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Axbar Ahmadzadeh, Philip G. Burke, and Cecil Tate
Iawrence Radiation faboratory
University of California

Berkeley, California

o May 2b, 1962

In a previous ﬁaperl we presented‘some preliminary results concerning
poles of therscattering amplitude in the com@lex angulér momentum plane. We gave
partial descriptions of the trajectories of the poles for an attractive ?ukawa
poténtialo‘ In the present paper wé extend this work, and we also consider a
repulsive potential and comment on the effect of a hard core which dominates the
centrifugal barrier at the brigino In the case of potentials that can be repre-
sented by a superposition of Yukawas, we derive certain-relations betweén the
'energy at which a Regge curve can cross the real Z-axis and the potential strength
These crossing points are shown to be indeterminécy»points ih the 8 matri&,v
whiich play a vital role iﬁ the behavior of the Regge trajectories in the left-

nand A piare (where N\ = £+ 1/2).

N

We consider the Schroedinger equation

‘whose solution, uﬁ(r), satisfies the boundary conditions

u‘z (I‘ ) N rf"’.’ 4
=0
U[(r) ~ emlkr - s(e, ¥) e-lﬂﬁ elgr ‘ (2)



The S matrix can then be written in the form

S('gy k) =

(v' + iku) e

ICRL=-20216

ikr

>0

The meromorphy of S({4,k)

v SquiresD

{1) v{r) = Cf apo(ple ™ /e,
m>0

(i1i) rV(r) regular at r = 0.

meromcrphic in-the,full £ plane and in the

vWe congider ?otentials thatrcan be

Yukawas. oo

wir) = -[’ olp) e™™ ar

where we assume

(e8]

L
0 . -

We can then make the expansion

: 5 @
r¥ir) ~kKr = X o r
n

n=0

®

- . p 1
Tne wave function u,ir) = r L ooa_ T
£ n=0 ©

and the coefficients 8,

e T
(u' - iku) e

with the potential, ¥(r), subject

(i1) 3? de plv(pelg)f < o for all
0 g

f' ofu) u" dp <K for al

®r (3)

: 2
has been investigated by Boltino et al. and

to the following three conditions:

ol < x/2,

Under theée'conditiéns the S matrix is

kAplane cut'along the imsginary k axis.

represernteéd by superpositions of

s kg >0, ()'L)
In. (5}
. (6)

re given by the following recurrence reiation
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L 1 L1 ' _ . 8
% T BiTi1+n n 5: % Fnelem * O Z 1 8 = 4 - ®)
m=:0 -
According to Eq. {3), a pole of the S matrix occurs when
<U' - 1ku>ir0 =0 2 (9}

where ro ig chosen cutside the interactionradiuso Wheﬁ toth £ and Xk ‘are
real it follows from Egs. (1} and (2) that u and u' are real. Therefore (95
cannot vanish unless ui_vénishes idenfically for all r. Now we can express:

~ the distance;, A £, of a pole in S from the real £ axis, for kg real and
positive, as

(u' - iku)| r,

AL ows

3 ’ (10}
az(u'-iku)(ro

where the numeratorvang denominator in (10) ére_evaluated at the point on the
real :ﬁ axis thaﬁ is nearest to the poleq P%ovidedvthe denominator does not
have a pole, and since in general we expect U and Py td be continuous functions
of' £, then A £ cannot ﬁecome irdefinitely small. We expect therefore that
- Regge poies will not be abie to migraﬁe across the real £ axis as a function

e

of k- (real and positive).

An exception.to the conditiops of continuity on v and u' occurs at
certain "indenterminacy points" of the S matrix. ~Similar points have been no-
ticed by Barut and Calogerbh in their work on a square-weil potential, but in

-that case the points do not appear to play such a vital role in the behavior of

the Regge trajectories. We can see how these points arise by considering Fg. (8).
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A pole in the wave function u occurs when 2£ + 1+ n = 0; i.e., at the points

' £y = =1, “3/2, 2, eec, Let us rewrite Eq. (7) for a vaive of £ in the neigh-

borhood of one-of these points:

_ 00 o PD
oy b1 5: n_ 1 ol
uﬁ(r) = r b T+ 71, E: e r Y. o (11)
. "1 n=0 Li==24 =1

We inc¢lude in the second term of {11) those terms (and only those terms)

of (7) which have a pole at £ = £..

Thé rest are included in the first term
of"(ll)o We note now that the bn and_the , -are regular in the neighborhood
of £ = 200

The condition for a pole in the § matrix, given by (9), now becomes

-

U}'- 1ku1) . ﬂ (up - 1ku?) rl .:‘ 0 | ' (12)

where we have written u, and u, for the first and second terms in (i1l) respec-

1 2

tively. Tf (u} - ikué/ A (2 - £.) as 4 approaches £, then (12) can ob-

viously by saﬁisfiedo This is a condition on k2 ~through expansion (6j and the
S matrix can be made to take any value by altering the proportionality constant,

In the limit £ = 20 our condition obviously reduces to ’

-22 -2

oy | ) | | .
-1 T T BTEL.) E: %0 Pog-eem - (13)

' This can be satisfieda the points where there are at least two terms in the’

3
2,

o, .0

summation (13). If @, is nonzero this means that £, = S

e oo

are indeterminacy points at the values of X~ satisfying (13). Writing (13)

explicitly at the points =~ g’, -2, = g , We obtain
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2 _ v L2
aofal,_o ) | . fori%-o_-’2
a5 - 4o a +'h al-= 0 >' - : for £, = -2 .
aL}-WOo:zoz +éhoz o, +9a -56a =O‘ for £ = -2
0 0% o 370ty =g o
As an example let us consider the potential V(r) = - Ae™ . Then
these relations become :
- 2 L _ 3
kK + AT =A =0 ) ﬁo = =35
2 .
Lk A + 2 =0 Ly = -2 (15)
gt s (1082 - 188) ¥+ AY - 1080+ 2142 - 6 = O by=-2 -

These equatidns aré necessary'and.sufficient’condiﬁions that Regge curves'sﬁould
cross the axis aﬁ the energies,givep by theﬁf solution} _Ihe first eQuatidﬁ in
(15) states that a Regge curve @ust cross the real £ éxis at. - 3/2 nfor K2
real and positive when A lies befween 0 and l;r For A > 1 the curvevmﬁst
pass through this point at a neééti&e value of ké; i.e., 6n its pafh along the
real £ axis. Many such statements can be made oﬁ the basis of Egs. (15)° In
pafticular it can be shown that fbr small A, Régge cufves cross the axis at a
finite value of kg' (which appfoaches éero as A goes to zero) at the points
- 3/2, -5/2, -7/2, - but‘nof at ;2 -4, -6, <o (see Fig. 1). Also as A = @
Egs. (15) give the standard Coulomb behavior n |k] = A for a pole returning
to the negatiye integer - m where the indeterminacy point is given by

£y = Com o+ (a/nlxl).
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As_a specific example, we coﬁéidered the Regge trajectories for a éingle
Yukawa potential -Aenr/r and we allowed the strength.parameter A  to assume
positive and negative values. Our metﬁod, involving the numerical solution of
rEq; (1) on the TBM 7090 cbmputer, has been éketched in reference 1. We present
our results in thé figures. In Fig. i Wé_give.the £-plane plot for A = 0.05.
 The important features shown afe: (a). In the high~energy.1imit (k2 - @ ) the

curves approximate to the Coulomb dase at the negative integers,'(b)‘Thelfirst

—_———

few curves cross the‘realv,ﬂ axis at the first possible negative half integer
and go to £ = -1/2' as k- - 0, and (c) In the 1imit A - O it appears that
this feature is shared by all curves except the first. The first curve always

extends to the right of £ = -1/2 for 1’2

= 0. We thus find the point £ = -1/2
an accumulation poiﬁt'for an infinite’number of 2éro-energy poles for all A

1 posiﬁive and negative. Figures 2 and 3 shoﬁ.ﬁhe £ plane for A =2 and A =5,
respéctivelya It is seen that as A. is increased, further zero-energy poles
move along the reai £ axis from =00 aﬁd become associated with each Regge curve
;in turn. fhe transition from one curve to anotheﬁ is shown for one éaée’in

' Fig. 4. In Fig. 5 we‘show the position of some,zeromenergy poles as a function
of A, The verticéi line at Re.z = fi/E represents an infinite number of poles,
As A is incfeaéed the secormd zero~energy pole becomeé associated with the
secénd Regge curve at £1= -5/2, the third with.the third curve at Z = =2, and
the fourth with the fourth curve at £ = -5/2, etc. These relations can also be
éeen from Eas. (15). Once a curﬁe has picked up its ultimaté zero=-energy pole

it éan no longer cross the akis and is éonstrained to move énto_the rightuhalf

£ plane with TIm £ always positive. Both the transition shown in’ Fig. 4 and
the existence of quadratic and higher-order equations in ¥ in (15) show that
double poles in the S matrix canland do occur. We must consequently be cautious

5 -fj_ﬂfOé(kg )

in applying Taylor's” proof of the analyticity of a(kg) and B(kg)e
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in the k2 plane. In fact, certéin extra branch cuts may appear. Such effects
afe éppgr}eﬁt' for al.l Régge curve.s except thé first, when A becomes sufficiéntly
large and pOSitiVev(Figs. 6 and 7). Figure 8 shows thevfirst.Regge éﬁrve for
severai Qalues of A, gnd Figs. 9, 1O,Vand.ll give the real and iméginary parts

of this trajectory plotted against k2.1
‘ -iﬁa(k?)

In Figs. 12 and 13 we plot the real and imaginary parts of B(k?)e
- for cuqve'ie['This is é réé} énalytic function with no left-hand cut, and it
appears from ouf results that it satisfies a usual type ofidispersion relatién.
Figuré lh’gives thé.firstvtwo Regge curves for the fepuléive potential 5e-r/r.
It is interesfing to note that both curves.go to the pointv £ = -1/2 as k? = 0,
Eqﬁations (15) show that no curve can passrthrough the points 4 = -3/2, -2,
-5/2 for A<O0 and X >0. It may be true that for A <O and k> >0 no
curve can crosé the axis énd that ali must go to £ = -1/2, but we have not '
‘obtained a general'proof of this.

In concluding this part of the work we remark that if ao'= 0 in ex-
pénsion (6) we still get indeterminacy points, 5ut ‘they now éatisfy £y < -5/2.
In general, increasing the dominant power of r, in the poténtial for small r
pushes to the left the first indeterminacy ﬁoint of thé S matfix in the complex
£ plane. This seems to fit in with-Bethé's6.fesﬁlt that the high-énergy limits
of the Reggé trajectories are aléo pﬁshéd to the left in this case.

The foregbing analysis showé that Regée_trajectories‘in the left;half A
plane have anvexceedingly compiicated behavior due.to the appearance of certain
indetermina;y points. -An interesting fact pointed out by Predazii and Régge7 is

that a repulsive core, whose strength is sufficient to dominate the centrifugal

barrier at r = O, causes the following symmetry in the S matrix:

s(n, k) ; S(=n, k) e, - | ' | (16)
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In that case the left-half X\ plane is no lénger intefesting. We investigated

the effect‘§f adding such a fepulsive core to the single Yukawa. We considered

. - v o

V) = S - 22—,

and took bothr 1} =.O and p}= l. In bpth cases the Regge trajéctories appeayr
- %o be unbounded as - k? - . We followed several trajectories up to an energy of
about ik? - 50 and found that both reél ana iﬁagiﬁary parts of A were still
ihcreasing.' | |
| We regard this as‘an~indication.that a hard core of the type (17) is un~
'physiéal,' It @ay in fact be necessary to téke seriously the investigation of -
Regge %rajeétories in the left;half .X‘ plane{ | |

>Wé are'greatly indebted to P-rofessor‘G° F. Chew and other members of the ‘
Pﬁysics Department of the Lawrence RadiationlLaboratory for advice and encourage-

ment in this work,' We are also gratefui to the staff of the computing center at

the Laboratofy for the use of their facilities.,
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FIGURE CAPTIONS

l; 2, an&vBZ £-plane piots of the first six Regge trajectories for the

potential strengths A = 0,05; 2, and 5, reépectivélyo Some. k=

values are wfitten adjacentito,ﬁﬁe curves, -

Parts of Regge curves L and 5\f§f A 5-2,_2,65, and 3, showiné the trensi-
tion for curve 4 of the point at whigh it cfosseé the real 4 axis,
Posiﬁioﬁé on’the reai )/ axisyof tﬁe»firsﬁ_few zero~eneréy poles as

functions of the potential strergth A. The vertical line at

" Re £ = -1/2 represents an accumulation point of an infinite number of

~poles for all A,

Tk,

e
Re o vs k= for curve 2.
2 .
Im o vs k= for curve 2.

The first Regge curve for several potential strengths. The k2 vaiues

o . o . 2 .
are written adjacent to the curves. (When K is regative, some of

these values_are-shbwn displaced from the real axis for the sake of
clarity. )

2 : 2 sasl
Re & vs kK for curve 1 when k~ .is positive.
. S 2 . 2. i
Im & vs k= for curve 1 when k= 1is positive.
Re o vs k™ for curve 1 when k  1is negative.

i

Re Beal" Vs ke for curve l.

1RO

m e vg ¥° for curve L.

The first two Regge curves for the repulsive Yukawa potential A = -5.
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