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ABSTRACT

Three computer programs for calculating particle orbits with linearized
vertical motion in general cyclotron magnetic fields are described in detail.
The first program is used for finding properties of equilibrium orbits and
small oscillations about them. The second program is a very flexible routine
for determining the history of a particle under various conditions, including
acceleration. Flexibility is achieved through the use of options such as a
resonance-hunt routine, harmonic-bump routines, and an equilibrium-orbit-
search routiné. The third program, the deflector program, allows various

combinations of electrostatic, magnetic, and regenerative extractors to be used.
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1. Introduction

This report concerns a system of IBM 704 orbit programs that has been
found to be a very useful tool in the design and testing of the 88-inch cyclotron
at Berkeley. The theory used in the equilibrium-orbit code l)Was devised by
Gordon” and Welton 2): the program was written by Arnette” and the author”f
at the Oak Ridge National Laboratory. The second program, for computing
generai cyclotron orbits, was designed by W elton3;). The third program, for
designing deflector configurations, was designed by Garren4)‘ These latter two
codes were programmed by the author.

Each of these programs requires a set of rnagnetic fields stored ona

polar grid on magnetic tape in a format as described in detail in ref. l).

2. The Equilibrium-Crbit Code

2-1 THE FUNCTIONS CF THE CCODE
The equilibrium-~orbit code will be mentioned only briefly, since it was
reported in some detail at a previous conferences).
The essential functions of the equilibriume«-orbit code are to find the

radius and radial momentum of the equilibrium orbit, and to compute the

t Work done under the auspices of the U.S. Atomic Energy Commission.
+¥ T. I. Arnette and M. M. Gordon are now at Michigan State University.

tt+ The author is now at the Lawrence Radiation Laboratory, Berkeley.
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focusing frequencies and the time for the particle to make one revolution.
Also, an essential byproduct of the equilibrium-orbit search is the infor-
mation on small-amplitude radial and axial oscillations needed to enable
one to conveniently determine nonlinear orbit properties. This last feature
is used by the general orbit code to be discussed later.

The equilibrium-orbit code can be used to generate a table of equilib-
rium-orbit properties for determining the isochronization and focusing prop-
erties of various magnetic~field configurations. Tables of equilibrium-orbit
properties are essential for orienting various other studies, such as deflection

gtudies, which require the other two orbit codes.

2.2 OUTPUT

The table of equilibrium-orbit properties may be printed in equal in-
crements of one of three independent variables: the magnitude of the particle
momentum p, the total relativistic particle energy E, or velocity 3. Any one
of five different output formats is possible, each one being some variation of
the example in fig. 1. The first three columns will contain p, E, and 3, the
order being determined by the choice for independent variable. The fourth
column gives the time, normalized to one for convenience, for the particle
to traverse one revolution. Columns six, seven, and eight give the axial
frequency, radial frequency, and kinetic energy, respectively. The remain-
ing columns give the radius, radial momentum, average radius, and radial

amplitude of the equilibrium orbit.

2.3 TIMING
The equilibrium-orbit code takeé approximately 7 sec to generate one
line of output corresponding to one equilibrium orbit, if twenty integration

steps per sector are used.
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3. The General Orbit Code

3.1 INTRODUCTION
The general orbit code computes the ordbit of a particle in a cyclotron
magnetic field with allowances for several operating modes. In each of the
operating modes the user has the option of tracing the particle outward from
the starting point or inward toward the center.
The operating modes are numerous and are determined by the user's
choice of routines available, as described in section C. below as well as his

choice of equations to be integrated.

3.2 THE EQUATIONS INTEGRATED
The equations of motion~for a particle in a magnetic field in cylindri-

cal coordinates r, 8, z-which are integrated by the Runge-Kutta method are:

r' = rpr »
Q
p, = Q-rB(r,0),

pz = [r - 3 Z
or Q ©bé6
' P
r, e’re |
o
1
Pre = Qe " Te Be(re'e) !
' rf\/p2+1
t = ’



where
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prime means -g—e

r{€) = radius as a function of 9 for the orbit to be calculated,

pr(9)= radial momentum as a function of 6,

0) = (p2-p, 212

P = the magnitude of the particle momenturn,

z(8) = the axial displacement,

p 49): the axial momentum,

t{0) = time from 6 = 0,

re( @)= the value of r(8) a particle will have if started on the equilibrium
orbit and given acceleration,

P, e(e)r-' the radial momentum associated with re(ﬂ).

Q0= (o2-p, 2,

N = number of sectors,

B(r,8)= magnitude of z component of magnetic field in the median plane.

The following units are used:

Speed in units of ¢, the velocity of light in a vacuum,

Momenturfx in units of mgc where mq is the particle rest mass,
Energy in units of mocz.

Time in units of & = c/wo ’

Field inunits of b = mgc wo/e.

It is convenient to take wq to be the synchronous angular velocity, or 2wf, where

f is the rf frequency.
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3.3 PRINCIPAL ROUTINES USED
A. Equilibrium-Orbit Routine. As mentioned earlier, the equilibrium-

orbit code is incorporated in the general orbit code as a subroutine. It is entered
to find equilibrium orbits to be used as operating points around which orbits of .
interest may be initiated. 1t is an integral part of the resonance-hunt routine, .
and is used to compute the details of small=a mplitude oscillation; by the ellipse

initial conditions and curve-plotting routines.

B. Resonance-Hunt Routine. The resonance~-hunt routine finds the mo-«

mentum that will cause the operating point in the {v e’ vz) plane to fa;.l a given
distance from a specifieé resonance line. By ueging a simple difference for-
mula, an iterative procedure is followed to determine p 20 that the relation-
ship k = mv, +nv, is satigsfied. Here V.r and v, are the radial and axial
focusing frequencies, respectively, m and n are integers specifiying the res-

onance of interest, and k is a constant used in defining the resonance line.

C. Ellipse Routine. The ellipse routine computes the initial conditiona, x(6)

and px(O). using the formulas

5
x(0) = ~/ X (Acos¢x+Bsin¢x).
TE

'\/J
px(G) = - (Ccos ¢x + Dsin q’x )

where
6 = the starting angle,
x,pare the deviations f&tnmtthle-,:equilibrium orbit of the radial coordinate and ‘
momentum, |

J, =an input number which determines the x-amplitude (Action).

¢x = an input number which determines the phase. @
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The coefficients A, B, C, D, and E are dependent on the details of the
small-amplitude oscillations computed by the equilibrium-orbit code. The
reader is referred to ref.z) for explicit definﬁtiona of theée coefficients.

Exactly parallel equations are used to compute the z{9), pz(ﬂ) initial conditions.
It will be observed that, with these definitions, if the amplitude is sufficiently
small to allow negleci of nonlinear efiecté, the ellipse defined is just an invariant

ellipse.

D. Curve-Plotting Routins. With the curve-plofting routine the user

T 3
can plot x(6), px(G) or -z-:--— cos \bx and : ain 4‘3 at a preset value of 0.

E. Harmonic«Field Bump Routines. Provision for three bump sub-

routines have been made, two of ivhich have been written and checked out. The
field component is computed as needed, and is used to modify the stored fields
during the integration procedure. Both routines use the same form for the

bump, i.e.,

By = A(r)cos (n8 + y) + B(r)sin (né + y),
where |
| Bp = the field bump to be added to the magnetic field.

6 = independent variable, |

n = field harmonic desired, ,

Y determines the phase of the bump.
A(r) and B(r). deter:nine the radial amplitude of the bump. The only difference
in the two subroutines ia that the radial coefficients, A(r) and B(r), are specified
in tabular form in one and analytic form in the other. The analytic formula

for both A(r) and B(r) is the cubic polynomial of the form

al{r) = ag +tar+ azrz + a3r3.
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F. Acceleration Routine. The energy gain per gap crossing is com-

puted by

AE = -fr[u -¢)cos (6 -wt) + ¢ cos B -wt)]
where |

& = the energy gain per turn,

q = the number of 'acceleration gaps,

wt = the phase angle with respect to the rf,

where t is time from @ = O deg,

€ = an input constant.

The accelération may be phase independent, i.e., AE =-g—- + if desired~in which
case the equation for the time is not integrated.

If it is necessary to have a reference point for plotting or for other out-
put, the equations of motion for a particle having the initial conditions of the
equilibrium orbit are integrated. The same acceleration is given the reference
particle that is given the orbital particle. If such a reference is not needed, the

equations of motion are not integrated.

G. Modified Gap-Crossing Routine. This routine modifies the accelération

at the two gaps of a conventional dee structure so that

AE, s Fl(r) AE, AE, = Fz(r) AE,

1 2
where AEI’ AEZ are the energies gained at the first and ae_cdnd gap crossings,
respectively, Fl {r), Fz (r) are tabular input parameters computed ihdependently.f
and AE is the energy gain described in subaec. F above. This modification is
needed only in the central portion of the cyclotron, »thus a cutoff radius is part

of the input. It is used to take account of the larger intervals of time the par-

ticles spend crossing the acceleration gap at small radii, during which the E

field changes, so that the particles see a different effective accelerating field.
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3.4 CUTPUT
A. Printed Tables. Tables (see fig. 2) will be printed as a function

of 6 starting at any Runge-Kutta step, at equal intervals (divided by the
Runge-Kutta step size) of 6.

B. Binary Output. If the main purpose of the run is for extended curve

plotting, provision is made to write all of the information computed at each
Runge-Kutta step in binary form on magnetic tape to be processed by a special
curve-plotting routine. Such a curve-plotting routine is not now available.

C. C.R.T. Plots. Phase plots at a specified Runge~Kutta step may be

made ag described in subsec. 3.3-D.

3.5 TIMING
The time for one revolution is a function of the particular operating
mode and the size of the integration step. It ranges from a minimum of 5 sec
in the simplest case to a maximum of approximately 18 sec in the more ex-~
tensive cases. These times are figured on the basis of twenty Runge-Kutta;

steps per sector.

4. The Deflector Code

4.1 -INTRODUC TION
The deflector code was planned to facilitate the design of a cyclotmn‘
deflection system"). The code calculates particle orbits in the cyclotron with
the magnetic field so modified as to simulate the action of electrostatic channels,
and/or magnetic channels, and /or regenerative field bumps for resonant ex-
traction. The program will simulate multiple channels in any combination of
tim above channels. |

With the exception of tHe:equations for r ' and Pre'’ the equations of

e _
motion are the same as in the general orbit code. The program first calculates

- and records the path that a particul_.ar orbit with given initial values of r and Py
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called the reference ray, will take in the presence of the modified magnetic
field. Using this it calculates the shape and position of the elements of the
channels defined by the input parameters (fig. 3). It now shoots a barage of

particles at the deflector and records what happens.

4.2 CALCULATION OF THE REFERENCE RAY AND CHANNEL WALLS

A. The Reference Ray. The reference ray particleis started (usually

on or near an equilibrium orbit) at the angle Oi and is integrated until the
angle Gf is reached (see fig.3). Outside the pie-shaped area where the de-
flector is located, determined by radial lines at 90 and 91. the particle experi-
ences the magnetic field

B(r,0) = b(r,6) + b (r,6) ,

whereas ingide the angles 90 a,ncl'e1 it sees a field

b(r,0) = b(r,8) + by (r,8) + by, [x_(6)] + b (6),
where

b(r,8) = the.cyclotron magnetic field without the deflector,

bR(r. 0)= the componént of field due to a harmonic bump; the code
presently has the same two bump routines as described in
the general orbit code, |

bM[xc(O)} = the component of field due to the influence of the magnetic
channel; it is a function of the diatance %, of the particle from

the channel,

w/l-i-p 2

bE(G) T - -—-—I-;--S-—-- ¢ (6) = the magnetic field equivalent to the electric
c

field, where P, is the magmtude of the particle momentum and
are input parameters specifiying the electric field and By is
a normalizing constant—usgually the value of the magnetic field

at the center of the cyclotron.
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B. Channel Walls.

(1). Computed. If rc(G) and prc(e) denote the reference-ray radius

v
(6]

is the channel width, and Opr Ty BTE the thicknesses of the electric and magnetic

channel walls, respectively, then the radii of the channel walls (see fig. 3) are

(where V is the voltage on the deflector)

and radial momentum, d{6) =

given by

T, (6) = x (0) +1(1 - wa(6) + o] p_fq

B (8) =r_(8) +(1-uwa(dp /fq_,

T_(6)

4]

r (8) - ud(8) pc/qc '

B_(0) = r_(6) - [ud(8) o + o ]p /4 s

where q, = N pcZ - prca and u ig an input number specifiying the fractional
part of d(6) that the wall T_(6) is from the reference ray. Thus, the parameter
u allows the channel to be shifted with respect to the reference ray.

(2). Input Directly. The program has the option whereby the co-
ordinates of the channel walls may be input directly. Provision is made so that
the walls may be adjusted to different positions by changing four numbers, one
at the end of each channel wall. This feature is only available for the electric
channel.

{3). The Acceptance Test.

(a) Initial Conditions for barage. The program as now written
requires that the initial conditions for each particle be punched on a separate
card. A simple subroutine could be written to put the particles on a grid and
save the card punching. Several different ways of specifying initial conditions
are available, but as a rule they are set relative to the r, P, coordinates of

the equilibrium orbit of the same momentum, for which purpose the equilibrium-

orbit code is used as a subroutine.
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(b) Field Specifications. The particle will see the field component
bR as described in the general orbit-code deacriptions of the harmonic<bump

routine, during its entire history. It will see the magnetic equivalent of the

electricfield by (r, 8) = 7—-\-/2:—1—!— ¢ (0) only while it is ingide the channel (see
fig. 3). It is assumed that the fringe effects are negligible, and that the particle
orbit is perpendicular to the electric field lines. The particle experiences the
effect of the magnetic channel only when it is above or below the bar of iron de-
fining the channel. The magnetic channel component bM is a function of the
distance of the particle from the channel x(r,8)=u d(9) + O+ [r(e)-rc(e)] qc/pc-

For each iron shape this effect must be measured and fit to an analytic
curve, such as lex(r. 8)] = -—Zg- + -E;-é- .  With some difficulty the code could be

modified to pick up this number from a table.

(c}) Particle History. The particle is tracked and ita history
recorded from some initial starting position until one of several events takes
place. If it hits a channel wall the integration stops, and its position and the
wall encountered is recorded. If it passes through the channel it is stopped at
the angle 6{ (see fig. 3), and the information for a reatart is recorded. If it
completes a specified number of revolutions and has not encountered a wall or
entered the channel, it is stopped at 9£ and its coordinates recorded for a
restart. If the run is a multichannel study, and all of the particles have been
tracked, the information defining the next channel is called for and the surviving

particles are continued from Gf.

4.3 QUTPUT

A. Off-line. The input parameters for each run are output on tape 6.

The detailed information about each pérticle is output at each integration step

on tape 6 in decimal form (fig. 4), or on tape 4 in binary form. for future
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machine processing. The user has the choice of printing the detailed informa-
tion starting at the initial point or delaying until the particle has entered the

channel.

B. On-line. The same detailed information that is printed off-line on
tape 6 is printed on-line at the angles Gi. 60. 81. and Gf (figs. 3 and 4), as
well as information as to what part of the deflector structure, if any, has been

hit.

4.4 TDMING
If 20 Runge-Kutta steps per sector are used, the deflector code takes
about 15 sec/revolution with the abbreviated output and approx 25 sec/revolution

with the extended output.
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LA Electric channel,

YOI wognetic channel

. Reference
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QRBIT 34 9o CHANNEL 1
REV EV  THETA KE P R PR X PX z Pz
‘ 200000000 =000037147 °

6 90,000 66,3805 s L0b20bal 225876066 401482853 200041385 ~s000115690 200000000 s 00000000
6 96,000 64,3850 g 26420507 026031725 501526135 s 00040204 ~200010948 200000000 a 30000000
& 102,000 6Ly 3666 220820547 026189913 201520725 s 00039179 =300008511 0060003000 200000000
o 108,000 S56,70%% 3259620947 02634791 2 (01695122 s 00038451 =s 00005063 600000000 300000000
6 1144000 64 38060 326420541 620502314 0018459174 500038120 ~»00000815 200000000 200000000
6 120,000 64,3866 s 26420547 220654073 501016821 300033283 s 00004321 500000000 000000000
6 126,000 64,3860 026420547 226801911 © ,0136967¢ 200039038 200010302 200000000 s 00000000
& 132,000 - 64,3869 s 20420547 326915314 ,01318874 200040697 200017301 800000000 200000000
o 138,000 64,3860 5 26020547 227084013 01472590 200042787 000025610 500000000 +00000000
o l44,000 O, 2U60 20 dpval 02722231 201335675 s 0004656131 s 00036690 s 00000000 300000000
[} 150,000 64,3560 S 2042084 D 0 21385889 sD1735858 +00050847 s 00048990 500000000 400000000
[ 156,000 b4, 3565 s 268400 e ! 01607544 202336023 s 00056867 200058586 s 00000000 s 00000000
[ 162,000 6, 2866 0264620541 227901652 002987150 300064101 500067953 s 00000000 500000000

"6 168,000 67 ,386% 2204209467 828271221 5036055719 200072804 2000796406 s00000C00 »00000000
6 1745000 64,3868 5264205487 028731549 204353694 200083506 000095240 s00000000 200000000
6 180,000 64,3864 520020567 229283902 s05112246 200097023 200116168 s 00000000 00000000
[+ 186,000 64,3860 s 26420047 229948 160 505973887 200114515 s00143463 sG0C000C00 s00COD000
o 192,000 64,3866 5204200547 03074980646 2 06973795 00137544 200177578 s 00000000 +00000C00
6 1985000 64,3860 026420047 031723922 208133799 s301638430 200220466 400000C00 400000000
© 204,000 C b4 38580 02642004 032909485 509376399 200210201 200267317 200000000 s60600000
6 210,000 64,3865 026420547 536368623 s 10880369 00266652 500312304 300000000 200600000
<3 216,000 60 3865 s 264205467 236201308 512623344 200342551 20035198 200C00000 s 00C00C00
6 2224000 64,3806 26420041 538567963 214555818 L00467138 2003381332 s 00€00C00 200C00C00
6 228,000 64,3866 226440547 241613425 2 16590971 s 00593955 200392667 500000000 »00C00C00
[ C 228,000 b4 ,3866 026420541 s4L61 3465 210590971 200593955 600392667 s00C0N000 200600000
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