* if and only if the transformation z -+ z' is canonical. In other words, 
IV '" 

it is only under canonical transformations that the form of the Hamiltonian 

* Strictly speaking, for this theorem to be true as stated, the definition of 
canonical transformation (3.14) should be modified by replacing Yi , on the 
right hand side by CYij , where c is any non-zero constant. See references 7 and 8. 
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~quations of motion is preserved. 

Although this theorem ensures the existence of a new Hamiltonian K under 

a canonical transformation, it does not say how to find the functional form 

of K, given H and the transformation in question. In the special case of a 

time-independent transformation, however, the answer is simple: the old and 

new Hamiltonians are numerically equal, i.e. 

K(z',t) = K(z'(z),t) = H(z,t) 
IV ,., #II -.J 

(3.19) 

The case of a time-dependent transformation will be postponed for a moment. 

Consider now the question of how to generate canonical transformations, 
I 

which are so important in Hamiltonian mechanics. The standard method is to 

use mixed-variable generating functions, as we shall call them in this paper. 

Th ZN f h f . 10 1 h h h 11 1 ere are types 0 t ese unct10ns, a t oug we s a concentrate on on y 

11 one type, the one called F2 by Goldstein. This generating function is a 

function S(q,p',t) of the old coordinates and new momenta, and possibly the time, 
IV '" 

and it generates a canonical transformation via the prescription 

.)$ 
f ::. a'l. .... 

N 

(3.20) 

q: as 
::. -

N '0 'P' ..., 

• Note that the relations (3.20) ,express the old momenta and the new coordinates 

as functions of the new momenta and old coordinates. When the relations 

(3.20) are solved so as to express new variables strictly in terms of old 

variables, as in (3.11), or vice versa, then the result is always a canonical 
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transformation. 

We give here a very simple example of a mixed variable generating function, 

namely 

S(q,p') q.p' (3.21) - .., 

It is trivial to show that this function generates the identity transformation. 

If the canonical transformation generated by (3.20) is time-dependent, it 

is possible to express the new Hamiltonian K(q',p' ,t) in terms of the old 
'" '" 

Hamiltonian H(q,p,t) and the generating function S. The relation is 
'" N 

(3.22) 

Note that old and new variables are mixed throughout this expression. This 

formula generalizes (3.19) to the case of time-dependent transformations. 

We have called the function S appearing in (3.20) a "mixed variable" 

generating function, because it mixes old and new variables. This terminology 

is not standard, but is used here to distinguish this type of generating 

functions from Lie generating functions, to which we devote a later section 

of this paper. 

We turn now to a discussion of Hamilton-Jacobi theory.12 In this paper 

it will never be necessary to solve the Hamilton-Jacobi equation, because the 

) 
required solutions will either be obvious from inspection or else they will 

be standard and well-known. Nevertheless, from the standpoint of understanding 

the basic principles involved in our presentation of perturbation theory, 

Hamilton-Jacobi theory is very helpful. Therefore the following material, 

if not already familiar, can be regarded as primarily of enrichment value. 
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In section 2 we discussed the idea that a system of differential equations 

could be solved by finding a coordinate transformation, such as (2.8) or 

(2.9), in which the new coordinates are all constants in time. In the context 

of Hamiltonian mechanics the same idea can be employed, although now the 

coordinate transformation must be a canonical transformation. It is in fact 

always possible, at least formally, to find a canonical transformation (q,p) + 

(q',p') in which the old variables evolve according to some given Hamiltonian - '" 
H(q,p,t) and in which the new variables are all constants. The mixed variable 

generating function S(q,p',t) for this canonical transformation satisfies a 

certain partial differential equation, the Hamilton-Jacobi equation: 

d£ 
04: = 0 (3.23) 

The canonical transformation generated by S gives, for the new Hamiltonian K, 

(3.24 ) 

From this it follows that the new variables (q',p') are all constants in time. 

The generating function S which satisfies (3.23) is called "Hamilton's Principal 

Function". 

In the case of Hamiltonians H(q,p) which are independent of time there ,... ... 
is a slight modification of the procedure outlined above which is often useful. 

) 
Instead of seeking a transformation (q,p) + (q',p') such that the new Hamiltonian 

Itw IItI N IV 

K vanishes, one seeks a transformation such that the new Hamiltonian K depends 

only on the new generalized mo~enta, and is independent of the new generalized 

coordinates: 

K=K(p') (3.25) -
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This form for K ensures that the new generalized momenta p' are constants of ,..., 

the motion, and that the new generalized coordinates q' evolve linearly in time: 

'OK t 
dr' 

,oJ 

T ,\-' (0) 
/oJ 

(3.26) 

The generating function l.J(q,p ') for this transformation is called "Hamilton I s 
,.. "" 

Characteristic Function", and it satisfies 

= (3.27) 

The relationship between (3.27) and (3.23) is very similar to the relationship 

between the time-independent and time-dependent SchrBdinger equations, respec-

tively. For this reason we will call (3.27) the time-independent Hamilton-

Jacobi equation, although this terminology seems not to be standard. 

Since the new momenta p' are constants of the motion, any functions of. the 

p' will also be constants. Therefore there is great arbitrariness in the choice 

of the p', since any invertible functions p" = p"(p') can serve equally 
AI 

... ,... ... 
well as new momenta. This arbitrariness is reflected in the fact that the 

functional form of the new Hamiltonian K(p') in (3.27) is unspecified. One ,... 

can, in fact, choose this functional form virtually at will. One possible 

choice is to let K be equal to one of the new momenta, say pi. 

For periodic or multiply periodic systems, however, it is common to choose 

the new momenta p' to be the so~called action variables J. The action variables 

are defined by 

AI ~ 

::r:. 
& = 

, 
2rr (3.28) 
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where the (qi,Pi) are one pair of original coordinates in H(~'f). In order 

that the J
i 

given by (3.28) be constants of the motion, it is necessary that 

the Hamilton-Jacobi equation (3.27) be separable in the coordinates (q,p). 
,... '" 

In practice, this does not constitute a restriction on the use of action 

variables J as new momenta, because the Hamilton-Jacobi equation is only 
,y 

3.13 

solvable in the case that it is separable. Since the new momenta are specified 

by (3.28), the functional form of K = K(J) will also be specified. This .... 

specification will be unique unless there is more than one set of coordinates 

(q,p) in which the Hamilton-Jacobi equation is separable. 
N 

The new generalized coordinates q' which are conjugate to J are called 
~ ~ 

angle variables, and are denoted by 9. Thus the coordinate transformation ,... 

generated by W(q,J), the solution to (3.27), takes the form (q,p) + (e,J). 
~~ ~~ 

The new variables are co11edtively called "action-angle variables". 

We will now give, without a detailed derivation, the action-angle trans-

formation for the harmonic oscillator. This is done partly to illustrate 

some features of Hamilton-Jacobi theory, and partly because the harmonic 

oscillator will enter into examples later on. We begin with the harmonic 

oscillator Hamiltonian in the form 

H(q,p) I ( 2 + 2 2) 2" p w q (3.29) 

The action variable J for this system is 

:J= = 
(3.30) 
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Hence, the new Hamiltonian has the form 

K 1: wJ (3.31) 

Then, the time-independent Hamilton-Jacobi equation for the generating function 

W(q,J) reads as follows: 

= (3.32) 

Finally, the solution W to this equation yields the following canonical 

transformation, the action-angle transformation: 

~= [if' Sin e 
(3.33) 

Evidently, solving the Hamilton-Jacobi equation (3.23) or its time-inde-

pendent form (3.27) is equivalent to solving the original set of equations, 

(3.2). In practice, however, the Hamilton-Jacobi equation can be solved only 

in those cases where the original system (3.2) can be solved. Nevertheless, 

this does not mean that the Hamilton-Jacobi equation is useless, as will be 

shown in later sections. 
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4. An Overview of Non-Hamiltonian Perturbation Theory 

There are very few dynamical systems in classical mechanics which can 

be solved in closed form in terms of well-known functions. Therefore for 

most problems it is necessary to develop the solution as some kind of 

infinite series, of which several types will be investigated here. 

In this section we will discuss systems of ordinary differential equations 

without reference to Hamiltonian mechanics. Although the thrust of this 

paper is directed at Hamiltonian systems, there are several reasons to 

include the more general case in the discussion. First, there are many 

examples in the literature of perturbation methods applied to systems of 

differential equations, without using any Hamiltonian formalism. Often 

these systems are, in fact, derivable from a Hamiltonian, i.e. they represent 

Hamiltonian flows in phase space, but the authors have simply chosen not 

to use Hamiltonian methods. And sometimes the equations cannot be derived 

from a Hamiltonian. Second, a treatment of general systems helps clarify 

some of the steps taken in Hamiltonian systems, such as the introduction 

of action-angle variables. And third, a general system of differential 

equations is, after all, more general than the special case of Hamiltonian 

systems. 

We begin this section with a discussion of infinite series developed 

in powers of time, and point out the drawbacks of such a development. 

Then we turn to power series in a small parameter E, describing an. expansion 

about a solvable problem. We discuss at length the desirability of sub-

jecting systems of differential equations to a preparatory transformation, 

analogous to an action-angle transformation in Hamiltonian mechanics, before 
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performing any perturbation expansions. This transformation is illustrated 

by the example of the pendulum. Next we describe the method of successive 

approximations, and actually carry it out for the pendulum system. We 

discuss in detail a short-cut through the method of successive approximations, 

called the method of averaging, which is frequently used in practice. Finally, 

we discuss secular terms and their significance. 

Let us consider solving a set of differential equations by developing 

a power series in time. We begin with (2.5), which we reproduce here: 

(4.1) 

This equation can be differentiated with respect to time, and by substituting 

(4.1) into the result, we can obtain ~ as a function of ~ and t only: 

.. 
'i!i .. 

= 
'dF.' 
~t 

+ t 
jd. 

t (4.2) 

Repeating this process, the third derivative z can similarly be expressed .... 

as a function of z and t only: .. 

,)'I.F,. t,( (J F'. GI Fi 
2 FJ "F .... J ii!:. '" + ~ + • ~iZ. "dr ?Zj ~zjDi 

t(F, "4F'J ,,'r,' + Fj Fk ?'F,. ) (4.3) + 
olK 'alJ ~Xk 

=i 



i' 

., 
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Clearly, this process can be continued to any order, and hence the derivatives 

dnz/dtn for all n can be expressed as functions of ~ and t. 

If we are now giv~n some initial conditions, say ~ = ~o at t = to' then 

equations (4.1) to (4.3) and their generalizations allow us to compute ~(tO)' 

g(tO)' etc., and hence to develop z(t) in powers of t-tO: 

(4.4) 

Thus we have a solution of the original set of differential equations 

(4.1) for some time interval centered around t = to. 

In practice, the solution (4.4) is not completely useless, but it is 

a last resort. Even in cases where (4.4) has a large circle of convergence, 

its practical computational value is almost always restricted to very short 

time intervals. It is possible to use (4.4) and a large number of short 

time intervals to span a large time interval, and this is in fact what is 

done, with various modifications in the name of efficiency, in almost 

every algorithm for the numerical integration of differential equations. 

But the fact remains that developments such as (4.4) are best suited for 

the production of tables of numbers, and not for gaining analytic insight 

into the true solution. 

In theoretical applications, power series developments such as (4.4) are 

sometimes very useful. For example, if a power series converges on some 

interval, then it uniquely defines an analytic function. Thus power series 

are useful in existence and uniqueness proofs. In this paper, we will use 

an expansion almost identical to (4.4) in our development of direct canonical 

transformations, and it is for this reason that we have discussed series 
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solutions of this type. 

For many physical systems it is possible to develop other forms of 

infinite expansions which offer great improvements over the form (4.4). 

These are physical systems which are "close", in some sense, to a system 

which is solvable in closed form. The differential equations representing 

such systems will generally have the form 

. 
z F(z,t,€) - .. (4.5) 

where € is a small parameter, and where the system 

z = F(z,t,O) 
AI ,. N 

(4.6) 

is solvable. Systems which cannot be put into the form (4.5) are usually 

relegated to numerical study. 

For the remainder of this section we will restrict the form (4'.5) jn 

spveral important ways. First, we assume that the flow functions Fare -
independent of time, i.e. that the ~ystem of differential equations is 

autonomous. Next, we make the mild assumption that F can be expanded in a 
IV 

power series in €, which we write as follows: 

= (4.7) 

The term Eo taken alone generates the unperturbed trajectories, for which 

we assume the solution i.s known. Finally, we assume that the unperturbed 

motion is periodic. This is the most important assumption we make. 

We impose these restrict;on~ becaw5e onr mAin purpose in discussine 

non-Hamiltonian perturbation theory is illustrative. In spite of these 

restrictions~ however, the class of systems we shall study in the re~ainder 

4.4 
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of this section is very common in practice, and many important features of 

perturbation theory are illustrated by it. Certain generalizations, such as 

to systems whose unperturbed-motion is multiply periodic (e.g. the solar system), 

1 t ' 1 t ff t F h f h d h I' 14 are re a 1ve y easy 0 e ec. or t ese we re er t e rea er to t e 1terature, 

13 
It is useful to form a geometrical picture, due to Kruskal, of the class 

of systems we shall be studying, We denote the dimensionality of phase space 

by D, so that z is a D-vector. Since we are assuming that the unoerturbed 
N 

motion is periodic, the unperturbed trajectories will be closed loops, one 

of which passes through every point of phase space. It is easy to see that 

it will take D-l quantities to specify an unperturbed loop, and one quantity 

to specify a point on a pRrttcular loop. The latter quantity can be ~hosen 

to be an angle-ltke variable with perioo 21T; this quantity evolvps monotonically 

in time IInder the a~tion of the unperturbed system. The D-l qUAntities which 

identify a particular loop are ;Ill constants of the unperturbed motion. We 

do not aSSlme .that the motion around the loops is uniform, in any sense~ 

or that the period of the motion is the same from one loop to another. 

When carrying out a perturbation expansion it is best to use a set of 

coordinates which is "natural" to the unperturbed system. For the class of 

systems we are considering here, the natural set of coordinates is descriptive 

in a rather obvious way of the unperturbed loops, We denote some choice 

of the D-l quantities which identify the unperturbed loops by y, which is a .... 
(D-l)-vector, In addition, we denote the angle-like variable specifying 

. .. a position on a particular loop by e. Altoeether~ the unperturbed loops 

allow us to define a certain coordinate transformation, z + (y,8), which ... ... 
prepares the system of differential equations for a perturbation analysis, 

We will call this transformation the "preparatory transformation"; in 
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Hamiltonian mechanics, its analog is the action-angle transformation for 

the unperturbed system. 

When the preparatory transformation isap~lied to the system (4.7), 

* the equations of motion take on the follbwing form: 

. 
e = 

€ ~I(~,e) + eZ §2.(~Je) -t •. , 

~o(~) + ~ ~I(~,e) + €2 ~~(~,e) -t ... 
} (4.8) 

Here the functions 9
1
,2

2
, etc., are (D-l)-vectors. Note that there is no 

term 2
0

, since the D-l quant'ities ! are all constants of the unperturbed 

motion. In terms of the variables (Yt6), the unperturbed motion consists ,... 

of an evolution in 6 only. Later we shall give an example of the preparatory 

transformation; for the time being we simply note that it can be obtained 

in closed form, since the. unperturbed system is assumed to be solvable. 

Now. we consider, on general topological grounds, the effects of the 

perturbing terms gl' ~l' etc., in (4.8). Generally, there are two possibilities. 

It may happen that the perturbing terms will distort and change the frequency 

of the unperturbed loops, but will not break them. That is, it may happen 

that the true perturbed motion is periodic like the unperturbed motion. 

This is shown schematically as Case A in Fig. 2. Alternatively, the perturbing 

terms may break the loops, converting them ihto helices. In this case one 

has "drifts", since one can consider the true, perturbed motion as consisting 

of a slow drift of the unperturbed loops through phase space. This case is 

shown as case B in Fig. 2. 

* In general, the term in ¢o will depend on e as well as ~, but this dependence 

can always be transformed away. See Ref. 13. 
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FIG. 2. THE EFFECTS OF PERTURBATIONS 

ON PERIODIC MOTION. 

Let us now take an example of a system of the type described above and 

subject it to a preparatory transformation of the form z + (y,6). We choose ,.. ,., 

for our example the pendulum, first, because it is a simple example of a 

4.7 

non-linear oscillator, and second, because it has remarkably wide applications. 

We set up the pendulum problem as follows. Fig. 3 defines the variable x, 

which is the angle the pendulum sh~ft, a~sumed to be massless, makes 

with its lower equilibrium position. Letting m, Rand g represent 

the mass of the pendulum bpb, the length of the shaft and the 

acceleration of gravity, respectively, we can immediately write 

down the kinetic and potential energies of the system: 
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FIG. 3. PENDULUM VARIABLES. 

v( x) = } 
(4 • 9) 

T= .L R'2.~2 1M 

By using, for example, the Euler-Lagrange equations, we get for the 

equation of motion 

where 

i = - w! sin !X. 

w - rr' 
o -1~ 

is the frequency of small oscillations. 

(4.10) 

(4 .11) 

Equation (4.10) can be brought into the form (4.7) as follows. 
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. 
First we define v = x, in order to transform (4.10)into a coupled set of 

first order differential equations: 

. 1 "","\/, 

if :: - w! si" 11: (4.12) 

Next, we choose to consider only small oscillations, and to treat the effects 

of finite amplitude as a perturbation. (We exclude the case of amplitudes 

which are so large that the pendulum swings over the top.) To do this, we 

consider x to be a small quantity, and expand OUY the sin function in powers 

of x: 

. 
'If .. fAl! ( ~ - 1;- X'3 + -L- ~s _ ... ) 

12.0 
} (4.13) 

Finally, we artificially introduce a parameter £ into (4.13), in order to 

remind ourselves which quantities are to be considered small. We do this in 

the following way: 

i I: V 

• 2 } (4.14) 
"II = - "'0" 

2 
Evidently, every power of £ corresponds to two powers of x, i.e. £= O(x ). 

Since £ is just a formal device for keeping track of the relative magnitude 

of terms, it can be set to unity at the completion of a perturbation expan-

sion. Such an artificial introduction of a smallness parameter is common in. 

perturbation theory. 

The system (4.14) is now in the form indicated by (4.7). The vector z 
~ 
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FIG. 4. UNPERTURBED TRAJECTORIES FOR SYSTEM (4.14). 

corresponds to the components (x ,v); phase space is 2-dirnensional. 

We next want to consider the transformation of the system (4.l4)into the form 

indicated by (4.8). To do this, we first require a proof that the unperturbed 

system is periodic. 

This proof is easy. The unperturbed system is a harmonic oscillator: 

The general solution to this is 

'l! = A $ ~I'\. (wo i -\- ¢) 

'If = Wo A co's (w,,-t. ~ 4» 
} 

(4.15 ) 

(4.16) 

4.10 

where A (the amplitude) and ~ (the initial phase) are constants of integration. 

The unperturbed motion is certainly periodic, and the loop~ in phase space 
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which represent the unperturbed trajectories are ellipses centered about the 

origin, as shown in Fig. 4. A given trajectory in phase space, i.e. a given 

ellipse, is specified by the quantity A, and the quantity wot+~ specifies the 

location of a phase point on that trajectory. 

We now consider the transformation ~ = (x,v) + (y ,a) • 
IV 

Since z is 2-dimen-
'" 

sional, the vector y will be I-dimensional, i.e. a scalar. According to the 
IV 

discussion above, the quantity y must specify the unperturbed loop, and a 

must specify the position along that loop. From the solution developed for 

4.11 

the unperturbed system in the previous paragraph, it should be more than evident 

* that we want to identify y with the amplitude A and a with the quantity 

wot+~o' Accordingly, we take as our transformation (x,v) + (A,a) the following: 

When this is substituted into (4.]4) there results the following system: 

. 
A. = 

e = € .. 1, 4/1 
- c..>o f'\ SIn t1 

" 

- L w! A,'i -Sit\,S e C:O~e ..... '} 
1'20 

(;t "', "e + -- 000 A SIlt 
\~o 

Clearly, (4.18) is in the form indicated by (4.8), as required. 

(4.17) 

(4.l8a) 

(4.l8b) 

Let us now consider an actual perturbative solution to a system such as 

(4.8). In so doing, it is not our purpose to present a complete perturb::ltion 

theory, frep of pitfalls, for periodic systems of differential equations. Such 

theories exist; they are associ'ated especially with the names Krylov, Bogoliubov, 15 

Mitropolski,16 and Kruskal. 13 Instead, we want to develop a rather naive 

perturhatlon method, which will illustrate certain typical qUAlitative results 

* Actually, any function of the amplitude A would serve equally \VeIl. C.f. the 

action~angle transformation, (3.33), where the action J = wA2/2. 
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and give us a quantitative basis with which to compare further work. We will 

begin with the specific example of the pendulum. 

Let us return to (4.18), where we left the pendulum problem. It simplifies 

later work to expand the trigonometric functions appearing there in terms of 

multiple angles, i.e. a Fourier series, and having done so we obtain 

. 
A = 

_~ W!AS'(SSiI\,29 - 4 SiK49 -+ silt "9) + 0(,,3) 
3840 

.5- c.JoAt (3 - 4 (.t)s2.Q + eos4e) 
.. e 

;- £- c.JoA'" (1.0- i5 C.os-ze +(., cos48 - cos be) + O(E
3

) 

3840 

(4.l9a) 

(4.l9b) 

2 
It will be observed that the 0(£ ) terms are complicated. For the time being 

we will focus our attention only on the terms through 0(£), and the 0(£2) terms 

will simply be included for later reference. 

The system (4.19) possesses a sulution A(t), e(t), which we seek as a power 

series expansion in £. To do this we posit the following ansatz: 

1 (4.20) 

The subscripts on the right hand side of (4.20) represent the order of the 

terms. Note in particular that the symbols AO and eO are meant to represent 

functions of time, and not initial conditions. The expressions (4.20) are 

/ to be substituted into (4.19), all functions of (A,e) are to be expanded out 

as power series in £, and then terms are collected, order by order. When this 

is done, there results, first at order zero, the following set: 



.. 
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* At order one: 

And at order two: 

. 
A.1 = 

0 ,"-, 
t) 

~: ::. } 

.' .l. <, 
" i '"l I.) d :."; -...J " 

1 

-+ lc)o A~ ( 10 - is C.os 290 + t, Cos -\ eo - Cos "e~ 
3840 

0 v~~ ~ , 
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(4.2la) 

(4.21b) 

(4.2lc) 

Note that the system (4.21) forms a hierarchy, in which the derivatives 

of (A ,8 ) at any order are expressed purely in terms of (A ,8 ) at lower orders. 
n n n n 

Thus it is possible to solve for the functions (A ,8 ) order by order, in an 
n n 

iterative process • 

Let us carry out this solution through first order. At order zero we have 

*In this paper "order zero" will mean the term in £0, Le. the term which is 0(1). 
1 Likewise, "order one" will mean 0(£ ), etc. 
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Ao(i.) ;: Co 

So(i.) = tA>o-t + ~.1 (4.22a) 

(4.22b) 

where Co and ¢o are constants of integration. Of course, this solution is 

that of the unperturbed system, the simple harmonic oscillator. We now 

substitute (4.22) into (4.2lb) to get 

These can be immediately integrated to give 

9,(t).: 4>,- C: r 12woi -8S~l'\.1(c.lbt+<i>O)-+Sil\4(Wo{'H~J] 
,qZ L 

* 

(4.23) 

(4.24) 

where C
l 

and ¢l are new constants of integration. Evidently, this process 

can be carried to any order; for example, to get the· second order solutions, 

we would substitute (4.24) and (4.22) into (4.2lc) and then integrate. Due 

to the substitution of lower order solutions into higher order equations, 

the procedure outlined here is sometimes called "the method of successive 

approximations." 

We have in equations (4.24) ,a quantitative expression of the first order 

effects of finite amplitude in the pendulum. Let Us examine these equations 

* It can be shown that all the constants which appear in this order-by-order 
integration are dependent on only two constants, as required by the original 
system (4.19). 
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to see what they imply physically. 

First we look at the expression for AI. The term C
l 

will combine with the 

term Co in (4.22a)to give CO+EC
I

, which we may call C', another constant. 

The only other terms in (4.24a) are oscillatory in time. Therefore, through 

first order, we can write, for the time evolution of the quantity A, 

A(t) 
2 = C' + E(oscillatory terms) + O(E ) 

We see that the effect of the perturbation on the quantity A, which is a 

(4.25) 

constant of the unperturbed motion, is simply to introduce small amplitude 

oscillations, and that the time average of the amplitude A is a constant 

even in the presence of the perturbation. This tells us that the pendulum 

system is of the type called Case .A in Fig. 2. 

Actually, on physical grounds, we can expect the pendulum to be of the 

Case A type, without doing any mathematics. Even for finite amplitudes, the 

pendulum system is periodic, because it swings between two turning points. 

This means that the true trajectories in phase space must be closed loops, 

and hence the quantity A, which is defined in terms of the unperturbed loops, 

can never deviate very far from its unperturbed value. In particular, the true 

trajectories cannot be inward or outward going spirals, nor can they be 

loops which drift off. 

In fact, the periodicity of the pendulum system, even for finite amplitudes, 

is a reflection of the fact that there is a time-independent constant of the 

. 
true motion, whose contours are th~ true trajectories in phase space. This 

constant is, of course, the energy, and it would appear naturally in a 

Hamiltonian formulation of the penduium problem. For the time being we are 

d.eliberately ignoring Hamiltonian mechanics, and as a result we have "missed" 
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the energy constant. 

We can, however, imagine a slight modification to the pendulum problem 

for which no energy constant would exist, and for which Hamiltonian mechanics 

would be useless. Suppose that the pendulum experienced a small frictional 

force, so that the swings were gradually slowing down. If we were to treat 

the frictional force as an additional perturbation, we would find that there 

would be another term in the expression for A(t), (4.25), which would represent 

a monotonic decrease in the amplitude. The trajectories in phase space of the 

true motion would be spirals slowly winding toward the origin, and we would 

have an example of the type of system called Case B in Fig. 2. 

Next, let us look at (4.24b), the equation for el(t), and interpret it. 

The constant ~l can be combined with the constant ~O to give a new constant 

~' = ~O+£~l' just as was done for the constants Co and Cl • In addition to the 

term ~l' there are oscillatory terms, similar to those in the expression for AI· 

Finally, there is a term which is linear in time. Altogether, we can write for 

the time evolution of e, 

(4.26) 

The effects of the perturbation on the quantity e are thus twofold. First, 

there are small amplitude oscillations which are introduced; their time average 

vanishes, and for the long-term qualitative behaviour of the system they are 

unimportant. Second, the angle e no longer evolves, even on the average, at 

- the frequency wo' but at a slightly reduced frequency, given by 
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(.&)0 ( i - E 
Co2. ) ,,, (4.27) 

.A 

By referring to (4.22a), we see that the true frequency w is dependent on 

, 
the amplitude A, and that large amplitude oscillations are slower than small 

ones: 

(4.28 ) 

A frequency shift of this type is often an important qualitative effect; for 

example, it implies phase mixing in an ensemble of systems. 

We have not meant to be cavalier in our dismissal of the oscillatory terms 

in (4.24). Certainly, if one wants to find the position of the system at a 
• 

particular moment in time, these terms cannot be ignored. But for many problems, 

one is not interested in oscillatory terms, but rather only in the long-term 

behaviour of the system, such as frequency shifts or drifts of loops in phase 

space. The problem of the adiabatic motion of a charged particle (the guiding 

center problem) provides a good physical picture of this point of view. Typically, 

one does not care about all the "little wiggles" in the particle's motion, but 

only about where the particle will drift to after some long period of time. 

In such cases, there is a shortcut through the method of successive approxi-

mations, as we have developed it for the pendulum problem, which leads directly 

to the long-term behaviour of a system and bypasses all the oscillatory terms, 

as well as most of the algebra. This shortcut is called "the method of 

averaging", and it is described here because of its great intuitive appeal 

and because of its frequent occurrence in the literature. 

To illustrate the method of averaging, we return to the set (4.19), and 
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look only at the terms through 0(£). The prescription we follow is to take the 

O(£) expressions and simply throwaway all oscillatory terms. The result is 

k = 0 

e = Wo ( 1 - E ~:) 1 (4.29) 

These equations contain all the essentials of the long-term behaviour of the 

pendulum system, which we discussed above, but they omit the oscillatory terms. 

Let us now look at the method of averaging in the context of the general 

system (4.8). We ignore the terms of second and higher order, and focus only 

on the first order terms, 21 (Z,e) and ~l(Z,e). As we did with the pendulum 

problem, we expand the perturbing terms 21 and ~l in a Fourier series in e, 

which we may express as follows: 
+00 

s~(~,e) r §~~ (~) illS 
= e. 

",. -co 

t in8 
(4.30) 

<p~(~, e) :: ~ift (~') e 
N ... :-.., 

Then the averaging procedure is effected by throwing away all the terms in 

the series (4.30) except the ones corresponding to n = O. The result will be 

i; :: 
} (4.31) 

. 
~ = 

We call (4.31) "the averaged equations". 

Clearly, in order to apply ~he averaging procedure it is not necessary 

to compute the Fourier coefficients G
l 

(y), 'I (y) for n # 0; only the n=O 
'" n .... n AI 

coefficients are needed. These coefficients are given by 
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2'ft'" 

S .. (~) = ; ... f §. (~.9) ole 
o 

(4.32) 

,p .. (~) = d" C,pJ ~>e) cl.S 
o 

• 
It is evident that the left hand sides of these equations are the average 

with respect to 8 of the perturbing terms, and it is due to this circumstance 

that th,e method of averaging derives its name. 

The averaging operation, which is equivalent to the selection of the n=O 

Fourier coefficient, is of such frequent occurrence in this kind of work that 

we present here a special notation for it. Given any function f(8), we define 

the averaged function, f, as follows: 

~ = 

Z'7t' -' I !(6) de 'Z1t' 
o 

(4.33) 

The averaged function f is independent of 8. Note that the averaging operator, 

which we are denoting by an overbar, is a linear operator. It is also frequently 

convenient to have a notation for the complementary linear operator, which 

selects out the purely oscillatory terms. We denote this operator with an 

over-tilde, and define it by 

= ;'(e) -;. (4.34 ) 

In terms of this new notation, 1Ye can rewrite the averaged equations (4 .. 31) 

as follows: 

. 
~ ;: 
N 

(4.35) 
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Geometrically speaking, the first D-I of the averaged equations (4.35) 

represent the drift~ or distortions of the ph8se space loops in an approximate 

sense, thE' approximation involved being t.he neglect of small amplitude oscillations. 

And the last of the averaged equations (4.35), t~e one in S, gives the average 

rate of rotation around these loops, in the same approximation. 

The intuitive appeal of the method of averaging comes from the fact that 

if one simply neglects all the oscillatory terms in the perturbing functions, 

then the resulting equations give the correct time evolution, apart from 

oscillatory terms, at least to first order in e:. We have shown this property 

explicitly in the case of the pendulum system, but it holds for the general 

system (4.8) and (4.35) as well. It is on the basis of this intuitive appeal 

that the method of averaging is frequently used in the literature, without 

rigorous justification. 

Lest the method appear too obvious, however, we note the important fact 

that the method of averaging, as we have presented it, does not in general 

work beyond first order. That is, if one takes the original system (4.8), 

2 and averages both the O(e:) and O(e: ) terms, the resulting set of averaged 

equations will not correctly describe the averaged time evolution through 

2 
O(e:). Another way of stating this is to say that the process of averaging 

and that of solving for the time evolution only commute through first order. 

Let us now return to the pendulum problem as an example of the method 

. of successive approximations, and consider the solution to second order. 
, 

To effect this solution we must take (4.2Ic), substitute into it the expressions 

(4.22) and (4.24), and then integrate. A simple inspection of these 

equations immediately shows one important characteristic of the second order 
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results: they are very complicated. This complexity is reason in itself 

for finding a better method of effecting perturbation expansions than the method 

of successive approximations. As we shall see, there is a better method, at 

least for Hamiltonian systems; it is ,the Lie transform method . 
.-

For the time being, however, we want to focus on certain features of the 

second order terms without going through all the mathematical details. We 
. 

consider the expression for AZ in (4.Zlc), and concentrate on the terms 

involving 8
1

. From (4.Z4b) we see that 6
1 

contains terms proportional to time, 

. 
and thus A

Z 
will contain terpls proportional to 

and others similar to it. When these are integrated, there will result terms 

like 

Such terms are called secular terms, meaning that they are unbounded in time, 

and their appearance at second order constitutes a major shortcoming of 

the method of successive approximations. 

To see why secular terms are a problem, let us write out, schematically; 

Z 
the solution A(t) through O(e: ), as we did above ,in (4.Z5) through O(e:). We 

will have 

A(t) AO + e:(os~illatory terms) 
,'-. 

e:Z(bscillatory terms) + 

.,,~ ;. + 
Z 
t(oscillatory terms) + 0(e:

3
) (4.38) e: 
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Taken at face value, the secular terms at 0(£2) seem to say that the true 

trajectory in phase space experiences perturbative distortions, taking it away 

from the unperturbed trajectory, which grow in time until there is a total 

disruption of any resemblance to the unperturbed trajectory. And yet we 

argued above on physical grounds, appealing to conservation of energy for both 

the unperturbed and perturbed systems, that the function A(t) could never 

evolve very far from AO' its constant, unperturbed value. Hence we seem to have 

a paradox. 

'The resolution to the paradox is that (4.38) is good only for limited 

* amounts of time. In particular, as soon as times t have been reached which 

are 0(1/£), then the 0(£2) secular terms in (4.38) become comparable in 

magnitude to the 0(£) terms, and the entire series expansion in £ becomes 

computationally useless. On the other hand, if series can be developed which 

are free from secular terms, then the £ ordering is good for all times, no 

matter how large. 

The Hamiltonian methods which we describe in following sections allow 

for the easy development of series which are free from secular terms at 

all orders. Our purpose here has been to demonstrate how secular terms may 

arise in some perturbation approaches, and why they are a problem. Therefore 

we will not dwell on means of getting rid of them in a non-Hamiltonian theory. 

* 2 When we write A(t) = AO + £A
1

(t) + 0(£ ), we mean that there exists some 

number M } 0 such that, 

l AL-I:) - 1\. - £~I 
' E:.~ < M 

In general, the quantity M will depend on the value of t chosen. If we say 

that the ordering is uniform, we mean that there exists some M = MO good for all 

values of t, or, what is the same thing, that the function M(t) is bounded. The 

ordering (4.38) is, by these definitions, not uniform in the £2 terms. 
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This concludes our discussion of non-Hamiltonian perturbation theory. 

The ideas outlined in this section were largely developed by astronomers 

during the eighteenth and nineteenth centuries. Newton used what is essentially 

the method of averaging in his study of the effects of solar perturbations 

,,' on the moon's orbit, and he obtained expressions for the average rate of 

drift of the line of nodes of the moon's orbit along the ecliptic. A precise 

calculation of this sort is essential for the accurate prediction of eclipses. 

The method of successive approximations was used by Lagrange and Laplace in 

their study of the celestial mechanics of the solar system. These and later 

workers were especially troubled by the appearance of secular terms, since 

they wished to determine whether the solar system is stable for indefinite 

periods of· time. This concern gave impetus to a study of means of eliminating 

1 d h f d b P · 117 h d f h secu ar terms, an suc means were oun y 01ncare at teen 0 t e 

nineteenth century. We shall study Poincare's method in the next section; 

essentially, it involves a kind of frequency renormalization. 

In addition to the problem of secular terms, there was another difficulty 

which troubled workers in celestial mechanics during the nineteenth century. 

This latter difficulty is the so-called problem of small divisors. We have 

not discussed this problem in this section, because it makes its appearance 

only when the unperturbed system is multiply periodic, a case we have not 

considered. The problem of small divisors derives essentially from the effects 

of resonances between the different oscillators of the unperturbed system. 

In recent years there has been important progress in understanding this 

problem, and in connecting it with studies in statistical mechanics and other 

fields. 



/\ "'1 , , . n 
J 

';,5 ; 6 y {,.) ,,~J t;""t~' ~~J1 ~ I' " 
j • 

5.1 

5. Hpmiltonian Perturbation Theory: Traditional Methods 

Hamiltonian systems deserve special attention, both from a physical and 

from a mathematical point of view. Hamiltonian flows in phase space are 

associated with ilremarkable structure of mathematical properties, some of 

which were discussed in section 3. Physically speaking, Hamiltonian systems 

are in some sense fundamental, even though not every dynamical system can 

be represented by a Hamiltonian. For example, one aspect of the fundamental 

nature of Hamiltonian systems is that only such systems can be quantized. 

From the point ,of view of practical perturbation calculations, Hamiltonian 

systems offer the important advantage that the equations of motion are 

contained,implicitly in the Hamiltonian, which is a scalar function. This is 

in contrast to generaL systems of differentia,l equations, such as (2'.5), where 

the flow functions form a D-vector in a D-dimensional phase space. Hence, 

roughly speaking, manipulations on a Hamiltonian system will involve D times 

less labor than equivalent manipulations on an explicit set of differential 

equations. (For a Hamiltonian system of N degrees of freedom, D = 2N.) 

In addition, variable transformations in Hamiltonian mechanics, Le. 

canonical transformations, are specified by a scalar function, which is the 

generating function. This may be the mixed variable generating function; 

discussed 'in section 3, or it may be the Lie generating function, to be 

discussed in a later section. For a general system of differential equations, 

a coordinate transformation must be explicitly specified, in the form 

of a vector-valued function. 

We begin this section by discussing the preparatory transformation for 

Hamiltonian systems, and we relate this transformation to Hamilton-Jacobi 
I • 
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theory. Next we consider the method of averaging for several different classes 

of Hamiltonian systems. The method of averaging and Hamilton-Jacobi theory 

are then used to motivate the method of Poincar~ and Von Zeipel, which is 

discussed at length. Finally, we point out some of the drawbacks of the 

Poincar~-Von Zeipel method, and we indicate how these drawbacks are alleviated 

by the Lie transform method. 

As a starting point for our study of perturbation theory in Hamiltonian 

mechanics we consider Hamiltonians of the following form: 

(5.1) 

We assume that the system described by HO' the unperturbed system, is 

solvable in closed form. It follows that the Hamilton-Jacobi equation for 

the unperturbed system is also solvable. 

In the examples to be considered in this paper, HO will be independent 

of time. In this case, which is very common in practice, the solution to 

the time-independent Hamilton-Jacobi equation for the unperturbed system 

yields a time-independent canoriical transformation z = (q,p) ~ z' = (q',p'), 
IV .... _ N IV N 

such that HO depends on the momenta £' alone. Thus, in terms of the variables 

z' the Hamiltonian may be written' 
oJ ' 

(5.2) 

If the unperturbed system is periodic or multiply periodic, then the variables 
, 

z' may be chosen to be the action-angle variables, represented by (6,J). 
N ~ N 

Restating (5.2) in terms of action-angle variables, we have 

(5.3) 
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In (5.2) or (5.3) the momenta £' or the action variables ~, respectively, 

are constants of the unperturbed motion. 

By solving the Hamilton-Jacobi equation for the unperturbed system 

we find a set of variables, denoted by ~' in (5.2), which is "natural" to 

the unperturbed system. As a practical matter, finding the canonical 

transformation ~ + z' is the first step in any Hamiltonian perturbation 

analysis. It will be recognized that this transformation is the analog, 

for Hamiltonian systems, of the preparatory transformation discussed in 

section 4. This transformation may also be regarded in another light, 

namely as the first (order zero) step in a perturbative solution to the 

Hamilton-Jacobi equation for the full, perturbed Hamiltonian. More will 

be said about this point of view later. 

To illustrate the preparatory transformation in Hamiltonian mechanics, 

we will use the example of the pendulum, which was discussed in section 4. 

Returning to (4.9), it is a simple matter to find the Lagrangian and thence 

the Hamiltonian. Setting the moment of inertia mR
2 = 1 for convenience, 

we have 

(5.4) 

Here the symbol x stands for the generalized coordinate q. As we did in 

section 4, we consider small oscillations, i.e. small x, and accordingly we 

expand the cos function in powers of x. In addition, we artificially 

introduce a parameter of smallness E, exactly as we did in section 4. 

The resulting Hamiltonian is 

(5.5) 

5.3 
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In (5.5) the unperturbed Hamiltonian represents a harmonic oscillator, 

as expected. To effect the preparatory transformation we need to solve 

the Hamilton-Jacobi equation for the harmonic oscillator. This solution 

has already been given in section 3, in the form of a transformation (q,p) + 

(8,J) to action-angle variables. Using (3.33) it is simple to transform 

the Hamiltonian (5.5) so that it appears in the form indicated by (5.3). 

The result is 

(5.6) 

For future reference,.we write (5.6) in an alternate form, by expanding 

the perturbing terms in Fourier series in 8. This gives 

H(e,;r) = 

+ ~ ~ ( 1.0 - 15 Cos 2 9 + Ie <.05 49 - ~s ~ e) 
2.880 COo 

As another example of the preparatory transformation, let us consider 

the pendulum problem from an~ther point of view. Instead of considering 

small oscillations about the equilibrium position, let us consider pendulum 

motion for which the kinetic energy dominates the potential energy, i.e. 

motion consisting of high spe~d, nearly free rotations completely around 

the circle shown in Fig. 3. In this case we may consider the unperturbed 

system to consist of free rotations, and we nlay treat the effects of gravity 

as a perturbation. Then it is appropriate to ,take the eptire potential 
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energy term in (5.4) as a perturbation, and to introduce a sma11ne~s 

parameter £ as follows: 

(5.8) 

It is easy to see that the unperturbed Hamiltonian in (5.8) represents 

free rotations. 

From the point of view of the preparatory transformation, we see that 

there is no work to do on (5.8), since it is already in the form indicated 

by (5.2). The Hamiltonians (5.7) and (5.8) represent the pendulum in 

two limits, the former being the small energy limit, and the latter, 

the large energy limit. Of course, when £ = 1, the two Hamiltonians 

are numerically equal. In both these limits, the pendulum system has been 

prepared for a perturbation analysis. 

We now take up the method of averaging, which is a simple form of 

first order perturbation theory, with Hamiltonian systems. We begin by 

considering special cases,and then extend the results to more general 

cases. 

First we investigate systems of one degree of freedom, which are time-

independent and periodic in their unperturbed motion. Due to t~e periodicity 

of the unperturbed system, there exist action-angle variables (8,J) for 

the unperturbed system, and in terms of these variables the Hamiltonian takes 

the form 

H(S ,J) (5.9) 

The variables (8,J) are scalars, because the system has one degree of freedom. 
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* The pendulum system in both its limits (5.7) and (5.8) falls into this class. 

In section 4 we showed that the process of throwing away oscillatory 

terms commutes with the process of solving the differential equations, 

at least through first order. For Hamiltonian systems, the only modification 

to this rule is that we throwaway oscillatory terms, not in the equations 

of motion, but rather in the perturbing Hamiltonian HI' The result will 

be "the averaged Hamiltonian", which we denote by the symbol K. According 

to the rule, 

K(J) (5.10) 

Note that, due to the averaging, the new Hamiltonian K is independent of 

8. This means that the averaged equations of motion are trivial to solve, 

since the action J is a constant of the averaged motion. 

We will illustrate the method of averaging with the pendulum system. 

In the low energy limit, the Hamiltonian (5.7) averages into 

K ::: (5.11) 

The equations of motion generated by this Hamiltonian are 

. EJ"' 9 ": Wo 
8 (5.12) 

. 
0 :r = 

* In the large energy limit, the unperturbed system is periodic because of the 
topological properties of the x coordinate. I.e., the variable x appearing in 
(5.8) is really an angle (see Fig. 3), and has a period of 2~. The variables 
(x,p) in (5.8) are action-angle variables, and could perhaps more suggestively 
be written (8,J). 
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By using equation (3.33) the action J and the amplitude A maybe related to 

one another: 
I ,,'1 
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(5.13) 

Hence it may be seen that (5.12) and (4.29) are equivalent, and that the 

results of our non-Hamiltonian treatment are recovered. 

In the large energy limit, the Hamiltonian (5.8) averages into 

(5.14) 

In this limit, the perturbing term has no effect, at first order, on the 

averaged equations. This follows since the 0(£) term in (5.14) is a constant, 

and has no effect on the equations of motion. Later we will see that the 

perturbing term does have an effect at second order, the so-called pondero-

motive force. 

Now we take up the case of systems of N degrees of freedom, which are 

acted upon by a time-dependent perturbation. We assume that the perturbation 

is periodic in time with frequency w. The Hamiltonian for such a system, 

after the preparatory transformation has been applied, has the form 

,",olf) .. 'H,(~)f)t) + 0((1) ...... (5.15) 
,.. ... 

The assumption of periodicity allows us to expand H1 in a Fourier series 

iwt in e 

(5.16) 
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(5.17) 

As an example of such a system we may consider a particle which is free 

except for the effects of a small amplitude electrostatic wave: 

(5.18) 

This system has 3 degrees of freedom; ~, pare 3-vectors in Cartesian coordinates. 
'" 

The similarity of this example to the large energy limit of the pendulum should 

be noted. 

When a system such as (5.15) is solved by successive approximations or 

other perturbation methods, there result in the solution terms proportional 

inwt to e • If one is not interested in these oscillatory terms, one can 

average the Hamiltonian first and then solve the.equations of.motion. The 

result will be the same as the solution to the exact, i.e. unaveraged,. 

inwt Hamiltoniart, apart from oscillatory terms in e , at least through first 

orQer in E. The averaging operation in this case is defined somewhat differently 

than in (4.33); here we want to select out the n = 0 Fourier coefficient in 

(5.16), so we define the averaging operator by 

1~ 

~ J-;;Jd.t f(~'r,t) 
'2'Tt' N ... 

o 

(5.19) 

With this definition of the averaging operator, we can write the averaged 

Hamiltonian K corresponding to (5.15) as follows: 

K(q,p) (5.20) 
... ,.., 
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It is easy to see, in the example (5.18), that the average of the perturbing 

term vanishes. 

In practice"a system such as (5.15) often arises in a physical context 

in which the explicit time dependence of the Hamiltonian is in some sense 

"fast", while the implicit time dependence of the variables q,p is "slow". 

For example, (5.18) might represent a slow particle in a high frequency wave. 

Consequently, the averaging procedure we have described here is often used 

to get first order results in situations where there are two time scales. 

A slight variation on Hamiltonians such as (5.15) is the case of time-

independent Hamiltonians in which one of the (q,p) conjugate coordinate 

pairs is periodic and "fast", in comparison to the other degrees of freedom. 

In this case it would be appropriate to average with respect to the fast 

variables alone. Actually, it can be shown that this case encompasses both 

the previous two cases considered, (5.9) and (5.15). 

Finally, let us consider systems which are time-independent and mUltiply 

periodic in their unperturbed motion. Furthermo~e, let us assume that the 

different oscillators of the unperturbed system all have comparable frequencies, 

so that there are no fast and slow time scales. The solar system is a good 

example of such a dynamical system, if the perturbing terms are taken to be 

the interplanetary gravitational potentials. Such a system can be written 

in terms of action-angle variables as 

(5.21) 

In this case it is appropriate to expand the perturbing terms in a multiple 

Fourier series. For example, for HI we may write 

I-\~ (e, :r) = 
... N 

(5.22) 

\ 
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In (5.22) n is an N-vector of integers, for a Hamiltonian with N degrees of ... 
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freedom, and the sum is taken over all such vectors of integers. The averaging 

is effected by selecting the ~ = ° (by which we mean ~ = (0,0, ..• ,0» 

component in the Fourier series, as shown here for an arbitrary periodic 

function f(9): .. 
I 

f = ('2 rr)t.I (5.23) 

Then we have, for the averaged Hamiltonian K, 

K(~) (5.24) 

Note that the averaging procedure has removed the ~ dependence of the 

Hamiltonian, so that all the actions J are constants of the averaged motion. 

There are many other possibilities for the averaging process, e.g. 

systems with some fast variables and some slow, or systems with three time 

scales, etc. In each case an averaging operator is defined on the basis of 

the approximation desired, and in each case the results are good through 

first order in E. The pattern should by now be well established. 

We will now use the Hamiltonian (5.21) and its averaged correspondent 

(5.24) in order to motivate the perturbation method of Poincar~ and VonZeipel. 

We recall that the canonical transformation generated by the solution to the 

Hamilton-Jacobi equation has the property that the new Hamiltonian depends 

only on the new momenta. In' our Hamiltonian (5.24), the order zero term 

(~he unperturbed Hamiltonian) depends only on the momenta because of the 

preparatory transformation, which is derived from the solution to the 
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Hamilton-Jacobi equation for the unperturbed system. We have already noted 

that finding the preparatory transformation is equivalent to the order zero 

step in a perturbative solution to the Hamilton-Jacobi equation for the full, 

perturbed system. Now we observe, in the averaged Hamiltonian (5.24), that 

the O(£) term also depends only on the generalized momenta. This suggests 

that the method of averaging is somehow connected with the 0(£) solution of 

the Hamilton-Jacobi equation for the full, perturbed system. 

The method of averaging has so far been presented as an approximation 

scheme, in the sense that selected terms are thrown away, both in the Hamiltonian 

and in the solution. In accordance with the philosophy of the Hamilton-Jacobi 

equation, however, we ask if the results of the averaging procedure can be 

achieved by a canonical transformation. That is, we want to see if instead 

of being thrown away, the terms in question can be transformed away. If so, 

then we will have found a transformation such that the new Hamiltonian is 

independent of the generalized coordinates, and this transformation must be 

generated by a solution to the Hamilton-Jacobi equation for the full, perturbed 

system. 

The idea of eliminating the dependence of terms in the Hamiltonian on 

the generalized coordinates by means of a canonical transformation is an 

essential ingredient in the perturbation method of Poincar~ and Von Zeipel. 

We shall develop this method on systems of the form (5.21), i.e. systems 

which are time-independent and multiply periodic in their unperturbed motion. 

At the end of this developmenb, we will comment on the application of the 

I . 
roincare~Von Zeipel method to other classes of systems. 

Yollowing the idea of transforming terms away, we want to consider the 

application of a canonical transformation (8,J) + (8',J') to the Hamiltonian 
,., N ,..,. 
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(S.2l), such that the new Hamiltonian K depends only on the momenta ~'. 

Since the unperturbed Hamiltonian HO is already a function of I alone, we 

expect this canonical transformation to be the identity transformation plus 

S.12 

corrections at first and higher orders. That is, we assume that the trans for-

mation has the form 

8(8' J') = 8 .. ' + e0 (8' J') + 
,." ,., 'IV -1 IV '-

(S.2S) 
J(8' J') = J' + eJ (8' J') + 
N - ,~ ~1 N ,~ 

Here we have chosen to express the old variables (8,J) as functions of the 
N '" 

new variables (~',~')., The functions ~l' ~l' ~2' ~2' etc., of the new 

variables, are to be chosen so that the transformation is canonical and so 

that the new Hamiltonian K is independent of Q'. We will call a transfor-

mation such as (5.25) a near-identity transformation, because the order zero 

terms represent the identity transformation. 

In the perturbation method of Poincar~ and Von Zeipel, the transformation 

(S.2S) is generated by a mixed variable generating function, which we 

take to be a function of the old generalized coordinates 2 and the new generalized 

momenta J', and which we denote by F(8,J'). This generating function is 
N. - IV 

expanded in a power series in e, and the order zero term (see equation (3.21» 

is chosen so as to generate the identity transformation: 

(S.26) 

. 
Writing out the canonical transformation generated by this function, we have 

6' :: 9 + E af, (e .:r') 
ai!" ""N 

.... £z ?f'L (e :'-') -+ 
-a~' ~)N 

(S.27a) 

.:r :: :r' -+ E lli (e J"I) 
~8 N' ... + (2 dF2 (e J"') 

de -' ... + (S.27b) 
.., .... 



In terms of the undetermined functions Fl , F2 , etc., the transformation 

(5.27) is a completely general near-identity canonical transformation. 

We would now like to compare (5.25) and (5.27) in order to determine 

the functions §l':!l' etc., in terms of the derivatives of Fl , etc. This 

determination is not immediate, because (5.25) expresses the old variables 

5.13 

solely in terms of the new variables, whereas (5.27) mixes old and new variables 

on both sides of both equations. Hence it is necessary to "disentangle" 

(5.27) to express old variables purely as a function of new variables. 

The disentangling is not difficult if only carried through first order. 

Since the old and new variables are equal to one another with O(e:) corrections, 

2 
they may be freely interchanged in the 0(£) terms if errors at O(e: ) are 

being ignored. By replacing 2by ~' in the O(e:) terms and solving (5.27a) 

for the old variables as functions of the new, we have 

8 =: 8' - t: dF'. (9' :r') .... ol£z) (5.28a) ,., ,., (JJI ",) N ,.. 

J" = l" + E ~ (8' J"') + OCE') (5.28b) .... 
d~' N)", 

This can be directly compared to (5.25). 

We may now substitute (5.28) into (5.21) to determine the new 

Hamiltonian K. (Since the transformation is time-independent, the old and 

new Hamiltonians are nUmerically equal to one another. See (3.19) and 

0.22) .) Expanding the result to first order in e:, we have 

K( ~', ;r') = \t (~, l) 

= HoCl') 

+Er1(~"Q"') + 
~Ho ,~,) ~F, (§', ;r) 1 

d ::r' 'de' ,.. .. 
+ ote: t

) 
(5.29) 
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It is convenient to write the new Hamiltonian K also as a power series in £: 

K(e' J') = K (J') + £K (e' J') + £2K (e',J') + ... - ,~ 0 ~ 1 ~ '- 2 - ~ 
(5.30) 

We then collect terms in (5.29) in powers of £, and we get a hierarchy 

of equations, of which the first two are 

K. (~,) = Ho (l') (S.3la) 

K (S' ::r') H~{~/,t') 
') H. (l/) ~ VI ( ~'. I') 

::' + (S.3lb) i ... , N . 

~l' a a' .., 

We are now in a position to choose the function F
l

, and hence the functions 

~l' ~l' so as to make K independent of ~'. By examining (5.3la), we see 

that KO is (as expected) already independent of ~'. As for K
l

, we examine 

(-5.3lb), and we see that if Kl is to be independent of ~', then the term 

containing ~~~ must cancel the 2' dependence of HI. Accordingly, we break 

HI into its averaged and oscillatory parts, and write 

This suggests that we find a function Fl such that 

de' 
'" 

If such an Fl can be found, then 

This result is satisfying, because it gives for KI simply the average 

of HI' and it makes K identical to the averaged Hamiltonian shown in 

(5.24), at least through 0(£). 

(5.32) 

(5.33) 

(5.34) 
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Now we examine (5.33) to try to find a solution for Fl. It may be 

.seen that (5.33) is a first order, linear, partial differential equation 

for Fl. Appendix A summarizes the theory of such differential equations, 

and shows that (5.33) does, indeed, always have a solution. For the time 

being we can simply solve (5.33) by inspection. 

To do this, we define the vector ~o(~) as the frequency vector of the 

unperturbed oscillators, i.e. the vector 8 as determined by the unperturbed .. 
Hamiltonian HO: 

5.15 

.. 
(5.35) 

N 

For the term HI' we use the Fourier expansion (5.22), the definition of the 

averaging operator, (5.23), and the definition of the complementary operator, 

(4.34), to write 

i.n. e' e .. 'II 

Then the equation (5.33) can be written 

"0 r. (~') l') L ~o( l') · H:1.~ ( l') = 
d~' 

1J ;#: 0 

It is then easy to see that a solution Fl to (5.37) 

F. (e' :1"') = \ t 
1. ... 1... L 

'Z! :to 

(5.36) 

in.B' 
.. IV 

e (5.37) 

is given by 

(5.38) 

In (5.38) it is necessary to assume that the denominator does not vanish, 

-
which is equivalent to assuming that there are no "first-order resonances" 

among the unperturbed oscillators. 
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Through 0(£), we have accomplished what we wanted. A canonical transfor-

mation has been found, via the generator given in (5.38), which eliminates 

the 2 dependence of the Hamiltonian. In fact, the process we have just 

described for the 0(£) term can be carried to any order, and it yields 

a new Hamiltonian K which is independent of ~' to all orders. This Hamiltonian 

is often called the "averaged Hamiltonian", since it agrees with the 

results of the method of averaging at first order. In effect, the Poincar~-

Von Zeipel method allows the definition of the averaged Hamiltonian to be 

extended to arbitrary order. Corresponding to this terminology, the 

Poincare-Von Zeipel method is sometimes called the "generalized method of 

averaging", or simply "the method of averaging", without any qualification. 

Now suppose we want to find the explicit functions of time, S(t), J(t), 
. ~ N 

which are the solutions to (5.21). The first step is to find the time 

evolution of the variables 2', .z.'. This is easy, since the averaged 

Hamiltonian K depends only on the momenta ~': 

(5.39) 

This means that the momenta J' are all constants of the motion: 
N 

5-' = ,." 
= 0 (5.40) 

As for the angles S ' '" , they evolve linearly in time, with a frequency 

which we may call !II: .. 
. 

!e (~/) 
~ K (~') 

~' = = C) ~' (5.41) 

It may be observed that if w is expanded in a power series in £, then 
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the first (order zero) term is the frequency ~O' defined in (5.35) in terms 

of the unperturbed Hamiltonian: 

5.17 

W (::i') .= ... ~ (5.42) 

The explicit solutions to (5.40) and (5.41) are 

J'(t) = constant 
N 

(5.43a) 

a'(t) = w(J')t + a' 
I'll N tv "",0 (S.43b) 

where 20 is a set of initial conditions. 
, 

After we have the functions a'(t), J'(t), we can use the transformation 
,., N 

(5.28) in order to find the functions a(t), J(t). So far we have not actually .., .., 

written out the transformation equations. Rather we have simply found 

, their generating function, given by (5.38). On substituting the generating 

function into (5.28) we get the following, explicit form for the trans for-

mation: 

9:: 6' ... .. (S.44a) 

:r :: :r' 
(S.44b) 

... 

It is then trivial to substitute a'(t), J'(t) into (5.44) to get a(t), J(t). 
N N N N 

Let us carry out the Poincare-Von Zeipel perturbation. method through 

first order for the pendulum system in the low energy limit, as given by 

(5.6) or (5.7). This example has only one degree of freedom, so all the 

N-vectors appearing in the equations (5.25) to (5.44) become scalars. It 
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is a simple matter to specialize all these equations to the pendulum 

problem; let us begin with (5.31), which becomes 

Ko (:r') = wo:r' 
(5.45a) 

'I ) ~f,(9')J") 
1<,(:r',8'):: - L(3- -teos 2e'+ co~49' + Wo 

.. 48 09' (5.45b) 

.. 
We choose Fl to cancel the oscillatory part of (5.45b). This choice gives 

the following partial differential equation for F
l

: 

Wo of, ( e', :r') = 
~e' 

.::r,t ( ) - - 4 C.os 2 e' + cos 4 a' 
48 

(5.46) 

This equation corresponds to (5.37) in the general case, and upon integration 

it yields 

F1. (a') ::r') 
~'& ) 

= ---L- - (- S $in 'le' + sil'\ 4e' 
\ 92. Wo (5.47) 

For the new Hamiltonian K we have 

wo:r' - (5.48) 

which agrees with (5.11), obtained by the method of averaging. The solution 

to the equations of motion of the averaged Hamiltonian are 

J' constant 

e' = wt + e' o 
(5.49) 

where e' is a constant of integration and where w is the true frequency, o ' 
given by 

(5.50) 
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Finally, the transformation (8,J) ~ (8',J') can be explicitly dete1~ined 

using Fl and equations (S.44) or (S.28). These give 

8::: IJl - ~ ~ (- 8 S'>'l 29' + s'I'\.4e') + O(~l) q" Wo (S.Sla) 

.J= :r' -+ £ 

4B 

.:r,t ) 
- ( - 4 ~os 2.9' + (.QS 49' cuo 

+ (S.Slb) 

It is relatively straightforward to compare this work on the pendulum 

system to the results of the method of successive approximations, given 

in section 4, and to show that they are equivalent. There are important 

differences in form, however, relating to frequency renormalization and 

secular terms. These will be discussed later, after we have Lie transforms 

at our disposal. 

The essence of the perturbation method of Poincar~ and Von Zeipel is 

the use of near-identity canonical transformations, generated by mixed 

variable generating functions, to eliminate the dependence of a Hamiltonian 

on one or more variables or classes of terms. We have illustrated this 

method for systems whose unperturbed motion is multiply periodic, and shown 

how to eliminate the dependence of the Hamiltonian on the ang1es~. The 

method is flexible, however, and can be used with other classes of systems. 

For example, in the case of time-dependent systems such as (S.lS), it is 

possible to choose the transformation so that 'the new Hamiltonian K is 

independent of time. Or, with systems with some fast variables and some 

slow variables, it may be desirable to choose the transformation so that 

the dependence on the fast generalized coordinates is eliminated. All 

these goals can be achieved with the method. 

We have discussed the Poincar~-Von Zeipe1 method because it illustrates 
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many of the features of the Lie transform method in a more familiar context, 

and because it is the traditional perturbation method for Hamiltonian systems. 

We have illustrated the method only to first order, however, because to 

go to higher order would take us too far astray from our main goal, which 

is the Lie transform method. Since we have not developed higher order 

perturbations, it has not been possible to give a complete discussion of 

the problem of secular terms. Such a discussion will come later. 

Be'fore moving on to the Lie transform technique, we will point out some 

of the difficulties from which the Po{ncar~-Von Zeipel method suffers, 

difficulties which are remedied by the Lie technique. The foremost difficulty 

of the Poincare-Von Zeipel method arises from the use of mixed variable 

generating functions, and it is in this respect that the Lie method is 

characteristically different. The use of mixed variable generating functions 

means that the new and old variables must be disentangled before the new 

Hamiltonian can be found. We have succeeded above in disentangling our 

transformation to first order. To higher orders, the disentangling process 

is very complicated and laborious, and gives rise to formulas of no 

apparent symmetry or structure. A related problem is that it is frequently 

desirable to have not only the canonical transformation, such as (5.44), 

but also its inverse, and then one must either invert a power series or 

else perform the disentangling in the reverse order. In the Lie method, 

canonical transformations are generated without mixing old and new variables, 

thereby completely bypassing the disentangling process. Furthermore, in 

the Lie transform technique both the canonical transformations generated 

and their inverses are expressed in terms of Poisson,brackets, which represent 
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Lie products in the Lie algebra of the group of canonical transformations. 

This allows not only for a simple and clear relation between canonical 

transformations and their inverses, but also gives rise to a compact and 

powerful notation for expressions between variables and functions. We 

.. 
turn now to a description of the generation of canonical transformations 

with Lie generators. 
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6.1 

6. Near-Identity Canonical Transformations and Their Lie Generators 

In this section we develop formulas relating canonical transformations, 

. \ . expressed as a po~er series, to their Lie generators. We begin this section 

by establishing some notational conventions concerning functions on phase .. 
space and transformation operators on those functions. Then we prove 

an important theorem which connects Hamiltonian flows to canonical trans-

formations. Finally, we use this theorem to write canonical transformation 

operators in terms of their associated Lie operators. 

There is a certain notational problem which.arises in work with near-

identity' transformations, canonical or otherwise, which sometimes causes 

confusion. Although this problem is essentially trivial, it can, unless 

properly dealt with, consume a distracting amount of attention. Therefore 

we will discuss the problem and establish certain notational conventions 

before proceeding with the development of near-identity canonical trans-

formations. 

The source of the problem can be traced to certain ambiguous aspects 

of the notation commonly used by physicists for functions and values of 

functions. In the common parlance of physicists, the word "function", 

especially when applied to physically meaningful quantities, has a meaning 

which roughly corresponds to the name of ~ value. Consider, for example, 

the electrostatic potential ~ in 3-dimensiona1 space. If a certain point 

of space is described both by its Cartesian coordinates (x,y,z) and by 

its spherical coordinates (r,e,~), then it would be common for a physicist 

to write ~(x,y,z) = ~(r,e,~), meaning that the value of the potential is 

the same no matter how the points of space are labeled. Similarly, in 
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Hamiltonian mechanics, when we perform a time-independent canonical trans-

formation z +z' the old and new Hamiltonians are numerically equal to .. N' 

one another, and it would -be common for a physicist to write H(z) = H(z'). 
'" N 

This transformation law has the same meaning as the equality of electro-

static potentials written above. Operationally, it means the following. 

First we find the old coordinates z as functions of the new coordinates .. 
z', giving the functions z(z'). These are then substituted into H(z) to 
N ,... ..... N 

eliminate z in favor of z'. The result is what is called H(z'). 
'IV N IV 

The intuitive picture behind the physicist's notation for functions 

is that the values of a function, whether it be the electrostatic potential 

or the Hamiltonian, are attached to points of space, which are viewed 

as geometrical entities. In a sense, geometrical points are considered 

to form the independent variable of functions, and the coordinates (x,y,z) 

or (r,e,~), or z or z' 
N ",' 

are simply taken to be labels of points. Hence 

an equation such as H(z) = H(z') has the import of the statement, "Let's 
... N 

relabel the points of phase space." 

The physicist's notation for functions is o~ten convenient and physically 

suggestive, but it is somewhat imprecise. Usually the level of imprecision 

is acceptable, but not always, as is the case with near-identity trans

* formations. The source of the imprecision is that whereas geometrical 

points may form the independent variable in conception, nevertheless n-tuples 

of numbers form the independent variable in notation. 

This problem may be illustrated with a simple example drawn from 

* More generally, the problem occurs with families of transformations, 
especially groups, which are continuously connected with the identity 
transformation. A similar problem occurs with the study of rotation 
operators, especially in quantum mechanics. See Ref. 18. 
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6.3 

Hamiltonian mechanics. Let us take the transformation law for Hamiltonians 

'under a time-independent canonical transformation z -+- z': ... .... 

H(z) = H(z') ., ,. (6.1) 

Here the idea is that points of phase space, in a geometrical sense, 

form the independent variable of H. Now suppose the actual transformation 

is given by 

z' = z + a ,.. '" ... 
(6.2) 

for some constant vector a. (This is, in fact, a canonical transformation.) ... 
Then substituting (6.2) into (6.1) gives 

H(z) = H(z+a) (6.3) ,. .. ,.. 

which, taken at face value, says that H is periodic with period 2. This 

is, of course, nonsense. 

The problem is that when we made the substitution, we were treating 

the independent variable ofH, not as a set of geometrical points, but 

rather as n-tuples of numbers. The contradiction arose because we have 

used two interpretations of the independent variable in one breath, so 

to speak. Since we have here two pofnts of view, which are in danger of 

being confused, it is important that we commit ourselves to one or the 

other, as convenient, and to be alert to the possibility of confusion. 

In work with near-identity canonical transformations, it turns out 

to be most convenient to adopt the convention that the independent variables 

of phase functions are n-tuples (really 2N-tuples) of numbers. According 
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to this interpr.etation, equation (6.1) has the following meaning: There 

exist two 2N-tup1es, z and z', for which the function H takes on the same ,., .., 

value. Clearly, this meaning is not the intent of the transformation law. 

To state the transformation law according to our convention for inter-

pretation of independent variables, we must use a different symbol for 

the riew Hamiltonian, because it is a distinct function. In this regard, 

we may consider (3.19), which we reproduce here: 

(6.4) 

An important thing to observe is that the coordinate transformation z -+ z' 
ow #OJ 

has caused the function H to be transformed into a new and distinct function 

K. 

Since we are treating the independent variables of phase functions as 

2N-tup1es of numbers, and not as geometrical points, we can no longer 

think of a function as the name of a value. Instead, it is better to 

keep in mind the precise mathematical definition of the word "function": 

A function is a mapping from one set to another. The former set is called 

the domain, and the image of the domain in the latter set is called the 

2N range. For phase functions, the domain is the set ~ ; there may also 

be additional parameters, such as time. In this paper we use the word 

* "function" in the mathematician's sense, which may be succinctly contrasted 

with the physicist's use of the word by saying that a function is a mapping, 

and not a value. 

In accordance with this usage, we shall strive, especially in this 

* The usual physicist's terminology is lurking in certain places, but never, 
it is hoped, where any confusion can arise. 
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section and the next, to carefully distinguish functions from the values 

of functions. For example, if H is a function; and ~£m:N, then H(~) is a 

value, i.e. a number. To be precise, a statement such as H = H(z) makes 
N 

no sense; it is like equating apples and oranges. We have already violated 

this rule in (6.4), where we have treated z' both as a 2N-tuple and also as 
'" 

a function. To be more precise, we can state the transformation law (6.4) 

as follows. If the function ~ is a canonical transformation, so that the 

image z' of a point' z under the transformation is given by 
N ., 

z' = Z(z) 
AI N. 

(6.5) 

then the new Hamiltonian K is given in terms of the old Hamiltonian H by 

(6.6) 

We have in (6.6) an example of how relations among functions may be 

defined in terms of the values of functions. The simplest relation is 

that of equality. We say that two phase functions F and G are equal, 

1. e. F = G, if 

(6.7) 

for all~. Other operations among functions, such as addition, are defined 

in the obvious way. Note that in (6.6) it is not true that K = H; the 

loose statement that the old and new Hamiltonians are equal must be 
.. 

interpreted with caution. 

It is important to observe that the symbol ~ appearing in (6.7) 

is really a dummy; any other symbol for the phase space point would do 

as well. In this regard it is instructive to examine (5,.31) and the 

6.5 
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equations leading up to it. It may. be seen that the variables a', J', ,., ... 
·while being written so as to indicate "new" variables, are really dummies. 

The set (5.31) could be rewritten as a set of relations among functions, 

as follows: 

aFl aa . ,. 

(6.8) 

In all the steps leading up to (5.31), functions were treated as if the 

6.6 

independent variables were 2N-tuples of numbers, and not geometrical points. 

For example, Fl(~' ,~') means Fl(~'~') evaluated at ~= ~', and not Fl(2,~') 

re-expressed as a function of ~' through the relation (5.25). 

Now we define a class of transformation operators, which are very 

useful in work with Lie series. We consider a near-identity transformation, 

given by ~' = ~(~), and we associate with Z a certain transformation operator, 

which we denote by T, which acts upon phase functions to give other 

phase functions. If F is a phase function, then we will represent the action 

of T upon. F by TF, which we may call G. The operator T is defined by 

specifying its action upon all phase functions F, as follows. If G = TF, 

and T is associated with the near-identity transformation ~, then 

F(Z(z» .. .. (6.9) 

for all~. Another way to write this is 

(TF) (~) = F(Z(z» 
N N 

(6.10) 

where the parentheses around TF mean that the operator T acts first on 

the function F, giving a new function, which is then evaluated at ~. 
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Actually, since T acts on functions and not numbers, it makes no sense to 

evaluate first and operate with T second; nevertheless, the notation (6.10) 

leaves no room for confusion. 

The right hand side of (6.10) has the form of the "composition" of the 

two functions F and Z, which is sometimes denoted in the mathematical 

literature by the symbol O. Thus we could write TF = FoZ. We shall not 

use this notation in this paper, but the importance of the composing 

operation should be noted. Composing two functions together to obtain 

a third can be used as a definition of the "multiplication" of two functions, 

and it is precisely this multiplication law which allows the set of all 

* canonical transformations to be considered a group. 

We have in (6.6) an example where the T operator is useful. The 

transformation law for time-independent canonical transformations can be 

written 

H = TK (6.11) 

This equation will be of use in the next section. 

To follow our definition of the T operator perfectly rigorously, we 

can allow T to act only on functions, and not on numbers or phase points 

(i.e. 2N-tuples of numbers). Nevertheless, we are dealing with near-

identity canonical transformations, and such transformations can be regarded 

as mappings of phase space onto itself. Hence it is sometimes convenient 

to think of T as the mapping i'tself, and to write 

* In this regard, it may be noted that the T operators form a linear repre-
sentation of the group of canonical transformations. The "carrier space" 
of this representation, i.e. the linear vector space upon which the operators 
act, is the set of all phase functions. 
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z' = Z(Z) = Tz 
,., N N ,.. 

(6.12) 

This notation was used in (2.6), without elaboration. 

To bring (6.12) into a ,form which is rigorously in accordance with 

the definition of T, we may introduce the identity function ~ , which is 

defined in terms of its values as follows: 

.:,Q (z) = z 
AI IV oJ 

(6.13) 

for all z. Then to be precise, we can write (6.12) as 
IV 

To! = ~ (6.14) 

Although this usage may seem pedantic, it is useful in cases of confusion. 

It is often useful to deal, not only with T, but also with its inverse. 

Now we change notation, and write ~f for what we have been calling ~, 

representing a canonical transformation. The subscript f stands for 

"forward"; we will write ~b for the inverse transformation, where b stands 

for "backward". Since the two transformations are inverses, we have 

(6.15) 

for all z. The transformation which is inverse to T, which we denote by 

T-l , is defined by 

(6.16) 

From this definition and from (6.15) it follows that 

= = I (6.17) 
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where I is the identity transformation. 

Earlier in this paper, in section 3, we introduced certain operators 

which represent the operation of forming the Poisson bracket. These are 

the L operators, and their action upon a phase function produces another 

phase function. In this sense they are in the same family as the T operators, 

although they are defined quite differently. As we shall see, there is 

an intimate connection between the L operators and theT operators: the 

former are the Lie generators of the latter. 

Now we state an important theorem, which will form the heart of our 

development of canonical transformations via their Lie generators. 

Suppose we have some Hamiltonian H(z,t), which we take to be time-dependent . .. 
We choose some pair of times t = to and t = t

l
, and we choose some initial 

conditions z = ZO at t = to' Following the evolution of the phase point 

under the action of H, z will move along a trajectory from ~O at t = t 
N 0 

to a new point, which we will call ~l' at t = t
l

. We now regard ~O as 

a variable, and think of ~l as being a function of ~o' parametrized by 

the two tirilest
o 

and t
l

• In accordance with our conventions for functions, 

we reserve the symbol ~l for a value, and write ~f for t'he function: 

(6.18) 

Although we are using the symbol ~f' which was used in an earlier 

paragraph for a canonical transformation, we are here not assuming that 

~f is canonical. This is, however, exactly the point of the theorem in 

question. The theorem states: For any Hamiltonian H(z,t) and for any' .. 
pair of times to and t l , the transformation ~O -+ ~l' given by (6.18), is 

a canonical transformation. In other words, Hamiltonian flows in phase 
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space generate canonical transformations. 

In order to prove this theorem, we first prove a weaker version, 

namely that the transformation (6.18) is canonical for infinitesimal 

time differencestl-t
O

' We set fit = tl-t
O

' and assume that fit is small. 

Then, by using the equations of motion (3.7) and a power series expansion 

in fit, such as was developed in equation (4.4), we can write 

6.10 

(6.19) 

We prove that (6.19) is canonical by appealing directly to the definition, 

(3.14). Taking the variables ~O as the variables with respect to which 

derivatives are formed in the Poisson brackets, we have 

{Zli,Zlj} = {zOi,ZOj} 

+ flt{zOi,{zOj,H(~O,tO)}} + flt{{ZOi,H(~O,tO)},ZOj} 

+ O(llt
2

) 

The first term gives Yij , and for the other two terms we can use the 

Jacobi identity (3.8d) to write 

2 = Yij - flt{Yij,H(~O,tO)} + O(flt ) 

= Y + O(flt
2

) ij 

(6.20) 

(6.21) 

The term in fit vanishes, since the Y .. are constants. Hence the trans
~J 

formation (6.19) is 'canonical through O(flt) . 

Now let us consider finite time differences. We change notation a 

bit, and write t for tl and! for ~l' and we will define T by T = tl-tO' 

We do not assume that T is small. Then (6.18) becomes 

(6.22) 
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where t = to+'~ Corresponding to this transformation we have an operator 

·T, which we write as T(tO,t) or T(tO,t
O
+') to show the parametric dependence 

on the times. T may be thought of as an evolution operator or a propagator. 

We consider some time t' intermediate between to and t = t o+" i.e. 

to<t'<t. Then it is evident, by compounding two partial evolutions, that 

Note ·the order of the factors; the right-most operator propagates the 

system from to tot', and then the left-most operator propagates it 

from t' to t. 

(6.23) 

We can go further than this. Let us divide the time interval .= t-to 

into a large number n of small time intervals of duration 6t: 

6t = ./n (6.24) 

We denote thek~th time value by t
k

, given by 

k=l, ... ,n (6.25) 

Then we have, in analogy to (6.23), 

(6.26) 

Now we let n become very large. According to (6.21), each of the 

2 
factors in (6.26) is canonical with an error at worst of order 6t, Le. 

2 . 
O(l/n). Since the product of any two canonical transformations is canonical, 

and since there are n factors in (6.26), the overall transformation is 

canonical with an error at worst of order lin. But n may be made arbi-

trari1y large, so the whole transformation T(tO,tO+') is. canonical. 
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This complete our. proof of the theorem. The proof is not rigorous, but 

it conveys the right idea. 

In perturbation theory we are interested in near-identity canonical 

transformations, and one of the virtues of the Lie transform method is 

its relative simplicity when dealing with higher order (i.e. second .and 

beyond) perturbations. Therefore we will now carry out the expansion 

(6.19) through second order. 

To be systematic about this, we follow the same steps as we did in 

deriving (4.4). Weshuff1e notation again, letting ~ be a phase point 

at t = to' and ~' the new point at time t. We use this notation because 

we are thinking of a canonical transformation in the form z -+ z'. Hence we ,.. 

will have 

6.12 

(6.27) 

for the canonical transformation; we want to expand this in powers of 

To do this we need the various derivatives of ~f with respect to t, 

evaluated at t = to. These derivatives we denote by Z, Z, etc. 
... N 

The first 

derivative is given by the equations of motion: 

~(t) - -{H(z,t),z} 
N ... 

(6.28) 

Here we have reversed the order of the terms in the Poisson bracket for 

future notational convenience: The second derivative is obtained by 

differentiating (6.28): 

z(t) (6.29) ,.. 
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These two equations should be compared to (4.1) and (4.2). 

We take these two equations, set t=to' and then substitute them into 

the Taylor series expansion, 

~(t) (6.30) 

Here we are calling ~(tO) simply ~ and we are representing ~(t) by ~'. 

Altogether this gives 

(6.31) 

According to the theorem above, the transformation (6.31) is canonical to 

all orders, for all functions H(z,t). It is clear that the process we have 
N 

used to derive (6.31) can be carried to arbitrary order. Now we want to 

modify the notation in the expression (6.31) in various ways. 

First, let us define a sequence of functions H
O

' H
1

, ••• , etc., 

by expanding H itself about t=t : o 

H(~,t) = (6.32) 

We have chosen to absorb the n! denominators into the definition of the 

H , so that 
n 

H'I\(~) = "l'l' 
i'H -di" (6.33) 
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Eliminating H in (6.31) in favor of the H gives 
n 

::: 

+ 

", 

6.14 

(6.34) 

Next, we will use the L operators to rewrite the Poisson brackets 

appearing in (6.34). This gives 

g' 

+ O(-r$) (6.35) 

We note that if we write ~' = T~, as in (6.12), then (6.35) can be written 

= (6.36) 

As noted before, this equation should be regarded as describing the action 

of the operators T, LHo' LH~' etc., not on the.coordinates Z, but rather 

on the identity function ~(~) • 

Finally, we state without proof the fact that if (6.36) holds, as 

. 
an equality between the actions of two operators on the identity function 

~, then it holds for the actions of these operators on an arbitrary 

function. This means, by the definition of equality of operators, that 

the two operators are equal. Hence we may restate (6.36') in the following 
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form: 

(6.37) 

This result establishes the connection between canonical transformations 

T and their Lie generators L. Often we will call the function H(~,t), 

which on account of (6.33) implicitly contains all the functions H (z), n N 

the "Lie generator". Since H is a phase function, and since it generates 

canonical transformations, it is analogous to the mixed-variable generating 

functions which were used in section 5. In contrast to those functions, 

however, the Lie generator, through the Lie transform series (6.37), generates 

canonical transformations without mixing old and new variables. 

The n-th order term in (6.37) gets more and more complicated as n gets 

large, although there does exist a simple algorithm for generating the n-th 

order term. In the case of time-independent Hamiltonians, however, it 

is easy to write down the general term. ClH 
In this case, H = HO' at = 0, 

and equations (6.28) and (6.29) generalize into 

(6.38) 

where the Poisson bracket is iterated n times. Using this and following 

the steps leading to (6.37) gives an interesti~g result, in which we have 

set to=O for convenience: 

t (6.39) 

Using (6.39) it is possible to express, at least formally, the 

solution z(t) to a time-independent Hamiltonian system in terms of ... 
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the initial conditions: 

(6.40) 

This result is not of much practical value for finding the function z(t), 
'" 

since it is really nothing more than a Taylor series expansion of z(t) in 
'" 

powers of time about t=O. But it does have theoretical interest. For 

example, it may be compared to its quantum mechanical analog, also for a 

time-independent Hamiltonian: 

(6.41) 

In general, the connection between classical and quantum mechanics is 

made much more clear by the introduction of_the Land T operators, although 

we will not elaborate on this subject here. 

Let us now return to the general case of a time-dependent Hamiltonian, 

and consider the issue of finding the inverse of the transformation T(to,t) 

given in (6.37). From the basic meaning of the evolution operators it 

shOuld be evident that 

(6.42) 

so that 

(6.43) 

Hence the inverse of T(to,t) is obtained simply by swapping to and t, which 

will cause T to go into -T. Nevertheless, it is not possible to invert 

(6.37) s-imply by taking T -+ -or, because the functions H
O

' HI' etc., defined 

in (6.33), depend implicitly ,on the time to' 
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If, however, we swap t and to in (6.37), i.e. set T ~ -T, and replace 

H by H' where n n' 

6.17 

(6.44) 

then we will obtain T(t,t
O
). Carrying this out gives 

(6.45) 

-1 This, is not the most convenient form for T (to,t), since the forward 

transformation T(tO,t) is given in terms of one set of Lie operators, 

Lgo' Lgi' etc., whereas the inverse is.,expressed in terms of another set, 

Lg" LH" etc. 
o ~ 

Therefore we choose to express Lg~ in terms of ~~, and to 

-1 
rewrite T (to,t) in terms of the latter operators. 

To do this, we apply the definition of H', (6.44), to (6.32). After 
n 

a little algebra this gives 

H~ = t (:') ~~-n H~ 
-'tan 

Writing this out explicitly for the first two orders, we have 

2 H' = HO + TH + O(T ) 0'1 

Hi = HI + O(T) 

Substituting this back into (6.45) then gives 

(6.46) 

(6.47) 

(6.48) 



This is the desired form for the inverse of T(tO,t). 

The transformation (6.37) and its inverse (6.48) are not intended 

for effecting series developments in powers of time. The drawbacks of 

such developments were pointed out in section 4. Rather, the purpose 

of developing the theory of Lie generators of canonical transformations has 

been to employ those transformations in perturbation theory. 

In the next section we will illustrate the use of Lie transforms 

in perturbation theory. For now, however, we will simply comment on the 

change in the point of view, from canonical transformations resulting 

from the time evolution of a Hamiltonian system, to the "e:-evolution" 

associated with a Lie generator. This whole theory has been developed 

from the standpoint of. the time evolution of a Hamiltonian system purely 

for suggestive value. There is no mathematical reason why t should be 

interpreted as time, or Has a Hamiltonian. 

To effect the change in point of view, we will henceforth denote the 

Lie generator by the symbol w instead of H, and we will likewise replace 

t bye:. We consider w to be a function of e:, and we expand wabout e:=0. 

This corresponds to setting to=O in the results above, and to associating 

both t and .L with ~. We use this expansion to define a series of functions 

WI' w2 ' ... , similar to HO' HI' defined in (6.33). For future 

notational convenience, we shift the subscripts by 1, so that w
n
+

l 

corresponds to H. Thus we have the following expansion for w(e:): 
n 

6.18 

t €"W ... (6.49) 

'I'l::o 
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Finally, we abbreviate the Lie operator L by writing simply L . 
wn n 

Using these conventions, we can easily transcribe the transformation 

operator (6.37) and its inverse (6.48) into the new notation: 

T(e:) = 1 2 + L~) + D(e:
3

) (6.50) I - e:L + ~ (-L2 1 

T-l(e:) + e:Ll 
1 2 L2) + D(e:

3
) (6.51) = I + ~ (L2 + 1 

In the next section we will apply these formulas to perturbation theory. 

-1 We state here a rule for finding T ,given T. First, we replace L 
n 

wherever it appears by -L. Second, we invert the order of all non
n 

* commuting L operators. The L operators do not in general commute, as 

may be seen from the Jacobi identity, (3.l0d). The non-commutivity of the 

L operators first becomes an issue at third order, where terms such as 

LlL2 appear. This must be distinguished from L2Ll . 

In this section we have developed the theory of Lie generators in a 

relatively ad hoc way. A much more elegant derivation has been summarized 

by Cary5, who centers his arguments around a certain differential equation 

in operator space. Cary's formulas, including a Lie generator equivalent 

of the Hamilton-Jacobi equation, are expressed in closed form, i.e. not 

as a power series in e:. We turn now to the application of the Lie series 

to perturbation theory. 

* For two phase functions A and B, LA and LB commute if and only if {A,B} 
is a constant. 



, ... 

u 'I 
',J 

7. Hamiltonian Perturbation Theory With Lie Transforms 
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Many of the basic principles of Hamiltonian perturbation theory were 

discussed in section 5. The main difference between this section and that 

one is that here we shall effect near-identity canonical transformations 

with Lie transforms. Hence much of the discussion of the techniques sur-

rounding Hamiltonian perturbation theory need not and will not be repeated. 

Our first object is to study the application of near-identity canonical 

transformations to a Hamiltonian. We will begin with the case of time-

independent transformations and later generalize our results to the time-

dependent case. We obtain from this study a set of formulas in tabular 

form which can be used in perturbation theory. Then we apply these 

formulas to two examples. 

Let us consider a time-independent Hamiltonian H and a time-independent 

near-identity canonical transformation ~ ~ ~', given by the function ~: 

(7.1) 

Associated with ~ is a transformation operator T according to (6.10), and 

by (6.11) we have 

H = TK (7.2) 

where K is the new Hamiltonian. 

Since we are usually interested in finding K, given H, we write 0.2) 

in the following form: 

0.3) 

This equation is developed perturbatively, Le. as a powe,r series in E, 

7.1 
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as follows. First we expand both K and H in powers of E, according to 

the rules 

(7.4) 

1-\ :: (7.5) 

-1 
Next, we use (6.51) to expand T in terms of the generators wI' w2 ' etc. 

Then, multiplying series together in (7.3) and collecting terms, order by 

order, gives a hierarchy of equations; which we tabulate here through O(E
2): 

(7.6a) 

(7.6b) 

(7.6c) 

The first equation, (7.6a) , says that the old and new Hamiltonians 

are equal at order zero. This is not surprising. 

The O(€) equation, (7.6b), is a partial differential equation 

for the Lie generator wI in terms of the known function HI and the function 

K
l

, which is to be determined. To see this, note that the term LIHO can 

be written 

(7.7) 

In fact, since we are assuming that the transformation T, and hence the 

generators wn ' are independent of time, it may be seen that LIHO is 

nothing more than the total time derivative of wI' taken with respect 

to the unperturbed Hamiltonian HO. We will denote this time derivative 
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with the symbol DO; for a general, time-dependent function f(~,t), we have, 

by definition, 

(7.8) 

Since wI does not depend explicitly on time, we can apply (7.8) to (7.6b) 

to get 

(7.9) 

Equation (7.9) is a first-order, linear, partial differential equation 

for wI. -Appendix A summarizes the theory of such equations; for our 

purposes here we simply note that the solution wI can always be found, 

by the process of "integrating along unperturbed trajectories". Our 

ability to solve (7.9) for wI depends critically on our ability to solve 

the unperturbed system. 

The importance of the DO operator is such that we wish to eliminate 

all Poisson brackets with HO and replace them with the DO notation. 

This step is only a matter of convenience, and the real reason for doing 

it will be seen later when we take up the case of time-dependent transfor~ 

mations. For the time being we may take the desirability of this step 

on faith, and rewrite (7.6) as follows: 

7.3 

(7.10a) 

(7.10b) 

(7.l0c) 

Finally, we take each equation at order n in the hierarchy, and use 
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equations of lower order to eliminate the terms in DOwk for k < n. We 

bring the term in DOwn to the left hand side. This gives 

7.4 

(7.lIa) 

(7.lIb) 

(7.lIc) 

The hierarchy is written in this form because we will want to regard 

the equations as inhomogeneous linear differential equations for the 

wn ' which will be solved in an iterative process. 

Before applying these results to perturbation theory, let us extend 

them to the case of time-dependent canonical transformations. If the 

canonical transformation is expressed in terms of its mixed-variable 

generating function S, then the transformation law relating old and new 

Hamiltonians is given by (3.22), which is in contrast to (3.19) or (7.2) 

for time-independent transformations. Our object now is to develop a 

formula analogous to (3.22) for the Lie generator. 

There are several strategies for doing this. One would be to express 

S in terms of w, and then use (3.22). The mixed-variable nature of S, 

however~ makes this approach very awkward. A rather elegant method is 

5 given by Cary, who works with an equation involving derivatives of 

the T operators with respect to both t and e: parameters. Here we shall 

take a more simple-minded approach, which is to imbed a time-dependent 

Hamiltonian system of N degrees of freedom in a time-independent, i.e. 

autonomous, Hamiltonian system of N+l degrees of freedom. We shall call 

the latter system the "extended system". Since the extended system is 
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autonomous, we can use the formulas (7.11). We then examine what these 

formulas, for the extended system, imply for the original system. 

The imbedding process we describe here is common in studies of dif-

ferential equations, the object being to take a non-autonomous system 

and to make it autonomous by going to a phase space of larger dimensionality. 

We suppose that we have some Hamiltonian H(~,t) of N degrees of freedom, 

with,Z representing (ql, ..• qN,Pl, ••. ,PN)' Then we consider a new phase 

space of N+l degrees of freedom, whose coordinates r are given by 

(ql, ... ,qN,t,Pl, .•. ,PN,h). In the extended space, t does not represent 

time, but rather one of the coordinates; it is effectively qN+l' Likewise, 

h is not a phase function, but rather a generalized momentum; it is effectively 

PN+l' We will use script symbols, such as !, for quantities referring 

to the extended phase space. 

We would like to find, in the extended phase space, a Hamiltonian 

101 which gives autonomous equations of motion which are equivalent to the 

non-autonomous equations of motion generated by H in the original phase 

space. Such a Hamiltonian exists, and it may be taken, to be 

(7.12) 

The flow generated by J¥ in the extended phase space will be characterized 

by a time-like parameter, which we call s. This whole construction is 

simply a mathematical artifice, so we need not attach any physical significance 

to s. The equations of motion generated by (7.12) are autonomous, because 

H has no explicit dependence on s. Hence the transformation formulas 

developed in this section can be applied to ~~ if the operations are taken 

in the extended phase space. 
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First we write down the equations of motion resulting from ~ in the 

extended space. These are 

7.6 

eli ~(1) = ~H (t.i! ~) 
d~ 

.,. ')f IV ;}f ... , (7.l3a) 
#OJ '" 

~ ': ') 101 '( 1') = lli (Ii! *') 
d..'!. a ~ .., 'a,. .." .. ... 

(7.13b) 

<l:l "d '" ('f) =' 1. 
ds = ~-k ... (7.13c) 

cit :: - d'" (1') :- - ~~ (J;,-t) 
d~ ~t ,., (7.13d) 

From (7.l3c) we have dt = ds, so (7.l3a) and (7.l3b) are the same equations 

of motion, with t as the independent variable, as the Hamiltonian H 

generates in the original phase space. 

Now let us suppose that H is expanded as a power series in £, as in 

(7.5). We allow each of the terms Hn' including H
O

' to depend on time. 

We associate with this expansion a similar expansion of ~ , by defining 

.,,>0 

Hence, of all the 1:1"" only j:fo depends on the variable h. 

(7.14a) 

(7.l4b) 

This expansion allows us to apply a Lie transform to # and to obtain 

a new Hamiltonian )( in the extended phase space. Let us be careful 

as to what this means. The Lie transform corresponds to a certain s-inde-

pendent canonical transformation in the extended phase space, which we 
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denote by :t. Hence we will have 

(7.15) 

~ , This cano~ica1 transformation will take the variables l' into new variables 

'i' such that if the s-evo1ution of l' is given by ')::f, then the s-evo1ution 

of 1'is given by ~. The canonical transformation will correspond to 

a certain Lie generator, which will be a function of 1 (and hence in 

general of t and h), and which'wi11 enter into the formulas (7.6) or 

their equivalents. 

We will want to design the transformation :t so that the variable t, 

which is a dynamical variable in the extended phase space, does not change 

under the transformation. To achieve this goal, we simply restrict ourselves 

to generators w which are independent of h. We do allow w to depend on 

~ and t, however. We do not use a script symbol for the Lie generator w, 

for although it is a function on the extended phase space, it can also 

be considered to be a time-dependent fUllction on the original phase 

space. 

To prove that if w is independent of h, then tr does not change t, 

we must consider the Poisson bracket on the extended space. If we write 

{ , }r for the extended Poisson bracket, and simply { , } for the Poisson 

bracket in the original space, then we have, for any two functions J+ and 

13 on the extended space, 

Suppose now that 94- is some w , and independent of h, and that 13 is 
n 

t. Then applying (7.16) gives 

(7.16) 
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{ W", ) i 1." -= 0 (7.17) 
... 

By examining (6.50), it is easy.to see that 

:rt :: 1: (7.18) 

When we apply the Lie transform ;) to "'" to get the new Hamiltonian 

~, we will be forming extended Poisson brackets between w and ~~, as 
n 

indicated by (7.6). However, of th~ 'PIn., only "No depends on h, and then 

in a very simple way; and w' is independent of h. Therefore, by applying 
n 

(7 .16) to (7 .14) we have 

{ W", ,",ol! {W.)~o1 + dW" = ;,t (7.19a) 

{ WI\., ~"JI' { Wft ) ~"' 1 , . (7.19b) 
= -m '> 0 .., 

It should be noted that in (7.19a) we have the total time derivative of 
. dW 

wn ' computed along unperturbed trajectories, including the term in ~, 

for the case that w depends explicitly on the time. 
n 

The extended canonical transformation ~ will take the coordinates ~ ... 
into new coordinates 'f', which we may write as (q',t',p',h') or (z',t',h'). 

_ ,.,,,,, IU 

It will also produce the new Hamiltonian '< ' which will describe the 

s~evo1ution of the new coordinates 1~ according to the equations of motion: 

d. i-' = + ~1{ (i') 
d.5 ;, f' '" 

(7.20a) 
N 

c! f' = ~ X (T') 
ds 'af ... 

(7.20b) 

d. i' 
ds 

:: T ~(t') 
'C) ~ '" 

(7.20c) 

d. k' d 1< (~,) - :: 'at.' -cl~ 
(7.20d) 
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Let us consider (7.20c). Because of the restricted form we have chosen 

3w 
for the Lie generator w of :r , namely 3h == 0, we have t' == t. Also, from 

(7.13c) we had 4t ==ds. Therefore we have dt' == ds, and (7. 20c) must give 

... us 

7.9 

(7.21) 

or 

(7.22) 

for some function K. It may be guessed, although it remains to be proved, 

that K is the new Hamiltonian in the original phase space. This proof is, 

however, easy. We simply substitute (7.22) back into (7.20), to get 

tict = ~K (Il' of:.') 
cis ~ I' -' (7.23a) 

cl t,' 
'" ~ (ii' of) 

cl$ ~ '\0' • ... 
(7.23b) 

ci. t' i 
d.5 

(7.23c) 

d k' = 
_ ) K (i:', i.') 

c::ls ~t' ... (7.23d) 

Equation (7.23c), when substituted into (7.23a) and (7.23b), shows that 

the variables q',p' evolve according to the Hamiltonian equations of motion, ...... 
withK as the Hamiltonian and t as the independent parameter. By definition, 

then, K is the new Hamiltonian in the original phase space. 

Now we apply formulas (7.6) for tf taking H into 1<. We expand both 

~ and K in a power series in €, like (7.4), and, bearing in mind the form 
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(7.22), we get 

Q u , , 
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1<.(;r)::r K o (!,*") ~ ~ 

X ... C,.) = K ... (~,-!:) .... 

tl ~J 
t" i! {) , 

' . ..., 

7.10 

(7.24a) 

(7.24b) 

Here we have dropped the primes on the variables 'f', z, t, h. The primed 
. ... ... 

variables were used in the last two paragraphs to suggest "new variables", 

but they are really dunnnies. We do this because the hierarchy (7.6) is 

a set of relations among functions, not values. 

First let us write out (7.6) for extended phase space operations. 

We translate the i. operators into extended Poisson bracket notation. This 

gives 

(7.25a) 

(7.25b) 

(7.25c) 

Now we use (7.14), (7.19) and (7.24) to express this in terms of operations 

on the original phase space. This gives 

KO = HO (7.26a) 

Kl HI + {wl,HOl + ~~l (7.26b) 

K2 = H2 + {wl,Hll + ~w2,HO} + ; ~~2 
1 1 ow 

+ 2" {wl,{wl,HOll + j{wl'atl} (7.26c) 

These equations are the generalization of (7.6) to the case of time-

dependent canonical transformations. 
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As we did with (7.6), let us now rewrite (7.26) in a more usable form. 

To do this, we introduce again the operator DO' representing time evolution 

t d b H Si h d d im h . (}w 
as genera e yO. nee t e wnnow epen on t e, we ave terms 1n~, 

as is indicated by (7.8). That is, we write 

(7.27) 

(}w 
Using this to eliminate ~ in (7.26), we get 

KO = HO (7.28a) 

Kl = HI + DOwl (7.28b) 

K2 = H2 + {wl,Hl } 
1 

+ 2" DOw2 
1 

+ 2" {wl,DOwl } (7.28c) 

It may be seen that these are exactly the same as equations (7.10), 

except that now DO has a more general meaning than it did before. From 

this it·follows that the equations (7.11) are valid for time-dependent 

as well as time-independent canonical transformations, if only the 

operator DO is taken to represent the total time derivative along unperturbed 

orbits, as shown in (7.27). This fact remains true at all orders. 

Therefore it is the hierarchy (7.11) which we will use for perturbation 

theory, including time-dependent cases. 

We comment on one final point concerning our procedure for dealing 

with time-dependent canonical transformations. To be complete, we 

need to show that the s-independent canonical t.ransformation :f in the 

extended space, when restricted to the original phase space, produces a 

canonical transformation T in that space. This is easy to prove, although 

we shall not do so. 

Let us now study the application of the Lie transform formulas (7.11) 
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with some examples. We remark that although the formulas (7.11) are valid 

for an arbitrary H, nevertheless they are generally useful in a practical 

,~ sense only when H has been subjected to a preparatory transformation, so 

that HO depends only on the momenta ~ or actions :! (for a periodic 

unperturbed system). 

As an example of a time-independent system, let us analyze the low 

-energy limit of the pendulum system. We return to (5.7), from which we 

tabulate the following: 

7.12 

HO(6,J) = wOJ (7.29a) 

= - -.!. i(3 
48 

1 J3 
2880 wo (10 

4 cos 26 + cos 46) 

- 15 cos 26 + 6 cos 46 - cos 66) 

At order zero, using (7.lla), we have simply 

(7.29b) 

(7.29c) 

(7.30) 

At order one, we uS'e (7 .llb). Given the explicit form of H
O

' we write, 

out the term DOwl: 

(7.31) 

Hence (7.llb) becomes the following differential equation for wI: 

(7.32) 

This equation should be compared to (5.45b), which we solved without much 

comment. Here we want to elaborate upon the method of solution. 

Equation (7.32) is a single equation in two unknowns. namely wI and 
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K
l

. Therefore it has no unique solution. If we choose either wI or K
l

, 

then ,(7.32) can be solved for the other, but some such choice must be made. 

This makes sense: , different canonical transformations (specified by WI) 

give rise to different new Hamiltonians. 

In solving (S.4Sb) we had an equivalent latitude in our choice of 

solution, and there we took 

:r'a. 

7.13 

- --,,- (7.33) 

This choice for Kl certainly would allow us to solve (7.32) for WI' and 

it has the agreeable consequence that it causes Kl to be independent of 8, 

makil1g the equations of motion generated by K easy to solve. Nevertheless, 

there are many ways to make Kl independent of 8, the simplest of which 

is perhaps Kl=O. If we made this choice for K
l

, we would, in effect, 

"transform away" the entire perturbing term, and not just its 8-dependent 

part. 

To see why we do not want to take Kl=O, we may examine (7.32), and 

see'what would happen if we did. The solution for WI would be 

(7.34) 

The problem with this solution is the term in 128. Since 8 has an unbounded 

growth in time, this term is a secular term. When we use this form for WI 

in the transformation (6.50), and apply it to the old variables (8,J) to 

find the new, the secular term in WI would cause secular terms to appear 

in the transformation. This is exactly the phenomenon we observed in 

the method of successive approximations, and its deleterious effects 
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on the convergence properties of the resulting power series have already 

been noted. In fact it may be shown that if we choose K =0 for all n>O, 
n 

then the result is identical to the method of successive approximations. 

Therefore in solving (7.32) we adopt a double criterion: first, 

K1 must be independent of 6; and second, wI must be free of secular terms. 

The first requirement that dW (7.32) must cancel all says the term in asl in 

the 6 dependence of H
1

; and the second requirement dW 
says that as1 must 

contain only terms which are oscillatory in 8, since otherwise, upon 

integration with respect to 8, there would result secular terms. This 

dW double criterion gives a unique choice for ae1 and K
1

, which is most con-

veniently expressed in terms of the averaging operator and its complement, 

defined in (4.33) and (4.34): 

"-J 

- H 1 

It turns out that this. criterion also gives a unique choice for wand 
n 

K at all higher orders. 
n 

Examining (7.36), we have 

(7.35) 

(7.36) 

(7.37) 

and the results of the method of averaging appear once again. Not only 

that, but if we are not interested in the actual transformation, generated 

by w, but only in the averaged Hamiltonian K, then we need not even solve 

(7.35) for WI. A similar property persists at all orders. In order to find 

K through order n, it is only necessary to know W through order n-l. 
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* Nevertheless, it is easy enough to integrate (7.35) and actually obtain wi: 

Wi. (e. "3") £01. .... 4 e) 

Now let us carry the pendulum problem to second order. We e~amine 

(7.11c), and re-express the left-hand side in the form 

We break both HI and H2 into their averaged and oscillatory parts, and 

we use (7.36) to rewrite this as 

(7.38) 

(7.39) 

(7.40) 

Like (7.32), this is a single equation for two unknowns, in this case, 

w
2 

and K2 • Applying the criteria developed above, we want to absorb 

all the purely oscillatory terms into ;:2, and leave the rest to define 

K
2

• Considering the terms on the right-hand side of (7.40), the decom-

position into averaged and oscillatory parts is obvious except, for the 

last two terms, the Poisson brackets. Now, {w
1

,H
1

} is purely oscillatory, 

because w
1 

is purely oscillatory and because H1 is purely averaged. That 

"'"' is, this term is linear in purely oscillatory quantities. The term {w1 ,H1}, 

however, is quadratic in purely oscillatory quantities, so it has an 

averaged as well as an oscillatory part. To see this, consider cos a, 

which is purely oscillatory. 
2 Then consider cos a, which has an oscillatory 

* A J-dependent constant of integration could be added to this result, 
but it would have no effect of importance except to make all the succeeding 
formulas unnecessarily complicated. Such a term corresponds toa shift 
in origin, as a function of J, of the "nice" phase in Kruska1's rings; 
see ,Ref. 13 for details. It is best to keep only purely oscillatory terms 
when integrating to get w. 

n 
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1 1 part, namely ~os 2e, and an averaged part, namely 2. Therefore, on 

taking the average of (7!40), we have 

7.16 

(7.41) 

which we can also write as 

(7.42) 

Likewise, on taking the oscillatory part, we have -

(7.43) 

To find the second order Hamiltonian K2 , we need to evaluate the 

right.,..hand side of (7.42) • Note that, in addition to the average of 

H2 , K2 contains an additional term. This term is responsible for 

preventing the method of averaging, as it was naively developed in sections 

4 and 5, from being valid at second order. This term is a kind of non-

linear effect, since it is quadratic in first order quantities. In fact, 

since it is the average of a term which is quadratic in first order quantities, 

it represents a zero frequency beat. To explicitly evaluate K2 , we first 

work out the Poisson bracket {wl,Hl }; this requires a little algebra, 

which gives 

(7.44 ) 

Substituting this into (7.42), we have 

(7.45 ) 
I --

2.5{, 
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Note that in order to find K2 , we needed w
1

, but not w2 • Now (7.30), 

. (7.37) and (7.45) can be combined to give 

7.17 

(7.46) 

From this it is easy to obtain the second order correction to the frequency: 

(7.47) 

The expansions (7.46) and (7.47) are actually convergent series for e: in 

some neighborhood of e:=0, and they are connected with certain elliptic 

integrals. 

Now let us look at (7.43), the equation for w2 • Working out the 

right hand side gives 

I :r~ (-35"c.o62.9 ... 2 (0649 oj. 0 (DsG.S) 
19 ~ 0 410 

Upon integration, this yields 

() I ~3 (_ 3S ".i.,.29 ... Shl49 ... ~in "9' 
Wit eJ:r = 3840 4J! ') 

(7.48) 

(7.49) 

This result, combined with (7.38), can be used to compute the canonical 

transformation ~ + ~I explicitly. The results are not very illuminating, 

so we will not do this here. Nevertheless, it is worthwhile to note 

that if the explicit form of the transformation is not required, then 

it need not be worked out. This circumstance is a characteristic feature 

of Hamiltonian perturbation theory; it is not shared by non-Hamiltonian 

perturbation methods. Similarly, it may be noted that if a phase function 

(9r perhaps a phase space density function, representing an ensemble) 

is to be transformed from the old to the new coordinates,. then the Lie 
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operators in (6.50) or (6.51) can be applied directly to the function. It 

is, even in this case, not necessary to work out the transformation 

explicitly. This circumstance is a feature of the Lie transform method, 

and it is not shared by traditional Hamiltonian methods, such as the 

Poincare-Von Zeipel method. 

Although we have not worked out the transformation ~ + ~', it is 

easy to see, from the fact that the ware purely oscillatory, that the 
n 

,c 

transformation will have the form of a Fourier series in the angle e or 

e'. For example, if we express the old angle e as a function of the new 

·variables (e',J'), as we show here in terms of the function 0, 

7.18 

e = e' + 0(e',J') (7.50) 

then 0 will be a Fourier series in S': 

""e' e 

The Fourier coefficients 0 will be power series in E, whose first few 
n 

terms can be worked out using (7.38) and (7.49). We are guaranteed of 

(7.51) 

a transformation of this form, since we have banished secular terms from 

the functions w. Since the angle S' evolves linearly in time with a 
n 

frequency w, given by (7.47), we see that the solution Set) for the original 

angle variable is expanded in a Fourier series in time which employs 

the true frequency. The use of the true frequency w in this expansion, 

rather than the unperturbed frequency wo' is the reason for referring to 

this perturbation method as a "frequency renormalization" technique. 

We will now study a time-dependent system, and subject it to a 

perturbation analysis. The system we choose consists of a charged particle 
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which is free except for the effects of a small amplitude electrostatic 

wave. We let m and e be the mass and charge of the particle,. and we 

let '0' k and w be the amplitude, wave number, and frequency, respectively, 

of the wave. We treat this problem in one dimension, and we assume that 

the amplitude '0 is a constant. The Hamiltonian for this system can be 

written as 

7.19 

H(~) p,-e) (7.52) 

A parameter of smallness E has been introduced in (7.52) to indicate the 

perturbing term. This Hamiltonian gives the following sequence for H 
n 

H = 0, 
n 

1 2 
= 2m p 

n > 1 

Before applying the perturbation formulas (7.11), we must select a 

(7.53a) 

(7.53b) 

(7.53c) 

strategy for the perturbation analysis. In the previous example studied, 

the low energy limit of the pendulum, we chose the canonical transformation 

so that K would be independent of the generalized coordinate 9. Here we 

choose" ;in accordance with the averaging discussion in section 5, to 

eliminate the time dependence from K. In general, one would expect 

the resulting K to depend upon x, even after the time dependence is gone. 

Hence the new Hamiltonian K may well not be solvable, although it will 

certainly be simpler to deal with than H. It will turn out, however, 

for the Hamiltonian (7.53), that this general expectation is not borne 

out, and that when t is eliminated by the canonical transformation, then 
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x goes with it. For this reason, (7.53) is a very special case of time-

dependent systems. 

When we apply (7.11) to (7.53), we get, first, KO = HO' as always. At 

order one we face, once again, the issue of determining criteria to make 

the choice for wI and K
l

• The order one equation, from (7.llb), is 

(7.54) 

In order to make Kl independent of t, the term in DOwl must cancel the 

time dependence on the right hand side. Since the perturbing term is 

periodic in time, we argue on analogy to the discussion surrounding (7.32), 

and we choose the term in DOwl to cancel the purely oscillatory part 

of the right hand side and· no more .. Thus wI itself will be purely oscillatory 

in time, and it will contain no secular terms. In this case the definition 

we choose for the averaging operator is given by (5.19). Note in particular 

that it ignores the coordinate x. 

Applying these criteria, we get immediately from (7.54) 

= 0 (7.55 ) 

This result was already noted in chapterS. Intuitively, it is· easy to 

see why the first order effects of the wave on the particle average to 

zero. As the particle moves with its velocity p/m and as the wave moves 

with its phase velocity w/k, the particle will slide up and down the 

potential of the wave, first being accelerated as it goes downhill, and 

then being decelerated as it climbs uphill again. On the average, at 

least to first order, these two effects will cancel, and we get (7.55). 

This argument breaks down, however, if the particle is in ,resonance or 
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near resonance with the wave, a case we will consider later. 

Now we consider the equation for wI' Writing out DOwl according 

to (7.27), we have 

Hence we need to solve the equation 

ow .E. aw at"l(x,p,t) + m axl(x,p,t) = -e~O cos(kx - wt) 

7.21 

(7.56) 

(7.57) 

The theory of equations of this type is given in Appendix A; the solution 

is easily found to be 

(~ -W) (7.58) 

As desired, wI is purely oscillatory in time. 

Let us move onto the second order terms. Examining (7.llc) and using 

(7.55), we have 

(7.59) 

and 

(7.60) 

We will not solve (7.60), although it is easy to do so; instead we just 

work out K2 using (7.53b) and (7.58): 

~E2. e. 0 (7.61) 
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where we have set EO= kcjlO' representing the amplitude of the electric field • 

. Altogether, then, we have for K, 

(7.62) 

The second order term is the "ponderomotive" term; as predicted above, 

it is not only independent of t, but also of x. There is an important 

generalization of the ponderomotive term which appears in certain 

applications. In our original Hamiltonian (7 .• 52), the amplitude of the wave 

cjlo was taken to be a constant. If instead this amplitude is taken to 

be a slowly varying function of x, which we may write as ~(AX) for some 

A« 1, then, in a certain approximation, the averaged Hamiltonian K becomes 

(7.63) 

Now the ponderomotive term does have a dependence on x, giving it the 

mathematical form of a potential energy. Hence this term is sometimes called 

the "ponderomotive potential". Its effect is to repel the particle, 

regardless of the sign of its charge, from regions of high field strength. 

Consider now the denominators appearing in the expressioris for wI and 

K
2

. It is not hard to see that the quantity 

w = w - kp/m 
D 

(7.64) 

is the Doppler shifted frequency of the wave, as seen by the moving particle. 

Hence this denominator is small if the particle is nearly in resonance 

with the wave, and for exact resonance, the denominator vanishes. For a 

nearly resonant par.ticle, we would expect the convergence.of the series 
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(7.62) to be put in jeopardy, and this is, in fact, exactly the case. 

The series (7.62) has a certain circle of convergence in e: space, 

centered about e:=0, and the radius of convergence is a function of w
D

' and 

hence of p. This radius of convergence goes to zero as w
D 

goes to zero, as 

might be expected. An equivalent way of stating this is to say that for 

fixed e: (such as e:=l) there will be a region of phase space for which the 

series (7.62) does not converge. This region has the form of an interval 

surrounding the resonance value of the momentum, namely p = mw/k, and 

it is called the "trapping region". If the dynamics of the particle are 

to be understood in the trapping region, then another approximation scheme, 

apart from (7.52), must be used. 

Many of the qualitative features of the Hamiltonian (7.52) can be 

understood by subjecting it to a certain closed-form canonical trans-

formation. This transformation is generated by the following mixed-variable 

generating function: 

(7.65) 

When the Hamiltonian (7.52) is transformed by this canonical transformation, 

there results, apart from various constant factors, exactly the pendulum 

Hamiltonian. Physically, (7.65) corresponds tO,going to a frame of 

reference moving with the wave, and hence it causes the new Hamiltonian 

to be time-independent. 

The phenomenon of resonances is a pervasive one with systems of more 

than one degree of freedom, or with time-dependent systems of one or 

more degrees of freedom. The convergence of the perturbative series is 

put very much in doubt by resonances, although the series,may still be 
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computationally useful for long periods of time. In general, a near-

resonance will mean, if not a complete invalidation of the series, then 

'. at least the presence of long-period terms whose amplitude is larger 

than would be expected according to the £-ordering. For example, the 

'-L planets Jupiter and Saturn are nearly in a 2-5 resonance, and associated 

with this near-resonance are large mutual perturbations with a period of 

about 1000 years. 

Sometimes there may be several resonant regions of phase space. For 

example, a particle moving in the presence of two waves may be in resonance 

with one wave but not the other. In cases like this, it may be desirable 

to transform away the non-resonant terms, but to keep the resonant ones. 

The result will be a Hamiltonian K which still depends on time, but which 

has a simpler dependence than the original Hamiltonian. This case illustrates 

how Lie 'transforms can be used to achieve a variety of goals, depending 

on the circumstances • 

• -.l 
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Appendix A .. Integrating Along Unperturbed Trajectories 

In Hamiltonian perturbation theory we are often called upon to solve 

differential equations of the form 

(A. 1) 

for the unknown function f. It is assumed that HO and g are given; the 

functions f and g may depend on time, but we assume that HO does not. 

A.l 

(This latter assumption is not essential.) HO is the unperturbed Hamiltonian, 

and f usually represents a Lie generator. We are usually not interested 

in the general solution for f, but only in a particular solution with certain 

properties, such as the property of being purely oscillatory. 

The equation (A.l)is a first order, linear, inhomogeneous partial 

differential equation for f. The theory of such equations is given in 

detail in Ref. 19; here we develop only those properties we need. 

The left-hand side of (A.I) has the form of a convective derivative: 

= (A.2) 

where 

. 
iii .: { ~i, H.} (A.3) 

The solution to the partial differential equation (A.2) is conveniently 

expressed in terms of the solution to the system of ordinary differential 

equations (A.3). These ordinary differential equations are the equations 

of motion for the unperturbed Hamiltonian, which are solvable by hypothesis. 

These equations generate the unperturbed trajectories in phase space, 

which are called the characteristics of the partial differential equation (A.2). 
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A.2 

Since the unperturbed system is solvable, it is possible to find the 

functions ~f' representing the forward time evoluti~n of the unperturbed 

system. These functions give ~ as a function of t and the initial conditions 

~, ~O' which we assume are evaluated at t=O: 

(A.4) 

Likewise, it is possible to invert these functions and find the backwards 

evolution functions, ~b: 

(A.5) 

To find the solution f to (A.I) or (A.2), the following prescription may 

be used. First, express the function g, assumed to be time-dependent, in 

terms of the variable t' and the initial conditions !O' to give a new 

function G, as follows: 

(A.6) 

Second, integrate G with respect to t' with t'=t as an upper limit. The lower 

limit is unspecified, and may be taken in the sense of an indefinite integral. 

This gives a function F: 

(A.7) 

The form of this integral suggests the expression, "integrating along 

unperturbed trajectories". Third and finally, use the functions ~b' given 

in (A.5), to express the 30 dependence of F in terms of Z and t. This gives 
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A.3 

the solution f: 

t 

f(~)t) = F( ~\,(:g)-t\ i) = ~ a-t' q(~,,(!,*), oJ:') 

t 

= r .It' '(~G(~.(!,i),l'),!,) (A.8) 

The last integral in (A.8) can be re-expressed in some other useful forms 

by compounding partial evolutions. This last step depends on the time-

independence of HO,and it gives 

t 
~ cit' '}( ~, (!, i'-i:), .f:') 

(A.9) 

In the last integral we have set L = t'-t. 

The fact that (A.9) or (A.8) satisfies (A.2) may be verified by direct 

substitution. 
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Problems on Lie Transforms. 

Problems 1 through 4 are designed as a review of some relevant features of 

Hamiltonian mechanics. If you are familiar enough with the material that 

these problems are trivial, then simply state "trivial". 

1. Show that the product of two canonical transformations is canonical. 

Use the definition of canonical transformation in the form (3.14). 

2. In deriving (6.29) from (6.28), the following theorem has been used. 

Given three phase functions A,B,C, evolving under a Hamiltonian H, such that 

A = {B,C}, then 

... . 
A = {B,C} + {B,C} 

The dot means total time derivative, e.g. 

• aA 
A = - + {A,H} at 

Prove this theorem. Use only the algebra of the Poisson bracket, i.e. don't 

write things out in component form. 

3. Take the harmonic oscillator Hamiltonian, 

H l( 2 2 2 ) ='2 p +wq 

and solve for q(t), pet) in terms of qo' PO at t~O. Show that the trans

formation (qo'PO) -+ (q,p) is canonical for all values of t. 

4. Solve equation (3.37) and show that a solution W generates (3.33). Don't 

worry about branches, i.e. signs of square roots. 

5. Consider the non-relativistic motion of a particle of charge e and mass m 

in the following magnetic field: 

1\ 
~ = (BO + Sx) z 
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where BO is a constant and S is a small quantity. Neglect the motion of the 

particle in the z-direction, i.e. treat the problem in the two perpendicular 

directions only . 

Write down the Newton-Lorentz equations of motion for the particle in 

2 

component form. Transform these equations to a set of first-order differential 

b fh ..•• T h .. 1 equations y means 0 t e Substltutl0n Vx = x, Vy = y. reat t e terms contalnlng 

S as a perturbation, and note that the unperturbed system is a set of linear 

equations, while the perturbation introduces a non-linearity. The unperturbed 

system is periodic (not only in configuration space, but also in phase space.) 

Observe that the system is in the form of equation (4.7). 

The preparatory transformation for this system will bring it into the form 

of equation (4.8). Show that the following transformation will do this: 

x w e x = + - cos 
rlO 

Y w e y = - - sin 
rlO 

v = -w sin e x 

v = -w cos e y 

where rlO = eBO/mc. Observe that this transformation allows the solution to the 

unperturbed system to be written down immediately. Use this solution to give a 

physical interpretation of the new variables (X,Y,w,e). 

Finally, average the equations, to bring them into the form of equations 

(4.35). Interpret the results physically . 

6. This problem is the same as problem 5, except that it uses Hamiltonian 

mechanics. Show that the following vector potential gives the same magnetic 
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field which was used in problem 5: 

Use this vector potential in the standard Hamiltonian for non-relativistic 

charged particles in a magnetic field. Expand H in powers of S and ignore terms I 

which are O(S2). 

The Hamilton-Jacobi equation for the unperturbed Hamiltonian can be solved, 

and one such solution gives the following transformation: 

:lc::: -'- (~ +..fi? <!os e) 
vm!2o 

The new canonical variables are (Q,P,8,J). Show that this transformation is 

canonical by appealing to the definition (3.12). In doing this, it is easiest 

to compute the Poisson brackets of the old variables among themselves with 

respect to the new variables. Transform the Hamiltonian to the new variables, 

and solve the unperturbed system. Use this solution to give a physical 

interpretation of the variables (Q,p,e,J). 

Finally, average the perturbing term in the Hamiltonian, write down the 

averaged equations of motion, and interpret them. 

This system is something of a hybrid, in the sense that one pair of 

canonical coordinates, the (8,J) coordinates, represent periodic motion, while 

the other pair, the (Q,P) coordinates, may represent unbounded motion. Hence 

only the first pair are action-angle variables, and the Hamiltonian does not 
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fit the form of equation (5.2l), although it is similar in spirit. 

7. Carry out the expansion (6.50) to'third order. Also, find the inverse 

(6.51) to third order by using the method in the notes. Show that it agrees 

with the rule on page 6.19. Multiply the two series together, keeping all 

terms through third order, and show that the result is the identity transformation. 

8. Carry out (7.11) to third order. Don't worry about proving that it is valid 

for the time-dependent case. Save the results of problems 7 and 8. You may 

need thym some day. 

9. Consider the following Hamiltonian: 

where 

+ c.c. 

This Hamiltonian differs from (7.52) in the following ways. First, it is 

3-dirnensional. Second, complex notation is used. The quantity ¢ may be complex, 

which allows for an arbitrary origin of phase for the wave. Third, the 

amplitude ~ is not constant, but is rather a slowly varying function of ~. 

Both the dimensionless quantities £ and A are small, but A is to be 

considered much smaller than £. We will expand results to order two in £, but 

keep only order zero in A. This means that we are examining one particular 

corner of parameter space. 

Use Lie transforms to transform this Hamiltonian H into a new Hamiltonian 

K, which is to be independent of time. Since the form of the function ~ is not 

specified, it is to be expected that K will also involve this unspecified 
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function, and hence not be solvable. It is, however, easier to interpret than 

H . 

~ Begin by finding the Lie generator wI. Use the ,rules of Appendix A to 

l express wI as a semi-indefinite integral (i.e., the lower limit is indefinite) 
,.." 

involving the unspecified function~. Show that an integration by parts will 

convert this integral into a power series in A. Do this and keep only the terin 

which is order zero inA. 

Then find KI , K2 and w2. Use the expansion of the T operator, given in 

chapter 6, to express the old variables x,p in terms of the new variables ...... 
2 

~"f" through 0(£ ). Drop all terms of order A. The new variables :s' ,e' 
are sometimes called i'oscillation center" variables. 
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