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Blankenbecler et a1. 1 have shown that for certain classes of pctentials 

the Schroedinger equation is equivalent to the Mandelstam representation 

combined with unitarity. Given the first Borri a.pproximation for the· scattering 

amplitude the full amplitude can be obtained by a_step-by-step procedure. 

Explicitly, the equivalent equations are 

D(t,s) = v(t) 

p(s,t) = ~ ~ ff dt' dt" 

( 2) 

The integration in (2) :i.s carried out ·over that region of the t' t" space 

where the denomi.nator function is positiv~, We have 

(s·- 4)/4 2 
k a.nd 

2 . 
t == -2k ( 1 ,~ cos e) • ( 3) 

The function v(t) is related to the potential in configuration space by 

V(r) = 1 00 
. 1/2 J dt v(t) exp(-t r)/r 

0 
- -· 1( 

F'inally, the full scattering a.mpli tude can be .wri.t.teh 

. f( s, t) = 1 f D(t',s) dt' 
1( 0 t' - t 

(4) 

(5) 

Now we know that the scattering amplitude :f.n potential scattering 

2 
can be represented.as a sum of an infinite number of Regge pole terms, and 



.. 

is dominated for large momentum trs.nsfe:rs t by ·that pole whic..lJ. lies fa.rthest 

to the ri.ght in ·the complex ~gu.lar-mom-?.ntum plane t • We obta.i.n theref'ore 

D(t,s) , "' t3( s ) t:a( 8 ) , (6) 
t ..... OJ 

--.~' 

where · o:( s) is the posi.tion of thi.s pc.le in. the R plane f'or . a pa.r tieula.r s 

It can be sho"Wn that the_asymptcitic form (6) is .consistent vith K;.s. (1) and. 

(2) provided that Im o:(s) I 0 • However, what Js not sc :::lear is huw 

accurately it is possible to genere:t~ the trajee·tory a( s) by :mear..s +" o.... an 

iterated solution of Eqs. ( 1) and. ( 2 L gi veil. the input potential v( t) • 

We have therefore evaluated t.hE~ trajec:'tory a( s) of the pole. f'art;hest 

to the right in the t plane by t-wo methods. :f'lrst, using a potent.ial 

v( t) . { = 5/9 · for 4 .s; t ~ 400 and zero ou.ts :i.d.e tbi s ra.nge ) ,. we e:arrie:d. 8Ut 

. the iteration of ( 1) and (.2) until ve reac-hed: a value cf 

ap.d.5000) where the oscillatory behavf.m·· impl:i.e·i by (6) had. c.eveloped .• We 

then evaluated the real and imaginary y.a:rts·of o: at several energies by 

looking at the frequency a.n.d. anipli.tud.e of 1;.he csc::fllat.1:.;:ns :i.r~ ·tn.-= dcuble 

spectral function. The be:tavior vf the d•:;·able i:)P'~;;tral t"'!mct:io:r.:. e.s a 

function of t is exemplifie<:i by Figo 1 whe.re we. give the Yf:su.:it e;'!:" r,:n 

equivalent calculation which l.:tses thF? r·elati.vi.st-:lc un:i.tari.ty e:ondlt:i.or~ 

(see below). The second methc•d. used ~ras to e;clye the Sc-hrc.ed:i.nger equat.ton 

using the potential V( r) relat-ed t.o · -?·( t) through Eq_o ( 4) : 

V(r) , ( '1') 
I, 

The comparison of the two methods for the Regge trajec:tory farthest ·~.::. ·tb.e 

right in the £ plane is given in Figso 2 a.nO. 3o lt is seer~ tha.t the 

dispersion~relation approach is a.c~urat.:: "to a.bout OoOl in t.l:!.e £ planeo 1.t 
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proved difficult to obtain.the second Regge trajectory from the dispersion~ 

relation method owing to the insuffieienc.y of the numerical accuracy. The 

calculation was carried. out on an IBM 7090. and requi:t:'ed abou.t five minute.s 

computing time for the accuracy shown~· 

Chew and Frautschi3 t£ve considered the mo1ifications to Eqso (1) 

and ( 2) necessa.cy for . the relativistic case" In this case v( t) is replaced 
-~, 

by a complex potential v( t,s} obtained from erosoing symmetry, and an extra 

factor 4/{s is in~rod:uced tnto the unitarity relation (2).. The equa·tions 

can be solved With the same· amoUnt Of effort as the ·Origina~ equations; 

provided that we know v( t.,s) for all relevant t and s • It then becomes 

possible in principle to treat the coupled integralequations arising in pion~ 
.. · . . . 4 . .. 

pion scattering by this method, The in:t;egr·als, although formally divergent,, 

can be carried out by assuming a:Regge pole behavior for the amplitude, 

Equations (1) and· (2) were solved for a variety of potentials v(t,s) in 

the relativistic case, and the con·esponding Regge trajectc:r·ies determined., 

In Fig. 1 we show one example cf such e. calculation, 1m additional diff'icul~y>' 

4 
first pointed out by Chew et aL ~ · arises from tr& presence of Regge pole 

terms in tp..e crossed channel.; Tb~s implies that ·the potential bas the 

·behavior 

' 
(8) 

and, if Re a(t) ~ 1 for some · t, the unita.rity relati.on becomes divergent. 

on iteratfng Eqso (1) and ('2)o Chew et aL regard this as evidence that many 

particle intermediate states, not included in ( 2).., give a strong repulsive 

contribution at small distances; however, :i.i.; is, difficult to know hm• to 

allow for such effects in the theory. The troublesome behavior implied by 

(8) occurs for those regions of p(sot) with small t and large s, and so 
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we investigated5 the importance of such regions in generating the asymptotic 

behavior (6).· Our procedure was to omit the evaluation .of · p(s,t) from 

( ) l/2 ( . ) 1/2 . Eq. 2 for s >. tan €:l t . . , where e was chosen to be about 45 or 55 

deg. Th1s region of p was simply smoothed to zero :i.n the s direction, 

. by using an eXPonential cutoff of the form . 

. 1/2 l/2 · l/2 I - 1/2 p(s,t) = (a s + b) exp[-a(s.-- · - tan ~·t )/tan 8•t 1 , 

where. a and b are chosen to give continuity in the p function and its 

derivative. In Fig •. 4 we show the effect on the first ·Regge trajectory of 

applying such a cutoff. The potential used in this run was a function of t 

only. We see that the region~· of· the double spectral function omitted do 

not play a vital role. in determining the trajectoryj provided _a and e 

are chosen appropriately. W~ are thus encouraged to believe that if the 
. . . 4 
conjecture of Chew et al. is correct and the divergence in t:he unitarity 

condi t.ion is prevented by a hard core in the potential, then the use of the 

elastic unit~rity condition (2) t.ogether with this cutoff procedure will be 

capable of giving reasonably accurate trajectories in the full pion-pion ~ 

problem~ 

We are greatly indebte.d to Professor G. F. Chew for suggesting this 

investigation and for his .continued. interest i.n its progress. 
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FIGURE CAPTIONS 

Fig. 1. The double spectral function obtained by using the relativistic 

unitarity condition, plottea·as a function of t for several values 

of s • The input function v(t,s) shown has no s dependence. 

Fig. 2. Comparison of Re a(s) for nonrelativistic scattering obtained by 

two methods •. The line represents the solution of the Schroedinger 

equation and the points the equiValent solution of the dispersion 

and unitarity equations. 

Fig. ). As for Fig. 2 for Im a(s) • ,. 

Fig. 4. A comparison of the Re a( s) and · Im ·a( s) obtained using different 

types of cutoff in the double spectral function. 
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Blankenbecler et a1.·
1 

have shown that for certain classes of potentials 

the Schroedinger equation is equivalent to the Mandelstam representation 
. . . 

combined with uni t.ari ty ¢ Given the f'irst.Born approximation for the scattering 

amplitude the full amplitude can-be obtained by a step-by-step procedure. 

Expiici tly, the equivalent equations a.re 

D(t,s) = v(t) ( l) 

( 2) 

The :i.ntegration in ( 2) i.s ~arried out over that_ region of the t' t 11 space 

where the denominator f·unction is positive, We have 

(s ~ 4}/4 and ( 3) 

The function v(t) is related to the potenti.al in configuration space by 

V(r) = 
1 --:n: 

GO · 1/2 · -f dt v( t) exp( -t r)/r 
0 

F'inally, the f'uil scattering amplitude can be wr:i.tten 

f'(s,t) = 1 J D(t' ,s} 
:n: 0 t' = t 

dt' 

( 4) 

(5) 

Now we know that the scattering amplitude :i.n potential scattering 

2 
can be represented as a sum of' an inf'ini te number of Regge pole ~rrns, . .and 
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is dominated for large momentum transfers t by ·~r~t pole whic~h lies farthest 

to the r:i.ght in the complex angt.tlar-mom~ntum plan.E· £ o We obtain therefore 

n( t} s ) - ~< s) to:( s ). ) ( 6) 
t-+ 00 

where a:( s) is the position of this pole in the .£ plane tor a. partic~ular s o 

It can be shown that the asymptotic form ( 6) is consi.s·tent with Eq,s o ( 1) a.nd. 

( 2) provided tha. t Im a:( s ). ·I . 0 o However, what ls not so ~lear is how 

accurately it is possible to generate the trajectory· a:( s) . by IDE:!!';l.nS of an 

iterated solution of Eqs. (1) and (2):, given the i..np'lit potential. v(t)o 

We have therefore evaluated the! ·trajectory a:( s) of the pole fa,rt.hest 

to the right in the t plane by two mE:t:hod.s. ~,lrst~ using s, potential 

v( t) ( = 5/9 ·for 4 ~ t ~ 400 and zero ov.tsi.de thi~. ra.nge), we ca:'ried out 

the iteration of · ( 1) and· ( 2) untll we reached. a value · cf (be:tveen 2000 

and 5000) where the osc:ill~tory beb.avi.o:c implied by (6) ha,d developed~ We 

then evaluated. the real am imaginary parts of a: at sever-al energi.es by 

looking at the frequenc:r a.n.d a:mpl:'.:.tud.e of t:he osc:Hlat.t::-JJJs :i.n ·the doublt> 

spectral function. The be:t-avior vf t:.n~ double 13p~0.t:ral :f'l.:in•:::tior~ as a 

£"·unction of t is exenrpl:i.fi.ea. by Figo 1 wh6re we g.iw,• the resu:lt ot~ &.:n 

equivalent calculation which uses the r·elativistl.c: unit.arity e:ondi.tio~ 

(see below) o . Tne second mei~i'wd used. 'IAT8.S tc c;ol.ve the Sc.hroed.:tnge.r equat;ton 

using the potential V(r) related t~o 

v(r) = 
. 10 . . -2r 

- - 3 [(1 + 2r)e 
9.rcr . 

vl·t) 
\ tbxough Eq. ( 4) ~ 

· '"'Or (1 + 20r)e=c. '] • i ri) . \.I 

The cc-mparison of the two methods f'or t:he Regge trajec:tory f'art;hest ·::.o ·the 

right in the £ plane is given in F:i.gs. 2 and ). It i.s s.ee::r... that the 

dispersion~relation approach is ac:::urs:te ·to a.bout .OoOl in the .t plane. :!.t 
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proved difficult to obtain the second Regge trajectory fromtbe dispersion-

relation method O\.fi:ng to the insufficiency of the numerical accuracy. The 

calculation was carried out on an IBM 7090 ar.d requi.re:d. about five mi.n.utes 

computing time for the accuracy shown. 

Chew and Frautschi3 l".LS.ve considered the mc.,d.ifi.ca;tions to Eqs. ( l) . 

and (2) necessary for the relativist:i.c case. In. t...1lis case v(t) is replaced 

by a complex potential v(tJs) obtained rz:o:rn c:rosaing symmetry, and an extra 

factor 4 /-{6 is introduced into the un.i tari ty reiation ( 2) • The equations 

can be solved with the s.ame amourit of e:f'fort as the original equations., 

provided that we know v( t, s) :for ail rele~rant t ar1d s • · It then becomes 

possible in principle to treat the coupled integral equations arising in pion~ 

. . 4 
pion scattering by this :method. The in:tegr"als? al·thougn formally diverge:n.t, 

can be carried out by assuming a Regge pole behav'i.or for the ampli tud~., 

Equations ( 1) and ( 2) were solved. for a variety of potentials v('t_, s) i:n 

the relativistic case, and "the Ct"lrrespo:ndi.ng Regge tra.jectc:r:ies determined ... 

In Fig., 1 we sho·w one example c.f suc"h a. calculation.. Ar.t addi ticnal. d1.ff.i;;;ul~y 3 

4 
fir·st pointed. out by Chew et aL .- · arises :from ·tr..e: p:r0sen.ce of Regge pole 

terms in the crossed channel., This impHe.s that 'the potential has the 

behavior 

(8) 
s ... 00 

and 7 if Re a( t) ~ l for some 't) the uni tari ty rela:t.ion becomes 'divergent 

on iterating Eqs. (l) and (2). Chewet aL regard. this as evidence ·that many 

particle intermediate states, not included in (2).~~ give a strong repulsive 

contribUtion at small distances; however~ ·lt i.s d.iffieult to know hu1t1 tc 

allow for such effects in the theory. Ths troublesome behavior implied by 

(8) oc~urs for those regions of p(s.1 t) ·w:ttb. small t and large ·. s, and so 
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we investigated5 the importance of such regions in generating the asymptotic 

behavior (6). Our procedure was to omit the evaluation bf p(s,t) from 

.Eq. ( 2) for s1/ 2 > (tan 9 )tl/'2 ; where e was chosen to be about 45 or 55 

deg. This region of p was simply smoothed to zero in the s direction, 

by using an exponential cutoff of the form 

where a and· b are chosen to give continuity in the p function and its 

derivative. In Fig. 4 we shew the effe:ct on the first Regge trajec·tory of 

applying such a cutoff. The potential used in this run was a function of 

only. We see that· the regions of the double spectral function omitted do 

not play a vi tal. role in determinip.g the trajectory, provtded a and 9 

are chosen appropriately. ·We are thus encouraged to believe that if the 

conjecture of Chew et a1. 4 is correct and the divergence in the unitarity 

condition is prevented by.a hard core in the potential, then the use of the 

elastic unitarity condition (2) ·together ~nth this cutoff procedure will be 

capable of giving reasonably accurate trajectories in the full pion-pion ~ 

problem. 

We are greatly indebted to Professor G. F. Chew for suggesting this 

inves.tigation and for his continued :i.nterest i.n its progress. 
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FIGURE CAPTIONS 

Fig .. 1. The double spectral function obtained by using the relativistic 

uni tari ty _.condition; plotted as a function of t for several values 

of s ~-The -input function v(t,s) shown has_no s- dependence. 

Fig .. 2. Comparison of Re a(s) for nonrelativistic scattering obtained by 

two methods• The linerepresents the solution of the Schroedinger 

equation and the points the equivalent solution of the dispersion 

and_ uni tari ty equations. 

Fig. 3. Af3 fo':r Fig. 2 for Im a(s) • 

Fig,· 4. A comparison of the Re a(s) and Im a(s) obtained using different 

types of cutoff in the ·double spectral function. 
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