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ABSTRACT 

The notion of time duration is considered within the framework of 

S-matrix theory. It is shown that Wigner's definition of the time delay, 

-Hi[(d .en.s/a.:En for a scattering process permits one to define time duration 

in a "coarse grained" sense. 
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I. GENERAL DISCUSSION 

The time development of the state of a quantum mechanical system 

described by a wave-function 1)r(t) and Hamiltonian $1 is given by the 

Schrodinger equation, 

( 1) 

This fundamental dynamic principle determines the change in the state 1)r for 

arbitrarily small time intervals dt • The question has often been raised, 

however, whether processes of macroscopic measurement may limit one's 

ability to observe changes in 1)r over very short intervals and henceto 

verify Eq. ( 1). 

Most experimental situations are concerned with measurements that 

involve, on the appropriate atomic or nuclear scale, extremely long time 

intervals. Such considerations prompted Heisenberg to propose that funda

mental theory might yield directly the collision matrix S 1 Such a theory 

would provide a relation only between asymptotic states of a system (i.e., 

the relation between states in the remote past and the remote future) and 

would presumably not assign physical meaning to the continuous development 

of the system in time. In addition, one would never speak of the "fluctuations 

off the energy shell'~ of a physical system. 
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Considerable progress has been made in recent years toward the goal 

2 proposed by Heisenberg of obtaining the S matrix without a Schrodinger equation. 

Such studies have not, however, provided a basis for discussing macroscopic 

time intervals that are essential in common experience and in the processes 

of making physical measurements. We should like to argue that the S matrix 

does provide a "coarse-grained" definition of time interval. This coarse-

grained notion of interval seems adequate to account for a semiclassical 

dynamics, and thus for the macroscopic dynamic phenomena of common experience. 

Whether it is also adequate for all physical processes, or whether it is in 

fact possible to verify Eq. (1) in detail, is a much deeper question to which 

we do not address ourselves here. 

The basis for our considerations is provided by Wigner 1 s representation 

of time delay in a scattering event. 3 If S(E) is a matrix element of the 

S matrix connecting two precise asymptotic states of an interacting system 

(we suppress all labels except the total barycentric energy E), the time 

delay relative to the free-flight time between the states is 

Q. = - i11'! .£n S(E) (2) 

To introduce the notion of a sequence of events and time intervals, 

we suppose a particle undergoes a series of N scatterings as illustrated in 

Fig. l. Consistent with the Schrodinger equation (1), we may observe the 

state of the system at times t 0, t 1, ···, ~ occurring between scattering 

events. By this we mean that t 0 is before the first event, t 1 is after 

the first but before the second, etc. At a given time tn (n = 0, l,···,N) 

we may determine the wave function to be 

enables us to relate the w's as follows: 

w • The Schrodinger equation 
n 
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~n = exp[-iK(t - t 1 )f~]U(t , t )* n n- n n-l Yn-l ( 3) 

where K is the kinetic energy operator, and U(tn' tn_1) is the unitary 

operator defined by 

U(t, t') = exp[ iKt/fi] exp[ -:!M( t - t 1 )/1i'J exp[ -iKt 1 fol1 
' 

( 4) 

and ~n is given by 

~n = exp[ iKt 1/-fi]V 
n- n 

(5) 

If the time intervals (t - t 1 ) are large enough that the system 
n n-

is close to the energy shell between scatterings, we may set 

U(t , t 1 ) 
n n-

8 
n 

( 6) 

the S matrix for the ~th scattering event. By definition S = U(oo, -oo), 

so what we are assuming is that all irrelevant transients have ·disappeared 

already at finite times. In this case Eqs. (3) and (6) permit us to write 

N 
~N = exp[ -i(K/fi) ( tN - t 0)] 1l_ U(t , tn-1)~0 (7) n 

:;: exp[-i(K/~)(tN ~ t 0)] 1r 8n ~o 
n=l 

a relation which connects the initial state *o , prior to any of the 

scatterings, to the final state 1jrN following all of the scatterings~ The 

S matrix for the entire process has the form 

8 = 1r 8 
n=l n 

(8) 

Thus, if a complex process involves a sequence of interactions sufficiently 
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separated in time that Eqs. (6) are valid, the S matrix for the complete event 

factors into a product of S matriresfbr the separate interactions. This group 

property of the S matrix is essential for the subsequent discussion • 

It is reasonable to suppose--and we shall do so--that Eq. (8) is a 

general property of the S matrix, valid even in theories not based on the 

Schrodinger equation (1).
4 

We shall also suppose that it is meaningful to 

talk about the free-flight time of wave packets over macroscopic intervals 

defined by 

5 t = d/v free (9) 

where d is the distance traveled and v is the packet velocity. In the 

S-matrix theory we expect the recurrence-relation 

1jin = 
s "' n n-1 

( 10) 

to determine the wave functions 1jin at times intermediate bet\Teen the 

interactions. We emphasize that the conditions of Eqs. (8) through (10) 

are assumed to be valid quite independently of whether or not there is a 

Schrodinger equation. 

Now the Wigner relation, Eq. (2), and our expression for the S matrix, 

Eq. (8), enable us to write the total time delay Q as 

Q = - ns: ~ £n S(E) = I: Qn dE n 
( 11) 

where 

~ 
·if d £n S = 1 -

dE n (12) 

is the time delay for the ~th interaction. From expressions (8) and (12) we 

find that the time duration associated with the nth scattering is 
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d 
0 t .:; t - t 

n n n-1 
n + Q 

v n ' 
( 13) 

where d is the distance traveled and v is the asymptotic velocity.5 
n 

This expression, Eq. (13), is our fundamental result. It provides a 

definition of the time duration for each of the interactions illustrated in 

Fig. 1. It therefore permits us to attach a time label to points on the 

orbit of the scattered particle. This definition of time interval and the 

recurrence relation, Eqs. (10), provide a macroscopic dynamic principle 

limited by the coarseness of our time mesh. 

The factorization (8) of the S matrix is rigorous, of course, only 

in the limit that the scattering interactions are separated by very large 

distances. From the present viewpoint, time duration is defined for real 

processes only to within a precision determined by the accuracy with which 

the factorization (8) approximates the exact S matrix. If this were a 

correct point of view, then limitations on the processes of measurement 

would not permit a more precise definition of time duration. 

It is interesting to rewrite Eqs. (10) and (13) in a 11Schrodinger-

like" form. First, we express Eq. (13) as 

0 t = 
n 

= 

d 
n 

v 
[ 1 i v ..fl .9-... £n S - d dE n 

n 

i 1:'( d 
( 0 t ) [ 1 - -d -d .en. s 

n free n P n 

where we have used the relations v = dE/dp , and 

( 14) 

' 

(o t ) = d /v , 
n free n 

the free-flight time.
6 

Thus o t is expressed in terms of the free-flight 
n 

time and the S-matrix element for the nth scattering S 
n 

Next, we write from Eqs. (10), 
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5 "tn _ 'fn • "tn_1 " [ exp { -i 5 tn[Kj!i + i{ln Sn)/(5 tn)] J - 1 J *n-1 

( 15) 

which is equivalent to 

(16) 

Since £n S and 5 t are constant in each interval, by integrating 
n n 

Eq. (16) over an interval, we recover Eq. (10). 

This result, Eq. (16), has the formal appearance of a Schrodinger 

equation ~ith a potential 

flight time and on S 
n 

i~(tn S )/o t that depends only on the free-n n 

It is rigorously equivalent to the Schrodinger 

equation in the asymptotic regions between scatterings; of course, it does 

not describe in the Schrodinger sense the wave function in "near field region" 

where the scattering occurs. 

Our description has been rather schematic and we now illustrate it 

with two examples. 

II. A RESONANCE REACTION 

Consider the excitation of a resonance level of a nucleus A b>y a 

7 ray. The nucleus decays to a lower excited state by 7-ray emission, and 

then to its ground state by neutron emission. The reaction envisaged is then 

* ** 7 + A -+ A -+ A + 7' -+ A 1 + 7' + n • ( 17) 

The total energy is E = €
7 

+ w
0 

, where € is the incident 7-ray energy 
7 

and w0 is the energy of nucleus A. The energies of the excited nuclei 

* ** A , A are w1 and w2 , respectively. The energy of the emitted 7 ray 

is €
7

, , and that of the neutron € n 
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The S-matrix element for the process is ( E , E 1 ,A 1 Is I € ,A) • We 
n 7 7 

assume that each virtual state is sufficiently long-lived that the one-level 

resonance formula may be used. LThen7 

a 
n - i r 

7 

+ i r /2 
n E - w 

1 
+ i r 

1
, /2 

(18) 

The quantities a ' r ' and r are considered to be slowly varying functions 
n n l 

of energy. We find then from Eq. ( 12): 

Very close to 

Ql = 

Q2 = 

as expected. 

resonance, these 

~Jr., 

'Cihjr 
n 

E - w + i r /2 
1 7 

E- (W2 + € ,) + i r /2 
7 n 

expressions become 

(19) 

(20) 

In this simple example we have predicted the expected lifetime of 

each state from the S matrix without involving a Schrodinger equation. We 

must emphasize, however, that for a real process the factorization of the S 

matrix implied by Eq. (18) is only approximate; we have neglected nonresonant 

contributions to s. According to the point of view proposed above, it is 

only to within the accuracy of Eq. (18) that the separate time intervals for 

the two decay steps have physical meaning. 
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III. THE SEMIClASSICAL LIMIT 

Let us now imagine that the separate scattering regions illustrated 

in Fig. 1 coalesce into one region of continuous interaction. We shall 

suppose that the forces acting on the particle vary slowly over a wavelength 

1/p , so the orbit of the particle may be defined as in classical mechanics. 

In the usual Schrodinger description we would represent the interaction 

by a potential V(r) , and find the wave function in the W.K.B. approximation. 

We shall show that in this case, Eq. ( 16) is equivalent to the Schrodi.nger 

equation. 

To the extent that we disregard spatial derivatives of the potential, 

we may treat the kinetic-energy operator K and the potential V as commuting 

8 
operators. Then 

exp[-i(t - t 1 )(K + V)] ·;::;;; exp[-i t K] exp[-i(t - t 1 )v] exp[i t 1 K] , n n- n n n- n-

and from Eq. ( 6), 

S == exp[ -i 5 t V] • n n 

Hence 

i(£n s )/o t == v n n ' 
(21) 

and within this limit, Eq. (16) is e~uivalent to the Schrodinger equation.9 
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FOOTNOTES AND REFERENCES 

* This work was done partly under Air Force contract (M.L.G. and KoM.W.) 

and partly under the auspices of the U.s. Atomic Energy Commission (K.M.W.). 

1. W. Heisenberg, z. Physik 120) 513 and 673 (1943). 

2. We refer here principally to the development of dispersion theory. See, 

for example, the article by M. L. C~ldberger and G. F. Chew in Dispersion 

Theory and Elementary Particles, edited by C. DeWitt and R. Omnes (John 

Wiley and Sons, Inc., New York, 1961). 

3. E. P. Wigner, Phys. Rev. 98, 145 (1955). 

4. In the general case, the product (7) is a matrix product, involving sums 

over spin substates, etc. For simplicity, we suppose our system to be 

simple enough that (7) is an algebraic product. Then in the general case, 

Eq. (2) applies to each matrix element of a given S in Eq. (7). 
n 

5. When the system is degenerate, we must suppose (just as in the Schrodinger 

theory) that an observation of the state is made at each time t 
n 

Then 

the S in Eq. (12) is that matrix element of the S matrix associated 
n 

with the observed transition. 

6. For a three-dimensional array of scatterers, the index n may be 

replaced by a "coarse-grained" coordinate r and an S-matrix S(r,p) 
"""" --

defined. Then Eq, (ll~) tal~:es the appealing form 

5 t 
n 

( o t ) ( 1 - j_ ,fi \1 ' \1 Jln S ) 
n free r P · 

1· See, for example, Section 8, B in our forthcomi.ng book Collision Theory 

(John Wiley and Sons, Inc., New York, 1962), where such two-step resonance 

processes are discussed. 
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8. It is easy to write down the correction terms that arise from the non

commutativity of K and V. It is clear that they involve powers of 6 t 
n 

and spatial derivatives V. See, for example, M. L. Goldberger and E. N. 

Adams, J. Chem. Phys. gQ, 2~0 (1952). 

9· An explicit derivation of Eq. (21) in the W.K.B. approximation is given 

in Section B.E of reference (7). 
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FIGURE CAPTION 

Fig. 1. A sequence of scatterings to illustrate Eq. (6). 

-.... ·· 



• 
-12-

MU-26528 

' .. 



This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use o£ any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 


