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A proposed basis for elementary-particle physics that is completely 

within the S-matrix framework is discussed. The object is to eliminate the 

doubtful and unphysical assumptions that underlie field theory, and to 

provide a structure that will support contemporary dispersion theoretic 

calculations. 
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It has been the common practice to consider field theoretic axioms 

as the proper basis for rigor in physics. This is evidently due more to 

the lack of any satisfactory alternative rather than to their obvious merit. 

For although the axioms of field theory provide a basis for rigorous 

mathematics there is considerable doubt that they are of relevance to physics. 

In the first place, it is not known whether the axioms admit any rigorous 

solutions, except trivial ones in which the scattering matrix is unity. In 

the second place, the axioms depart from general quantum principles by assign-

ing a fundamental role to hypothetical space-time points, although the 

physically observable quantities correspond rather to Fourier components 

consistent with the masses of physical particles. In the third place, the 

specific axioms regarding positive definiteness, nondegeneracy of t~e 

vacuum, completeness, locality, and energy spectrum are all very restrictive 

and arbitrary, and each one eliminates interesting possibilities that appear 

reasonable a priori. Of course it is not necessary for the axioms of physics 

to be reasonable a priori, provided they lead to practical calculations that 

can be tested experimentally. But this appears not to be the case; axiomatic 

field theory seems in fact very distant, if not totally disconnected, from 

most practical calculations. 

This last defect is the most serious from the point of view of 

physics. Practical calcuiations are the heart of physics, and it is the 
- ' . . . . . . 

job ofphysical axioms to specify a connection between experience and a 
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well-defined mathematical scheme in which practical calculations have a place. 

Yet the axioms of field theory, while apparently stronger than necessary in 

many respects, are evidently not strong enough in those kspects needed for 

practical calculations. Specifically, while giving superfluous analyticity 

at unphysical values of the masses, they ~pparently do not ensure the mass 

shell analyticity properties used in the modern dispersion theoretic approach 

to elementary-particle physics. 1 This approach is the basis of most recent 

practical calculations, at least for strong interactions, and it seems to 

offer the best hope for going beyond the nonrigorous, and probably divergent, 

perturbation solution. It is reasonable, therefore, to look for an alternative 

framework that will supply a formal basis for these calculations; by vlacing 

these .calculations on a rigorous footing one can hope to unite rigor with 

physics. 

An examination of recent practical calculations shows that they are 

built essentially on the S-matrix; they involve, essentially, only the 

observable physical mass shell quantities, not hypothetical extensions to 

nonphysical masses. Consequently, a theory geared to these calculations 

would evidently avoid two of the difficulties mentioned above: It would 

give practical calculations and would not be based on conjectural elements . 
. i •• 

Also, as we shall see, the needed axioms appear less arbitrary, and more 

reasonable a priori. 

2 The proposal that the S matrix, first defined by Wheeler, might be 

a sui table vehicle for fundamental theory vras made by Heisenberg3 in the 

early forties. Heisenberg emphasized the two essential properties of unitarity 

and Lorentz invariance, and also recognized that analyticity would be important. 

He and other workers of that time were willing to assume modest analyticity 

properties on the basis of the Schroedinger equation. The present approach 
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goes beyond these early efforts mainly in the more incisive analyticity 

requirement. 

In the field theoretic approach one of course derives analyticity 

properties from other axioms. However, taken as a group, these other axioms 

seem at least as doubtful as the analyticity property that will be assumed,· 

which is a simple generalization of a property rigorously established for 

scattering from a sum of Yukawa potentials. This analyticity postulate is 

in some sense an S-matrix formulation of Yukawa's original idea. 

The domain of analyticity asserted by this postulate is larger than 

the one so far proved from field theory, but it is also much more limited in 

that it does notextend off the mass shell. The two theories are therefore 

quite possibly not equivalent and it is hoped that the elimination of the 

restrictive requirement of analyticity at nonphysical values of the masses 

may permit a physically relevant solution for the S-matrix theory, although 

none may exist in field theory. 

The idea that field theory be abandoned in favor of analyticity 

requirements on the S matrj_x has of course been pushed vigorously in the past 

several years, particularly by Landau4 and Chew. 5 The question is how to 

cast this idea into a satisfactory concrete formalism. 

PROPOSED ASSUMPTIONS FOR AN S-MATRIX THEORY 

A major problem in setting up a pure S-matrix theory is that one needs 

a number of properties of the relativistic S matrix that are usuaJ.ly derived 

from field theory. These are: the substitution rule, vrhich relates each 

process to others involving antiparticles; the invariance conditions for 

charge conjugation, time reversal, etc.; the relativistic spin formalism; 

the symmetries under exchange of identical particles; and unitarity. One 
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could of course· simply extract the needed features from field theory while 

discarding the others. However, one can do much better. The needed properties 

can be derived from postulates that assert only very general physical 

principles that are completely with the S-matrix framework and independent 

of field theoretic concepts. 6 Let me enumerate these postulates. 

The first is basic quantum theory. By this, I mean the fundamental 

connection of the probabilities (of the possible outcomes of various complete 

sets of experiments) to squares of amplitudes that are linearly related. 

This linearity means that the amplitudes can be. chosen so that ,those of any 

complete set of experiments are a linear combination of those of any other 

complete set. This relationship between probabilities is the fundamental 

assumption in quantum mechanics, and the assumed linearity provides· the 

basic object of the theory, the S matrix, which is the linear transformation 

connecting the amplitudes of initial and final complete set of experiments. 

Neither commutation relations nor Planck's constant is involved in this 

postulate. 

The second postulate specifies that certain sets of experiments are 

complete. Specifically, the measurements of.the momentum, the spin, and the 

particle type of all particles present are asserted to be a complete set of 

experiments. Also, the magnitudes of linear combinations of amplitudes 

related by changes in the directions of energy-momentum and spin vectors are 

asserted to be observable. This latter allows known interference effects 

to be considered observable. 

The third postulate specifies that the connection of the momentum 

functions introduced in the first two postulates to space-time coordinates 

shall be given by a Fourier transformation, where Planck's constant now 

appears as the scale factor required by dimensional considerations. Since 

l 1 
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the momentum space variables are subject to the physical mass constraints, 

the coordinate space functions will represent freely moving physical particlesj 

the S matrix transforms freely moving initial particles to freely moving final 

ones. ' 

The fourth postulate is relativistic inva:r:iance, which is stated 

directly as a relationship between experimental observables. Correlations 

between probabilities of outcomes.of complete sets of initial and final 

experiments are asserted to be invariant under Lorentz transformations. 

The fifth, and last postulate not related to analyticity, is th~t 

the physical interpretation of the.quantities ·of theory be such that 

translational and rotational invariance imply the conservation laws of 

energy momentum and angular momentum, respectively. This conservation-lavr 

postulate will enable us to uniquely specify the physical interpretation of 

quantities arising by analytic continuation. 

These five postulates assert very general physical principles: basic 

quantum theory, particle observables, Fourier conn~ction bet~een the momentum

energy and space-time coordinates, relativistic invariance, and conservation 

•·laws ~ · "They are all physical principles in that they are subject to direct 

experimental tests.· They do not have the abstract, artificial, and very 

specializedcharacter of the axioms of field theory. 

The analyticity postulate is formulated as follows. From the above 

postulates a covariant.form of·the unitarity•relation may be deduced. With. 

an appropriate matrix notation, this can be written in the form 

t.. M( E, + i € r M( E' ;., i €) 2:rr 5( E - E • ) 

Here the M(Er are covariant scattering functions, and the integration is 

over the covariant m~mentum space elements. This equation can also be 

expressed in the form 
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M(E) M( E I + i €) M( E I - i €) 

i(E 1 
- E) 

+ ~(E) 

where ~(E) is a remainder function that will be regular in the neighborhood 

of the physical region. The first term gives the contribution to M(E) 

associated with the discontinuity across the physical cut, and ~(E) gives 

the contribution associated with oth~r singularities, including the possible 

singu1arity at infinity. The essential point is that even if the. M functions 

occurring on the right were assumed to be regular in the finite plane, or 

nonzero constants, the integrated expression would have singularities in the 

finite plane associated with the vanishing of phase-space factors. These 

are the simplest of the singularities that I ca11. "singularities required b:Jr 

unitarity." If one starts with constants for the M functions on the right 

and then substitutes the calculated M· function back into the right, neglecting 

the unknown ~-, and iterates a finite number·of times the singularities 

of the resulting functions are what I call the singularities required by 

unitarity. Their positions depend only on the masses of the physical. particles. 

These sing;ulari ties, which come· purely from kinematic phase-space factors, tpight 

more accurately be called the singularities "expected" from unitarity, since 

some sort of can~Dation has not been precluded. But our assumption will be 

that, on the physical sheet, no singularities except those "required by 

unitarity" occur; the possibility that certain of them may not occur is not 

forbidden. 

The physical sheet is defined by allowing the singularities required 

by unitarity tq trace out cuts, using a scale transformation on the internal 

masses. (This does not entail analyticity in the masses of the actual M 

functions.) This definition gives a physical sheet in which the scattering 
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functions can be proved to be free of singularities not required by unitarity, 

for the scattering from a sum of Yukawa potentials. The analyticity postulate 

states that also in the relativistic many-particle case the covariant scattering 

functions have no singularities on this physical sheet, aside from those 

required by unitarity. 

The locations of the singularities required by unitarity are specified 

by the same equations that were derived by Landau for the singularities of 

the terms of the perturbation solution to field theory. Thus the analyticity 

postulate permits all the singularities that occur in the terms of the usual 

perturbation solution. One expects singularities in addition to those 

occurring in theterms of the perturbation solution--specifically, the 

resonance poles. However, in accordance with the situation in potential 

scattering, these are expected to occur only on unphysical sheets. 

The final postulate states that all physical-type points of. the 

physical sheet correspond to processes actually occurring in nature. A 

physical-type point is a point corresponding to real energy-momentum vectors, 

and it is to be approached with positive imaginary energy, in accordance with ,, 

the potential-theory case. This postulate of physical con:nection requires, 

then, that points on the physical sheet that are susceptible to physical 

interpretation do in fact have a physical interpretation. The exact nature 

of this interpretation is not-specified, however. This idea that a single 

function, analytically continued, will describe several related processes is 

of course suggested by the example of field theory. But it is also a natural 

companion to the analyticity postulate, which could easily suggest itself to 

a person not familiar with field theory--that related processes should be 

connected via.analytic continuation is certainly as natural a concept as the<One 

given by field.theory. 
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It might be expected that an appeal to field theory would be necessary 

tq, establish the precise way in vrhich. the various physical-type· points are · 

connected to experiment. But this connection is, in fact, uniquely specified 

by the .. other pas tulates, chiefly analyticity and the conservation laws. One 

deduces from the S-matrix postulates relationships exactly equivalent to, 

those obtained in field theory. Specifically, the substitution rule, giving 

the o.etailed connection between the- related particle and antiparticle process, 

follows directly from the abstract-postulates just stated; field theoretic 

ideas are not required • 

. The other needed properties ofthe S matrix also come directly from 

the S-matrix postulates. Unitarity follows immediately from the first 

postulate. In the treatment of spin the,postulates lead to a covariant 

two-component formalism that is equivalent to, but considerably simpler than, 

the four-component one conventionally derived from field theory• The relativistic 

treatment of particles of arbitrary spin presents no difficulty, and the 

unitarity condition is easily placed in a manifestly covariant form better 

sui ted than the usual.· noncovariant one to dispersion theoretic calcu.lations ~ 

s~~etry considerations are also simplified, and the CPT theorem follows 

rather directly from Lorentz invariance. The symmetry or antisymmetry under 

interchange of identical particles also comes out. 

It is perhaps rather surprising that one is able to obtain such 

specific results from postulates that appear so general and abstract. The 

details of the intimate connection between particles and antiparticles is 

usually thought to emerge from the.local"character of the basic fields, and 

symmetries under interchange of identical particles usually come from 

explicitly :postulated commutation· relations._ Yet our postulates are essentially 

independent of the concept of space-time points, and nothing like commutation 

~ ./ 
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relations are mentioned at all. So I would like to give a necessarily very 

brief sketch of how one is able to get so much from what appears to be so 

1i ttle. 

DEVEIDPMENT OF THE FORMALISM 

At the outset there is no condition regarding the order of the 

variables; there is only a correspondence between experimental results and 

an unordered set of variables specifying the momentums, spins, and particle 

types of the particles observed. Once one writes down a function, with 

these variables in some necessarily particular order, a certain ordering 

convention is established. By using the assumed analyticity this function 

can be analytically continued. If the original variables include two 

referring to two identical particilies in the same spin state, then the 

continuation in the momentum variables may be carried to a point on the 

physical sheet at which the variables describing the two particles are 

interchanged. The postulate of physical connection requires the function 

at the new point to be related to some physical process. In order to deter

mine what this connection is, the region over which the function represents 

the original physical process must be specified. One is essentially free 

here to arbitrarily specify a well-defined ordering for which the given 

function represents the original processes; one simply sets the function in 

this region equal to the function that represents the physics. But since 

this original region is essentially arbitrary, analytic continuations along 

lines that remain at physical-type points must give functions that continue 

to represent the original process, with variables changed correspondingly. 

Consequently, the function at the two points with like variables interchanged 

must represent the same physical process, provided the points are connected 
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by a curve that,stays always at physical-type points. Since the functionat 

the two.pointsmust give the same physical observables, its magnituqe 

at the tvm points must be equaL A consideration of certain interfe(l;'.~nce ··· 

effects allows the phase factor to be restricted to plus or minus one. Thus 
,: . 

the usual requirement of either symmetry or anti,symmetry under interchange of 

identical variables follows here, principally from analyticity and the 

postulate specifying the basic observables. Given this start, one can 

proceed to show that the choice between symmetry and antisymmetry depends 

only on the particle type, not on the particular position of the variables 

or on the particular scattering function in which the variables occur. 

If one analytically continues to points that are not connected to 

the original region by curves containing only physical-type points, the 

above argument breaks down and the function at the new point will be expected 

to describe some different process. Exactly what this process is and how 

it is related to the function at the new point is fixed by analyticity and 

the conservation laws. To show hmv this comes a bout, the analyticity postulate 

must be stated with somewhat greater precision. In particular, the variables 

in which the functions are analytic must be specified. These variables are 

essentially the components of the various energy-moment~ vectors. Hm-rever, 

the scattering functions are defined only over the manifold consistent with 

conservation laws and mass constraints. Thus one must introduce new parameters 

representing the position in this manifold. The precise statement of the 

analyticity postulate is that the scattering functions are analytic functions 

of these new variables everywhere in and on the boundary of the physical sheet, 

except at singularities required by unitarity, and at singularities of the 
. ' ' ,' . ~~ . ' :· ' 

mapping between these variables and momentum-energy variables. Singularities 
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of this second type are essentially spurious since they can be eliminated by 

changing the mapping. 

In terms of the new variables, the mass constraints and the conser

vation laws are of course identically satisfied. Thus these constraints will 

be formally maintained at all points arrived at by analytic contin~ation from 

points associated with some original process. Therefore, corresponding 

particles participating in the various related processes must have the same 

masses. In order to maintain the physical conservation law a momentum-energy 

vector having its sign reversed from what it originally was must refer to a 

particle in the final state if it originally referred to a particle in the 

initial state, and vice versa. Moreover, the two particles referred to must 

carry opposite units of any additiv7 constant of the motion; otherwise, the 

conservation law would be violated in one reaction or the other and the 

function would vanish identically. These arguments, in conjunction, allow 

one to specify that under the reversal of sign of the momentum~energy vector 

the associated particle must be switched between the initial and final states', 

and also to its antiparticle. The interpretation of the spin states follows 

from the conservation of angular momentum in a similar way. 

This connection between particle and antiparticle reactions, though 

equivalent to the field theoretic one, comes out in a much simpler form for 

the case of particles with spin. Usually some rather awkward manipulations 

involving multiplications by appropriate spinors are required. These 

manipulation in effect eliminate the redundant variables associated with the 

use of, say, four-component Dirac fields to describe spin 1/2 particles. Only 

two components are really needed, and the S-matrix approach leads directly to 

a simple covariant two-component formalism for spin 1/2 particles. For higher 

spins one gets a covariant description involving only the necessary (28 + 1) 

components. 
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A principle triumph of axiomatic field theory is the proof of the 

normal connection between spin and statistics. This connection follows also 

from the S-matrix postulates, provided, in addition, that the magnitudes of 

self-conjugate combinations of particle-antiparticle amplitudes are not in 

principle unobservable. We know experimentally of certain combinations, the 

K1 and K
2 

, that are in fact observable. This added assumption, which is 

analogous to one needed until recently in field theoretic proofs, can probably 

be eliminated if the full power of the analyticity postulate is utilized. 

SUMiv:!A.RY 

The general properties of the S-matrix usually deduced from fie1d 

theory can be derived from postulates expressing very general physical 

principles. This provides a basis for the establishment of S-matrix theory 

as an independent and self-contained framework for describing elementary

particle physics-~ a framework sui ted to the modern practical calculations in 

this field. 

,, 
'. 
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