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ABSTRACT 

Apparent ambiguities of definitions of masses and lifetimes of 

unstable particles that depend either on the introduction of unperturbed 

Hamiltonians and their eigenstates, or on an assumed correspondence be-

tween resonances and elementary fields, are noted. The S-matrix defini-

tion is unambiguous; the positions-of poles in the first unphysical sheets 

are given by the zeros of the Fredholm denominator function, which is a 

function only of an appropriate center-of-mass energy. The mass and life-

time of a particle are consequently independent of the variables of the 

scattering process or of the particular process to which the particle con-

tributes. The invariance of the Fredholm denominator under charge con-

jugation, which is a consequence of CPT invariance, ensures the equality 

of masses and lifetimes of relatively conjugate antiparticles. 

Unstable particles are closely .akin to stable ones; by the fact~ 

ization of the residues of unstable-particle poles, unstable-particle 

scattering r'unctions quite analogous to ordinary scattering functions 

can be unambiguously defined. Like ordinary scattering functions they 

are defined only on the mass shell, the fixed masses of the unstable 

particles being well-defined complex numbers. The needed factorizability 

of the residue is an immediate consequence of Fredholm's second theorem. 

The continuation, by means of unitarity, through the multiparticle 
. 

physical cuts onto unphysical sheets is discussed. 
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I. INTRODUCT-ION 

1 
Lliders and Zumino have given a proof that the mass and life-

time of a particle are the same as those of its conjugate antiparticle. 

Their proof is based on an e.xamination of the positions of poles in matrix 

elements of the formal resolvent of the exact I~ltonian. The matrix 

elements used are those corresponding to a single-particle eigenstates 

of an unperturbed Hamiltonian. That such quantities exist, in a rigorous 

sense, is somewhat doubtful. In field theory exact and unperturbed 

Hnmiltonians appear usually to act in mutually orthogonal subspaces, the 

o.ction of one Hamiltonian on eigenstates of the other being undefined. 2 - 6 

As a consequence, methods that avoid the use of unperturbed eigenstates 

are now generally employed in rigorous work. Whether these rigorous 

methods can provide answers to questions reg~rding lifetimes of unstable 

particles is not yet known. 

Beyond this technical difficulty there is the practical question 

of whether the definition of the mass and lifetime introduced by these 

authors is unique. Does it depend, for instance, on the choice unper-

turbed Hamiltonians or on the choice of eigenstate? And how is the 

position of this pole related to experimental determinations of the 

masc? 
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A number of other definitions for the mass and lifetimes of 

7-15 unstable particles have been proposed and studied. The most 

prominent general definition is the one of Peierls, who suggests that 

the mnss and lifetime be defined by the position of a pole in the one-

particle propngator, the two-point Green's function. This definition 

bns the advantage of obviously not depending on an arbitrary separation 

into parts of the exact Itamiltonian. However, it introduces the very 

obscure question of the connection between fields and particles: which 

field, if nny, is it that corresponds to a particular observed resonance? 

· The work of Zimmerman16 and Nishijima 17 lo.as emphasized that a stable 

14 
particle need not be associated with a fundamental field, and Schwinger 

hns stressed that a fundamental field need not possess a stable particle. 

As the situation is probably the same for unstable particles, the entire 

question of what relations, if any, exist between the basic fields and 

the observed stable and unstable particles (resonances) becomes an acute 

18 
basic problem for all of field theory. In the present context, since 

the Green's function depends on which field is used, the propagator 

definition apparently becomes ambiguous Unless a unique correspondence 

between unstable particles and fields .can be established, or the position 

of the pole can be shown to be the same in all propagators. 

In this paper questions involving the masses and lifetimes of 

~~stable particles are examined in the framework of S-matrix theory. An 

important virtue of this approach is the direct and unambiguous manner in 

which unstable particles are treated. That S-ma.trix theory should be 
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well adapted to the treatment of unstable particles might at first appear 

surprising, for in S-matrix theory, much more than in field theory, the 

stable particles have, at the outset, a manifestly preferred status. Yet 

in spite of this it develops that a natural framework for the discussion 

of unstable particles is provided, one in which stable and lmstable part-

icles arc closely related and are treated on a quite similar footing. 

In an S-matrix approach, the mass and lifetime of an unstable part-

icle are defined by the position of a pole of the S matrix in a center-

of-mn.ss 19 20 energy variable. ' A fiTst requirement on an acceptable 

definition of the mass and lifetime of an unstable particle is that it 

provide unique, unambiguous universal constants that do not depend on 

the particular process in which the particle occurs, or on other free 

21 
variables. Accordingly, our first task is to verify that the position 

in the center-of-mass energy plane of the pole corresponding to an 

unstable particle depends neither on the other variables of the S matrix, 

nor on the process in which it occurs. In doing this we shall obtain 

an equation defining the position of the pole. The use of CPT invarianee 

allows this to be shown invariant under charge conjugation, which proves 

that the mass and lifetime of a particle are equal to those of its con-

jugate antiparticle. Further analysis shows a quite close relationship 

between stable and unstable particles. A general proof of the factor-

izability of residues of simple ·poles of the S matrix is also given. 
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II. FUNDAMENTAL EQUATIONS 

The bnsis of the analysis will be the S-ma.trix formalism developed 

in reference 22. A general process is described by a function M(K', -K"), 

which is a covariant generalization of the scattering function R = S - 1 • 

In this formalism the covariant unitarity relation takes the form 

l-i(K I' -K") * "' + M (K" 1 -K I ) = - !: f M.(K', -K) K·a M* (K", -K) . 
K 

(2 .1) 

Neglecting for the moment contributions associated with disconnected parts, 

which are discussed in Section V, we write the M function in the center-of-

muss frame in terms of the matrix M(E ) , defined by 
+ 

M(K', -K") I 
c.m. 

= ( i'l', A', r• I M(E ) I ~", A", r") N(E) . 
+ 

where N(E) is the normaliz~tion factor, 23 

N(E) = 
1/2 

( (21t) 4 5(E' -E) 5(P') (21t) 4 B(E" -E) o(P") ) - "" 

(2.2a) 

(2 .2b) 

Here E" and E' are the total c.m. energies of the initial and final 

particles, and P' and P" are the corresponding total momenta. The 

symbols· A, ~~ and r represent sets of variables describing spin 

states, angle variables, and the energies of various subsystem::: of particles, 

respectively. The plus.on E+ indicates we are considering M(E) to 

be the limit from above the real energy axis of a function defined there. 

Type variables have been suppressed on the right of (2.2a). 

In terms of the matrix M(E) the unitarity relations take the form 
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-M(E ) p(E ) Mt(E ) 
+ + + J (2. 3) 

where the dugger represents Hermitian conjugation and p(E) is the 

uensity-of-stutes factor defined by 

n 
i 

= dU dl'(2;r) - 4 dE dP p(E, r., r) -
p(E, r., r) being the diagonal elements of the matrix p(E) 

(2. 4) 

Hatrix 

multiplication is understood to mean integrations over dU and dr , 

together with sums over the spin states and the various particle combin-

utions (configurations) that arc energetically allowed at the specified 

energy. 

The symbol M(E_) is defined to be the limit from below the real 

energy uxis of the matrix defineQ there by24 

M(E) = t * -M (E ) (Im E < 0 ) • (2.)) 

The unito.rity relation, Eq_. (2.)), can then be written in the alterne.tive 

form 

= M(E,) p(E ) M(E ) • ..,. + -
(2. )a) 

The matrix p(E) has a different form in each interval of the 

energy o.xis, a new subspace be~ added at each threshold energy. We 

shall represent by pN(E) the expression for p(E) that is valid in the 

Nth interval. The continuation of M(E+) cl"ockwise through the !:!_th 
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interval will be represented by ~(E), and M _1 (E) will represent the 
N . 

counterclockwise continuation of M(E_) through the ~th interval. In 

terms of these values on sheets adjacent to the physical sheet, Eqs. (2.3) 

and (2.)a) can be written, for E in the ~th interval, in the forms 

(2. 6) 

and 

M(E ) 
+ 

- M 1 (E ) = M(E ) rP(E ) M 1 (E ) 
- + + + - + N N 

(2. 6a) 

By virtue of the postulated analyticity25 of M(E) on the boundary of the 

physical sheet, these relations, valid for real E , imply that the e~uations 

t * t * M(E) + ~ (E ) = -M(E) pN(E) ~ (E ) (2.7) 

and 

M(E) - M _1 (E) = M(E) pN(E) M _
1

(E) 
N N 

, (2. 7a) 

considered as functions of the complex variable E , are valid in a 

neighborhood of the interior points of the ~th interval. 

· N . l/2 
Multiplying Eqs. (2.7) and (2.7a) by (p (E)) on both the 

right and left, and solving, one obtains, formally, 

and 

(pN(E) )l/2. M(E) (pN(E) )1/2 

(2 .s) 

(pN(E) )1/2 M(E) (pN(E) )1/2 
1 

(2. 8a) 



:.· 

UCRL-lCY26l (rev.) 

-7-

where the quantity 

(2 .9) 

ha0 been introduced. Here TN is the unit matrix in the subspace where 

N 1=0 In terms of f!~ (E) alone, these equations become p 

N * t l 
[SN (E )) = 

SN(E) 
(2.10) 

und 

El/2 [s N(E) TNJ i/2 l · [SN (E) - IN) = 
~(E) ' -l 

N 
(2.10a) 

where we have used the relation 

* N * pN(E) [ PN (E ) ) = 1 (2 .ll) 

which follows from the reality of pN(E) in the Nth interval, and the 

1/2 quantity E defined by 

= (2 .12) 

Equation (2.10) is the simple expression of unitarity. The general 

relativistic kinematic factors for the multiparticle processes are dis

played in (2.9). The quantity E is a matrix that gives plus or minus 

unity when acting on states of odd or even numbers of particles respectively. 

If only even numbers of particles occur in the configurations associated 

with an interval N 1 Eq. (2.10a) simplifies to 

N 
S _1(E) 
N 

1 (2.13) 



UCRL-10::261 (rev.) 

-8-

. 26 
a rc~ult which ls well Y~own. 

The sheets obtained by continuing clockwise ~·om the physical 

sheet through some physical interval of the energy axis will be called 

first unphysical sheets. These are the unphysical sheets whose points 

arc closest, on the Riemann surface, to the physical points, and whose 

poles, consequently, if close to the physical interval give the usual 

resonance effects. The value of S(E) on these sheets is given directly 

by 

.1 (2.14) 

where ~(E) N 
is evaluated on the physical sheet; S on the first unphysical 

sheet is the Hermitian adjoint of the inverse of SN at the conjl~ate 

})Oint on the physical sheet. 

SN(E) will have various cuts on the physical sheet and these will 

evidently be reflected as cuts on the first unphysical sheets. The only 

other singularities on the first unphysical sheets will be at points E 

for which the inverse of SN(E) fails to exist. 

-·-

If SN(E) were a matrix of finite order on discrete indices, the 

expression for the inverse would be 

= 
adj SN(E) 

det SN(E) 
(2.15) 

Both the nwnel·ator and denominator, being finite combinations of matrix 

elements of SN(E) , would be regular at regular points of SN(E) . 

Hence the only possible singularities of the inverse in a domain of 

regularity of SN(E) would be points where the determinant in the 
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ucnominator vnnishes. This determinant could vanish only at isolated 

l~ints of any domain of regularity of SN(E) that includ0d the physical 

points, since otherwise it would vanish identically, which wou)d conflict 

with unitarity at the physical points. Thus the only sing~larities in 

the imuees of the interior of the physical sheet would be isolated poles. 

The positions of such a pole, being at a zero of det S(E) , a function 

of E alone, would be independent of the other variables. It would cor.-

sequently occur at the same point in any matrix element in which it 

occurred, not wander about as a function of the remainir~ variables of 

" Ll • 

Our matrix SN(E) is generally not of finite order in discrete 

indices. It is a function of the many continuous variables represented 

by the sets r. and r The direct generalization of the expression 

(2.15), used above, to the case of continuous variables is provided by 

Fredholm theory. So the immediate task is to verifY that the conditions 

needed for the validity of Fredholm theory are satisfied, and to there-

by establish rigorously the analogs of the properties described above. 

III. APPLICABILITY OF FREDHOlM THEORY 

The standard Fredholm equation is 

¢(x) f(x) + f.. J K(x, ~) ¢(y )dy 

R 

In matrix notation, the case f.. = -1 becomes 

(I + K)¢ = S ¢ = f 1 

().1) 

(3 .2) 
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the formal solution of which is 

(3.3) 

l~cdholm theory gives an explicit expression for the inverse operator. 

This we write as 

where 

and 

-1 s adj S 
det S 

adj S = I det S- [ K + Tr K(2 ) + (2!)-1 (Tr)3 K(3) + .•• ] 

(3. 5) 

(3.6) 

Here K(n) is an operator in a space that is an n-fold tensor product 

of copies of the original space. It is defined in terms of the deter-

minant of an n-by-n matrix of K's by the equation 

< X x • • • x !K(n) I y y • • • y ) 
l' '2' ' n l' 2' ' n 

( x IK! Y ) · • • • .. • • • • • • • • (x !KI Y ) n l n n (3.7) 

The symbol Tr stands for trace, the sum (integral) over equated corres-

pending initial and final variables.· 

To apply the formula to our case, we make the identification 



UCHL-10'261 (rev.) 

-11-

(sec Eq. 2. 9) 

K = (3.8) 

A sufficient condition27 for the existence of the numerator and denominator 

in ().4) is the boundedness of K over the region R , which will be 

chosen to be bounded. 

Tne postulate of maximal analyticity states that M(E) is a 

meromorphic function of all its variables at all values of these variables 

corresponding to points on the physical sheet, including its boundary 

points, except at certain boundary points called singularities required 

by ~~itarity. Tnese are the generalized branch points terminating the 

cuts that bo~~d the physical sheet, and except also at points at which 

the expressions ki(n? r, E) for the individual momentum-energy four-vectors 

are not regular. The only poles allowed on the physical sheet arc those 

associated with the stable rnrticles. The points of the physical sheet 

are points in the space of reduced variables (n I J r I J E, n"' r") such 

that the set of points ( k (n 1 r• E) k (n" r" E)) i J J 'j' J 
is a point of 

the physical sheet constructed in the manner given in reference 22. 

* Consider first values of E such that the points represented by 

( n I J r 1 
J E, n"y f") are regular pOintS Of the phySiCal Sheet for all (real) 

physical vo.lues of the (n. r) in R • * For these E , the H(E) is 

a1mlytic, hence continuous, over the closed region R . Thus M(E) is 

bounded over R , and the numerator and denomir.ator on the right of 

= = 
adj SN(E) 

def ~(E) 
(3.9) 
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urc wcll-d~fined functions, provided the 

(3.10) 

are bounded over R . 

PN(E) The matrix is u tensor product extending over the density-

of-states ~etrices p (E) 
c 

of the various configurations that ure available 

in interval N PN(E) Specifically, is given by 

= JI 
N e p (E) 

c c 
p (E) 

c 
(3 .ll) 

where p (E) acts in the subspace corresponding to the ~th configuration, 
c 

8 N is unity if the ~th configuration is available (energetically 
c 

__ N 
o.llowed) in the Nth interval, otherwise zero, and Y is the opera tor 

that pl·ojects onto the subspace of configurations available in the Nth 

interval. To show the existence of tre numerator and denominator of 

(3.9h it is sUl~ficient to show that the variables 0. and r can be 

chosen so tr~t the physical region R is a bounded region and the corrcs-

ponding fQ~ctions p(n, r, E) bounded over R • 

The density tr.atrix p(E) is easily computed by using the relativ-

istic formulas (see Appendix A) 

l~ a\~. d)P N d3 
a3P 

N 
TT ~~ n ~ n dE an I I = = ~. • I w. E r E n n 
i=O l. n:;;l 

(.L) 

n=l n 

Here (k., w.) are the momentum-energy vectors of the (N + l) particles, 
~ l. 

(P, E) is the total energj·-roomentum, and E is the center-of-rr~ss energy "" . . n 

of the system ~ consisting of particles zero through 
n 

n • The vector 
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0 is the momentum of r:articlc n measured in the rest fro.me of the 
--:!1 

system 

r 
is (D 

n 

r 
(D 

n 

where 

E n 

I: 
n 

the 

:= 

:= 

and 

reduced 

n 
n 

and 

energy 

[a + m ) { 2 2 1/2 
l1 n 

~ represent its angles and w~gnitude. 

2 2 l/2} 
[~ + (En-1) ) / E n 

J 

1/2 2 2 l/2 2 
[~ + mn ] + [a + (En-1)2] l1 

linking the identifications · · 

N 
I I dn and i I n J 

n==l 

N-1 

dr n dE /2-r. n 
n==l 

The 

we have, using the definition (2.4), the relativistic multip:J.rticle phase-

space factor 

N 

p 
l 

~ n 
n==l 

q 
l1 

2 (2n) 

N 

n 
i==O 

The boundedness of p is apparent; in fact, it vanishes like ~ on the 

bo~~do.ry where the nth relative momentum vanishes, and like 

[)(N+l)-5]/2 
at the energy threshold. 

Inspection of the Fredholm solution shows the uni~ueness of the 

definition of the masses and lifetimes associated with the poles of the 
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type v:e have been discussing; the zeros of the 
N det S (E) co.n occur 

only at i~olnted points of the domain of analyticity of SN(E) , and the 

u~cocintcd poles cannot wander about as functions of the rerr~ining 

variables. It is, of course, not necessary that the pole be present in 

every matrix element of H , as there can be compensating zeros in the 

numerator. Indeed, if the nonvanishing matrix element~ of r-1 were, in 

~orne representation, to group into small submatrices along the diagonal--

as would happen if there were conservation laws--then the vanishing of 

the determinant associated with a submatrix would produce poles only in 

this submatrix, at the image point in the unphysical sheet. This accords 

with the physical expectation that a resonance will appear in all reactions 

having the same q_uantum numbers, but not in others. 

* So far we have considered only those E such that for all 

(n, r) in R the points (n', r•, E, n11
, r") are on the physical 

sheet. Tne denominator, det SN(E) , is of course a f<mction of E 

alone, so that a zero of this function persists when ~ and r are con-

tiriued outside of R • (The integrations in n and r •..;ill continue 

to be over R , of course. It is the free variables in o.dj 3 that 

* will be freed.) For the original values of E , the Fredholm formula 

will continue to define the function so long as the kernels rerr~in regular. 

As we continue in the various variables, boundary points of the dorrzin 

of validity of the Fredholm formula will be reached when singularities 

of the kernels reach the region of integrailion R • The usual situation 

will be that a single singularity comes to some interior point of R . 

But if this occurs, one can distort the contour of integration away from 

the singularity and thereby extend the domain of validity of the Fred-

holm theory. As remarked by Polkinghorne, the situation is very similar 
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to what he and others have been doing using Feynman-type formulas. One 

can continue to use the Fredholm formula unless a singularity of the 

kernel either comes to an end point of the integration region, or pinches 

the contour against another of its singularities, or retreats to infinity 

carrying the contour 'With it. One would expect that a detailed analysis 

would show that the limits of the domain of applicability would be just at 

the second sheet cuts given by the Landau equations, with both first and 

second type singularities included. But the unstable particle poles, and 

their associated branch points, would now come out automatically from the 

vanishing of the Fredholm denominator and from the pinching of the contours 

against these poles. The pursuit of these questions is outside the scope 

of this pa.per. 

There are similar expressions defining the scatterL~ ftmction in 

the sheets obtained by counterclockwise continuation up from the bottom of 

the energy cuts [see (2.10a)]. Using the expressions obtained for the 

vnlues on the various unphysical sheets, one can continue the right-hand 

side of ().9) through cuts onto unphysical sheets and establish the 

existence of SN(E) o~ second-order unphysical sheets, and so on. 

The methcxls discussed here allow continuation only through the 

energy cuts associated with physical processes, where the simple tmitarity 

relations are validj what types of singularities lurk behind other cuts 

we do not know. However, it is reasonable to apply the name "particle 

poles" to the simple poles of the type we have been discussing, which 

are associated with the vanishing of Fredholm denominator 6(E). If 

this terminology is adopted, the masses and lifetimes of the unstable 
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particle~ will be fixed constants of nature, just like those of the stable 

particlc!j. By reversing Eq_. (3.9) and considering it an expression for 

S on the physical sheet in terms of S on the first ~physical sheet, 

the stable particle poles are seen to be a special case of the particle 

poles defined above; they correspond to the vanishing of the Fredholm 

determinant on the first unphysical sheet (see below). 

In view of these similarities between stable and unstable particles, 

the idea of introducing unstable-particle scattering functions presents 

itself. These functions would, like ordinary scattering functions, be 

defined only on a manifold consistent with mass and conservation-law 

constraints, but the masses would now be fixed complex numbers, the fixed 

masses of the unstable particles. 

These generalized scattering functions can be defined by factor

ization of residues of particle poles. That is, for ordinary 1'" 11illctions 

the unitarity relations imply that the residue of a stable-particle pole 

of o.n M function is a product of two other M functions, provided the 

class of M functions is extended to include also the three-particle 

functions usually called coupling constants. Accordingly, let us apply 

the name "generalized M function" to each of the two factor~ of the residue 

of a single-particle pole of any (connected) generalized M function, 

where o. single-particle pole is defined to be the pole associated with a 

simple zero of a Fredholm denominator 6(E) • 

That the residue of a pole associated with a simple zero of the 

Fredholm determinant is just a product of two factors is an immediate 

consequence of Fredholm's second theorem. This theorem says that if 
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dct S(E ) = 0 , then for any V' the ~uantity 
r 

v = adj S(E ) v• (3.12) 
r 

is a c.olution of the e~i.lation 

S(E )V = 0 
r 

(3 .13) 

Moreover, it says that aside from multiplicative constants, this solution 

is unique, provided adj S(E ) 
r 

is not. zero. The immediate consequence 

is factorizability: 

(a jadj S(E )j ~) 
r 

v w t 
a ~ 

If adj S(E ) were zero, then, by virtue of its analyticity in 
r 

each element of adj S(E) would contain at least one power of 

But then if det S(E) had a simple zero, the inverse 

= 

would be regular at E = E , and there would be no pole. 
r 

(3.14) 

E 

(E - E ) • 
r 

It will be observed that Fredholm theory not only gives a simple 

proof of factorizability, but also provides an explicit formula for the 

product of the two factors, and hence also, aside from ·an indeterminant 

scale factor, for the individual M functions: every M function will be 
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expressed explicitly in terms of others by means of Fredholm formulas. 

'l'his gives, for exo.mple, explicit exprqssions for coupling constants 

in terms of the scattering functions at image points. The expressions 

also provide a basis for the analysis of the properties of the general-

ized M functions. For instance, from the anti-Hermitian analyticity 

property of H functions, 

(a IH (E) I 13) 
c 

and the relation 

M (a· E· 13) c ' , = t * * * -H (a ; E ; e ) 
c 

lim 
E-E 

r 

(E - E ) M (a; E; 13) == Res M (a· E · 13) r c c ' r' 
().17) 

which defines the generalized 1-1 function ~ , one conc1udes that, with 

the appropriate choice of the indeterminant scale factor, H is also 
1 

unti-Hcrmitie.n analytic. In (3.18) the variable y corresponds to one 

particle of ~~ss E 
r 

The usual spinor transformation properties e.re easily established 

for ~;eneralized M functions, which may play an important role in the 

development of S-matrix theory. We have mentioned them here to emphasize 

the close kinship of stable·and. unstable :r;articles. 

D/. l:."QUALITY OF THE MASSES MTD LITETIMES OF CONJUGATE ANTIPARTICLES 

The mass and lifetime of a particle are determined by the position 

of the zero of a Fredholm denominator, 6(E) • That a particle has the 

same mass and lifetime as its conjugate .antiparticle follows from the 
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invn.riancc of 6 under charge conjugation. This, as will now be shown, 

is a consequence of invariance under CPT. Consider first the first term 

in the formula for N det S (E) • It may be written 

Tr K(E, T) = L J r!(K', -K") K'•o 5(E, T) 

K'K" 

1 ( 4.1) 

where 

5(E, T) = N(E)5T'T 5T"T·5(0'- U") 5(r' - r") ( 4.2) 

Here T is a set of type variables and N(E) is defined in (2.2). The 

CPI' identity is, for T' = T" ' 
28 

~(K', -K") = ~(K"T' -K' ) T , ( 4. 3) 

whcr.e the subscript . T on K indicates a transposition of the order of 

the variables of K Substitution of (4~3) into (4.1) gives 

Tr K(E, T) ' = L 
where the superscript tr 

J 
K'K" 

"-tr on a 

rl(K"T' - K' ) K' ·otr 5(E, T) T. (4.4) 

indicates the change of order of spin 

indices needed to compensate for the reversed order of variables on the 

two sides of (4.)). 

This term, Tr K(E, T), is to be compared to the charge-conjugate 

expression 

Tr K(E, T ) 
c =2: J 

K'K" 

r!(K', -K") K'·o 5(E, T), c 
( 4. 5) 

in which T is the set of type variables obtained by changing each type 
c 

index of the set T to the index specifying the qonjugate antiparticle. 
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An equivalent expression is 

f 
K'K" 

Jl(K" c' -K' ) K"•a t>(E, T) , c (4.6) 

where K' c 
and K" 

c 
have type variable T' c 

and T" 
c 

respectively. The 

fact that K' and K" are dummy variables has been u::;ed to interchange 

the prime and double prime. 

Recalling that K is the set obtained from K by reversing the 

order of variables, changing all particle-type indices to those specifying 

the corresponding antiparticle, and dotting the spinor indices, we see tr.a.t 

K"c and K"T differ only in that their spinor indices are relatively 

dotted. 

The rules for changing the spinor index types on M function::; 

have beenderived in SI and SII • The "metric tensors" that effect 

the changes are 

g~ = (k • ~) -1 a mi J 

(k . al3&)m1 
-1 

~a = J 

t>a (c-l)lkt g = , 

.gaf) = caf3 , (4.7) 

g •• = c~ ~ 
, 

e = (c-llix 

When these are contracted with M functions, following the usual contraction 
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rule that upper indices contract Yith lower, one obtains the M functions 

with altered index type. The matrices C and 
-1 c are to multiply M 

from the left; transposed matrices should be used if they multiply from 

the right. Application of ~hese rules gives 

~(K" -K' ) 
T' T = C K"·a ~(K" , - K' ) K' .-a C -l . (4.8) 

(K" ) c c (K I ) 

Here it has been assumed, with no loss of generality, that the original 

indices of K' and K" are all lower. undotted. Using the relations 

= K' .a 

and 

"' K'·a K'•O = I I (4.10) 

one finds that 

Tr K(E, T) = Tr K(E, T ) c 
( 4.11) 

Thus the first term of the series for 6 is invariant under charge con-

jugation, as a consequence of CPT invariance. 

The proof carries over with minor changes to the trace of any power 

of K(E, T) • Since every term in the absolutely convergent series for 

6 is a combination of traces of products of powers of K , we obtain 

the desired result, 

6 (E, T) ( 4.12) 

In the extension of the proof to traces of products of K(E, T), 
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one problem regarding phase factors arises. The general CPT identity is 

H(K' I -K") = (-l)N(K ', -"'K") 
M(-K', K") 

= (-l)N(K ', -"'K") ,..(K', 
v - K" ) 1-1 (K" I - K I ) T T ' 

( 4.1)) 

where N(K) is the number of dotted indices of the set K , and o(K) 

is the phase factor associated with the reversal of order of variables 

of ·K • The normal connection between spin and statistics requires 

a(K' 1 - K") to be (-l)N(K', -K") if T' = T" • T'nis fact wus used in 

Eq. (4.)) . The unitarity relations, together with analyticity und the 

normal' connection between spin and statistics, require that 

o(K', -K") = * "' a(K", -K') (4.14) 

and 

"'. 
a(K', -K") = a(K', -K) (-l)N(K, -K) a(K, -K") (4.1~) 

These conditions ensure that, in the trace of a product of K's, the factors 

(-l)N will just cancel the a's, as they do for the first power of K. 

V. CONCLUDING REMARKS 

Complications due to disconnected parts have been ignored in the 

preceding sections, 29 In the original version of this paper, section 

V was devoted to the discussion of these complications, which occur for 

cuts involving three or more particles. It was found that certain pole 

terms prevented the direct application of Fredholm theory, for the case 

of continuation through three-particle cuts. Publication was accordingly 
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delayed until these problems were resolved. Olive)O has now ex~mincd 

the question in detail and has shown that the pole terms can be absorbed 

into regular terms by a redefinition of certain contours and thn.t l;red

holm theory is indeed applicable. Although Olive's analysis was for a 

specific cut involving only three particles, it nonetheless now seems 

very lilwly that Fredholm theory will continue to be applicable in the 

genern.l case, and that the discussion of unstable particles given here 

will be generally applicable. 

If this is the case then it may be concluded t~~t the mass and 

lifetime of an u.nstable particle can be defined directly by the po::;i tion 

of a pole in the S-matrix; this definition provides univcr~~l cons~nts 

that depend neither on other variables such as scattering CJ.nfl.e;~ or 

subenergies, nor on the process in which the pole occurs. The :;.osition 

of the pole is at a zero of a Fredholm denominator. Because this is 

expressed in terms of traces, the operation of charge conjugation is 

cqui vo.lent to that of CPT-inversion, and the equality of the rr..:.sse::; and 

lifetimes of conjugate antiparticles follows from CPT-in~rinnce. 3y 

virtue of Fredholm's second theorem the residue of a ::>ir:rp1c :pole is the 

product of two factors one of which contains all the dependence on 

initial variables, the other of which contains all dependence on the final 

variables, where the separation between initial and final is rn.ade in the 

channel in which the pole occurs. This factorization allows the connected 

part of the scattering functions for unstable particles to be defined 

unambiguously, up to a phase factor. Because the factorization property 

...------ -- ---·--··------~-- -
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i~ ~1lid only at the pole vulue, these f~~ctions are defined oruy at the 

physical mnss vulue, which is, however, of course complex. 

The idea thn.t the Lfu:ler::;-Zmnino result regarding themas::;es and 

lifetimes of conjugate particles should be provable in S-rr~trix theory 

is due to M.DerSarkiGsian, who participated in the initial stages of the 

work, and with whom the author had many useful discussions. 
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APPEiiDIX A: RElATIVISTIC PHASE-SPACE FACTOR 

The ph.nse-srnce density matrix P has been defined by the equation 

dE 
21! 

(A.l) 

The coordinate~ n and r will be introduced in the followine 

w~y: Let the subsystem composed of particles zero th!·o~~h n be called 

the nth ~ubsystem. Let its rest frame and rest ~~ss be denoted by 

Let k
1

. and K. . denote the momentum 
J lJ 

vcctorc of the 1_th particle and the ith sub::;yotemi rcspect:i::cly, a5 

measured in 

lv1 = n 
(V. 

(k 

2 
nn 

2 
nn 

T11cse quantities are related by the eq_u:::.tions 

2 1/2 
[ (K )2 + 

2J1/2 
+ m ) (Mn-1) j n n-l,n 

2 1/2 I 2 2-ll/2 
+ m ) k + (l-1 1) J n l nn n-

(A.2) 

T11e total rest ener~J is E = lf~ • For angle variables let ;.;.::; choose: tnc 

angles describing the N vectors k (n::.: 1,2, •••,N), e!.nd :·ol· ·_(,c: I 
nn 

the N - l quantities M (n ::: 1,···,N-1) . T11ese, ~.oge: he;· '.~ith 
n 

E - 1\ and p 
J give the required 3(N + l) 0 

!! "' 
Tho.: Jacobian of the transformation is calculated in two s:e:ps. 

First we take the variables ,t
1 

(i = 0, • • · ,N) to the variablc.:s 

,t11 ( i = o, · · ·, N) with ,t00 defined to be the total momen lum P . 

Tne Jacobian of this transformation is 

= [fr 
. i=O 

-1 
~· } 

(A.3) 
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'.Jhl!!'(! the reduced energy of the !!_th subsy~tem is 

2 2 1/2 1/2 
(k + m ) (k 2 + M 2) 

r nn n nn n-1 
(.!) = 

[(knn 2 
2 1/2 1/2] n 

+ m ) + (k 2. + M 2) 
n nn n-1 

(k 2 
2 l/2 2 2 l/2 I !4 (A. 4) 

= + mn ) (knn + Hn-1 ) n nn 

Tran~forming to these new variables, we have 

N 

TI 
• J [

(k dk 
2

) 1 2(2~) 3] K·a J 1 = nn nn 
n=l 

. N-1 

N 
d r.' _l,-r 
-" dr 2r< p :::.: ' . 

dJ.'J 
n 

2;r 
p , 

(A.)) 

where dr r~G been interpreted as -~ (dM /2rr) • The Jacobian function 
n=l n 

o (M )/'0 (k 2 ) , which is the determinant of a triangular rna 1.:::-ix, is . n nn 

J2 

Thus 

by 

N 

= i i 
j l oM /'Ok 2 

n nn 
n=l 

N ,--
- l l (l/2) 

r.=l 
[ 

2 2 l/2 2 2 1/~ ? r) 1/2 ~ 
(k + m ) + (k + M 

1 
) (k ~ + m -) (}: ·-

nn n nn n • nn :; nn 

N 

J1 ~ ~N 
N 

r = IT (l/2 m red) = TI mi n 
n=l i=O 

(A. 6) 

\-:e have· 

L~~) N tr fnn/ (2~ )2]} IT "' p = mi K•a 
I 

L i=O 

To· display the behavior near threshold1 one may replace the 

(A.7) 

M 
n 
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l-1' = M - l-1 ° = 1-1 (M 
1 

+ m ) ~ k 
2 

/2m red (A.8) 
n n n n n- n nn n 

und introduce 

N N 

E' = I M' ~ I k 2/~ red 
n nn n (A.9) 

n=l i=l 

In .terms of the dimensionless quantities 

X 2 = M' /E' n . n 
. (A.10) 

we have 

N dN' N N 
k dlv1 I 

11 n 1 IT TI nn n "' p 
21\ = mi K· a 

~ (2rr)3 
n=l. i=O n=l 

N-1 
p' dE' n d.X2 - . 27i 

, 
n (A.ll) 

n==l 

with 

p' ~ 

(A .12) 

The boundaries of the :physical region are at X = 0 , for any n , and 
n 

at E = 0 • The ·X are bounded by the condition that~~ X 2 = 1 . 
n . n 
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