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ABSTRACT 

The nucleon~nucleon scattering amplitude is discussed within the 

framework of the strip approximation, Asymptotic bounds to the behavior of 

the amplitudes are derived, and are applied to limit the number of "allowed" 

single spectral functions;, to six and correspondingly to limit the types of dy-

namically independent one-particle states. In particular, it is found that the 

pion is in this sense allowed, whilst the deuteron is not. The unitarity equations, 

in .which only two-particle intercalated states are retained, are explicitly 

derived in both the N-N and N~N channels, The N-N equations express a 

a portion of the double spectral functions in terms of the -rr-N amplitudes; the 

N-N equations express another portion of these functions through coupled 

integral equations, 
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I. INTRODUCTION 

In recent years the study of strongly interacting systems of particles 

has abandoned the paths of conventional field theory, and sought to build a 

theory on the basis of an assumed analyticity property of the S matrix, to-

gether with its unitarity. In particular, a framework of approximation has 

been proposed (!) on the basis of the Mandelstam representation (2), and an 

approximate form of unitarity in which only one- and two-particle intercalated 

states are retained, and this has been applied to the study of pion-pion scat-

tering (_!) and of pion-nucleon scattering (~). 
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It is the purpose of the present paper to extend this technique to nu-

cleon=nucleon scattering. This problem has already been studied within the 

framework of S-matrix theory (4. ~). In GGMW
1 

however, the emphasis was 

on a study of the individual partial waves. This approach, while admirable 

for an understanding of low-energy phenomena, is severely limited at high 

energies when many partial waves contribute. However, at these high energies 

the most interesting phenomenon in the physical region is the pronounced dif-

fraction peak, a phenomenon common to all known scattering cross sections 

for the strongly interacting family of particles. Since the interesting physics 

is confined to a portion of the physical region in a strip around the border 

thereof,.· it is hoped that evaluating the singularities of the amplitude in a 

region forming a similar, nearby strip in the unphysical region (Fig. 1) 

might lead to a good approximate description of the amplitude. This is the 

basis of the '!Strip approximation° 0 of Chew and Frautschi (_!:_). 

The double. spectral functions in the strips are determined by a con-

sideration of unitarity. For the strips parallel to t = 0, u = 0 in Fig. 1 

(the precise meaning of the notions and quantities mentioned here will be 

made clear in the sequel), the relevant unitarity condition is that for nu-

cleon=antinucleon scattering, and in particular those contributions which 

arise from two-pion intercalated states. This introduces the absorptive 

parts of the pion-nucleon scattering amplitudes, and these are considered as 

"given. 11 

The remaining strips parallel to s = 0 are determined by a solution 

of the integral equations arising from unitarity in the nucleon-nucleon channel. 

Alternatively, the previously determined strips can be used to define a gen-

eralised potential (6) which can be inserted into a Schrodinger equation for a 

determination of the low-energy part of the nucleon-nucleon scattering amplitude.
2 

'¥ 
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The main purpose ofthis.papel:' is .to set up the unitarity equations in both 

the nucleon-antinucleon and nucleon-nucleon channels which determine the 

double spectral functions in the strip region. Before we can proceed to this, 

however, it is necessary to discuss the kinematics in some detail. This is 

done in Section II, where we also introduce a number of different sets of 

scalar functions that can be used to specify the amplitudes.· 

The crossing relations between the amplitudes describing nucleon

nucleon scattering and those describing nucleon-antinucleon scattering are 

derived in Appendix A. These relations could have been taken directly from 

GGMW; however, we felt it would be of interest to present an alternative 

derivation that leans less heavily on conventional field theory. Also in 

Section II, on the basis of results derived by GGMW, we express the analyti

city of the amplitudes. This at first leads us to consider the general sub

tracted form of the Mandelstam representation (Eq. 2.5) for the amplitudes. 

This form, with its many independent spectral functions is clearly 

cumbersome for our purpose. It may also be dangerous. Perhaps the 

simplest way to understand this is to consider the effect of an extra or 

redundant subtraction.· This is to introduce a new subtraction term which is 

completely and uniquely determined by the weight function of the integral in 

which the redundant subtraction was made. Since a priori we know only the 

general form of the Mandelstam representation, the number of terms and 

their weight functions being unknown, we are faced with a dilemma. For if we 

postulate ''too large 11 a number of subtractions compared to the "actual 11 

number required, the supernumerary weight functions, which should be cor

related with the others, will appear as independent quantities to be calculated; 

in fact, the set of weight functions is overdetermined,· a particularly dangerous 

situation in any approximate scheme of calculation,' On the other hand, if we 
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choose 11too few" subtractions. the integrals we write do,wn will be .divergent. 

Froisaart ("f) has shown for scalar particles that a weak form of 

unitarity can severely restrict the number of ''independent" single spectral; 

functional and polynomial terms in the Mandelstam r:epresentationin: the 

following sense: any additional such terms ("allowed terms 11) must be de

termined completely and uniquely by the double spectral fun~tion. The 

allowed terms may always be determined by considering the unitarity re

quirement ina. suitable number of individual partial waves, and a .solution 

of the resulting N/D equations f8), but only up to the inherent ambiguity , 

of the· CDD poles {_2). 

This has led us to consider, in Sections III and IV, modifications to 

the Froissart argument appropriate to a COJ1Sideration of the nucleon-nucleon 

problem. To do this, we first place asymptotic bounds on the amplitude 

(Section III). We use a partial-wave expansion of the helicity amplitudes 

and assume a maximum range of appreciable interaction, and also assume 

that diffraction scattering dominates the elastic scattering at; high energie.s. 
3 

Then in Section IV we apply these bounds and conclude that the allowed single 

spectral functions are six in number, and that there are no allowed poly

nomial terms. 

In the nucleon-antinucleon channel there are four allowed single . 

spectral integrals. The partial-wave unitarity equations relevant to their 

determination are the J ::::; 0 singlet and triplet equations in. each isospin 

channel. As we have observed, their solutions are ambiguous because of 

the possibility of CDD poles;. this corresponds to the possibility of dynam

ically .i11dependent mesons~ being present, the Born terms arising from ex

change of which give just such poles. Our restriction to just four allowed 

.single spe,ctral integrals in the nucleon-antinucleon channel lhnits us then 

.•. 
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to just four kinds of allowed dynamically ind~perident mesons of nucleon-· 

number zero, and they turn out to be the scalar, pseudoscalar·, isoscalar, 

or isovector mesons. This is discussed in Section V. 

We observe that the pseudo scalar isovector pion fits into the class of 

"allowed" particles. All particles of spin higher than zero are excluded, 

however, an extension of results previously derived for the pion-pion and 

pion-nucleon problems. In particular, this means that it is not legitimate 

to simulate the :exchange oJ a cluster of resonating pions in a J = l state 

(the p, w, or 11 ttparticles ") by including the corresponding Born terms iri the 

amplitude, uncor·related with the form of the double spectral functions. ·The 

only consistent way to take account of such exchange is to use the recently 

proposed technique (_!..Q) of utilising the Hegge ( !:_1) continuation of the amplitudes 

<..! .. !) in the complex angular momentum. Such resonances are now represented 

by "Regge poles 11, or· poles in the complex angular momentum plane . 

. ·We are left with the two single spectral integrals in the nucleon-nucleon 

channeL 
l' 3 

These contribute only to the s
0 

ani· p
0 

partial waves o:£. the isovector 

part of the amplitude. First we observe that the two have nothing to do with 

the deuteron: as we might have anticipated, the deuteron can be nothing but 

a dynamically dependent particle-we might say loosely that it cannot be 

considered an elementary particle. 

In Section VII we find that the structure of the unitarity equations for 

nucleon-nucleon scattering forces the presence of single spectral integrals 

in just these ·two partial waves. · Specifically, Eqs. (7. 34) and (7. 35) are in-

consistent with the vanishing of the single spectral function terms contained 

in h 1, 5 (p
2

). We are at present unable to exclude the possibility of CDD 

ambiguities ·in these two partial waves. However, it would be most reason-

able to insist that no extra parameter be introduced, so that there are no such 

\ 
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CDD poles, since it is expected that no independent parameters enter into 

the final equations of S-matrix theory. 

It is interesting to observe that again in this problem, as pr·eviously 

in the pion-pion and pion-nucleoh problems, itJs possible to exclude dynam

ically independent particles with J:;:::, l. About p-articles with J < 1 we can as 

yet say nothing. Furthermore, there is achain of consistency: if we assurrie 

that the pion-nucleon amplitude has single spectral functions corresponding 

to J::: 0 in the crossed channels, which are. allowed by Fr.oissart type of 

argument (3), one is fqrced to assume the presence of similar terms in~the 

crossed channel of nucleon-nucleon scattering; 

We shall then adopt the follo~ing philosophy. The Mandelstam repre--

sentation will be written as a sum of unsubtracted double spectral integrals, 

together with just those single spectral integrals allowed by the arguments of 

'· 
Section IV, Eqs. ('8.1) and (8. 2). The single spectral functions in the nuc:J,eori-

antinucleon cJ:annel are in principle determined directly from pion-nucleon 

scattering. They will in particular contain the o-functions corresponding to 

the one- pion pole. 

The double spectral functions are to be determined from the equations 

of Section VIII. The contributions from the nucleon-nucleon channel result · 

from the solution of coupled integral equations .. It may happen that the so'-de:.. '· 

termined double spectral functions lead to divergent integrals. In this case, 

one is faced with the possibility of making subtractions ~o that the double · · 

spectral integrals converge, but one would then have to resort to N/D · type 

calculations to obtain the subtraction terms, with the resultant CDD am-

biguities. Alternatively one could use the analysis in _terms of "Regge poles" 

( !.Q) giving a unique meaning to these formally divergent integrals, hoping to 

obtain in this way a unique determination. 

v/ 
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This situation will presumably arise in the nucleon-nucleon problem for 

the case of the deuteron. We have already indicated that it cannot be introduced 

as a CDD pole, since its origin is dynamical, it havihg nothing to do with 

allowed single spectral functions. 'Its introduction as a "Regge pole 11 would 

seem to be the most satisfactory. Since in: this paper the solution of the 

equations for the double spectral functions is not attempted, we shall not 

pursue this point further. 

In Sectioh VI the·unitarity equations for the nucleon""antinucleon channel 

are derived in the two-meso~ approximation, and in Section VII similar 

equations for nucleon-nucleon unitarity are obtai.ried. · In Section VIII the 

equations for the double spectral functions are discussed and summarized. 

Finally, the Yukawa poles and the simplest box-diagram contributions 

are derived in Section IX. The simplest box-diagram contributions calculated 

from either nucleon-nucleon or nucleon-antinucleon unitarity with two-particle 

intercalated states are shown to coincide in the region where both apply, thus 

affording an internal consistency check. 
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IL KINEMATICS 

A. Ki11en~atical Variables. 

We are primarily concerned here with the elastic scattering .of two 

nucleons. 
4 

Because of the substitution law we wilLhave also to consider, - . t· ' . . 

the amplitudes for the elastic scattering of a nucleon and.an antinuc;:leon. 

The _four~momenta in either of these processes will be denoted.as .· 

p
1

, p 2 , p
1 

1 , p 2
1 • These will all be sensed into the scattering,diagram, so 

that if p =. (p
0

, p}, then ±p
0 

is the energy, ±,e. is the momen,tum of the cor= 

respondin~ particle, the +sign applies to an incoming particle, the , sign. 

to an outgoing particle; and conservation of 4-momer;ttum reads 

P 1 +p2 +p 1 ! +.P2
1 =O. (2.1} 

Each ofcthese 
5 2 

p' s sq-q.~res to m . We neglect the proton-neutron :mass 

difference. 

We define the customary three scalar invariants as 

2 
13 = (p 1 + p 2} ' 

( I } 2 
t = pl + pl ' 

2 
U : (p 1 + p 2 I} ; 

2 
s + t + u = 4m . 

(2.2} 

This constraint will always be understood, even when s, t, u are considered 

as complex variables. 

The nucleon-nucleon scattering process is described by incoming 

_momenta p 1 , p 2 , and outgoing momenta -p
1 

1 , -p2 
1 (Fig. 2}. The 

Mandelstam parameters are related to the common parameters for nucleon-

nucleon.scattering by 
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2 2 2 
s = 4E = 4(m + p ) , 

2 t =·- 2p (1-z), 

2 
u = - 2p (1 + z), 

2 !!i 0 Ei = p z, 

z = cos e, 
1 

2 2 
y = ( l - z ) = sin e ··;,:. 0 ' 

where p., Pf , p, E,8 are the c. m. momentum of the incident particle 
;:;...]. -

"l)' oi the scattered particle "l:' theh absolute value, the c. m. energy of 

one particle,· and the c. m. scattering angle, from Ei to ,Pf The physical 

regionforthisprocess, E;,:.m, -l ~z~l, isgivenbyt~O,u~d. in 
. ' 

Mandelstam parameters" This range of variables and the nucleon~nucleon 

process will in consequence be frequently design~ted as ''the s chanriel'i. 

The nucleon-antinucleon scattering process is related by crossing to 

the nucleon..:nucleon process if an outgoing nucleon line is converted to an in

"coming antinu.cleon iine, a~d an incoming nucleon line is converted to an out-

going antinucleon line-the details are discus sed briefly in Section li-B below, 

and more extensively in Appendix A" Which nucleon lines -are so converted is . ' 

a matter of indifference, owing to the Pauli principle. We follow GGMW, 

and .choose p
1 

to be the ·4-momentum of the incoming nucleon, p 2 
1 the 4-

momentum of the incoming antinucleon, · -pf' the 4-momentum of the outgoing 

nucleon, and .:..p2 the 4-momentum of the ·outgoing antinucleon (Fig. 3)" Thus, 

the subscript 2 designates the antinucleon. The ~'line "·of particles l is 

''unchanged 11
; that of particles, 2: is d~scribed' "backwards in time'·' in the 

sense of Feynman. Another mnemonic.advantage of this convention for cross-

ing is that t is still the momentum-transfer variable: 

.J. 
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-2 2 -2 
u = 4E = 4(m + p ) , 

-2 -
t = - 2p (1 - z), 

-2 -
s = - 2p ( 1 + z), (2.4) 

-2-1\ . £f = p z, 

z = cos ,e, 
1 

-2 2 y = (1 - z ) = sin 7J ~ 0, 

and 

where ..Pi•£e p,. E, and 7f are the c~.m. m.omentum of the incident nucleon, 

that of the ~merging nucleon, their absolute value, the c. m. energy of one 

particle, and.the c. m. scattering angle from £i to fr The physical region 

for this process,. E ~ m, -1 ~z ~ 1, is given through the above transfor-

mation by s ~0. t ~0, in Mandel~tam.parameters, a range which we will 

describe as the "u .channel. 11 

The r~gion s ~ 0, u ~ 0, or: ''t channel, ''also describes nucleon-anti-

nucleon scattering, .as may be seen by the Pauli principle, G-parity reflection, 

or direct employme:rtt of a different convention for crossing. 

B. The Mandelstarn Representation 

We''follow Mandelstam(2) and GGMW
6

in postulating analytic properties 

for a set of basic amplitudes for the 4-nucleon-line. processes of nucleon-nu-

cl~on and nucleori;..antinuc1eon scattering. In the following s;ubsection several 

altern.ative sets· of such amplitudes will' be defined. Their analytic properties 

will all be deduced from the GGMW result that those of onesuch set, the 

"F" amplitudes, satisfy a Maridesltam representation. 

The "Mahdelstam amplitudes 11 are functions of the complex variables 

s, t, u (subject to the constr.aint s. + t + u = 4 m
2

),. the singularities of which. 

correspond to the thresholds of physical processes. For our problem, with 
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four external nucleon lines, they have representations of the form 

N N 
Q( ) s 2t j. ds I j.dt I s,t,u :: . N N 

s 1 t 1 (s 1 -s)(t 1 -t) 'IT 

N N 
+ t z J dt I J du I 

'IT 

'N. N 

+ u sz J du I J ds I 

'IT 

p (t I 'U I) 
tu . 

N N 
t 1 u 1 {t 1 - t) (u 1 -u) 

P (u' s'), 
us ' 

N N u v s I (u' -u) (s I - s::) 

M 
+ l: 

p==O 
fds 1 

P (s I) 
s 
M s 1 (s 1 -s) 

P (u') } 

~ ·. 
u 1 (u 1 -u) 

. . L . si tj +.E . . 0 ·p .. 
1' J:: lJ 

(2.5) 

We have written the most general subtracted form (7) consistent with 

the above-stated analyticity property. The weight functions P t' Pt , P , s u us 

the double spectral functions (dsfs) .~re real and nonzero in regions asymp-

2 . 2 2 
totically bounded by s 1 :: 4m , t 1 = 41-L , u' = 41-L , where f.L is the pion mass. 

The single spectral functions ( s sfs ') p s, pt' pu are also real, and may be 

. .· 2 2 ' 2 
nonzero for s 1 ~mD, t 1 ~f.L, u 1 ~f.L where mD is the mass ofthe 

lightest state of nucleon-number 2 (physically, of course, the deuteron). 

In Sections VI and VII we present unitarity relations that determine 

the contributions to the dsfs coming from Landau {_!2) - Cutkowsky (~) 

diagrams which have two-particle intermediate states. For the nucleon-

nucleon channel, these are of the general form of Fig. 4, and for the nucleon

antinucleon of the form of Fig. 5. We note that the simplest box diagram 
7 
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(Fig. 6) has two-particle intermediate states in both ch~nlfels. 

In Fig. 7 the stippled regions A of the dsfs have contributions 

from Landau-Cutkowsky diagrams that have more than two-particle inter-

mediate states in all channels: we call these the '''inner regions. " The 

regions B with vertical cross-hatching have contributions from diagrams 

of the form of Fig. 4, i.e. , those with two nucleons in the intercalated 

state in nucleon-nucleon scattering. The regions C with horizontal eros s-

hatching have contributions from diagrams of the form of Fig. 5, i.e., those 

with two mesons in the intercalated state of nucleon-antinucleon scattering. 

The simplest box diagrams (Fig.· 6) make contributions throughout the region 
. . . . 

of nonvanishing dsfs, including the unshaded, crescent-like regions of 

Fig. 7. 

The ssfs will include the 6-function contributions from one-particle 

intermediate states in Landau-Cutkowsky diagrams of the form of Fig. 8. 

In particular, there will be 6-function contributions corresponding to the 

one -pion states in 
2 2 

p and p at t 1 = f.l , u 1 = f.l ; 
t u 

and, in principle at any 

rate,. the deuteron 6-function at i 2 . 
s = mD. 1n ps' 

The deuteron term has been discussed in Section I. In Section IX we 

give the one-pion contributions, and also discuss the simplest box diagrams. 

These are of interest because, as we have seen, their contributions to the 

dsfs may be calculated by applying the unitarity conditions with two-particle 

intercalated states in either the nucleon-nucleon, or the nucleon-antinucleon, 

channels; the unshaded crescentlike regions of Fig. 7 occur in the strips 

parallel to both s = 0 and u = 0 (or t = 0}~ Thus it has to be confirmed that 

the two derivations of the simplest box-diagram contributions to the dsfs 

agree. 
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A complete solution of the nucleon-nucleon problem would require 

complete knowledge of the dsfs and of the s sis. However, we hope that 

the nature of the dsfs in the inner regions has only a small influence on 

physical nucleon-nucleon scattering when either the energy or the momentum 

transfer (direct or exchange) is not too large (_!_) ; i. e, , we hope that near 

the boundaries of the physical regions the amplitudes in the physical regions 

are 'controlled by the behavior of the dsfs in the "strip" regions to good 

approximation, namely, those dsf regions, complementary to the mysterious 

inner regions, where in at least one channel the unl.ta.rity condition with only 

two-particle intercalated states is correcL Were we to know the absorptive 

parts corresponding to the "blobs" :iru1Figs. 4 and 5, these parts of the dsfs 

could be calculated precisely from the unitarity equations (:8.4, 8.5, 8.6), 

For nucleon-antinucleon unitarity, the approp'riate absorptive parts 

are for pion-nucleon scattering, and we shall regard these to be "given" 

input data, For nucleon-nucleon unitarity, however, the absorptive parts 

are still for nucleon-nucleon scattering. If we suppose that the inner regions 

of the dsfs may be neglected even when calculating the relevant absorptive 

parts' we can set up a set of coupled integral equations for the dsfs in the 

strips parallel to s = 0. 

The ssfs pt' pu will be considered as given, since they are de

termined by the amplitudes for nucleon-antinucleon annihilation into one pion, 

The ssfs p are in principle determined by integral equations derived 
s 

from the nucleon-nucleon unitarity relation, Especially, the emergence of 

';;., the a-function corresponding to the deuteron' should be indicated; we have 

touched on this subject in the introduction. 
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C. The Various Amplitudes 

The S matrix for nucleon-nucleon scattering is 

S = 1 + iR, 

R = (2n)46(4)(p -tp2+ pY + p2' )m2E-2 T . 
8 1 .. 

Following GGMW, we write 
· · T~ [ F 

1 
°(s-s) + F 

2 
°(T+T> + F

3 
°(A-A) + .F 

4
°<vlv> 

where 

+ F 50 (P:- P)] Q3 0 

+l Jf1
1

<S-S) +F2
1

<T+T) + F 3
1
(A-A) + F 4

1
(V+V) 

+Fsl(P-P)] $1 , 

S ={ u(-p 2
1 )u(p

2
)} «u(-p

1
1 )u(p

1
)} , 

(2.6) 

(2.\Z} 

(2. 8a) 

T = 1 { u(-p 2 •) (l/2i)l yi-L, 'Y) u(p 2)} {U(-p1•) (l/2i)[ 'YI-L, 'Y) u(p 1)~, 
A ={u(-p2 ')iy5 yi-Lu(p 2)} {U(-p

1
')iy

5
yi-L(p

1
)}, (2.8b) 

v ={ u(-p2 I )yi-Lu.~p2)}{~(-pl' )yi-Lu(pl)} ' 

P = {u(-p2 1 >ysu<:r,z>} {U(-pL' )y5u(pl)} ' 

and 

(2.8c) 

that is'· the expressions for S, T, etc. , are obtaine,d from those for S, T, etc. , 

by interchanging the spinors under ''bars. n This is equivalent to the linear 

transformation of Fierz: 

-s J 1 1 1 1 s 

T 6 -2 0 0 6 T 

-A 1 4 0 .-2 2 4 A (2~9> 4 

v 4 0 2 -2 -4 v .. 
p 1 1 -1 -1 1 p. 

V'' 
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The isotopic spin projection operators in the s channel are 

:uo = l(l- T(l) • · r( 2 )) 
4 - -

::(51 = 1(3 + T(l) • 7"(2) . 
4 - -

We will in the sequel employ the notation r. for the Dirac operators 
1 

(2.10) 

l, (l/2i.J2)[ y , y ] , iy
5

y , y , y
5

, in that order, with i = l, 2, 3, 4~ 5, and 
. fJ.. v . fJ.. fJ.. . 

contractions understood, so that we may write (2.8a) in the more compact 

form 

cr _ --: 1 1 I i Q:: (l > ( 2 >m I .1 -U·(-p2 ) u(-pl ) :Z: .. I F. (6 .. + (-) u· .. )r. r . ..p u(p 1) u(p 2), 
. 1J 1 1J 1J J J 

(2.11) 

where i}' is the Fierz matrix of (2. 9). 

The helicities, spinor phase conventions, and 3-components of 

isotopic spin which specify a given S-matrix element of clear physical 

meaning determine the choice of the spinors u which enter into the forms 

S, T, etc. , whereas the F. I(s, t, u) are ten Mandelstam-amplitude "4-point 
1 

function form factors 11 dissociated from the particular spinors u. 

The Pauli principle-namely, that the S-matrix element be odd under 

interchange of all quantum numbers of the two particles in either the initial 

or in the final state-assumes the form 

(2. 12a) 

if A and B are Pauli-conjugate points on the Mandelstam (s, t, u) diagram; 

i.e. , for 

s(A) = S(B), t(A) = u(B), u(A) = t(B); (2.12b) 

in brief, 

I · i+I I · 
F. (s,t,u) = (-) F. (s,u,t) 

1 1 
(2.12c) 

Equation (2.12c) is easily obtained in the s channel, and then follows generally 
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I 

by analytic continuation for pairs of (s, t, u) points (A, B), where . A is reached 

by a path in the complex {s, t, u) space, B by a concurrently described path 

through Pauli-conjugate points, and where one and hence both paths do not 

meet a singularity of the relevant amplitudes. Thus when the points A and 

B have reached values in the physical regions of the u and t channels 

respectively, Eq. (2.12c) supplies a symmetry condition for nucleon-anti-

nucleon scattering: this is the same symmetry as that implied by G parity. 

GGMW argue in Section III of their paper that the F are, in fact, 

Mandelstam amplitudes. 

We shall usually employ the G amplitudes of GGMW, defined by 

I I 
G. = (G F) .. F. , 

1 1J J 
(2.13a) 

where the matrix (G F) is given by 9 

1 0 -4 0 1 

0 2 0 0 .o 

(G F) 1 
1 0 -2 0 -1 (2.13b} = 41T 

0 0 0 2 0 

1 0 4 0 1 

Since the G amplitudes are related to the Mandelstam amplitudes F 

by a numeric matrix, they also are Mandelstam amplitudes. Since (G F) 

does not involve I, and has zero entries for all i+j odd, the conditions of 

Pauli symmetry are unaltered: 

I i+I I 
G. ( s , t , u) = (-) G. ( s , u, t) 

1 . 1 
(2.14) 

The complicated relationship of the G and F amplitudes to the 

helicity quantum numbers is clarified by the introduction of helicity amplitudes 

<j>(~). If we have 

·T= I 2 -
(4'1T E m ) ~ , .(2.15) 

-· 
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then in the c. m. system we obtain 

1\ I '\ I. I I I -,h I .. ) \1\.l ' '\2 • -pl - P2 '~" 1\.1' x.2; P1· P2 

(2.16) 

and 

(2.1 7) 

is the differential cross section per unit c. m. -system solid angle for the 

process in which x.
1

, x.
2 

are the initial helicities, A.
1 

v, X.2 
1 are the final 

helicities; p., -p. are the initial momenta,. and pf' -pf the final physical 
-1 -1 - ,_., 

momenta, We will take the plane from which azimuthal angles are measured 

to be the plane of p. and pf, and in fact assign Euler angles (0, 0, 0) to the 
-1 -

initial state, (0, e, 0) to the final state, to define our cp amplitudes: 

(2.18) 

i. e. , the cj> amplitudes are obtained by using spinors u of definite helicity 

in Eq. (2.11), if the factor m 
2

/ 4TIE is prefixed for the purpose of giving an 

amplitude which simply squares to da /df2. If the factor m 
2 

/4TIE is not 

prefixed, we have 11T" amplitudes, In either case, we use an appropriate 

linear superposition of isotopic- spin spinors to produce a definite total 

isotopic spin I in the s channel. 

The sixteen choices of helicities yield sixteen cj> amplitudes for each 

total s -channel isotopic spin I = 0, 1. Of these, only five of each sixteen 

are kinematically independent, if account be taken of the invariance properties 

of the nucleon-nucleon system, including the parity invariance, lO· After 

GGMW, we use the names ¢
1

, · · ·, ¢
5 

for these amplitudes: 
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A-
1 

= < 1 1 I -t,.ll 1 > _ < 1 1 I A.. I 1 1 >. 't' 2• 2 't' 2• 2 - -2, -2 't' -2, -2 • 

A-
2 

= < 1 1 I A.. I 1 1 > _ < 1 1 I -t,.ll 1 > . 
't' 2• 2 't' - 2• -2 - -2· -2 't' 2• 2 ' 

A-3 = { 1 1 I -t,.ll 1 > _ < 1 1 I A.. I 1 1 >. 
't' 2• -2 't' 2• -2 - -2· 2 't' - 2• 2 ' 

A. - (1 11-t,.l 1 1)- ( 1 11-t,.ll 1). 
'~"4- 2• -2 't' - 2• 2 - -2· 2 't' 2• -2 ' 

= <--L -ti<PI~· -ti<PI 

UCRL-10028 

By inserting the spinors of appropriate helicity into (2" 8), and 

inserting the prefixing factor (<I> T) = m 2 
/41TE, GGMW give the <j>linearly 

in terms ofthe F; but we quote the <!> in terms of the G: 

E2 2 2 2 2 
m z m m z -p 

2 2 2 2 2 2 
-E (E +p )z -m m z -p 

(<I> G) 
l 2 2 2 

0 (2.20) = 2E 0 m (ltz) -p (ltz) E (l+z) 

0 
2 

m {1-z) 
2 

p (1-z) 
2 

E (1-z) 0 

0 -mEy 0 -mEy 0 

This matrix introduces kinematical singularities, such as the branch 

point owing to the factor 1/E, so that the <1> are not Mandelstam amplitudes. 

It is easy, nevertheless, to remove these singularities from the helicity 

amplitudes one by one, if we allow different correction factors for different 

<I>·, to produce Mandelstam amplitudes X. diagonally related to the helicity 
1 1 

amplitudes: 

. .... 
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2 
X 1 := Ep cj>1 ., 

2 
X 2 = Ep cj>2' 

2 -1 
X 3 = Ern (1 + z) cj>3 ' (2.21) 

2 -1 
X 4 = Ern ( 1 z) cj> 4 

3 -1 
x5 =.rn y cj>5 

We have here suppressed the label I of total isotopic spin, and this 

obtains hereafter for operations that proceed analogously and separately for . 

the two values I= 0, 1. 

By computing (x G) = (x cj>) (cj> G) from Eqs. (2.21) and (2.20), one 

does in fact obtain a matrix of elements analytic in s, t, u: 

- s (t t u) 
2 

4rn (t - u) 
2 

-4rn (t + u) 4rn 
2 

( t- - u) · - (t. + u) 

s (t + u) (s-t-u) (t.:-u) 
2 

4rn (t + u) 
2 

4rn (t -u) - (t + u) 

<x G) 
1 (4rn 2) 2 2 2 

= ~ 0 4rn (t + u) 4rn s 0 

0 (4rn 2) 2 2 
-4rn (t + u) 

2 
4rn s 0 

0 - (4rn 2) 2 0 -(4rn2)2 0 

(2. 22) 

This matrix, though of analytic elements, is not numeric. It bears 

nonzero entries with odd i + j, so that the symmetry conditions imposed by 

the Pauli principle are somewhat more complicated. If we define 

then 

with 

repp~ctively fo:r 

I I I 
x± =x 3 ±x 4 (2.23) 

I ·X. (s, t, u) = 
1 

(-)I e·. I( t) X· s;u, , 
1 1 

.E • = - ' . -: '· +' - + '1 ..... .• ' 

i=l,2,+,-,5 

(2.24) 

(2.25) 

2 

2 
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We take some care in the sequel to indicate in each section whether 

our X amplitudes include X 3 and X 4 , or X+ and X_. 

Another consequence of the fact that the elements of (X G) are not 

-1 
numeric is that many of the elements of (X G) have poles. Thus, although 

a Mandelstam representation for the G will assure on'e for the X, a 

Mandelsta:tn representation for the X does not in itself ensure one for the G. 

In the sequel, we will find the x more useful for discussion of the asymp-

totic behavior of amplitudes than the G, because of the clearer relation to 

physical assumptions about cross sections. So we will nevertheless make 

use of the requirement of a Mandetstam representation,though weaker, for 

the X amplitudes, and only after that impose the condition that the G be 

Mandelstam amplitudes too. 

The S matrix for nucleon-antinucleon scattering is 

S=l+iR, (2.26) 

- 4 (4) 21-2 rr 
R = (2n) 6 (p

1 
+ p 2 

1 + p
1

1 + p 2) {m E ) .J.. • (2.27) 

7= (4n E/m 
2 )1 

da<"-', >;•; :pf;>--, I; .Ei )/dn = I ( "'', "''; ifl~l "'·I;£) 12; 

(t.•,"X•;pf '~'"'·A.; p.) = {\', "X•jcp (p,8)1A.,"X); 
I.M - -1 

-;p1 = <1> ~ 1-;p I i, ~> = <-1-, -i I -;p I l - 2 ), etc., (2.31) 

as in Eq. (2.19), and 

7 = (4nE/m 
2

) cp • (2. 32) 

The phases of these matrix elements are defined by computing the 

matrix elements T of the operator T in the manner of Appendix A, where 

u and v are spinors of definite helicity, with isotopic spinors in a linear com-

bination of definite total initial and final (and hence u channel) isotopic spin I, 

are applied to the same matrix M( F) (Eq. A.l) used for the computation of 

nucleon-nucleon amplitudes. 
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.. ~, 
If one uses positive -frequency' spinors u even for the'"ant:inucleons, 

and compensates for this by defining new <:Lmplitudes F by i~posing the 

condition that the u~spinor result computed from M(F) agree with the u-

and v- spinor results computed from M(F), one obtains the GGMW eros sing 

matrix (F F) after the GGMW calculation. 

We define amplitudes X by 

(2,33) 

- -2 --where the coefficients (X 4>) are the same functions of E, p , z, y as the 

2 
(X 4>) of Eq. (2.21) are of E, p , z, y. 

From these definitions, it is possible to compute the crossing matrix 

(x x) = BZ -l (see Appendix A) and its inverse (x x) = BZ; it is (x x) rather 

than (X X) which we wiil need so that physical arguments on the forms of the 

nucleon-antinucleon amplitudes x will bear on the mathematical forms of the 

X· 

Thus we have 

B = .!.[-1 
2 

l 
(2, 34) 

From Eq. (A.l4) we have 

.• j ... 



2 
-2m t 

(s+t) 2 

2 
-2m t 

(s+t) 
2 

Z= -m2 [t+u + _s_l 
~{s+t) (s+t) :J 

4 
-4m 

(s+t) 2 

4m4 

(s+t) 
2 

2 
-2m t 

(s+t)2 

- --+ --1 ~t+u su J 
2 s+t (s+t) 2 

4 
4m t 

2 
u(s+t) 

4 
-4m 

(s+t) 2 

st 
--2 
(s+t) 

2 
-2m st 

\l(s+t) 2 

2 
2m s 

2 
(s+t) 

2 
-2m s 

(s+t) 
2 

2 
-t 

Ts+n 

-t2 
2 

(s+t) 

2 
2 2 

mt 
2 

u(s+t) 

t+u 2m
2

t 
s+t - 2 

(s+t) 

2 
2m t 

(s+t) 2 

stu 
2 - 2 

m (s+t) 

-2st' 
,~z 

(s+t) 

2su 
2 

(s+t) 

,; (2.35) I 

N 
N 
I 

,) 

c: 
() 

2 •.-. ;_: 
4m t .: su ,; 

!::d 
r-

-z 
(s+t) 

1 -0 
0 
N 
00 
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Both x and x · amplitudes are'he're unde·rstood to bear the suosc;:ripts 1, 2, 

3, 4, s .. 

If we extend the list of barred amplitudes to G and F by putting 

(Gx) (s,t,u) = (Gx) (u,t,s), and (F G)~ (FG), a;numeric matrix, then the 

F coincide with those defined in the manner remarked on above, by GGMW. 

We have seen this by observing that ()( F) (F ·F) (F x), computed from the 

simple numeric matrix (F:F), as quoted in GGMW, 
11

agrees with our matrix 

()( x ), In particular •. the numeric character of (F F) and (G G) trivially 

ensure that the F and the G are Mandelstam ,amplitudes, so that the 

analyticity of the elements of ()( G) confirms that the x are Mandelstam 
.. ,~ . i- . . -

amplitudes -the rnatr{x(x)<:) contains poles that would otherwise put this con-

elusion in qt1e~tion. 

We quote the crossing matrix (G G) = (G G): 
\ 

(G G) = B6., 

-1 6 4 -4 -1 
:~''. .;:: ~ 

1 2 0 0 1 

6.= 1 1 0 2 4 2 -1 6.2 = 1 (2. 36) 

- 1 0 2 2·. 1 

-1 6 -4 4 -1 
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III ... ,ASYMPTOTIC UPPER BOUNDS TO THE X AMPLITUDES 

The partial-wave expansion GGMW (4. 8) for the helicity amplitudes 

<j>, and (x <Ph Eq. (2.21), give the partial-wave expansions for the x: 

2 J J 
X l = p (Ejp)I:3 (2J + 1) T l dO, O 

2 J J 
X 2 = p (Ejp )I:3 (2J + 1) T 2 d 0 , O 

2. J: J 
X 3 = m (Ejp)I:3 (2J + 1) T 3 d 1 , 1 /(1 + z) , ( 3.1) 

. 2; . JJ ;·· x 4 = m (E p)I:3 (2J + 1) T 4 d-l, 1 · (1- z), 
1 

2 J J 2 2 x 5 = m (mjp)E3 (2J + 1) T 5 dl,O /(1- z) . 

Upper bounds for the x may be obtained through unitarity, 

J 
1Tkl~1. (3.2) 

if a finite range R of appreciable interaction is assumed. We introduce 

the simplest form for such an assumption, namely, that the 1:
3 

runs, for 
1 

fixed large p, to J = pR a: i p - s 2 . This, together with the explicit 
max 

expressions for the dJ (z) , m,n _ 

J 
d 1 , 1 (z) = (1 + z) / (J(J + 1)} lP

3
1 (z) .. (1- z) PJ" (z)]; 

d:l, 1 (z) = (1- z)/(J(J + 1)) l PJ' (z) + (1 + z) P/' (z)] 

df.o (z) =- (1- z2)1/2; (J(J + 1) )l/2p/ (z), 

yield the following asymptotic bounds: 

For fixed z, -1 < z < 1, as s -+ ac , 

I _ O ( 7 /4). 
X. - s ' 

1 
i=1,2,3, 

I = O ( 3/4) xi s , i = 4, 5; 

(3.3) 

(3.4) 

for z = 1, as s-+ e, or, more precisely, as s -+ao while t is fixed< 0, 
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· I ·· .. 2 · ···-
X i ::i~ 0 ( s ) , i = 1, 2; 4, 

I X. = O(s), i = 3, 5. 
. 1 

UCRL-10028 

~ :: ': ... ' ! ' 

., (3.5) 

The .situat~on for negative z, and in particular for z = 1, is de-
, <;!, 

ducible from that for positive z by means of the Pauli principle, Eq. (2.24). 

As our amplitude forms satisfy Eq. {2_. 24) identically, the as~mptotic con

ditions for z = - 1 which foilow from {3,5) and (2. 24) need noJ: be explicitly 

considered, ,They are given, however, for completeness. 

We assume what seems physically reasonable. viz,, that at very 

high energies the elastic scattering is primarily diffraction scattering, This 
. • . . ·! '• •, 

makes it reasonable. to strengthen the above bounds so !hat O(sa) is replaced 

a 
by o (s ) except for those amplitudes which may contribute _to the coherent 

forward diffraction peak. 

The only amplitudes on which the bounds will not be strengthened,-

then , are those at z = 1 for which there is no spin flip or helicity flip-

these notions coincide for z = 1; specifically, these amplitudes. are x 
1 

I 

I 
and x 3 . The amplitudes for nucleon-nucleon scattering at z = - 1 depend 

on those at z = 1 in virtue of the Pauli principle, and may1be said to 'provide 

an alternative description of forward scattering. 

The isolation of individual helicity amplitudes available through use 

of the x is crucial·in completely expressing physical assumptions of dif-

fraction scattering in their strongest form, because the coherent processes 

are well separated; linear combinations of amplitudes with distinct asymp-

totic bounds need be limited by only the weakest bound, 

The asymptotic upper bounds are listed in Table I, which includes the 

redundant results for z = - l for ready reference below, 
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The limits on the nucleon-antinucleon scattering amplitudes as the 

energy variable u-+ on, for fixed z, are derived similarly, and can in fact 

be read from Table I. The only change needed aside from the use of 

(u; z) in place of {s' z) arises from the fact that the z = ± 1 amplitudes are 

no longer kinematically dependent, so that the assumption of diffraction scat-

- -I tering introduces o' s at z = - 1 for all the X. , as seen in Table II. 
1 

The behavior of the x as u -+ .., follows from Table II and the crossing 

matrix {x x), Eq. {2. 34) . The isotopic spin matrix B is a nonsingular 

numeric matrix which does not mix the different i, so that it does not in-

fluence asymptotic behavior: the isotopic spin index may be suppressed. 

The asymptotic behavior of the elements of the other factor Z in 

{X x) = BZ, as u-+ ..,, in the general, forward, and backward limits, is 

readily obtained· from Eq. {2. 34).,. and· is as, follows: 

-For z fixed, -1 < z <l, s and t are both proportional to u, and 

-1 -1 1 u u u u 

-1 1 1 1 u u 

z .. =0 -1 -2 -1 -1 1 (3. 6a) u u u u lJ 
-2 -2 -1 

1 r u u u 

-2 -2 -1 -1 1 u u u u 

For z = 1' or, more precisely, for t fixed, s- -u, 

-2 -2 -2 1 u u u u 

-2 
1 

-1 -2 1 u u u 

z .. =0 -1 -3 -2 -2 -1 (3.6b) 
lJ u u u u u 

-2 -2 -1 1 1 u u u 

-2 -2 -1 -2 1 u u u u 
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For z = - 1' or, more precisely, for a fixed, t - -u, 
"{ ·. 

-1 - l --1 
1 1 u u u 

-1 -1 .:..1 
1 l u u u 

Z .. 0 -2 -2 -2 -1 -1 (3.6c) = u u u u u 
lJ 

-2 -2 -2 -1 ~1 
u u u u u 

-2 -2 -2 -1 -1 
u u u u u 

., 

The resulting asynwtotic bounds on the X a;re listed in Table III.. 

Tables I 4-nd III are presented in on~ diagram, it;! .fig. 9. The dependencies 
- . 

at t-+ <10 are deduced from those as u -+GQ> by the Pauli symz:netry. These 

asymptotic bounds will henceforth be designated simply, ~s. 11the asyiX?-ptotic 

bounds. " . 

. . ~ ' . 
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IV. THE ALLOWED SINGLE SPECTRAL FUNCTIONS 

As in Froissart, (7), the difference Ax/ of two sets of x/. both 

limited by the asymptotic bounds, both satisfying general kinematical 

properties of the nucleon-nucleon scattering amplitudes, and with equal 

dsfs, will be shown to have a special form involving only a finite number of 

terms. Specifically, the result, Eqs. (4.31), (4.32), and (4.43) involves no 

polynomial and six s sfs: two in the isovector s channel, and two in the 

Pauli-symmetric t and u channels, for each value of the total isotopic 

spin. The above mentioned ''general kinematical properties" are that the 

x be Mandelstam amplitudes in the sense that they be given in terms of 

subtracted dsf and ssf integrals and a polynomial in s,t,u, and, further, 

that the corresponding G or F amplitudes also be Mandelstam amplitudes, 

which necessitates that four linear combinations of the x vanish at s = 0 
2 . 

or at s = 4m (see Eq. 4. 30). These conditions may be understood without 

direct reference to the G or F amplitudes if one requires the X amplitudes 

to be Mandelstam amplitudes (see Appendix A). 

The original general subtracted form of the Ax_. I can be written 
1 

I 
~X- = 

1 

M 1.6. il (u 1 )du' ) .. sPu: Pup . .L p q 1I + --. + E t s .6-p 
1T I M ( I ) p, q=O pq u u - u 

(4.1) 

The asymptotic bounds at general fixed angle limit this form to that 

of Eq. (4.2) for i = 3, 4, 5, and to that of Eq. (4.3) fori = 1, 2. The argu-

ment for i = 3, 4, 5 is precisely that given in Section 5 of Froissart 1 s 

paper, and will not be given here. The result is 
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M 

(
. p. l..::pjds '~Pii (s') t _s . sp 

''TT 1-
\, (s 1 -s)s 1 P 

I 
~X- (s,t,u) = :E 

1 
p=O 

+ 
'I ~ 

s u up + ~P1 ' i = 3, 4, 5, 
p 1-pjdu'~p1 

(u 1
) ·I 

TT (u'-u)url-p 00 
(4.2a) 

with the various ~P (x) 
p 

3/4- p 
= o (x ) . (4.2b) 

The result for i = 1, 2 is 

I 
~X- (s,t,u) = 

1 

M (tp 2-p r ds I ~pii: (s ') z; s sp 
Tl . 2-p 

p=O. .) (s' -s)s 1 

il 
p 2-pj du '.~P (u 

1
) s u up 

+ Tl . 2-
(u' -u)u 1 p 

(4. 3a) 

with the various 7/4-p 
~P (x) = o{x ), 

p 
(4. 3b) 

The argument for i = 1, 2 differs from that for the other i only in 

that the weaker asymptotic bounds--7/4 powers--admit a few more terms 

easily guessed. The detailed argument follows: 

I 
Im ~X. = 

1 

M 
~ 

p=O 

. . I 
tp~p1 (s) inthe s channel (i.e., for t<O, 

sp 

u < 0). If the convenient variable A is introduced by z = cos e = 1 - 2 A., 

2 
then t = ( 4m - s) "-· and 

M 
~ 

p=O 

as s .... :eo for fixed e, i.e. , for fixed A. Each coefficient of Ap 
. ' 

must also be o(s 
7

/
4

), whence 

7/4- p 
~ p s p ( s) = 0 ( s .• ) ',' 

It follows that the integrals in 
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M 
I: 
p=O 

TI Z-p 
(s 1 - s)s 1 

714 converge, with the _Eth term o(s ), and share a common imaginary part 

I 
with the L:!.x. in the s channeL · Similar argument for the t and u 

1 

channels establishes that 

I M ~ p 2-pjd I A ii ( i) L:!. . -:-'E;- -t-s s ~Psp s 
X 1 TT 2-p 

p=O (s 1 -s}s 1 

ii 
p 2-pjdt 1 i:!.p (t 1

) u t tp· + . . 
TT (t i -t)t I Z-p 

"I 
p 2-p;du 1

l:!.p
1 

(u 1
)) s u up 

f TT Z-
(u1-u)u1 p 

(4.4) 

has no imaginary part in any physical region, so that it is a polynomial 

augmented by possible pole terms, and 

ii 714 - p L:!.p (x) ='O (x ) 
(s ,,t, u)p 

The explicit coefficient of tP, for example, bears an s
2

-P factor, which 

is a pole term for p;:;:. 3. The expression (4.4) is, then, of the form 

where the possible pole terms have been gathered together in the first sum. 

These all have p + q ;:;:. 2, so that at a fixed angle, with s, t, u mutually 

proportional, they all go > o(s 7 I 4 ) . If one again puts t = (4m
2 

- s) ~. and 

2 
u = (4m - s) (1 - \), it rnay be seen that the dependencies on \ of the dif-

ferent pole terms and of the terms in the finals um with p + q ~ 2 are suf

ficiently different that e~ch term must separately be o(s 
714

), and hence zero, 

if the sum is to be o(s 
7 I 4 ). The sum must be o(s 7 I 4 ), because the integrals 

in the original form (4.4) of the expression and the L:!.x. I are all o(s 
7 I 4 ). 

1 

Thus, (4.5) must reduce to 

·~ 
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~Poo + ~Plos + ~Polt, 

which establishes (4. 3 ). 

UCRL-10028 

We argue that the terms of order 3- s
2 

in (4.5) must in fact separately 

vanish because of their different dependence on X.. The nonvanishing terms 

of maximum value m 3- 2 of p + q, if they exist, are 

~M (tpsm-pa p m-pb p m-p ) ~L A p m-p 
41 + U t + S U C + 41 wp t S p=O p, m-p p, m-p p, m-p p=O p, m-p 

= :r;M ( (4m2 
p=O 

where the subscript q = m - p has been dropped for brevity. The coefficient 

m 
of s must vanish, for all X.: 

L p + l:: o~P (-X.) = o p= p 

Since q = m - p ~- 1 in the first sum, we have m < p there, and this has 

caused the lower limit of the first sum to be m + 1, instead of 0. Since 

q = m - p 3- 0 in the second sum, p ~ m, which has cut the upper limit of 

the second sum to m. The vanishing of the principal part of this function of 

X. at X. = 0 requires that the b vanish; the vanishing of the principal part p . 

at X. = 1 requires that the c vanish; and the vanishing of the remaining 
p 

polynomial requires that the remaining coefficients, the ap and the ~pp' 

vanish. It follows that there is no nonvanishing term with p + q 3- 2. 

::) ' 
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The asymptotic bounds in the various forward and backward di-

rections, Fig. 9, and Pauli symmetrization, will now be applied. The 

cases i = +, ~, 5, and i = l, 2 are discussed separately; 

A. The Cases i = +, -, 5 

In this subsection, Eq. (4.2) is further specialized. 

It is convenient to consider 

(4.6) 

in place of X 3 and x 
4 

because the Pauli symmetrization is simpler; see 

Eq. (2.24). 

However, the X± in each asymptotic limit need satisfy only the 

weakest of the conditions satisfied by X 3 , x 
4

, so that some information is 

conceivably lost, and .if lost should be imposed at some later stage. The 

final X:1:: nevertheless happen to be limited b~ the strongest of thes.e asymp

totic bounds, without any such further imposition of asymptotic bounds--

compare Fig. 9 and Eq. (4. 18). This point will therefore receive no further 

mention. 

Except insofar as the asymptotic conditions to be imposed are Pauli-

symmetric, Pauli symmetrization will be deferred to the end, and until then 

the isotopic spin indix will be dropped. In this subsection, i will be under-

stood to run over the values +, -, 5 only, and i = +, -, 5 will be handled to-

gether as far as possible, for brevity. 

The condition (u-+ aD, s fixed < 0) will be abbreviated U , and 
s 

similarly for the other conditions. Order-of-magnitude assertions will be 

understood to apply in the limit as the relevant variable tends to infinity. 

In the limit U , the variables lie in the u physical region, 
s 

X. = o (1), and so 
1 

'• 
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M p i 
Im 6x· .· =·. 1: .. · .. 

0 
s:. t!.R,,; (u)' =· o(l) 

1 p= "- up {4. 2b) 

whence each 6p~p {u) = o(l), which is, however, weaker than {4.2b) except 

when p = 0: 

i 
6puO {u) = o(l) . 

The limit T also produces one new condition: 
s 

M p i 
Im 6x i = ~p:::o u 6ptp {t) = o(l); 

:z;M {-t)P 6f!ti {t) = o{l) 
p=O p . 

{4. 7) 

{4.8) 

The new conditions· {4. 7) ·and {4. 8) may be used to reduce the number 

of subtractions. Thus, by virtue of {4.7), the .d.p~O ter~ in {4.2) will be 

replaced by 

~:~ :u L:.p~O (u') + increment of L:.p~O {4, 9) 

The 6 i · sum is first transformed so as to isolate the largest ptp 

powers of t: 

l M 1- Jdt'l:.'li (t') 
- E upt p p 
TT 

p=O {tl-t}t 1 l-p 

l M 1 J dt ' L:. p; (t ' ) 
{4, l 0) = - l: {-t)pt -p. p 

TT p=O {t 1 -t)t 1 l-p 

l M 2 ·jdt' t:.pi (t' I 
. ··.· + - E 1 {4m - s -t)p-{-t)p tp . 

TT 
p=l {t 1 -t)t 1 l-p 

the first line of which may then be written 

~Jtd;·~t-· --t\· ~ <-.. t' )p6ptip (ti) 
p='=O 

= _!_Jdt' ~ (-t'·)~,~~t~p(tl) +increment of 6p1

00
, {4.11) 

TT tI-t p=O 
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i 
by virtue of (4,8); the b.ptp sum will be replace9. by (4,11) and the second 

line of (4, 10) . 

The altered .6.p~0 term (4.9) and the new b.ptip sum are now o(l) in 

the limit T . s 
i 

The possible bad behavior has been moved into b.p00 . The 

o( 1) bound for T is therefore simplified to 
s 

1M _z; 
-rr p=O J

ds' b.pi (s') 
tpsl-p sp 1 

(s' -s)s' -p 

i 
+ 6 Poo = 0 (1) · (4.12) 

i 
Taking the imaginary part of the left-hand side, one sees that each b.p (s) sp 

vanishes, it being the coefficient of a polynomial in t which tends to 

zero .. Then it follows that b.p6
0 

also vanishes. 

The modified b.x. are, at this point, 
1 

M 
+ _!_ ~ 

1T 
p=l 

i 
1 ( du'b.R (u') 

p -p up 
s u I l 

__, (u' -u)u' -p 

The first, third, and fourth lines of (4.13) meet o (s 
2

) and even o (s) 

' 3/4 
behavior in the limit.· St; they are respectively 0(1), o(l), and o(s ). Con-

sequently, all the terms in the second line with p ~ 2 must vanish. For i = 5, 

where o(s) behavior is required, the p = 1 term also must vanish. The .., 

bounds for S are met by the first three lines, so that the p ~ 2 terms in 
u 

the last line must vanish, and so must even the p = 1 term for i = 5. 
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The redefinition 

4m2.6.pti
1 

(t!·) +EM (-f')P.6.~i· (t 1 )-+.6.pi (t 1 ) = o(1) 
p=O tp · tO 

(4.14) 
.~. " 

by virtue of (4. 8) and (4. 2b), then.1eads to 

I . 
.6.x. (s,t,u) 

1 

r 

= .!.1 dt 
1 

.6. il (t 1 ) + .!_ J ~ .6. ii (u 1 ) 
n t' -t PtO n __ j u 1 '-u Puo 

(4.15) 

r r 

s f dt 1 ii . s ! du 1 . ii -· -·- .6.p (fi) + -'- I-- .6_p (U I) ; 
- 1T It' -t t1 n lu' -u u1 

I I 

where the isotopic spin index I has been restored, in preparation for Pauli 

symmetrization. 

The analytically continued condition of 1?auli symmetry, (2. 24), 

implies 

or 

s(A)=S(B)=s, 

. u(A) = t(B) ,;, x, 
·. ~ ' 

• ; I ' • · .. -. 

A:e u channel, B E t channel, 

. I I r· 
X . (A) = E. (-) X . (B) 

1 1 1 

I I I 
Im .6.x . (A) = e. (-) Im .6. x . (B)' , 

. 1 1 1 

'I ii 
.6.p~O (x) + s .6.pul (x) = 

I ii 
e i (-) (.6.pt0 (x) 

,. 

for a range of s. Therefore, we have 

ii I ii ii 
.6.pu0 (x) = Ei(-) .6.pt0(x) and .6.pul(x)-

. I 
whence the .6.x. for i = +, 

1 
5 may be' represented as 

(4.16) 

ii 
s .6.ptl (x) ) ' 

I ii 
Ei(-) .6.ptl (x} ' 

(4.1 7) 

.6.x .I= .!_ (dx(.6.pii (x) + s.6.pili ('x) ') ( .·l.t··.+ E. (-)I 
1 1T r o x- 1 

l 
x-u ) ' 

j ' · (4'.18a) 



-36-

where 

ii ii 
.6.p0 (x) = .6.pt0 (x) =o (1) ' 

il il -1/4 
.6.p

1 
(x)=.6.pu

1 
(x) = o(x ), 

and the term proportional to s is not. present for i = 5; L e. , 

.6.p~I = 0. 

UCRL-10028 

(4.18b) 

(4.18c) 

Each term in (4, 18) meets all the asymptotic bounds and the condition 

of Pauli symmetrization, in consequence of which the form may not be 

specialized any further by these conditions. · 

B, The Cases i = 1, 2 

In this subsection, Eq, (4.3) is further specialized. 

The index i will be understood to assume the values 1, 2, only, 

Both values are dealt with together under the weaker asymptotic bounds 

pertaining to i = 1, as long as possible, for the sake of brevity. 

The equation for Im .6.x. in the limit U is 
1 s 

which yields the new information 

(4,19) 

T s yields 

(4, 20) 

Equation (4.19) implies that the .6.p~0 term in (4. 3) may be replaced by 

~ J (u' ~;:)
0

u' L'>p!o (u' ) ' (4.21) 

if the coefficients in the polynomial are altered. 
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The .6.p!p sum may be written 
'.1. 

t ( dt i 
' TI I ( t I - t )t I 

M 
I: (-t 1 )p.6.~i (t 1 ) +(increment to polynomial) 

p=O tp, · · ! , 

_; 
. .(4, 22) 

1 
M 

+ - I: 
TI 

p:::l 

r 2 P 
l ( 4m .- , s - t) .· - j

d(l .6_pi (t I) 
( -t)P] t2-p . tp 
, . (t' -t)t i 2-p 

'·' 
. where the largest powers of t 1 were collected in the first line, which was 

then ''unsubtracted" by virtue of (4,20). 
..· 

If the replacements indicated by (4~21) and (4.22) are made in (4.3), 

with the appropriate alteration of the coeffiCients in the polynomial, it is 

easily se.en that the .6.ptip and .6.p~p sums rheet the asymptotic bound o(t) for 

T . The remaining terms in (4. 3) constitute a polynomial in t of order 
s 

o(t), whose terms therefore vanish, except for the terms independent of t, 

and 

; . 

1 

= :2 Jds 
1 

.6.psO (s
1

) 

· (s 1 -s)s~ ,. 

+ _! f- dt I 
TI I 

) (t 1 -t)t 1 

M 
I; (-t I )p .6_ptip(t i) 
p=O 

l M 2 1dt' .6.~i (tl). 
+ - I: [ (4m - s.- t)P- (-t)P]t 2 -P tp 

TI p=l . (t 1-t)t 12-p 
(4.23) 

u ( du 1 i 
· + n f (u 1 -u)u 1 .6.pu0 (u 

1 
) '· 

j 
' . ' . i ' . 
M . . rdu. I .6.f>. (u 1

) ~ p 2-p up 
p=1' s ·u ·. j'(u 1 '-u)u 1 Z-p 

+ _!_ 
TI 

All terms except those indexed: p ;,::::, 2 ih the thi~d: line are o(s 
7

/ 
4

) in 

the limit St. The bound O(s 
2

) therefore eliminates the terms indexed p > 2 

in the third line; that with p' = 2 is also eli~in~ted,' in the case i = 2, by the 

2 
bound o(s ). 
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The simplified third line is 

2 
4m - s 

'IT 

2 2 2 
+ ( 4m - s) - 2t ( 4m -

'IT 

S );dt I .6,.p!2(t I) 

tI-t 

(4. 24) 

The terms with p > 2 in the fifth line of (4.23), and that with p = 2 in 

the ;case i = 2, likewise vanish if we estimate the terms in the limit S . 
u 

The 6.p!
1

(t 1) may be redefined consistent with (4.3b) so that the term 

with coefficient -2t(4m
2 

- s) in (4.24) is subsumed in the 6.p!
1 

expression . 

. A te.rm 

i 
~ptO (t' ), (4.25) 

i 
6.ptO (t 1

) = o(t 1
) , 

i 
where 6.ptO (t 1 ) is redefined, incorporates the second line of (4.23) by virtue 

of (4.20), and.the remaining terms independent of s in (4.24), provided that 
16m4Jdtl.6.ptl2(tl) . - . . .. 16m4 t: [dtl6.p~2 (tl) 

'IT t' -t 1s rewntten as 'IT J (t 1 -t)t 1 + constant 

( 11unnecessary subtraction"), and the constant cast into the polynomial. The 

terms left in (4. 24) are then, 

stjdt' 6.p!l (t') 
-n (t'-t)t 1 

-. m s + s · . 8 2 . 2 Jdt I .6,.pti 2 (t I ) 

' 'IT ---~t'1 --t~--- {4. 26) 

2 
The -8m s term may be cast into the form of the first term by another 

unnecessary subtraction, if a term linear in s is cast into the polynomial. 

Finally, is redefined to encompass this, its sign is reversed, and 
. il 

I .{ids 1.6,.ps0(s') 
6.x. (s,t,u) = 2 1 'IT ( . s 1 -s)s 1 

t} dt
1 

+ 1T (t 1 -:t)t 1 6.pto <t > + n (t 1 -t)t 1 Pu · ii 1 st} dt 
1 

.6. il (t 1 ) 

(4. 27a) 
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(4. 27a cont.) 

r 
su j du' +-

TT (u 1 -u)u 1 

j 

D. ii (u I ) + ~. ~ jr du' . D. ii (u I ) ' 
Pul 'IT u 1 -u Pu2 

) 

for i = 1, 2; with 

(4. 2 7b) 

ii 7/4 
and where the D..p sO (s 1 ) = o(s 1 · ) , the other 

ii D..p
0 

(x) = o{x), and the othe~ 

ii -7/4 - p D..p (x) = o(x ), as before. 
p ' 

Each term now meets all the asymptotic 
. . . '-!: 

bounds. 

The Pauli principle, applied in the manner of Eq. (2.24), now yields 

·. ii , ' ' •' .. ii 2 ' ii 
D..puO (x) + sD..pul (x) + s D..pu2 (x) = 

(4. 28) 

which provides three equations employed to eliminate the D..p , to yield an 
u 

expression in placeof (4.27a) that is Pauli symmetric, except for the function 

of s that appears in the first line of (4.27a). This function is correctly 

symmetrized by prefixing the factor 1 
- 2(-)I. Thus, the form 

where 

I 

( 
2jds iD..ii(s') s) I l - (-) s P s 0 · ii ii 8 X 1· (s,t,u)= 2 -- 2 + 8 Poo+ 8 Pol 

TT (s 1 -s)s 1 

+ _!_Jdx 
TT X 

+ s 1 dx D. ii .( ) '( t 
7T ---x- p 1 x x-t 

s 
2 r ii . l 

+ 1T dx D..p2 (x) x-t 

./ 

2I 
D..p2 = 0 ' 

) ' x-u 
1 

:<4. 29a) 

(4.29b) 
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and 

L}. il ( . i ) _ ' ( I 7/ 4) 
Pso s . - o s ' 

.6.p~I (x) = o(x); 
(4. 29c) 

il 3/4 .6.p
1 

(x) = o(x ) 

ii ..J./4 .6.p 2 (x) = o(x ) , 

incorporates the asymptotic bounds and the Pauli principle. Some superfluous 

subscripts t ·· have been dropped. 

C. Further Restrictions Implied bythe Regularity of the G Amplltudes 

The matrix (Gx), inverse to Eqso (2.22), and (4.30) below, possesses 
.. ' 2. 

some poles at s = 0 and s = 4 m . It follows that appropriate linear com-

binations of x amplitudes must possess corresponding zeros, so that the 

G amplitudes can be Mandelstam amplitudes. Explicitly, 

;::: - 2 
m s 

4 2 [4 mz (X 1 -X 2 + X_) + (u - t) X+ 
(4 m - s) 

+ (u - t) -!---z X 5 J , 
2m 

(4. 30a) 

(4. 30b) 

4 
X (4. 30c) 2 2 

m (4 m - s) 

(4. 30d) 

4 

[
·.·4 _m

2 
( ) ( ) . ~.1 +xz +t-ux+. 2 2 2 

m (4 m - s~) 

+ (t - u) xs} (4.30e) 
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are to· be regular where, as before, 

Thus, e.g., X 
2 

has to vanish at s = 4 m , identically in t. The 

imposition of these re strit:tions leads, via arguments of the same general form 

as those in subsections A and B. above, to integral representations for the 

.6.G of the form 

.6.G~ 
1 

.1 + ( -1 )I f i)r ds r 
2rr s 1 - s 

.6.y il(s r) 
s 

t _!_ jdx [-
1 + {-1)

1 + i _!_ l.6.yil{x), 
TI x-t x-uj 

{ 4. 31) 

where we have introduced new weight functions .6.y to simplify the notation; 

.6.y~I (s 1 ) = 0, fori = 2, 3, 4 (4o32a) 

(4.32c) 

and 
.6.yi

1
(x) = o(l), for all i . (4.32d) 

All these .6.y are independent functions (before the introduction of dynamics 

in the form of unitarity equations), except for the linear relations 

c; li 51 ~ 2! . * ly (x) + .6.y (xJ = .6.y (x) (4.32e) 

and the asymptotic conditions 

.6.yll(x) _ .6.y5I{x) = o{x-1/4) 
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D. Further Restrictions Imposed by the Dominance of Diffraction Scattering 

We have made the assumption that athigh energies the scattering is 

dominated by diffraction scattering; i, e. , that at high energies only those 

amplitudes that correspond to coherent processes in the forward direction 

can attai~ their maximal bou~ds, This enabled us to write o(xa) in place of. 

O(xa) for many of the bounds in Fig. 9. Further information can be extracted 

from this assumption, One consequence is that the coherent forward scat-

tering amplitudes become pure imaginary in the high-energy limit, 

Now, in nucleon-nucleon scattering, for each isotopic spin state 

there are two total cross sections, corresponding to the two possibilities 

of equal or opposite helicities. The optical theorem gives expressions for 

these cross sections: 

I 
a++ (p) = 

4n 
p 

I 4n a (p) = +- p 

I 2 
Im <j> 

1 
(p , z = 1), 

I 2 
Im <j>

3 
(p , z = 1) . 

I£ we assume that these cross sections approach constants 

then 

and 

I 2 
Im <j>. (p , z = 

1 

P I 
1) - a 

4n ++ 

(4. 33a) 

(4. 33b) 

I I 
a++ and a+- , 

{4. 34a) 

and by continuity, for fixed t < 0 the same condition applies. By virtue of 

our assumption of the dominance of diffraction scattering, for fixed t < 0, 

Re <j>I = 0 (p), as p--+ <OC 

1 
(4. 35a) 

Re <j>~ = 0 (p). as p- GO (4. 35b) 

I£ <j> = (<j>G)G be substituted in Eq. (4.35), and this be done for two sets 

of proposed G amplitudes with the same dsfs, one obtains 
) 
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-1 I 
p .· (<!> G)li Re AGi (s, t, u) .-->; 0 as s - oo, t fixed < 0; 

> '(' • • •, ;,•. ,,. ·' •• '' 

(4. 36a) 

and 
,.': ;- :·.' ·.,. ' ' .. 
-1 I 

p (<j>G) 3iRe.6.Gi(s,t,u)-O as s-+-oo, tfixed<O; (4.36b) 

where AG has the same significance as always. In particular, Eq. (4.31) 

implies that, in the limit st • 

I 1 j. dx ·i I 
AGi (s, t, u) = 11 . x-t !:::..y (:x) + o. (1), 

and 

I . · ·1 · dx i I 
Re AG. (s,t,u)- - J -t Ay (x). 

1 11 x-

Conditions (4.36a) and (4,36b) then reduce to 

and 

1 J' dx l 1 I 51 ] n x-t · Ay (x)- .6. y (x) . ::; 0, for a range of. t <0; 

_!_ J' dx L A"3I(x) - . A""4I(x) ] ·= ·o' f . . . f t < o· 1T x-t ~ ~ or a range o . 

Thus we obtain 

li . 51 ·. 21 . 
Ay (x) = Ay (x) = Ay {x), 

and 

3! .·· . 41 
Ay (x) = Ay (x) . 

,· ,, . 
Similarly, in the limit Ut 

-I -
Re <1> 1 = o (p), 

-L -He<j>3 =Q.(p), 

or 

an9, 

-1 -- J 
EjJip {<j> G) 3i BIJ !:::..ij Re !:::.. Gj (s, t, u)-+ 0, 

giving precisely the same conditions as before. 

(4.37) 

(4. 38) 

(4. 39a) 

·(4.39b) 

(4.40a) 

(4.40b) 

(4.4la) 

(4.4lb) 

(4.42a) 

(4.42b) 
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In .accordance with the philosophy of the Introduction, we conclude 

this section with the Mandelstam representation, properly Pauli-symmetrized, 

for the G amplitudes .as a sum of the unsubtracted double spectral integrals 

and the ~ G of Eq. (4.31) above:' 

I 
G. (s, t, u) = 

·1 

1 j'. 
z-
TT 

J dx [ 
1 

x-t 
+ (-1)i+I 1 

x-u 
I 

pix (s • 'x) 

l 1. dt: 1. du 1 

f -2- t I - t U I - U 
TT 

{l P~ (t',u 1 ) + (-l)i+I p~ (u 1 ,t 1
)] 

I 
+~G. (s, t, u) 

1 

(4.43) 

Vo THE DYNAMICALLY INDEPENDENT SINGLE-PARTICLE STATES 

In this section we take up the connection between the allowed ssfs 

and the contributions to the amplitudes from single-particle states .. These 

contributions should be obtained from a suitable continuation of the unitarity 

equations. A general and systematic discussion of this point in the frame-

work of the S-matrix dynamical theory still presents some difficulties(~), 

but it is clear that such contributions are formally the same as the re-

normalized Born terms of conventional field theory. A single-particle state 

with the same quantum numbers as those of a given channel then givesrise to 

poles in the energy variable of that channel, i. eo' to a 6-function contribution 

to the corresponding ssfso 

If these ssfs are not allowed, the parameters (position and residue 

of the pole) of such a single-particle state are determined uniquely, in 

principle at least, as discussed in the. Introduction .. Such states will then 

correspond to particles whose origin is dynamical. We shall see that the 

deuteron, as might be expected, is an example of.this kind, On the other 

hand, if the ssfs are allowed, the CDd ambiguiH~s which arise in their 

I 
.J 
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determination allow these paramet~r_s to be con~:i,dered as free. Such is 

the case with the pion. 

·y ;The ssfs corresponding to pafticlef3 of nucleon-number two will be 

in the s channel; those of nucleon-numbe,r zero in the t-u ;channel. In 

either case, states corresponding to particles qf spin ~ 1 cannot be dynamically 

independent .. The derivation goes as follows: 
,. .! . • . I .. "·:, ;· • , ; . , 

The alloyveci ssf t~rms are given by Eq. (4.31), subject ,to the con-
., ~ r . i ' . , : ,· • ~- ~ l ' ·. ' • , . ' ' . ' : ··, 

clition~ (4.32~, (4.,,40) .. The_.nucleon-number two ssfs, D..y~1,, contribute only. 
. ' 1 1 

to G 1 and G 5 , and their contributions are independe~t of the scatt,ering 

angle 8 in :~e. s channel. It fo~l~ws immediately from the analysi~.- of the 

G an;plitudes into partial. waves in the s channel, given by GGMW in their 
J.: 

equations (4. 23) and (4. 25), that these terms contribute only to the J = 0 

partial waves, and trivially only in _the I = 1 channel. 

Similarly the nucleon-nu~ber zero s.sfs D..yil contribute only to 

G1 I and G5 I, this time with terms independent of tf , the scattering angle 
~ ~ '. 

in the u channel. . We conclude that only the J = 0 partial waves in the u 

channel are affected. · 
. r•· 

It is perhaps worth noting that the contribution to the G amplitudes 

from an exchange of a single particle of nucleon-number zero and mass !J-

in the t-u channels with isospin I arid tensorial coupling 

i (i = 1 ' 2, 3' 4' 5 
. Ji 

. ' . . ~ ~ .: 

. . . . 12 
for S, T, A; V, P) is 

c! =·[ (~J-2.- t>-L+ (-l)j+J (!J-2 
J 

where the matrix A is given by 
.':., 

{5.1) 
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1 -6 -4 4 1 

1 2 0 0 1. 

A= 
1 

-2 -2 -1 (5;?) 
8TT 1 0 

1 ! 0 2 2 '-l 

f -6 4 '-4 1 

Then conditions (4.40) require that in a particular column the first, 

second, and last elements be equal, and that the third and fourth elements 

be equal. This condition is satisfied only for the first and last columns, L e. , 

only for S and P coupling. 

Similarly in the s channel, the exchange of a particle of nucleon-

number two, tensorial coupling i, and isospin 1 contributes to the amplitudes 

13 
a term 

J 2 -1 2 2 -1 A.~., G.=- (4n ) g (f.L - s) ol, J 
J Jl 

(5.3) 

where 

0 0 0 0 1 

0 l 0 0 0 

A' = 0 0 l 0 0 (5.4) 

0 0 0 l 0 

l 0 0 0 0 

Conditions (4o 32) exclude all but the I = 1,. s, and P cases. 

To summarize the results of this section: Any particles, other than 

scalar or pseudo scalar ones, that can interact with nucleons cannot be dy-

namically independent, else the Born terms· corresponding to single-particle 

exchange lead to a violation of the bounds imposed by the arg~ments of 

Section III. Specifically, the deuteron cannot be dyna,mically independent; 

the pion may be. 
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This result agrees with results obt(lined earlier in considerations of 
. . ,::"' f.'f:::·-:: ,._. }.,: ·~ -:·. 

the pion':nucleon and pion-pion prdblems;' ~hen i'tw'as found.''by essentially 

similar, methods that particles of spin great7:b· th~:z:- or equa,l to unity had to 
.{. i1·~:; 

be dynamically dependent. ',. 

. '· \ ,,, 1 J.,' ·,' . .' !,: .• ~ .' ,;· : ' •'' ,'' ·' ·~, .~~.".'•' , ,. ': ·'' ' ,"~:/:·· ·., ~ - ,..: ,> •• I ;•, ~) y I 

Iii order to write the unitarity equations for nucleori-antinucleon 

scattering in the approximation in which only the lowest-ma~s one- and 

two-particle internie~iat~ state~: c{;e -r~t~ined,- we -n~ed 'representations for 
·. : : '• " 

the amplitudes for annihilation•of a nucleon-antinucleon pair into one or two 

pions. The former is trivial and leads to the one-pi;~n ~xchange pole in the 
• J• J. ' ' ~ ' 

amplitudes, discussed in detail by GGMW and in Section VIII. For the latter, 

we refer to Frazer and Fulc9· 0{17)~ ~ho_write the cr. m., S matrix for 

:>- :~ 

S (2'TT) 4 1. s:(4)(_p·•,2 .. I . ) 
= - u .. • f pl :+ ql t q2 

· · 2 E w 

m 7', (6 .l) 

where q
1 

and q 2 are the 4-momenta of the ingoing pions. (See Fig. 10). 

If the, helicities of the nucleon and antinucleon are }..,, \, then 
... _ .,J, . ·.. ~. 

' . . . (6.2) 

Introducing the isospin indices\ 
~ .:~ •, ~ 

T = 6 T(+) + l [7'R'_ 7'] T(-) 
f3a f3a 2 ~'-' a (6.3) 

<' .,i-•· 

and 

(6.4) 

where A(±), :B{±) are the c6~nventi~na1-ctmpHtudes· for 11'-N scattering. · 

The differential cross section for ntn - N+N with''hehcities · }.., "\ 

in the final state is 



where 

= m 

2E 
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(6.5) 

(6.6) 

The amplitudes ff'x. X: are just the Jacob- Wick (~) helicity 

amplitudes; a direct evaluation leads, with our conventions for the spinors, 

to 

~ s:l mi (- p A+ Bq z ) - = 
++ 1 81r E 

m q. 
2' 2 

~ - tf1 1 = ~ ++, 
-z· - .2 

Ef +- - 8='1 1 
mi E 

Bq Yq) , (6.7) = 
+-z-· - 2 81rE m 

g' ~ = 
·~ 

-+ - 1 + 1 +-- 2' 2 

where 

E." q = p q cos e , z = cos (L 
q' and Yq = sinO (6. 8) 

q q q 

If we define the scalar invariants u, v, w for the 1Tf1T - N+N reaction 

by 

2 -2 2 -·2 2 2 2 
u = (p2 + p

1
•) = 4 E = 4(m + p ) = 4w. = 4(fl + q ) , 

2 2 2 
v = (p2 + q 2 ) = m + fl - 2 Ew + 2 p q zq , 

2 2 2 
w = (p2 + q 1) = m + fl - 2 Ew - 2 p q z q , 

Then A (:1:) (u, v, w) and B (:1:) (u, v, w) satisfy Mandelstam .representation as 

functions of their argument. 
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According to Singh and Udgaon.kard (?),we can write 
,·.· _._5 -

A (±)( ) = A(±)(- 2 z ) u,v,w p -' q 

J'oo d>-.. a(±)(>-.. -2) [-1- _ ........ 
-- ,p '\ + 

>-., f-1 1\.-Z 
0 q 

1 J >l:+zq ' 

(6.10) 

A (-)(p2) 
0 = 0 ' • J.' (6.11) 

and 

B(±)(u, v, w) - B (±) (p 2 , z ) 
q 

' .1:. [ d~ b(*)(\ -2) [-1-+ 
\!zq J = ~ - ,p >-..-z 

' q 
~0 

(6.12) 

The lower limit of these integrations, 
_, -2 2 

~O' is a function of p 

~0 = 
vo+P +q 

(6.13) 

· · ::· For the A amplitudes, v 
0 

is given by the asymptote to the boundary 

curve for the (u, v) double spectral function in the Mandelstam representation 

of the amplitude, i. e. , v O = (rn + J-L) 
2 ~ The. B amplitudes, however, also 

contain the nucleon pole term, and this corresponds to a 5 funxtion in b 

at a value of >-.. corresponding to 
2 

v = m Accordingly, we will take 

(6.14) 

and remember that ___ a and b are in fact zero :up to ~ = ~~ 
0

, corresponding 

to v
0

• =(m+J-L) 2 -apartfromatermng2 5(~0 -~) (2pq)-l in b. 

Substituting in (6. 9}, we obtain 
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ao 

~ (±) (- e > = mi 
to(±)+ 

z J~~ Q (±) ( \)(-1- ~)] __3._ + ++ p, q 
8nE 

TI X.-z 
x.o 

q 

(6.15) 
and 

ao 

~{±) ep,e > = mi Yq 1 d\ ~(±)(),) ( I + x!.q) (6.16) x::z- ' +- ·q 8nE 
TI 

q 
0 

where 

a (±) = ~ P A (±) 
0 m 0 ' 

(6.1 7) 

and 

-2 and we have suppressed the p dependence of the weight functions. 

We can write the amplitudes for states of definite total isotopic spin 

tJ<o> = .[6';/<+> , 

~ (1 ) = 2 'cJ (- ) 
(6.18) 

After these preliminaries we are in a position to write down the con

tribution to Im cp. 1 
arising from the two-pion intermediate state in the 

l. 

unitarity equations: 

= q(4n>-
1 j dng( gl U:i ,, ,1"•; .Er) (si ~I u:; iJ 

(6.19a) 

- -1 r d* rr 
_ q(4;r) )dQq <.}' x_r>:r (-B 2q) u X.X. (8 1q) 

X exp i [(X.-"X ) <1> 1q +(X.' -"Xv) <l>zq] . (6.19b) 
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This equation is derived in Appendix B. We have 

. :•, 

(6.20) 

and 

d n = d z 
1 

dcp 1 . 
q q q 

We re.call that "U is the angle through which the nucleon is scattered in the 
,', . 

nucleon-antinucleon scattering, and: that z, y are the cosine and sine of 11. 

If we substitute the appropriate helicities in (6.19) for the evaluation 

of the (j)., and express the fJ: in. terms of the weight functions a. and f3 
1 . 

through (6.15} and (6.16), the angular integrations can be performed 

(Appendix C). 14 15 
The results are: ·, • · 

- (5 :t: .1) 

+ ! 1 H Z Re [•o("') ;o a:("')(~~+ [ ~L(~)-41T] 
0 

zJdA r +-z T- I 
n xo· o i . . , -"1\o 

+ :z [HId~ 
o "-o 

[ 
1 
-- :t: z' -z-

j 
2 

1 41T dz' .1. 

1T L K( x:. ~. z I ) ] 2 

(6.Zla) 

(6.2lb) 



and if we use 

l 

1 + z 
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-I 
Im27T <1>4 

= - (5 ± 1) -.f.rr ( m )2 
81rE 
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1 J 2 [ .1 .f Z I 
2 

( \. 2 2 z \. I ) 1 f ~flZ 'j --- 2 2 . f\ ffl - 1\flZ - 2 
Z I f Z (1 - Z i ) 1- Z I · 

= (5 ± l) q ( m 
4n 81rE 

ao 

1 

1 - z 

)
2 2 11110 z d~ 

11' 

>-o 

X f dfll3(±),:<(~)13(±)(f.l) 
~0 J 

2 
l 47T dz 1 

7T [ K( ~. fl, z 1~ 2 

- ~) ' 

(6.21c) 

(6.21d) 

·. -

... 

.... 



• 

= - {5 ± 1) 

X [·,......_1 __ 
Z I - Z 

+ 
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( 

m ) 
2 

2 f.., 
8 'IT E -7 ~O 

d~ 

2 
~(4tr dz 1 

) l K( >-., f.LZ I )] ~ 

· 1 J ( ~ -f.LZ i) 
- 2 

z 1 tz l-z 1 

UCRL-10028 

{6.2le) 

Using instead <l>s = (- ~ • -} I <1> I 1 
"'2' we are led to a right-hand side 

that is the formal complex conjugate of Eq. (6.2le). However, the right-

hand side is in fact real, as it has to be since it is the imaginary part of an 

amplitude. This reality· is a consequence of the final- state interaction theorem 

for the reaction N+N .·~ tr-TT, which imposes a phase relationship between 

the A and the B amplitude most easily expressed in terms of the partial 

* . 6 waves. We will write Rea. j3 in the right-hand side of { .2le) rather than 

* ' a j3, to ·ensure that in an approximate calculation quantities that should be 

real are indeed real. 1). similar situation will be seen to arise .in .Section VII 

where we discuss nucleon-nucleon unitarity. 

We can now use 

(6.22a) 

where 



( G (j)) = 
1 

- 2 
Ep 

-2 
p 

0 

0 

0 

-'-2 
-p 

0 

0 

0 
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2· -2-
m -p z 

1 + z 

-2 
-E 

I+z 

-2 
-E 

I+z 

-2 
E 

I+z 

2 -2-
-m -p z 

1 - z 

-2 
-E 

1-z 

-2 
E 

1-z 
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E -2 z 
-2- p -

m -
y 

0 

y 

-2 -2 
-2-

-E z -2-
-E z E 2 2 z 

-2- (E +m )--E -E 
I+z l-z m -

(6.22b) 

to derive expressions for Im
2 

G. 1 ; this is done in Appendix C, These 
"IT 1 

expressions appear to have poles at p2 
= 0, which would be inconsistent 

with the Mandel~tam representation, However, we must recall how a and 

f3 are related to a and b through (6, 1 7), and when this substitution is 

made a cancellation occurs to remove these spurious singularities, 

Th 1 
. . 15 

e resu tlng equations are: 

-I -2 - - I -2 
1m2 G. (p , z} = Im2 G. (p , 0) ' 

"IT 1 "IT 1 

+ q 1 
E 4TT 

2 00 00 

( 
m _) (5±1) ~2 f d>.. J d!J. 

8 "IT E n X.O X.O 

z 4TT dz' -; 2 
TI l K( X, jJ., z I)] i 

f_ 1 

x~·-Z" 
- * 

1 J ' 1 [ ( \ ) (±) (-2 ') ( ±) (-2 ) + - Zi ki 11 f\, !J., z' a p ' (\ a p ' 1-1 
z 1 tz 

y 

., 
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1 (±/' -2 (±:) -2 
+ki

12
(\,f.L,z.)a (p,A.)b (p,f.L) 

. 1 (±) >:< -2 (±) -2 
+ki

21
(A.,f.L,Z )b (p ,\)a (p ,f.L) 

... ·.. . ::< 

+ ki22 (A., f.L, z') -bC*) (j)z, A.) b(±) (pz, f.L)] 

for 1 = 1 , 5 ; and 

" ~·· xj 
0 

(6.23) 
for i = 2, 3, 4 ; where 

-2 
E q - (f.L- \z) --z- pz 2 
m m 1-z 

E2 
- -z

m 
S. pz 
m 

( \- f.L z} . 
2 

1-z 

E q 2m A.u+z 2z -2 2 { 2[ - ----z-: -2 -:--! - ---...-2 ---.;2 
m p 1-z (1-z ) 

+ z +f.L { -
2 2 (A. +f.L -2 \f.Lz ~\

2 2 
2 4 2 2 ]~ 

1-z (1-z ) 

(6.24a) 

.. ,, 



0 

0 

0 

0 

(f.l- "-z) 
2 

1-z 

-2 
E. q (IJ.,.. "-z) 
-m

1 
2 

p -z 
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( "--f.LZ) , 
2 

1-z 

-4 2 [ . E q 4 
-2 2 . 2 2 

2 2 
("' f f.l - 2).. f.LZ) 

p m. (1-z ) . 

2 2 J -"' + 1-1 '+ 2 ' 

1-z 

(6. 24b) 

0 

(6.24c) 

-2 
E q ("-- f.LZ). 

m 2 
p 1-z 

-.....:ri- - -2 2 2 ("- +1-1 - 2 AIJ.Z) E'
2 2 

{ "E
2 ~ 4 2 2 

m p 1-z ) 

2 2 J . "' +1-1 +2 
- 2 

1-z · 

+ [ ~2 + ;~z- z~zj} 
(6. 24d) 



• 

and 

.. 
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-2 r. -2 J ~ ~ 2(~-L- h) _ p z(X-!J.z) 
m- 2·~ 2 

p .,._ 1-z m 1-z 

- ).. +~-L ;2 2 2 J 
1-z 

+ 2 2 ().. +iJ. -2)..1J.z) ~ 
2z 2 2 

( 1-z ) 

-. )..1-L + z ]} . . 2 . 
1-z 

- (1) -2 . Im 2 G (p,O)=O, £ori=1,5; 

(6. 24e) 

(6,25) 
'IT • 

1 

X [ 4TI = A ~(A)-IJ. L(fJ,) + AIJ. J(A, ~0) ] , (6. 26a) 

G (0)(-2 q 1 m E 24 2 p jAO(+)(p2)j2 
( ) 

2 -r2 t -2 
Im2'lT 5 p '0) = = = 4TI ---= :::z-- 'IT --z 

E 8TIE p m 

+ q b ( +) (p 
2

, A) J ]} 
(6.26b cont.) 
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ac ac 

2 r dX 1 dfl. l p 1 a(+)(~, "-)-q b (+) (p 2 , "->f:< + -z- m ~ 
1T 

"' 0 "-o 

x[E 1 ( +) -2 ( +) -2 ] 
fl. 

a (p ,fl.)-qb (p ,fl.) m 

[ 4n - "- L("-) - fl. L(fl.) + X.fl. J("-, fl., 0) ] , (6, 26b) 

These equations, although derived by a consideration of unitarity in 

-2 
the nucleon-antinucleon channel, where physically of course p > 0, may be 

2 
analytically continued down to the threshold where q = 0 and 

-2 2 2 
p = fl. - m < 0, It might be thought that difficulties of interpretation will 

arise .at p
2 

= 0 over which branch of J p2 
is to be chosen, However, an 

examination of (6,24) and (6,26) shows that this is not the case, 

The easiest way to establish this is to transform the variables so 

that 

and 

-2 2 
"- = (v' + p + q ) 

2pq 

-2 2 
(v" f p + q ) fl.= ·---=---.:.......:; 

2pq 
(6.27) 

before making the continuation. It is then clear that p enters the equations 

-2 only as p , 

• 

... 
i. 
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VII. UNITARITY IN THE NUCLEON-NUCLEON CHANNEL 

In this section we derive equations that express the unitarity of the 

S matrix for nucleon-nucleon scattering below the pion-production threshold. 

These equations will be used in the following section to derive integral 

equations for the dsfs in the strip regions parallel to s = 0 (Fig. 1), as 

outlined in Section li-B arid the Introduction. 

From the unitarity of the S matrix 

r s s = 1 , (7. 1) 

. h . 4 2 (2 )2 d d 1n t e energy reg1on m < s < m + f.J. , we e uce 

=p(4rr)-l ~ Jdn (\1,\2 ;J?f I..P..t 1~ 1 '~2;_e) ~1~2 p 

x(~l' f.J·2:E 1£1 x.l, \2;!J.). <7·2) 
(cf. Appendix B). 

Now we obtain 

since for just those combinations of helicities for which interchanging 
I 

~1 , ~z with \ 1, X.~ introduces a sign change to the amplitude, so also does 

interchanging Ef with Ei (i.e. , the amplitude <l>s is odd in 8). Thus the 

left-hand side of (7.2) is· 

Im(\1' \Z ; Ef I! I X.l' \2; _e)· 
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For s > (2m + !J.) 
2 

Eq. (7, 2) is no longer valid, since additional states may 

now contribute on the right-hand side. We may, however, use it to define 

the elastic contribut1on to the imaginary part of the amplitude, If the 

angular dependence of the amplitudes is extracted as described in Appendix 

B, we may write 

(7 .4) 

where the phase factor (p · f) contains the dependence on the azimuthal 

angles and is given by 

(7,5) 
The angles are connected by the trigonometrical relations 

cos 82 =cos 81 cos 8 +sin 81 sin 8 cos <1>1 ' 

ei<j>z =(sin 82)-l l sin 8 cos 81- cos 8 sin 81 cos <1>1 + i sin 81 sin<j>l] ' 

i<J>3 -l l ] e =(sin 8 2 ) -sin 8
1 

cos 8 +cos 8
1 

sin 8 cos q,
1 

-i sin8 sin<j>
1 

, 

(7 ,6) 

Each of the matrix elements appearing in {7,6) is one of the amplitudes 

<j>. defined in (2, 19}, and identifying them appropriately enables us to write 
1 . 

hnel <Pi (p, O) = P(4") -I L; jk fnl <l>j * (p • -O Z)<l>k (p. 0 1) Aijk <<PI' <l>z' <l>3l · 

(7,7) 
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The 5 by 5 by 5 matrix A. 'k includes the phase factor (p. fJ and also the 
lJ .. 

(numerical) factors that arise .when going from the labeling of the amplitudes 

by the helicities to the labelipg bythe i~dex i. Explicitly, we have 
. ~- . ~ . ..~ 

1 0 0 0 0 

0 1 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 2 cos cj>3 

(7 .Sa) 

0 1 0 0 0 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

·o 0 0 
(7. 8b) 

0 0 0 0 

0 o· 0 0 0 

0 0 0 

0 0 

0 0 0 0 2 
(7,8c) 

0 0 0 0 0 

: ' 
<; .,. ,., . 

·: ''·. •o o· 0 0 0 

A4jk = 0 . •; b 0 eicj>3 0 exp i. (cp2 - cj>l) 
; 

' 
0 0 e-icj>3 0 0 

0 : 0 .o 0 -2 
( · .. (7 .8d) 
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., 

0 0 0 0 1 

0 0 0 0 1 

A5jk = 0 0 0 0 0 exp i <1>1 . (7.8e) 

0 0 0 0 0 

0 0 -e i<j>3 e -i<l>3 0 

In obtaining ASjk we used the definition· 

<l>s = ( 1 1 I <I> I 1 .!_ ) 
7' 7 7' 2 (7.9) 

Had we used instead 

( - 1 
il<t>l 

1 1 
<l>s = 7' 2' 7) , (7.10) 

we would have obtained 

0 0 0 0 0 

0 0 0 0 0 

A5 1 jk = 0 0 0 0 e -<1>3 exp [ -i<J> 2] (7.8e 1 ) 

0 0 0 0 -e i<j>3 

-1 -1 0 0 0 

The equality of (7.9) with (7.10) is a consequence of time-reversal 

invariance, without which there would be six, and not five , independent 

amplitudes. We shall return to this point later. 

In order to perform the angular integrations 1n (7. 7), it is necessary 

explicitly to display the dependence of the <j>. (p, 8) on the angle 8. This we 
1 

do by relating the <j>i to a set of Mandelstam amplitudes. In II- C we have 

defined two such sets of amplitudes, viz., the G. and x., and either could now 
. 1 1 

be used. Although it is for the Gi that the. "primitive" Mandelstam relations 

are written down, it turns out to be simpler to use the, X.. Accordingly, we 
1 

write 

-1 >:< 2 ' 2 
!mel <j>i (p, 8) = p(4n) I:jk dr.ll X j (.p,' z 2)X k (p 'z 1) Bijk , (7.11) 
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where 

(Ep
2f 2 

0 0 0 0 l 
i 

0 (Ep2)- 2 0 0 0 I 

0 0 0 0 0 (7.12a) 

0 0 

0 0 0 

0 

0 0 0 

0 0 0 (7.12b) 

0 0 0 0 

0 0 0 0 

0 0 0 0 0 l 
I 

0 0 0 0 o I 
0 

0 

0 

0 (Em2 )- 2 (ltz
1
)(l+z

2
)eicj>3 0 0 !ei('cj>2+cj>l), 

0 0 (Em
2

)-
2
(!-z

1
){1-z 2).;ih 0 I 

0 . 2 - 6 ! 0 0 · ' - m .. -y1 Y 2 : 
! 

(7.12c) 

0 0 0 0 

0 0 0 0 

0 
2 -2 icj> 

0 0 (Em ) (l-z
1

)(l+z 2 )e 3 

0 
2 - 2 -icj> 

0 (Em ) (l+z
1
)(1-z

2
)e 3 0 

L 0 0 0 0 

(7.12d) 



0 0 0 

0 0 0 

B5jk= 0 0 0 

0 0 0 

0 0 5 - 1 i<j>3 (Em ) y 2 (ltz 1)e 

0 0 

0 0 

B' 5jk = 0 0 

0 0 
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2 3 -1 
(Ep m ) y

1 
2 3 -1 

(Ep m ) y 
1 

0 

0 0 

-(Em5)-ly2(l-z1)e-i:4>3 0 

(7 .12e) 

0 0 0 

0 0 0 

0 0 (Em 5) - 1y l (l_+_z 
2

)e -i<j>3 ;i<J>2 . 

0 0 
5-1 i<J>3 -(Em) y

1
(1-z 2 )e 

2 3 -1 (E 2 3)-l Ep m ) Y2 p m, y2 
L 

0 0 0 

and 

where 

Here and after, we will use z. = cos e., and y. = sin e . . 
1 1 1 1 

From (4.43) and (4.32) it follows that we may write 

[
1 I 
r-z+(-1) 1 J · I 2 ~ Ai (p '>.) 

I I 2 
+ l 1- (- 1) ] h. (p ) ' for 1 = 1, 5; 

1 

I · 1 
G. (s, t, u) = 

1 'TT 

for i = 2, 3, 4; 

I 2 1 JGIC dp i 
2 

A. (p ' >.) = - 2 2 
1 'TT i p -p 

0 . 

I 2 2 2 
pix (4p 1 + 4m , -2p (l- >.)) 

1. (dz 1 1 [ I 2 2 + Trj~ -z pi (-2p (l+zY), -2p (l->.)J 

(7.12el) 

(7.13a) 

(7,31b) 

i +1 I 2 2 1l i I 2 + (-1) pi (-2p (1->.), -2p (l+zl) ~ + 6.'1 (-2p (l->.) ), (7.14) 
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The terms h
1
1 , 5 (P.

2
) = G 1

1, 5 (p
2

, z = 0) contain the s-channel single 

spectral terms involving ~y! 1 
and 6y;1 , and would have been present even· 

if the subtataction in F o 13a) had not been made. 

The lower limit of the integrations, 

2 2 
~1 = 1 + fJ. /2p ' . (7.15} 

is again a formal one: apart from the r o functions in A. corresponding to 
1 . 

the one=pion pole in the amplitudes, the lower limit could be given by 

~ il = 1 + 2 fJ. 2 I P 2 0 

Now we have 

X = (X G) G (7.16) 

where 

E2p2 2 2 2 2 2 2 4 m p z mp m p z -p 

E2 2 2 2 2 2 2 2 2 4 
- p (E +p )p z =m p m p z -p 

1 4 2 2 2 2 <x G)= 2 0 m -m P m~ 0 

0 
4 2 2 m2E2 0 m mp 

0 
4 

0 
4 

0 =m -m 

(7 01 7) 

Therefore we obtain 

I 2 z 
X 1, 2 (p ' z) ::: n 

2 1 [ d~ [~. I 2 I I I 2 ~ x3(p ,z) = 
1T f ( +) (p • ~) + ( = 1) Mr £1-) (p ' ~) • 

"-1 

<01!1; 

2 1 { d~~~. I 2 I 1 I 2 ~ X 4 (p 'z) = - g; { =) (p ' ~) + ( ':'" 1} Mz £(+) (p ' ~) ' n 
1 

00 

2 1 f d\[b + (=l)I x!. Jfsr (I,z. \); . (7.18) Xs(P ,z) = -
1T 

~1 
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2 12 2 2 2 2 2 2 
f 1 (p , )..) = 2 p l E A 1 (p , "> + m " A 2 (p , "> + m A 3 (p , ") 

2 2 2 2 
+ m " A 4 (p , ") ;::; p A 5 (p , ") ] 

2 12 2 2 2 2 2 2 2 
£2 (p , ") = 2 p l-E A 1 (p , ") + (E +p )" A 2 (p , ")-m A 3 (p , ") 

2 2 ·2 2 
+ m "A4 (p , ")-p A 5 (p , ") ] , 

2 1 2 2 2 -2 2 2 2 
·~(±) (p , ") = 2 m l m A 2 (p , ") + p A 3 {p , ") + E A4 (p , >..) ] , 

g1 I(p2) = ~ l1 -(-1)1] P2 l E2 h/(p2) - p2h5I(p2)] ; 

g/(p2) = ~ ll -(-l)I] P2l-E2h/(p2)- p2h5I(p2)] , 

(7.19) 

(:7.20) 

We now substitute (7, 18) into (7, ll) and perform the angular 

integrations, The details are given in Appendix B. We give the results here :
15 

ac ac 

!mel <j>l I(p,8) = /n ~ I d). f d~ ~; 4n2 dz' _!_ ~l 
n " \ lK(\,~,zl)]rZ 

l 1 

X ~z~-z + (-1 )I ~ J ----z:-;rl 
~ z - z E~p <± 

p 
+ 41T 

2 !010 + -2-
n .\ 

1 

d~ l4n-\L(\)-~ L(~) + \~J (\,fl,O)] 
~ 

(7.2la cont.) 
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1£t< ~l £r<~l+£;(~l £z<~l r- ~6 )¥ £; <~Hs<~~} 
. • .. · (7.2la) 

I p 2 
!mel <P2 (p,O) = 4TT 2 

TT 
(d~ ( d~ ·. 2 ZJ 4TT dz

1 

TT [ K( >.., f.l, z ')] i 

x[-~- ; f-l)I 1 }1 [£*(>..£ ( ,.~ ] z•-z ·. z 1.tz ~ 1 ) 2 f.l) + f2(X.)fl (f.l) . 

+In [1-(-1)1] 

I 1 ·:. ·:. 
xlE~ t£1 'X.)£2 (f.!.) + £2 ('X.)£1 (f.!.) • 

- ~6 ~~ f;(~)£5(~) J} . (7.2lb) 
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47T 
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00 

dA [ df' 

).1 
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l .4n d z' 1 I 1 - -- + (-1 -2 L 
" f[K(A,f',z')J" z'-z ) z'+z] 

1 + \f.LZ 
1 
l} ' 

l-z 1 J 
(7.2lc) 

1 /4n
2
dz 

1 
[-1- +(- 1)!+1 _!_l 

'TT l K( X., f.L, z I ) ] 2 z I - z. z I +1 

X ~ 4 [ £~:~)( X.)f(+)(f.L) +£(,:<-)(X.) f(-)(f.L~ [X.2+f.L2~2X.rz' + ).f.L + z•l 
E m _ j (l+z 1 ) 1+z 

1 J 

1 
+ 2 4 
Em 
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. ,. ··.·• :,' 

(7.2ld) 

•\·. 

Using BSjk' we obtain 

, .. ,_ 

' ' 

1 p 2 
y !mel <Ps (p,O) ~- .4"TT -z-. 

. . n 

ao ao . 
2 

( d>. ( dfJ. _!_14n dz 
1 

1 :Jx ' ' Jx ' . n . l K( >., fJ., z I >J2 ' 
1 1 

_,_i 

X l_l_ + (-!.)! .. 1 J 
· tz'-z z 1 +z 

1 
+ ' 5 

Em 

1 * 2 2 2 . } £.5 (>.) f(.,;l(fJ.) [ (fJ.-·>-z;'J ,0-fJ:)-(J~z 1 ).f: {>. +fJ. -2>.fJ.z 1
)] • 

(7.2le) 

Had we used B 1 Sjk, we would have, ob~ained on the right-hand side 

the formal complex conjugate of (7,2le). _Now formally, the right-hand side 
.. · ._' 

of (7. 2le) is not real, but since it is the imaginary part of a function, we know 
i v ~ • ~ ·,. :i ' ~· :.; ' :: . > • '·?: . ;; --;.; . ,._, J 

it must be real, an~ the equ~lity of the; two deriva~ions ~f !mel <Ps follows . 
. ' •' '·' • ' .. '·. • ' '· . • . . . . , .. ·- 1 •, '. 

That the left-hand ~ide of (?.2le) is ~ndeed the imaginary part of <Ps (rather 
~ : {" .. ' : .! I, i : ' ~' ! . ' 

-<·,. •.•. ! .: • 
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than the .anti-Her~itian part .of an amplitude) is a consequence of time re-. ,, ' 
; . ~I·,,..... . i ( ' . 

ver;sal'invariance,· another consequence of which~ as we have already re-

k d · th l"t f th t l"t d ( .!-. ~ 1..~..1 ~ , - ~) and mar e , 1s e equa 1 y o . .e wo amp 1 u es , , "' , , 

( - i, {- I <1> I {- , i l which le~d to the t'wd deriVations of Iniel <l>s· . Since 

in any approximate derivation of the amplitudes there is nothing to ensure 

that the correlations between the phases of the f.(~) which lead to this .reality 
' 1 

condition, and which are the expression of time-rt:versal invariance, we 

will write 

' 

Re[ right-hand side of (7.2le)] (7. 22) 

and will impose the constraint condition which comes from the vanishing of 

the imaginary part of (7. 21e), viz. , 

2 * ,· ' ' 2 2 2 
+ p Im [f5 (~) f(+)(~)] l (~-~z) (1+~) + (1-z )-(~ +~ - 2~~z)] 

+ pz 1m [f;(~) f(-l<f<ll '[(f<~Xz) (1~1>-)-(I-zz) + (~Z+.,Z~n~z) 1} = o 

(7.23) 

For simplicity in Eqso {7.21-23) we have suppressed the dependence 

2 ' ' 
on p of the absorptive parts of the fi and gi, and also dropped their index I. 

,. '. 

These equations are still not in a useful form for calculations. The .. . . . .. .· .... ··. . ·. z·. ·· .. :·· :. .. . . . :· 
dependence ·of their right-hand sides as p -+0 would appear not to be con.;, 

' ' 

sistent with the known' thresholdbehavior of the amplitudes. However, as a 

consequence of {7 .19) and {7020) certain cancellations should be made, and 

. . 
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these will eliminate the apparent inconsistencies. Accordingly we substitute 

these expressions for the f(A.) and the g, and using 

G = (G <!>) <I> , 

take the appropriate combinations of the Im 
1 

cj>. to obtain 
e 1 

and 

1 
'"41T 

for i = 1, 5; 

. cac ao 2 
~ I d ~ [ df-L ]_j;4_n_d_z_

1 
--...-

n ~ ~ n [K(~,f-L,z 1 )]2 
1 1 

+ (-1)1+1 ~J z .. +z 

1,/ 1 I 2 I 2 
X [J ijk (~,f.L,Z) Aj (p, ~) ~ (p ,f-L), for i = 2, 3, 4 , 

(7' 24) 

(7.25) 



We have -L( (~, tJ-, z) = 
J (_,ljk 

0 

0 

2 
-p 1'-

1 2 zP z 

2 
m 

0 

0 

1 2 zP z 

_ ·2(tJ--~Z)+l 2 (~-tJ-Z) 
m 2 2pz .2 

1-z 1-z 

0 

0 

0 

( 7.26a) I 
-.1 
N 
I 

c::: 
() 
!:tl 
t"' 
I 

....... 
0 
0 
N 
00 



CJC 2jk 
(~. fl, z); 

0 0 0 

m2(2(~2tf1 2 - 2~f1Z) _ ~2+1:':2tz2 
( 1-z2)2 1-z 2 

0 !.(m2-p2)(fl-~Z) 
2 2 2 1-z2 

t!. E2(~) - 2 ~ 
2 2 p 2 

1-z 1-z 

!_ (m2- p2)(~) 
2 2 

0 2(2z(~ t 1:': - nl:':z) _ ~fltZ j 
2 1-z2 p 2 2 2 

(1-z ) 1-z 

0 !. E2 !_ E2(1:':-~z) 
2 2 1-z2 

0 _!. E2( ~-l:':z) 
2 1-z2 

0 

0 

i E2 

!_ E2( ~-l:':z) 
2 1-z2 

2 2 _!_ E2(4(~ +I:': -2~1:':z) 
2 ( 1 -z2)2 

~2+ 2+2 
-~] 

1-z 

_!. E2(~-l:':z) 
2 1-z2 

0 

_!_ E2( 1'-~z) 
2 1-z2 

0 

_!_ E2(f1-~Z) 
2 1-z2 

0 

( 7.26b) 

I 
-.) 

UJ 
I 

c: 
() 
!::0 
t"' 
I 

...... 
0 
0 
N 
00 
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0 0 0 0 0 

~N + ~ 
I 

-< -
I 

~~N -~~ -< ~ 
I I 

0 0 :1. - + I 0 

N N -
fil -< -.. 

N 

N 

l 
fil 

.< I 

I -
~ 
:1. 

-< 

~N~ ffN~ 
+ 

l 
I I 

0 I I -< - 0 

-< - N 
I- fil N N N~ 

!:1 
+ .: 

N --< 
N 

~ 

~N + ~ 
I 

ffN 

-< - -< ~ 

0 
I I 

l 
0 0 

N 

!:1 
IN 

N ~ -+ -N 
-< 
~ 
N 

N 

~ 

-;o 
:i 
..,· 
-~ 

"' 

'YO 0 0 0 0 0 

L ..... ·----------··-- --. '~··-~"'--··--···- -·--



I 
I 

l 

'J,/ (\,f!,Z) = 
~.,/\, 4jk 

0 

0 

0 

0 

0 

0 0 

2 2 ) _ 2[ 2z(\ + f! -2\f!z _ ~] 
p 2 2 2 

(1-z ) 1-z 

0 

0 

I 2 z-m 

-(E2- }··m2)( \-p.z2) 

1-z 

2 2 2 
:!'__(~)+ ~ 
2 2 p 2 

I - z I -z 

.!_ 2( \-p.z) 
2m 2 

1-z 

0 

0 

.!_ 2(p.-\z) 
2m 2 

1-z 

0 

r . 

( 7.26d) 

I 
-J 
U1 
I 

~ 
() 
"?j 

t"" 
I -0 
0 
N 
00 
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I 2 
To calculate Im h

1
, 5 (p ) we need to use 

and 

1 2 2 
Im G1 I = =--z- l p 1m (<1>1 .. <1>2) + m Im (<1>3 - <1>3) ] I ' 

z=O Ep z=O 

(7.27) 

I 1 2 
Im c 5 = - :-z- E Im (<1> 1 + <!> 2) .I 

z=O Ep z=O 
(7. 28) 

2 [GO d:\ . * 2 2 2 + 7l -x- 2Re [ h
1 

(E A 1 (:\)-p :\ A 2 (:\) + m A 3 (:\),] 

1 X [ :\ L(:\)-4n] 

[ :\!J. J(:\, !J., 0)- :\ L(:\)-!J. L(!J.) + 4n] 

(7. 29) 

2 
p 

- =t. 
E 

; [ 4- ,.~ 2 2 2 
2Re[h

5 
(E :\A2 (:\) +m :\A4 (:\)-p· A 5 (\))] 

l . X [ >-. L(>-.)-41T] 

(7. 30) 
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7 

In deriving t}].is last equation we have used the useful relationships 

~ 2 
1 4rr d z 1 

TT [ K(l±z)] i (l±z) 2 

It now follows that 

I 2 
Im h

1 
(p ) = 

l 
+~ 

E· 

p 
E 

(7. 32) 

1 4 ± X.fJ. ± l [ L(~) ± L{~]} . { = {~±f.!) 2 
- TT X±fJ. 

(7.33) 

1 
{ 8rr E

2 I hllz 4n 

(7;34 cont.) 
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+ ~fao 
1T ~ 

1 

d~ 
T 

(7. 34) 

* 2 2 2 2 Re [h
5 

(E U2(~) + m ~A4(~)- p A5 (~) )] 

X [ ~ L( ~) - 4n] 

~ [ ~fl J(~~p.,O)-~ L(~)-fl L{fl) + 4n] 

* 2 2 2 * 2 * + A 5 (A} (E fl A 2 (fl} + m flA4 (fl) ) + (E ~ A 2 (~} + m A A 4 (~) )A5 (fl) JJ 

(7.35) 

The constraint condition of Eq. (7.23) now reads 
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X (A2 (fJ.) + A 4 (fJ.) ) ] = Oo 

(7 0 36) 

We should mention that Eqso 

unitarity equations for the 1s
0 

and 

(7 0 34) and (7 0 35) are essentiallythe 

3 0 0 p
0 

partial waves, f
0 

and £
11 

respectively. For accordingto GGMW, 

(7,37a) 

and 

0 -1 1 f l 2 2 2 ] -f 11 =pE 2 :dz zE G2 +zm G4 -p G5 , (7' 37b) 

and these are the only partial waves to which terms in G
1

, G5 , independent 

11 51 
of z contribute, in particular to which the ssfs 6.'( s , 6.-y s contribute. 

Thus the ambiguities introduced by the two s-channel ssfs can affect onlythe 

two J ·= 0 partial waves, in confirmation of the results of Section Vo We 

cannot at present exclude such ambiguities; nor can similar ambiguities for 

J < 1 be excluded from any channel of either of the o_ther two problems con-

side red so far - 'Tr-'IT and 'Tr-N scattering, 
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VIII. EQUATIONS· FOR THE SPECTRAL FUNCTIONS 

In this short section we collect together for convenience the equations 

which, in the strip approximation, determine the spectral function. 

Let us first recall the Mandelstam representation for the G amplitudes 

(c£. 4.43): 

I = 1 J. ~ 1. [ _1 + (-l)i + I 1 I G. (s,t,u} --..,.- 1 dx -] p. (s1 ,x) 
1 ~ s - s · x-t x-u 1x 

Tr 

~J dtl Jdu
1 _2l[p~(t',u 1 }+(-l}i+Ip~(u',t 1 }] + ~ t I -t U I -U 1 1 

Tr 

1 + (- l)I + i ds ' . I 
+ I 6.y1s (s I ) Zn s 1 -s 

1 + - I dxl 
Tr 

1 +{-l)I+i 
x~t 

1 
x-u 

where D.y~I (s 1 ) = 0, for i = 2, 3, 4; 

and 

ii 
] D.y (x) ' (8.1} 

(8. 2a) 

(8.2b) 

(8.~) 

In Eqs. (6.23) we have given expressions for the imaginary parts 

of the G amplitudes in the approximation in which only the Landau-

Cutkowsky diagrams with two~pion intermediate states are retained (Fig. 5): 

if now we apply the matrix (G G) = BD. (2.36), we obtain expressions for 

Imu > 0 G to the same approx;imation, i.e. , we have 

I GI ( ) .!_ 1. ~ (-l)i + I I_ (s 1 u) 
m U > Q i S ' t' U ., =: Tr S 1 - S p 1X ' 

(8. 3 cont. ) 
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+ .!. f 
Tr 

dt' 
ti-t 

-J 
= ~.J BIJ .6... Im2 G. . 

J ~ Tr J 
(8.3) 

If we now take the imaginary part of this equation when s > 0, we have, 

referring to (6.23). 

I . i +I -J 
p. ( s , u) 12 = (- 1 ) I:. J .6.. . Im > 0 Im 2 G. 

lX Tr J lJ S Tr J . 

= (- 1) i + I ~. B .6.. . {- 1 )j + J + 1 
JJ IJ lJ 

X 51 1 
Ern 

., ao 

) 

2 
(5 + (-1)J) ~1 dX.j dJJ. 

Tr X. X. 
0 0 

* + kj22 b b ] . (8.4) 

Similarly, taking the imaginary part for t > 0, we have 

1 I i+Il . q 1 (m )
2 

zl pi (t,u) + (-1) pi (u,t)] ZITI= I:J.JBIJ.6.ij E 4TI -
8nE 

4n
2 * -----~ [kJ.ll a a 

[ K(~. JJ., z)] 2 

(8.5) 
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Finally, by putting z = 0, we could obtain equations for the 

6.yil I which are given explicitly in terms of the pion-nucleon amplitudes. 
2n .I 

The one-pion contributions to the 6.l , the 6-function terms, are disq1ssed 

in the next section. 

Let us return to the equations for the two-pion contributions to,the 

dsfs, (8.4) and (8.5). If on their right-hand sides we exclude from the b 

absorptive parts the 6-function corresponding to the one-nucleon pole in 

pion-nucleon scattering, i.e., if.we exclude the simplest box diagram (Fig. 6) 

from the Landau-Cutkowsky diagrams with two-pion intermediate states 

(Fig. 5), the remaining portions of the two-pion contributions to the dsfs 

are nonzero in the regions C and the inner regions of Fig. 7. In particular, 

the two-pion contributions are the only nonzero contributions in the strips 

parallel to t = 0, u = 0. Equations (8.4) and (8 .. 5), then give explicitly the 

dsfs in these strips in terms of the pion-nucleon absorptive parts. This is 

in accordance with our statements in .Section li-B and the Introduction. 

Furthermore, we have shown how the ssfs 6.yil are to be derived in the 

strip approximation. 

We now turn to the strips of the dsfs parallel to s = 0, and refer' 

to (7.24) and (7.25). If we take the imaginary parts of these equations for 

t > 0 (z > 1), we will, comparing with (8.1), obtain 

I 
p. (s,t) 11= 1x e 

p 
E [ K(~. !J., z)] 2 

. . I '2 * I 3 
X z:jk })' ijk ( >.., !J., z) Aj (p ' X.) Ak (p '1-1) • (8.6) 

I 
Unlike the equations (8.4) and (8.5), the absorptive parts A. on the 

1 

right-hand side of (8. 6) are not ''given, ''but are to be derived from (7 .14). 

This requires a prior knowledge of the dsfs. However, in.the strip 
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approximation we_ suppose that the inner region of the dsfs is not important, 

even for the determination of the absorptive parts: accordingly it is enough 

to take for the dsfs the sum of p I el and p lz,TT , takip.g care not· to count 

the contribution of the simplest box diagram twice. This then allows (8.6) · 

and {7 .14) to be solved as coupled integral equations determining pix I el 

We again observe that it is possible to separate out from pfx I el 

the part coming from the simplest box diagram .. This comes from the 6 

functions in b..yil corresponding to one-pion exchange in the absorptive parts. 

The remainder of pix I el is nonzero in the regions B (and the inner regions) 

of Fig. 7, and in particular (again f:llpart from the simplest box diagram contri-

bution) is the only nonzero part of the dsfs in the strips parallel to s = 0. 

Thus we have shown how the unitarity equations lead to a determination, 

in the strip approximation, of those parts of the dsfs which, we hope, dominate 

the low-energy or low momentum-transfer parts of the physical scattering 

amplitudes. 

The ssfs ~"\(~! in the s channel are determined by application of 

{7.34) and (7.35). Similar equations could also be used to derive any other 

ssfs which .arose from subtraction, subject to the caveat about undetermined 

CDD poles mentioned in the Introduction. 



-84- UCRL-10028 

IX. THE YUKAWA POLES AND THE SIMPLEST BOX DIAGRAM 

We have observed that one-particle intermediate states in Landau-

Cutkowsky diagrams give rise to poles in the amplitudes, and in particular 

the one-pion interemediate states in the nucleon-antinucleon channels give 

2 2 16 
rise to poles at u = fJ. , t = ~ These are given in GGMW and are 

G~ 
1 = 

2 
g '\ <- 30 I·, 1 + 0I, oL 

ITT (9. 1) 

where 

'\ = (1, 1, -1, -1, 1). (9.2) 

Let us now consider the simplest box diagram. This is of interest 

for reasons discussed in the Introduction and amplified in Section VIII. The 

equations are represented schematically by Fig. 5; the '"blobs n include all 

states with the same quantum numbers as a nucleon plus a pion, in particular 

the one-nucleon state. If we wish to isolate the contribution from this state 

we must include in a and b, the absorptive parts of pion-nucleon scattering, 

only the terms arisfng from the one-nucleon pole. We have already seenthat 

' 2 - -1 
there is no contribution to a, and a contribution of n g o(X.

0
- X.)(2 p q) 

to b, the rest of b, and the whole of a, with thresholds at x.
0 

1 given by 

v 
0 

= (m+JJ.) 
2 

coming from interemediate states with more than just a nucleon 

in the pion-nucleon scattering, If then we take just, this one-nucleon term in 

the ''blobs" of Fig. 5; i.e., if we take the contribution associated with Fig. 6, 

the simplest box diagram, to Im G, we obtain 14 

- U> -2 - I Im Gi (p , z ) -(I) -2 I = Im G (p , 0) 

q 1 
+ 4iT 

E 

box 

( 
m ....... )2 (5 ± 1) 

8nE 

2 
-y 
TT 

box 

z 4 n dz 1 -J 2 l 1 - 1 ] 
--+~ z'-z z 1 +z 

1 
z 

n [ K(X.O, X.O' z ')] 2 
(9. 3 cant, ) 
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for i = 1, 5; 

1 2 I G (I) (-2 z ) I .9. ( ~ r (5 ±1) m . p' ·- 4TT· 7 1 box E 8.TI E 

X 4 'IT dz 1 1 + {-1/ 
1 ] it 2 

. K( >-o, >-o, z v > ]2 z 1 -z z'+z 

Im Gi (l){p
2

, 0) 1 = o, 
box 

Im G. (O) (p2 , 0) I 
1 

box 

, for i = 2, 3, 4; 

for i = 1, 5; 

.s_l 
E 4n 

'IT 

.2 
'IT g 
-2 

4p q 

'IT2 g4 2 
X 4p2 q2 [4TI - 2>..0 L(X.O) + X.O J(>..O' X.O' 0) ] ' 

4 

2 

for i = 1, 5, 
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1 -'IT 

\22 P.·o· x.o, z') • 

48 
-z-

'IT 

(9, 3) 

(9, 4) 

By taking the imaginary part of the absorptive parts given by (9, 3) for 

z < -l it is possible to arrive at a determination of the contribution of the 

(s, u) double-spectral function associated with the simplest box diagram, For 

we have 

( ) I ( . )i .f I GI ( ) I 
s,u box= -1 Ims > 0 I~u > 0 i s,t,u box 

(-1 )i + I ~ B A I I GI I ( ) ., = "- II' ~ .. m..,.. < 1 m > 0 . s, t, u 
j I' lJ z - u J box 

= (-1 )i + I ~ B A (= 1 )j + I' + ·1 
~v II' ~ij 

X .9. 1 ( m. )2 (5 + (-1)1') TI2 g4 
E fi 8 n E . 4p 

2 
q 

2 
kj22<x.o, ~o' -z) 

[ K(X.O' X.O, -z)] 2 

(9,5) 
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Now it is also possible to calculate the (s,u) double-sp~ctral function 

associated with the simplest box diagram by considering nucleon-nucleon 

unitarity, We have now to include in the absorptive parts A that enter in 

Eqs, (8,6) only the contributions of the one-pion poles. These we have already 

stated and it follows from (9.1) that' 

A/ <l .. }.) j,, = (_:) '\ g: (9.6) 

The other contributions to A, arising from two-pion states, etc., have their 

2 2 
threshold at ~ 1 1 = 1 + 2f.! /p . 

If we use (9.6) to calculate the (s, u) double-spectral function associated 

with the 

X I: TJJ.n 
jk 'k 

(9,7) 

Of course the two determinations (9.5) and (9. 7) must be consistent with 

each other. If we notice that 

(4~= (91)· 
Z: (-1)1 BII' (-1)1' + 1 
1' 

(9.8) 

this consistency reduces to the set of identities 

m 2 E -2~. (-l)i A •• (-l)j -~J w.lJ kj22(X.o,x.o, -z) 

(9.9) 

which .are indeed verified. 
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APPENDIX A,i CROSSING 

The crossing matrix (X x) relatingthe x/(s.,t,u) to thexf (s,t,u) 

may be obtained from the matrices fx F) (s, t, u) = (x F) (u; t, s), (x F), and 

the crossing matrix (FF), all of which appear in GGMW. For clarity, 

however, the work is' described in detail below; in slightly different 

language that leans less heavily on conventional field theory. The resulting 

Eqs. (A.7, A.lO, A.l4), coincide withthat obtainedfromthe matrices in 

GGMW, and thus serve as an algebraic check. 

The same Feynman-diagram ''black box", represented by a matrix 

M(F(s,t;u) ), where s = (p 1 + Pz)
2

, t = (p 1 + Pi')
2

, u= (p 1 + p 2
1

)
2

, is 

attached to nucleon spinors for nucleons of definite helicity arid definite z 

component of isotopic spin, to give nucleon-nucleon amplitudes (Fig. 2): 

r"-1 I "-2 I "-I "-2 (s, t, u) = u"- 1 (-p
1

1 )[u"- (~p2 1 )M(F(s,t,u))u"- (p2)]u"- (p 1), 
l 2 i 2 l 

(A.l) 

or to nucleon and antinucleon spinors to give nucleon-antinucleon amplitudes 

(Fig. 3): 

'T"- 1 "- 1 "- "- (s,t,u) 
l 2 l 2 

=- u"- 1 (-p 1 1 )[v~ (p 2
1 )N,t:CF(s,t,u)Jv"- u(-p 2)]u>.. (p 1). 

l 2 2 l 

(A.2) 

The minus sign in (A.2) comes from a part of the Feynman rules not 

usua!Uy stated; namely, there is a minus sign for each antiparticle in the' 

final state, except for antiparticles corresponding to totally noninteracting 

antiparticle lines-but the noninteracting line case contributes only to the 

unit matrix in S = l + iT in the case of two-particle elastic scattering, so that 

this exception is not relevant here. By agreeing to take states where particle 

l is created first, particle 2 next; II first and 2 1 next in the nucleon-nucleon 

case, and :where the nucleon is created first, the antinucleon next in both 

'• 
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states of the nucleon-antinucleon case, one determines that there is no relative 

sign due to permutations of fermions in initial and final states ;:'and, of course, 

as there are equal numbers of closed loops in comparable diagrams, there 

is no relative sign from the minus signs for closed loops. 

h h . f . f h F( ( ~ ) 2 ( I ) 2 T. at t e same matnx unchon o t e . p 1 + Pz , P1 + P1 , 

{p
1 

+ Pz' )2t may be used for both cases really requires a detailed argument. 

To convince the skeptical reader of this, we draw attention to the fact that 

since the nucleon-nucleon process involves (s, t, u) in the region where 

t < 0, u < 0, whereas the n,ucleon-antinucleon process as described above 

involves (s,t,u) in the region where t <0, s <0, the use ofthe 11same" 

. F(s, t, u) for both processes involves the concept of analytic contini:1ation, and 

the knowledge that the F(s, t, u) are well-behaved amplitudes; i.e. , 

Mandelstam amplitudes. That the F(s, t, u) may reasonably to expected to be 

Mandelstam amplitudes is argued in the first two paragraphs of Sec, III of 

GGMW. l? 

The matrix M, as given by an imagined sum over Feynman diagrams 

based on interactions with all the usually assumed symmetries of strong 

interactions, may indeed be reduced to the form MfF(s, t, u) ), a superposition 

of numeric Dirac matrices with coefficientsfunctions only of the Lorentz in~ 

variants formed from the 4-momenta, if all the symmetry restrictions are in 

fact imposed, in addition to the Dirac equations in the four external 4-momenta 

(see GGMW). The same matrix is involved in the nucleon-antinucleon process, 

and the same symmetry restrictions apply; f?auli symmetny in one case and 

G-conjugation symmetry in the other lead to the same conditions. However, 

two of the Dirac equations involve negatives of physical momenta-but the 

convention of using reversed momenta for outgoing particles means that the 

same literal p variables enter the algebra. Since the reduction of the 
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common original matrix to a linear combination involving five amplitudes 

proceeds thus by parallel algebraic operations, the MfF(s, t, u) J are the 

same, with the same functions F, differing only in the numerical values of 

the arguments s, t, u. That the functions are the same in the sense of a 

sequence of parallel algebraic and Feynman-integral operations on their 

arguments means that they are related by analytic continuation in the sense 

of Mandelsta'm; that no singularity that would make this ambiguous is intro-

duced in the operations follows from the argument given in GGMW to show 

that the F are Mandelstam amplitudes. 

If some symmetry restrictions are dropped, in order, for example, 

to apply the discussion to weak interactions, then (A.l) and (A. 2) must be 

modified only to the extent that the common matrix M involve formal inner 

products of Dirac matrices with external 4-momenta; this follows from the 

simple observation that the number of independent scalar coefficients would 

then exceed five. The manipulation indicated in Eq. (A.6) below would still 

be the central step in the explicit expression of crossing, but the use of a dif-

ferent expression for M would lead to algebraic details distinct from those 

which follow from (A.3): A similar remark applies if all the present 

symmetries are assumed, but if M is by choice resolved into five amplitudes 

in a way that does not eliminate all inner products of Dirac matrices With 

external 4-momenta, as is done, e. g., in Ref. 

Now we have 

2 
m 

(5 ). 

and the <j>. are particular <Px_ 1 X. 1 X. X. ; similarly, 
1 

1 2 1 2 

- - -1 2 q, = (4nE) m T , and 

the x, x are obtained by simple diagonal matrices which remove the singu-

larities from q,, q,, as has been discussed in Section II- C. Thus, X = (X 'T) T, 

/ 

" 
• 
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x = (X T) T, where (x 7) (s, t, u) = <x T) (u, t, s). ·· The x and x of this 

Appendix bear subscripts 1, 2, 3, 4, 5; the subscripts + and -, occasionally 

used elsewhere, do not apply here. 

I 
It is convenient to define new Mandelstam amplitudes X. , such that 

1 

I (l) (2) qs I ' M(F) = E. I X. (s, t, u) r. r. 
1' 1 ' 1 1 

(A.3) 

and to develop (X X.) from I 

x = <x 7> <7 x> <x 'T) < 'T x >x (A.4) 

By utilizing the definition 

· (A.5) 

for the charge-conjugate or antiparticie spinor· (in the sense of G parity), 

it is easy to show by transposing the entire ( 1 by 1) matrix that 

(A.6) 

T ·-1 
By utilizing cr. C = (- )J r. (where j = 1, 2, 3, 4, 5 corresponds to 

J J 
.mJ . IJ,roi . S, T, A, V, P, respectively), and 'T 2 ..:.p 'T 2 = I:I B riP , w1th 

(A. 7) 

· · one finds .that 

.L. 

XuA. (p2 ')u~ (p 1 ') • 
. 2 1 

(A.8) 

where the use of a linear com.bination of spinors to yield given total isotopic 

spin I is understood but not written. 
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By compa.ring (A. 8) with (A.l, A. 3) one sees that since 

T. I = ( T X). . X. I' 
1 1J J 

then 

-I IJ -- j J 
To =-B (TX),.(-) X• > 

1 1J J 
(A.9) · 

where (r X) .. (s,t,u) =(-r X) .. (u,t, s), inasmuch as this matrix factor arises 
1J 1J 

from exactly the same spinors, save that the arguments p
2 

and p
2

1 are 

interchanged. 

Hence, 

(A.l 0) 

The matrix (T x) can be worked out from Eq, (A.l) and (A.3) by 

multiplying the spinors, but GGMW have already worked out (-rF), so one 

need only find (F X) and use (T X) = (T F) (F X): 

(A.ll) 

readily gives (F X) in terms of the S, T, A, V, P-adapted Fierz matrix tJ 
~. k F. (o. . + (- >j rr. tr (l > r < 2 > = E x r (l > r < 2 > 

J' J 1J .• '-" Jk k k . k. k k . k 

yields 

Xk = ~- F. (6.k + (- )j G:k) = (X F)k. F. 
·J J J J JJ 

(A.l2) 

Then, by matrix inversion, 

1 -3 0 -2 0 

l 1 0 0 l 
2 2 

(F X) = l 0 0 1 -1 0 (A.l3) 2 

l 0 1 1 l 
2 -2 

0 -3 0 2 1 
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Note that 

-1 
(:Z( s ' t ' u) ) = z ( u ' t ' s ) (A, 14a} 

a convenient check on the matrix multiplications, The result for B has 

already been given in Eq. (A,7); the result for z-l is given as (A,l4b) be-

low, and z appears as Eq, (2,35) in the text: 

2 2 2 stu t -~~+~] 2m t 2m t -
(t+u) 

2 2 2 - 2 4m2 t+u (s+t)2 m (tm) 
(t+u) 

2 (t+u) 

2 s+t su· tu t2 stu 
2m t + ---2 

m z(t+u) 2 -
(t+u)

2 2(t+u) 2 . 2 
2(s+t) {t+u) (t+u) 

2 2 4m\ 
2 2 2 2 2tu 2m tu mt 

z-1= m (s+tL mu -
(t+u)

2 - s (t+u) 2 z z 2 
(t+u) s (t+u) s (t+u) $ (t+u) 

4 4 2 2 2su 
4m 4m 2m u s+t 2m t --- 2 2 - 2 2 t+u 

(t+u} 2 (t+u) (t+u} (t+u) (t+u) 

4 2 2 2 
4m 

4 4m 2m u 2m.t 4m t-su 
2 - 2 2 z (t+u)2 (t+u) {t+u} (t+u) 

(t+u} 

(A, 14b) 

The equations x. 1 = {x G) .. G. 
1 

require that the x be Mandelstam 
1 lJ J 

amplitudes with zeros imposed ,by the matrix (X G), which is not simply a 

numeric matrix, These conditions are applied in Section IV -C. Since the x 

amplitudes are Mandelstam amplitudes with a physical meaning more trans-

' parent than that of the G, inasr_nuch as they are very simply related to the 

helicity amplitudes, it would perhaps be annoying to have no alternative 

derivation of the information about zeros, But in fact, the crossing matrix 
. ·' . '·· ... , 

gives this information directly, provided that one indeed has prior informa-

tion confirming the regularity of the X and of the X, 

D 

• 
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(A. 15) 

1 -1 The right-hand side of (A.l5) bears the poles of (7 X)- (x 7) ; the 

---1 -- -1 left-hand side bears the poles of (7 X) (x 7) . No pole can be cancelled 

from the equation, inasmuch as the poles on the right-hand side appear at 

2 2 
s and s~4M , whereas those on the left-hand side appear at u and u-4M The 

regularity of x therefore imposes u and u-4M
2 

zeros on appropriate linear 

combinations of the x, whereas the regularity of the x imposes s and 

2 
s -4M zeros on appropriate linear combinations of the x" Since 

X = (x 7) (7 X)X, and since X and G are related by a numeric matrix, 

these imposed zeros are equivalent to those imposed by regularity of 

-1 
G = (X G) X· 

That the x and X are Mandelstam amplitudes in fact is, of course, 

a result that follows from prior knowledge that the X or F or G are 

Mandelstam amplitudes, which in turn follows from arguments outlined in 

GGMW, Sec. III. That the x are Mandelstam amplitudes follows immediately 

from x - - B (j( i') (7 X) [- )j J X, inasmuch as (X 7) was ori gina! y devised 

so that x = (x 7) (7 X)X would be regular; i.e., (X 7) (7 X) (s, t, u) has all 

elements regular, and therefore (X 7-) (7 X) (s, t, u) = (x 7) {7 X) (u, t, s) also 

has all elements regular. 

It has been remarked in the text that if F amplitudes are defined by 

F = (F x )X , where (F x) (s, t, u) = (F x) (u, t, s), then (F F), the crossing 

matrix of GGMW, is a numeric matrix, and the related matrix (G G) is 

explicitly quoted. (F F) may be computed directly from the above as 

(F x) (x x) (x F), but as GGMW show, it is not in fact necessary to go to the 

trouble of handling the messy cancellations of functions of s, t, u that this 

would involve. 
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This may be seen directly from Eq, (A.1,0} ... ,If we .define new ampli-; ,, 

tudes X by (X X)= - B [<->j]; then (F;F) = (F·X), (X·X} (X F)., wher.e 

(X X) is an extremely simple "crossing matrix", (X F) is a numeric matrix • 

(See Eq. (A.12)), and the point is made if (FX) (s,t,<u) = (F X) (u,t, s) can 

be established, inasmuch as (F X) is, of course, numeric. Now, 

-- -- - - -1 (F X) = (F x) (X X) (X X) , in terms of previously examined transformations; 

-- - -- -- - - -1 -- -- --or (F X) = (Fx) (X 'T) ('T X) (X X) (X X) = (F X) (x 'T) ('T X)-,. We have 

(Fx) ($,t,u) = (Fx} (u,t,s) byde'finitionofF;(x r) (s,t,u) = (x T) (u,t,s) by 

definition of x; and (7 X) (s, t, u) = ('T X) (u, t, s) by definition of the symbol 

(rX), whence (FX) (s,t,u) = (Fx) (x T) (TX) (u,t,s) = (FX) (u,t,s) = (FX) 

is indeed numeric. 

APPENDIX B. DERIVATION OF THE UNIT ARITY EQUATIONS 

For nucleon-nucleon scattering, where 

2 
s = 1 + i(Zn)4 o(4) <Pz + P2' + P1 + Pl ') ;z :::f ! (B.1) 

the unitarity condition, 

t s s = 1 ' (B. 2) 

leads to 

bl(~l1 ' ~2'; -P!?-Pz I ~I >--1,>.2~;pl •. P2) 

- (x.1 1
' >--z'; -p1',~ P2' lit I >..1.~2; P1' P2) l 

(B. 3) 
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where we have induded only the two-nucleon states on the right-hand side. 

In the c. m. systein _p 1 
1 + g2 • = 0, so that if, say, the !_2 integration is 

performed, the result of the spatial part of the o function is just to set 

!,1 + !_2 = 0. If we write !_1 = g = - !_2 , the right-hand side reduces to 

' -1 1. 1. 2 1 2 2 1/2 
(27T E) dQP p dp o L 2 (p + m ) -2E) 

(B.4) 

Performing the integration over p we obtain Eq. (7, 2) . 

For the nucleon-antinucleon unitarity, we have formally, if we include 

only two-pion intercalated states, 

= ~ I:7T7T ( N I N I I R t I TilT) < 7T7T I R I N N) , (B.5) 

which leads immediately to 

~(>..•, "X"'; -pl'' -p2 I -:pt I X., "X"; p 1, P 2 ')1 
3 3 

4 E2 2 d ql d q2 
0 (4) (pll + qz{~nr m J J = (27T) -2 

(~ (2n) 
3 + P2 + ql 

m 47TE 

X <X.' • 1"•; I -pl , -p2 I ~t I ql • q2) 

x (ql, c;r2 I 8='1 x., >..; P1· Pz') <B-6> 

An argument parallel to that which led from (B. 3) to (7. 2) now gives (6.19a). 

·,_.) 

'-. 
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1. Extraction of the Azimuthal Angles from a Product of Matrix Elements 

In this subsection the dependence of a produ~t of,mat~ix elements of 

rotationally invariant operators on azimuthal angles of the intercalated state 

is explicitly displayed. Namely, 

(f(O,O,O) 1 Btjn (cf> 1 ,o 1 ,4J 1 .))(n(q, 1 ,o 1 ,~JJ 1 ) IAI i) 

= ei! (n(O, -0 2 , 0) I B I £
0
)* ( n(O, o

1
, 0) I Aj i

0
), 

(B. 7). 

where A and B are operators which commute with rotation operators; 

where the states are obtained from I i
0
), jn

0
), I £

0
). eigenstates of Jz 

with eigenvalues m., m , mf' respectively, as follows: 
1 n . 

~ iJ ljJ 
z 1 

e (B.8) 

in which active rotations are written explicitly in terms of the angular mo-

mentum operators ;!._; where the angle 0 2 is the angle from a vector at the 

direction (0 1, q,1) associated with the intercalated state to one at the direc

tion ( 0, 0) associated with the final state' so that 

cos 02 =cos 0 cos 01 +sin 0 sin el cos <t>l; (B.9) 

and where 

{B. 10) 

and 

i<t>2 .. 
sin e 2 e =sin 0 cos 0

1
- cos '9 sin 0

1 
cos q,

1 
+ i sin 0 sin <t> 1• 

hp 
sin e2 e 3 =-cos 0 sin 0.

1
+sin 0 cos_0 1 cos q, 1 -i sin 0 sin <J> 1. 

(B.ll) 
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The application of this theorem in the text is. to the two-particle. states 

I \
1

, \ 2 , E. )of Jacob and Wick (1~, constructed by the active rotation of 

fiducial states I x.
1

, X.2 , p) . In a fiducial state, the first particle, i.e., 

that whose creation operator acts first on the vacuum in the notation of con-

ventional field theory, moves in the +z direction and has h~licity x.
1

, and 

the second particle moves in the opposite direction and has helicity x.2 , so 

that a fiducial state is an eigenstate of J z with eigenvalue m = x.
1 

- x.2 . The 

absolute value of the momentum of either particle is p. 

The result (B. 7, B. 9- B.ll) is derived as follows: 

<
. iJ 8 -iJ <1>1 -iJ 8 1 t ) iJ 8 1 ) 

= fo I e Y e z e Y B I no (no I e Y A I io 

(B.l2) 

where B t and A have been commuted with rotation operators, and where 

J has been replaced by its eigenvalue where obviously possible; note that z 

the third Euler angle l(J has dropped out. 

The 3-parameter rotation that appears as a succession of y, z, then 

y rotations, is now rewritten in the more conventional form of a succession 

of z, y, then z rotations: 

e 
iJ 8 

y 
-iJ 4 

z 1 
e 

-iJ 8 
e y 1 = (B.l3) 

The new parameters <l>z• 8 2 , <j>
3 

are given in (B. 9, B.ll ). They are readily 

obtained if Eq. (B.l3) between rotation group elements (the double -valued or 

covering group, for maximal generality), is replaced by the analogous 

iJ · n 8 
equation in the faithful spin i representation. Then e - - is replaced by 

1 .! h-. n 8 
e 1 ~ - = cos 8/2 + i a· n sin 8/2, for n· n = 1, which gives a 2 by 2 matrix 
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equation that is simplified by multiplying Pauli matrices, to yield four 

trigonometric equations, and Eqs. (B.9, B.ll), 

Substitution of (B.l3) into (B.12) produces the expression 

• i(j) ( iJ y
8 

2 t )( · · ) 
e - £

0 
I e B I n

0 
n{o,e 1 , O) I A I i

0 
, 

i(j) iJ <1>3 t 
with e- given by (B.lO), when e z is commuted through B , and the J z 

are replaced by the appropriate eigenvalues. The final form (B. 7) follows 
iJ e t -iJ e )* . · ,.,. 

from (£
0 

I e Y 
2 

B I n 0 )= ( n 0 1 Be Y 
2

1 f0 = (n(O, -8 2 ,0)!Bif0 ) 

In particular, it can b'e readily seen that Eq. (6 .19b) follows from (6 .19a), 

and Eq. (7 ,4) from (7, 2)( 

APPENDIX C: CALCULATIONS PERTAINING T.O THE 
UNIT ARITY EQUATIONS 

In Section VI, the steps leading from (6.19) to (6. 21) were omitted. 

We give them here in some detaiL 

1 . - ., -u> I 
7 •.Pf cj> 

* = q ( 41'1'} - 1 J dO { 5 ± 1} ~ {±) (-e 
2 

> 
q ++ q 

= (5 ± 1} ~ 

1 1 - ) 
2' 2; .Pi 

d(±) (8 } 
J' ++. lq 

* d~ a(±) (:\) y 
1· .. 

x:z 2JJ 
~lz 1J] 

(C.l cont. ) 
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q 
4n 

-100-

( 
m- )2 J dQ { I a(±) 12 

8nE q 0 

,., 
d!J.a(±)'(~) a(±)(IJ.) 

UCRL-10028 

. (C.l) 

The angular integrals are given in Appendix D, and lead to (6.2la). 

Similarly we have 

I ,~,. (I);;;; I 
m2n 'I' 2 m2n 

by virtue of the second equation of (6.7), leading to (6.2lb): 

00 ~ 

= - ( 5 ± 1) q ( m ) 2 J dQ y 1 q y 2q [ d ~ i d!J. 
4iT 8 E lq 2 

n n A ~ 
0 0 

~+~lq l 
(C. 3 cont. ) 

.! .... 



- JOl · 

G 
' ... Q . l 2 2 - . . 

X - {zl . + Zz -2z z Zz ) - u - zl Zz ) . '. - q q lq q q q .. +z . 

and then9 from (D.22), 

-+ 
1 

z'+z 

Similarly we have 

UCRL~l0028 

(C. 3) 

(CA) 

. >l<; 

,., = q{4'1T)~l J dOq (5 :j; 1)5'~! (-e 2q) ~ ~~} (0 1q> exp i (cl>zq- ,4>1q) 

:;; ~ (5 .:1: 1) 

x [ .... x~-\-,z-q 
(C. 5 cont. ) 
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(C.5) 

and when1we use (D. 23), 

- (1) - q 
Im21T <1>4 = - (1-z) (5 ::1:: 1) 4n 

( 
m )

2 
2 

8 n :E 7 

X .!_ J 4n
2 

dz 1 
{ 1 [X. 

2 
+ f.l

2 
_ 2 X.f.lz 1 

1T [K(>..,f.l,Z 1 )]2 z'- z (1-z') 

+ z....,.'-~z_____,.fx.2 + f.l2 -2X.f.lz' - ~~;~J}· (C.6) 
L ( 1 +z 1

) . 

Equations (6.2lc) and (6.2ld) follow. 

Similarly, we have 

- (I) . ( 1 1 I "' (I) I ~ ' 1 - ) 
Im2n <1>5 = Im2n Z ' 2 ' .P£ '~' c.. - Z ' .Pi 

>:C 

= q(4n) -l J d0
1 

(5 ::1:: 1) Cl(:t:) (-8
2 

) 
q. v ++ q 

cT (::1::) (8 
J +- lq) exp i <Plq 

'.) 

(C. 7 cont. ) 
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x r 1 + 
~-z2q ---:----1 J~ '}' 

fJ.fZ1q 
(Co 7) 

and with the aid of (Do 7) and (Do15), (6o21e) followso 

If now we make the substitution of (6o 22), 

G = (~f) (j) 

Im G (I) = 1 (5 :1!: 1) q ( m )
2 

21T 1 E p-2 ~ . 8 1T E J 
2 

1 4n dz 1 

1T [K(>.., f.!, zl )] 2 

± 1 J [ 2z I ( >.. 2 f fJ. 2- 2 >..fJ.z I ) - >.of.! + z I 2] 
Z I f Z ( 1 - Z i 2) 

2 
1 - Z l 

E + 2 m 

= 1-2 ( 5 ± 1 } tn 
Ep 

X [. '

1

-Z + z ' : Z J ( \2 2 2 '\ ~) >..fJ.+Z a· 1\. t fJ. - 1\.fJ.Z - 2 
l-z 1 

(C. 8 cont. ) 
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+ 2 ! p
2 Re [a.(±) (~) 13 (±) (f.LU z 1 ~:..f.Lzi} 

1 12 -z 

+ _1 . 2 (5 :t: 1) fn ( m - )2 (1 :t: 1) m 2 
Ep 8n.E 

X [-4n+ ~ L(~) + f.L L(f.L) - ~f.L J(~. f.L, 0)] 9 

where 

4n J. ~f.L + [ ~ ~ + f.L - 1 i ]2 
[ 

2 2 
1 J 

J ( ~. f.L, O) = . ~ 2 2 ;tl. n 2 2 . 1. • 
L~ + f.L - ~ 2 ~f.L - l r; ~ + f.L - 1 i ] 2 

We have used the identities 

l K( ~. f.L, z I ) ] 2 

and 

2 
.!_J 4n dz 1 1 

·n [ K( ~. f.L, z I) ] 2 1 - z 1 

Similarly we have 

- (I) 1 
Im2n G 2 = 2 (5 + 1) 

Ep 

q 
4iT 

2 ( ~- f.LZ I ) = L( ~) • 

UCRL-10028 

(C.8) 

(C.9) 

(C.10) 

2 
.!_ J 4n dz 1 

1T [K(~. f.L, z' )3 2 

(C.ll) 
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- (I) 1 
Im2TT G 3 = :-=z- (5 :t 1) 

Ep . 

2 GO 00 2 
q . ( m \ : 2 f·. • d ~ ( d . .!_ J 4n dz 

1 
. 

4iT' 8 TT E) 7 ~ . )~· fJ. TT ... l K( :\, f!, z I)] 2 
' 0 0 

2z 1 2 2 j . . 2 2 ( ~ + fJ. - 2 Af!Z i ) ' 

·(l=z') ·. 
(C.12) 

- (I) 1 
Im2 TT G 4 = 2 (5 + l) 

Ep fr 
2 

l 4n dz 1 

TT K( ~. f!, z 1}] 2 

·~ l X--+ 
z 1 ·-z 

( ~ 2 f f-L 2- 2 ~f-LZ I } l f ~f!Z i J 
- l i 2 -z 

(C,13) 

and 

- (I) l 
Im2n G5 = - 2 (5 + 1) 

Ep 

0 



1 
- -=-~ ( 5 :1: 1 ) 
Ep 

GO 

2 f d~ +-
TI -x-

. X. 
0 

-106-

zu X.-J..Lz' } 

1 12 -z 

q ( m -) 2 2E2 {4n I ao(:l:) 12 
"4TT 8 TI E . 

* 2 Re [ a
0 

(:1:) a(:I:)(X.)] [X. L(X.)- 4n] 

UCRL-10028 

2 (±) (±) 1 . . 1GC IGC >:C + nT (1 + 1) . d~ df.l a (X.) a (J.l) ~J.l [4n- X. L(X)-J.l L(J..L) 

+ J(~. f.l, o)] . (C.l4) ~ ·~ } 
These equations, ( C.8, C.ll-14), have apparent singularities at 

~2 
p = 0, as is observed in Section VI. However the substitution of a and b 

for a and ~ through (6.17) leads to a cancellation and to the results of 

Eqs. (6.23-6.26). 

In a similar way we go through the derivation of (7.21) in the nucleon-

nucleon unitarity. From (7 .11) we have 

-1 J. { 2 -2 [ * * ( 0 Imel <1>1 = p(4TT) dO (Ep ) X 1 (z2) X 1 (zl) +X 2 (z2)X 2 zl. 

and 

Now we have 

(C.l7 cont. ) 
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<IG 

[ X~z 2 . fz 2 { d"- + (-1)1 I J * *} = J dn 'TT "T X-tz
2 

£1 ("-) + g1 

1 

aD ' ' 

~~zl fl (~) + gl} = ~ [ d~ I I J jg 1 j
2
Jdn I X + (-1) --

7T 1.1 f.L+ZI 

~I 
1110· 

+ {-[ d~ 
"-I 

[ >:< ] I [I I I J 2 Re fi ("-) g 1 1" J dn z 2 r-z:- +(-I) ~ 
2 ' 2 

+ -;1-j ~ [~a: £/(~) £1 (~)I <ill zlzZ [x~zz + (- d M~z J 
"-I 1 

and using (D.4, D.6, and D.14), we deduce 

[
_1_ + (- 1)1+1_1_· J 

------.- z 1 -z z 1 +z 
l K( "'· f.L, z I) ] 2 

2 
47T dz 1 

(C.1 7) 

* >:< Similar expressions may be obtained for J dQ x 
2 

x 2 • J dQ X 
1 

X 2 and 

J. * dQ X 
2 

x 
1 

.. ·Further, we obtain 
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= 1 iGil [Gilt ,~ . ~ 1 I 1 J[. 1 I 1 J 
7 d~ df.L £5 (}\) £5 (f.L) J dn (z 2z 1 -z} ~ + (-1) X:tz . f.L-z . +(-1) fJ.+z , 
,. ~ ~ 2 2 1 1 

1 1 

which from (Do 12, Do 14) gives 

+ .!_ J 4,.
2 

dza [-1 _ + (-1)1+1 
,. [K{X., f.L, z v )]2 z u -z 

_ ~ J 4TI
2

dz 
1 

[·_1_ + (- 1)I 
,. [K(X.,f.L,z')]2 ~~-z 

Gil 
= )[ d~ 

~1 

z J 4,.
2 

dz 1 
[ 1 

+ 1i- [K(~,f.L,zi)]2 z-z 
+ {- 1 ) I ____!___] L~f.L - z u l } . ( c 0 1 8) 

z'+zJL zn J 

Equations {7.21a, b) follow;• We next consider 

+ (E rn2)-2 (1-zl) (1-zz) e -i$3 X 4 *(zz) X4(z1) -2m -6 Y1Yz X 5 *(zz)X 5(z1)} 

X exp i (q,
2 

+ q,
1

) o {Co 19) 

(} 
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Now, we have 

CIQ 

= 7/ d~ 
~1 

"' 
X{ l~z [ z 1 

2 
+ z/- 2 Z z 1 z 2j 

X f'~Z 1 £(+) (j.<) J 
+ l.z + z 1 z 2] ±[ z 1 + z 2]} , (C. 20) 

and using {D.22), this is equal to 

1 GG ao 

(l+z) T [ d~ [ df' 

~1 ~1 

.!_ J 411'
2 
dz 1 

1T [K(~,f.l,Z 1 )]Z 

X _1_ ~ + f.1 - 2 ~f.LZ I 

[ 

2 2 

z'-z (l+z') 

:l: 
z 1 -z 

1 

(C. 21 cont.) 
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( l )I 1 
+ - z 1 +z 

Thus we get 

2 [co fao , l .4n2 dz v 
X exp i (cp 2 + cp

1
) = (l + z) -y d\ · df;L 1T _ 

n . \ l K( \, 1-l• z v ) ] z 

I + (-1) 

X 

1 
+ Z I =Z 

l 
z'+z 

Also we have 

= 

1 l 

\ +1-1 -2\j.lz n 
[ 

2 2 

(l-z 1 ) 

l 
z 1 +z 

(C.2l) 

GO GO 1 1 : 1 = I _1_ __1 _ = l I _1_ 
yly2 zf· d~ I djJ.I~ + ( 1) \+z J'IJ.-z + ( ) 1-l+Z 

1T ~ 2 ... 2 ~ 1 1 
\1 "-1 

(C .. 22 cont. ) 



' 

x r 1 
[1+z 

which gives us, using (D.22), 
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(C. 22) 

1 4 rr dz 1 j 
2 

rr [ K(~. !J., z 1 )] z 

If we combine (C.21) and (C.23), we will obtain 

co 

(l+z) -i-f d~ 
'IT ~ 

l 

2 

_ >-~J-+1 l}-
1-z'] 

(C.23) 

l 14rr dz 
1 

rr [K(>..,!J.,z')~Z 

(C.24 cont.) 
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+ Et 4 ( £(+) * ( ~) £(-) (~) - £(-) * (~) £(+) (~)) ~=~' 
\ 

- ~ f >,'<(~) f (f.L) (. ~ 2 +fJ-2 -2~f.LZ i - ~~+1,)J • 
mo 5 5 ( 1 ~z') 1 z 

UCRL=l0028 

Similarly, we can derive an expression for !mel q,4 that will use the 

angular integrations of (D. 23), and which, together with (C. 24), leads to 

(7.2lc) and (7.2ld). 

If we use BSjk' we obtain 

!mel <l>s = f., J dl ei<l>l { (E PZ m3)-l yl[x 1 *<zzl+X 2 *<zz)] X 5(zl) 

and 

5 ~ 1 * i<j>3 -i<j>3 } 
+ (E.m) Xs (z2)Yz[ (l+zl)e x3(zl)-(l-zl) e X4(zl)] 

i<j>1 * 
dSl , e y 1 X 1 ' 2 ( z 2) X 5 ( z 1 ) 

xU{ d~ 
1. 

( 
1 I -- + (-1) f.L-Z . 1 

which, using (D. 7) and (D. 19), ~~ives 

{C.25) 

' 
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1 jt·>..-IJ.z' J z 1 +z 
1 1 Z 
-z 

For the other term we note that, 

1 ·1 4n
2 

'dz 1 · · 

n [K(>..,~,z1)]2 

UCRL-10028 

(C.26) 

1 
dO [ (z

1
-z z

2
) 

2- 2 2 
- 2 Z z

1 
z

2
) ] -= - ( 1 ± z 

1
) ± y + (z 

1 
+ z 

2 y 

GO 

X If d{ I 
Tr >.. . ·~ 

1 

X I {d G I TI 1-1 IJ.-Z1 

1 

+ (-1)1 1 J fs *< >..)' Xtz 2 

I 1 
f(±)(IJ.) + (-1) 

fJ.tZ1 

2 
1 J 4n dz

1 

'IT [ K( >.., f.l, z 1) F 

£(+) (JJ.) J 

I 1 J 1 + (-1) -1 - --·-2 
z +z 1 I -z 

* - 2 - 2 2 . ]} + £5 (>..) £(+) (f.l) [ -(~J.->-z') {1 + 1-1) ± (1-z' ) + (>.. + 1-1 -2>-~J.z'.) , 

(C.27) 

.Equation (7.21e) follows from (C.26) and (C.27). 
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APPENDIX D. THE ANGULAR INTEGRATIONS 

In this appendix we collect and summarize the angular integrations 

used in Appendix C. These are all basically of the form 

l l 
X ± z 

2 
-J.L±-,--z-

1
-

where £ is a simple polynomial and 

and 

dO = d z l d 4> l . 

We start with some very simple integrals: 

+1 
1 

X.:Vzl 
= 2n ( d z

1 
)_l 

(
X.+ 1) = 2 n .fn X.-l .= L(X.), 

1 
X. '"'f z 1 

JdO-z_l_ 

X+ z 1 

= ± dO I X. - i 1 = ± [ X.L( X) -.4n] 
[x.+ zl ~ 

and 

= 0 0 

We now turn to the basic Mandelstam integral: 

(D.l) 

(D.2) 

(D.3) 

(D.4) 

(D.5} 

(D.6) 

(D. 7) 



-115- UCRL-10028 

ao 
2 Jdn 1 1 

:= J(~,f.L,Z) ~£ 41T dz 1 

~ 
= z'-z f.L-Z1 [K(~,f.L,Z )]2 

zo 
(D.8) 

where 

2 2 2 
K(~, f.L, z) = .~ +f.L +z -2"-f.Lz,..l, (D.9) 

(D.10) 

Jdn 1 1 
= J(~, f.L, z) ' 

X+z 2 f.L+Z1 
(D. 11) 

J dQ 
1 1 

= J(~, f.L, -z) 
X+z 2 f.L±Z1 

= 2 [ J(~, f.L, z) f J(~, f.L; ~z)] 2 [ ] 
41T dz1 1 1 
-------,~ :ZT:Z + z 1 +z • 
[K(~,f.L,z 1 )]2 

(D.12) 

Other derived integrals needed are: 

J z1z2 
dQ( "'X ___ z -,2 ),..,.(-f.L--Z-1-.-) 

~ jdn (XCzzf(~-zl) l (zl-~)(zz-l.l+ ~(zz- X) + A(zl-~) + X~] 
' 

= 41T - f.L L(f.L) - ~ L(~) + ~f.L J(~, f.L, z), (D.13) 

Idn [x:z
2 

+ + -f.L_.,..+_1_z -2 -] z I z 2 {D~l4. cont.) 
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= 2(1:1:1) [4tr-p; L(J.L)-<~L·(~)] + 2~J.L[J(~,f.L,z)±J(~,fJ.,;..z)'j, (D.l4) 

2 = ~ J(."', J.L, z)- ~ L(J.L) - z [ J.LL(J.L) - 4tr]; 

z 
2 

(z 
2 

- z z 
1

) 

(X-z 2){J.L-z 1t 
= \.(X.-J.Lz) J(\., f-1, z) - \. L(J.L) + ~ z L(\.) . 

(D.15) 

Now we have 

~(~- )J(\ )- 2[\,(\.-J.Lz)J{\.,J.L,z)J 
fJ.Z ,., f-1, z - Y (1+z){1-z) · 

2 1 2 [h 1 4TT dz I \,(~- fJ.Z I) 
= y 

TT K(\.,J.L,z')]2 
2 

1-z 1 · 

1 1 M\.-J.L) + 1 1 MM~)l + 2 1-z z'-1 7 l+z z'+1 

2 it 2 
1 \.{\.-J.Lz '} l 4 TT dz I 

= y 
TT K( X., f-1, z' ) ] 1- zl -z 

1-z 12 

1 1 + 2 (l+z)M~-J.L) J{\., f-1, 1) + 2 {1-z) X.(\.+J.L) J(\., J.L-1). 

If we note that 

l 
J(~, f-1, :i:l) = l L(J.L) t L(X.)] , 

~ + fJ. 

and substitute (D.16) in (D . .15), we derive 

z 2 (z 
2 

- z z 
1

) 

(\.-z2) (J.L-zl} 
2 1 1 41T

2 
dz 

1 

= y 
TT lK( ~. f-1, Z I ) ] i 

1 
z•-z 

(D. 16) 

(D.l7) 

\,( \.- fJ.Z I_) 

1 
I 2 • 

-z 
(D.l8} 

• 



-117.:. UCRL-10028 

Similarly we derive 

and 

Jdn [ 1 x:z2 J [ 1 
- ~!zJ z2(z2- z zl) X-zz + + 

f.l-Zl 

2 2 J · 41T
2 dz' [ I z1\z] X,( X;- f.LZ i ) 

= y - ,. + 
l ,z 'IT 

, [K(:\,f.L,z')]2 
Z·;.-Z 

-z 

r 2 2 ' [l'- lj[l ·- l J 
. 

dQ (zl + z2 - 2z zl z2) .X-z2 + r.-::--· -- + --. ~+z2 f.l-zl f.l+zl 

2 
= y. ~ 

2 
2 4n dz' 

'IT / ~( :\, f.L, z i ) ] 2 ~ l - l J - + --z 1 -z z 1 +z 

2 2 
~ +f.l -2:\fJ.z 1 

1-z' 

This result enables us to deduce 

= 2_ (4n
2 

dz I r ~- l 

1i) ~ ( :\, f.L, z' ) ] 2 l Lz' - z + 

+ ~~-z + z~+z j .. ~~} + 2(1±1) ~1T-~ L(~)-~ L(~)J. 

Now we have 

~ 
2 

l 4n dz 1 

n [K{:\, f.L, z' )] 2 

l 
z 1"Tz [ 

. 2 2 l (l .,.; Z ) ( :\ t f.l - 2 :\f.LZ 1 ) 
- l :1: :\f.l_ 

1-z' 

(D.l9) 

(D. 20) 

(D. 21) 

= ( 1 tz) 1 
2 

1 4n dz' 

'IT [K(:\, f.L, z')] 2 

1 
z 1 'fz 

1 
1±z 1 [ 

- . 2 2 l ( 1 t Z I ){ :\ t f.l - 2 ~f.LZ V ) _ 1 ± :\f.l. 

1-z' 
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1 
z 1-=F z 

:1: [ ~L(~) + 1-L L(I-L)- 4'TT], 

Therefore, substituting in (D .. 21), 

jdn [l~z (z1 Z + z/- Zz z1 •zl-O-z 1 zzj~=•z + 

~ z [ .. :. [ z z 
(l+z) 

2 4'TT dz 1 X, +1-L -2~j..LZ 1 

= 2 'TT [ K( ~. jJ.' z I ) ] 2 (1 +z i) 

1 cz l+~~a} ·~ +1-L -2~j..LZ 1 

+ z 1+z ·(1-z')z 
- 1-z ul 

Similarly, we have 

= (1-z) 

+ 

Finally, we have 

=jdn [ (z 1- 1-L) + 1-L] ~ 1\-zz 

= 1-L J(~. j..L, z) - L(~) , 

and 

UCRL-10028 

- 1+ ~1-LJ 
1-zv 

(D. 22) 

(D.23) 
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and 

. jdn (z1 ,. z2) 
Now we have 

1 

-x:zz 

~
- 2 

J ( \ ) ( 1 ..._ z) .!_ 41T dz_l 1 
1\, f.L, z = ... 

. 1T [K( >..f f.L, z I)] 2 

= (l:tz) 
1 

2 
41T dz 1 

-
1T [ K( >.., f.L, z I ) ] 2 

1 
1:tz 1.. 

1 
1:tz 1 

1 
z'-z 

l~z ] 

We substitute in (D.24), and making use of (D.17), obtain 

and 

j dn (z 
1
:tz 

2
) 1 

>..-z2 
1ft 41T

2 
dz' = (l:tz) (f.L+>..) 

1T [K( >.., f.L, z I ) ] 2 

= (1 + z) 2 ~ 2 41T dz 1 1 "J [K(~. ~. z' l] i ~1-z 
1 

+ z' +± 
f.L-X.J 
1-z 1 

' 

= (1-z) 2~r 4'1T
2 

dz' 1 [-1-
'IT) [K(.~,f.L,z')]2 z'-z 

1 f.L+>.. 1j' 
+ z 1 tz 1tz 1 • 

(D. 24) 

1 1 
1+ z' z 1 -z ' 

(D.25) 

(D.26) 
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FOOTNOTES 

1The paper cited in Ref. (4) contains many ideas germane to an understanding 

of the present work .. We make frequent reference to it throughout as 

GGMW. 

2
This approach is being explored by L. Balazs (Lawrence Radiation 

Laboratory .Berkeley), private communication. 

3 C. f. the parallel argument in Re£. (3) for pion-nucleon scattering. 

4
By "elastic scattering" we mean to exclude pion production; all possible 

helicity flips and charge exchange processes will, of course, be con-

side red. 

5
our dot product is A. B. = A0 B

0 
- ~ · ~ = - ~4 B 4 - ~ · ~· Our Dirac 

matrices y = p 2 £· y 4 = p 3 , y 5 = y 1 y 2 y 3 y 4 =- p 1, satisfy 
·'· ,... 

6 

1-" = 'J , 'J 'J - '\J 'J = 2 6 Our spinors are so normalised 
f-i 'f-i 'f-i 'v 'v 'f-i f-iV 

that u u = 1. The ux_ (p) for the two helicities X. are as in GGMW: 

the 'VJ.arge components" are positive numbers. An isotopic-spin 

spinor of definite 3- component of isotopic spin is an implicit 

'factor of every spinor, except that occasionally a linear superpositiQn 

of two such to produce definite total isotopic spin will be under-

stood when a product of two spinors is written. 

"charge-conjugate'' spinors are v>.. (p) = - i C T 2 

c =i y 2 y 4 ; v v =- 1. 

See also Amati, Leader and Vitale, Ref. (~). 

Our G-parity 

- T 
u X. (p) , where 

7 
· We use the rather cumbersome phrase ''simplest box diagram" to avoid 

possible confusion. All the diagrams of Figs. 4 and 5 are some-

times called "box diagrams. 11 
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8 
Th:e reduction of the general form of the S-matrix to such a form, involving 

only five amplitudes in each isotopic spin channel, is discussed in 

GGMW and in Refs. (~), and (1~. 

9we shall frequently use a notation as in (2. 13a). If two sets of amplitudes 

A and B are linearly related, we will write A= (AB) B,. defining the 

-1 matrix (AB): thus (AB) = (BA). All our transformations will be 

a direct product of a (2 by 2) matrix acting on the label for total 

isospin and a (5 by 5) matrix acting on the index related to the 

ordinary spins. When the isotopic spin factor is the identity matrix, 

it wiH be ignored in the notation, as in {2. 13), and we will say that 

the transformation ndoes not involve vv the isotopic spin. 

10
That the number of amplitudes prior to consideration of the invariance 

properties is only 16 is trivial here, and is equally so if external 

lines are represented by two-component spinors, but involves the 

Dirac equations appropriate to the four external lines in the treat-

ment of the form {2.8) given by GGMW, and in Refs. (~}and (16). 

11 
The fast way of computing fE' F) and a demonstration that it is in fact 

independent of s, t, u on the basis of our definition is given at the 

end of Appendix A. 

12
we omit a detailed field-theoretical discussion of the interaction term 

in the Lagrangian and of the propagator, which would be in order for 

i = 2, 3, 4. Extra contributions of the expressions given, if present, 

should be obtained by the requirement of maximal analyticity and 

unitarity within the context of S"-matrix theory: c. f. Ref.(~), and 

for' an example see Worig and Shaw (University of Califorl1ia, San 

Diego, at La Jolla) private comJ:rh:inicadon. 
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13rt is amusing to note that an immediate consequence of (5.3) is that the. 

14 

15 

X. of Eq. A.3 are merely the G amplitudes in the order 5, 2, 3, 4, 1. 
1 

In Eqs. (6.21) and subsequently, the upper sign refers to I= 0, the lower 

to I = 1. 

The functions L(~) and J(~. f.J., 0} are defined by Eqs. (D.5) and (C.9) 

respectively. 

16c.u Equation (5.4). 

17 See also Refs. (~) and (12). 
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Table L. x. 1(s, z) .as s ,_ QO 

1 

.... 

i z fixed t fixed< 0 u fixed < 0 
-1 < z < 1 { "z = 1 ") (''z =- l") 

1 o{s7/4) O(s
2

) O(s
2

) 

2 0(~7/4} 2 
o{s ) 

2 
o{s ) 

3 o(s 3/ 4) 0( s) 
2 

o(s ) 

4 o(s3/4) 2 
o(s ) O(s) 

5 o(s3/4) o(s) o(s) 

- I -
Table II. x. (u, z) as u ...... ao 

1 

i z fixed t fixed< 0 s fixed < 0 
-I <z<I ("z = 1 "> < "z = - 1") 

1 o{u7/4} O(u
2

) 
2 

o{u ) 

2 o{u7/4) 2 
o(u ) 

2 
o(u ) 

3 o{u3/4) O{u) o(u
2

) 

4 
3/4 

o(u ) 
2 

o(u ) o(u} 

5 o{u3/4} o(u} o(u) 
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I -Table III. X. (u, z) as u-., 
1 

i z fixed t fixed < 0 s fixed < 0 
-1 <z<l ("z=1"> ( "z = - 1 ") 

1 o(u7/4) O(u
2

) o(u) 

2 o(u7/4) 2 
o(u ) o(u) 

3 o(u3/4) O(u) o(l) 

4 3/4 · o(u ) 
2 

o(u ) o( 1) 

5' a(u 3/4) o(u) o(l) 
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Fig. 1. The physical regions, and the strip regions of the double 
spectral functions. The latter are indicated by cross~hatching. 
This figure is not drawn to scale. 
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Fig. 2. Nucleon-nucleon elastic scattering. The arrows on the 
lines attached to the central "reaction zone 11 are in 
accordance with Feynman rules. 
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Fig. 3. Nucleon-antinucleon elastic scattering. 

UCRL-10028 
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MU-26095 

Fig. 4. Landau-Cutkowsky diagram with two-particle 
intermediate state in the nucleon-nucleon channel. 
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MU-26096 

Fig. 5. Landau-Cutkowsky diagram with two-particle 
intermediate state in the nucleon-antinucleon channel. 

-·· 
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~-. 

MU-26097 

Fig. 6. The simplest box diagram. 
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Fig. 9. Asymptotic properties of the X amplitudes in 
physical regions. In each case the behavior of the 
X. are listed in order of i, with a period at the end 
of each list. 
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Fig. 10. Diagram for the reaction 1r1r -+ N N . 
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This report was prepared as an acco~nt of Government 
sponsored work. Neither the United States, nor the Com
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment .or contract 
with the Commission, or his employment with such contractor . 


