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ABSTRACT
A general method for setting up effective-range formulae is
presented. Known nearby singularities can be takén into account ex-
actly. The method is applied to the lS nucleon~nucleon state in

-0
the range O to 100 MeV and the I = % sy J = z state in =N

2
scattering in the range O to 220 MeV. 1In the latter case, the two
parameters can be calculated frém the pion and nucleon masses and
the =N coupling constant (f2), on the assumption that the nucleon
is & bound state. A method is also given for calculating effective-
range parameters from partisl-wave amplitudes in the crossed channel,
with sx - secattering as an example, This, in turn, makes it possible

to carry out dynamical calculations and to calculate Regge poles at

low energies.
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INTRCDUCTION

When partial-wave dispersion relations were first introduced,
it was hoped that the relatively tractable nearby unphysicsl singu-
larities (outer forces) would dominate the amplitude at low
energies.l One gould then systematically improve the accuracy of
the calculation by bringing in the successively more complicated
distant singularities (inner forces). Unfortuﬁately, it was found
in the pion-pion problem that such an approach is incapable of |
giving the physically observed P-wave re'sOnance.a’3 This ig due to
the strong distant unphysical singularities, which ha?e to be repre-
sented by means of an effective-range formulav

The usual approach to the comstruction of effective-range
formulae in dispersion theory consists of replacing unknown unphysical
cuts by a small number of simple poles. Such a procedure is certainly
Justified for a physical energy range that is small compared With its
distance from these cuts. This is often not the case in actual
applications, however. The only way of justifying the pole approxi-
mation in such éases has been te solve the dispersion relations
exactly for several simple assumed forms of the unphysical discon-
tinuities and to com?are these solutions with the pole formula.
This also give a rough estimate of the possible error associated

with the approximation.
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The main defects of the above approach are that it may involve
é large amount of computatiqn in;sqlvingﬂdispersion relations exactly
and that one does not see in any natural.way“why the approximation
works in the way it does.. Indeed, it is comparable to the early
work on low-energy nucleorn-nucleon scattering, in which the probleﬁ
was solved accurately for a number of standard potentials to establish
the fact that the low-energy régioh could be characterized in terms
- of'enly two parameters per angular-momentum state. As in that problem,
so here alse, it would be desirable to find a shape-independent approach
in which the approximate formula could be justified in a natural way,
without the consideration of specific examples.

In the present method this is attempted by making certain
approkimations only for functions that are already definitely knowvn
from the general theory. These are made in such a way that wé are
left with an epression depending on only a small number of unknown
' cénstants. No apbroximations are made for unknown functions as in
the pole aéproach. 'Thué our results are independent of the specific
shape of the unphysical discéntiﬁuity; 4Moréover, the accuracy of our
approximate formula in any givén energy range, or, equivalently, its
range of validity, can be easily estimated & priori, even before we
have any knowledge of the orders of magnitude of our phenomenological
parameters.

In Part II, the above method is applied to the I = % , J= -;-
state in pion—nucleon'scattering. If we aééume that the nucleon is

a bound state, the two effective-range parameters can be fitted to

the known position and residue of the nucleon pole. -The formula then
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depends only on the'pion and nucleon masses‘and the =#N coupling
constant (fz). No purely phenomenological parameters are involved.

The formula glves roughly the correct o) 1 phase shlft in the range

1
O to 220 MeV This prov1des an experimental test of the bound-state
hypothesis. | | » | |

In Part III, a method is given for caiculafing éffectivém
‘range paramefers from the partial-wave amplitudes in the crossed
channel. It is applied specifipally to the pion-pion problem but can
be used in other problemé'és wéll. When combined with the requirement
of self-consistency, this makes it possible to calculate partial-wave
amplifudes at low energies dynamically. A rough célculation is given
in whiéh{only-a narrow Pgﬁéve Fesonance is'retained, and the only.
free parameter is the pion mass. The resulting resonance has a mass
of.585 MeV and a half-width of '125.Mev° The methodvcan 8l1s0 be
4,5

extended to calculating Regge poles at low energies.
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PART I. THE EFFECTIVE-RANGE FORMALISM_

A. Method for Setting Up Effective-Range Formulae
For simplicity, teke the equal-mass case, and solve for a
partial-wave amplitude A(v) , by the N/D method. This giﬁés6, in

the elastic approximation,

A(v) = N(v)/p(v) , | - (I-1a)
where v
" 1., Im AW) D(W)
Nv) = 2 dv T ) (1I-1b)
-00
A ' 1/2 :
D(y) = 1.8 F gy ¥ M)

o P Y Y
o W+ CERENICERD

(I~1c)

with v = q? = (s/4) - m2_, s = square of the total emergy in the
barycentric system, and m = mass of each particle. The constant

v is some normalization point, and v is the start of the left-

0 L
hand cut of ‘A(v). The function D(v) can be determined if N{v)
is known. Therefore we shall concentrate on N(v).

If we set y = (VL/VO, E(y) = D(v), and R(y) = -[Im A(+")/x ¥],

we have

2 1 2
N(q) = é dy H(q",y) R(y) E(y) , (1-2)
where

.H(qz,y) =(1l+hy o
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To obtain a shape-independent -formula without making any
specific assumptions about the unknown quantities that come into
expression (I-2), we shall make approximations only for the kérnel,
which ﬁe already know. Suppése we have a finite set of functions
Fi(y) such that, to a good approximation in the energy range_of

interest, we may write

N .
H(d,y) = ‘§1 Bi(qg) F,(y) | - (1-3)
where the Bi(ég) are functions such that, at each value of 'q?
in our range, the appro#imation iS'aSngOd as possible. The
reason for making thesé épproximations will be obvious preéently.
The simplest accurate Qay of.making them would probably be to use
some kind of polynomial interpolation through N carefully chosen
points (Whose pcsiﬁmnsmay vary with vq?) at.eachbvalug of q? .
The resulting approximations would theﬁ havé the forms of Eq. (I-B),
even if we used different polynomials in different regions rather
than a single polynomial. In general, neither the Fi(y) norrthe
Bi(q?) have to be continﬁous. However, one shoﬁid choose the
Fi(y) in such a way that :N is as sﬁall as poséible for the
desired degree.of accﬁracy. Since H(q?,y) is known and is quite
a smooth funéﬁion of ¥y ,‘there sﬁoﬁldlﬁé”no difficulty in doing
this. | | | |
| Subétituting the approximatioﬁs (I-ﬁ)'into Eq. (i-e), we

have
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a = [ dy F.(y) R(y) E(y) . (1-5)
e 0 . . i BN i Lo

The reason for making the‘approximations (1-3) is now
obvious, since we have a formula [namely, Eq.:(I-h)] depending on
only a small number N of unknown parameters ai , which could be
determined from experiment, .A bonnd on the accuracy of this formula
can be easily estimated because it is of the same order as the
aceuracy of the approximations (I~ 5), which we can obtain at once
.31nce we know what H(q ,¥) actually 1s.7 Eqpivalently, the
range of validity of Eq. (I k) is of the same order as the
correspondlng range of validity of the approx1mat10ns (I 3). An;
'additional advantage of thls approach is that it is always much
easier to make approximations of known functions than of unknown
ones (as in the usual pole approach), since no guesswork is
intolved. vFinaily, we do not have to neke‘eny very'epecial
assumptions aboutb R(y), although a knowledge of some of its nore
detailed'features‘could certainly be used to improve the accuracy
of our results. For instance, if we know that R(y) E(y) is
comparatively large in some region, it would certainly be desirable
_to make the approx1mations (I—B) particularly accurate there.

In states with orbital angular momentum £ > 0, £ of the
@, can be determined from the.condition that'the phese shift goes

to zero as q?z+l for small q2 .
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A particular way of oﬁtalnlng the approx1mations (1- 5) is
to 1nterpolate through N fixed polnts yi at each value of q .
Then, no matter what type of interpolation we use, we always obtaln
expxess;ons having the forms | |

N _
H(q,y) ~ = :H(fqe,y'i) F.(y)-. = - (1-6)
i=1

This means that Eq. (I-4) becomes

2 N |
N(q) = = H(¢Sy e (1-7)
i=1

which is identical with the result of applying the pole approximation.
Of course, this time the positions of the poles are not free parémeters.

Perhaps the most familiar interpolation formula is Lagrange's
formula for polynomial .interpolation. (One may use different
polynomials in different regions.) In this case, one has (in any

region)

F.(y) = 0 n (y'Y)/ ]I (v, -yj)] . >(I-8)
(J¥i) ' (J%i »

B. Effect of Oscillgtions
For small y we can'eﬁpeC£ strong‘oséilhxioné'invthe function
R(y) ,8'and hence in the integrénaﬁof'Eq; (1-2). 1In general, we:may
expect that, even if the osciliafidns grew rapidly for small vy ,
thg.nearly exact canceilations would édﬁfribute little to the

integrandsuéomparéd with other contributions. This would be true
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whether or not we made the approx1matlon (1- 3). Let us assume,
however, that the osc1l}atlons are- 50 large that even the small
remalnders after an almost exact cancellation are large compared
i'W1th the other contrlbutlons.‘ At flrst 51ght, 1t may appear that
in such cases the errors introduced by the apprdkimetion (i-?)
might be large compared with the contributions themselye§, We
shall show, however, that if both fhe_value and the slope are
well approximated by Eq.'(I-B), the errors will’be small compared
with the. contribution, no matter how violeﬁt the escillations
‘beeome.

To show this, we first note that the.accuracy of N(q?)
is determined by théierrore in.the'integfal compared with the values
"of:thet'in%égréliaﬁ all energies in the range of inferest, and not
‘jﬁst'the'véluéuat!énE'energyé*”Forfins%ance, the mere*fact that the
value of an integral varying with energy pesses‘through‘zero at;a
Slightly aifferent enefgy than it would if it were given correctly
'is obviously not going to affect N(q?) by much, although it is
teehnically true thaﬁ‘at the point where theAintegral passes through
zero the relative error4is infinite. | |

Suppose next that we have two successive oscillations that
exactly cancel each other at some energy(in_the range of interest
(see Fig° la).;lIf thisineferlheppens; we ¢an alweys divide our
in;egreqd into,an_oscilleting pa?t for which this does happen, and
inte a nonoscillatigg part, which does not cause any difficuities.
Dividing:the two oecillatioﬁsvat £het epergy ipto infinifesimal

strips of equal area A, we see that at the second energy of Fig. 1b,
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Fig. 1. (a) Two successive oscillations at the energy for

which they cancel. The nth strips are shown in each case.

(b) Values of the kernel (solid lines) and of the approxi-
 mate kernel as given by Eq. (I-3) (dashed lines) between y_'
"and y_ at two widely spaced energies in the range of intePest.
One, of "the energies is the same as in Fig. 1(a). There is no

loss of generality in taking this to be the energy for the upver
curve in this diagram.
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the total contribution of the two nth strips of each oscillation
1 ' ' '
is A(Dl /Dl - D, /D2) . This is large compared with the error
1
A(Ai/Dl - AQ/DQ) no matter how small (yn - yn) is, if both the
slope and the value are well approximated by Eq. (I-3). Thus the -
error is small compared with the contribution. Since this is true

of all such pairs of strips, it is also true of the oscillations.

C. Application to Moderately-High;Energy Nucleon-Nucleon Scatﬁéring

We now illustrate the above method in the simple case of
‘S-wave nucleon-nucleon scattering. Here we use Eq. (I-T). If we
substitute this expressiom into Eq. (I-lc), we have, in the

nonrelativistic limit (q?/mz) -0,

n

_ 1 + p G(qg,y.)a,
. Re D i=1 .
g cot & = == = 5 - (1-9)
' 2
i=1
where © is the phase shift and
2 L2 2,~1
a(q%y) = 29" 4y (1 +hy)T . (1-10)

This nonrelativistic approximation should be a reasonable one for
energies up toviOO MeV.

- Consider the lSO state in the range O to 100 MeV, From -
Fig. 2 we see thét, for y > ye‘ (=O.55), we.may'approximgte H(qg,y)
b& a sfréight line passing thréugh its values at y, and y, (=0085),

and for y;<,y2 by the sum of this same line aﬁd a parabola in such



Fig. 2.

Plots of

-11.

1/('1. + hgoy)]

b\ s 9%:0.25 i
050\, N\ =~
= 2.
B \ S = .0 —
i <. 4%:2.5 \j
| y5=0.06 === .
=035 =0B5-
0 ll ] y|2 lol 11 ] Y' |®5
o 0.5 1.0
y
MU -=24525

} (s01id lines) compared with the

corresponding approximations that have the forms of Eq. (I-11)
(dashed lines).
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a way that this sum passes through the value of H(q?,y) at

¥ (=0.06). - In other words, we have

2 Yo 2 I 2
H(q )Y) G H(q :y‘) + H(q 2y )
MR L 7oL Yo = ¥ 2
R 2 D 2
+ 8y, =¥ |5 Bays) - | |57 B(q",y,)
37 Y2 ~ 1”72
Yy -
2
s | 2==F) BlaLyy) |y
o = Iy

(1-11)

As can be séen ffom Fig. 2,.£he'overall‘error associated with this
‘approximatioé;is;of tﬁe“pgder Qf_oply~éeveralﬁpercent. This
accuracy beings to deteriorate af@er 106 MeV, and so we shall not
go beyond this energy. |

Now‘the»apprdxiﬁétion (Ijll)'is an interpolation through
fixed pointé; and so we obtain just Eq,-(I-9). Since we can neglect
Coulomb effects inylfof energiesv 2 40 MeV in p-p scattering, the
ai were detefmined by fittiﬁg this formula to the n-p scattering
length and effective range,.aé'well as:the p-p phase shift at 68.3 MeV.

The results are shown in Table I.

D. Exact Treatment of Known Outer Forces

We now give a method of treating known outer forces exactly

by using a,generalization of' a method deVeloped'by Noyes. .(Noyes,
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Table I. The lS nucleon-nucleon phase shifts calculated from

0
Eq. (I-9) with a = -6.78, a, = 23.10, “and 0z = 0.43 (which -
give a scattering length of 23.7 x ].O-15 cm and an effective
range of 2.66 x 10713 cm).
Energy Phase shift (deg)
(MeV) Calculated Experimentala
39.4 41.9 a 4k .0
68.3 - 34,6 34,5
95 30.4 27.0

These values are taken from a recent phase-shift analysis made
by H. P. Stapp, M. Moravesik, and H. P. Noyes, Lawrence Radiation

Laboratory (unpublished).
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however, used the usual pole approach-in-describing the inner

forces.)9

Let

R(y) = Ry(y) + R'(y), S (1m)

where Ro(y) ‘is the known part and gives the entire contribution
to R(y) for y>a . If we substitute Eq. (I-12) into expression
(I-2) and make the approximation.(I-3) only within the integral
containing R'(y) (which means -that these approximations have to

be made accurately only for y < a), we obtain

W) - [ ey HE PR (VEE) + = B (P
0 7o =1 1Tt (1-13)
- with
1 N
B(z) = 1 + [ dy K(z,y)R(¥)E(y) + = c(z)a’,
0 =1
where : ’ (I-1%4)
C\/2 B(v Ly (v, - zv)
K(z,y):-i—' Tdv' v /2 B(v',¥) (v, - 2y, ’
0 v' +m (vt - vo)(vL - zv)
(1-15)
. a
@ = é ay F,(y) R'(y)E(y) , (1-16)
and
c(z) = 1 ?)dvr ___XL_E 1/2 Bi(v')(VL _ zvo) .
, T o0 V' +m (vt - vo)(vL - 2v)

(I-17)
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Now if we knew the ai', we could solve Eq. (I-14) for E(y),
which would give us N(qe) through Eq. (I-13). However, since the
ai' must usuvally be determined by experiment, it would be desirable
to have to solve integral equations that do not contain any unknown
parameters., This may be accomplished by writing

N

) - )+ Do (1-1)

where the g,(y) are defined suc a
here th 1( ) 4 d such that

.. N | . .
g;(z) = ¢, (2) + [ ay K(z,y)R,(v)e,(¥) - (1-19)
0 _

Thus it follows from Egs. (I-18) and (I-14) that f(y) must obey
the equation
1 .
£(z) = 1 + | dy K(z,y)R,(v)£(y) - (I-20)
o

Inserting expression (I-18) into Eq. (I-13), we obtain

2 1 > N 1 2
N(q") = é dy H(q™,y)R(y)f(y) + 1%1 [g dy H(q",y)R(y)e(¥)

+ Bi(qe) ]ai' .

(1-21)

Thus, if we solve the integral equations (I-19) and (I-20) (which
do not contain any ai') we obtain gi(y) and f(y) which, when

inserted into the expression (I-21), give an explicit expression

1

for the phase shift in terms of the Q.
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-;, L. =-% STATE IN . xN SCATTERING

.+.WITH THE NUCLEON AS A BOUND STATE

- PART II, THE-.I =

A, -The Bound-State Hypothesis

. In the S-matrix-theory recently proposed by Chew6 it is
postulated that none of the strongly interacting particles is
¢lementary. Thus, all stable particles must be bound states,
and their masses and coupling constants can, in principle, be
determined dynamically. Although a complete caleculation would
be difficult, it should be possible to test such a postulate by
an experimental study of various scattering processes. In
particular, one may investigate the consequences of the assumption
that the nucieon is a boﬁnd state on the low?energy behaviorvof the

1 1 i

57 J = > state in N scattering, since the nucleon
10 ’

pole is present in this state.

P wave 1 =

Therefore, with this assumption a two-parameter formula
is first set hp to approkimate thé effect of the interaction
singularities. The parameters are then adjusted so as to give a
bound-state pole with the position and residue of the nucleon éole.
This removes all arbitrary constants and leaves a formula that
depends only onvthe nucleon and pion masses and the =N coupling
constant. Such a procedure is similar to the one followed in the
5S state in n-p scattering, in which the scattering length and
effective raﬁge'can be éalculétéd‘froh'thé‘positibh and residue
ofifhe déuteroﬂ ﬁéle}.i.e;,’from théybihdingfénergy and square of
the asjmptotic normalization coefficient for the bound-state wave

function of the deuteron;6 This procedure can also be compared with
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that followed by Chew and Low,ll who correlated the parameters of
the interaction singularities with the pqsition and width of the
3-3 resonance (which can be considered as an unstable Eound s_ﬁate)o
The only_important difference in the present case is that a part of
the interéction singularities coincides with the nucleon pole--a

difficulty that does not arise for the deuteron and the 3-3 resonance.

B, The I = ;, J = Partial-Wave Amplitude

2

‘ i

Consider the partial-wave amplitude12

2 (W'gzis(w)-l
g(w) = L — 1y (W) e 210 , (I1-1a)
(W + M~ -1 2iq(W) '
o _ n«ll(—W') exp 2i6_l]7( W)= 1 (e
(W + M)~ -1 2iq(-W)

13

where we have used the MacDowell reflection property, and where,

taking the pion mass to be unity,

W = total energy in the barycentric system,
M = nucleon mass,
5,5M, | = S-wave ‘I = l, J = 1 phase shift and inelastic
1’1 .2 2
paraneter,
1 1 . .
511’“11 = P-wave I = 52 Jd = 3 phase shift and inelastic
' parameter, and
| ' 1/2
ow) = ':gL‘,W-,l {[(w + M)2 - 1][(wW - M)2 - 1] } . (II-2)

Since we are concerned only with the amplitude on the real axis,
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we replace the correct singularity structure’ of g(W) , as shown
in Fig. 3(a), by the equivalent structure of Fig. 3(b). That this
is always possible to any order of approximation can be seen quite
readily from'theifamiliar’Coulomb-law analogy.6 Furthermore, we
consider only the 811 phase shift, because the corresponding
physiéal cut--running from -M-1 to -m® --is quite close to the
nucleon pole, which isat W= =M.

To solve the resulting problem, we use the ‘N/D method of

Chew and Mandelstam.® We write
g(W) = NW)/D(W) , | (11-3)

where we define D(W) +to be a function with a cut in the left-hand

physical region that obeys the subtracted dispersion relation

DW) = 1 + WM+ M-1 a0 Im D(W')
, , L -00 (W - W)W+ M+ 1)
(I1-4)
with
Im D(W). = W a( -W)[(W + M)2 - 1] Re N(W) for W < -M-1 ,

(11-5)

where the function 1s approached from above the cut. This corresponds
to N(W) being real for -M-1 > W > -W; , as can be seen from
Egs. (II-1b) and (II-3). Here ‘W is the threshold of the inelastic

region.
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(a)
M-I -VMi2 |
- Physical ' ~ Interaction cut . |
cut

(b)

MU.25858

Fig. 3(a): The singularity structure of g(W) in the complex W
plane.

Fig. 3(b). The singularity structure of g(W) with the unphysical
singularities off the real axis replaced by an equivalent cut,
that has its discontinuity adjusted so as to give the correct
amplitude on the real axis.
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We can find now the singularities of N(W) = g(W)D(W) .
It is obvious. that this function has no singularities in addition
to those possessed by g(W) and D(W) . Since, as we saw,
Im N(W) =0 for -M-1 > W > -W. , the dispersion relation for

N(W) becomes

N(W) = & g me(w') p(u)
" -(M?+2)l/2w LR
- | e
! Jf e Inlg(W’) DY)
m o W' o-W

(11-6)

The second integral comes from inelastic effects. In practice the
“integrand is: small until W' - corresponds to 600 MeV, and so we

may effééfiveijaféké;‘Wi ~ M + 4 , éven though the correct value

is smaller.
Equations (II-4) and (II-6)--together with (II-1), (II-3),

and (II-5)--can be solved if we know Im g(W) for W > -M-1 and
14 {
M4 . If--as we are assuming here--the nucleon

is a bound state, we have D(-M) = 0 ; i.e., there is a pole in

(-W) for W< -W

Dfl(w) at W = -M, Hence there is no pole in N(W), since the
corresponding O -function in Im g(W) is canceled by D(W) ,
which is zero at the same point in Eq. (II-6). To obtain the

residue of this pole, we expand .



-2] -

1 D(-m) [.a D ]
= = + (W + M) (=) + eee
g N(-M 3V ' N | I -
(1I-7)
Since D(-M) = O , this mesans that, near W = =M , =
-] ' / '
_ -1 |9 D o =[N(-M) /D1 (-M)] .
g(W)—- -M’-W [W (ﬁ) ] - -M-W 2
- : W==M :
(11-8)
i.e., we have a pole in g(W) at W = -M, with residue

y = =[N(-M)/D'(-M)] . B (11-9)

It is useful to note that we may always redefine Im D(W)
by distorting Re N(W) in Eq. (II-5) into any other function F(W)

for W < -W_ without changing the form of Eq. (II-6), provided only

. I
that the integrals (II-4) end (II-6) still exist. If F(W) 4is such
that on solving the resulting equations we are still able to obtain

a bound state, then that bound state must be the nueleon, since

there is no other in this problem.

C. The Approximation
:We first neglect all unph&éical singuléritiés for
W< WR =~ -M + 1 except for the short cut at W = =M arising from
the nucleon pole in the crossed‘channel, which we shall call the
3 c:utv.° This is equivalent to neglecﬁing thevnearby po?tions of
the circular cut in Fig. 3(a), and should not be unreasonable,
because this cut depends on wmn scattéring and the s resonance

has a large mass, which corresponds mostly to the more distant
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portions of the cut. . Nevertheless, this approximation can be
expected to intfoducevéomé error into the function N(W) at
W= =M iﬁ any quantitative caleulation. For W < -M-1, however,
this error is much smaller because, in addition to the fact that
D(W')‘ is small in the neighborhood of‘ W' = =M, (W' -W) is
much larger in Eq. (II-6).

Thus, putting W' = (x°l - M) and combining the two

integrals (except for the S-cut contribution) in Eq. (II-6), we

have
~ -M+(1/M)
N(W) = % qyr Dme(') D(W')
, 1/2 W W
-(M2+2)
(R » 1 1
I " M) D(x" - M)]
. + 3 J( ax ﬁ{i(f W, ) M%i] =
*1

1- (WA + M)x

(TI-10)

2

1-(W+ M);

. -1 , -1 ‘e
where *p = (WR + M) "= 1, Xy = (M - WI) ~ -0.25 (effectively),
and WA is some convenient value of W in the range of interest.

We take WA

Now, within the first integral in Eq. (II-10)--since the

= ’-105 " Mo

interval is small, and since D(-M) = O --we may put

D(W) = D'(-M(W .+M) . (11-11)
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To treat the second integral in Eq. (II-10), we use the approach
of I. From Fig. 4, we see that in the range 0 > W+M > -2.25
we may make the straight-line épproximatibn‘ 7

1- (wA + M)x  1- (wA + M)Xi x - %, 1~ (wA + M)x2 X - %

I W+ Mx - (W + W, (% - % PG Wx, (%, - %) °

1 2 2 1

(11-12)

where x, = 0,081 and X, = 0.735.

1 _ :
Substituting the approximations (II-11) and (II-12) into Eg.

(I1-10), we get

( - =M+(1/M) o o
D' (-M T W)W + M i
NGn = __E__l J[ aw, = %é' z(w) L .Zl W, 5
. 1= 1
_(M2+2)1/2 ,
(17-13)
where
W. = x._l - M
1 1
and
1 - (W, + Mx X5 -1 -1 - X - X
o - A 1,2 f ax Imle(x ~- M)D(x - M)] 2,1
1,2 X o xlr- (W o+ M)x] *1,2 7 %21

1,2 Xr

The first term in Eq. (II-13) can be neglected for W < -M-1, because
the numerator in the inﬁegrand is small compared with the denominator.
The second term has the same form as a two-pole formula. In this

case, of course, the positions of these poles are not free parameters.
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2 W=-M 7
A
R
L2
- ,/
XX ;o2 W=-M-0.5
2= <l
+ + A4
< v
2= at
e - wW=-M-1.5
T - I r- I, L~ - » :
’ o~
/’ ~~~~~~-

W=-M-225 T~

0 05 1.0

MU-25859

‘Fig. 4. Comparison of [1 - (WA + M)x1/[1 - (W + M)x] (solid
lines) wWith the corresponding approximate forms given by Eq.

(II-12) (dashed lines), as functions of x .
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The accuracy of this term can be easily estimated, since it is the
same_order as the approximation (11-12), which, as can be seen from
Fig. 4, is correct to within several percent in the range of interest.
That possible oscillations, even growing ones,.in Im g(W) should
cause no difficulfy was shown in I.B,

To obtain an expression for D(W) valid in the same range,
we substitute Eq. (II-13) into Eq. (II-5). Equation (II-4) then

becomes
D(W) = 1+ (W+M+1)a) H(WW,) +a, BWW,)] , (IT-1k4)

where we have drqpped the first term in Eq. (II-13), and where

o (11-15)

2 ,
-W)[(we M)” - 1]
H(W’Wi) = 1 f dw? Cl( )I( + M)

=Y

w'g(w' - W)(W' - wi)‘(wj + M+ 1)

Since for W < -M-1 , Eq. (II-2) becomes q(-W) = :—QL w'l(w =-M)[(W+M)2-—l]l/2,

this latter term reduces to

' c(W) - c(w.)
BWW,) = - o) ) - ; (1I-16)
1 (- 1) W W
where
ow) - (=MW +M-1) |M+oni(0) . 1 - 2uM(0)

w lm(M2 - 1) 2nW

[(W + )%= 1] T(W)- [M° - 1]L(0)

W2

+

and
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zn_{(w + M) - [(W+ M)2 - 1}1/2 }

(W) = : for (W +M)|>1,
' en[(wW +.M)2 f_lll{g | |
_ 1 Em.té.nnl. W+ M _
on[ - (W + m)2]H2 )2 11 - (@ w2
for (W +M)| < 1 .

Now it is true that we have a good approximation for N(W) in only
& limited range ofv W , whereas the range in the integral of quv(II_h)
is from -M-1 to ‘-oo“{ _That_this should not give rise to any
vdifficulties, however, WaS'shoﬁn in the last paragraph of II.B.

The two parameters al and a2 can now be calculated f§om

the two conditions necessary for the nucleon pole tc be a bound-state

pole, namely,
B(-M) = O, | - ({1I-17)

and from Egs. (II-9) and {II-13),

-M+(1/M) o a
.t awt 9 = = =1 R S
7R I e A A
-] - =
(11-18)

with D(W) given by Eq. (II-1k) in each case. Of these two conditionms,

Eqg. (II-17) is the more accurate, since ‘it-depends-only on the value
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of N(W) for W < -M-1 . Thus it could be used even if we did not
know the singularities at W= -M . In Eq. (II-18), 7eq is just
the residue of the equivalent pole in g(W) that would be obtained
by feﬁla;iﬁg fhe S éﬁfwb& é"pole a% ’ﬁ =n—M”.;ﬁd gddiﬂg to thié the
nﬁcieoﬁvbo;g;ﬁ This is’éqpéi té the Eorresponding polé in ﬁhe static
theory,ll i;é;, ‘ 7eqz % )
pseudovector coupling constant. Taking f2 = 0.08, we obtain

f2 M? , with f2 equal to the renormalized

Cil = 68.5 and CZ2 = 5085 K
- Using Egs. (II-1b), (II-3), (II-13), and (II-14)--and
rememberihg that we may drop the integral in Eg. (II-13) for W < -M-1

--we obtain, for &, ,

. 5 ‘
D (W+M° -1
Re ¥ T g a(-wW) cot sll(-w)
5
1+(W+M+1) Z a, Re H(W, W)
. . {=1 i . i .
= —> —= - , (11-19)
z la /W -W)] |
i=1

which may be éomﬁared with the experiméntal phase shifts in the fahge
of intérést,lé Such a'cbmpéfison is givén in Table:II éﬁd‘Fié; 5>'
and is not unreasonable in view of the crude approximations that
%éfé maaé:“MMéféOVér,.thé éxpéfiﬁehtéi .Bii bﬁasévéhiftéméfé not'
very reliably known at present and the values given should probably

not be taken too seriously.
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Table II. The Sil“ﬁhasévéhift‘calcuia%ed from Eq. (II-19) with

a, = 68.5 and- d2:= 3.83 (which correspodnds to - f-a =-0,08).
Lab energy | | | Phase shlft (deg)

(Mev) Calculated ) ' Experimental®

30 . - 1.15 -0.11 % 6.30

k1.5 - 1.76 : -0.34 * 2,12

98 - 4.96 ~1.20 % 0.23

. + 1.3

150 : - L .- 7'76 '33 o 1'5
o+ 2

170 ' - 8.90 -5 - 2.3
220 -11.39 5.4 T E

205 | C-11.59 4.3 2.5

i

These valués were taken from S. W. Barnes, H. Winick, K. Miyake,
and K. Kinsey, Phys. Rev. 117, 238 (1960) (30 to 98 MeV); from
Solution A of H, Y. Chiu and E. L. Lomon, Ann. Phys. 6, 50 (1959)
(150 to 220 MeV); and from the Fermi (i1) solution of J. Deahl,

J. Fetkovich, 'I‘. Fields, and G. B. Yodh Phys. Rev. 124, 1987 (1961)-

(225 Mev).
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Fig. 5. Plot of the & , phase shift calculated with £° - 0.08

as’ a function of lab energy.
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D, Discussion

We have shown that the energy dependence of the ’811 phase
shift in the. O~ to 220-MeV range can be roﬁghly predicted by
assuming that the nucleon is a bound state. We have not considered
higher energies, since phase-shift analyses normally neglect
inelastic effects at such energies, and it is not known how the
résults of such analyses would be modified by their inclusion.
Even if they do not affect a particular solutioﬁ substantially, it
is not certain whether the best solution (étatistically) without
the cgnsideration of inelaétic effects rémainé_the'best‘when such
effects are taken into account, and vi-ce__veréa°

The fact that the nucleon is a bound state in the =N
.system means that its mass and the =xN coupling constant could
be calculated by solving Eqs. (II-4) and (II-6) together with
(II-1), (II-3), and (II-5) to obtain N(W) and D(W), and then
finding M and 7 from D(-M) = O and Eq. (II-9). The nucleon
pole would not have td be inserted at-the beginning of the
calculation, because, as we have seen, it is absent from N(W).
It is true that the pole parameters in the crossed channel would
indeed contribute to these equations in the complete problem.
But we could treat their values as variables, and then find those
values for which the calculated parameters equal the assumed ones.
Inelastic effects may be quite important in such a calculation,
however. A similar procedure could be followed for any bound

state.
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PART III. LOW-ENERGY PION-PION DYNAMICS -. -

A, The General Approach

There have been seversl atitempts to calculate the low-energy
pion-picn amplitude from the requirements of analyticity, elastic
unitarity, crossing symmetry, and self—consistencyce’5’17’18’19 of
these, only the method of-Zachariasenls-does»not involve any
arbitrary parameters in the physically interesting P-dominant case,
at least if only the lowest-order term is retained. However, when
this method is extended to higher orders, one has to introduce
cutoffs,go and sb one once aéaiﬁ introduces such parameters. The
main difficulty in all these calculations arises from the strong |
incaleulable distant unphysical singularities within each partial
wﬁve. |

In the method presentéd here, which does nof contain any
arbitrary parametérs, the nearby unphysical singularities are
treated by the usual polynomial method of CM-I (reference 2). An
effective-range formula is then set up to represent the remaining
unphysical singularities. The parameters.of this formula can be
determined by requiring that the resulting partial-wave amplitude
hes the'correct'value and_derivatives at some point between these
singularities and the'physical region. The amplitude at this
point can, in turn, be calculated frém the absorptive part in the
crossed channel, through a fixed momentum-transfer dispersion
relation. This absorptive part_is always expandable in Legendre
polynomiais in the regidn of intereét° Thus we have a self;
éonsistency problem in which we must £ind partial-wave amplitudes

such that the assumed forms equal the calculated ones.
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Finally, the same type of procedure can be followed for
complex values of the angular momentum, £ , once the physical
problem has been solved at low energies. The main usefulness of
such a calculation is that it gives the trajectories of the poles
in the complex 4 plane, as they move with energy. These Regge
poles, in turn, dominate high-energy scattering in the crossed

channel.h’5

B. The Effective-Range Formula

if the amplltude for a glven isotopic spln state I is
A (v, cos 6), the partlal—wave amplitude is
1

[ “d(cos ©) Pz(cos 8) A (v, cos 8) ,. (I1I-1)
-1

A(z)x(v)
vhere v = (8/4) - 1 ;s is the square of the total energy with
pion mass u =1, and © is the scattering angle in the barycentric

- 2
system. When thls is solved by the N/D method, we have, from CM-I,

ApyrV) = NzI(v)/bzI(v) , (1II-2)
With
I
I v - v-v, -1 Im A(ﬂ)I(v').Dz (v')
N, (v) = & ,\.( dv' =
A _(ﬂ)I‘vO) * 7 -£> ! (vt = v )(v! - v)
(ITI-3)
and

| vov @ V2 RN )
DzI(V) - 1 - 0 (5_"_\’___) 42 2 -
o (v = v )(v' - %)

(III-X4)



=35

-

where we have made subtractions at some point vo o The function

REI(V) is the ratio of total o elastic partial-wave cross section.
In the elastic approximation we have REI(V) =1 ;;a relatidn which

is exact for 0 <v <3,

I, <y < -1 with V1, > -9 , the function

Im A(z)I(V) can be calculated from the partial-wave cross sections

Now for any rangs v

in the crossed chamnel through Eq. (IV.7) of CMnE,d according to

which
m A, 5\ (v) = 2 }v—ldv' P(1+2Xtd ymi (v, 1+2 LE1L)
AT Y] o L Y " v? ’
(11I-5)
where
Im Ki(v', 14+ 2 2;$—l =
o0 2
v+l
= £ (28" +1 X Tm A V)P (1+2 ~—=
£1=0 ( ) 1t=0 1. (JZ')I"( Pyt )
(111-6)
with
1/3 1 5/3
BII' = 1/3 S 1/2 . ""5/6 °
1/3 -1/2 1/6

N

To treat the region - <v < Vi, s We use the approach of I. When

we put v!' = x1 for v' <wv. , Eg, (III-3) becomes

L
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I
I, v - v -1 ' Im A(z)l(v’) D, (v?)
A A A CLE L))

n
YL

(1) D, (-x)

n o * (vg + x 1) (1 + xv)
(ITI-7)
where X, =‘-VL-1 . Now, we can approximate the kernel in the second

integral in the same way as in I, If we use an interpolation formula

as in Eq. (I-6), we have, for a given range of v and for 0 < x < X1

G, (x)

n
Tro ~ 0 T+ 5y 7 (111-8)
: i=1 - T

whiech, inserted into Eq. (III-7), gives

vV -V

I 0
N, (v) = A (v +
Y (v) (£)T o) 2
I i
-1 Im A (v') D, (v*) n F
X [ av Bt (v -y 3 AL
VI, 0] i=1 i
(111-9)
- i _ -
where w, = Xi and the F(Z)I are constant parameters. The last

term has the same form as an n-pole formula., In this case, of course,
the positions of these poles are not free parameters. The accuracy

of this term can be easily estimatéd; since it is of the same order
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as the approximation (8). That'possible'oscillations, even growing
(v) , should cause no difficulty was shown in I.B.
' i
(£)I
)I(v) go to zero as v? for small v .

ones in Im A(z)I

In states with £ >0, £ of the F can be eliminated

by the condition that Ay
(This is automatically guaranteed if we consider v°z A(z)I(V) y -
as is done in CM—I,2 in which case a subtraction in NZI(V) would

likewise be unnecessary. However, this method is somewhat more

inconvenient in other respects.)

C. Evaluation of the Effective-Range Parameters

To evaluate the remaining parameters in Eq. (III-9), we use
the fixed momentum-transfer dispersion relation (CM—I)2

Al
g

, t B ~ ot s '
AI[ v(s), 1+ 5;(57-} = dt' Im AI [V(t ), 1+ E;rgrj]

7ot T T o (h-s-n)]

X { T +. (1)

(11I-10)

where t = -2v(s)(1 - cos ©), and v(s) = (s/4) - 1 . From Fig. 6
we see that the integration is along some line s = constant. But,
from the Regge pole analysis.of Chew, Frautschi and Mandelstam,
we have along such a line

" a(s)

Im Ai[-v(t), 1+ 56%%7] o t , as t = 00, (1II-11)

. 5
where the aI(s) are shown in Fig. 7. From this diagram, and
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s=4
s:

$:9,
s=— 32
MU.26534

Fig. 6. The Mandelstam diagram for m-n scattering, with
u = lb-s-t. The double-spectral functions are nonvanishing
in the shaded regions. The expansion (III-6) converges
between s = U4 and s = -32.
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Re a (s)

’.ZF

-4.[ 4 16 32 S
=TT I=2(2)

MU.26535. .

Fig. 7. Séhematic ploté of'the”real‘parté of the complex
angular momentum: «_(s) as functions.of s for the topmost
‘Regge poles. These functions are real for s <4 .
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from Eq. (III-10), we see that in the region of convergence of the
polynomial expansion (III-6), i.e., for 4 > s > -32 , the integral
in Eq. (III-10) converges for I = 1 and 2, while an S-wave subtraction
has to be made for I = 0.

If we substitute Eq. (III-10) into Eq. (III-1), we have

SR i o " ~ v + 1 vt 4+ 1
A(ﬁ)I(v) = = é dvl,Im (v, 1+252) l+2-5—),
(111-12)

where we have used the fact that Legendre functions of the second
kind Qz(z) obey the relation Qz(z) = (-1)“l Q£(-z) , and that
in the pion-pion problem, (-1)? = (--l).I° We can now determine

i
()T by requiring that A(z)I(V)
--as. given by Egs. (III-2), (III-4), and (III-9)--and (n - £) of

A(E)I(VG) and (n - £) of the F

its derivatives be equal to the corresponding quantities as given

by Eq. (III-12) at v = v The point ~v_, may be taken anywhere

F° F

in the region v < v < 0, except at the branch points -1

and -4 , where the higher derivatives are infinite. The most

appropriate value of Vp is one that is not too close to VL )

but at the same time avoids the strong peaking of the higher waves
in the crossed channel that occurs in the neighborhood of s = 0 .
Therefore, a naturel choice would be the lowest poin£ of the central
triangle in Fig. 6, i.e., at s = -4 or vp = -2. It is also

usually convenient to put VO = VF , although it may be more

appropriate to make v, coincide with one of the o, in an

¢]

accurate calculation, since this.reduces the number of parameters.
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The above procedure is actually a generalizgtion Qf a technique
used by Ball and Woné in the nx - NN problemo21 Eheée authors,
however, chose the branch point :-l for VF ’ which enaﬁled them to
evaluate only-the value and first derivative at v = Vi ; An aiter-
native generalization would be to take the vaiue, and perhaps
derivatives, at several points in the region VL <v.<0 .

In Eq. (IIT-12), Im KI can always be evaluated from the
partial-wave cross sections in the crossed channel through Eg. (III-6).
This expansim always converges at Vv = VF , as is obvious from Fig. 6.
At large values ofv v! it may be more convenient to approximate

this functioﬁ by retaining the contribution of only a small number

4,5

of Regge poles., This contribution is qpifevsmall, however.

The method of this sectiéon can be carried to any order of '
accuracy if Rﬁl(v) is known, or, equivalently, if inelastic effects
are inserted. This is because the accuracy of the approximation
(III-8) can be increased indefinitely as n increases, and any
number of derivatives can be taken at v = Vp o It is, in féct,

essentially an analytic continumation from v = VF into the physical

region of the function

I
A 0 A e T CTIE [ L) B
, 1 :

which is free of singularities in the region vy, <V <00, Such a

function can be regarded in some sense as the partial-wave amplitude
from which the physical and nearby unphysical singularities have

been removed by unitarity and crossing respectively.
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SincéVWe have to make an'S-wave subtfactidn in ﬁhe I=20
state,'the aébve procedure cannot be applied to the I =”O, £=20
state. But,yohée the other waves.hévé been calculated, thevéonstants
A(O)O(VO) ané F(O)Oi can be computed by using the exact crossing
conditions ofJCM-II (reference 5): As there is an infinite number

of such condffions, this state can also be determined to any order

of accuracy.

ol

i D. The P-Wave Approximation )
We now illustrate the preceding techniques in the approxi;
‘mation of consistently neglecting everything except the P wave.
This is a valid approximation because, although the S wave in the
crossed channel distorts the P-wave amplitude at v = vp » it can
be.shown that the amplitude at.the resonance will not be affected
much by a consistent neglect of the .S wave., We shall also use a
zero-width resonance approximation; From Egs. (III-5) and (III-6)
this means that if the resonance is at. v = Vg » the left-hand cut

starts at v = -v_ - 1 . If we take v_ = -v_ - 1 , this in turn

R L R-
means that the first integral in Egs. (ITII-7) and (III-9) venishes.
In addition, we take Rzl(v) = 1, This is a reasonable approxi-
mation for 0 <v g 10 (CM~I)°2

In the range 0 <v £ 5 , which we would expect to be the
" dominant fegion, we can approximate the kernel (1 + xv)-l by & -
straight line’for O < x-< 0i21, which is the appropriate interval

if Vg > 3.5 ¢ In other words, in Eq. (III-8) we set n =2, and

put
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G olx) = (x=xy )% 5= %,0) (111-13)

with x. = 0,16 and x. = 0.02, which corresponds to ®, = 6.25

1 2
and 'm2‘= 50 in Eq. (III-9). Within this range of v , the
accuracy is of the order of several percent, as can be seen from
Fig. 8. Of course the accuracy continues to be reasonable for much
higher values of v ..

‘Now, the above approximations obviously distort Rll(v)Nll(v)
at large values of v . This distortionlarises from the inédequacy
of both the elastic approximation and the éffective-range formula
at high energies. However, as was shown in II.B, Egs. (III-3) and

(III-4) are still valid provided that we add to the right side of

Eq. (III-3) the additional term

. 1
v -y o Im [A (v')D,(v")]
vy = —2 [ aw (D1 1
t vy (vt = vo)(v' - v)
(IIT-14)
-1, 1 -1
Ve ? ax Ay (-x )0 " (-x )]
jt X
xg (vg +x (1 + xv)
where VI = ~xI-l is the lowest value of v at which this

distortion begins to become large. But the approximation given

by Eq. (III-8) holds also for X <x <0, as can be seen from

Fig. 8. Thus the form of Eq. (IIT-9) is unchanged by the addition

of ANll(v) if we insert the approximation (III-8) into Eq. (III-14).
To set up the zero-width resonance approxiﬁation we use the

fact that, for a dynamical resonance, since
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2.0 : I T

|
l+x v

MU.26536

Fig. 8. Plots of (1 - xv)'l (501id lines) and the approximate
form given by Egs. (III-8) and (III-13) (dashed lines) for
various values of v .
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1
Re D, (vR) = 0 , (1II1-15)

we may to a good approximation6 put Re Dll(v) ~ o(v - VR)/(vR - vo),
and Nll(v) ~ (V/VR) Nll(vR) , as can be seen a posteriori from Fig. 9.
From Eq. (III-2), since Im Dll(v) = =[v/(v + 1)]1/2 Nll(v) , this

leads to the Breit-Wigner form for v > O , namely

v(I‘ll)2 [VE/(V + 1)]1/2

Im A (v) = , (I1I-16)
"R (v - VR)2 + (Pll)Q[VB/(v +1)]

where
v I = (v - v Wlvp) (1II-17)

In the zero-width approximation, Eq. (III-16) becomes

Im A(l)l(v) = % Vg Pll 3(v - vR) . {(111-18)

Taking v, = v, = -2 , we can now calculate the constants

0 Iy

1 2 .
A(l)l(vo) , F(l)l , and F(l)l from the requirements that

A(l)l(o) = 0 and that Eqs. (III-9) and (III-4) give the same values

of A (vo) and A' (vo) as would be obtained from Egs.
)

(1)1 (1)1

(1II-12), (ITI-6), and (ITI-18). We can then calculate vy and

Fll through Egs. (III-9), (III-4), (ITI-15) and (III-17). Thus

we have to find vR and Pll such that these calculated values
equal the original assumed ones. This is a straightforward--if
somewhat tedious--calculation that can be carried out by hand and

does not entail any numerical integration. It leads to vp = 3.4
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Fig. 9. The functions Nil(v) ‘and Re Dll(v): calculated from
Egs. (fII—9) and (III;h) (s01id lines)"compared with the |
approximate forms (V/VR)Nl (VR)' and -[{(v - VR)/(VR - VO,)]

(dashed liﬁes), with ‘t‘hé'parameters of III.D:
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1l 1
and vp Pl = 2,6 . The corresponding values of A(l)l(-e), F(l)l ,

and F(1)12 are =0.0979, -1.326, and 13.05 respectively, which

can be used to calculate the phase shift & 1 through Eq. (V.20) of

1
CM-I,2 according to which

Iv/v + 1)]1/2 cot 511 = Re Dll(v)/Nll(v) . " (III-19)

The corresponding cross section is plotted in Fig. 10. The half-width
of the distribution is 125 MeV, whereas the positon of the resonance,

at which 611 = 90 deg, 1s 585 MeV.

E. Calculation of Regge-Pole Trajectories

It has been proposed by Froissart and shown by Squires that
Eq. (III-12) can be used to uniquely continue the function A(Z)I(v)
to complex values of £ .22 Actually, in this case it 1s more
appropriate to consider the function BI(V,z) = v-z A(z)I(V) s
since A(E)I(V) is singular for -1 <v < 0 , whereas VBI(V,E) is
not.>” HNow for physical £ , the N/D solution in the elastic

approximation,2 except for possible subtractions, has the form

-2 _ . _ | _
v oAy = Bilv,e) = (v, 8) /v, 8) (1II-20)
where
-1 Im B.(v',£)D_(v',2)
NI(v,ﬂ) = % dv! Iv, — L , (I11-21)
-0
and
v - vO Py V'2£+l l/é NI(V';z)
Prlv,8) = - o' (51) vy

0
: (III-22)
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e ]

MU.26538

Fig. 10. The I = 1l , P-wave total cross section =
(121/v) sin® 611 = (len/v)[v/(v + 1)]1/2 Im A(l)l(v)

calculated from Egs. ‘I( 11149), (III-4), and '(_I_II-19)

(s01id lines), and from Eq. (III-16) (dashed line), -

with the parameters of III.D.
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It has been proposed by Prosperi that equations of this type, together
with Eq. (III-12), cén now be continued to complex 4..24 The above
integral for DI(V,ﬂ) is not defined for large values of Re £ .
However, the integral equation for DI(v,Z) formed by substituting
Eq. (III-21) into Eq. (III-22) can always be continued to such

values of £ .

. The treatment of the above equations can now be carried out
exactly as in III.B and III.C.  Inelastic effects can be taken into
account by the method of the third paragraph of the preceding section
for small Vv . For complex £ , it is important not so much to solve
for the partial-wave amplitude as to find the poles of BI(V,E) s
i.e., to find those values of £ =_a(vP) for which, at some value

V= vp

Dy [vp, a(v;)] = 0 . (III-23)

Equation (III-23). is thus the equation of motion of the topmost
Regge trajectory for a given value of I , i.e., the relation between
the position a(vP) in the complex £ plane and the energy. The
residue of this pole in BI(V,z) as a function of v for a given £
is v
i . -l_ .
.PI[vP,va(yP).] = ‘-NI[VP,’ a(vP)]‘ BDI[V, a(vP)]/ay .

(II1-24)

The residue of the‘corresponding pole in A(z)'(v) in the complex £

plane is then
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alvy)
Blvp) = v T lvp, -alvg) Hao(v) /av] C ' - (III-25)

VéVP .

Now this method can be used only for Re £ > Re a(vF) ,. Bince
Eq. (III-12) diverges for smaller values of Re £ . To calculate

4,5

high-energy cross sections, however, we need a(v) and B(v) for
v+-< 0., which can only be obtained in a limited region by the above
- procedure. The values in the remaining region can be calculated

from the dispersion relations

ee]

Cav) = 2 [ avr ;%-,-Oi(_i—;-)- | | (II1-26)
0
end
@ gt
pv) = 2 Jav mBL) (TI1-27)
: 0 ,

where we have assumed that a(v) and B(v) each has only the right-
hand”cut;25 Suppose now that Vg ~is the largest value of v for
which -a(v) end B(v) can be calculated. Then, should Egs. (III-26)
and (III427) prové'insuffiCient because of a large contribution from
v > VB , one may represent the singularities in that region by
effective-range formulaevas in ITII.B. The parameters of these
formulae may then_be determined by requiring that they give the
correct  a(v) and B(v) and perhaés their derivativés at some
-point or points v, , where a(vA) > a(vF) , and v, <vp .
Theiabove procedure gives only the topmost Rggge pole for

a particular isotoPicvspin state.. To obtain the next pole, we must
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first subtract the contribution of the topmost pole for Im KI in
Eq. (III-12), and then explicitly insert thaf ppie into BI(V,Z)Q
This is to assureithe necessar& éonveigence‘of Eq, (II1-12). We
may now proceed as before in calculating this next pole. This

procedure may be repeated any number of times.

F. Discussion

A general method for calculating the low-energy pion-pion
amplitude has been given, both for physical and unphysical angular
momenta. The method takes into account both long-range and short-
range forces (nearby and distant unphysical singularities), the
latter being calculated with the help of the fixed momentum-transfer
dispersion relation (III-10). Incidentally, such a relation was
also used by Chew and Mandelstam (CM-»II).5 Those authors, however,
used it essentially to calculate the left-hand cut, a calculation
leading to divergences in the more distant singularities. In this
work, this relation is used to calculate the full amplitude at

v = v, , which does not lead to any divergences.

F
A rough calculation, in which only a sharp P-wave resonance
is retained, gives a mass of 585 MeV and a half-width of 125 MeV,
The mass 1s smaller and the width larger than the lated experimental
values of 725 MeV and 75 Mev respectively.26’27 This is not
unreasonable, however, in view of the crude approximations made.
' Moreover, the experimental pion-pion cross sections are deduced
from pion—production.experiments with the help of simple models

which may not be very reliable. The calculated width is also

larger than that obtained by Serebryakov and Shirkov,l7 who found a
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width smaller than the ekpgrimentél valueo_'Oﬁ the other hand, it is
smaller than the width obtained by Chew and Mandelstam (CM-II)5 and
Zacharia,s’en.l'8 The lattér also'calculated fhe‘méss of the resonance
without.arbitfary parameters and bbtained 350 MeV, which is smaller
than the value calculated here. |
It ié interesting to note that -the calculation by Serebryakov

and Shirkov depends quite.sensitively on the assumed value of the
pion-pion coupling constant, whereas all the other calculations do
not. This appears to be a peculiarity of the particular approximation
scheme used by these authors, rather than a feature of the general
theory. -Indeed, as was first pointed out by Chew,28 a calculation
of the I = 2 state, for which an S~wave subtraction is unnecessary,
would dutomatically give this constant. Such a calculation is
certainly possible with ﬁhe present method.

| The éboﬁe technique can, of course, be applied to other
‘strong~interaction problems. In such problems onevmuét also deal
wiih energetically unavailable qﬁasi-physical.regions, for instance,
the region 0 < v < (m? - 1) 1in the process s - NN , where
m = nucleon mass. While such regions are, strictly speaking,
unphysical, the techniques used to handle them are essentially the

same as for the physical regions.

G. Conclusion
A general approach for .treating lbw-enérgy partial-wave

amplitudes has been presented. This approach consists of first

setting up an effective-range formula in an a priori manner. This
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can then be used as a phenomenological formula. However, a method

is also given for calculating the effective-range parameters from

the partial-wave amplitudes in the crossed -channel. Thus-one.can

also calculate amplitudes dynamically. Alternatively, one may
calculate only some of the parameters-dynamicélly and leave the .
remaining ones to be detérmined experimentally. This would reduce
the number of arbitrary constants but would still give a more accurate
formula then could be thained'dynamicallyf

To increase the accuracy of the .calculation without adding
adlitimal phenomenological constants would require éqme-method for
calculating inelastic effects at intermediate energies.. Such a
method does not yet'exist° In practice, however, it may be possible
to make approximate calculaﬁions by treating resonances as stable
particles. For instance, ﬁhe ( meson may emerge as & resonance
in xn-p scattering. Such a calculation may be necessary for
explaining the.hard core in the nucleon-nucleon problem-~for instance
-~-where the ® probably does play an important role.

Although inelastic effects would probably be difficult to
include, they do appear to be small, at least in the crossed channel.
In the direct channel they are approximately taken into account by
the mechanism described in the third paragraph of III.D. (See also
Appendix A.) This means, for instance, that it is possible to

calculate states with small phase shifts, where such effects could

O]

play an important role. In particular, a calculation of the I =

J = % state in sl scattering should yield the nucleon mass and

coupling constant, with the nucleon as a bound state.
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APPENDIX A. HIGH-ENERGY EFFECTS AT LOW ENERGIES |
We now discuss the mechanism of the third paragraph of III.D.
in greater detail. It arises essentially from the nonuniqueness of
the N/D method. There is, in fact, an infinite number of N/D methods.

Suppose that, instead of defining DEI(V) by Eq. (III-4), we define

it by
" . I $
I V- oe) ImD, (vt)
DZ(V) = 1 + [ av s (A-1)
' - 0 (vr - vo)(v' -v)
with
1/2
I v 4 I
Isz(V) = -(m) ReNﬂ(V) R for V<VI;
(A-2)
I .
= EH, (v) , for v>9r, (a-3)

where HﬂI(v) is any function for which the integral of (A-1) does

not diverge, and v, any value of v such that the relation

I
Rﬂl(v) = 1 is valid--at least approximately--for v < vy -

We can now find the singularities of Ngl(v) = A(Z)I(V)Dgl(v) .
It is obvious that this function cannot havé any singularities in
addition to those possessed by A(z)I(V) and DﬁI(v) . Thus it
hgs, at most, a right-hand cut running from O to  +00 and a
left-hand cut running from -1 to -co. But; from Eqgs. (III-2)
and (A-2) combined with the elastic unitarity condition

Im{A "l(v)] = -[v/(v + l)]l/2 , it follows that ~szl—(v) is

(£)I

real for O <v < vi . In other words, the discontinuity across.
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the right-hand cut in the interval” 0'< v < vy is zero. 'This, in

turn, means that NEI(v) satisfies the dispersion relation

| | T,
Y Fray I Agyrv) D)
T .o (vf - VO)(V( - v) -

WS) = By (ve) ¢

1 Les
v - ?Odv' Im[A(z)I(v ) D, (v1)]
Vo (v' - vo)(v' -v)

Yo

b

(A-k)

since, according to Eq. (A-1), DEI(V) is real for v <0 ., Thus

Eq. (III-7) is unchanged except for the additional term

v, H(v) =

Suppose now that the approximation (III-8) is such that. it

- also holds for: X7 <x <0 . Then, if we insertlthat approximation
into Eq.. (A-5), we find that the form of Eq. (III-9) is unchanged
by the additiqn of Aﬁ%l(v) , although the F(ﬂ)li> will, of course,
be different. Now, this is true no matter what HZI(y) may be.

In particular, 'HEI(V)' may be just the functign obtained by uging

Eq. (A-2) for v >v but with NZI(V) given by Eq. (III-9)

I b
instead of Eq. (A-4). This justifies the use of Egs. (III-4) and
(III—9)_for‘.v <V despite the failure of Eq. (III-9) and the elastic

approximation at large values of v' within the integral of Eq. (ITI-4).
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APPENDIX B. S~WAVE EFFECTS IN THE wxn CROSSED CHANNEL
We now justify the neglect of the S waves in the calculation
of IIT.D. In other words, éitﬁough the S waves in the croééed
channel may distort the amplitude in the neighborhoodpof Vp s @
consistent neglect of these waves has little‘effect on the wagve
amplitude in the physical region. To see this, we note that the

partial-wave amplitude satisfies the dispersion relation

-1 Im A (vt) © Im A (vt)
' 1)1 . (1)1
A(l)l(v) =% {OD dv v'(vg ZV) +}¥ édv vi(v' - v)
\ (B-1)
let Im A(l)l(s)(v) be the part of Im A(l)l(v) that

arises from the S waves in the crossed channel. From Egs. (III-5)

‘and (III-6), this has the form

1

-y = .
[ avr(1+o¥ 1
0

<o

Im A (S)(v) =

(1)1 )[BlO Im A(O)O(v')

+ By I@ A(O)e(v‘)] . (B-2)

If this is substituted into Eq. (B-1) the contribution to A(l)l(v)
is just

.h ®

t
L av (1l
. 1

v

v JByo Tm AgyolV') + By Im Ag)a(V1I1

But this is exactly the contribution that would be obtained from
Eq. (III-12). Thus, if we neglect the S wave in.Eq. (IIT-12) and,
at the same time, the S-wave contribution to the left-hand cut, we

will be calculating the function
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-1 Im A

(s),.
: (vt)
A1y (V) - }% ,-foodv 'v'(\%? - V)

But this function is known to be a good approximation to A(i)l(v)'
in the physical region;l9' This fact at the same time justifies the
application of physical unitarity (and, hence, of the N/D method)”

to this function and also the consistent neglect of S waves.

[ 3

-4
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