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ABSTRACT

A continuation of the S matrix, for many-channel potential—scattéring
problems‘with arbitrary spin, away from physical walues of thé.angular momentum
is defined. It .is shown_that the scattering amplitude can be expressed as é
sum. over physicai‘J values of a summaﬁd ﬁhich is meromofphic in the-entire

‘finite J plane. .
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i. INTRODU&TION
The purpose of this work is to extehd_the aiscussion of complex angular -

momentum givenvby7Reggél and by Bottino. et ai.e for the single;channel,‘zero-
spin,'potentiél-scattering problem. to the mény-channél potenﬁial problgm with
arbitrary spin. We restric£iour éonsideratiohs at preéent to the case where
-all channels are two-body. ‘

| The intrinsic'inﬁerest‘of the properties. of partial.wave amplitudés in
the complex angular momentum plane.in potential scatfering-problems is probably
. only academic, but, in so far as the results can be taken over to the relativistiC'
pfoblém;-wherevat presént many of‘the-proofs are lacking, it. is extremely ﬁséful
(see, for example, Udgaonkar,BChew et al.,u and Frautschi,etbalo5). For this
‘purpose the essential result of Reggel is that the partial—wave,amplitude,
defined initialiy for phyéical £ Values,:can be continued fo give a function
of £ which is meromorphic in Re £ > -i/EIandvfor which the Sommerfeld-Watson
transform is possible. For potentials reguiar'at r = 0, the meromorphy domain
has been ektended'to inclﬁde the,whole ’£ piane except £ = 60,6’7f8 In
this paper we show that an analogous continuation can Be made fbr-the many-
channei problem with spin, and yields_én S matrix which is merpmorphic.in the
finité J plané; The restrictioné we make on the poténtial matrix are (i) fhat

it be local in- r -in the sense defined in Eq. (3.4), (ii) that it be a super-

position of Yukawa potentials with & finite makimum range, and (iii) that
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it be regular at the origin. It should be noted that (i) does not.exélﬁde,
such interesting casés,as, for example, the spin;orbit interactiong The
restriction to a sum of Yukaw;vpbtentials is made becauserin fhe one-channel
problem it ensures suitable behavior of the scattering éﬁplitudes for large
|J|. _The regularity éondition at r = 0 allows us to show meromorphy in the
entire J plane rather than in a part of it; Note that these threé restrictions
are sufficient for our pﬁrpése-but may well ﬁot be.necessary. in section 2 we
obtain a general expressioﬁ for.the scattering amplitudes in tefms of solutions
of- the coupled Schrdédinger equations,.esséntially_following conventional ﬁreat-
mentS‘(see, for example, Newtong). The continuation to COmpléx angular momentum,
and the study .of the énal&ticity properties of thevscattering amplitudes are
contained invsection 3. | N B |

It should be noted thgt there are many continuétions of the S matrix
away from physical,angﬁlar momenta,B’lO - OQur particuiafvchoicé,is moti?ated by
our belief that it‘is thé only~qne ﬁhatvpermits an analoéue of the Sommerféld-
Watson transformation to be made (cf. the situation in the one-channel case ).
We will discuss'thése and other related matteré in a futurevpaper on this

subject.
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2. GENERAL FORMUIATION -~

The Coupled Schrédinger Equations SN Lo -'. ' )

We are concerned with states of two particles, which in general are
"compqund" satlsfylng the Schrodlnger equatlon ] ' :' .' N

(E-H) gy = o | o o (21)
where H contains the kinetic-energy operator of the relative motion and a |
generél intefaction'operator v, énd B :is_the energy of'the syétem. _We»eXpand V
'these states |I) in terms of a'éomplete seﬁ of-states of total angular momentum;

which we deflne asll

Cc

|Mc£s) = - }d . C0(£sT; m

mzmsmlma

ﬂms) 0(815283 m mg? ]ﬂm ¢ my 2m2) (2.2)

Here J is the total angular'momentum, £ is the orbital angﬁlar momentum of

the relative motion, s. and s, are the spins of the two particles in intrinsic

1 2
.states Cl and 62 , and M; mé,-ml, and m, are_the .z projections of J;Z, sly
and Sy ~respectively. The index c¢ on the left is used fbr brevity instead of
?l. and- c¢,. Both |TMc£s) and IZmz 1™ 1 cy 2) are normalized to unity.

‘The r representative of a state [{), where r is the separation of
particles 1 and 2, can be written in the form

lgy- " ey M)

, I Mcts ). - (2.3)
JNc £s ' ”
Inserting this into Eg. (2.1) and using the orthonormality of the states defined
in Eq. (2.2), we obtain
X3 JM . » N . 7 .
Wcﬂs(r) * (kq - 2 - ) wcﬂs r

- ) <czs|vJ<r e v N S R S RS

c'h's!
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Hépe > we have put hg/ém = 1, where m is the reduced mass of the two particles,

and introduced

k, = E-E, - o - (2.5)

where E, is the energy threshold for channel c, i.e., theﬂchanﬁel in which the
two particles are in intrinsic staﬁes 1 and Cye |

In writing Eq. (2.4) we héve7used_the locality restriction.on.the poten- .
tial, and also its rotatiOnal:invariance; Since we shall_élways use boundary
conditions that ae;independent of M, it follows from Eq. (2.L4) that the index
M on the V¥'s is irrelevant;'we'shall therefore omit it in future. It wili also
be convenient in much of the following to replace the suffixes chs by‘ e We
can then order the- -channels in some way so that ﬁ takes on integral valueé
between 1 and N,. where N is the number of chéﬁnels. The value.of a para-

meter in the - pth channel will then be denoted by giving it a suffix u,'e.g.,

Special Solutions

We first define regular solutions of Eq. (2.4) which, for physical values

J

of the angular,momenta, satisfy
1im ¢ I(r) = o. C (2.6)

r -0 a ' '
We choose N 1linearly independent solutions satisfying.this condition, . where ;N
is the number of channels, and denote them by ¢“PJ, with p = 1,2...N.

We further define 2N linearly independent solutions ng(t), each of‘
which satisfies a boundary condition for large 71, viz.

.t ik.r |

£
, W J o+ S1/24
lim e X (=) = (k) (= 1) " 8 : (2.7)
r— ® Kp 3 ' P
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Thus, at infinity the wave function Xu‘;(t) will have an ingoing or outgoing
‘wave in the pth chahnel,;and nothing, in the other channels. »The poséibility of
being able to define wave functions by using;Eq,_(2,7) égpends'on the fac£ that
“the potential falls off'faster-th;n 21/r * for large r, which follows from the
second restriction.-on V given in seétion.l, V

The 2N solutions of the' N . second-degree -coupled equations (2.4) defined
» 5y Eq. (2.7) form a basis for all solutions of these equations. -Therefore we :can

«

write, in matrix notation,

I A ORI N IO . S (28

T T o o | J T
~ where 09.?/§%(7) are, N-by-N éatrlces w1th-components.-¢pp_ and XMP(-)’
respectively. Here we have introduced the matricesnﬂgg(t), with cemponents
fq;(t), which are independent of r and are generalizatiohs.df the well-known

Jost -functions. To .obtain explicit.expressions for ;ﬁ?(t), we note first that

w02, XM - o T (2.90)
and | _ ’
e, = e S - (2.)

@),

Here W[w(l), v .is the Wronskian of two solutions of Eg. (2.14), defined by

A

w®, 4@ e et e

M e . o ~— ey LA~

where WT is thé'transpose~of ¥ and Y is the dérivative of V. with respect

to r. Since the potential matrix in Eq. (2.4) is symmetrical, the'wronskian is
independent. of r. Then, from Egs. (2.8) and (2.9) we have

WE), g1 = 0 I e
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‘The S Matrix

From Egqs. (2.7) and (2.8) the asymptotic form of ¢J: is given by"
.4 -1/2 ik r ik +ik r
g~ 2 i P £iye P ooie My e ML (2.12)
Do 2 b | e | up .

~To obtain the S matrix, we define N  linear combinations of the ¢ug , each

having zero ingoing flux in all but one chanhél,'i:e. we introduce % ¢Hg kpi s
p
with
J J . :
200N = L , (2.13)
Then we have
2 -1/2 -ik v -imd ik r| .
¢ug . - % i M(ku) 5 © Bl e b fu‘;(+) xp‘; e M, (21k)
p 500 o
and, by definition, the S matrix is given by9
J . J J ’ '
S = £ () A5, 2.1
a7 Tt Mg (2.15)
From Egs. (2.13) and (2.15) we obtain
J Iom Tt g, T - |
s° = L (-)T e +). (2.16)
Fata'sd AN v ad

‘We can write Eq. (2.16) in a simpler form if we note that W@, ¢] = o

. from the boundary condition at r = O, and, from Egs. (2.8) and (2.9):
J J _ i d T _J J, \T J
g - 2O o) - S@T A1 = o

Hence we have
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’gf-’:';V:E\J,(+;).;,[nf,'f(-)"]-l. S S - (2.17)

The symmetry of the 3§;7hatrix follows from comparisen of Egs. (2.16) and. (2.17).

The Schrdlinger equation (2.4) is real for physical k and 4, so that
we canlchoose‘the'.¢J  to be real. TFrom Eq. (2.7), however, we have
Lo d N J = ' B |
HE - g, - C (2a8)
Hence we obtain
J Ay * Jioy : . E |
£ = £ &) | | | | (2.19)
from which follows the unitarity of . g,
i ' . .
Y g - 1. : S _ (2.20)

The Scattering Amplitude

The cross section for scattering from intrinsic states denoted by ¢ to

states denoted by c¢' is given in terms -of -the scattering amplitude f£(o, @) by

~

do(9)

o) = | eyt |fv(9‘,¢)|c)\£l7\,2) , (2.21)

1 1 1
SRR ERATN

 where the A are the respective helicities and © and ¢ are respectively the
centerqoffmass polér and azimuthal angles of scattering.’ In terms of the S
matrix we have12

(et 26 )] ean,) = (ke Nt s - 1I,}w«:cc_xlz\e)/eil(l;c;kc-)l/z (2.22)

and

\
N
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(e If(Q @) |ch Ay = (21) 1 (x K )'l/2 5 (24" + 1) l/2(213 + 1)1/2
-Cc’ C
J'ss'
X C(£'s'J; o A C(s,'s.'s' M N ") C(4sd; b A) C(s s.S'>K -\ j'iz'ﬂ'
15280 o VAERE S 177 M Tt
X exp[i(h.- N')P] dxx'(g) ( 'k, JMc'L's s -1 | kCJMczs>; ' (2.23)
where
o= N - N, o : (2.24a)
and
r o _ RV ' ‘ '
A= N Ayt o (2.24p)

In the shorthand notation used previously, the S-matrix elements in Eq.'(2.25)
J , '

pop - . _

This completes. the review of the formal analysis for physical values of

are simply S

the angular momentum, and we now turn to the problem of the continuation to

general values.
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5. ANALYTIC PROPERTIES IN.J

' The Potential

Before we can determine the analyticity properties of the. solutions of
Eq. (2.4), wé.mustrconsider the potential matrix. Ignoring the index ¢, which

is_irrelevant»here, we. have

' L - m1/2
g e (2£ + l)(ﬂ - m) (2£' +.1)(L"' = m")!
(r'JMe s|V|rJM?s) Ef—- ZE: G+t (B +a)t
: mlmgml 'm,’ \

X‘C(z's'J;.m!, 1' + m, ) C(sl 2'5'; m, 2') C(sz m, m o+ m, )
X c(slsgés mm,) [ a2’ ag exp'[-i(m'sé' - m¢)] By (cos 6!)-P,(cos @)

5<45'm1’m2' | V |4£m1m2>’ ' - : - (3.1)
where

dQ ‘= sin @ de 4g : - (3.2)
and |

m = M- m - m, ' » _ | (3.3)

and similarly for dQ' and m'. Using now the fifst restriction on the poten=
tial, we can express it in the form.

(r my "m, ‘lV|rm 2) =.§:'(ml?mg'lzeh?(r)|mlm2) r-?(Eﬂ)?
. Am .

A

© B(r-r' , D). | .#
X  ( -x') &,m(@ ) , (3.1)
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The spherical symmetry of fhe potentialtimbésés certain restrictions on the
'zx}n; we assume that these are satisfied but btherwise do not use them explicitly.
Insertion of this into Egq. (3.1) yields

(r'JML's " | V|raMss) (ﬂ's'IVJ(r)Iﬂs)r-g(En)BS(r—f')

I

| Z Z r 2 (2n) 28 (r-r")
A mlmeml'mg'v

e eyl oai1) (e
X (my "my "}m(r)lmlmﬁ[_(un(zl%'fl)ﬂ)}l'_

x C(sl'sz's'; ml'mg') 'C(slsgs; mlmé)_'é(zﬁ’l’; 00) C(&K£';mM)
X C(£'s'J; m', M-m') C(4sJ; m,M-m). R ' - (3.5)

We introduce new_variableé t and t' Dby
b= 8= S o (3.6a)
and | |
£t = %' - J, o (3.6b)
and substitute for £ and £' in Eq. (3.5). The right-hand side of this equation
is then used to:define the potential matrix ‘VJ(r)'vfor all J. Itris a holo-
morphic function of J .in the whole J ,plane, apart from isolated singularities.

15

To study these, we use Wigner's expression for the Clebsch-Gordan coefficients,

from which it follows that

(erst [ (0) o) = L (g, ot [V (2)lave, o) (5.7)

is holomorphic in J, where
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L opbesr)t ]2 ~ -
N(Jts) = (2J+§-S§1ffggigé+l> . | S (3.8)

Notice, however, that y? “is geﬁerally-not»symmetrical.

'Reformulation_of the  Scattering Ampliﬁudé

In this section we modify the forial theory to take account of the singu-
—laritiesvof ﬁhé factors N(J,t;;) introduéed in £hé last Secfion. " If the problem
has only zefo-spin particles, these modifications are unnécessary since these
factors are then identically unity. |

We ihtroduce‘new wavefunctioné $ctg(r) defined by

Vo2 = v Waes) T, o 69

where " £ = J + t. These satisfy the equations

Ty .2 @)@+ t+ )|~ o
' Wcts(r) Fo R T f2 ' 'wéts

(3.10)

|
o

= (ets W) | ewrs) ¥, 0 ()
“c't's! ' ‘ cltls!
The ”poténtial" in this equation is an analytic.function of"J, so’thét this

form of the Schrédinger equatioh is more suitéble for considefing the analytibity :
properties of the wavefﬁnctions than is Eq. (2.L4). First we show how the S matrix
"can be expressed in tgrms-of particular solutions Qf'qu (3.10).

For physical J regular solutions %pg(r) satisfy
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. ~ ) - « :

lim @ J(r) = 0, R . (3.11)
0 HP :

where p denotes c, t, and s, and p ( = 1,2...N) again labels N linearly
independent soiutions. |

We also define solutions %“g(t) by the boundary condition

Oy %pg(+) _ (ku)-l/z 1) P Sup’ | o (5.12)

and, as before, write

P -3 P0 Yo - PO Yo, - (5.13)
with .
) = 1w [XJ@), ,%J]. | ENCR )
> ~ '

Noﬁe that the Wronskian is not now independent of r, oWingrto the nonsymmetrical
form of V. The limit in Eq. (5.14) exists since the potential tends exponen-
tially to zero as r ‘tends to infinity.

From Egs. (3.12) and (3.13) we obtain

J . i ﬁp‘ -'1/2. ~ J -ik}.l.r T-i'T[,@u ~ J ) v+j_kur . C
T 5 T |FR() e Boee BELG) e T L (5.5)
whence ‘
5o~ 1A -1/20 5 ik -ind) g ik r
Yo w3 1Y) El @ e Koo HEI@m@we M,
(3.16)

where N(Ju) = N(Jt“su). Therefore the S matrix is given by
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g _ O N(Iv) xJ _ N : :
Svu T W@Wr S o - S G
. Where » . o
-1 ' ‘ o
o = [5& (-) ] ) o | | : (5.18)

-We shall define Ef‘forvall J by means. of this equation, and show below that
it is me_:c‘omorphic'.llL | o
Béfore doing this we return to the écattéring-amplitude, given by

Eq. (2.23), which we rewrite as
(en ™y |26, B) | eahy) = r<-2.;>~'l(kc.kc')'l/2 exp [i(h - A)B ]

b } Cer v oev + 1)M2 (a3 + oot 12 Xo@@t, 80T ont) L
J — | |
tt'ss

_ L
(515, )15 % I (o)

X C(s,'s.'s'; xl';’xg')C(J+t’SJ5'O’X)C SHRSPREI

X N(Jt.'s',)N_(Jts)_l(kC,J“Mc‘ grt',s |8 - 1] K JMe g+, 8) ). (3.19)

The t sum, for example, is initially limited to values ranging by integer stepé
-from '|J - s|-¥-J through s.. Howevéf, for physical J., we .can feplace this
by the range -s :through. s ;Without altering the value of the sum, since the

Ciebsch-Gordan coefficients are zero at the additional values. - The limits.on

"the t and t' sums thus become independent,éf J. We now observe that the J

 summand in Eq. (3.19) -is holomorphic in J .apart from the singularities of Ef.

13

To see-this we use
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J _ 3=

'» 2 ' '. : ) 1
Eg f ;%i v zRT:EXTjT (cos 9/2)2J (~tan @/2)kpk

X F(M-3J, A - J; NN+ 1 -»;;anglg/Q)'v

for A > A', and a similar expression derived from

I

(o) = ()M I (o)

d NN

Ml

for A' > A. Here phe ¥ is the hypergeometric function'(zFl in Pochhammgr's
notation). It can be shown to be holomorphic in J fqr all @ for which
-tan29/2 is not a rgal number greafer‘thén_orvequal to unity. - It may then be
easily,verified that the singularities in J of the dqu and of - the Clebsch-
Gordan coefficients in Eq. (3.19) cancel with those of the factors |

N(Tt's') W(Its)T.

Analyticity Propertiés

" In this section we shall extend the definitions of the /X?(i) and

-vﬁJ to nonphysical J, and show.that they‘are holomofphié in J.

mn .

The regular -solutions iéJ satisfy Eg. (3.10) for all J and Eg. (3.11)
for Re J sufficiehtlyglarge (for example, in the zero-spin case, Re J >.-l/2).
In this restricfed regibn of the J  plane, the holomorphic property of the
j§j cgnAbe obtained by consideration of the iterétive.soluﬁion-of an-integral
equation with specified boundary conditions at r = 0. As observed by Newton,9.
some care is required in writing this integral equation wheﬁ the £ values are
different in different channels. To avoid this difficulty and to extend the holo-
morphy domain to .the wholé' J plane, we introduce the third assumption on the

potential, viz. that 'rzﬂr) ~is regular in r at r = 0. This enables us to

7,8 '
obtain a power-series solution7’ forv%J.
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Explicitly, we assume that
@ :
. ~, ) J n :
e -r¥) = = g | (5.20)

n=0

converges for r<R. Here the matriX'J&' is given by

K = & k. - | 3,21
v TAE) : B _ (3.21)

We make -the Ansatz

£d+l oe) gmax T q

F) = r 2 T o’ (rinn)?, , (3.22)
~ n=0 g=0 -
where - .
by = J'--smaX-, : | : (3.23)
and
qmax‘ = 2s . +1, : ' - , (j.gh)

s being the maximum value of s. .
max : T .

Substituting Eq. (3.22) into Eq. (3.10) and equating coefficients of
rn(r lnxr)q; we obtain the recurrence relation

IU6+n+q+JJ@O+n+Q)?y£+l”¢ﬁ#®

n-m-1,q) - (285 + 20+ 2¢ + 1)(g + 1) & (n-1, 1)

(g 2)(a+ 1) & (ne, w2), (5.25)

subject. to the choice of a(n,q) =0 for nd0, ¢< 0, orgq > qmaX . The

matrix L 1is defined by
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L = 8 4. ' , | | - (3.26)

This recurrence relation determines all the aug(n,q) in terms of N linearly
independent sets. of N arbitrary parameters. These are 7aup¢);0)' for

ﬂu = ﬂO’ aup(l,o) for .£H‘= zo + 1, and in general aup(n,O) for ﬂu = ﬂo + n.
If we choose these parameters to be holomorphic functions of J , then Eq. (3.25)
7,8

shows that the a“g(n,q) are meromorphic in J. As in the single-channel case,

the poles of ,ggv give rise to fixed poles in @f which therefore c¢ancel when

~

we form the S matrix. Alternatively they can be removed by a suitable choice of
the arbitrary parameters. If we do this, Eq. (3.22) defines E?kr) to be a
holomorphic function of 'J., at least for rg R .

To extend this resultl7_to all r; we use the integral form of Eqg. (3710)
with boundary cdnditions specified at some T with 0 < ro'< R,' In order to

write down the integral equation, we must first consider the solutions of Eg.

£
(3.10) when V= 0 . Denote those solutions that behave at r = 0 1like r k¥
. v
M‘;(r), and those that behave like r by Vu%(r)’ where D again labels
N 1linearly independent solutions of each kind. Then: the integral equafion is

by u

. » r '
P = P -1 [g,xrlj a(e) =) - W) v(e) W %J yar,

“o | (3.27)
where %Eﬁ?@) is the unperturbed solution satisfying
J ) | | | . 8
By xy) = F(xy) | (3.28a)

~and

:ésoJ(ro), B .’éJ(ro) ‘ . (3.280)
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3

.Since'the u aﬁd Vv are in fact Jjust spherical-Bessel functions,..the kernel of

| the integral'eduation_(3.27);is_bounded for r>ry>0, and is holomdrphié in |
J for all\»J.lS. Thus the iterative solution is convergent, and shows ﬁhat %f(r)
is holomorphic in" J .for all J and all real r.

For the solution :&J(t),_we'qan immediately use the integral equation
with boundary conditions specified at r = gb.'.This is discussed in detail for
the one-channel case by Bottiﬁo ét al.,2 and a similar argument obtains in ﬁhe-_
presert case. -

Thus wé have the result that the :@f ~and 'zf(t) aré holomorphic functions
of J for all J. It follows from Eq. (3.1Lk) that the same result»hoids for
~J(+ ' ” ~

£°(-) and, hence, ‘that s meromorphic.

L aa)
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