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1 
In a previous paper we presented some preliminary results concerni.ng 

poles of the scatteriLg amplitude in the complex angular momentum plane. We gave 

pa.rtial descriptions of the trajectories of the poles' for an attractive Yukawa 

potentiaL· In the present paper we extend thi.s work, and we also consider a 

repulsive potential. and corrunent on the effect of a hard core which dominates the 

centrifugaJ. barri.er at the origin. Tn the case qf potentials that can be repre-· 

sented by a superposition of Yukawas, we derive certain relations between the 

energy at whi.ch a Regge curve can cross the real .£.~axis and t:ne potential strengtr .. 

'I'hese crossi.ng points are shown to be indeterminacy. poi.nt,s in the S ma't~ri.x._, 

wtd.ch play a vital ro1.e i.r. "the ber..a.vi.or of f:.he Regge trajectories in the left-

hand f-.. plaP..e (where :\ :::: .£ + 1/2) , 

We consi.der the Schroedinger equation 

[~ + 

0 

k" - V'(r) - .£(£-ti)] ( \ ·--~--· u r 1 2 ..e \ . I 

r 
0, (l) 

whose sol.ution, u,e (r ),~ satisfi.es the boundary conditions 

u.£ (r) 
r->0 

-·ikr -in: .e i kr 
e - S(~ k) e e . 
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The S matrix can then bt: written in the form 

( I :ilm) 
-ik...r 

ir:.£ s (..eJ k) ,u + e 
ikr 

e 
r-+co (u' iku) e 

(3) 

The meromorphy of S(£yk) 2 
has been investigated by Boltino et a1. and 

Squires3 with the potential, V(r ), subject to the foll.owing three conditions~ 

( :i ) ·r dfJ.O r 11. ') e -~J.i·;·r 
\' . ~ 

( 
< ' ~ 11; for all lgi < ~/2, 

m>O 

(iii) rV(r) regular at r == 0. Under these conditions the S matrix is 

meromor:ph:ic in the .full £ plane and in the k plane cut along the ima.ginary k ax:i E'. 

We consider potentials that can be re,Presented ·by su:perpositions of 

Yukawas. 

where we assume 

00 

rV(r) J ,.,.t") e~·f.tr d·"' 
- "''-~-"' J. J 

i-Lo 

00 J dr-:.) / dfl < K for a:i.l r.. 

,lt
0 

We can then ma~K:e the expansion 

' . 2 
rV~r) - k Y' 

·:.rne wave function 

CD 

= z:: 
n~o 

Rr:-1 
r 

a; 
n 

n 
r • 

n a r 
n 

f.:.o > o ' 

and the coefficients an are given by the following recurrence .relat:i0!'1 

(4) 

(6) 
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l 
, n=l 
j_ 

2:: -~ l 
, 

a 2"1 1 
a a 

n~l-,m ;J n ,, ao ,- ·'- ' n + + n n 
m=:O m 

(8) 

According to Eq. (3), a pole of the S matrix occurs when 

( u' - iku) j r 
0 0 J 

1-rhere ro is chosen outs ide the interaction radius, When both t and k are 

real it follows from E_qs. (1) and (2) that u and u' are reaL l~erefore (9) 

cannot vanish unless u van:i.,shes identlcally for all r, l\Tow we can express, 

the distanceJ D. £ 1 of a pole in S from the real. .e axis, for k
2 

real and 

positive, as 

(u' - :i.1m) I r
0 

d~(u'-iku)lr0 ', 

where the !1Umera tor and denom:i.na tor in ( 10) are evaluated at the point on the 

real .e axis that is nearest to the pole. Provided t-he de nomina tor does not 

have a pole, and since in general we expect and to be cont:i..nuous functions 

' of .e, then D. .e cannot become iL:definitely srna1L We expect therefore that 

Regge poles will not be ahie to migr·ate across the reai .e axis as a function 

of k
2 

(real and posHiveL 

A.n exception to the cond:i.,tions of continuity on 1;. and .A occurs at 

certain "indenterminacy points" of the S matrix. Similar points have been no­

ticed by Parut and Calogero 
4 

in their wor·k on a square-well potential, but in 

that case the points do ;:ot appear to play S1J.Ch a vital role in the behavior of 

the Regge trajectories. We can see how these J:;o:i.nts arise by considering Eq, (8). 
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. A pole in the wave function u occurs when 2£ + 1·+ n = 0; Le., at the points 

£0 = -1, -3/2_, -2j • • e. Let us rewrite Eq. (7) for a value of £ in the neigh-

borhood of one·of these points: 

00 (j) 

u (r) £t1 [ b 
n l· L n 

(11) r r + t~£0 
c r i, n n 

n=O r..::.=-2£0~1 

We include in the second term of (11) those terms (and only those terms) 

of (7) which have a pole at £ £
0

• The rest are included in the first term 

of (11). We note now that the b and the r .are regular in the neighborhood n -n 

of .e = .e
0

• 

The condition for a pole in the S matri.x, g:i.ven by (9), now becomes 

[(~ ik~) 
1 

(~ .- ik"2)] 0 - + f, - £0 r=r0 

(12) 

where we have 1-rritten u
1 

and u
2 

for the first and second terms in (J.l) respec­

tively. If (~ - ik~) ol. (,£ - £c) as .£, a:pproaches .e0 then (12) can ob-
. 0 . 

viously by satisfied. Tl:lis is a condition on k2 . through ex:pansi.on (6j and the 

S matrix can be made to take any value by altering the proporti.onality constantc 

In the limit £ = £0 our conditi~:m obvious.ly reduces to · 

l. 
-2£ -2 . 0 

L 
m=O 

a 
m 

a . 
·-2£ -2-m 0 . 

0 0 

Thi.s can be sati.sfied at the points where there are at least two terms in the 

summation (13). If a
0 

is nonzero this means that 

'"' are indeterminacy points at the values of kc satisfying (13). Writing (13) 

3 5 explicitly at the points ~ 2 , -2, - 2 .• we obtai.n 

(13) 
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As an example let us cbns:i.der the potential V(r) -r; 
A~ : r Then 

these relations become 

k~ ·A2 
+ - A = 0 .eo == 2 

2 

4k
2 + A

2 - 4A+ 2 "='. 0 .eo -2 

9k
4 

+ (lOA
2 

- 18A) k2 4 
lOA3 + + A. - 21A2 - 6A = 0 .eo = L 

2 

(14) 

(15) 

These equations are necessary and sufficient cond:i.tions that Regge curves should 

cross the axis at the energies given ·by their solution. I'he first equation in 

(15) states' that a Regge curve must cross the real .e ax:is at - 3/2 for 
2 

.k 

real and positive when A lies between 0 and 1. For A > 1 the curve must 

pass through this point at a negative value of 
2 

k ; Le., on its path along the 

real .£ axis. Many such statements can be made on the basis of Eqs. (15). In 

parti.cular it can be shown that for small A, Regge curves cross the axis at a 

finite value of k
2

. (which approaches z.ero as A goes to zero) at the :points 

- 3/2, -5/2.? -7/2, • • • but .not at -27 -4J -6, (see FigD 1). Also as A~ <lD 

Eqs" (15) gi.ve the standard Coulomb behavior n jkj =A for a pole returning 

to the negative integer - m where the indeterminacy point is given by 

= -m + (A/nlk!). 
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As a specific example, we considered the Regge trajectories for a single 

Yukawa potential -r; -Ae r and we allowed the strength parameter A to assume 

positive and negative values. Our method, involving the numeri.cal solution of 

Eq. (1) on the IBM 7090 computer, has been sketched in reference 1~ We present 
. . 

our results in the figures. In Fig. 1 v:ie give the £-plane plot for A = 0.05. 

'l'he important features shown are: (a) In the high-energy limit (k2 ~ ao) the 

curves approximate to the Coulomb dase at the negative integers, (b) ·The first 
. --·-

few curves cross the. real £ axis at the first possible negative half integer 

and go to £ = -1/2 as k2
-+ o, and (c) In the iimit A ... 0 it appears that 

this feature is share~ by all curves except the first. The first curve always 

extends to the right of £ = -1/2 for 2 
k = o. We thus find the point £ = -1/2 

an accumulation point for an infinite number of zero-energy poles for all A 

positive and negative. Figures .2 and 3 show the £ plane for A = 2 and A - 5, 

respectively. It "is seen that as A. is increased, further zero-energy poles 

move along the real £ axis from -oo and become associated with each Regge curve 

·in turn. The transitton from one curve to another is shown for one case in 

Fig. 4. In Fig. 5 we show the position of some zero-energy poles as a function 

of A. The vertical line at Re £ = -1/2 represents an infinite number of poles. 

As A is increased the secorrl zero-energy pole becomes associated with the 

second Regge curve at £ = -3/2, the third with the third curve at £ == -2, and 

the fourth with the fourth curve at £ = -5/2, etc. These rel~?-tions can also be 

seen from Eqs. (15). Once a curve has picked up its ultimate zero-energy pole 

it can no longer cross the axis and is constrained to move into the right-half 

£ plane with Im £ always positive. Both the transition shown in Fig. 4 and 

the existence of quadratic and higher-order equations in k2 in (15) show that 

double poles in the S matrix can and do occur. We must consequently be cautious 
2 

in applying Taylor's5 proof of the analyticity of a(k2 ) and (3(k2 )e-I:rra(k ) 
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in.the k2 plane. In fact, certain extra branch cuts may appear. Such effects 

are apparent for all Regge curves except the fir.st, when A becomes sufficiently 

large and positive (Figs. 6 and 7). Figure 8 shows the first Regge curve for 

several values of A, and Figs.· 9, 10, and 11 give the real and imaginary parts 

of this trajectory plotted against k2. 

In __ Figs. 12 and 13 we plot the real and imaginary parts of 13 (k2)e -i:ri:a(k2) 

for ·curve r.· This is a real analytic function with no left-hand cut, and it 

appears from our results that it satisfies a usual type of dispersion relation. 

Figure 14 gives the first two Regge curves for the repulsive potential 5e-r/r. 

It is interesting to note that both curves go to the point £ = -1i2 as k2 ~ o. 

Eq~tions (15) show that no curve can pass through the points £, = -3/2, -2, 

-5/2 for A< 0 and k2 > 0. It may be true that for A < 0 and k2 > 0 no 

curve can cross the axis and that all must go to £ = -1/2, but we have not 

obtained a general proof of this. 

In concluding this .part of the work we remark that if a - 0 0 - in ex-

pansion (6) we still get indeterminacy points, but ·they now satisfy £
0 

-{ -5/2. 

In general, increasing the dominant pow·er of r, in the potential for small r 

pushes to the left the first indeterminacy point of the S matrix in the complex 

£ plane. This seems to fit in with·Bethe's6 result that the high-energy limits 

of the Regge trajectories are also lJushed to the left in this case: 

The foregoing analysis shows that Regge trajectories in the left-half ;...·· 

plane have an exceedingly complicated behavior due to the appear~nce of certain 

indeterminacy points. An interesting fact pointed out by Predazzi and Regge7 is 

that a repulsive core, whose strength is sufficient to dominate the centrifugal 

barrier at r = 0, causes the following symmetry in the S matrix: 

s (;..., k) = s (-"A., k) 2 i.r/1. 
e (16) 
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In tbat case the left-balf :\.plane is no longer interesting. We investigated 

the effect of adding such a repulsive core to the single Yuka:wa. We considered 

V(r) 
-r 
~ 

' r 

and took both ~ : 0 and ~ = 1. In both cases the Regge trajectories appear 

to be unbounded as 2 
k -+co. We followed several trajectories up to an energy of 

about 2 
k = 50 and found tbat both real and imaginary parts of A were still 

increasing. 

We regard this as an-indication tbat a bard core of the type (17) is un-

physical. It may in fact be necessary to take seriously the investigation of · 

Regge trajectories in the left-balf. A plane. 

We are· greatly ihdebted to Professor G. F. Chew and other members of the 

Physics Department of the Lawrence Radiation ·Laboratory for advice and encourage-

ment in this work. We are· also grateful to the staff of the computing center at 

the Laboratory for the use of their facilities. 
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FIGuRE CAPriOiiB 

.Fig. 1, 2, and 3·. £-plane plots of the first six Regge trajectories for the 

potential strengths A == 0. 05.)1 2; and 5.. respect:i.vel.y ~ 

values are '-r.ri tten adjacent to .the curves. 

2 
Some. k 

J:i'ig. 4. Farts of Regge curves 4 and 5 for A == 2J 2.05, and 3, showing the transi.~ 

tion for curve 4 of the point at which it crosses the :r.·eal .£ axis. 

Fig .• 5. Positions on the real £ axis of the first few zero-energy poles as 

:B"ig. 6. 

Fig. 7· 

F:'ig. 8. 

F'ig. 9.-

·Fig. :.; o. 

l<':i.g. lL 

.,. 

.t' J.g. 12 . 

Fig. 13. 

func-l:;i.ons of the potential strer,gth A. The vertical line at 

Re .£ = -l/2 represents an accumulation point of an i.nn nite number of 

poles for all A. 

Re ·2 for 2. a vs k curve 

Im a vs k2 for curve ,..., 
c .• 

The first Regge curve fqr several potential strengths. The 
2 

k values 

are written adjacent to the curves. (When 
.2 
.K. is r..egati ve_. some of 

these val.ues are shown displa.ced fran the real axis for the sake of 

clari~y.) 

Re .12 for 1 when 2 is positive., ex vs .:I. curve k 

~ k2 lm a YS k-· for curve 1 when is positive. 
') 

k2 Re 
. c. 

for 1 when is negative. a vs K curve 

Re (3e 
-:L-:a k2 for l. vs curve 

~hca 2 
for lo Im j3e vs k. curve 

P:ig. :::_4. The first two Regge curves for the repulsive ·rukawa roten.tial. A .. -5. 



CllYVC 7 

E 

0.1 

... ·~~· .· . 

. . ~.015 
-------~~-~-·--. --t----_....J3L. ----...L2---:---_ .L-f ----'o 

Re { 
MU-26814 



.. 

'.rJ· ,..... 
()'::( . 

E ('V . 

2--- -----·...-----.,..----.-----r-----r---, 

A=2 

-2 
__________ .J_ ... ____ _j___, ___ __L ______ 2L__:..:__ __ ~,----::o~_. 

-6 -5 -6 -3 

Re{ 

MU-26813 

I 
>­
N 
I 



2 

~ 

~1 E ..... 
{q .__... 

0 . 
l.•J 

-I 

-2 

A=5 

. _ _L __ _ 

:-5 
--~ -~ -------~3=---~_-2..L _____ __j,L_ ___ o.J__ _ __j 

Ret 
MU-26804 

I ,_. 
w 
I 

I 

I· 



.. 
0 

... ..:,03 
..... 

t5 ',, /"'~:: 3 
'( A=2-05 

' A = 2 ' . 

' ---....... I ' 
'o ... p.e.r:\ 

"Q, \ 0 6t:::. 
'" . :::> '-'o \ ~- -o-· 

\ ........ 
\ 05::0. ... 
0 1 o 

\ . 

\ 
\ 
\ 

\ 
\ 
\ 

\ 

F o u r t h R e g g e curve s 
_..,. __ Fifth Regge· curves 

\ 
\ 
\ 

-0.5 ~ 
\ 
\ 

\ 
\ 

'tf?-44 
' ' L __ L--~--"'- -·---- 1_ _____ _:_'_.._1 '_, _____ --~...1 ---

- 4 -- 3.[) - 3 -2.5 -----_-2--J 

Re f 
MU-26827 



--- -- ---4· ... ~ . ---:· __ .... ____ _ 

-15-

8 

7 

6 

5 

3 

2~ 
I 

I I 

I • 
I . 

-t 
' 

lj-

1~ I 
0! --+=:::::::i --!!:......__.-!--__ ( 

-6 -5 -4 -3 -2 -j 0 

Po s i t ion o f zero - e n e r g y p 61 e, £0 



.... --. .. 

,_ 

t 
;-
c 

E 

r 
ro st 0 . . 
0 0 

-16-

co (\j . . 
0 

Fig. (, 

---·· ·-------- - ··---·· 

N 

0 

I 

0 

l(\! 
I I 

-10 

~ 
-~ 

0 
(\j 

0 



.;,.~ -- ... _ ... _.....__ ... --~-....... ~ ... ~~-.-- ... -·-· ' 

-17-
C\1 

0 

0 

' I 
. ·' 

0 

-i 
..J 
i C\.1 l ,, 

I I 

-d I 0 
~ =t 

·I 
-; 
-1 

~ 

I 1'0 
I 

0 
C\1 0 a:> lO ¢. (\j 0 0J . . 

d 0 
. . . - 0 0 0 

I 

D w I ~~ig. 7 



--------·---r-~--,------,--------...----------

1.0 

0.3 
.0.1 

-0.04 

. 0.01 

~..-__________ __L _________ ~ 

-f.O -0.5 0 

Re{ 

. 0.4 

1.0 0.49 0.25 0.01 

0.5 1.0 

I ,_. 
co .. 



-· ------- ----·---'----------~·-··--· --~----·---- -· --- -. 

-19-
N 

~----~~---r----~----~~----~----~----~0 

0 

I 

() 

l 
f- ; 

l I I 

! I I 

I 
. 

I 
I I 

l I 
I I 

l{) 0 l!) 0. l{) l() ~-r- L() 0J (\J 0 
d d d 0 0 

. I 

D 8tJ 
Fig. 9 . 

• 



-20-
(\J 

--~--~--~~---r--~~~~--~--~~~~--~~0 

0 
tri 

L() 

Q 
0 

() 

-I 

0 

I 

~~--~--~~--~--~~--~--~~--~~~~~() 
() CD 

a 

D WI 

• 

.~ 
() 

Fig. 10 

(\J 

0 
o-

0 
0 
0) 

~ 
N 



-21-
c\.1 

N 

f 
0 0 

co 
.() 

N 

::l 

< 

< 

0 

C\! . 
0 

!'(') 
I 

un~,--~~C~)-----UJ~----()~-----un~----JL------~d---~--S2 
·~ ~ N N ~ 

0 0 0 d d' ,, 

• 



.. -

Q) 

0:: 

-22-

600 

400 

200 

0 ~-' -------

-200 

I 'I I I I I I 

Fig. 12 

• 

' . t 

ro 

I 
I 

--! 
l 
I 

: 

-1 
! 

I I I l i LlJ · 

~00 

MU-26816 



.. 
. . 

/ 

' 

600 

400-

200 

' ,CQ_ 
0 

E 
....... 

-200 

-400 

-600 .· 

-23-

I .. 10 100 
k2 

Fig. 13 MU-26817 

" 



.> 

• --, 

0 

A =-5 
. 

50. 

-0.05 
15. 

8· 
1-rj Col ..... 

OQ 
0 E 4.55. 
.- - I .+>. N 

-10 ,.f:. 

-· I 

t 

' . 

-1.5 

-2 -1.5 -1.0 --0.5 0 

Re £ 

MU-26875 


