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ABSTRACT 

The rule for obtaining coordinate-space probabilities from the 

momentum-space S matrix is discussed. The distinction between coordinate 

variables and position variables, raised by Newton and Wigner, is important 

in this respect. 
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The S matrix can be considered to be a set of functions of momentum, 

spin, and particle type variables. These functions give the transformation 

relating amplitudes for idealized initial and final experiments performed in 

the infinite past and infinite future. In particular, one may write1 

L: J S(K', -K) a. (K) 
K. .1 

( 1) 

We take the integrations to be over the invariant momentum-space elements: 

d4k. 
2rt 2mi e( kj_0 .) 5( ki L: J L: J TI 1 

K" i ( 2rt) 
4 

d3k. m. 
L: J TI 1 1 

= 
( 2rt) 3 i (.l)i 

With this convention, the no-scattering part is 

TI 
i 

2 2 
(2rt) 2m. 5(k. - m. ) 

1 1 1 . 

2 2 - m. ) 
1 

(2) 

( 3) 

One can also consider S(K', -~') to be the final amplitude for the particular 

case in which the initial particles have the fixed momenta, spins, and types 

described by K" , and are represented by the amplitude 

(K K") a. ' 1 
= TI 

i 

4 " 0 2rt) e(k. - k . ) e(k. ) 
1 1 1 

2 2 2rt 2m. o(k. - m. ) 
1 1 1 

(4) 

where o0 represents the unit matrix in the spin and type .indices. The 
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momentum vectors of K, K' 
' 

and ~' are here restricted to positive 

energies, and the variables are to be normal-ordered. 

The coordinate-space functions are defined by Fourier transformation. 

Thus one can viTi te 

s(x, -K11
) f ( exp -i X·K') s(K·,, -K") , 

.K' 

.where the integration is as defined above and 

= = II 
i 

(5) 

(6) 

This function, S(X,-K") , is the final coordinate-space function corresponding 

to the initial amplitude given in ( 4) • 

Let S' be the function obtained from S ·by the transformation that 
1 

takes R to .M • 'T-he.corresponding coordinate-space functions have the 

simple invariance property 

S'(X, -K") = A -l S'(AX -AK") 
s ' ) ( 7) 

which follows immediately from the analogous property of S'(K', -K") • One 

can form linear combinations of the initial states and obtain more general 

functions 

Although the coordinate-space functions introduced in this way have 

nice transformation-properties, they are not the usual wave functions of 
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quantum theory, whose absolute value squared gives the probability density. 

Indeed, we see that the quantity 

J ( 10) 

is not an invariant. For suppose ¢ (X) 
0: 

represents a large wave packet that 

is essentially at rest. Under Lorentz transformation its extent will shrink 

by the Lorentz-contraction factor, but (for scalar particles, say) the 

numerical value does not correspondingly increase, due to (9). 

It is easy to find a function that has the correct property in this 

respect. Let us define 

~
1/2 

L:f [rr(k 1
•

0 /m.) 
K1 i J. J. 

( exp - i X· K 1 
) S 1 

( K 1 
, o:) ( 11) 

Then, for the zero-spin case, one has 

L: f L: f f d3X S' ~-<-(l~9,o:) S i (K~o:) 
K' K" 

r k' o "o]l/2 

l 
. k . 

~ J. m . 2 J. exp ( - i ( X • K ' - X • K" ) ) 

]. . 

== I: J 
K' 

* S' (K' ,o:) S'(K' ,o:) invariant 
( 12) 

The distinction between w(X) and ¢(X) is a fundamental feature 

of relativistic particle theory. The two functions may be referred to as 

the wave function and the field, respectively. In field theory, the extra 
,_____ 
' 

factor \ •k 0 
relating the covariant fields ¢ to the wave functions \/ i 

\! 

arises in the expansion of the field in terms of the amplitudes a(k), 

which are the Fourier components of the wave function [see, for instance, 



Wentzel's Eq. 
2 (6.20)]. 
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The same results are obtained by Newton and Wigner3 

directly from invariance arguments. They distinguish between coordinates 

and position, and construct a position operator in coordinate space. The 

result is equivalent to going from the coordinate representation function 

¢(X) to the position representation frunction *(X) --from the field to the 

wave functiono Certain complications due to spin, encountered by Newton 

and Wigner, are avoided if one uses the two-component formalism developed 

in reference 1; the same rule for passing to position variables holds for 

all values of the spin. However, if the particles have spin, one must use 

for probability density the function 

P(X) = ( 13) 

Here the k. 's in K are to be interpreted as differential operators on 
J_ 

the position variables of X o 

.. 
'. 
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