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ABSTRACT

The nucleon-nucleon scattering amplitude is discussed within the
framework of the strip approximation. Asymptotic bounds to the behavior of
the amplitudes are derived, and are applied to limit the number of 'allowed" ‘
single spectral functions to six and correspondingly to limit the types of dy-
namically independent one-particle states. In particular, it is found that the
pion is in this sense allowed, whilst the deuteron is not. The unitarity_ equations,
in which only two-particle intercalated states are retained, are explicitly
derived in both the N-N and N-N channels. The N-N equations express a |
a portion of the double spectral functions in terrﬁs of the w-N amplitudes; the

N-N equations e)ipress another portion of these functions through coupled

integral equations.
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I. INTRODUCTION

In recent years the study of strongly interacting systoms of pafticles
has abanooned the paths of oonvehtional ﬁéld theory, and éought to build a v
theory on the basis of an as.suroed analyticity property of the S matrix, to-
gether with its runitarity. In particular, a ffamework of approx'iniation has

been proposed (1) on the basis of the Mandelstarﬁ representation (2), and an

approximate form of unitarity in which only one- and two-particle intercalated

states are retalned and this has been apphed to the study of plon pion scat-

tenng (1) and of plon -nucleon scatter1ng (3).
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It is the purpose of the present paper to extend. thls techmque to nu-
cleon=nuc1eon scattering. Th1s problem has a.lready been stud1ed w1th_1n the
frarhework of S-matrix theory (4,5), In GGMW however, the emphasis was
on a study of the individual partlal waves. This approach while admirable
for an understanding of low-energy phenomena, is severelyv limited at high
energies when many partial waves contribute. However, at these high energies
the most interesting phenomenon in the‘ physiczﬁ region is the pronounced dif-
ffaction peak, a phenomenon common toallvknown' scattering cross sections
for the strongly interacting fam>ilyvof particles. Sinc‘e the interesting physics
is confined to a portion of the physical region in a strip around the bordef P
.thereof, it is hoped that evaluating the sinéularities of the amplitude in a
region forming a similar, nearby strip in the unphy-sical‘ region (Fig. 1)
might lead to a good approximate description of the amplitude. This is the
basis of the'Strip approximation” of Chew and Frautschi (1).

| The double spectral functions in the strips are determined by a con-
sideration of unitari‘ty., For the strips parallelto t =0, u=0 in,Fr;;g., 1
{the pre01se meanlng of the notions and quantltles mentioned here will be
made clear in the‘ sequel), the relevant un1tar1ty condttlon is that for nu-
cleon-antinucleon scattenng, and in particular those centnbutmhs wh‘lchv
.arise from two-pion intercalated states. 'fhis introbdulces the absorptive
parts of the pioh-nucleon scatteri.ngva.mpﬁtuvdes, and these are cohsidered as )
“gliven., " | | |

The remaining strips parailel.to s =0 are vdetermivned.by a selution
.of.the i.ntegra..l equatiehs_ axi'isingv'fvrom unitarity in vthe hucleoh;nﬁcleon channel.
Alternatively, the previously determined strips can hel used to define a gen-

eralised potential (6) which can be inserted into a Schrddinger equation for a

determination of the low-energy part of the nucleon-nucleon scattering amplitude.

W
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The main purpose ofthis.paperistset up the unitarity equations in both
the nucleon-antinucleon and nucleon-nucleon channels which determine the
double spectral functions in the strip region. Before we can proceed to this,
however, it is necessary to discuss the kinematics in some detail. This is
done in Section II, where we also introduce a number of different sets of
scalar _;Eunctior_ls that can be used to specify the amplitudes.’

The crossing relations between the amplitudes describing nucleon-
nucleon scattering and those describing nucleon-antinucleon scattering are
derived in Appendix A, These relations could have been taken directly from
GGMW; however, we felt it would be of interest to present an alternative
derivation that leans less heavily on conventional field theory. Also in
Section II, on the basis of results derived by GGMW, we express the analyti-
city of the amplitudes. This at first leads us to consider the general sub-
tracted form of the Mandelstam representation (Eq. 2.5) for the amplitudes.

This form, with its many independent spectral functions is clearly
cumbersome for our purpose. It may also be dangerous. Perha.-ps the

simplest way to understand this is to consider the effect of an extra or

redundant subtraction.  This is to introduce a new subtraction term which is
completely and uniquely determined by the weight function of the integral in
which the redundant subtraction was made. Since a priori we know.only the
general form of the Mandelstam representation, the number of terms and

their weight functions being unknown, we are faced with a dilemma. For if we
postulate 'too large' a number of subtractions compared to the ''actual"
number required, the supernumerary weight fuﬁctions, which should be cor-
related with the others, will appear as independent quantities to be calculated;
in fact, the set of weight functions is overdetermined, a particularly dangerous

‘situation in any approximate scheme 6f calculation. - On the other hand, if we
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choose "too few!' subtractions, the integrals we write down will be .divergent.
.. Froissart (Z) has shown for scalar particles 'lthat-a.'weak form of .
unitarity can severely restrict the number of "independent' single spectral;
functional and polynomial terms in the Mandelstam representation_in: the
following sense: --any additional such terms ("allowed terms') must be de-

termined completely and uniquely by the double spectral function. The

alloWed terms may always be deterbmined by considering the unitarity re-
quirement in a:suitable number of individual partial waves, and a solution .-
of the ‘resulting N/D equations (8), but only up tq- the inherent ambiguity

of the. CDD poles (9).

This has led us to consider, in Sections III and IV, meodifications to
the Froissart arg_urnént appropriate to -a consideration of the nucleon-nucleon
problem. To do ‘this, we ﬁrst place asymptotic bounds on the amplitude
(Section III). . We use a partial-wave expansion of the helicity amplitudes
‘and assume a maximum range of appreciable interaction, é.nd also assume
that diffraction scatteriﬁg dominates the elastic scattering at high energies. 3
.Then in Section IV we apply these bounds and conclude that the allowed single
spectral functions are six in number, and that theré are no allowed poly-
nomial terms.

In the nucleon-antinucleon channel there are four allowed single
spectral integrals. The partial-wave unitarity equations relevant to their
determination are.the J = 0 singlet and triplet equations in.each isospin

" channel. As we have observed, their solutions are ambiguous because of

the possibility of CDD poles;, this corresponds to the possibility of dynam- .

ically.independent mesons' being present, the Born terms arising from ex-
change of which give just such poles. Our restriction to just four allowed

single spectral integrals in the nucleon-antinuclecon channel limits us then

W
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to just foﬁr kinds of allowed dynamically ihdgpendent mesons of nucleon--
number zero, and they turn out to be the scalar, pseudoscalar, isoscalar,
or isovector mesons. This is discussed in Section V.

We observe that the pseudoscalar isovector pion fits into the class of |
allowed' particles. 'All particles of spin higher than zero are excluded,
however, an extension of results previously derived for the pion-pion and
pion-nucleon problems. In particular, this means that it is not legitimate
to simulate the exchange of a cluster of resonating pions ina J = 1 state
(the p,w, or m "particles') by including the corresponding Born terms in the
amplitude, uncorrelated with the form of the double spectral functions. 'The
only consistent way to take account of such exchange is to use the recently

proposed technique (10) of utilising the Regge (11) continuation of the amplitudes '

" (11) in the complex angular momentum. Such resonances are now represented

by "Regge poles', or poles in the complex angular momentum plane.

~We are left with the two single spectral integrals in the nucleon-nucleon
channel. These contribute only to the lso and :‘3p0 partial waves of the isovector
part of the amplitude, First we observe that the two have nothing to do with
the deuteron: as we might have anticipated, the deuteron can bé nothing but
a dynamically dependent particle—we might say loosely that it cannot be
considered an elementary particle.

- In Section VII we find that the structure of the unitarity equations for
nucleon-nucleon scattering forces the presence of single spectral integrals
in just these two partial waves, - Specifically, Eqgs. {(7.34) and (7.35) are in-
consistent with the vanishing of the single spectral function terms contained
in hl, 5 (p‘z). "-We are at present unable to exclude the possibility of "CDD

ambiguities in these two partial waves. However, it would be most reason-

able to insist that no extra paraméter be introduced, so that there are no such
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CDD poles, since it is expect_ed that no independent parameters enter“into": L
the final equations of S-matrix theory. .

‘It is interesting to observe that again in this problem, as previously
in the pion-pion and pi-'on_—np.cleo"ﬁ problems, it is possible to exclude dynam-
ically independent particles with J21. About 'I;'articlesawith J<'1 we can as
yét say notﬁing. .rFurthermore, the;e isl a chain of consis;tency: if we assume
b/that the piqn-r_mcleon amplitude has single sf)ectral functions c'ofres.ponding
to J = 0 in the cfossed channels, which are allowed by Froissart type of
argument (3), one is forced to assume the presence of similar terms in‘the
crossed channei of nucleon-nucleon _scaftering:.

We shall thgﬁ_a,dopt the following philosophy. The Mandelstam repre-. .

sentation will be written as a sum of unsubtracted double spectral integrals,

together with just those single spectral integrals allowed by the arguments of
Se‘.ction IV, Egs. (8.1) and (8.2). The single spectral functions in the nucleorn-
ant_inucleon chapﬁel are in priﬁciplg determined directly from pion-nucleon
scattering. They will in particular contain the §&-functions corresponding to
the one-pion pole. |

The doubi_e spectral functions are to be determined from the equations

of Section VIII. The contributions from the nucleon-nucleon channel result’

from the solution of coupled integral equations. It may happen that the so-de~ "

termined double spectral functions lead to divergent integrals. In this case,
one is faced With the possib_ilitir of making subtractions so that the double °
spectral integrals converge, but one would then have to resort to N/D- t'jrpe -
calqulatiéns to obtaiin the subtraction terms, with the -resultant CDD am-
biguities. Alternatively one could use the analysis in terms of _“Regg‘e"polgs‘”
(10) giv_ing a unique meaning to these formally divergent integrals, hopihg to

obtain in this way a unique determination.
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This situation will presumably ariseé in the nucleon-nucleon problem for
the case of the deuteron. We have already indicated.that it cannot be introduced
as a CDD pole, since its origin is dynamical, it having nbthing to do with
allowed single ‘spectral functions. “Its introduction as a ”Regge pble" Would
seem to be the most satisfactory. Since in this paper the solution of the '
equations for the double spectral functions is not attempted, we shall not
pursue this point further.

In Section VI the unitarity equations for the nucleon-antinucleon channel
are derived in the two-meson approximation, and in Section VII similar |
equations for nucleon-nucleon unitarity are obtained. In Section VIII the
equations for the double spectral functions are discussed and summarized.

Finally, the Yukawa poles and the simiolest box-diagram contributions
are derived in Section IX. The simplest box-diagram contributions calculated
from either nucleon-nucleon or nucleon-antinucleon unitarity with two-particle
intercalated states are shown to coincide in the region where both apply, thus

affording an internal consistency check.
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II. KINEMATICS .

A. Kinematical Variables.

We are primarily concerned here with the elastic scattering of two
nucleons. 4 .Because of the substitution law wel will. have also to consider -
the amplitudes for the elastic scattering of‘a=m.1c1eon_and'.an_antinucle_on.

The __fop.r-mgmenta in either of these processes will be denoted as .. -;
Pp» Py pl’ ’ pz' . These will all be sensed into the scattering diagram, so
that if p =. (pos P); .then #p, is the energy, #p is the momentum ofv the cor-

responding pé.rt_icle, the + sign.applies to an incoming particle, the -:sign,

to an outgoing particle; and conservation of 4-momentum reads

Py + P, tpy! +p,! =0. o - (2.1)
Eac_h.ofcthese p's sqi_q.a.res5 to mzc We neglect the proton-neutron mass
difference. |
- We define the customary three scalar invariants as
s =(p; + 102)2 .
t=(p; +p1')2, :
2 (2.2)
u=(py +pP,')
s+t+u= 4m2
This constraint will always be understood, even when s,t,u are considered

as complex variables,

The nucleon-nucleon scattering process is described by incoming

momenta p;, P, and outgoing momenta -pl”, ~=p2' (Fig. 2). The

Mandelstam parameters are related to the common parameters for nucleon-

nucleon scattering by
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4E% = 4(m® + p9),

w
1

t = - sz(l-Z),

2
m_zp (1+Z):

c
!

2
.,Bf =p z,

z = cos 0,

o=

y = (1 - zz) =sin 6 20,

Py = (E.p) by = (E.-py)s Py = (-E.=pg)s by' = (-E, o),
where Ri’ Ps ., | i:), E,0 are the c. m. momentum of the i‘n<.:ident pqrticle
mlr of'tl.'le: scattered particle "1}t their absolute value, the c. m. enérgy of
one particle, and the c.m. scattering angle, from Bi.’ t6 Ps . The physical
region for this process, Ezm, -1 <z <1, is giVeh by t <0, u sd, in

Mandelstam parameters. This range of variables and the nucleon-nucleon

process will in consequence be frequently 'designa;ted as 'the s channel'

The nucleon-antinucleon scattering process is related by éi‘ossing to

the nucleon-nucleon process if an outgoing nucleon line is converted to an in-

‘coming antinucléon line, and an incoming nucleon line is converted to an out-

going antinucleon line'—'-.thé details are discussed briefl'y:in Sectioﬂ II-B below, .
and more extensively in Appendix A, Which nucleon lines.are so converted is
a matter of indifference, owing to thé Pauli principle. We follow GGMW,

and choose ,pl' to be the -4-momentum of the incoming nucleon, pze the 4-
momentum of the incoming antinucleon, - -pl-? the 4-momentum of the outgoing

nucleon, and :p, the 4-momentum of the outgoing antinucleon (Fig. 3). Thus,

- the subscript. 2 designates the antinucleon. ' The 'line' of particles 1 is

"unchanged"; that of particles: 2: is. described’ "backwards in-time" in the
sense of Feynman. Another mnemoni-c-advantage of this convention for cross-

ing is that-t is still the momentum-transfer variable:
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u = 4E% = 4m® + 59) ,

s = - 252-( 1 +3z), o : o (2.9
— — —Le
BB TPE
Z = cos @,
1
- _22 .
y=(l-2) =sin6 20,

_a._nd
p, = BB by = (E,-p) » py' = (-E. =By p, = (-E.pp
where Ei’éf" P, . E, and 2 are the ¢.m. momentum of the ix}?ident“m%cléon,
that of the emerging nucleon, their absolute value, the c. m. energy Qf ‘one;
particle, and.the c.m. scattering angle from p; to Py The éhysical_region
for this process, E2m, -1 <z <1, is given _through the aboye traf‘nsfor- '
mation by s $_0,,t_ <0, in Man_del?tam .parameters, g. range \vavhich> W_.e'willll
describe as the ' u.channel.
The region s <0, u <0, or 't channel, " also descr‘ib‘e's( nucleon-_anti_-
nucleon scattering, .as may be seen by the P?.uli principle_,. G;—_par:"x.t'yv feﬂeétion,

or direct employment of a different convention for crossing.

B. The Mandelstam Representation

We' follow Maﬁdelstam(_Z) ‘and GGMWé,-in postulating analytic properties
for a set.of basic amplitudes for the 4-sriucleon-1ine procesées ofvnucleon-nu-_ _
cléon ‘and "nﬁcleozi'#-antinuC'leOn scattering. ‘Inthe following subsection several
‘alternative sets of such amplitudes will be defined. Their analytic properties
will all be deduced from the GGMW result that :thése of one such set, thg |
HEn ;a.riiplitudeS’?, satisfy a Marndesltam representation... : .

The "Mandelstam amplitudes' are functions of-the complex variables

s,t,u (subject to the constraint s 4+t + u =4 m.’ ), the singularities of wh;.ch- :

.correspond to the thresholds of physical processes. For our problem, with
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four external nucleon lines, they have representations of the form

Q N N P (st th)
(s,t,u) = ——Z-—J ds'[dt!
s'Nt'N(s'-s)(t'-t)
N N , ptu(t' u!
+—Z——-J dt!Jdu'
t'Nu'N(t' -t) (uf-u)
NN , p__(u', s')
+ _Z_u 5— J du'[ds? N ;s
u u'" s!' (u'-u) (s’ - )
(2.5)
M M ! M tf
+ = {s tp ds! p.s(‘s) + t up i ag! pt( )
p:O.. m SIM(SI -s) tﬁM(ti -t)
M p._(u')
;U ﬂs | du!
u' (u' -u)
R PR
+ zi,j=0 le st

We have written the most general subtracted form (7) c'onéist‘ent with

the above-stated analyticity property. The welght functlons o ' Py

st’ ptu

the double spectral functions (dsfs),@re real and nonzero in reglons asymp-

totlcally bOunded by s' = 4m , = 4u2, u'! = 492, where pois the pion mass.
The S1ng1e spectral functlons ( ssfs ) Pgr Py P, arTe also réél, and may be
nonzero for s'ZmDZ, tizpn , ut Zp.z where mp is the mass of the

ligfltest staté of nucleon-ﬁunﬁber 2 (physically, of course, the deuteron).

in Sections VI >af1d VII we pre.s'eb'nf uni;ca;‘ity reiatidris that défermine
the ‘contr.ibut'i‘ons to the dsfs éoming from Landau (1_3,): - Cutkowsky (14) u
diagranﬁs Wthh .havé tWo—particle ini:.erfnec:;liaté states; For the .m’J.cleon-
nucleon channel, these are of the general form of Fig. 4, and for the nucleon-

antinucleon of the form of Fig. 5. We note that the simplest box diagram7
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(Fig. 6) has two-particle intermediate states in both chaynr;gl_s,

In Fig. 7 the stippled regioﬂs A of the dsfs have contributions
from Landau-Cutkowsky diagrams that have more than t\}v'o‘-.particle fntér-
mediate states in all channels: we call these the 'inner regions.'" The “’
regions B with vertical cross-hatchihg_have_contributions from diégr_ams
of the form of Fig. 4, i.e., those wifh two nucleons in the intercai_ated
state in nucleon-nucleon scattering. The regions C with horizontal cross-
hatching have contributions from diagrams of the form of Fig. 5, i. e., those
with tw§ mesons in the intercalated state of nucleon-antinucleon scattering.
The simplest box di_;i_'grams (Fig. 6) make contributions ;hroﬁghout the region
of rionvanishiﬁg dsfts, ingluding the unsha'-de.'d, crescent-like regions of
Fig. 7.

The ssfs will include .the 6-functi§ri,contribi1tions from one-particle
intermediate states in Landau-Cutkowsky diagrams of the form of Fig. 8.

In particular, there will be §-function contributions corrgsponding to the
one!-p;;on s‘tat.e.sv ip P, and P, at t' = pz, u' :pz, ‘a.nd, in prir:1cip1e at any
rate,_the.d_euteron. §—fu§ction at s' = mD? in p‘s, ,, v

_ The 'dguteron term has_ been discussed in Section I. In Séction IX we”
givg the ypne;éioﬁ éontribﬁtions, and also ciiscuss the simplevst box .c-iiag“r_a.rns’. |
Thesg are of interest because, as Wev have seen, their contributivohs‘ ‘Eo thé -
dsfs may be Ca1c1:11at¢d by aéplying the unitarity cond;ltioné With t.wo—v;;article
intercalated states in :eithe;' the nucl_eon-nﬁcleon, or the ﬁucleon;anfinucleon,
channels; the ur;sha.dedpr‘e.sce'ntli%(ev regioﬁs of Flg 7 ovc;:ur in the stri‘ps.
parallel .'Fo_ bf)_th_ s =0 aﬁd_ u=20 (of t = O},, Thus it has to be confirrped that | “g

the two &e

Kl

rivations of the”simplest box-diagram contributions to the dsfs

agree.
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A complete solution of the nucleon-nucleon problem would require
complete knowledge of the dsfs and of the ssfs. However, we hope that

the nature of the dsfs in the inner regions has only a small influence on

.physical nucleon-nucleon scattering when either the energy or the momentum

transfer (direct or exchange) is not too large (1); i.e., w'e' hope that ﬁear

the boundaries of the physical regions the amplitudes in the physical regions
are 'coﬁtrolled by the behavior of the dsfs in the "sfr‘ipﬁ” regions to good
approximation, vn'ame‘ly, those dsf regions, éomplementary to the mysterious
inner regions, where in at least one channel the unitarity condition with only
two~particle intercalated states is correct. ‘Were we to know the absorptivé

parts corresponding to the 'blobs' mmFigs. 4 and 5, these jjarts of the dsfs

could be calculated precisely from the unitarity ’equati’bns (8.4, 8.5, 8.6).

For nucleon-antinucleon unitar.ity,v the approp’fiat'e abs'orptive parts
are for pion-nucleon scattering, and we shall regard thesve_ to be "g.i.venv.v
input data. For nucleon-nucleon uni'tai'ity, ho;avever,. the absorptive pai'ts
are still for nucleon-nucleon scattering. If we suppose that the inner rggions .
6f the 'd“sfs may be neglected even When cé.lcuiaﬁng the relevant absorptive
parts, we can set up a set of coui)vled integral equations for the dsfs in the
strips parallel to s = 0.
The ssfs p., p, will be considered as given, since théy are de-
termined by the amplitudes for nucleon-antinucleon annihilation into one pion.
The ssfis p, are in principlé ‘determined by integral equations derived

from the nucleon-nucleon unitarity relation. ‘Especially, the emergence of

the &-function corresponding to the deuteron should be indicated; we have

" touched on this subject in the introduction.
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C. The Various Amplitudes

‘The S matrix for nucleon-nucleon scattering is
S=1 +iR, o . L(2.6)

-2 :
= (2m) 6( )(p +p2+p + pz’)m E T s (2.8)
Followmg GGMW we wr1te

=[F . 0(s-85) + F2 (T+T) + F3 O(A-R) + F4 (V4V)

+E, (Pfﬁ)]‘fBO N -
HEE-8) + FHTHT) + Byl (AR) + FLVAY)
+F Lp-P)] L,

where |
8= {u( -P,' )u(pz)} tul-p, )u(pl)} | L
T =4 {ul-p,") (1/20) v, v,] u(py)} {ul- pl’) (1/21)[Y v, ] ulpy)}
A ={ul-py vy ulpy)} Wl-py Nivgy, (0}, (2.8b)
Vv ={up, e, ey v ule)}
P = (W(-p," ) v5u(p,) (b, Ivgulp))}

and . . . . ; . .
‘§.={,H'<-p_1v')§,(pz)}{ia<-‘1o2!)u(pl)} , and so on; | o V('?_-.Sc)_

~ ~

that is, the expressions for S, T, etc., are obtained from those for S, T, etc.,
by interchanging the spinors under '"bars.'™ This is equivalent to the linear
transformation of Fierz:

- — ~ r A

S 1 1 1 1 1| |s
T 16 -2 0 o 6| |T
[Al=2 |4 o0 -2 2 4| |a (2:9)
v |4 0, 2 2 4| |V
P 1 1 -1 -1 1| {P
L i 171
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The isotopic spin projection operators in the s channel are
Mo 1 (2 :
B - %(1_ I( ) . 1( ) ) ,

fBl = (3 +7(1) . (8 .

~n o

(2.10)

We will in the sequel employ the notation Fi for the Dirac operators
1, (1/2i '\[_2)[ YH’ v V] ) 1\(_5\(“, YH’ Y5, in that order, withi = 1,2, 3,4, 5,, and
contractions understood, so that we may write (2.8a) in the more compact

form

T=5p, utop) ) 2 7l + 0 T, U0 R ue)) uey)
(2.11)
where % is the Fierz matrix of (2.9). . -

The helicities, spinor phase conventions, and 3-components of
isotopic spin which specify a given S-matrix elemen’_c of clear physical
meaning determine the choice of the spinors u which enter into the forms
S, T, etc., whereas the FiI(s,t,u) are ten Mandelstam-amplitude "'4-point
function form factors® dissociated from the particular spinors u.

The Pauli principle—namely, that the S-matrix element be odd under
interchange of all quantum numbers of the two particles in either the initial
or in the final state—assumes the form

FiI(A) - (s)iHFiI(B), | | o B (2.12a)
if A and B aré Pauli-conjugate points on the Mandelstam (s,t,u) diagram;
i.e., for

s(A) = S(B), t(A) = u(B), u(A) = t(B); (2.12b)
in brief, N ] |
i41

FiI(s,t,ti) = () FiI('s,'u,t) . (2.12¢)

A

Equation (2.12c) is easily obtained in the s channel, and then follows generally
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. / .
by analytic continuation for pairs of (s,t,u) points (A; B), where . A is reached
by a path in the complex (s,t,u) space, B by a .‘con'currently described path
‘thrbugh Pauli-conjugate points, and where one and hence both paths do not
meet a singularity of the relevant amplitudeé. Thus when the points ‘A and -
B have reached values in the physical regions of the u and t channels
respectively, Eq. (Z.Iéc) supplies a symmetry condition for nucleon-aﬁti-'.
nucleon scattering: this is the same symmetry as that 1mp11ed by G par1ty
GGMW argue in Sectlon III of their paper that the F are, in fact,

‘Mandelstam amplitudes.

- We shall usually employ the G amplitudes of GGMW, defined by

1 I
= (G F)ij Fj , - - (2.13g)

where the matrix (G F) is given by9

T 1 o0 4 o0 1 |

(G F) = i 1 0 -2 o0 -1 [|. (2.13b)

Since the | G é.mplitud.es are related to the Mandelsfam ampliti:.des F
by a numeric matrix, they also are Mandelstam z‘a.mplivtudes. Since (G F)
does not involve 1, and has zero entries for all i+j odd, Fthe conditions of
Pauli syihmetry are unaltered: | |
i+l

GMs,tu) = ()G (s, u, ) | (2.14)

A\ TS

The complicated relationship of the G and ‘' F amplitudes to the
helicityv quantum numbers is clarified by the introdu;tion_of helicity amplitu,desb
$(15). If we have _ | |
| T 4an E/ﬁz) §, - | (2.15)
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then in the c.m. system we obtain

_\/\')‘1" PRl RIS PAN N BSTIR TR JF p2>

- <"1" MU pe L3 M )‘2;2'1>' o (2.16)
and
do (M ', N5 pe A Ay p;)/d@

= | (0 N 3N, xz;gi>lz | (2.17)
is the differential cross section per unit ¢c. m. -system solid angle for the
process in which )xl, )‘2. are the initial helicities, )\1', 7\2' are the final
helicities;l p;» -p; are the iﬁitial momenta,. and P -ps the final physical
momenta., We will take the plane from which azimuthal angles are measured
to be the plane of Py and AIE and in fact assign Euler angles (0, 0, 0) to the
initial sta_lte, (0,8, 0) to. the final state, to define our ¢ amplitudes:

(M NP A Ny B) = Oy % ] e8) [N, Ay (2.18)
i.e., the ¢ amplitudes are obtained by using spinors u of definite helicity
in Eq. (2.11), if the faétor m2/4nE is prefixed for the purpose of giving an
amplitude which simply squares to dg/dQ. If the factor m2/41TE is not
prefixed, vwé have "7 amplitudes. In either case, we use an a‘ppropri'ate
linear superposition of isotopic-spin spinors to produce a definite total
isotopic épin I in the s channel.

‘The sixteen choices of helicities yield sixtéen ¢ amplitudes for each
total s-channel isotopic spin I = 0,1. Of these, only five of each sixteen
are kinematically independent, if account be taken of the invariance properties
of the nucleon-nucleon system, including the parity invariance. 10 After

GGMW, we use the names 4)1, cee, ¢'5 for these amplitudes:
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¢ = Golelz, 3) = (-5 -3¢ -2 -3
¢y = @z]e] - 2 -2) = (-2, -2 9|2 2);
¢3 = (2 -2]¢]2-2) = (-2 z]e] - 22
04 = @-zlo| - 3.3) = (-2 3] o2 -2
95 = (o 3ll3:-2) = (-3 2] ¢]3 )
= (-3 -z]¢]3 -zlel -3 -2
R L I e Y
=-n-zlel -n D = -G - glel -5 -2

UCRL-10028

By inserting the spinors of appropriate helicity into (2.8), and

inserting the pre'fixing factor (¢ 7) = m2/4‘rrE, GGMW give the ¢ linearly

in terms of the F; but we quote the ¢ interms of the G:

—

EZ
_EZ
: 1
(6G) = 5= | O
0
0

mzz m2 _ rnzz.
(E2'+p2)z --1rnZ m =z
m%(142)  -p°(142) E’(1+z)
mz(l—z) pz(l—z) Ez(l—z)
.—mEy 0 -mEy

0

(2.20)

This matrix introduces kinematical singularities, such as the branch

point owing to the factor l/E, so that the ¢ are not Mandelstam amplitudes.

It is easy, nevertheléss, to remove these singularities from the helicity

amplitudes one by one, if we allow different correction factors for different

¢;, to produce Mandelstam amplitudes X diagonally related to the helicity

amplitudes:
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2
Xy = Ep gy
2
Xp = Ep ¢2’
X3 = Em?(1 + Z)_lcp_,, . (22
2 -1
,x4_:Em (1 - z) 4’4:

3 -1
Xg=my ¢g.

We have here suppressed the label I of total isotopic spin, and this
obtains hereafter for operations that proceed analogously and separately for .
the two values I =0, 1. |

By computing (x G) = (x ¢) (¢ G) from Egs. (2.21) and (2.20),‘ one

does in fact obtain a matrix of elements analytic in s,t,u:

st 4w)  4mit-u)  -4mP(t +u) 4Ami(teu) o -+ )
s +u)  (s-tow) (tmw)  dAmi( 4w 4miE o) -+ P
X G) = . 0 (4m?)% 4mZ(t + u) 4mZs 0
0 @m%%  —4m®(t +u) 4m°s 0
0 _(4m2)2 ' 0 _(4n'12)2 0
(2.22)

This matrix, though of analytic elements, is not numeric. It bears
nonzero entries with odd i + j, so that the symmetry conditions imposed by

the Pauli principle are somewhat more complicated. If we define
I I I

Xy =X3 £Xy4 o | o (2.23)
then ' I A 1 1
SOy (sstu) = () e xS ust), SR (2.24)
with

respectively for

B (2.25)
i= 1’2)+,'95 .
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We take some care in the sequel to indicate in each section whether
our x amplitudes include X, and Xg4» OT X and ¥ )

- Another consequence of the fa.ct that the elements of (x G) are not
numeric is that many of the elements of (x G)-1 have poles. ‘Thus, although
a Mandelstam representation for the G will assure .on'e for the x, a
Mandelstam representation for the x does not in itself ensure one for the G.
In the sequel, we will find the y more useful for discussion of the asymp-
totic behavior of amplitudes than the G, because of the clearer relation to
physical assumptions about cross sections. So we will nevertheless make
use of the requirement of a Mandelstam representation.though weaker, for
the x amplitudes, and only after that impose the condition that the G be
Mandelstam amplitudes too.

The S matrix for nucleon-antinucleon scattering is

"S=1+1iR, . (2.26)
= 2m)? s® )(pl +p,’ +p' +p,) (m ik T (2.27)
7: (41 E/m™)5 . (2.28)
a5 (NN BT By)/aT= | (0L K B lEl M B ) 1 (2.29)
R E BVE R ) = (LT E N (2.30)
o = (3 15D = (5 5] F | -3 oD, eten, (231
as in Eq. (2.19), and
| T= (4rE/m%) 3 . | (2.32)

The phase‘s of these matrix elements are defined by computing the
matrix elements T of the operator T in the manner of Appendix A, where’
u andv are spinors of definite helicity, with isotopic spinors in a linear com-
bination of definite total initial and final {(and hence u chanﬁel) isotopic spin I,

are applied to the same matrix M(F) (Eq. A.l) used for the computation of

nucleon-nucleon amplitudes.
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If one uses positive-freque‘héy’”spi"ffgi”"s' u even for the antinucleons,
and compensates for this by defining new amplitudes F by ii{x}_posing the
condition that the }1=Spi<nor result comiauted from M(F) ag’;ee with the u-
and v-spinor results computed from M(F), one obtains the GGMW crossing
matrix (F F) after thé GGMW calculation.

We define amplitudes x by

X=6®e, | (2.33)
where the coefficients (x ¢) are the same functions of f, '132, z,y as the
(x ¢) of Eq. (2.21) are of E, pz, zZ,V. ‘

| From these definitions, it is possible to compute t‘he crossing matrix
(;(- X) = BZ_1 (see Appendix A) and its inverse (x x) = BZ; it is (x x ) rather
than (x x) which we will need so that physic'al' arguments on the forms of the
nucleon-antinucleon amplitudes ¥ Will bear on the mathematical forms of the
X -
Thus we have -1 3

B=4 ; B®=1. | (2.34)

From Eq. (A.14) we have



_2m’t ' _2m’t -s  [t+u +' su | _t? stu |
(s+t)2 (s+t)° am® |5 (s41)® stt mZ(s+t)3
-Zmzt : 1lt+u + su] ‘St v -tz stu
- (s+t) 2 |stt (s+t)2 (s+’c)2 ' (s+t)  m(s+t)”
2.2
21 t+u + 8 4m4t : -ZmZSt Zm t 'Zs"‘t.;:' _ (2.35)
u(s+t) (s+t)“ u(s+t) u(s+t) u(s+t) (s_+t)f' :
-4m4 -4m4 Zmzs t+u _ Zr_nzt 2su
2 N
(s+t)° (s+t)2 (s+t) St (s+t) (s+t)°
2. '
4m4 ‘ 4m4 _zmzs _ Zm t 4m2t -"su
(s+t)° (s4t)° (s+t)° (s+t) (s+t)° |

82001-T¥DN
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Both x and Y amplitudes are:here understood to bear thée subscripts 1, 2,
3,4,5.
If we extend the list of barred amplitﬁdes to G ‘a1!r1d ? b‘y putting
(GX) (s,t,u) = (G x) (u,t,s), and (F G) _;"(f G), a numeric matrix, then the
F coincide with those defined in the ménner .remarked!on ‘abové, by GGMW.
We have seen this by observing that X F) (FF) (F )‘(:), cofhput'ed from the
simple numeric ma.trix (F‘F), as quoted in GGMW, 11a.gx"'ees with our matrix
(x x). In particular,. the numgric_character of (F.F) and (G G) trivially
ensure that the F énd the G a:re Mandelstam amplitudes, so that the
analyticity of the elements of x G) confirms thé.t the X aré ‘Mandelst.a'rn
amplit_ggiésfthe rﬂ‘atrﬁi}(_(zs()éontains vpoles thét w'ould otherwise put this con-
clusior; in q}‘iewstio:n.
| We quote the cr9§siﬁg matrix (G G) = (G G):
T =Ba,
1 6 4 -4 -1
1 2 0 0 1

0 2 2 -1|; a“=1. (2.36)

>
"

Ll
e
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III. . ASYMPTOTIC UPPER BOUNDS TO THE. x AMPLITUDES

*I:he partial-wave expansion. GGMW (4.8) for the helicity amplitudes

¢, and (¥ ), Eq. (2.21), give the partial-wave expansions for the ¥ :

.xl = pZ(E/p)EJ(ZJ +1) T‘lT dg,o .

/»xv2»= CIOLNC R FEF

X3 =m (E/p)zJ(ZJ +1) Ty a) | /0t (3.1)
X 4= m*(E/p)Z;(27 +1) T d j’l L/ ),
x5=m<m/p)z <2J+1)T 0/(1-z)

Ui)per bounds for the x may be obtalned through umtanty,

lT (3.2)

A
if a finite range R of éppreciable,interaction is assumed. We introduce
the simplest form for such an assumption, namely, that the EJ run»s,I for
fixed large p, to Jrhax =pRax $p ~s 2 . This, together with the explicit

expressions for the dJ (z) ,
m,n

dy o (=) = Pylz);
df’l A(z) =(l+2) /(I +1)) [PJ'(z) = (1 - 2) Py" (z)] ;
: (3.3)
d:Tl, p (2) = - z)/(J(T + 1)) [PJ.' (z) + (1 +2) P (z)] ;
al o @=-0-25Y g0 /) @),
yield the following asymptotic bounds:
. For fixed z, -1<z <,1’ as s - @ ,
x.l= oY, i=1,23,
(3.4)
XII =0 (53/4)’ i=4,5;

for z =1, as s—> w, or, more precisely, as s —~e while t is fixed <0,
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xleoe®), 121,24,

O - e BB
x;' = Ols), i=3,5. S
The situation for negative z, and in partieular for z=-1, is de-

dueible from that for positive z by means of the Pauli principle, Eg. (2.24).
As our arﬁplitude forms satisfy Eq. (2.24) identicelly, the asymptot»:v'.vc con-
ditions for z = - 1 which follow from (3.5) and (2.24) need not be explicitly
considered. They are given, however, for completeness.

We assume what seems phys‘_ically reasonable, _\Ez__, that at very
high energies the e‘la‘,stic sca,ttelji_ng is primarily diff_?eetion scattering. This
makes it reasonable to s‘treng‘then the above bounds so that O(sa_) i's replaced
by o(sa) except for__those amplitudes which may contribute to the coherent
forward diffraction peak.

The only amplitudes on which ’_che bounds will not be strengthened,
then , are those at z = 1 for which there is no spin flip or helicity flip--
these notions coincide for z = 1; specifically, ‘these afnplitudesdare X1
and ¥ 31., The amplitudes for nucleon-nucleon scattering at z = - 1 depend
on those at z = 1 in virtue of the Pauli principle, and may:be said to provide
an alternative description of forward scattering.

The isolation of individual helicity amplitudes evailable through use
of the x 1is crucial-in completely expressing physical assumptions of dif-
fraction scatteririg in their strongest form, because the coherent processes
are well separated; iinear combinations of amplitudes with distinct asymp-
totic bounds need be limited by only the weakest bound.

The asymptotic upper bounds are listed in Table I, which 1ncludes the

redundant results for z = - 1 for ready reference below.



_26- . UCRL-10028

The limits on the nucleon-antinuc.leon scattering amplitudes as the
energy variable u— «, for fixed z, .are derived similarly, and can in fact
'be read from ‘Lable I. The only change needed aside from the use of
(u; z )in place of (s, z) arises from the fact that the z = £ 1 amplitudes are
no longer kinematically dependent, so that the assumption of diffraction scat-
tering introduces o's at z = - 1 for all the ')Zil, as seen in Table II.

The behavior of the y as u - « follows from Table II and the crossing
matrix (x x), Eq. (2.34) . The isotopic spin matrix B is a nonsingular
numeric matrix which does not mix the different i, so that it does not in-
fluence asymptotic behavior: the isotopic spin index may be suppressed.

The asymptotic beha';v'iorl of the elements of the other factor Z in -
(x x) =BZ, as u -~ =, in the general, forward, and backward limits, is
readily obtained from Eq (2.34),. and-is as.follows:

For z fixed, -1<z <1, s and t are both proportional to u, and

B -1 -1 N
u u u 1 u
u—1 1 1 1 u
Zij =0 | ul u_2 atata . (3.6a)
u_2 u_2 al 1
H‘u_z u-Z u-l -1 I_J

T 2 .2 -2 T
u u u u 1
u‘Z 1 at u'Z 1 _
- - - - - . 3.
Zij=0 Wlow? w? gt ! ( .()b)‘
u“2 u-2 u-1 1 1
-2 -2 -1 -2
u u u u 1 _
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For z = -1, or, more precisely, for a fixed», t~-u,
u"l u-’1 uml 1 ' 1 ,
u”1 u_1 u;l 1 1
Zij =0 ue'2 u;cl2 uHZ u‘=1 u_1 . _ (3.6c¢)
' 2 -2 .20 1 -
u u u u u
-2 -2 -2 -1 -1
u u u u u

The resulting asymptotic bounds on the x é_;e listed in Table III.
Tables I_:a}nd IIT are pvrese_nted in ‘onérdiagram, in Fig. 9. The ‘dependencies
at t—> ware deduced from those as u—~= by the Pauli symmetry. These
asymptotic bounds will hen_ceforth be designated simply, a}.s, "the asymptotic

bounds. " o
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IV. THE ALLOWED SINGLE SPECTRAL FUNCTIONS

As in Froissart, (7), the difference Axil of two sets of Xil’ both
limited by‘ the asymptotic bounds, both satisfying general kinematical
properties of the nucléon;nucleon scattering amplitudes, and with equal
dsfs, will be shown. to have a special form involving only a finite number of
terms. Specifically, the're_sult, Eqgs. (4.31), (4.32), and (4.43) involve§ no
polynomial and six ssfs: two in the isovector s channél, and two in the
Pauli~-symmetric t and u channels, for each value of the total isotopic
spi;d. The above mentioned "general kinematical properties' are that the
x be Mandelstam amplitudes in the sense that they be given in terms of
subtracted dsf and ssf integrals and a polynomial in s,t,u, and, further,
that the corresponding G or F amplitudes also be Mandelstam amplitudes,
which necessitates that foui' linear combinations of the ¥ vanish at s = 0
or at s = 4m2 '(sée Eq. 4.30). These conditions may be understood without
direct reference to the G or F amplitudes if one requires the X amplitudes
to be Mandelstam amplitudes (see Appendix A).

The original general subtracted form of the AXiI can be written

M il il ey

Il m (P M Apsp(s )ds +uptM Aptp (t')dt
Xy = ¢ n M m ‘M,

p:O s! (S' - S) t (t = t)

P 9, il
tPs9A 4.1
Poq (4.1)

il ! 1
. Spu_M Apup (u')du X EL.
A ™ M p,>q=0

u' (u!® - u

The asymptotic bounds at general fixed angle limit this form to that
of Eq. (4.2) for i = 3,4,5, and to that of Eq. (4.3) for i = 1,2. The argu-
ment for i = 3,4,5 is precisely that given in Section 5 of Froissart's

paper, and will not be given here. The result is

~
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Ay ls,tiu) = 2 (tp-s Lp [ 'Apsp(s ) + ﬂuptlf"p & A'p'tp(»-t' )
i b=0 m (sl_s)sll-p e tt - t)ttl'P
b 1-p du'ApiI (') 11 v . .
P u J+ Appgs i =3, 4,5, (4.2a)
m (u'-u)u' 1B 0
. . 3/4 - p : : L
with the various App(x) =0 (x , ) . : _ (4.2b)
‘The result for i =1,2 is
_ 1 il. i _ y
Ay s, t,u) = .I%?/I (tpsz : [ T o) + WP fae Aty 1)
1 p=0\ m J (Su_.s)snz'p m (tl_t)tl'z"P
sPy%-P du'Apin N A S SIS il
t - Zop | T APgg tAP S T Apg by (4.33)
(uf-u)u'
with the various App(x) = o(x7/4'P), | (4.3b)

The argument for i = 1,2 differs from that for the other i only in
that the weaker asymiptotic bounds--7/4 powers--admit a few more terms

easily guessed. The detailed.argument follows:
1 M oo -
Im Axi = Z tpApsp(s) in the s channel (i.e., for t<O0,
’ p:() .

u <0). If the convenient vavria.ble_ A is introduced by z = cosf =1 - 2]\,

then t = (41’1’12 - s)\, and

may.l= £ (4m%-s)P\Pap  (s) =o(s"/Y,
i i — sp
p=0
as . :. s o for fixed 0, i.e., for fixed \. E?ch coefficient of )\pv B

must also be o(s7/4), whence

Bpy, (s) =ofs /ARy L

It follows that the integrals in
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P

M 1:ps2f'p ]ds'AplI (s?)
R . 8P
0 . (s[ - s)s,z"p

b
p':.‘
. . 7/4 : .
converge, with the pth term of(s ), and share a common imaginary part
with the - Ay iI in the s channel. - Similar argument for the t and u

channels establishes that

. ) .I
- i 2- TApYT (1)
A 1~__%,_,_t852 P ds'ApISIp(s’) uPteP dt ptp“(_t )
Xl - o 2-p t v 2_p

p=0 (s'-s)s! (t?-t)t?

p 2-p [du'Apil (ur):
o up 4.4
t 2°p (4.4)
(ut -uju'

has no imaginary part in any physical region, so that it is a polynomial
augmented by possible pole terms, and

The explicit coefficient of tp, for example, bears -an SZ-p factor, which

is a pole term for p=3. The expression {(4.4) is, then, of the form

M _

Zp:3 z tPs% 4+ uPt% 4+ sPulc )+ =k ap tPs?,  (4.5)

g=2-p jole] Pq Pq p,q=0 “Ppq

where the possible- pole terms have been gathered together in the first sum.
These all have p + g =2, so that at a fixed angle, with s, t,u mutually

7/4) . If one agdin putst = (4m2 - s)\, and

proportional, they all go > o(s
u = (4m2' - s8) (1 - M), it may be seen that the dependencies on \ of the dif-
ferent pole'térrris and '"of the terms in the final s um with P +’q 22 are suf-
ficiently different that eé.ch term must separately be o(s7/4),;-and hence zero,
if the sum is to be 0(s7/4). The sum must be o,(s7/4), because the integrals

in the original form (4.4) of the expression and the Ay iI are all o(s7/4).

Thus, (4.5) must reduce to
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Apgg T AP S + Bpg s o ineten
which establishes (4.3).
We argue that the terms of order = s‘2 in (4.5) must in fact separately
vanish-because of their different dependence on A\. The nonvanishing terms

of maximum value m = 2 of p + q, if they exist, are

ZN_I_ (tPs™ Pa - 4 uPt™ Py +sPu™ Pe )+ Z:L_ Ap tPs™ P
p=0 p, m-p p, m-p p, m-p p=0""p,m-p
=M ((4m?® - s)Ps™PAPa 4 (4m? - )™ (1-NPA™Pp
p=0 . P P
+ sP(am? - s)m“P(l-x)m'Pcp) + ZII;:OApp(‘LmZ _ s)Ps™P)P |

where the subscript g = m - p has been dropped for brevity. The coefficient
of s™ must vanish, for all A:
M p m pym-p m m-p_ |
z -Na_ 4+ (- I-NFN b_+ (- 1-X\ c
pemy1 ¢ (WFa 4 (71N o+ (NP )

) | + Z_oBp (-NP =0

Since g=m - p £- 1 in the first sum, we have m < p there, and this has
caused the lower limit of the first sum to'be m + 1, instead .of 0. Since

q. = m - p20 in the second sum, <m, which h.as cut the upper limit of
the‘second sum to m. ;The vanishing of the principal part of this function of
ANat A=0 requirés that the bp vé.nish; -the vanishing of the principal part
at A=1 reciuires that the Cp vani.sh;v and the vanishipg_of the remaining
polynomialgreq_uires that the remaining cogffic‘i;e.nt‘s, _f.he ép and the App’

vanish. It follows that there is no nonvanishing term with p + q = 2.
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The asymptotic bounds in the various forward and backward di-
rections, Fig. 9, and Pauli symmetrization, will now be applied. The -

cases i= +, -, 5, and 1=1,2 ‘are discussed separately:

A. The Cases i=+4, -, 5

In thivs subsection, Eq. (4.2) is fuftﬁer specialized.
It is convenient to consider
xt=x3tx4 (4.6)
in place of X 3 and X 4 beca:usé the Pauli 5ymmetrization_ié simpler; see
Eq. (2.24). |

However, the x_, in each asymptotic 1imit peed satisfy only the
wbeakest of the conditions satisfied by x 3 x4; .sf) that séme information is
conceivably lost, and if lost should be imposed at some later stage. The
final X4 neyertheless haﬁpen to be limited .‘b;'f\th"e' strongest of these asymp-
totic bounds, without any such further imposition of asymptotic bounds--
corﬁpare Fig. 9 and Eq. (4.18). This point will therefore receive no further
mention.

Except insofar as the asymptotic conditions to be imposed are Pauli-
symmetric, Pauli symmetrization will be deferred to the end, and until then
the isotopic spin indix wil‘l' be dropped. In this subsection, i will be under-
stood to run over the values +, -, 5 only, and i = 4, -, 5 will be handled to-
gether as far as possible, for brevity.

The condition (u—>e, s fixed < 0) will be abbreviated U, anvdv.
similarly for the other conditions. Oi‘der;of;magnitude asseftiox;s will be
understood to apply in the limit as the relevant variable tends to infinity.

In the limit Us, the variables lie in the u physical region,

X; = o(l), and so
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Im Ay, = =M pAps (-=0(), iz . (4.2b)
i p--—O
- whence each Ap;p (u) = o(l), which is, however, weaker than (4.Zb‘) ekce'pt '
when p =
Apuo (u) = o(l) . | | o (4.7)

The limit Ts also produces one new condition:

CsM o paio o
Im Axi = 2p"=0 u Aptp (t) =-0(1);

M

Z oot t)P Apt (t) = o(1) . L (4.8)

The new conditions' (4.7) and (4.8) may be used to reduce the number
of subtractions. Thus, by virtue of (4.7), the Apéo tefm in (4.2) will be

replaced by
u'-u

1 {du’ i i
Fj—- ApuO (u') + increment of Apoo . (4.9)

The Aptlp' sum is first transformed so as to isolate the largest

powers of t:

i
pM g [attag ()
T ZowE U T
p=0 (t1-t)t?
M L ordttapt @y
= % > (_t)P\tl"P» tp- (410)
p=0 (t'-t)t' 7P
M N L
+ %,2» {(4m?® - s - t)P=(-t)P] tPl_ -,
g p=1 tr-t)tr P

the first line of Wh1ch may then be wrltten

: dt' 1 p
p 0

E 1 ,.‘dt_' M . p L bans .
- 2 1
= jt—-——_t %) (-t') Apt (tl) + increment of Apoo, (4.11)
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by virtue of (4.8); the Apip sum will be replaced by (4.11) and the second
line of (4.10) .

The altered Apio term (4.9).and the ﬁéw Aptip sum a?e now.o(l) in
the limit Ts . The possible bad behavior has been moved into Apzo. The

o(1) bound for Ts is therefore simplified to

3|

M ) ds'Apsl (s') .

z tPg*7P p + Aph =o(l). (4.12)

p=0 I- 00
(s' - s)s?

Taking the imaginary part of the left-hand side, one sees that each Apslp(s)
vanishes, it being the coefficient of a polynomial in t which tends to
zero. .Then it follows that Ap(;o also vanishes.

The modified Axi are, at this point,

M
1 [dt?® _e1y\PA L ,
AX; T 7 [t'.-t 2o (t1)Ae, )
-
, M dt'Ap (t')
+%‘ T ((4m%-s-t)P - (t)p)[———-——t—l——f)—
p=1 (tF-t)t! »
| (4.13)
1 duf i,
+ ':I'T' uq_u Apuo(u )
M du'Apt (')
+ —11; =z P ul_p( U‘pl‘_
p=1 J (uf-ulu! P

The first, third, and fourth lines of (4.13) meet o(s ) and even o(s)
behavior in the limit ~S they are respectively O(1), o(l), and o(s /4). Con-
sequently, all the terms in the second line with p = 2 must vanish. For i =5,
where o(s) behavior is required, the p = 1 term also must vanish. vA’I‘he
bounds for Su are met by the fi"r'st: ‘three lines, | so that the p =2 terms in

the last line must vanish, and so must even the p =1 term for i = 5.
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The redefinition

2. i VoM PA B Ay
4m Aptl t') + Zp=0 (-t") Aptp (t") l—\pto(t ) =o(l),

(4.14)
by virtue of (4.8) and (4.2b), then leads to

- I, . - 1 (dt' i1 ., . 1 [du' il
Axy (s,tu) = 'ﬁfm Bero B+ 7 jyrmy Seyo (8
S (4.15)

(at' AT, s fdut 4D
IS aelh @+ 28 ad @,

S
m o j,u'-u
! B

where the isotopic spin index I has been restored, in preparation for Pauli

symmetrization.

The analytically continued condition of Pauli symm‘e"‘cry, (2.24), |
&) —Sm e o
T u(A) ='.vf(lB) =:.x',: B
A¢ u channel, B ¢ t channel,
x ) = e % 1B

implies

Im .Ain(A) = ei(-)I Im Ax'iI(B»)' . (4.16)

or

Aol ) + 5 Aol ) = ¢ ()N Bplg (%) - s Apy) (X)),

for a range of s. Therefore, we have

i I, il i1, I, il
Aoy 09 = € ()] Aoy () and 2ol] 00 = - () Ap 69

(4.17)
11 R O RN

X-u

o (4'-5'.’183.): .
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where
Aphx)=Agil () =o(l), (4.18b)
2pil )=apil (x) = ox~1/4
1 ul S0

~and the term proportional to ‘s is not present for i =5; i.e.,

a3t = 0. o (4.18¢)

Each term in (4.18) meets all the asymptotic bounds and the condition
of Pauli symmetrization, in consequence of which the form may not be

specialized any further by these conditions. -

B. The Cases i=1,2

In this subsection; Eq. (4.3) is furfher spec;lélized.

The index i will be understood.to assume the Valueé 1,2, only.
Both values are dealt with together under the weaker asymptotic bounds
pertaining to i = 1, as long as possible, for the sake of bre{/ity.

The equation for Im Axi in the limit Us is

z;’io sPagl () = ofu) .

which yields the new information

. Apio(ﬁ) = ofu) . . (4.19)
T, yields |
2p=0 (-t) Aptp(t) = oft) . (4.20)

Equation (4.19) implies that the Aplio term in (4.3) may be replaced by

u

7 | TWremar SRl s

if the coefficients in the polynomial are altered.

(4.21)
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The Aptp sum may be written

P .
N A S

£ dr ,
- ﬁ__ ( th )pAptp (t') + (1ncrement to polynom1a1)

™ t)t' .
i ) (4.22)
M | dt' Apt (t1)
] 2 2. ' Apy
+ 22 [(@m®-s-0P - (-o)P]t pf—z—- ‘e,
m p:l : o o ' : (tﬁ_’t)tl -p

.

.where .the largest powers of t!' were collected in the f1rst 11ne, Wthh v&;as
then "unsubtracted" by virtue of (4 20) . |

If the replacements 1nd1cated by (4 21) and (4.22) are made in (4 3)
with the appropriate alteration of the coefficients in the polynomial, it is
easilgr"se'en that the Aptip ~and Aplipj sums rneet the as'yrhptoti,c bound oft) for
T,. The remaining terms in (4.3) constitute a polynomia} ih t of order
o(t), whose terms therefore vanish, except for the ,térhas ihdependent of t,

and T o ‘ '
2 (ds'Apt (s') . :

Ny o S ds . Begpls’ S R

AXy T = / 7 t Bey T ARy 8

1

(s'-s)st %
M .
b ui;, . (-t)P Aptlp(t')_

") -t p=0

M dt'Apt (')
1 A 2 P P1.2-P tp
o+ = [(4m™ - s.- t)" - (-t)7 ]t f———-———z—
LT p=l s o : {tr-t)er “°P
' ~ (4.23)
u/ du! i,
S § Ty oy Apyplat):
M ¢, rdu'Agt(u')
+ 1. Z ‘_Sp P;-p .upz_

All terms except those 1ndexed p 2 in the th1rd 11ne are o(s /4 ) in -
the 11m1t S The bound O(s ) therefore e11m1nates the terms indexed p > 2

in the th1rd 11ne that W1th p = Z is also e11m1nated, 1n the case i = 2, by the

bound ofs ).
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The simplified third line is

v4m2"-»s tjdt' Ap,icll(t?)' ) (4512 S)z ) 2t(4mz'_ s)fdt'APiZ(t')
£ ET-t)t’ W TtV ¢t
‘ (4.24)
The terms with p > 2 in the fifth line of (4.23), and that with p = 2 in
‘the case i= 2, likewise vanish if we estim ate the terms in the limit Su.
The Apil_(t') may be bredefinéd consistent with (4.,3b) so that fche térm
with c.oeffigient th(sz - 8) in (4.24) is lsubsumed in th‘e Apil ek>.cpres,s_"1_on°
A term | o

t dt!

- i t
L3 t'-t)t' Apto (t )s (4.25)

Aol () = oft!
Do (1) = olt’)
where Apto (t') is redefined, incorporates the second line of (4.23) by virtue

of (4.20), and, the remaining terms 1ndependent of s in (4.24), provided' that

] ) 1 1
lom4 [dt'DeEY) 16m?®  [dt'Ae}, (t1)
18 rewritten as - t + constant

™ T -t E-t)t’
("unnecessary subtraction'), and the constant cast into the polynomial. The

terms left in (4 24) are then,

dt'Apl (£7) 2 .2 ‘.rdt‘A.pi {t")
_S—t-/ 5 e j e (#.26)

-n -ty ’ ™ tT-t

2 _ : '
The -8m s term may be cast into the form of the first term by another
unnecessary subtraction, if a term linear in s is cast into the polynomial.

. Finally, Aptl is redefined to encompass thls, its sign is reversed, and

ds'Ap (s')
Ax (stu)— — s0 + APOIO'FABII
(s'-s)s' :

(4.272)

¢ dt il st [ dt! il
t e Ao (t‘.) +_1T—f(t' e SR €1
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2 I
| dt? I 1
s~ | i ' u ot
+ = jt' Aptz (t ) + (ug_u—)ug (u ) ‘
. . ‘ : (4.27a cont.)
s 2 : .
su du' I . s du! A il o
* /(u'-u)u' Apul (u') + i /u uPuz ('),
/ v
for i=1,2; with _
21 . 21 _ - c
Aptz = Apuz =0, | | _ .(4.27b) |

and where the Aplslo(s‘) = o(s? 7'/4), the other Ap%l (x) = o(x), and the other

il 7/4 - p ‘ ' :
App (x) :ro(x ), as befor_e. ‘Each term now meets all the asymptotic
bounds.

' The Pauli principle, applied in the manner of Eq. (2.24), now yields

Bpyg () 4 s8eyy () + 8°Ap 500 = - (- )[Apto ()+ sAptl(st A’pt2<x)1

P

(4.28)

which provides three equations employed to eliminate the Apu, to'yielci an
expression in place of (4.272) that is Pauli symmetric, except for the function
of s that appears in the f1rst 11ne of (4.27a). This function is correctly

I.
symmetrized by pref1x1ng the factor ~_2£'_)" . Thus, the form

A il ' : ‘
Lo (! (s ds'Ap_ (s )+A911 NS )

f e (- oty

+ 'ﬁj X aele (- (-)t el St (4.29a)

n

- |
Axi (s, t,u)

<+

il 1 I 1 )

+ 2 [dx Dph () (£ - () === ).

where - R : v

Apz =0, ceot . {4.29b)
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and

2ol sty = o(sr /Y

A..pgl (%) = o(x), (4.29¢)
. C

il 3/4
8pY (x) = o(x /4,
il 1/4
aptlx) = oY%y
incorporates the asymptotic bounds and the Pauli principle. Some superfluous

subscripts t- have been dropped.

C. . Further Restrictions Implied by the Regularity of the G Amplitudes

3.

The matrix (Gy), inverse to Eqs (2 22), a.nd (4. 30) below, possesses
some poles at s = 0 and s =4 mz. It follows that approprlate 11near com-
b1nat10ns of X amphtudes must. possess correspondlng zeros, so that the

G amphtudes can be Mandelstam amphtudes Exphmtly,

4 2
G, .= - 4m (., -X,+x_)+t-t)yx,
1 mz's (4 m2 - s) {: 1 2 b +
flu-t) = XS,], .. (4.30a)
" 2Zm
G. = 4 N LA _ (4.30b)
27 mfaml oo |t am? 5| I |
4
G3 = > > X _ (4.30C)
m {(4m - s) B
G = . 4 ( 2y ) (4.30d
4 =T 2 2 X++ X5 s . N )
m (4dm - s) s e . g :
. , . _ , ,
Gy =- — 2 | 4w xptxp) tt-u)x
m (4m - s) N . e T B .

+{t - ) —TS+4m XSJJ’ (4.30e)

Zm



_41- UCRL-10028

are to be regular whefe, as before,
Xy =X3EXy-
Thus, e.g., X _ has to vanish at s = 4 m, identically in t. The
imposition of these restrictions leads, via arguments of the same general form

as those in subsections A and B above, to integral representations for the

AG of the form

‘ T4if :
I 14 (-1)F*1 [ as iI
AGi o 2T js' - s AYs (s')
1 1 I+1i 1 il
+ —ﬁ//dx [x_-—t 4+ (~1) xfﬁ} Ay (%), - (4.31)

where we have introduced new weight functions Ay to simplify the notation;

il

Ays (s') =0, fori=2,3,4; (4.323a)

AYL (s') = ofs 1/4 . | (4.32b)

Avlx) = o 1Y), for i = 3, 45 | (4.32¢)
and il

Ay T{x) = o(l), for alli . _ (4.324)

All these Ay are independent functions (before the introduction of dynamics
in the form of unitarity equations), except for the linear relations

-—i—Ew”(x) ¥ Ay51<x)jl = oy, (4.32¢)
and the -aSy-rnptoti'C conditions ' ' |

A\(H(x) - Av51(x) = o(x'1/4) . ' (4.32f)
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D. Further Restrictions Imposed by the Domin,a,n_cg of Diffraction Scattering

We have made the assumption that athigh énerg'ies the scattering is
dominated by diffraction scattering; i.e., that at high enefgies only those
.amplitudes ;chat cofréspo:rld to coherent px;'océsses in the forward direction
can attain their maximal bounds. This enabled us to write o(x") in place of
O(xa) for many of the bounds in Fig. 9. Further information can be extracted -
from this assurxiptionu One consequence is that the coherent forwé.rd scat-
tering amplitudes become pure imaginary in the high-energy limit.

Now, in nucleon-nucleon scattering, for each isotopic spin state
there are two total cross sections, corresponding to the two possibilities
of equal or opposite helicities. The optical theorem gives expressions for

these cross sections:

I C 4w 1,62 :
= — : = 4.33
0,4 (P) Im ¢ (p, z =1), ( a)
o I(p) = A ¢I (pz, z=1). | "~ (4.33Db)
+- P 3
If we assume that these cross sections approach constants 0++I and. G+=Is
then '
o 1,2 _.._p 1 34
Im¢i(p»Z-l) Tn 94y _ (4.34a)
and
1,2 _ . P I :
Im¢3 (p, z=1)~ 37 0, " (4.34Db)

and by continuity, for fixed t <0 the same condition applies. By virtue of

our assumption of the dominance of diffraction scattering, for fixed -t <O,

o(p), asp > =; - : (4.35a)

Re 4)11

o(p), asp—> o (4.35Db)

Re q%
If ¢ = (¢G)G be substituted in Eq. (4.35), and this be done for two sets

of proposed G amplitudes with the same dsfs, one obtains
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p-vl(wcb G)‘li Re AG;[ (s,t,u)~0 as s »w, tfixed <O; _ (4.36a)
and N | : . | D - N -

p e G),; Re AGiI (s,t,u) > 0 as s +w, t fixed <O0; (4.36b)
where AG has the same 51gn1f1cance as always, In particular, Eq. (4.31)

implies that, in the 11m1t S

AG (s:t,0) = —-J -d% Ay L) 40 (1), S (4.37)
and
i e 1o dx il

Conditions (4.36a) and (4.36b) then reduce to

10 Loyt Tm - a vl 1 =0, for a range of t <0; (4.39a)

and .

' % | }Zd:XE[Ay'%I(x) - -Ay4l(x) ] =0, for a rangeof t <0. ' {4.39b)
Thus we o.b'tain'
11 " " ) 5 - . 2 ., . . . . . - . .. . ) .
(x) = Ay2i(x) = AyPlx), : (4.40a)
and |

Ayl = Ayl . SR (4.40b)

Similarly, in the limit U,

Re $; = o (p), L (4.41a)
-1 —_
Re $5.= 0.(p) , L o (4.41b)
or | | |
= —-1 — 'C B A R AGJ t o~ () 4,42
and . . e . :
- -1 —— o J.
TP T (@G By Aij Re AG) (s,t,u)~0, - (4.42b)

giving precisely the same conditions as before.
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In accordance with the philosophy of the Introduction, we conclude
this s;ection with the Man.delétam r.e.presentation, properly Pauli-symmetrized,
for the G amplitudes as a sum of the unsubtracted double spectral integrals
and the A G of Eq. (4.31) 'aBove : |

.Gj]f»(s’t’u) = _"“_ J ng | de[ -—1_?- :+ (-1)1+I —l——.] p:'[

s! x
X X~-1u 1x( » X)

:l

1+II _—
p; (ut,t")]

T e s

+ AG% (s,t,u) .

(4.43)

V. THE DYNAMICALLY INDEPENDENT ..SINGLE-'PARTICLE STATES

In this sectionvwe'take up the connection between the allowed ssfs
and the contributions to the amplitudes from single-particle states. These
contributions should be obtained from a suitable continuation of the unitarity
~equations. A general and systematic discussion of this point in the frame-
work of the S-matrix dynamical theory still presents some difficulties(16),
but it is clear that such contributions are formally the same as the re-
normalized Born terms of conventional field theory. A sing'le-»particle state
with the same quantum numbers as those of a given channel then givesrise to
poles in the energy variable of that channel, i.e., to a &-function contribution
to the corresponding ssfis.

If these ssfs are not allowed, the parameters (position and residue
of the pole) of such a single-particle state are determined uniquely, in
principle at least, as discussed in the Introduction.. Such states will then
correspond to particles whose origin is dynamical. We shall see that the
deuteron, as might be expected, is an ex.'a;n;ple' Aof‘.this kind. On tile other

hand, if the ssfs are allowed, the‘ C.'DD"Z amblgultles Whiéh arise ih their
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detet'mination allow these paramet%ai#_s to be cons,ideregl. as free. Such is
the case with the pion. ,

' The ssfs corresponding to ga;ticlelg,of nucleon-number two Will be
in the s channel; those of nucleor}i-numbe_gr zero in the t-u ;chanhel. In
‘either case, states corresponding to-pe.rticles of spin =21 _canhet be dynamically
indepe_né‘l,ent‘° .T:h_e delji\‘(atiqhvgoes a'ts; f_ollows:

i The a.llowed ssf terms are glven by Eq (4}.31‘)? eubject to the con-
d1t10ns (4. 32) (4, 40) rIA‘he nucleon-number two ssfs, AyiLIL , eont.l;ibute oniy.
to Gll and G 5 and their contrlbutlons are 1ndependent of the scattenng
angle 0 in the s channel, It follews 1mmed1ate1y from the analysis ‘of the
G amphtudes 1nto éarual waves 1h the s cha.nnel glven by GGMW 1n the1r
equations (4. 23) and (4. 25), that these terms contrlbute only to the J =

pa.rtial waves, and trivially only in the I= l channel

Similarly the nucleon- number zero ssfs Ay i contribhte only to

I
1

in the u channel. . We conclude that oniy the J =0 partial waves in the u

G, and- 651 , this time with terms independent of 8 , the scattering angle

channel a.-re affected.

it .is perhaps worth noting that the cohtribution to the ’ G’ amplitudes
from an exchange of a single particlevof nucleon-number zere ahd mass
in the. t-u channels with isospin [ and tenso.rial couplih;g

iti=1,2,3,4,5 for s;"r',gc\?,'v,'P)lZ

ok

/=l -0 <-1)j”‘ v - ] (4m)™

x“’;ro 10_' 1)+6J1 1)]A ’ -(5[1)

where the matrlx A is glven by
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6 -4 4 1]
1 2 o o0 1
A= %— 1 o -2 -2 -l S (5:2)
10 2 2 -1
1T -6 4 L4

Then conditions (4.40) requiré tha{t 1n a particular column the fifst,
second, and last élemen_ts be equal, aﬁ_d -t’h'at’. the third and foﬁrth élerhents
be equal. Th.is‘ condition is satisfied only for the first and.laét é,olu;nns‘, i, ‘e. ,
only for S and P coupliﬁg. | |
| Similarly in the s channel, the exchang‘e Véf a particle .vof nucieon-

number two, tensorial coupling i, and isospin I contributes to the amplitudes

a terml'
_ 2.-1 2, 2 1 : |
Gy=- (4n7) 7" g" (7 - 8)77 8y 5 AL, - 5.3)
where_
0 0 0 0 1|
0 1 0 0 0

Al = 0 0 1 0 0 (5.4)

1 0 0 0 0

Conditions (4.32) exclude all but the I1=1, S, and P cases. ..

To summarize the results of :chis section: Any particles, other than .
scalar or pseudoscalar ones, tha’; can interact with nucleons cannot be dy-
namically independent, 'e"lse. the'rlBorn: ternvq's'éorreSP.(:‘)ndil";g to single-particle
exchaﬁge lead to a violation of the bounds imposéci by the argumenfs of
Section III. Specifically, the deuteron cannot be dynamically independent;

the pion may be.
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This result agrees with results obtained e r11er 1n cons1derat1ons of

the p1on ~nucleon and plon pion problems, when it was found by essentially
31m11ar methods that particles of spm greaten than or equal to unity had to

(4

be dynamlcally dependent. . K

VI. UNITARITY IN THE NUCLEON ANTINUCLEON CHANNEL :

| In order to wr1te the unlterlty equatlons for nucleon a.ntmucleon
scattering in the approximation in which only the 1owest-mass one- and
two-particle 1ntermed1ate statee are rete1ned _we need representatlons for
the amphtudes for annihilation-of a nucleon- arrcmucleon pair into one or two
pions. The former is trivial and leads to the one- plon exchange pole in the
amplitudes, discussed in detail by GGMW and in Section VIII. For the latter,
we ﬁefer to Frazer and Fulco_' ,(l7),who,wr1te-the cem, S matrlx for |

5

m+m > N+N as
o4y A
= - 2mtis ,,)(;p2 FP' A tay) —— T, (6.1)
A R 2E w :
where a; and q, are the 4-momenta of the ingoing pions. (See Fig. 10).

If the,}!helici’cies of the nucleon ér_ld antinucleon are _)\,_X, then
- t ). . v .
TyxsER ) Tvg ). L. (62

Introducing the isospin indices,

Tﬁa = 660.,T(+)1_f % [ Tlﬁ’__.zra] ;:I‘(-) ? V ] . (6,'3)
and - |
T A Sy -a B e

where A( ), B(') are the conventional-amplitudes for m-N scattering.’
The differential cross section for m+m — N+N with'helicities A X

in the final state is
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, - _ _ 5
do(m+m—-N¢N) _ p
—a% " g ISCXX.I (6.5)
where g v S v
m AN
= = (6.6)
\YX 2E i :

‘The amplitudes g,‘  are Just the Jacob-Wick (15) helicity

~amplitudes; a direct evaluation leads, with our conventions for the spinors,

FoF | m

++

i P .
1 1 = ——81T-E_: (- —I’;IA + quq) )
2’2

'R

]

Q
R

SRS S SRS

8: ES‘/ mi E .
Y- 1 1 = - B , (6.7)
" tTo 7 ey | @007

F _F . F

-4 :1 1

where

¥l

gﬂ=-§q cos@q, zq=cos€l~ , and y_q: sian; (6.8)

If we define the scalar invariants u,v,w for the m4m - N+N reaction
by

2, =2 2, =2 2 2, 2
(P, +P") " =4E" =4m" +p7) =4 =4 +q),

<
|

2 2 = —
= + =m + - 2Ew+ 2 z
(P, +45) P PaZg
2 2 2 - —
W = + T =m o+ -2 Ew.- 2 z
(P, +9,) M Pazg

3

!

N .
Then ,A( )(u, v, w) and B(i)(u, v, w) satisfy Mandelstam representation as
functions of their argument.
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According to Singh and Udgaonkar, (3), we can write

APy w= a®E2 L)

q
z (=
IRC RO J ar L(#)y 52)[ 17 1 °
A S N L e e
N q q
(6.10)
A0(-)(52) -0, | _. - (6.11)
and
B, v, w) = B(i)(EZ’ vzé) -
o
- 1 ), =21 - 1
- FJ dkb (A, p )‘:‘)\-z * A2z ’
A q q
0 (6.12)
The lower limit of these integrations, \j, is a function of p:
, Vo +p +49 A
A, = : (6.13)
O 2_
Pq :

' For the A amplitudes, v is given by the asymf)tote to the boundary

curve for the (u, v) double spectral function in the Mandelstam representation
of the amplitude, i.e., Vo = (m + p)zl The B an‘i‘plitud'es‘,' however, also
contain the nucleon polé term, and this cbrrespohds toa 6 fﬁhxtion in b

at a value of M\ corresponding to v = mZ. Accordingly, we will take

Vozmz R L ' (6.14)

and remember that a and b are in fact zerowup to :A = N | corresponding

T v . 0
: 2 - -
to vO' = (m 4+ p) apart from a term 'ng26(>\0-)\) (2pq) 1 in b,

Substituting in (6.9), we obtain
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‘j(i)(_e _ mi L (£)  %q J dx - (%) ( 1 - 1 )J
p,0 )= ——]a + — — o '(N|[— + ,
++ q 8T E 0 m \ N X-—zq XIZ;
; 0 (6.15)
an
() _ mi Yq (£),.. f 1 - 1 ‘
T @, - s7E " f AL (W + W‘) . (6.16)
: \ q q
0
where
a (t) - E A (t)
o - m 0 -’
My = - rEn 2 2 p® 0y, (6.17)
and .

@)y E 4@
BN = 2 abti(N)

and we have suppressed the 52 dependence of the weight functions

We can write the amplit-udés for states of _dyefinite total isotoplé spin
(0) _ F)
g %/ (6.18)
'{?(l) tat( ) | |

After these prehminaries we are in a position to write down the con-
tribution to Im $i1 arising from the two-pion intermediate state in the
unitarity equations:

m, <)\',K';~Ef[ |XXp>

_q(41'r) dQ(q]fﬂw k"pf><QI$|"XP>
' (6. 19a)
= q(%)'lfdﬂq T (- 9 )gxx ©1q

X expi[(N-N) ¢lq + (N -N) ¢2q] . (6.19b)
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This equation is derived in Appendix B. = We have

e '2q = Y2q [y %219 " %V1q cos>¢1q +1i ¥1q Sin ¢1q 1.
qu = zlq z + qu y cos ¢1q vl ) : . (6020)
and
d2 =4d d s
q = 94%1q%1q

We recall t}{;.t 0 is the angle through which the nuc,leonvis scattered in the

‘r'xué‘]..eonl-antinucleon‘scattéring, and'that z,y are the cosine and sine of U.
If we substitute the appropriate helicities in (6.19) for the evaiuation

of the $i’ and eicpress the (J" in terms of the weight funqtions a and B

through (6.15) and (6.16), the angular ihtegrations can be performed

(Appendix C). The results are:lf?’ 15
Im, $° =(5%1) g < _){ 4-rr_|a0 |
8w E
1 5 ¥ (@ 2
t = ~d\2 Re _[ao'( ) a‘(‘ )()\)]-X— [ AL(\)=4T7]

s %

o . )
2 1 [ 4nldz! )
el B B s e
0 | .

[z'lmz * zal+—;] al* (’\)dt(}‘t%» : (6.21a)

= I -1
Im, ¢, =Im,_ ¢, (6.21Db)
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—1 1 _1
Im, 43" - Tz Im, . ¢4

1
|

q m 2 2 d
=-(5i1)ﬁ(8ﬂi) “Z jd.x[
y A ,

‘ 0 0

_; 2.,
x p L [ardsl
L [ K(\, 1, 202

2 : »

1 = 1 1 ! 2 2 14 hpzt
X — — 2[ tz >— (N i -zxpz-)-ﬂiZJ,
z'- z z' +z (1 -2z'7) _ 1-2zt)

.
app™®

(6.21c)
1 I 1 -1
Im,_ ¢, - Im,_¢
1+2 2m 3 1 - 2m 74
q m 2 2 i
= (5+1) — dX\
i (8 mnE ) 172 f
: .)\0
g (£) * (£) 1 4'n2dz !
x [ awp™ P o _—
x , [ K(x! My Z l)] 2
0 \

2z° 2 2 A 4
x|—t 2 L 2] 22 (\Faptianar). MEE
z! - =z z! 4+ z (l-z'7) 1-z!

(6.21d)

andifweuse$5= é—,—é-,$,.;:,,.%>,
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90
Lm, .l =-(521 2 (-2 ® 2 f da
— 2T 5 - 4—11' — _2_
5 ST T \enE) oF Ay

@

E3 2 .
XI aual® () pH(y 1/ 2L

w

i
{ [ K\, pz)]2
0 -
x[ 1 . (A-pz)) (6.21e)
Lz -z zl 4z 1 - z! o |
Using instead 55 = <- %, %— | ¢ | %— , -%> , we are led to a right-hand side

that is the formal complex conjugate of Eq. (6.21e). However,l the right-
~ hand side is in fact real, as it has to be since it is the imaginary part of an
. amplitude. This reality'is a cons_eqﬁénce of the final-state interaction theorem
for the reaction N+N - 7-7, which imposes a phase relationship between
the A and the B amplitude most easily expressed in terms of the partial
waves. We will write Re a*ﬁ in the right-hand side of (6.21e) rather than
a*ﬁ, to ‘'ensure that in an approximat'e calculafion quantities that should be
real are indeed real. A similar situation will be seen to'arise in Section VII
where we discuss nucleon-nucleon unitarity.

We can now use

G=G®D, B (6.22a)

where
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<l

2 52 m®-p°Z -m®-5%Z 2 ES2E
1472 1-% m= =
=2 =2 -
0 0 -E -E_ o IE?1 g2
14z 1-z
' =2 =2
— — 1 -E E
(G o) = — 0 0 — 0
Ep 142 i-z
—2 _2 —
0 0 E E Z_E m2
' 14z 1-7z - m
—2— —2—
- - - -E" 2
-EZ —EZ E_—z , E _z_ 2 E (E
14z l-z
(6.22b)
to derive expressions for Imz_lT Eil; ‘this is done in Appendix C. These

expressions appear to have poles at EZU' = 0, which would be inconsistent
with the Mandelstam representation. ‘However, ‘we must recall how a and
B are related to a and b through (6.17), and when_this. substitution is
made a cancellation occurs to remove these spurious singula}r_ities.,

The resulting equations are:15

=1 -2 — - 1 -2
Irnz_‘T Gi (p,2z) --=Im21_r Gi {p ,0) -
2 a0 o0 _ 2
q 1 m 2 z | 47 dz!
+2 L (541) = f d»k} ar = [ ey 1
E ﬂ(SﬂE) 'rr2 )‘O .)\0 ™) Kk ezt ]2

T 1 = 1 11 \ (#)* 2 (F) =2
x[z s _Z_J Z_'|:kill(k,|¢,z)a (p . Na “(p,w

'tz zt 4
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iy, vzt 2 B0 pPE% )

#i, w2 B G000 B0 )

UCRL-10028 .

R LN L

"~ for i=1;5; ana

Imz-rr

on

0

3 H3 >{<- E 3
><[kill a atk ,abtk, batk,,b b] ,

for i=2,3,4; where

=2
E
ki(hp,2z) = ';‘Z '

- I -2
Gi (p y2Z) =

Jolw

S

&=l o

81 E

1 2 2
Tn ( nn_.> G+l —
: T

K\ v, z7))?

z

]
‘MI_
[ I oV

g
m

3

4w dz! o1 - i 1
|:Zl_—_+("l) Z,+2]

(6.23)

Pz (_X‘_“.ZL)
: l-z" -

m

—Ezqz Zm2 Nu+z 2z
- 2 —2 2
1%

l-z (l—zz,)2

X (>\2+H2-27\MZ):’

2

2 2
+Z[x +p +2
l1-2

K 4"‘)2 MZWZ_ZMZJ}
1-2z _

(6.24a)




0
-4
kz()\’ M, Z)= _'E q (IJ--)\Z)
-_ 3
pm 1-z
0
k_ (X, H,Z):
3V 0
—
0
B2 o (1))
k4(x, M, Z): g_. H ]..,-Z
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s

=4
_Eq  (A-pz)
—_ 3 2
pm 1-2
=4 2
5 4 2 2 )
:—Zq [ > (N + pT=2X pz)
pom/ L(l-z7)"
_h2+pf+2]
l-z
(6.24Db)
0
=4 2 |
2E q Mtz 2z /xzmz_;zmz
-2 2 2 2.2 '
p m l-2 (1-z7) J ]
| (6.24c)
=2
E q  (A-pz)
. m 2z
P l1-2
2 2 =2 :
E E 4 2 2
—z—q - _Tﬂ—‘"z—z(" - 22uz) ;
m p l-z")

= Npbez
l1-z

[)“2 + HZ = ZMLZ:I}
+ -
l-z :

(6.24d)
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i 2 E° q E° [2(-x2) ) 5° z2(A-pz)
e T2 m - ‘: -2
m p L l-z m 1-2
-2 2 =2 2(.2 2. 2
q E° [200-pz) BT z@-r2) |, E%Q%p%e [4(\*+p°-20pz)
m - 2 2 2 -2 2 Z 2
, , p l-z= m~ 1l-z ) 2m L (l-z7)
ke(M B, 2)= '
7\2+u2+2:,
S
1-z
_+[ 2z 5 (A pl-2nuz)
- Ul-z7)
Mtz :I
o ‘l-ziz .
- IR (6.24¢)
m, &ME%0=0, fori=1,5; (6.25)
i
| a s
0) =2 5, . _9 1 Y E“q“ 48
Im G (p 30) - - ( —
211 T T \grE) 3 2
o :
iz () =2
x| ax | apdpt @' E%
N o
CX [ 4T - AN L(V-p L) + M TN 0) ] (6.26a)
and

0)=2 .. _ q
Im, G (P, 0) = - =

/

KO_

=N

+

1 m 2 _—E/Z
i 81 E :};:2_

=2 Lo
24{21r£..2 IAOH)(EZ)IZ
m

d\ [ N L(A)-47] % 2re [ 4, BEL a2 N

+a b2 N ]}
| (6.26b cont. )
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- [dx ] ap [ 2 1 afghnq pME% "

x[an % a(+)(_§2,p)=q b(‘”(ﬁz,u)]

[47 - ML\ - p L) + Mt J(L 1, 0) . (6.26b)

These equations, although derived by a consideration of unitarity in
the nucleonéntinucleon channel, where physically of course 52 > 0, may be
analytically continued down to the threshold where q2 = 0 and
_ 52 = pz - m2 < 0. It might be thought that difficulties of interpretation will
arise at 52 = 0 over which branch of «/—? is to be chosen. However, an

examination of (6.24) and (6.26) shows that this is not the case,

The easiest way to establish this is to transform the variables so

that’
—2 2
n= (VItP ta)
2pq
and

- -2 2
pz(V"*P +9°)
2pgq

' (6.27)

before making the continuation. It is then clear that p enters.the equations

=2
only as p .
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VII. UNITARITY IN THE NUCLEON-NUCLEON CHANNEL

- In this section, we derive equations _that express the unitarity of the
S matrik for nucleon.-nucleon scattering below the pioﬁ'-production threshold.
These equationé will be used in the following section to d‘erive 'in.tegr'al
equations for the dsfs in the strip regions paraliel to s = 0 (Fig. 1), as
" outlined in Section II-B and the Introduction. |
From the unitarity of the S matrix
sfs=1, B | (7.1)

in the energy region‘ 4m2 <s < (2m 4 |J.)2, we deduce

1 . — -1 |
v [("i s Ay pe |8l Mg ) - ( MoMoipg o] "1”‘2;Bi>:|

;1 VAN =1 .. ’
= p(4m) 2“'1”2 jdﬂp <X ,)\'2 ;. Py [_?_ lpl,pz,B) _

X<I~’v1y o3P l§| )»1, XZ;Bi)’ (7.2)
(cf. Appendix B). _

Now we obtain

(Mo Ay Ps 13 M Ngs py) (Mporgipg 121 Nbs b )

NG pe [ B N i Y (7.3)
GRS IR RSTR S S D

.. since for just those combinations of helicities for which interchanging

E .
o )"1 , Xé with 7\'1, )\% introduces a sign change to the amplitude, so‘also does

interchanging Bs wifh B; (i.e., the amplitude g is odd in 6). Thus the

left-hand side of (7.2) is

Im<>\'1, Ny 5o pe |9 STRY Bi>'
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For s > (2m + p)z Eq. (7.2) is no longer valid, since additional states may

now contribute on the right-hand side. We may, however, use it to define

the elastic contribution to the imagitiary part of the amplitude. If the
angular dependence of the amplitudes is extracted as described in Appendix

B, we may write

Im _, (A NS o (p.6) [A)LN,)

el(
- piam) "'z uluzfdﬂl (b | 6 (B, =0,)| N, A5)7

X1y k] 0 (B0 AN X (p - D), (7.4)

where the phése_factor (p - f) contains the dependence on the azimuthal

angles and is given by
(p - £) = exp i) ¢+ (] = M) &5 + (k) -b5) &3] .
(7.5)

The angles are connected by the trigonometrical relations
cos 62 = cos 61 cos 0 4 sin 91 sin 0 cos q>1 ,

162 (sin 0 )==1 [ sin 6 cos 91 - cos 6 sin 81 cos ¢, +1i sin 61 sin¢l] ,

f

1?3 - (sin 92)=1 [ - sin 91 cos 8 4 cos 91 sin 0 cos ¢, -i sin 6 sinq)l] )

dQ = d{cos ¢ )d¢1 . (7.6)

Each of the matrix elements appearlng in (7.6) is one of the amphtudes

¢ defined in (2. 19), and 1dent1fy1ng them approprlately enables us to write

Im _, ¢ (p,0) = pdm”! ijfdﬂl ¢j*(p, =92)¢k(p,9 ) Aoy s 3) -
(7.7)
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The 5 by 5 by 5 matrix Aijk”

(numerical) factors that arise when going from the labeling of the amplitudes

includes the phase factor (p.f) and alsé the

by the helicities to the labeling by the i"‘vrwldex i. Explicitly, we have

_ _
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0  2cos ¢,
| — o (7.8a)
— 0 1 0o 0 0 ]
1 0 0 0 0
Apix = 0 0 0 0 0 ;
0 0 0 0 0
o 0 0 0 2 cos ¢ |
| 3] (7.8b)
_ _
0 0 0 0 0.
0 0 0 0 0
Ay = | 00 e 0 o exp i (¢; + ¢}
0o 0. 0 e o
! 0o 0o o 0o 2 { -
- | - (7.8c)
0 0 o o o |
- 0 "0 o 0
Age= |0 o 0 3 0 exp i (¢, - &) 5 -
0 e 1%3 o 0
Lo 0 -0 0 -2} ° T (7.8d)
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Agi = | o 0 0 0 0 expi ¢ . (7.8e)

0 0 0 0 0
0 0 —e1¢3 TIP3

In obtaining ‘ASjk we used the definition-
- 1 1 1 1
‘1’5:( A |¢| 5 7). | (7.9)
Had we used instead
1 1 1 1
dg=(- 3, 3le] 7.7, (7.10)
we would have obtain_ed
T ———
0 0 0 0 0
0 0 0 0 0
= ~ -93 i
A5ljk = 0 0 0 0 e exp | 1q>2] . (7.8e'")
6o o0 0o 0 -e'?3
-1 -1 0 0 0

The equality of (7.9) with (7.10) is a consequence of time-reversal
invariance, without which there would be six, and not five, independent
amplitudes. We shall return to this point later.

Ir_1 order to perform the angular integrations in (7.7), it is necessary
explicitly to display the dependence of the ¢i (p, 8) on the angle 6. This we
do by relating the $; to a set of Mandelstam amplitudes. In II-C we have
defined two such sets of amplitudes, Viz,,the Gi and X and either could now .
be used. Aithough it is for the G.1 that the "primitive' Mandelstam relations
are written down,, it tuxtn-S‘ out to be simpler to use the,_xi. - Accordingly, we
write |

-1 ‘ % 2 . 2 .
' = ; ) . ) 1
Im_; ¢;(p, 0) = p(4m) zjk dQ, X; (P, 20X (P7h2)) Bijk ) (7.11)
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where _
€32 o0 o o o
0 Ep%0 o o
Bk = - o 0 0 o0 0 ,  (7.12a)
0 0 0 0 0
-6 } .
0 0 0 0 -2m Y|Y, cos <1>33
r— -
0 (Ep>)"% 0 0
(Epz)'2 0 0 0 0
Bij = 1 -'Ql. f 0 0 0 0 . s (7.12D)
0 0 0 0 0
0 0 0 0 -Zm-6 cos ¢
Y1Y2 3
B 0 0 0 | 0 0
0 0 0 0 0
_ - : i ifpr+d,),
B3jk"' 6 0 (Emz) Z-(1.+z‘1)(1+z2)e“1’30 0 AAARS!
0 0 0 (Em?) %(1-2,)(1-2,)8%3 0
. . ) ...~ _6
0 0 0 | 0 i -2m vy,
(7.12¢)
[ o. -0 0 o . 0]
0 0 0 0 0 |
_ 2.~-2 . i : i{d,-9,),
Bajk = o o 0 (Em®) (1-z1)(1_+z_2)e1¢3 o | %2
0 0 (EmY) i(14z))(1-z,0e 3 0 0
. g | .
- 0 o 0 0 2mTyyyy

(7.124)
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2 3.-1
0o 0 ' 0 0 (Ep m7) "y,
: o 2 3.1
0 0 0 0 (Ep m™) "y,
i
BSjk= 0 0 0 0 0 e "1
0o 0 0 ' 0 0
- i 5 - -i
0 0 (Em”) 7y, (1420’ Em®)ly 1oz e o
B o (7.12e)
0 0 0 0 0
0 0 0 o 0
B L 0 o 0 0 (Em)ly (1+z)e %3 | &2
5jk - , .
, -1
0 0 0 0 -(Em”) ly (1-7,)e'¥3
2.3-1  ,..2 3-1 ' ‘
Ep°m”)”ly, (Ep‘m”)ly, 0 0 0
L _ » —  (7.12e7)
Here and after, we will use z. = cos Oi, and y, = sin Gi .
From (4.43) and (4.32) it follows that we may write
_ _
I z 1 1 1 1 }).,1,2
Gi (sptgu) - Tﬁ.’ J d)\ 'x [ -z + (-1) WJ Ai (p 3 x)
+[1-¢-1)) B (%), for i=1,5; (7.13a)
and -
I .1 1 I#i 1 1,2
Gi(sxt:u) = 3 f dh I:W + (-1) W] Ai (p s N
M
for i=2,3,4; (7.31b)
where

.
2
1, 2.1 | ap 2 2
AL (PN = = N Py @p'” + 4m”, -2p 7 (1-7\))
P -P
O .

d f 2 2
+ 'l-ﬁ z—x?- :lz[f’g‘ {-2p~(1+z'), -2p7(1-N))

+ (1) (-2p2(1-N\), -2p°(1427) ):l v ayi-2pli-n ). (7.14)




spectral terms involving Ayl

The terms hll‘ 5 P)=G
1 and 'Ay51
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if the subtzaction in {7.13a) had not been made

is again a formal one:

the one-pion pole in the amplitudes, the lower limit could be given by

The lower limit of the integrationé,

)\1 =

1

- Now we have

where

{x G)—

N|

Therefore we obtain

=(xG) G
T .22 2.2 2
Ep m p z m p
nEzpz (Ez+pz)pzz =rﬁzp
0 m* -mzp
0 4 mzp
0 =»m'4 0
w
X1,2 fp?oa) = 2 j qx
x
x3(p2nz) . % ax [x-l—z
N |
@
x.4(p2,z) = '-}r' ( dX[l_

2 1
XS(p s Z) = T

=14 MZ/ZPZ ;

Moo= 1+ 2 pl/pl .

M

2 2
m p 2z -P
2 2 4
m p z -P
mszz 0
mZE2 0
-m.4 0

UCRL-10028

11 5 (p~, z = 0) contain the s-channel single

’ and would ha.ve been present even’

. (7.15)

apart from the 6 functions in AiI corresponding to

(7.16)

(7.17)

11 1, 2 1, 2
'f' (“1) WJ fl,Z (P 9>\)+g102 (p )»

gy 05N+ (1) m—u“”*ﬂ

dn [ w5 * (-1 x%]"fgff‘l (»°, N;

(7.18)
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where. v
2 1 2 2 2 2 2 2 2
£6°5 N = 3 EX A 650 +m VA5 N +m® A 00N
2 2 2 2
+m N A pT,N) = pT Ag(p N T
2 2 2 2
£(p% N = 2 p% [-E% A (p% N + (E%4pO)N A, (p%, N)-m® A, (p, N)
2 2 1 2 3
2 2 2 2
+m° N A5 N-p5 AN T,
2 1 2 2 2 - 2 2 2 2
Egy(PT N = 7 mT[mT AT N+ T AN+ ETARL N ],
2 1 4 2 2
f5(P :X) = - 2 m [Az(p :X) +A4(P »)\)] N (719)
and
I, 2 1 I 2 2 I, 2 2. 1, 2
g, () = 7 [1-(-13] p“ [E“h "(p") - p"hg (p7) ] ;
2 1 2 2 2 2 2
g, ) = 7 [1 =611 p[-E T6% - p'n' 09 ] . (7.20)

We now substitute (7.18) into (7.11) and perform the angular

integrations. The details are given in Appendix B. We give the results here:15
au [

2 1
Im . ¢, 4p,0) = B— 25 | ax qu 2 [ 4m dz' 1
el "1 47 2 11 3 Z
™ [K“\s}iszi)]
)\1 xl

X[yl_z $ (-1 — J Eé o L £ O£ () 4 £, () £5() ]

- L N £ Owez)
m

= R """”I]{?pﬂ an tlg, 1% + 18,1

for | R 2Re 1 g + g O LN-47) ]
M
+ ?-T ‘ de f .d_ﬁ [4m-\ L(N-p L(i) + AT (A, 1, 0) ]
T A A\ (7.21a cont.)

[

1
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_67_

X IZE};T OO £ (45, () ACPE -n%)'-'xn £ (V) _fs'(uﬂ}

1 2 4n“dz
Img & (.0)= £ =5 | dn[ de 2 = 3
“n‘ I_K(x: I‘L,Z'-)]a

1
z!

x[z,l_z + -1l Z"ITZ —21? L£, (NE, () + £ 00, (W]
2 % AT,
-—g f5(N) f5(R) (XH-Z')}
m .
:E’- [1-(- 1)) {—4 [27 2 Re(gg,)
E'p _ '

l b3 b N l
" ;f L 2 Re (5] (Mg, + £; (N g) INL(N-4m ]
' | |

o

iz/ dr f% 4‘rr XL()\)HL(}L)-#MLJ(XI-LO)]
X : X .

X[E%? G, ONE, () + £5 (01, () D

B f;‘(}\)fs(p)J},
Tmt

(7.21a)

'(7.21b)
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Tiz . [Mep ¢3(P:0) + Tz Im_; ¢, (p,0)

o a0

2
-— p 2 l 4,“. dzl 1 ) I—}_—
= ga ;'Z‘}):d\( dp Fj[K(K,H,Z')]% [z'_z + (-1) Zl+z]

ol 1

1 ES 3 AN+ M '”ZMJ‘Z' NJ‘ + 2z’
X{W I:f(+)‘*’f<+) AR f<-->(“)][ tean? “"]

1 sk sk A\ +
+ £ £ (p)-£, ((N) £ (H)]—.
224 [ (1) Fn W)Y A T
+ 1 'f* (N £ () 4 £ ) £ (H)] [xzﬂxz»dk pzt Ml+z“]
EZm? | (00 T e T TN I-2"
1 [
+ (\) £ (H) (NE L (0) -
el Ty £y = £, 00E ] TeaT

" 2 '
- S 0 £ [‘* teo2he) (L4 % 1+M2LZ“J}’
m

(1-2+%)° 1-2!
(7.21c)
]1‘“ Im _, ¢,(p,0) - L om $,(p,0)
t2z el 3'P 1-z el P4'P , :
L 2 ) g 1 4“252' R it 1 |
=IF 2 ah | de 7 — |z N T
A \ [ KA, 1, 2*)] :

| 2 2
1 % s A+ =2\uz! M+ ozt
A [_fm(x)fm(u) 1,0 f(_)(uﬂ[ o + 1+z']

: sk )\+H
+E2 Z [(H(k)f(”(u) - f(_)(x)f(_)(pﬂ Tior
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N+ 1-2>\|.Lz' R
"Z —2 [(ﬂ"" k- )‘“’ + f( )”" f(+)‘“’][ a? T ]

T ];:2;17; I:‘f.(_,,,)-(’!) .f(:;i).._(’H)v.,».‘-.-_ .f(;)f(,,x):-f.(‘..,)(w] s -y

S —n:()— £2 (M) £ (1) I:(?\ +H ZHZZ )Zz' A4 ZZ', ] Ll 21d)
L ) (]_ z' ) l—Z':

Using B5jk’ we obtain

41T dz
Im ) ¢5(p,6) = £ —2— dx( |
; el 75 ;9 TT f [K(X }_L,z )]2 .

1 11
?“-[zv-z*““ | m]

x L {' L L 00 4+ ] £(0) (A-pzt)
1-2! Epm :

|-

o Ol edat) () + (-2 9= 20z )]
R AN TR :(_1-_-.Hr)-;(;1,=:a"2,)._,:t‘..‘(>s2+uz-2>~uz "]

" Em
v (7.21e)

Had we used Bf we would have obtained on the rlght hand side

S5ik,
the formal complex conJugate of (7 21e) Now formally, the r1ght hand s1de
of (7 Zle) is not real but smce 1t is the 1mag1nary part of a functlon, we know
it must be real and the equallty of the two der1vat1ons of Im 4)5 follows

K]

That the left hand s1de of (7 Zle) 1s 1ndeed the 1mag1nary part of ¢5 (rather

e i Fse. W
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-than the ant1 Herm1t1an part of an amplltude) is a consequence of time re-
versal 1nvar1ance,' another consequence of wh1ch as we have already re-
marked, is the e_quality of the two amplitudes (2-, -2- lo| -2- ) - 2—) and

(-4, 3 16| 3. L) which lead to the twd derivations of Im_j ;. - Since

in any approxunate denvatmn of the amphtudes there is. nothmg to ensure

‘that the correlations. between the phases of the f (k) which lead to this reality
condition, and wh1ch are the expressmn of tlme-rever‘sal invariance, we

will write

%nﬁéi ¢5(p.6) = Re| right-hand side of (7.2le)] , L (1.22)

and will impose the constraint condition which comes from the vanishing of

the imag‘inary‘.part of (7.21e), viz.,

f dn ( ap i {mz Im [ (£ (x) + £5 (M) £5(1) ] (A-pz)
A, A [xouean® |

e % Im £ £, 00 1 Leha) () + (1-28)- (0 - 20z) ]

(+

+ 0% Im [ (N £ (0] Tli-N2) (14)-(1-2%) + (Pau’-20p2) ]} "

(7.23)
For 51mp11C1ty in Eqs (7 21 23) we have Suppressed the dependence
2
on p of the absorpt1ve parts of the f and g , and also dropped the1r 1ndex 1.
| These equat1ons are st111 not 1n a useful form for calculatlons The

2

_dependence ‘of the1r r1ght hand S1des as p --)0 would appear not to be con-
sistent w1th the known threshold behav1or of the amphtudes However as a

consequence of (7.19) and (7.20) certain cancellations should be made, and
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these will eliminate the apparent inconsistencies

Accordingly we substitute
these expressions for the f(A\) and the g, and using

G=(G4¢) ¢,

(7.24)
take the appropriate combinations of the . Im . ¢. to obtain

1 2 m dz!
W 2 d"j‘ j

[K(\ mz')] 2

1 ' 1
x['z'—z' i ” ‘+zJ z

) %* 2 |
x K iehmz A 6% N & te% w4 [1-(—1>I] tm h.!(p?)

Im G.I =
el i

o

for i=1,5;
and
I p 1 2 ' 1 [4n dz!
Im , G." = £ d\ dp —
1 2 p o
ol EAm o f f T JIK(N 1, 2Y)] 2
)Ll 7\1

1 . I+1 1
X I:?"'z— +(-1) 'Z'TE:]

' I 2
x}{ijk Mz AL 5N AR W, for 122,34, (7.25)
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We have J{/,Ijk = : _

2 2 '
EZ -pp m 4] 0
-LZ [p4Xp+mszz-m4()\~&zz)
E 1-2z
2 2 . .
2 1 42" +u” -2\pz 2\ -pz 1 2 p-Az 1 2 1 2 p-\z,
Py +ozp (SRR -m(EEE2 ) - 2pz(B25) Pz ->pzE55)
P 2% l-z2 l—z2 2 1-zZ z z l'zz
2 2 2 2
B -2Ap
- %mzpzz()‘—-—‘Hl 2+2)]+Zmzz(x * 73 z)
1-2 (1-27) -
rn4 mzpZ )\2+;.|.2-2)\Ez
—zt— Z )
E E -2 2 pAzy 1l 2  N-pz . ; (7.26a)
m? -mz(}L—.)‘zZ)-%pzz(—P—x- zz) -m (L—Z)i»?p 2 (22BE 2) 0
1-2 : 1-z 2 —Zz()\2+pz- ZA\pZ) Mutz 1-2" o=
-p7z| 3 + Z}
(r-2%) 1-2
2 22054 % - 20pz) Atz
m"[- i)
- _ (l-z 1-2 Y
0 1.2, -mPRE) 4 1 o2, (kohe, ) -1 pPu(tT)
z 1-z 1-2 12 40+ 08 -aapm) APz L-z
-gPel 2z ol
(1-27) 1-2
1 2 A-pz
2_/\- -z Aopz
0 -1 pla (i) 0 zp ) °
2 1_ZZ -z —1

-ZL.—

82001-TY¥ON
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COup )

2jk

'

2, 2 2, 2
mZIZ()\ tp”- 2hpz) A+p"+z

2

(1-2%)% 1-2°

z
l—z2

2, 2
1 2 \"+ 2\
+ZE(_—PZ_)"’ ipz
l-z

N i [
l-z

N}~
=

1 24 \-pz
PR

]

1 2 _2,,pu-hz
3 (m?-p?y(E=2z)
1-z

PZ[Zz()\2+ FZ -2\pz)  Aptz ]

(1-22)2 T1-z%

1 EZ(E-)\Z )
2 1_'ZZ

I n2/h-pz
z = l-zz)

E2[4(>\2+ EZZ'ZZ’\EZ)
(1-27)

N =~

1 2 p=Az
7RO

; (7.26b)
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To calculate Im hI (pz) we need to use

1,5
Im G -2 (p*m 2y
m 1 I = 7z P (¢l - ¢2) +m Im (¢3 - ¢3) ] I ’
z=0 Ep z=0
(7.27)
and
Im G, | L E%Im (¢, +¢,) 7.28
m 5 = m ¢1 ¢2 I ’ . (7.28)
z=0 Ep z=0

+ = /( —— 2Re [hl* (&* Al(k)-pzk Ay(N) + m2A3(>~)H
1

X [N L(N)-4n]

o o

+;27f %f %i [ M TN 1 0)-A LN L) + 47]
M N
X = LB A TR A, T+ m a0 ] (B A etk Ay + mT Ay Y,
(7.29)
I 4 2
Im (¢, +¢,) | = —4"; [1-(-1)7]{ 8m }%z | he |
Lz= :
2 b3
-5 2 1 2Relng EBEh A0 + mh A N-p% AN ]
1 X [ N L(N)-47]

2 arx [ 4d - o '
+ 7f T[TH [ M TOL B, 0) = X L(N) - g Lp) + 4n]
TN M
| 2, . * 2. k2 % 2
X ?_ [E“N A, ) + m 2 A, ()-p" A (V)] [E bA, (1)

+ m2|.L A,(b) -p2A5(u)]

-m® w4500 + 8, 0 ] LA, + A ] (7.30)
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Im (43 - &) | = & L0’ ﬂ% - d
g | A
1M

X {[M T(h 1, 0) - A L(N) - it L) + 47 [ -m® A (0AMEAT (A, ()]
£ L0% 465 T, 00-0 LOV-A L (w) ] p° 4,7 Aglw)
AINT (0 0)- L] Ay (N [mPA, () + EZ A () ]

2

eI 0) - Ly ] [mPA50 + B2 A, (0 ] Ay} . (7.31)

In deriving this last equation we have used the useful relationships

and
1 [4n%dz 1 1 A & 1 |
Efl Kiea] e? | pam? - HTE R RO tL('“ﬂ} |
(7.33)

It now follows that

5,2 p 1o, . -2 2
Imh,"(p") = & 7% { 87 E ihll

2] 2 2reln "B A, 0-pPN A, +m” AL )

M

X [N L(\)-4m]

2 .
*Elz, __Z_f -C-l%[%&[MLJ(K,MDO)-)\L(\)'HL(H)'*‘}TT]
\

T \ '
1. 1 (7.34 cont.)
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XL EZAS -p% X A0 +m® A0 ) (EP A (0)-pPka, (k) + mPAL ) )

2

+m ES AT A, - m® 4500 A, )]

+m? p? [ (A% 4+ 1%) T (M 0)-p LIN-M L] A5 (N Ay ()

-m® (AT (L, 0) - Liw] ASN [m Ay + EX A (W]

2

-m® (B30 w00 - L] [ m® A0 + ES ASN] Aywi} . (739

I, 2 p 1 2 2
Imhg (p7) = § 77 { -87p" | byl

v+ 2 I E?x’: " 2 Re [h_s* (EZxAZ(x) + mZAA4(->~)- pZAS(.k) )]

A |
X [N L(N) - 47]

+ -32 9%[ %& [ M TN, 1, 0)= N LN -p L(p) + 4]
A
1

M

X[ m®ne A 00 Ay - X a A, 0A, 0 - pPAS ) Ag(h)

+ g () (E® b Ay + m® pay() )+ B %A 0+ mPha 0 AT
(7.35)

The constraint condition of Eq. (7.23) now reads
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de dp‘ 1 (>‘2°I~L2)'tAz*(f)\) Az(p) _A4*()\)A4(p)]
R A P

+ (1-2°) Im A" () A (1) + (A-pz)Im [_’(A;‘_(x)' AN

XA, + A ) ] =0,
- (7.36)
- We 'shquld’ mention that Eqs. (7.34) and (7.35) are essentially the

and 3p0 partial waves,vf0 and for

unitarity equations for the ls 0 11

0
respectively. For according to GGMW,

0 11 2 2 2 . o |

£y = PE —Z-f dz [ E G, -zp G,+m G3] _ (7.37a)
and »

0 =1 1 2 2 2 '

fi, =PE " > [:dz [ zE G, +zm” G, -p Gg ], (7.37b)

and these are the only partial waves to which terms in G GS’ independent

19

of z contribute, in particular to which the ssfs AYSM , Ayzl

contribht_e,

Thus the ambiguities introduced by the two s-channel ssfs can'affect only the
two J = 0 partial waves, in confirmation of the results of Section V. We |
cannot at present exclude such ambiguities; nor can similaf ambiguities for

J <1 be excluded from any channel of either of the other two problems con-

sidered so far — m-m and ©-N scattering.
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VIII. EQUATIONS FOR THE SPECTRAL FUNCTIONS
In this short section we collect together for convenience the equations
which, . in the strip appfoximation, determine the spectral function.

Let us first recall the Mandelstam representation for the G amplitudes

(cf. 4.43);
I | - ds' 1 i+l 1
Gi (S:t(,u)— —.n-z— Jm J dX[ ;c-_-tb"'(-l) m] Pix (s', x)
1, dt' pdu' 1, I P41 I '
t =l s zle tun (1T T t)]
2 o
14 (-1 F L as q
+ 2 f st-s AYs (s')
] 1 I+i 1 i
o) ad ettt = Ay, (8.1)
where Ayisl (s') = 0, for i=2,3,4; (8.2a)
and
11 5 2 .
Ayt = aylex) = ay¥ie - | . (8.2v)
31 41
CAYT(x) = Ay T (x) . | (8.2¢)

In Eqs. (6.23) we have given expressions for the imaginary parts
of the G amplitudes in the approximation in which o'nly the Landau-
Cutkowsky diagrams with two-pion intermediate states are retained (Fig. 5):

if now we apply the matrix (G G) = BA (2.36), we obtain expressions for

Imu S0 G to the same approximation, i.e., we have
I .y — 1 ;ds! i+l 1 ‘
Imu >0 Gi (s,t,u)-= - J T os (-1) ix (s¥,u)

(8.3 cont.)
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. L I I I I
sl L w1t T e 4 (- ) * Tayil w)
= Z._B.. A, Im, G . (8.3)
i I3 Tij 2T j - ' o

If we now take the imaginary part of this equation when s> 0, we have,
referring to (6.23).

I o 1+I =J
px(s,u) l_21T (- 1) _]J Aij Ims >0 Imzﬂ, i

VRN TS G =J
=0T By By &y Img o Impn G
B i+ j+J +1
= (-1) ZJBIJA (-1)
1 .m 2 I 2 s d
x 1 G4+(-1)") 5 dan| dp
= 7 = 2
E \8TE / ‘ T A \
, : ™o 0
4n° *
X —= s [k, ,a a+k ,,a btk, b a
[KOw 2]z ) J
* .
ki 1»3’ b]. (8.4)

Similarly, taking the imaginary part for t> 0, we have

, 2
1 I i+ I q 1 m
. t, -1 ,t = Z B A e 3 .
, _
(5+(1))——fdxf dp X - L——}_[k.lla*a
KK w2z} )

sk
+kj1_2a b+kJ ba+kJ22bb], (8.5)
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Finally, by putting z= 0, we could obtain equations for the
Ayll i which are given explicitly in terms of the pion-nucleon amplitudes.
™ .
The one-pion contributions to the Ale

, the §-function terms, are discussed
in the next section.

Let us return to thé equations for the two-pion contributions to.the
dsfs, (8.4) and (8.5). If on their right-hand sides we exclude from the b
absorptive parts the 6=function correspon‘ding,‘to the one-nucleon pole in
pioncnucleonvscattering‘, i.e., if we exclude the simplest box diagram (Fig. 6)
from the Landau-Cutkowsky diagrams with two-pion intermediate states
(Fig. 5), the remaining portions of the two-pion,contributioné to the dsfs
-are nonzero in the regions C and the inner regions of Fig. 7. In particular,
the two-pion contributions are the 9n_1y_no‘nzerov contributions in the strips
parallelto t = 0, u = 0. Ecjuations (8.4) and (8.5), then give explicitly the
dsfs in these strip§ in terms of the pion-nucleon.absorpt_iv'e parts, This is
in accordance with our statements in Section II-B and the Introduction.
. Furthermore, we have sh;)wn how the ssfs Ay’i-l. are to be derived in the
strip approximation.

We now turn to the strips of the dsfs parallel to s = 0, and refer
to (7.24) and (7.25). If we take the imaginary parts of these equati;)ns’for

t >0 (z > 1), we will, comparing with (8.1), obtain

@ 2
I p 1 2 F 4w
p. (s,t) = = d\ dp —
ix v lel E 47 ;2_/ [ [ K(\, 1, 2)] 2
R TS|
| o 1,2 % 1,3
X zjk Hijk (N, H,Z)x Aj (p ,‘)\)v Ak(P s M) . (8.6)

Unlike the equations (8.4) and (8.5), the absorptive parts AiI on the
right-hand side of (8.6) are not "“given, " but are to be derived from (7.14).

This requires a prior knowledge of the dsfs. However, in the strip
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approximation we, suppése that thé ir-m‘er région of the .&sfs is nof irﬁbortaﬁt,
even for the determination of the absorptive parts: accordingly it'is enough
to take for the dsfs the sum 6’f' o] iel and p iz‘,n , taking care not' to count
the contribution of the simplest box diagram twice. This then allows (8.6)

and (7.14) to be solved as coupled integral equations determining Pilxv Iei .

We again observe that it is possible to separate out from pi;x Iel

the part coming from the simplest box diagram. . This comes from the 5
functions in Ayil corresponding to one-pion exchange in the absorptive parts.
The remainder of pilx lel is nonzero in the'regiohs B (and the inner regions)
of Fig. 7, and in particular (again apart from the simplest box diagram contri-
bution) is the only nonzero part of the dsfs in the étrips péraliél to s = 0.
Thus we have shown how the unitafifyléqua.tions'lead to ;determihation,
in the sti'ip approxifnation, of those parts o‘f the dsfs which, we hdpe, dorﬁinate "
the Iowaen_ergy or 16w momentum-transfer parts of the phy’siéal s-catter:in.g
v a,mplitﬁde s. | |
The ssis Ayisl i>n the s channel are determined by application of
{7.34) and (7.35). . Similar equations could also be used to derive 'é;ny.r other
ssfs whiéh .arose. frorr‘lbsubtr'action, subject to the caveat about unciékerminéd

CDD poles mentioned in the Introductien.
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IX. THE YUKAWA POLES AND THE SIMPLEST BOX DIAGRAM

We have observed that one-particle intermediate states in Landau-
Cutkowsky diagrams give rise to poles in the amplitudes, and in particular

the one-pion interemediate states in the nucleon-antinucleon channels give

: 2
rise to poles at u = pz, t =pn . These are given in GGMW and a.re1

| ] | L
G| =-lf -0 e Pt o w T g 38 4 (),
A (9.1)
where '
no=(1, 1, -1, -1, 1).. (9.2)

Let us now consider the simplest box diagram. This is of interest
for reasons discussed in the Intl;oduction and amplified in Section VIII. The
equations are represented schematically by Fig. 5; the "blébs" include 5.11
states with the same qﬁantum numbers as a nucleon plus a pion, in ‘pal;ticular
the one-nucleon state. If we wish to isolate the contribution from this state
we must include in a and b, the absorptive parts of pion-nucleon scattering,
only the terms arising from the one-nucleon pole. We have already seen that
there is no contribution to a, and a contribution of 7 gZ S(KO-X)(Z P q)_l
to b, the rest of b, and the whole of a, with thresholds at XO' given by
Vg = (m+p)2 coming from interemediate states with more than just a nucleon
in the pion-nucleon scattering. If then we take just: this one-nucleon term in
the 'blobs' of Fig. 5; i.e., if we take the contribution associated with Fig. 6,

the simplest box diagram, to Im G, we obtain®

Im ‘(;i(l) ®% z) | =1m GYE%0) |
box box

2 — 2
1 m > 2 Z 4 nn dz! 1 — 1
— | (5 £1) 2 |— —_| = t =]
4 (8 Tr"f) 112 'rr/[ K(XO,‘)\O,ZF)] > 2V _F zV 47

=i e
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o2 gt L S L
X —T_Z k122 (XO, XO,Z') B fori:1,5;

m G, 3% 7) | -

box

= o

1 m - 2 | JZ - 1 -
8T E i

z'4z

| 2 |
4 7 da! 1 =, i1

X — [ — ¥ (-1) __.] Ao hzi)

j{K(KO’ xo,z")]z Z'_z 2 2 122 0 O

for i = 2,3,4; (9.3)
Im C_i(l)(fa_z,O) | =0, for i=1,5;
box
: ’ | 2 g2 .2 4
m&® go| =-1L 1 m q” 48
i P — a7 = " 2
' : E 8§ mTE P ]
: box v

2 4
X T [47 - 2)) LA + Ny LIWENIR
4p~q :
fori=1,5. (9. 4)
By taking the imaginary part of the absorptive parts given by (9.3) for
z < -1 it is possible to arrive at a determination of the contribution of the.

(s, u) double-spectral function associated with the simplest box diagram. . For

we have
ol (s,u) | e * | Im Gl (s,t,u) |
ix : My >0 u>0
box g box
P41 | I |
= (-1}t = B A, Im— Im G. (s,t,u
(-1) e II' 7ij z\<-1 u>0 J( . )vblox
3 -3 ) .
- (_1)1+I >3 BI N (=1)3+I + -1
| It o 1) .
2 2 4 | (x A z )
q 1 m I ™ 2 2 _]22
X = —) 5+ (-1)") ——&2— — 4w I
E ﬁ(Sﬂ.E) 4'{)'2q e [ K(\ 0 0,-z)]

(9.5)
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Now it is also possible to calculate the (é,u') double-spectral function
‘associated with the sim‘plest box diagram by cdhs"icierin’g-_nucleonv-v-nucleon
unitarity. We have now to includevin the absorptive parts A that enter in
~Eqgs. (8.6) only the contributions of tl'.le,one'—pizon poles. These we\have ‘already

stated and it follows from (9.1) that!

L (s . -
AT TN ] = B = sax . (9.6)
1w -1 2p :

The other contributions to A, arising from two-pion states, etc., have their

threshold at 7\1' =1+ sz/pz .
If we use (9.6) to calculate the (s, u) double-spectral function associated

with the simplest box diagram, we obtain, using Eq. (8.6),

ol (s,u) | = ’ 2 L 2 4 T
1x box 1 E 4w 172 [K(.)\l, )\1, -z)] 2
g4. o
X = m }{ (A, N, -2) . (9.7)
e " 67 ;‘zfp ijk ‘M1 ™M

- Of course the two determinations (9.5) and .(9.7) must be consistent with

each other. If we notice that:

S _ 6 9 S
§

A I (9.8)
’ 4 1 '

this consistency reduces to the set of identities

2 — -2 i j
m”ETZ (DAL 1) Ky, (s

-z)

O,

= Zgn Y Wit Moy -2) 9-9)

which are indeed vérified,
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APPENDIX Aq CROSSING:

The crossing matrix (x x) relating the. S(—il (s, t,u) to the xf (s,t,u)
may be obtained from the matrices '(S(_‘ F) (s,t,u) = (x F) (u,st,s), (xF), and . -
the crossing matrix (FF), all of which appear in GGMW. For clarity,
however, the work is described in detail below, in slightly different .
language that leans less heavily on conventional field theory. The resulting
‘Eqgqs. (A.7, A.l0, A.14), coincide with.that obtained from the matrices in
GGMW, and thus serve as an algebraic check.

‘ The same Feynman-diagram 'black box'", represented by a métrix
M{F(s,t;u) ), where s = (p) + Pz)z, t=(p, +p;") u=(py + p,")°, s
attached to nucleon spinors for nucleons of definite helicity and definite z

component of isotopic spin, to give nucleon-nucleon amplitudes (Fig. 2):

T '‘EUR Y (s,t,u) = u g('p ‘)I_F (‘“p ')M(F(s,t,u) u (p )]u (p )
AT, e W R W )y (poluy (P

(A.1)
or to nucleon and antinucleon spinors to give nucleon-antinucleon amplitudes
(Fig. 3):
Thy A A (OB = - Ty (-pl')[V_XZ(pZ')M,dF(SQt,u) b vy, Ry ()
(A.2)
The minus sign in (A.2) comes from a part of the Feynman rules not
u,suaflly stated; namely, there is a minus sign for _each,antiparficle in the:
final state, except for antiparticles corresponding to totally noninteracting
antiparticle lines—but the noninteracting line case contributes only to the
unit matrix in S = 1 4+ iT in the case of two-particle elastic scattering, so that
this exception is not relevant here. By agreeing to take states where particle
1l is created first, particlé 2 next; 1' first and 2°% ne>.ct in the nucleon-nucleon

case, and 'where the nucleon is created first, the antinucleon next in both
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states of the nucleon-antinucleon case, one determines that there is no relative
sign due to permutations of fefmions in in_itial_g.nd final s‘ta.tes;':":and-," _of course,
as there are equal numbers Qf closed loops in comparable vdiagra,r'ns, there

is no relative sign from the minus signs for closed loops.

That the same matrix function of the F( (pl + pé)zg (pl + P ! )2,

(pl + pz’ )Zb may be used for both cases reallg; requires a detailed argument.
To convince the skeptical reader of this, we draw attention to the fact that
since the nucleon-nucleon process involves (s, t,u) in the region where_

t <0, u <0, whereas the r;‘ucleon-arntinucleoin process as described above
involves (s,;,u) in the region where t <0, s <0, the use of the ‘'same"
.F(s,t,u) for both processeé invqives the concept o\f analytic contipiaat.ion, and
the knowledge that the F(s,t,u) are well-behaved amplitudes;i.e.,

Mandelstam amplitudes. That the F(s,t,u) may reasonably to expected to be
Mandelstam amplitudes is a_.rgued in the first two paragraphs of Sec. III of
aamw. 17

The matrix M, as given by an imagined sum over Feynman diagrams

based on interactions with all the usually assumed symmetries of strong
interactions, may indeed be reduced to the form M§F(s,t,u) }, a superposition
of numeric Dirac matrices with ,coeffiéienwifunctions only of the Lorentz in-
variants formed frdm the 4-momenta, _ if all the symmetry restrictions are in -
fact imposed, in addition to the Dirac equations in the four external 4-momenta
(see GGMW). The same matrix is involveci in the nucleon-antinucleon process,
.and the same symmetry restrictions apply; Eauli éymr_netnyf in one case and
G-conjugation symmetry in the 01‘:hevr lead to the same conditions. However,
two of the Dirac equations involve negatives of physical momenta—but the
convention of using' reversed momenta for outgeing particles means that the

same literal p variables enter the algebra. Since the reduction of the
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common original matrix to a linear combination involving five amplitudes
proceeds thus by parallel algebraic operations, the M{F(s,t,u) } are the
same, with the same functions F, differing only in the numerical values of"
the arguments s,t,u. That the functions are the same in the sense of a
sequence of parallel algebraic and Feynman-integral operations on their
arguments means that they are related by analytic continuation in the sense
of Mandelstam; that no singularity fhat would make this ambiguous is intro-
duced in the operations follows from the argument given in GGMW to show
that the F are Mandelstam amplitudes.

If some symmetry restrictions are dropped, in order, for example,
to apply the discussion to Weak'interacti.ons, then (A.l)' and (A.2) must be
modified only to the extent that the common matrix M involve formal inner
produbts of Dirac matrices with external 4-momenta; this follows from the
simple observation that the number of independent scalar coefficients would
then exceed five. The manipulation indicatea in Eq. (A.6) below would still
be the central step in the explicit expression of crossing,. but the use of a dif-
ferent expression for M would lead to algebraic details distinct from those
which follow from (A.3): A similar remark applies if all the present
symmetries are assumed, but if M is by choice resolved into five amplitudes
in a way that does not eliminate all inner products of Dirac mat;'ice's with
external 4-momenta, as is done, e.g., in Ref. (5).

Now we have
= (4vE) " m® 7y RGP VLR

A | |
)‘1”‘2”‘1"2 1”\2

and the ¢, are particular ¢ : ; similarly, ¢ = (4TTE)—1 rn2 T, and
, i )\l ! .)\2' )\1 )\2
the x, X are obtained by simple diagonal matrices which remove the singu-

larities from ¢, ¢, as has been discussed in Section II-C.Thus, ¥ = (X7T) 7,

7
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x = (X 'r) T, where (X 7) (s,t,u).= (x 7) {u,t,s).: The'xy and X~ of this -
Appendix bear subscripts 1,2, 3,4,5; the subscripts + and -, occasionally
used elsewhere, do not apply here.
It is convenient to define new Mandelstam amplitudes Xil, such that
_ I (1) - (2) I S
M =2 X eenn U gt sy

and to develop (¥ x) from !

X=&7EX X7 (Txx . | | (A
By utilizing the definition
SR P o
'vXa(p) = - iC T, uXa(p) , C=1i \ AT . (A.5)
for the chérge_—conjugate or antiparticle spihdf F('in the sense of G paritY),.
it is easy to show by; transposing the entire (lby 1) matrix that | M

"xz(pzl) MV"z' (p,) = - u)\z, (p,) 7,CM cTZuXZ(pZ'). (A.6)

By utilizing CI‘J.TC = (-)Jn1 Fj (where j =1,2,3,4,5 corresponds to

, . ’ J . S1Jeml o
S, T, A, V, P, respectively), and TZ'fB T, = Z}I B » with
-1 3. ‘
T _ 1 - I
B = > ) : : (A.7)
1 1

one finds that

I 1J

2 ' ' | Jye I (U (2XR8L
- Sapr P R EE FJ Y5 B -

‘ _ = ._ B
MMM,

where the use of a linear combination of s:pinors to yield given total isotopic

spin I is understood but not written.
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By comparing (A.8) with (A.1, A.3) one sees that since.

q‘
n

T X o X , X . X X . . -
( )1J J .

then A B _ | o " "
1 I3 = j 3 | ' ,
’ri - B (7 X)1J (') XJ ) ‘ . (A.9)

n

wherei (T T()ij(s,t,u) =(T X)ij (u,t, s); inasmuch és this matrik-fééfor arises
from exactly fhe same spinors, save that the arguments Py and pZ‘ are .-
interchanged.
o Hence,
X=-Bx D ER[F]xnrxx=z . a0
'The matrix (T x) can be worked out from Eq. (A.1) and (A.3) by
multiplying the spin’o‘rs, but GGMW have already worked out (7F), é_o one

need only find (F X) and use (7 X) = (7 F) (F X):
(1)~ (2) i (L (2) () (2)
Z F (VT =3 i AP = Z X T r A.ll
3 By @ T (T = B X T (A.11)
readily gives (F X) in terms of the S, T, A, V, P-adapted Fierz matrix (13: :

jc 1) - () _ 5 (1) . (2)
Z, ) Fi 6+ () qjkbrk ,'rk - NS S S W

yields

- - J = . o
X, = ’zj Fj gajk + (-) (C(yjk’ (X F)kij | (A.12)

Then, by matrix inversion,

~J
1 10 0 3 ~
(FX) = % 0 0 1 -1 0 (A.13) -
1 0 1 1 -3
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Note that S .
(4s,t,u) )-1 = Z{u,t, s) ,7 : | ‘. o (A.14a)

a convenient check on the matrix multiplications. The result for B has
already been given in Eq. (A.7); the result for Z'=1 is given as (A.14b) be-

low, and Z appears as Eq. (2.35) in: the text:

| : 2
2 2 t stu
2 u s+t su o
- tz e g‘ ) Z[t*u v 2] (t4u)® m ()
(t+u)” (t+u) 4m (s+t)
2 - 1;2 stu
2m t s+t su tu 5 : _ . ! 5
- ,
(t+u) : 2(t+u) 2(s4t)” (t+u) | (t4u)” m (t+y)
' ' 2.2 ,
2 2 4 . e tu
-] mT(s+t), mu 4m 't _ 2m tu L
e s{t4u) (t+u)2' s(t4u) s(t+u) §(t+u) (t+u)
4 2 2.
4:m4 : 4m 2m u s+t 2m t su
T2 "7 o Z t+u Z )
(t4u)° (t4u) (t4u) (t+u)”  (t+a)
| | 2 2 2
4m* 4m* _zm% 2mt  dmitose
tra)® (t4u)? (t+u) (t+u) (t+u)
L . —
(A.14b)

The equations XiI = (x .G)ij GjI require that the X be Mandelstam
amplitudes with zeros imposed by the matrix (x G), which is not simply a
numeric métrixg These conditions are applied in Section IV-C. Since the x
amplitudes are Mandelstém amplitudes with a physical meaning more ‘trans-
pa\.fent than that of the G, inasmuch.as they are ver;r simply related to the
helicity amplitudes, it would perhaps be‘ anno;ri_nvg. to héve no alternative
der.iva.tion of the informafion about zeros.. égt .i;-fact, t‘he> crossing matrix

gives this information directly, provided that one indeed has prior informa-

tion confirming the regularity of the x and of the .
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—

! xmix=-8 ’ <-)j] rx) i 7ty (A.15)

—

The right-hand side of (A.15) bears the poles of (7 X)-1 (x 'r)—l; the
left-hand side bears the poles of (T 5(’)'1 (x —:r)'1 . No pole can be cancelled
from the equation, inasmuch as the poles on the right-hand side appear at
s and s=4M2, whereas those on the left-hand side appear at u and u—4M2. The
regularity of x therefore imposes u and u-4M‘2 zeros on appropriate linear
combinations of the ¥, whereas the regularity of the ¥ imposes s and
s--4M2 zeros on appropriate linear combinations of the x. Since

x = (x 7) (T X)X, and since X and G are related by a numeric matrix,

these imposed zeros are equivalent to those imposed by regularity of

G=(x & 'x.

‘That the x and ¥ are Mandelstam amplitudes in fact is, of course,
a result that follows from prior knowledge that the X or F or G are
Mandelstam amplitudes, which in turn follows from arguments outlined in
GGMW, Sec. 1II. That the X are Mandelstam amplitudes follows immediately
.from X=-B(x 7 @TX) [(—)j.-] X, inasmuch as (x T) was originaly devised
so that x = (x 7) (7 X)X would be regular; i.e., {(x T) (7 X) (s,t,u) has all
elements regular, and therefore (x 7) (7 X) (s,t,u) = (x 7) (T X) (u,t, s) also
has all elements regular.

It has been remarked in the text that if F amplitudes are defined by
F = (F X)X, where (FX) (s,t,u)= (F x) (u,t, s), then (F F), the crossing
matrix of GGMW, is a numeric matrix, and the related matrix (G ~(f}) is
‘ explicitly quoted. (F F) may be computed directly from the above as
(Fx) (X x) (x F), but as GGMW show, it is not in fact necessary to go to the
trouble of handling the messy cancellations of functions of s,t,u that this

would involve.

“u
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This may be seen directly from Eq. :(A.10}. -:If we define new ampli-.i »
tudes X by (X X) = - B [(-)j] , then (F:F) =.(@‘-5(f)._(_:')_<-:~xy (X F), where - -
(X X)is an extremely simple "crossing matrix", (X F) is a numeric matrix -
(See Eq (A,IZ_) ), and the point is made if (F X) (s,t,;u) = (F X) (u,t,s) can
be established, inasmuch as (FVX) is‘, of course, numeric_. Now,
(FX)=(Fy) x X) (X X)nl, in terms of.p‘x;éviously examinéd transformations;
or (FX) = (FX) X M (TR XX (XX '=(FX) X 7 (T X); We have
(FX) (s.t,u) = (F x) (u,t, s) by definition of F; (X 7) (s,t,u) = (x 7) (u,t,s) by
definition of ¥; and (7T X) (s,t,u) = (7 X) (u,t,s) by definition of the symbol
('_r'-)_()l, whence (FX) (s,t,u) = (Fx) (x T)(TX) (u,t,s) = (F X) (u,t,s) = (F X)
is indeed numeric.

APPENDIX B, DERIVATION OF.THE UNITARITY EQUATIONS

For nucleon-nucleon scattering, where

2

o 4 (4 4TE -
s=1+i2n? s® (o, +p, +p, 45, B TE F (B.1)
E m :
the unitarity condition,
ST S=1, (B.2)

leads to
1 D

—1 -
S SUES SUR AN RO PEE ¥ )l

L 3 3
- 2 d 'k d 'k . .

- TS -2 A Sy S S T S N )
~ ‘ E° m"~ © (‘,ZTT; B V) ,

X -1 ]
x El“'lp‘z <x].tl‘7 xzi’\:plj’ -pZ" i ' I‘Ll’ HZ’ kl: k2>
N ‘v' i 2 - foe ) . B
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where we have included only the two-nucleon states on the right-hand side.
In the c.m. system p,' +p,' =0, so that if, say, the k, integration is

performed, the result of the spatial part of the § function is just to set

k1 + k, = 0. If we write kl-z p = - k,, the right-hand side reduces to

@)yt ae, Jp¥dpslz p® +mh/? 2m]
_t
X TPy Hy <"1“’ MNUipe @ kg “2;B>

x<p1,p2;_£> | ¢ I_XI,)\Z;&>. (B.4)
Performing the integration over p we obtain Eq. (7.2) .

For the nucleon-antinucleon unitarity, we have formally, if we include

only two-pion intercalated states,

Zl_i <N" N' | (R-RT) | NN)

= 2z (n ’N'|RT|m><m|R |NN) , (B.5)

which leads immediately to
1 . =
Zi_l.'<>\" -x'; ‘Pl" :'pz IQIX:X:PI: p2'>

°<)\'» N "Pl'» -P; 'ET I ¥ Py P2'>]

3 3 : ~/
=2 2 d’q d’q 2
4 E m : 1 2 (4) ; 4m
= (2m)° = J ] 6 (p," +p, +t4 +q)(——
2 anE (2m)3 ('_3'2“) 1 2 79 TS

x<xl9 —):';'Pl" °p2 lngql’ q2>

X {ap> | T Py+ Py') (B.6)
An argument paralleltothat whichled from (B.3)to (7.2) now gives (6.19a).
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1. Extraction of the Azimuthal Angles from'a Product of Matrix Elements

In this subsection the dependence of a 'produét of matrix éléments of
rotationally invariant operétors on azimuthal angles of the intercalated state
is explicitly displayed. Namely,

(£00,6,0) | BY 0 (80,4 )(nto,0,,4)) |A] 1) |
‘ ' (B.7)

- *
= o0 :
=ed <n(0, -6, 0). | B | f0> ( n(0, 91, 0) | A] 10>,
where A and B are operators which commute with rotation operators;

where the states are obtained from | i0>, '|n0>,, l'f0>’, eigenstates of J,

with eigenvalues m,, m_, m, respectively, as follows:

|i) = iio>,

in which active rotations are written explicitly in terms of the angular mo-
mentum operators J; where the angle 6, is the angle from a vector at the
direction _(01, ¢1) associated with the intercalated state to one at the direc-

tion (0, 0) associated with the final staté, so that

cos 92 = cos 0 cos 91 4 sin @ sin 91 cos 4)1; (B3.9)
and where |
' ig _ . - . \ _
e L = .exp 1[mi <p1 +mf ¢2+mn ¢3 ] : (B.10)
and
i9, S | o
sin 6, e =sinf cos B, - cos @sinb, cos ¢, +i8inbsind,, .
2 - sin 1 1 1 | 1
" , 4 (B.11)

sin 62 e = - cos 0 sin 61+sin 0 cos 61 cos ¢, - i sin 0 sin ¢y
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The applicvvatiqn of this theorem in the text is to the two-particle sta,te:s
l Xl’ )‘2’ P >of jacob aﬁd Wick (15), constructed by the active rotation of
fiducial states l Mo My p> - 1In a fiducial state, the first particle, i. é.»,
that whose creation operator acté first on the vacuum in the notation of con-
-ventional field theory, moves in the 4z direction and has hc/elicity )\1, and
the second particle movesfi:n the opposite direction and has helicity \,, so
that a fiducial state is an eigenstate of Jz with eigenvalue m = xl - )»2. The

absolute value of the momentum of either particle is p.

The result (B.7, B.9—B.11) is derived as follows:

<f(o,e,-0) | B! | n(9y. 6, ¢1)><n(¢1, 0,4 Al i>

iJ 6 -iJ ¢, -iJ 6. -T Y oA 1T 6, 1T ¢
=<f0le yple 271 Tyl Zl[no><r_b|621e vle Z1A|i>
0
. iJ 6 -iJ ¢, -iJ 6 iJ 6 im. ¢
1 1.7 1 . 1
=<fol_e Ve %2'e Y 'B |n0><n0|e y AI10>e v,
(B.12)

N

¢

where B' and A have been commuted with rotation operators, and where
J, has been replaced by its eigenvalue where obviously possible; note that
the third Euler angle {y has dropped out.

The 3-parametér rotation that appears as a succession of y, z, then
y rotations, is now rewritten in the more conventional form of a succession

of z,y, then z rotations:

1_Jye -7 4 "in91 i, einez elJz¢3

e e e =e (B.13)

The new parameters ¢5s 02, ¢, are given in (B.9, B.1l). They are readily
obtained if Eq. (B.13) between rotation group elements (the double-valued or

covering group, for maximal generality), is r'eplaced by the analogous

equation in the faithful spin $ répresen‘caﬁon. Then e1£°£6 is replaced by

A S . .. » : :
et l no. cos /2 +i0g-n sin 6/2, for n-n = 1, which gives a 2 by 2 matrix
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equation that is simplified by multiplying Pauli matrices, to yield four
trigonometric equations, and Eqs. (B.9, B.11). -

Substitution of (B.13) into {(B.12) produces the expression

:e1$<fole T|n><n(09 0) |A|1 >,‘

L iJ ¢
with e'® given by (B.10), when e 2”3 is commuted through B', and the J,

1J6

are replaced by the appropriate. elgenva.lues The final form (B.7) follows

72 81 ng)= (ngl B e 721 5,) = (a0, -0,,001B1%,)

In particular, it can be readily seen that Eq. (6.19b) follows from (6.19a),

sk

from <f0 | e
~and Eq. (7.4) from (7.2)¢

APPENDIX C: CALCULATIONS PERTAINING TO THE
UNITARITY EQUATIONS

In Section VI, the steps leading from (6.19) to (6.21) were Qmitted,

We give them here in some detail.

(T)

— | 1 1, = (D)
Im, ¢, Im2n<7’fz’£f|- l?.’z P>

-1 ®" (£)
= qumtiae 5+ g (-0,) g )
q g++ .Zq 85 +4 lq

m |\ ° ‘(:i:)* 22 = gn (&)*{
=(5=&1)%1?r (Sn.E> fdﬂq[mo +_1T_q. ( T a'® ()
: 0. o

(C.1 cont.)
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I

81 E

z - * ' '
19 d\ 2Re | ao(") o W] [)\ ¥ ﬂlz ]
. ‘ . lq lq

A
0

| 2 z
(5+1) =+ ( m ) / dﬂq{ | ag™ |

-+

[

Z . Z = %
_linzﬁ [ dx[ dpa® (o My
\ A

0 0

-+

. (C.1)

The angular integrals are given in Appendix D, and lead to (6.21a).

Similarly we have
—(1)
1 1 - 1 1 —
B >

— (D= _ - 1
Im, ¢, "= Im, <7’7’~Ef’$ | -5 -3:R

= atam-l " (#) - tm,_3, D
= q(4m)" " J qu (5 + 1)8( o (mezq)(:F:— (qu) =Im, ¢,
(C.2)

by virtue of the second equation of (6.7), leading to (6.21b):

1 1 =
@ | =2 - Z?Bi'>

+ () _ 1 1 —
Im, ;' =Im, (7. -7; ¢l

bo)

o

3

_ -1 e, (+) .
= aem g 5 =0 G 0,0 G0, ) exp 1 (o) + 4y)

o o
2 Via Y
= q m ~ lq ' 2q
_-(511)7&7( _) Jdnlq___z— d)\fdp
g mE m \ A
_ - 0 0
1 1

* - |
() (%) 1 7 1 T
* BTN RTW [’"qu+ "*qu} [“'Zlq ! leq’}

(C.3 cont.)
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"% Vg cos ¢lé.f.ﬁlqu' sin ¢1q]

2 ] ) L%k ‘
- (5%1) —Si‘;,.(m _) 5 dszlq[ dx[ aw 8 0y )

' . R I o
1 _- 1 1 = 1
X g * : +
| [‘ZZq "*ZZq] L"Zlq “*zlq]

g (C.3)
and ‘t‘.hen},il from (D;ZZ), -
A2 @ 00 %
(D _ .z q (m )'-z » (%) (%)
Im, ¢ -~ (l+z) (5 £ 1) - dh du B (M B (M)
2m 73 I Sﬂ'f ﬁZ{ [
o o
1, 4nfazr [ Ta% 4 pé oanpzr 1 -
X3 / 4 Z YL
: [ (A s 29]2 Lz’ - (14z) v
- 1 XZ-!-H. ~2hz' 14 A
P iz’ 14N , RS
z'42z o {il-m') . : ‘

Similarly we have

- {1 /1 1= 30 :
Imy, ¢4 )= Im, . <Z’ -7 Pl 2 - 2’2’°£i>

o . |
S I (£) )y v
- q{4m”* dq (5 £ l)g-g-.: («qu) 3 ‘- (qu) exp i (0p - ,fblq)

.. 0 0 ,

R T N I R T
X[-x_-—— &+ A +
“f2q MZZQ] [“'Zlq 2 :|

[H]

N

(C.5 cont. )
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1 2 2 - '
(z +2 -2z z Z - (1l + , C.5
1.7 la 2q 1q Zq) ( zlq zZq) . ( )

A

T
H

and wheniwe use (D.23),

o«

_ - \2 = s '
m, 3,0-- 03 Een ( m") = [ " [ aw 8 ey
N XO

81 E
0

w1 4n® 4z 1 [xz + 12 22 Az 1+ xp]
™ ; T — 2 B %)
[ KN, p1,21)]2 z! -2 (1-21')

_ 1 X2+p2 -2hpzt - | (C.6)
+ z'4z (1+Z')2 | 1+z! .

Equations (6.21c) and (6.21d) follow.

Similarly, we have

—m 1 1 — ,Zm,1 1 =
Im, ¢ -Imzn<2’7’.13f|$ | 2 7»}31>

. . b3
_ -1 (%) ()
=qdmJde (51 G (-6, FUT (0

+e lq) exp i ¢1q

2 .
- q m ' 1¢
=-0B%1) = (8‘"E) J dﬂqque lq

* gz o sk
(£ 29 d\ + 1 —_ 1
x[“o ) + 3 ( - a( ) (A) (X-zz + Ntz )]
, 0 q 2q

1 (#) 1 - 1
X = dp B (p) + )
" f (”'Zlq M21q

0

. 2 . . 3% 0
=-(5%1) Z% (8’: = ) [ an {ao(t) %f dp B(t)(P)
: N
0

. S T
>&(z2cl - zzlq) l;——_p_zl' t o ] ,

q

(C.7 cont.)
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—
N
N
]

P = : *. :
_ 1 [/ 1 (F) (£),
q % %19 Z2q ;ff d"[ dp x a7 (N BT
N M

{1 - 1 I 1 — 1}
X o + VT [_’ + , (C.7)
|j°z2q 2, H=Z1q K214 J }

and with the aid of (D.7) and (D.15), (6.21e) follows.

If now we make the substitution of (6.22),

G=Gd e

2 2
m, G- 1521 A ( m _) 2o an [ ap & [2T d2
. Ep 8 mE m \ A [K()‘-’ [ Z')]
0

0 :

x {Zmz 8% () B‘*’(u)[ L . 1 _:I [———TZZ'Z (24 p2o2nzt)- "”*Z’Z]
: zb -z z' + 2 (1-z'7) ’ l-z!
l4Apzi

z¥ -2 AR

BZ z Re [a’(t)q()») ﬁ(t)(hi][ ! —
z!-2

b '2
+ 2572 8% oy 8™ () [_1__ ¥ _] [ bzl W pnfoana) -

+2

+|
N
-]
+
N|
—J
' )
— |7
1
N &
wd T
N

5 1l

|+

1 q (m 2 2 g z 4m dz’ 1
= (5 1) e drn ) odp = ] Y1
E 5’ b 8'nf3> n° f)\ J)\ S § - PR

’”\[ — 7 1'_J ;{Zmz Bt () 8 [—Zz—z—z (4 p2-2huzt)-
z'-z z'+ z : (1-27°) |

. o | 2 | |
+ 2p% sy My z[(ll—”-z—z (A% + w22z - wz:l
-z'7) C 1-z

Atz

l-z1

(C.8 cont.)

d
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+2 £ 5% Re [ ! (] 2 ')‘;Hz‘z}

l-2z1

2 oty [ o] *
+ 2521 L ( =2 ) (1 £1) m? %{ dk/{ aps™ (™)
§mE ™
' 0 0

(C.8)

X [_41r+ N LN+ L) = Mo TN 1, 0)]9

where .
. 4n xp+[cx t e 2. 1y]2
[x +u-1]2 Ml-[%h +H-1?]2
We have used the identities
v 2 S N )
1y 4mdz! 1 1 - [(x2+u2—21%,piz'){(‘?ﬁe“rz'?j)\(lﬁ')\pz’)(l-_z'z)]=—4TT,
TR, 2! )E -2 |
and
1, 4 2d ! 1 |
Ly gL : s— (A-pz') = L(\) . (C.10)
[K(Np,z')]2 1 - 2
Similarly we have .
[ 4w dz'
m, .01 541) 2 dn - .
L AT 817E [K(N, pt,z)]2
z!'-z z'+z
% 2‘—2 (;0:)>§< A (F) 1+z'2 2 2 o 14+ Apz!
(¢ E" B (N B (W), f('——-'-z—)z()\'++l "ZM‘LZ)'I_'—Z_
l-z . -7

- *
+2 = E*Re[a™® (s l%—} o (c.1m)

l-2z"

y



and

2 4 2
);4%_:ﬂj de’ duié.f im dz’ I
: ) )\‘. [ 7& M, Z v)]z

UCRL.-10028

~-105-
= (I) 1 q [
Im, G =z 6= —4—(
P 8 1TE s A
0
n X  1 ,
z“-E
5k [ ]
x 2 B2 a® (v ﬁ(*)(u)[x“ I - 2 3 20\2 e
l-z} (1-2'7)
(n _ 1 ».q..z m
m, G,V - (5 + 1) :ﬁ(
.8 m

* y 2
% { 282 pE ﬂ‘*’(u)[‘————y
A - pz! } |
”f:“*Z' ’

*
-2 'r_Er:1 m® Re [a'(t) (N ﬁ(t)(l*)]

m, GW--1o 5+ L
Ep
x{?fﬁ.z o® (ny a® ()
u2.
_2E ﬁ‘*’ (\) ﬁ( ’( y 2! ,:(ﬁz—zz
1-21 %)

l4z
2

1-z77)

l-z!

(N 4 pl-2nzt) -

_ 2
dxj du%f“ dz’

14 Apzf
]
l-zt ™

(C.13)

[K(A, b, 2t)] 2

(A + p2 -2z -

14Apz!? ,
-7
l -z}

=
2

1
zZ7
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-106-.
ol . o : >>;< .
-2 ';En (-1‘_32 + mz) Rel: a(t) (N) ﬁ(*)(pj 7 N-pz! } | ’
.k l_z,Z :
___-.2-1- (5 £1) 9 m >22f2{4n|a(t)!2 : .
Ep~ I \gnE . o -

w >k . '
2[ AN 5 Rel o, @] [ L - 4n]
A LA

e ™~ 0
0
B , an a0 » ® | | ;
4 -é_,u._tlf d)\f dp P (n -a(*)(p)%“_[h Sh L(X)-p L)
0 0 T 0)] } . (C.14)

These equations, (C.8, C.11-—14), have apparent singularities at
-2 o _
= 0, as is observed in Section VI. However the substitution of a and b

p
for a and B through (6.17) leads to a cancellation and to the results of

Eqs. (6.23—6.26).
In a similar way we go through the derivation of (7.21) in the nucleon-

From (7.11) we have

nucléon unitarity.
pam! [ ag { (€972 [x," () x1(21) + x5 (2,)x 5 (2))]

1

Im,, ¢,

- s
- 2m 6y1y2 cos ¢3 X 5 (ZZ)X,S(.ZI)} , {(C.15)

and ,
Im_, ¢, pi4m~ Y a0 {(E p5) 7 [x 1*‘(z2)x2(z1) + xz*(zz) X 1,(ZI)J |
-2m™® Y¥p €08 ¢3 x5*(z?_)x5_(zl)}. (C.16)

Now we have
. : (C.17 cont.)
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. “2 dr | 1 Il * s
jdﬂ{-ﬂ— f)\ ~ [Ez'i’(-l) WZ—Z:I fl '()\)4'81}

[ T ’ ’ -
Z - .
1 dp 1 I 1 1 _ 2,
X T( ™ l iz, * D @:z;J () *gl}- ENERE

bl

—

1 JEE TR U B 1 I 1 '
+ -—ﬁ—f d\ 2 Re [:fl (N) gl] ~ J aQ z, Ijri; + (-1) mz_z]
A | |

—

+

an g
1 d\ dp % : 1 I 1
7] ~ | = W fl(“”dﬂz,lzzBTz +(-1) mZ—J
7\1

[ 1 ;(_1)1 1 J

pr-zl Ktz

and using (D.4, D.6,and D.14), we deduce
. % 2
Jagx, (z,) x (=] = |g | 4r

,+ -j;[ X 2Re "M gl [1+ DML - 4]
A
1

2 ([ dx [ dp o ' I+1 ' )
= Tf B g *0y £ (14 (DM (gm0 LO) - uLiw ]
)\1 Xl
© \ 2 O
- dxj IR IVE N L — {z.l_z +<-1)I+lz-l+z]

(C.17)
' ’ . %k . 3
Similar expressions may be obtained for [ dQ X X325 ] dQ X1 d:)(2 and

) * '
Jaax, x , - Further, we obtain
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| d42ly,y, cos ¢; x5 (2)x 5(z,) ]

-

! | x . 1 11 1 11
= o | dAA[ dpfg (N fg(e) ) do <z2z1-z)[x7 R v }[“‘«z -1 “*ZJ’ -,
m X A 2 2 L 1
1 1

which from (D.12, D.14) gives

Jd@[y,y, cos ¢; xs*(zz) X5 {2,) ]

—%—f dX/,. dp £ (N fs(u){[l + 1M Lamep Lo L]
. Xl xl

2
s Llparfar [ 1 11 ) e
TR 2] L 2iee

2
z  4m dz? o1 I 1
B [ e ]|

ot atp

= -%—f dx ( dp £, (N fS(H){[l"r(-l)Hl] [4m-p L(p) -AL(A) + Mg J(\, 1, 0)]

M M p g

2 .
z 47 dz? 1 I 1 A - 2zt
t ?TJ [K(?\» Hyz“)]% [Zﬁcz + (—1) Zﬂ+ZJ[ Z1 ]} ° (C.IS)

Equations (7.21a, b) follow: We next consider

i¢

Im_| ¢, (p,2) = 2—f 4@ {(E m%) 7% (14z)) (Ltz,)e x5 (20X 5(2))

2.-2 -1¢3 sk -6 sk
+ (Em’) (l-zl) (l-zz) e X 4 (zz) X4(zl) -2m Y1Y2X5 (zZ)XS(zl)

X expi (¢, + ;). (C.19)
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Now, we have

[aQ (1 +2)) (1+2,) exp[+i ¢5] x:i‘ (23)x 3 (2) exp 3 (5 + &)
= f,.dO —lz—f d)\f dp (l:kzl) (1:.1:22) ;1-2 [;ylz + 2,y cos <|>1 ¥ iy sin cbl]
m
Xl 7\1 :

1 % I 1 TN | I 1 ,
X [mz fay M+ D g 3 “‘ﬂ[r-zl— fay )+ 1 e f(?)(“’]

X;;'Z' [Yzl-zy'l cos ¢; +iy, sm¢1] [ cos¢1+1sm¢1]

1 : 1 % I * 111 I
= =z da ( dp dﬂ[xzz—z f(*) (N) + (-1) f(T) (M] EEETf(i)(“)+('1)
\ . .

1 )
itz 1F) ‘“’] ‘.
2 | 2

1 : .
x{_—_-1+z [zl tz, -2z z, zZ] +[z + lez] :i:[zl + ZZ]} , (C.20)

and using (D.22), this is equal to

' ) @ 2
(1+Z) %_ an d}J. %J 4 dz? .
™ [K(N, p,z')]2
Xl A

2. 2 ‘_ -
-1 AN+ pT=2\pz! Au+tz! * K
T [ RV ARt ] [f.('*) ) £y () + Ly N f(I)“‘)]

1 . N+ % | ) %
* 27 .2 i+z! l:f(t) (M) f(‘t)(ﬂ) f(’;) ()\) f(’;)(H)]

{C.21 cont.)
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2 2 .
I 1 N4+ pT -2huz' Np 4zt % o
+ ('1) z' 4z [ (l_zB)Z = (le' )L:I [f(i) ()\) f(:)(}l) + f(+) ()\)f(i)(p“ﬂ

11 - it x *
R ey [f(t) N g - I ™ f(t)‘“’} °

Thus we get

ip

-i¢

/ dQ[(1+zl) (l+zz) e 3)(3*(22) X3(z1) + (l-zl) (l-zz) e

3x4*(z2)x4(zl)J

o
2
. 2 o 1 4n dz!
Xexp1(¢2+¢l)=(l+z) T/(dkj d;:L‘F‘TT z .
™
A \

[K(N, 1, 27)]
1 _ '

2 2 ’
v 1 A4 p =2\uz! Nidz! * %
* [ A 1+z““f(+) (N £y () 5y ) f(-)“’f]

1 . Mp * * ‘

2. 2 | .
I 1. AN 4p” -2\pz! Atz t * %
D g [ 1an? l_zu] [:f(+) (N £y () + 5,700 f(ﬂ(u)]

\ 1 1 . 7\=|~L ‘ Sk - B

Also we have

JdRy,y, x5 (2) x 5(z;) exp i (4, + )

K o ’ )
I 1] 1 I 1 1 I
= JdQ Y1Y2 “—2[ ,dhf dp [rzz + (=1) x_’_zz]&_zl + (=1) _“+zl]
A N .
1 ,

1
(C.22 cont.)
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* 1 . 14,
X£5‘(7\)‘f5(p) ;2- [y zl-zyl cos cpl + iy, sin ¢1] e

LIl
'rr i d\ I dp f5 (Mf (H)jdﬂ [WZ + (-vl) X;Z_Z:.I
1
[ +(-1) H+21]

1 2. 2
X l:“sz_ (z) +2p -2z2 zz)"“"zl Zz):l (C.22)

which gives us, using (D.22),

a0

(142) fdki dp £ (Vi) = i e -
—2— . 5 [K_(X,Pﬂz")]%

x{ 1 [a%epfo2npar + >~H=1-‘+ ('.1)I 1 Maploprpzt MHJ}
[ .
zl -2 _(1+z'_)2 1+z'- z' 42 (1-7z')2 ‘ 1-27
| (C.23)

If we combine (C.21) and (C.23), we will obtain

2 1 (47" dz!
Im_, ¢5(p,2) = S (1+2) —r/ dx dp = 1
el 3 " ™ h : T [K()\, p': zV)a 2

1

X {z}_z [Elz y _(f(+)*( "‘)f(+)(“’ + f(_n)f(x),f(_)(“) )
m .

.).\Z-Huz- 2Zh\pz! Atz !
X Z Ty
‘N (14z')

My |
+ _2.7 U, N f(+)(p) - £ 0 £ (-) 1)) Trz'

(C.24 cont.)
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T2 2 ’

2 # N+ =2Nuz! Ap~1 -

SCEEN ATOE (p)( + B J |
m 5 > (l-er’)2 Lrz! ,

1. 1 AN <2zt A4z !
+ 0T g [Ezr-n4 ((+) (N £y () + £, O f(+)(u)( e - )

(1-2') 1-z°

1 * Lk A- L

N\,

22
2 * N 4p =2 pz! Apt1
- 5 5 (M i) ( =z - 1..zv):| :
m C (1-z)

Similarly, we can derive an expression for Ime1 ¢4 that will use the
angular integrations of (D.23), and which, together with (C.24), leads to

(7.21c) and (7.21d).

If we use BSjk’ we obtain

¢1 2 3.-1 * 2k
m_ g = _4? K e (Ep m7) yl[xl (z,)4X , (ZZ)]XS(ZI)
5 -1 3% 193 "oy C.25
+(Em”) " xg (z5)y, [(1+z1)e X3(Z1)—(l~zl) e X4‘(Zl)] {C.25)
and ' iq)l *
de TV Xy p (2 )xglzy)

1 Z2 dx ¥ f 1 I 1 % ‘
= -}-’— dQ (z -z 2z )[,ﬂ N > f1,2 (M(_K—zz + (-1) X__+zz)+ g, 2/] }

1

Lo e )] -

which, using (D.7) and (D.19), gives
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a0 - an

‘ ' 2 -

2 * 1 4n” dz!
d\ dp f (\) £o(pb) = T
Y '"7, J; f): .1’2 > T IR 2] 2

1 1
1 I 1 -;'X-pz'
X[;'—:z— +{-1) z'n+z:|][luz,zj o - (C.26)

For the other term we note that,

9, i,
dize " xp (Zyp(l £z) e Txs 4lE)

1 2,2 2
= 3 dQ[(zl-zz.Z) (l:l:zl):!:y -|-(z1-0-z2 -Zzz1 ZZ)]
. K
1 1 11 0
s [ v ] o
1

1 [ 1 I 1 |
1

o0 o
, , |
1 ' 1 4n” dz’ 1 \ I 1 1
=2y = dX dp  — T — 4+ (-1) :
™ f f “f[x(x,u,z')lz [z" i 242 102
N A | T

X {fs*(x) £y (L =(h-Dz?) (1) + (1-21 %) F (P4u®-202))

7

HETON £ (0 [-(-da') 1 F w = (121D T (0% 4 pvz-zxuz")]}°

(C.27)

~ .Equation (7.21e) follows from (C.26) and (C.27).
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APPENDIX.D.  THE ANGULAR INTEGRATIONS :

In this appendix we collect and summarize the angular integrations

used in Appendix C. These are all basically of the form

1 ] | |
]dQ )‘izz e f(z,zl,zz) R (D.1}

where f is a simple polynomial and

Z, =122, +v y1 cos ¢l, (D.2)
and

df

H

dz,d¢, . | (D.3)

We start with some very simple integrals:

fdQ 1 = 4m, (D.4)

+1
ao L = 2m dz 1
X?zl 1 )C:le
-1
- 2m m(M) = L(N), (D.5)
-1
21 ) ,
4o =+ dQ [ 1| =&AL -47] (D.6)
At z A+ z ,
» 1 1
and
Z,-2 % y y; cos ¢
a2 1 .Jage 171 -0, (D.7)
TN+ Zl N+ z1

We now turn to the basic Mandelstam integral:
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= 2
, 1 1 1 47" dz 1
fae =J\waz) = = | T ST
f ME2 BTE " [K(\p,z)]2 272

0 .
(D.8)
where
KM 1, z) = No4plz? -2apz-1, (D.9)
2 .., 2 i L
zy = M+ [(N-1) (w™-1)] 2, (D.10)
aQ & 1 = T(M s 2) " (D.11)
X""Z M+Z - s Moy ’ .
2 1
jdn RIS [ W
.»)\+zz iz,
. 1 — 1 |
, /m[ Lo -
o ; oo 2
. — . - ] —
=2 [Jnm ) TN -2)] = 2 [ Amdr L og .
v . ™ [K()\, M:Z')] 5. |2 -2 z2'+2
Z
0
(D.12)
Other derived integrals needed are:
zZ.,Z
40 2)
(A-2,)Tk-2))
- 1
) /dg Koz lezyy L1t N iz + Mz -p) + W
=47 - p Lip) - N LN # A T(N B, z), ~ (D.13)

(D.1 4; ccv>nt° )

-+

|
f—
J
N
[y
N
4%

1 - 1 1
dQ - +
f [X-zz )\+z2 ] [p-zz wtz,
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= 2(1#1) [ 4m-p L(p)-AL(N)] + 2\ [T\ 1, 2)¢ TN, =2) ], (D.14)

2 ,
Z2 _ ! 1 2
fdQ Wl) = de (K'ZZ) (H‘Zl) [(ZZ' )\)z2+>\(z2->\) + \7] |

AT\, z)-N [ dR -z |dQ
B2 H=2

= NI\ 2)-N L(W) - 2 [RL(R) - 47];

- zz(z2 -z z,
.. jdﬂ (X’ZZ)(H“ZDT = MA-pz) TN, 1, 2) = N L(p) + Mz LN .
(D.15)
Now we have
— 2 X(>\‘='}*LZ)J()\’ }.L,Z)
AMN-pz) J(\, 1, 2) =y [ T+2){1-2) J
S22 L[arfan [ 1 Ad-pz)
I [K(X, p,z")]z zl -z _l-z'2 N
+ £ 1 MA-p) 1 1 M+
2 1-z zV-1 Z 14z A
g2 Lfanfdzt 1 Meps)
"R B, 21y ]2 2 E 12172
+ % (L4z)M(N-p) TN, p, 1) + % (1-2) NMN4p) J(N\, p-1) . (D.16)
If we note that
J(N 1, £1) = [L{w) F L] ; o (D.17)

N+ op
and substitute (D.16) in (D. 15), we derive

2,02, - 2 2y) 2 1 [ 4n’ dz 1 AA-pz')
d sz ~-2z,) (k-z) Y = 1 zV -z 2
2! 2 ™ KO gzt ]2 1-z'

(D.18)
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Similarly we derive _
1 - 1 1T1 - 1
dQ z,{(z, - z z.) 4+ —
/ 2172 1 [K-zz '>‘+Z.2 j| [p-zl p+z1]
2 2 [ andam | 1 — 1 | MNX-pz') |
=y m EY zZl -z + zZTvz | s (D19)
SR, 1, 27)] 2 _ 1-z¢
and
22 = 1 - 1 [ 1 .- 1
/dQ (zl_ + z, - 2z zg ZZ)~ [ + Tz iz + e J
2 2 1 1
_g2 2 [4n2 dz! 1 o+ 1 N pplo2apz!
= S : I T _
Y ST 1.z1 %

This result enables us to deduce

(D.20)

Now we have

= (142)

1 2 2 1 = 1 1 - 1
[1_+z (Z1 tz, -Zz z ZZ)~(1-21 ZZ;I{)"ZZ + 7""22:][“'21 H+ZIJ
2 [ 4’z M1 - (1-2z) (No4pl-2apz?) .
Tom Y zl -z zV 4z 2 -
K()\’H’zl)]z ) . l1-z!
1 1 ' S :
+ [z'=z e ] xp} + 2(;;&1) E}n-x L(\)-p L(p):] ) (D.21)
1 4112 dz? 1- [:(1_-'2) (7\2+MZ—2XHZ‘) 1t )\I:‘
T IRO, 2] 2 2FE -z o
1 an’dz: 1 1 (1Fz2) (o +pt-2npat) ~1#\
. T ¥z a4z Z bl
[K(X’ M, z'-)]a . 1-2z1 ;
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;1 avdz 1 2(\24pl 2z ) Len
™ L ZTE] Z h By
- [ 12 : 1-z1 ,

K(k M, z')
=(1+2) L 41T2dz' 1 1 (1+z') (>\2+MZ—ZMLZ') S14\ i
z"Fz 122! ; 2 - b
: [K(\ H‘:zu)]a l-z

C& [ AL(N) + p L) - 47] .

Therefore, substituting in (D.21),

1 2 2 1 - 1 1 -1
]dﬂ [l+ (z," 42, -2z2z, 2,)-(1- zlzzj[x——z + M‘ZZ]E'Zl + “—_"'21]
_ 2 41r2' dz! 1 >\2+p2-2>\pz" 1- A
= (1+2) L ' 2 z' -2 2 T T+z7
, [K(N, p,2') ]2 (1+z7) )

2 2 ‘ '
- 1 AN+ -2 uz! L+
" [ (1-z1)° COTET (b-22)

Similarly, we have
dQ_l__ (z2+z -2zzz)(l+zz [ :'1
1-2z 1 2 2 1 2 )\ z, X+z -2, Mtz

(1-2) 2 41rzdz' » r 1 [;>\2+p2m2sz' 14 A
= w I _ - ~Z 7
I L B N T L S

2 2 L '
— 1 N R -2%pz? 1-\p
Y - . D.23
Z 427 [ (1+Z')2 14z ( )

n

Finally, we have

1 1 ' 1 1
d = do - :
j 1 KTE, R f Lz e Azy o BoE

= b I0pa) - LY,

and



~119- UCRL-10028

and

']dmzlizz) "xl-z—z H}zl = (0 I k2 - LN T LG . (D24)

Now we-have

. 2 :
' 1[ 4n~ d=z! 1 I 1 1
J(x: M Z) = (1 :‘:Z) Fj[K(XP‘ Z')]% ].:l:Zl ZE-Z + lﬂ:Z ]

2
1  4rdz’ 1 g ~
T [K(X,p,zl)]}z' 1xz! Z' -2 +J(>\,H’ T 1) ,

= (1xz)

We substitute in (D.24), and making use of (D.17), obtain

) 2
1 1 1 47" dz? 1 1
dQ (z,+z.) = (1£z) (p+N) = :
j 17727 \-z, B-2z, ™ [K(\, H,Z')]% I+z' z'-z

]dQ (z) +2,) [X'_Z? t HZzJI:“'Zl ' “izl]

. 2 [ 4n°dz 1 A = 1 A '
=(1+2) F] [zk-z T-rz' t 5z Flk-zil ’ (D.25)

(K(\, 1, 21)] 2

and

\Q_'\
=,
N

—

1

N

N
—
7

N
[N

4+
7l

NF—'
(Y]

o __ >
=,
M-
Tt

|
. F

4| -
N

fo—

1

2 » 9
_ 2 4n dz! 1 p-A = 1 Bt A :
= (I-Z)'?j‘[ - %[z'-z 1-2z1} + zV 42 1+zij ) (D°26)
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FOOTNOTES

1The paper cited in Ref, (4)contains many ideas germane to an understanding
of the present work. . We make frequent reference to it throughout as

GGMW.

2This approach is being explored by L. Balazs (Lawrence Radiation
Laboratory Berkeley), private communication.

3C., f. the parallel argument in Ref. (3) for pion-nucleon scattering.

4By Melastic séattering" we mean to exclude pion production; all possible
helicity flips and charge exchange processes will, of course, be con-

sidered.

>Our dot product is A.B. = A, B, - A+ B=- A, B, - A. B, Our Dirac

| 0 Bo ~4 T4 -
tri - LY, = ;Y = v 1 = - , satisf
ma}%mces Y=Py 05 Y4 = P3 Y5 =Y Yy Y3y Py y

Y =y

" "
that uwu= 1. The uy (p) for the two helicities A are as in GGMW:

s YH Y, -V, YH =2 6Hv, Our spinors are so normalised

the '"large components" are positive numbers. = An isotopic-spin
spinor of definite 3- component of isotopic spin is an implicit
'factor of every spinor, exﬁept that occasionally a linear superposition
of two such to produce definite total isotopic spin will be under-

stood when a product of two spinors is written. Our Geéarity
icharge-conjugate " Spin;jrs are v,(p) = -iC 7, Ex(p) T, where

C =i v,V vv=-l.

6See also Amati, Leader and Vitale, Ref. (12).

7 _
- We use the rather cumbersome phrase "simplest box diagram' to avoid
possible confusion. All the diagrams of Figs. 4 and 5 are some-

times called 'box diagrams. "
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8The reduction of the general form of the S-matrix to such a form, involving
only five amplitudes in each isotopic spin channel, is discussed in
GGMW and in Refs. (5), and (12).

9

We shall frequently use a notation as in (2.13a). If two sets of amplitudes
A and B are linearly related, we will write A = (AB) B, defining the
matrix (AB): thus (AB)™| = (BA). All our transformations will be
a direct product of a (2 by 2) matrix acting on the label for total
isbsPin and’a (5 by 5) matrix acting on the index relaﬁed to the |
ordinary spins. When theb isotopic spin factor is the identity matrix,

it will be ignored in the notati-on,' as in (2.13), and we will sé.y that

the transformation "does not involve'' the isotopic spin.

10That the number of amplitudes prior to consideration of the invariance
pfopérties is only 16 is trivial here, and is equally so if external
lines are represented by f,wo-—component spinors, but involves the
Dirac equations appropriate to the four external lines in the treéts
ment of the form (2.8) given by GGMW, and in Refs. (5)and (&_),'

MThe fast way of computing (F F) and a demonstration that it is in fact

independent of s,i,u on the- basis of our definition is given at the
end df Appendix A. |

IZWe omit a detai’_led field-theoretical discussion of the interaction term
in the Lagrangian and of the propagator, which Would be in order for
i=2,3,4. Extra contributions of the expressions given, if present,

should be obtained by the reqﬁirement of maximal analﬁicit-y and

unitarity within the context of S-matrix theory: c.f. Ref. (16), and

for an example see :Won'g‘and'Shaw (University of California, San

Diego, at La Jolla) private commiunication.
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13I’c is amusing to note that an immediate consequence of (5.3) is that the

- X, of Eq.. A.3 are merely the G amplitudes in the order 5, 2, 3,4, 1.

14In Eqs. (6.21) and subseq'uently‘, the upper sign refers to I = 0, the lower

tol =1.

The functions L(\) and J(\, u, 0) are defined by Eqs. (D.5) and (C.9) -

respectively.

16¢ £ Equation (5.4).

17See also Refs. (5) and (12).
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Table I.. XiI(s, z)as s ®

UCRL-10028

z fixed t fixed <0 u fixed <0

-1 <z <1 ("z = 1" (nzz_ 1)
o(s7/4) 0(s2) O(sz)
0(57/4) | o(sz) o(sz)
ofs 3/4) Of s) o(sz)
o(s>/4 o(s%) o(s)
o(s?/4) o(s) o(s)

Table II._X iI(u,E) as u-> o

z fixed t fixed <0 s fixed <0

-1 <z <1 ("'E:l") ("E'z,, 1
oa’/% ou? ou?)
o«u7/4) ' O(uz) O(uz)
o>/ % Otu) otu®)
0(11'3/4) o,(uz) o(u)
o(u3/4) o(u) of(u)
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Table III. xil(u,_z-) as u- w

UCRL-10028

7 fixed t fixed <0 s fixed <0

1<z <1 (1 = 1) (% = - 17)
of’/4 O(u?) o(u)
ofa™/%) o(u?) ofu)
0(u3/4) O(u) o(1)
oY o(u?) o(1)
a4 ofu) o(1)
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physical
region

\

T

s=(2m+u)?

s=4m?

s=0 s=0
N-N N-N
physical physical
region region

(alternative description)

MU-26092

Fig. 1. The physical regions, and the strip regions of the double
spectral functions. The latter are indicated by cross-hatching.
This figure is not drawn to scale. '



Fig. 2.
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\ Final
' state
|

/o

state

MU.26093

Nucleon-nucleon elastic scattering.

UCRL-10028

The arrows on the

lines attached to the central ''reaction zone' are in

accordance with Feynman rules.
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\\ Final ///
u state e

/ Initial ’\’

state pé

MU-26094

Fig. 3. Nucleon-antinucleon elastic scattering.
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\_/

N
A

MU-26095

| ‘Fig. 4. Landau-Cutkowsky diagram with two-particle
intermediate state in the nucleon-nucleon channel.
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\mr““f‘h/

N\

MU-26096

Fig. 5. Landau-Cutkowsky diagram with two-particle
. intermediate state in the nucleon-antinucleon channel.
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MU-26097

- - Fig. 6. The simplest box diagram.

UCRL-10028
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0(s2), o(s™h), O(s?),
os7/4), o(s?),
o(s374), Ofs
O(s), of(s3/9), ols?
ols), o(s3/4), ols).

olt),o(t), ofl),0(1)0(I).

olu), ofu), of1), ofl), ofl),
o(u¥/%),

MU-26100

Fig. 9. Asymptotic properties of the x amplitudes in
physical regions. In each case the behavior of the
X ; are listed in order of i, with a period at the end
of each list.
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P'\ Final -
, state //

/ Initial \

| state

MU-26101

. 10. Diagram for the reaction mm - NN .
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