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ABSTRACT

Apparent ambiguities of definitions of masses and lifetimes of
unstable particles that depend either on the introduction of unperturbed
Hamiltonians and their eigenstates, or on an assumed correspondence be-
tween resonances and elementary fields, are noted. The S-matrix defini-
tion is unambiguous; the positions-of poles in the first unphysical sheets
are given by the zeros of the Fredholm denominator function, which 1s a
function only of an appropriate center-of-mass energy. The mass and life-
time of a particle are consequently independent of the variables of the
scattering process or of the particular process to which the particle con-
tributes. The invariance of the Fredholm denominator under charge con-
Jugation, which is a consequence éf CPT invariance, ensures the equality
of masses and lifetimes of relatively conjugate antiparticles.

Unstablelparticles are closely'ékin to stable ones; by the factoe
ization of the residues of unstable-particle poles, unstable-particle
scattering functions quite analogous to ordinary scattering functions
can be unambiguously defingd. Like ordinary scattering functions they
are defined only.on the mass shell, the fixed masses of the unstable
particles being.well-defihed complex numbers. The needed factorizability
of the residue is an immediate consequence of Fredholm's second. theorem.
The continuation, by means of unitarity, through the multiparticle

physical cuts onto unphysical sheets is discussed.

-
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I. INTRODUCTION

Liiders and Zumino® have given a proof that the mass and life-
time of a particle are the same as those of its conjugate antiparticile.
Their proof 1is based on an examination of the positions of poles in matrix
elements of the formal resolvent of the exact Hamiltonian. The matrix |
elements used are those corresponding to a single-particle eigenstates
of an unpérturbed Hamiltonien. That such quantiﬁies exist, in a rigorous
sense, is somewhaet doubtful. In field theory exact and unperturbed
Homiltonians appear usually to act in mutually orthogonal subspaces, the
action of one Hamiltonian on eigenstatés'of the other being undefined.2;6
As & consequence, methods that avoid the use of unperturbed eigenstates
are now generally employed in rigorous work. Whether these rigorous
methods can provide answers to questions regarding lifetimes of unstable
particles is not yet known.

Beyond this technical difficulty there is the practical question
of whether the definition.of the mass and lifetime introduced by these
authors is unique. Does it depend, for instance, on the choice unper-
turbed Hamiltonians or on the choice of eigenstate? And how is the
éosition of this pole related to experimental determinations of the

mass?
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A number of other definitions for the mass and lifetimes of

7-15

unstable particles have been proposed and studied. The most
prominent general definition is the one of Pelerls, who suggestis that
the mass and lifetime be defined by the'position of a pole in the one-
particle propagator, the two-point Green's function. This definitiocn
has the advantage of obviously not depending on an arbitrary separation
into parts of the exact Hamiltonian. However, it introduces the very
obscure questionvof the connection betyeen fields and particles: which
field, if any, 1is it thaf corresponds to & particular observed resonance?
" The work of Zimmermanl6 and Nishijima17 has emphasized that a stable
particle need not be associated with a fundamental fileld, and Schwingerlu
has stressed that a fundamental field need not possess a stable particle.
As the situation is prdbably the same for unstable particles, the entire
question of what relations, if any, exist between the basic fields énd
the observed stable and unstable particles (resonances) becomes an acute
basic problem for all of field theory.l8 In the present context, since
#he Green's function depends on which fleld is used, the propagator
definition apparently becomes ambiguous unless a unique correspondence
between unstable particles and fields can be established, or the position
of the pole can be shown to be the same in all propagators.

In this peper queétions involving thé masses aﬁd lifetimes of
unstable particleé are examined in the framework of S-matrix theory. An
important virtue of this approach is the direct and unambiguous manner in

which unstable particles are treated. That S-matrix theory should be
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wcll_adapted to the treatment of unstable particles might at first appear
surprising, for in S-matrix theory, much more than in field theory, ﬁhe
stable particlcs have, at the outset, a manifestly preferred status. Yet
in spite of this it develops that a natwral framework for the discussion
of unstable particles is provided, one in which stable and unstable part-
icles arc closely reiated and are treated on a quite similar footing.

In aﬁ S-matrix approach, the mass and lifetime of an unstable part-
icle are defined by the position of a pole of the S matrix in a center-

19,20, first requirement on an acceptable

of-mass energy variable.
definition of the mass and lifetime of an unstable particle is that it
provide unique, unambiguous universal constants that do not depeﬁd on

the particular process in which the particle occurs, or on other free .
variablcs.gl Accordingly, our first task is to verify that the position
in the center-of-mass enérgy plane of the pole corresponding to an
unstable particle depends neither on the other variables of the S matrix,
nor on.the process in which it occurs. In doing this we shall obtain

an cquation defining the position of the pole. The use of CPT invariance
allows this to be shown invarient under charge conjugation, which proves
that the mass and lifetime of a particle are equal to those of its con-
Jugate antiparticle. Further analysis shows a quite close relationship

between stable and unstable particles. A general proof of the factor-

izability of residues of simple ‘poles of the S matrix is also given.



UCRL-10261 (rev.)

P
II. FUNDAMENTAL EQUATIONS

The basié of the analysis will be the S-matrix formalism developed
in reference 22. A general process is described by a function’ M(K", 'k")’,
which is a covariant generalization of the scattering function R =S5 - 1.
In this formalism the covariant unitarity relation takes the form
MK, X") + M (K", X') = -z [ MK, XK M, X .
€ (2.1)
Neglecting for the moment contributions associated with disconnected parts,

which are discussed in Section V, we write the M function in the center-of-

mass frame in terms of the matrix M(E+)', defined by

M(x', -K") =, a, T ME) | Y, A", T N(E) L (2.22)
c.lm.
where N(E) 4is the normalization factor,23
)y L 1/2
N(E) = [ (2n)” 8(E* - E) 8(p') (2x)” B(E" - E) 8(p") 1 . (2.2v)

Hefc E" and E' are the total c.m. energies of the initial and final
particles, and f' and g" are the corresponding total momenta. The
symbol;' A, & and T represent sets of variables describing spin

states, angle variables, and the energies of various subsystemc of particles,
respectively. The plus.on E+ indicates we are cohsidering M(E+) to

be the limit from above fhe real energy axis of a function defined there.b
Type variables havé been suppressed on the right of (2.2a).

In terms of the matrix M(E) the unitarity relations take the form
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.'. T .
M(E,) +oM () = -M(E) o(E)M(E) , (2.3)
where the dagger represents Hermitian conjugation and p(E) 1is the
density-of-states factor defined by

=l dhk

n (2xn) 2)
1

ex_e(kio) om 6(ki2 -m°) KT

i i

= 4dQ dP(En)-h aE dP p(E, &, ') , (2.4)

- p(E, €, T') bveing the diagonal elements of the mafrix p(E).. Matrix
multiplication is understood to mean integrations over 4 and d4r' ,
togcther with sums over the spin states and the various particle combin-
ations (configurations) that are energetically allowed at the specified.
cnergy.

The symbol M(é_) "is defined to be the 1limit from below the real

energy axis of the matrix defined there bygu
M(E) = -M (E) (ImE<0 ). (2.5)

The unitarity relation, Eq. (2.3), can then be written in the alternative
{orm

ME,) - ME]) = M(E)) o(E) ME_) . (2.32)

The matrix p(E) has a different form in each interval of the
energy axis, a new subspace being added at each threshold energy. We
shall represent by bN(E) the expression for p(E) that is valid in the

Nth interval. The continuation of M(E+) clockwise through the Nth
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interval will be represented by MN(E), and M -l(E) will represent the
. N _
counterclockwise continuation of M(E_) through the Nth interval. 1In

terms of these values on sheets adjacent to the physical sheet, Eqs. (2.3)

and (2.%a) can be written, for E 4n the Nth interval, in the forms
M(E) + M(E) = -M(E,) o"(E,) M (E) (2.6)
+ My B + o My (B

and

ME) - M _(E) = M(E) o (E,) MN_l(E+) : (2.62)
| SR

25

By virtue of the postulated analyticity of M(E) on the boundary of the

physical sheet, these relations, valid for real E , imply that the equations

ME) + M (E) = uE) NE) () BN
“and _
ME) - M _(E) = ME)E)M _(E) ' (2.7a)
N N

considered as functions of the complex variable E , are valid in a
neighborhood of . the interior points of the Nth interval.
Multiplying Egs. (2.7) and (2.7a) by {(pN(E))l/2 on both the

right and left,. and solving, one 6btains, formally,

N2 T e - 22— (NN uE) ()

V()
- (2.8)

and

FENM2u _®) "ENYZ - = (M@ uE (NN,
N s (E) _ (0.60)
: ' 2.0a
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where the quantity
M) = o+ (ENY2 uE) NE)H? (2.9)

has been introduced. Here IN is the unit matrix in the subspace where

pN éié 0 . In terms of SN(E) alone, these equations become

* 1 1 .
s NEDNT = (2.10)
and
61/2 (s ?(E) - o €1/2 [ 1) - ™ s (2.102)
N . s (E)
where we have used the relation '
o (D) = o) (2.11)

which follows from the reality of pN(E) in the Nth interval, and the

1/2

quantity € defined by

cl/2 (o N(E)]l/2 = [pN(E)]l/? . | (2.12)

N
Equation (2.10) is the simple expression of unitarity. The general
relativistic kinematic factors for the multiparticle processes are dis-
played in (2.9). The quantity € is a matrix that gives plus or minus
unity when acting on stateg of odd or even numbers of particles respectively.
If only even numbers of pérticles occur in the configurations associated
with aﬁ interval N, Eq. (2.10a) simplifies to

N 1 _
s (E) = ——— , 2.13
N'l( ) SN(E) ( ?
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a result which is well known.

The sheets obteained by continulng clockwise from the physical
sheet through some physical interval of the energy exis will be called
first unphysical sheets. These are the unphysi¢al sheets whose points
are closest, oh the Riemann surface, to the physical points, and whose
poles, consequently, if close to the physical interval give the usual
resonance effects. The value of S(E) on these sheets is given directly
oy

E)” " (2.14)

J

where SN(E) is evaluated on the physical sheet; Sh on the rirst unphysical
sheet 1s the Hermitian adjoint of the inverse of SN at ithe conjugate
point on the physical sheet.

SN(E) will have various cuts on the physical sheet and these will
evidently be reflected as cuts on the first unphysical shecets. The only
otner singularities on the first unphysical sheets will be at points E%
for which the inverse of SN(E) fails to exist.

If SN(E) were a matrix of finite order on discrete indiccs, thre
expression for the inverse would be

(et - :@iﬁ@l (2.15)

det s (E)
Both the numerator and denocminator, being finite combinations of matrix
elements of SN(E) , would be regular at regular points of SN(E) .

Hence the only possible Singuldrities of the inverse in a domain of

regularity of SN(E) would be poinﬁs where the determinant in the
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dcnominator vanishes. This determinant could vanish only at isolated
points of any domain of regularity of SN(E) that included the physical
points, since otherwise it would vanish identically, which would conflict
with unitarity at the physical points. Thus tne only singularities in
the images of the interior of the physical sheet would be isolated poles.
The positions of such & pole, being at a zero of det S(E) , a function
of E alone, would be independent of the other variables. It would con-
sequently occur at the same point in any matrix element in which it
occurred, not wander about as a func£ion of the remaining variables of

S .

Our matrix SN(E) 1s generally not of finite order in discrete
indices. ‘It is a function of the many continuous variables rcpresented
by tne sets R and T . The direct generalization of the expression
(2.15), used above, to the case of continuous variables is provided by
Fredholm theory. So the immediate task is to verify that the conditions
needed for the validity of Fredholm theory are satisfied, and to there-

by establish rigorously the analogs of the properties described above.
III. APPLICABILITY OF FREDHOLM THEORY

The standard Fredholm equation is

p(x) = f£(x) + A fx(x,y) plylay . (3.1)
' R

In matrix notation, the case A = -1 becomes

(I+K) = s¢ = £ , (3.2)
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the formal solution of which is
¢=(I+K)'leS'1f,. (3.

Predholm theory gives an explicit expression for the inverse operator.

This we write as

whcrc

det S == I +Tr K + (2!)7H(Tr)? k<2) + ) ) K(5) +oeee, (3
and

adj S = IdetsS - [ X+ Tr K(2> + (2.’)'1(Tr)5 K(3) R N
Here K(n) is an operator in a space that 1s an n-fold tensor product

of coples of the original space. It is defined in terms of the deter-

minant of an n-by-n matrix of K's by the equation

n ‘
< Xl:'xg,'"')xn IK( )l yl’ y2)“';yn >

i
Cxg IXD v D KT ) ee (g K]y )

—— e e s e vcv e se s 0o © 9 00600 EOPOOCOSEOEEGEOSCS

{ *h’IKI yl> coesessvovrsce (xn |K] yn> (3.

|
|
|

3)

.5)

7)

The symbol Tr stands for trace, the sum (integral) over equated corres-

ponding initial and final veriables.

To apply the formule to our case, we make the identification
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(sec Eq. 2.9)

Kk = 1 MNENY2 ueE) (et (5.8)

27

A sufficient condition for the existence of the numerator and denominator
in (3.4) is the boundedness of X over the region' R , which will be
chosen to be bounded.

The postulate of maximal analyticity steates that M(E) is a
meromorphic function of all its variables at all values of these variables
corresponding to points on the physical sheet, including its boundary
points, except at certain boundary points called singularities required
by unitarity. Theserare the generalized branch points terminating the
cuts that bound the physical sheet, and except also at points at which
the expressions ki(Q, T, E) for the individual momentum-energy four-vectors
are not regular. “The only poles allowed on the physical shecet arce those
ascociated with the stable particles. The points of the physical sheet
" are points in the space of reduced variables (Q‘, ry, B, Q", ™) such
that the set of points ( ki(Q‘, 'Y, E), kj(Q”, ', E)}] 45 a point of
the physical sheet cmstructed invthe manner given in reference 22.

Congider first values of E* such that the points represented by
(@Y, ', B Q% I'") are regular points of the physical sheet for ell (real)
physical walues of the (Q, I') in R . For these E , the M(E) is
analytic, hence continuous, over the closed region- R . Thus M(E) is
bounded over R, and the numerator and denominator on the right of

* N .
(5 MED - e - Z—‘H—zﬁ% (3.9)
‘ ef :
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are well-defined functions, provided the (pN(E))l/2 in
Fey = e @Y ) (M@t (3.10)

are bounded over R .
: n
The matrix pﬂ(E) is a tensor product extending over the density-
of-states matrices pc(E) of the various configurations that are available

in interval N . Specifically, pN(E) is given by

N N N
p(E) = 1 e  p(E)= P I p(E) , (3.11)

where pC(E) ects in the subspace corresponding to the cth configuration,
GCN is unity if the cth configuration is aveilable (energetically
allowed) in the Nth interwval, otherwise zero, and PN is the operator
that projects onto the éubspace of configurations available in the Nth
interval. To show the existence of the numerator and denominator of
(5.9), 1t is sufficient to show that the variables £ and I can be
chosen so that the physical region R 1s a bounded region and the corres-
pondiné functions p(Q, I', E) bounded over R .

The density matrix p(E)> is easily computed by using the relaetiv-

istic formulas (see Appendix A)

TR . W . |
| = == H LI H 4B 4Q
[ a& E o r E qn_ n n
i=0 n=1 n n=1

Here (ki, aa) are the momentum-energy vectors of the (N + 1) particles,
(E; E) 1is the tqtal energy-momentum, and En is the center-of-mass energy

of the system En consisting of particles zero through n . The vector
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G is the momentum of particle n measured in the rest frame of the
~n ]

system Zn , and Qn and qn represent its angles and magnitude. The

roo.
a% is the reduced energy

w’ o= {[o 2 i 211/2 [qnz + (En_l)ell/QB /E

n T n ' n
where
s .. 211/2 2. )211/2
n qn n n n-1
Making the identifications -
N
aQ = || &2, end
L. n
n=1
~ N-1
ar = dEn/2x ,
n=1

we have, using the definition (2.4), the relativistic multiparticle phase-

N ﬁ N
]
- 'L
! 2
n=1 () 1=0

mi K-co

The boundedness of p 1s apparent; in fact, it vanishes like q, on Lthe

boundary where the nth relative momentum vanishes, and like

[3(+1)-51/2 .
(E - = mi> et the energy threshold.

Inspection of the Fredholm solution shows the uniqueness of the

definition of the masses and lifetimes associated with the poles of the
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type we have been discussing; the zeros of the det SN(E) can occur
only at isolated points of the domain of analyticity of SV(E) , and the
associated poles cannot wander about as functions of the remaining
variables. It 1s, of course, not necessary that the pole be present in
every matrix element of M , &5 there can 5e compensating zeros in the
numerator. Indeed, 1f the nonvanishing matrix elements of M were, in
some representation, to group into small submétrices along the diagonal--
as would happen if there were conservation laws--then the vanishing of
the determinant associated with a submatrix would produce poles only in
this submatrix, at the image point in the unphysical sheet. This accords
with the physical expectation that a resonance will appear in all reactions
having thé same quantum'numbers, but not in others.

So far we have considered only those E* such that for all
(2, T) 4in R the points (Q', I, E, 2", I') are on the physical
sheet. The denominator, det SN(E) , is of course a function of E
alone, so that a zero of this function persists when & and o' are con-
tinued outside of R . (The integrations in £ and T will continue
to be over R , of course. It is the éggg variables in adj 3 that
will be rfreed.) For the original values of E* , the Fredholm formula
will éontinue to define the function so long as the kernels remain regulaf.
As we continue in the various varisbles, boundary points of the domzin
of validity of the Fredholm formula will be reached when singularities
of the kernels reach the region of integravion R . The usual situation
will be that a single singularity comes to'some interior point of R .
But if this occurs, one can distort the contour of integration away from

the singularity and thereby extend the domain of validity of the Fred-

holm theory. As remarked by Polkinghorne, the situation is very similar.
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to what he and others have been doing using Feynman-type formulas. One
can continue to use the Fredholm formula pnless a singularity of the
kernel either comes to an end point of the integration region, or pinches
the contour against another of its singularities, or retreats to infinity
carrying the Eontour with it. One would expect that a detailed analysis
would show that the limits of the domain of applicaﬁility would be Jjust at
the second sheet cuts given by the Landau equations, with both first and |
second type singularities included. But the unstable particle poles, and
their associated branch ppints, would now come ogt automatically from the
vanishing of the Fredholm denominator and from the pinching of the contours
against these poles. The pursult of these questions 1s outside the scope
of this paper. | . |

There are similér expressions defining the scattering function in
the sheets obtained by counterclockwise continuation up from the bottom of
the energy cuts [see (2.10a)]. Using the expressions obtained for the
values on the various unphysical sheets, one can.continue the right-hand
side of (3.9) through cuts onto unphysical sheets and establish the
existence of SN(E) on second-order unphysical sheets, and so on.

The methods discussed here allow continuation only through the
energy cuts associated with physical processes, where the simple unitarity
felations are valid; what‘types of singularities lurk behind other cuts
we do not know. However, it is reasonable to apply the name "particle
poles"” to the simple poles of the type we have been discussing, which
are associated with the vanishing of Fredholm denominator A(E). If

this terminology is adopted, the masses and lifetimes of the unstable
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particles will be fixed constants of nature; Just like'thosebof thg»stable
‘ particles. By reversing Eq. (3.9) and considering it an expression for
S on. the ph&sical sheet in terms of S Sn the first unﬁhysical.sheeﬁ;‘
'the stable particle poles are ﬁeen to be a special case of the particle
poles defined above; they correspond to the vanishing of the IFredholm
dcterminant on the first unphysical sheet (see below). .
| In view of these similarities between 'stable dnd unstable particles,
the idea of introducing unstable-particle scattering functions presents
itself. These functions would, likeiordinary scattering functions, bé
defined only on a manifold consistent with mass and conservation-~-law
constraints, but the masses would now be fixed complex numbers, the fixed
masses of tﬁe unstable particles. ' p
These géneralizéd scattering functions can be defined by factor-
izatlon of residues of particle poles. That is, for ordinary M functions
the unitarity relations imply that the residue of a stable-particle pole
of an M function is a product of two other M functions, proﬁided the
class of M functions is extended to include also the three-particle
Tunctions usually called coupling constants. Accordingly, let us apply
the name "generalized M function" to each of the two factors of the residue
of a single-particle pole of any (connected) generalized M function,
where a single-particle poie is defined to be the pole associated with a
simple zero of a Fredholm denominator A(E) .
That the residue of a pole assoclated with a simple zero of the
Fredholm determinant is Jjust a product of two factors ié an immediate

consequence of Fredholm's second theorem. This theorem says that if
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det S(Er) 0, then for any V' the quantity

\

adj S(E.) V' ‘ ‘ (3.12)
is a solution of the equation
s(E))V = 0 . ' . (3.13)

Morcover, it says that aside from multiplicative constants, this solution
is unigue, provided adj S(Er) is not zero. The immediate consequence

is5 factorizability:

ey sl B = vy Ut (5.14)

If ad} S(Er) were zero, then, by virtue of its analyticity in E ,
each element of adj S(E) would contain at least one power of (E - Er)

But then if det S(E) had & simple zero, the inverse

-1 adj S(E) : , L
s (E) = 5;%—8-&% (3.15)

would be regular at E = Er , and there would be no pole.

It will be observed that Fredholm theory not only gives a simple
proof of factorizability, but also provides an explicit formula for the
product of the two factors, and hence also, aside from an indeterminant

scale factor, for the individual M <functlons: every M function will be
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cxpressed explicitly in terms of others by means of Fredholm formudas.
This gives, for example, explicit exprgssions for coupling constants
in terms of the scattering functions at image points. The expressions

~

also provide a basis for the analysis of the properties of the general-

ized M functions. For instance, from the anti-Hermitian analyticity

property of M functions,
* * *
(@ (B)] B) == M (a5 B5 8) = @5 E;8), (5.16)

and the relation

lim (E-E)M(a; E; B) = Res M (a; E_; B) (3.17)
E- E r c c r
. r .
= -1 (@5 E; 7) oM (75 B B), |
(3.18)

which defines the geheralized M function M1 » one concludes that, with .
the appropriasate choice of the indeterminant spale factor, Ml is also
enti-Hermitien enalytic. In (3.18) the variable 7 corresponds to oﬁe
particle of nass E. - | |

The usual'spinér transformation pfoperties are easily cstablished
'for generalized M funCtioﬁs, which may pla& an important role in the

development of S-matrix theory. We have mentioned them here to emphasize

the close kinship of stable and unstable particles.

IV. BQUALITY OF THE MASSES AND LIFETIMES OF CONJUGATE ANTIPARTICLES
The mass and lifetime of a particle are determined by the position
of the zero of a Fredholm denominator, A(E) . That a particle has the

éame mass and lifetime as its conjugate antiparticle follows from the
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invariance of A under charge conjugation. This, as will now be shown,
is a consequence of invariance under CPT. Consider first the {irst term

{n the formula for det SV(E) . It may be written

Tr K(E, T) = Z | f MU(x!, -K") X'-o ®(E T) , (&.1)
. ’ . K'K" '

where
55, T) = Ny Sy B(R1- 2 B - T) . (b2)

Here T 1is a set of type variables and N(E) is defined in (2.2). The

. , 8
CPT identity is, for T' = T" ,2

M, K- Wi®y w0 S

where the subscript T on 'K indicates a transposition of the order of

the variables of K . Substitution of (k.3) into (h.l) gives

T K(E, ,"r)5'= Z f»_MN(i“c"T, - K'g) KGTB(E, 1), (bb)

wherg the supersceript tr on ;tt indicates the changé of drder of spin
indices needed to compensate for the revefséd order_of variables on thé"
two sides of (&03)}
o This term, Tr K(E, T), is to be ccmpared to the chargé-;onjugate
. expreésion | | o | |

Tr K(E, Tc) ='Z f vMN(K‘, K") x'-'é'_a(m,.'r;.) ’ (4.5)

K'K" DR ' -

in which Tc is thebset of.type &ariables obtained by changing each type

index of the set T to the index specifying the conjugate antiparticle.
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‘An equi?alent expreésion is . '
r K(E, 'T;)_ Y f W, K1) KT 8(E T, (46)
- K'K . : :
where K'c and K"c have type variable T'c and T"c.'respectiveiy. The . .
fact that KXK' and' K" are dummy variables has been used to interchange |
the primé and double prihe. | | |
Recalling that K 1is the set obtained from K by reverSiné the
order ¢f variavles, changing all particle-tyﬁe indices to those specifyingv
'the corresponding antiparticle,vand.dotting the spinor indices, wé see that
_' Kc and ?c"T differ only in that their spinor indices are relatively
dotted. ﬁ | |
The rules for changing the spinof index types.bn M fuﬁctions
" have been derived in SI and SII . The "metric tensors" that effect

the changes are

® o ke m, "

g = )
By = (k- °ad)m1-l ’
A ol ,
Bp = s K (8.7)
& = Cdﬂ ’

3‘5" = (c'l)éé‘ . .

When these are contracted with M functdons, following the usual contraction
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', rule that upper indices'cohtract with lowef, one obtains the M functionsAi

with altered index type. The matrices C and c'.l are to multiply M

from the left; transposéd matrices should be used if‘they multiply from

the right. Application of these rules gives

2 = C e, -k xes C e
(x") - (x')

Here it has been assumed, with no loss of generality, that the original

e (?c"T, X'

indices of K' and X" are all lower undotted. Using the relations
Ct s (C - ke (4.9)

and

A

K'*o K'eo = I, | ~ (4.10)

one finds that

Tr X(E, T) "Tr K(E, Tc) . (k.11)

Thus the first term of the series for A 1s invariant under charge con-
Jugation, as a consequence of CPT invariance.

The proof carries over witb minor changes to the trace of any power
of K(E, T) . Since every term in the absolutely convergent series for
A is a combination - of tféces of products of powers of X , We ootain

the desired result,

(8 T) = A'(E; T.) . | | | (4.12)

In the extehsipn of the proof to traces of products of K(E, T),
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onc problem regarding phase factors arises. The general CPT identity is

W', F = (c)NES KD e g

I

(-l)N(.K" ‘k") o -K'T) " ()4.13)

a(x', -K") M(x"
where N(K) 1is the number of dotted indices of the set K, and‘ o(K)
is the phase factor associated with the reversal of order of variables
of 'K . The normal connection between spin and statistics requires

oK', - X") to be (-l)N(K" -K") if T' = T ., This fact was used in
Eq. (4.3) . The unitarity relatioﬁé, together with analyticity and the

normal connection between spin and statistics, require that

ok, ") F, ) o O (hab)

and

oK', &) otxr, ) (F® K)o gy (4.15)

These conditions ensure that, in the trace of a prbduct of K's, the factors

. .
(-l)h will just cancel the o's, as they do for the first power of X .
V. CONCLUDING REMARKS

Complications‘due to disconnected parts have been ignored in the
preceding sections, In the original version of this paper,2 section
V was devoted to the discussion of these comflications, which occur for
cuts involving three or more particles. It was found that certain pole
terms prevented the direét application of Fredholm theory, for the case

of continuation'through'three-particle cuts. Publication was accordingly
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dcldyéd uptil these»problems weré'resolved, Oliveso ﬁas now.examiﬁéd
thévqucstion in detail and has shown fhat;thé pole.terms‘canvbc absorbgd
‘into regwlar terms by a redefihition of certain contours and that Fred-
: hoim theofy is indeed épplicable. AlthougH.OIive;s énalysisjwas for a
' specific cut involving only three‘particles, it noncthelesg now . seems
very likecly that Fredholm theory will continue to be applicable in the
general case; and that the discussion of unstable particies given here
will ve generally applicable.

If this is the case then it may be concluded ithat the mass and
lifetime of an unstable particle can be defined direcily by the position
of a pole in the S-matrix; this definition provides univercal constants
that depend neither on other variables suéh as scattering angles or |
subcnergies, nor on the.process in which the pole occurs. The rocsition
of the pole is at a zero of a Fredholm denominator. Because this is
expressed in terms of traces, the operation of charge conjugation is
cguivalent to that of CPT-inversion, and the equality of the mésses and
lifctimes of conjugate antiparticles follows from CPT-inveriance. By
virtue of Fredholm's second theorem the residue of a2 simple pole is the
prodﬁct of two factors one of which contains all the dependence on
initial wvariables, the other of which contains all dependence on the final
variables, where the sepafation between initial and final is made in the
channel in which the polé occurs. This factorization allows the connected
part of the scattering functions for unstable particles to be defined

unambiguously, up to a phase factor. Because the factorization property
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iz valid only at the pole wvalue, these functions are defined only at the

physical mass value, which 1s, however, of course complex.
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APPIIIDIX A: RELATIVISTIC FHASE-SPACE FACTOR

The phase-space density matrix p  has been defined OJ the equation

I .3, 3 ' ,

SlYE O~ T &
i 5 o ) Ko = - 5 ox a ar p(@, T, B) . (A.1)
520 (ox) Ai/ (2n)’ ©

The coordinates @ and ' will be introduced in the following
way: Let the subsystem composed of particles zero throwh n e called
the nth subsystem. Let its rest frame and rest mass be denoted by
L and M_, respectively. Let Xk,. eand XK., denotc the momentum

n n iJ 1
vectors of the ith particle and the ith subsystem, respectively, as

measwred in I, . These quantities are related by the ecuntion
3 .

~
1o

n-1l,n

it
—
-
+
8
~
f
)
g:&"

The total rest energy 1s E = MN . Iror angle variablez let us choose the

angles describing the N vectors k (n = 1,2,+¢9,N), and ror

he T
the N - 1 gquantities Mn (n = l,--',N-l) . These, togeiner with
=M, and P, give the required 3(N + 1)
The Jacobian of thé transformation is calculated in iwo s:eps.
~1

511 (i = O,~--,N) with EOO' defined to be the total momentum P .

The Jacobian of this transformation is

N .( - T
11 j et (3)

First we take the variables x, (i =0,+-+,N) to the variablcs

n=1
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where the reduced energy of the nth subsystem is

1/2 1/2
2 2 2 2
o b - (knn Ty ) (knn " Mn-l )
; 1/2
! (k 2 i 2)1/2 + (k 2+ M 2) ’
nn n nn n-l
. 1/2 1/2/
_ 2 2 2 2 Mo (A.4)
= (knn *om ) (knn + M ) n
Transforming to these new variables, we have
.
‘;%' 2 3 ~ ar TET dMn
| (knndknn)/2(2n) Ko J) = =dle= . — »,
. . 2%
n=1 - n=j
N-1 (A.5)

e
T

where dI' has been interpreted as J J (dMn/Ex) . The Jacobian function
n=1

B(Mn)/a(kn“e) , which is the determinant of a triangular matrix, is

e )
—_ |
J2 - J ! aMn/aknn
n=1
*I\l 2 2, 1/2 2 2l/j/ 2 LI ;12
= 1R [k "+ )+ " +M %) [k em (e M 7)
n=1 ‘
N N -1
: . red N P
= T‘l /2 w 7Y - I M 2! H m, (A.6)
- 1=0

Thus we have-

- N N | o | ,
p = J.(l/MN) H By ﬂ {K,m/(eﬂ)g] Ko . (A.7)
L_ . i=0 n=1 ‘

To display the'béhavior near threshold; one may repléce the Mn_

vy .
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k - 2y .fed | '

1 — - = - = ’ .
Moo= My =M Mo- (M +m) ~ k /om T .(A <))

and introduce '
. N N L
' 2 red N '
E! = t = . : .
E Y owe S x Plem (A.9)
v - n=1 i=1 e

In terms of the dimensionless quantities

2 o 4 - L ' T '
x " = M'_/E ‘ | e | (5-1_0).
we have
. N 1 i ' N N " .
T2 g [ [ar
2n o i 3 S
*p=l. R B E el (BT)T |
N-1 .
= ' ég‘_:. 2 . . A .
= P  r ﬂ @Xn ’ (n.ll‘)
n=1
with ‘ v
N N | . | ,
1/2 : r. oy ]
2% L +1 )= ~
i=0  n=1 ' ' ’
N ' .
| 3/2 . ] .
~  ox j [(emnred) Xn/z(en)ﬂ E[5(N+l) 512 x5 .
n=l | (A.12)
The boundaries of the physical region are at X =0, for any n, and

st E=0. The X_ are bounded by the condition that - % xn2 =1 .
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