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ABSTRACT 

The nucleon-nucleon problem is discussed from the standpoint 

of analyticity in angular momentum. A unique continuation of the 

partial-wave helicity amplitudes is given. The high-energy nucleon-

nucleon problem is then considered from the point of view of the 

various Regge poles that have the same quantum numbers as the nucleon-

antinucleon channel. In particular, the contribution of these Regge 

trajectories to nucleon-antinucleon scattering and, hence, their 

contribution by crossing to nucleon-nucleon scattering is given. 

The resulting formulae should be adequate to describe the total 

cross ·section and angular distribution for energies greater than 

approximately 3 BeV in the laboratory system. 
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1. INTRODUCTION 

The nonrelativistic Schroedinger equation provides a frame-

work for discussion of the continuation of the partial-wave scattering 

amplitude into complex angular momentum, £. In particular, it has 

been shown by Regge1' 2 that the .partial-wave amplitude continued as 

a function of complex £, on the basis of the Schroedinger equation, 

is analytic in the right-half £ plane. Poles in the right-half 

£ plane correspond to the resonances and bound states of an attractive 

potential and are called Regge poles. 3 4 Recently, several authors ' 

have realized the importance of Regge poles in strong interactions 

that are intrinsically relativistic in nature. These poles are 

important for an understanding of the analytically continued S matrix 

in energy and momentum transfer and for the formulation of the 

principles of particle equivalence and maximal strength of strong 

interactions. It is the high-energy behavior of scattering ampli-

tudes (in particular the nucleon-nucleon elastic amplitude) that is 

our primary concern in this paper. If the Regge pole conjecture is 

accepted, then scattering cross sections at high energies are con-

trolled in a very simple. way by poles in "crossed channels." 

For a relativistic scattering amplitude, Froissart and 

Gribov have proposed, on .the basis of the Mandelstam representation, 

a particular continuation of the partial-wave amplitude from 
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physical values of angular momentum (poSitive .integers) into complex 

angular momentum. 5 Sq_uires andProsperi give conditions for the 

. f th' t• t' 6 
unJ.q_ueness o ... J.S con J.nua J.on. · 

•· All these considerations (with the possible exception of 

Gell-Mann et al.) have been made for spinless particles. This paper 

has a twofold· objective; namely, to verify that.the above results 

have an analogue in the two-nucleon problem when spin is taken into 

account, and -to obtain· results applicable to the high-energy nucleon-

nucleon problem. 

Sectio:h 2 is· a brief discussion of kinematical prelim'inaries. 

A complete discussion of the kinematics· for the Mandelstam represeri-

tat ion is given by Goldberger, Grisaru, S. W. MacDowell, and Wong 

·(ooMW) 7; however, this section is self:..coritained, arid the reader is 

not expected to be familiar with all the -results of GGMW:-

In Section 3, a unique continuation-of the-partial-Wa.ve 

helicity amplitudes corresponding to transitions of definite pa:dty 

is derived from the Mandelstam representation;· It is in. this sect,ion 

that ah alternate set .of amplitudes can be ~defined-that simplifies-' 

the 'discussio~ of analYticity in angular momentum for the· partial.;. .. 

wave heli'city amplitudes. 
'. . ..... 1,.2 
The Sommerfeld.;.Watson representation· · 

for the nucleon-nucleon amplitude is given. · The results· of this··· 

section are applicable to both nucleon-nucleon scattering and nucleon 

.,,· I. • ' 

antinucleon scattering. 

In both nucleon-nucleon. (NN), and nucleori·-antinucleon ·(:Nfl')'·· 

scattering there are five independent amplitude-s,. because -of the 

spin. In Section 4, the q_uestion is settled as;to whichlinear· 

combinations of the five independent partial-wave NN· ·helicity 

) 

t 
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amplitudes are associated with the various Regge poles having the 

quantum numbers of the NN system. The results of this section are 

presented in Table IV. 

In Section 5, a discussion similar to that in Section 4 for 

Regge poles with the NN quantum numbers. Sections 4 and 5, although 

qualitative in nature, are included because the results are important 

for practical calculations. 

Section 6 is devoted to the study of high-energy (NN) scatter-

ing. Formulae for the high-energy total cross section and angular 

distribution are derived in terms of the Regge poles in the NN 
channels (crossed channels). The trajectory of a Regge pole deter-

mines the high-momentum transfer behavior of the nucleon-antinucleon 

amplitude and hence, (by crossing) .the high-energy behavior of the 

nucleon-nucleon amplitude is also determined. The contribution to 

backward np scattering of the 1t and the p trajectories, in 

particular, is discussed in some detail. 
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2. KINEMATICS 
:L 

A complete discussion of th~kinematicalprefiminaries, 

crossing, and the choice of amplitudes suitabre for- th~ Mandklsiain 

r~;resentation ·has been given b~ GGMw.7 
. - - ' . . 
However, questions 

r.elevan:t to our. purposes are discu~sed .in 'this sect ibn. 

There are three phys"ical processes related byanalYt:lc 

continuation of the momentum variables, ' .. 

and (II) ·· "(2-1) 

where the bars indicate antinucleons. The fourmomerita of the 

particles 1, 2, 1 ', and 2' are denoted p1, p2, p1 ,, and p2 , 

respectively, and all momenta are taken tobe into the scattering 

diagram Fig. 1. 
2 2 . 

Each of the momenta has the property (pi) = m , 

where m is the nucleon mass. The metric chosen here is such that 

x•y = x4y4 - x·y, where x and y are four-vectors. 

The customary scalar invariants are defined: 

(pl + 
2 

(pl' + 
2 

s = p ) = p2') ' 2 

(pl + 
2 

(p2 + 
2 (2-2) t = pl') = p2') ' 

and 

(pl+ p2' )
2 

(pl' + 
2 

u -· = p2) ' 
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with the constraint, 

s + t + u = 4m
2 

' (2-3) 

and conservation of four-momenta reads 

0 . (2-4) 

In nucleon-nucleon scattering, particles N11 and N21 are 

outgoing and their momenta are described by -p1 1 and -p2 1 ; the 

variables s, t, and u are related to center-of-mass ~uantities for 

nucleon-nucleon scattering by 

t = -2p
2

(1 - z) , and (2-5) 

2 u= -2p (1+ z), 

where p is the absolute value of. the three-momenta of either :Particle 

and E is the energy of either particle in the center-of-mass 

system (c .m.-). The ~uantity z = cos Q · is the cosine of the c .m. 

scattering angle. The physical region for the invariant variables is 

2 
s > 4m , t < 0 , and u < 0 • (2-6) 
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This range of variables is designated as the nucleon,-nucle.on ... 

channel or the "s channel." 

For the nucleon-antinucleon process GGMW is followed and we 

choose p
1 

to be the momentum of the incoming nucleon, the 

momentum of the incoming antinucle·on, . ;..p
1

, the momentum· of the _,, ,, 

outgoing nucleon, and -p
2 

the momentum of the outgoing antinucleon. 

In terms of c,m. q_uantities. the invariant variables take the form 

2 
{1+ z ) -'--S -- -2p ,_ 

u u 

-~ 

2 (1· ,., ·z ), · .. and (2-7) :• t = •2p ' 
.. 

u u 

;! 

2 
m2) 4E 

2 
u = 4(p + = u u 

The physical region of these variables is 

2 
s < 0, t < 0, and u > 4m • (2-8) 

This domain of variables is referred t_o as the "u channel." 

-_. There<'is another nucleon-antimicleori:. channel, .. the "t channel. II 

In terms 'of c.'rrr: (1Ua.ntities-the~invariant .. variables. take the form 

.;. . "·".- .. 

2 ·-

s = -2pt (1 + zt) ' •• ~ • p :. - .-
--· .. 

t 4(pt 
2 m2) 4Et 

2 and + = ' 
(2-9) 

2 
zt) u = -2pt (1 - ' 

• 
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where s < o, t > 4m2 , and u < 0 is the physical region. 

In all the follOwing; charge independence is assumed to be 

valid and the formalism of isotopic spin is used. Space-reflection 

invariance and time-reversal invariance are assumed to be valid 

throughout. These symmetries, together with Bauli symmetry, limit 

the number of amplitudes in nucleon-nucleon scattering to five for 

each value of total isotopic spin (0,1). Similarly, the above 

symmetries, together with G parity, limit the number of amplitudes 

to five for nucleon-antinucleon scattering. 

The S matrix for nucleon-nucleon scattering is written 

. -2 m 2 (4) . T 
= -~(21£) (E") 8 (pl + p2 .. pl' - p2,j ' 

(2-10) 

where ~·~· and ~,~ are the helicities of the final and initial 

particles respectively; ( -:!:', .E.') and ( -p, .£) are the final and 

initial c.m. momenta. Since conservation of isotopic spin is assumed, 

the S matrix depends upon the total isotopic spin T, and not the 

components of T. The normalization of the amplitude ~ T, called the 

Feynmann amplitude, is such that the differential cross section per 

unit solid angle (c.m.) is 

(2-11) 

2 
= ....,...;.;;m;..,·-

41£E (2-12) 
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It follows dir.ectly from rotational invaria_nce t:p.at the 

amplitude- ¢ .can:. b_e devel_9ped in terq1s 9f th~ _partial-wave 

helicity ampli:t1.1-des_ by the expansion
8 

: -~ -,. ·. ; 

,¢A. 1 1.l. 1 )A.~(_t,!) = · ¢'f... 1 1.l. 1 ~;\Ji(W,z) ... · 

.: -

l 00 J ,·, J .T 
= . L: . (2J + l)d;,. . , I . I (Q) T, I I "\: ·- (w) 

p . "'-l.l., "· -l.l. . "' ll ' tloi.J. J=O 

(2-13) 

The beam is incident from the z direction and is scattered into 

the Euler angles ( 0, Q, 0). The q_~ntity . ~ 1 J.l 1 A.~-,- is the partial

wave helicity·amplitude anq. is proportional to the S matrix in the 
r. 

angular momentum representation 

where W ;:; 2E, ·. anci' 

The functions d J(Q) are reduced-rotation matrices, and have mn · 

simple orthogonality properties9 which lead_to 

l 

= E I 
2 J 

-1 . ' 

(2-14) 

(2-15) 

(2-16) 

~I 



-9-

Time-reversal invariance, conservation of total spin (which 

follows from charge independence and Pauli symmetry), and space-

reflection invariance lead to the following symmetries for the 

partial-wave helicity amplitudes respectively: 

T! A.'ll'(w) 
J 

A.ll (w) ' = TA.' I A.IJ., ll ' 

J 
llA.(w) 

J 
A.li(W) , and (2-17) T 'A. I = TA. I I ll , ll ' 

J 
-A.-Il(w) ~I I A.IJ.(W) T A.' I 

= . 
- -ll ' . ll ' 

The indices A., IJ., etc., are two-valued (~ 1/2), and if one counts 

properly there are 16 configurations of helicities of the initial and 

final nucleons. However, the symmetries (2-17) reduce this number 

to five independent helicity amplitudes for each isotopic spin, and, 

following GGMW, the independent amplitudes are, for each value of 

the isotopic spin T = 0, 1: 
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and likewise for the set rl. , · 
)t'A.'~', A.ll • , 

The partial~Wfl.Ve helicity amplitudes. (2-18)can be combined 

to give the- amplitudes for, _definite, total spin J. (J :=. 0, 1). :and 

definite parity ( -l)L .,. where -L- is the ;relative :o:r:bital-angular, ,. 

momentum of the two nucleons. ·The appropriate combinations are 

Singlet {J = L) fJ, T (w) == T J, T(W) - T J, T(W) 
' 1 2 

Triplet (J L) fJ,T(w) 
'- T3J,T(W) - T4J,T(W) , and 

f.J,T(W) = T J, T(W) + 
11 1 

TJ'T(W) 
2 (2-19) 

. "' ,. 

Because the Regge poles that .correspond -t.o definite parity -~re. to··be 

considere~ the set (2-19) is appropriate for continuation into 

complex angular momentum., 

Also of importance for the next section is a choice of 

amplitudes suitable. for the Ma:ndelstam representation; this problem 

has been dealt with in detail by GGMW. By use of four-component 

helicity .spinors for the initial and fimia· fermions and expressing 

~T as an operator in the Dirac spinor space, a set of invariant 

amplitudes T G. ( s, u, t) 
l - ' 

is found which satisfy, the Mandelstam 

representation. This set is related to the .¢'s by 

'J 
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2E¢1 
2 ~G· + 2 2 2 

- zm G2 + m G
3 

+ m zG4 P G5 , .1 

2E¢2 -~Gl + z(p2 + ~)G2 2 2 2 
= - m G + m zG4 - p G5 , 3 

2E¢3 
2 2 ~G4) ; . (2-20) = (1 + z)(-p G

3 
+ m G2 + 

2E¢4 
2 m2G ~G4 ) , and = (1 - z )(p G

3 
+ + 

2 

2m¢
5 = 2 2 1/2 -m (1 - z ) (G2 + G4) 

The Pauli principle, which requires that the S matrix be odd under 

interchange of the quantum numbers of the two nucleons in either the 

initial or final state, assumes the form 

a'··'T( t) i s, u, = 
'+T T (-1)~ G. (s,t,u) . 

~ 
(2-21) 

The fixed-s dispersion relation takes the usual form 

00 
. tDiT(s,t') 

CX) D T( . I) 
T 1 

12 
1 

d2 
' . s, u u ~ G. (s,u,t) = 2 +- 2 ' ~ 1( 

t' + 2p (1-z) 
1( 

u' + 2p (1 + -z) 

1( :n: 

(2-22) 

where tD and uD are the absorptive parts in the t and u 

channels respectively, and m is the pion mass. The lower limits 
1( 

of integration follow from physical considerations of the least 

massive intermediate states with the quantum numbers of the nucleon-

antinucleon pair. The one-meson exchange contribution is not displayed. 



-12-

The discus.sion in this section could· have ,been carried out 

for nucleon-antinucleon scattering with a slight modification; namely, 

that G parity replaces Pau1i .symmetry. There is an analogous set 

of amplitudes G.T(u,s,t) for the u channel, related to the set 
l 

GiT(s,u,t) by the crof:)singmatrix (GGMW): 

T 
Gi (s, u, t) = 

where 1 
B=2 [-: :] · (isotopic-spiil crossing matrix), and 

.. 

-1 6 4 -4 -1 

1 2 0 0 1 

1 
6=4 1 0 2 2 -1 

-1 0 2 2 1 

-1- 6 -4 4 -1 

There is also· a set of amplitudes ~ for the u channel; the 

amplit,udes are related to the G 1 s by an e<luation of the form_ 

(2-20) if p, · E,· and z are replaced by .pu:'. :Eu,. :and zu 

\ 

(2-23) 

(2-24) 

(2-24) I 
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3 .. ANALYTIC CONTINUATION INTO COMI'LEX J . 

. In this section .it is shown. that, given tqe set. of ,ampli-

tudes (2-19) defined at the physical values of J . by Eq_. (2-16), 

the fixed-energy. ,dispers.ion relation (2-22 ), and the assumption 

'that the absorptive parts 
1
p and 

1
p behave like powers of t 

and u as (t, u) ~ oo, it is possible to define a set of functions 

f(J,W) with the following properties: 

· (i) . f(J, W) . - fJ (W) for J = o, 1, 2, ···(physical J)(Eq_. 2-19) 

(ii) f(J-;W) is holomorphic for Re J > N(s) in the complex 

J plane, and 

(iii) !f(J,W)j < exp -T Re J, T > o, uniformly for J 

sufficiently_large. 

The indices on the partial-wave amplitudes fJ (W) .have been omitted 

here. A function of complex J with the properties (i), (ii), and 

(iii) is uniq_ue; the proof of the uniqueness is given by G. M. · ··.:;,; · 

]?rosperi.
6 

Furthermore, it is assumed, following the work of Chew and 

Frautschi, 3 that it is possible to move the bound?-ry N(Re J > N) 

. to the left in the complex J plane and that only poles wil.l appear. 

This assumption puts the relativistic problem on the same footing 

as the nonrelativistic problem for superpositions of Yukawa 

potentials, where Regge1' 2 has given a continuation with properties 

(i) and (iii) but (ii) is replaced by merom9rphy for Re J·> -l/2 • 
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(i), {ii), and (iii), it is found that even and odd Jhave:.to be 

has been introduced for spinless particles by several authors. 
4' 6 < 

For a set of functions with prol'erty (iii), it is possible 

to· construct -the Sommerfeld..;.Watson representation for ,the -ainpli-

tudes ¢ or · G, and this section concludes with a discussion of 

the Sommerfeld-Watson representation. 

To 'remove certain trivial nonarialytic factors, we consider, 

instead, the set of functions defined by 

hJ = ~fJ ' 0 p 0 

··:· J E . J 
hll ·. = - f . 

' p 11 

J E J (3-l) h22 = p f22 

J ~fJ and·· ~ = ' p l 

hl2 
J m J = p fl2 

By use of Eq_s: (3-l)~ (2-18) .and ·(2-16), the set is related to the 

set· ¢ by 

·' 
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1 

h
0
J(s) 1 s dz[E.¢1 (w,z)- E ¢2 (w,z)] d00J(9), = 2 

-1 

1 
J 1 I dz[E ¢1 (w,z) + E ¢2 (w,z)] d00J(9), hll (s) =2 

-1 

1 

J 1 f h22 (s) = 2 
-1 

(3-2) 

1 

~J(s) 1 [ J - E ¢4(w,z)d_11J(9)] = 2 dz[E ¢
3

(w,z) d11 (9) 
' 

-1 

and 1 
J 1 s dz m ¢

5
(w,z) d10J(9) . hl2 (s) =2 

-1 

The h's are even functions of Wand E and, hence, functions only of 

s =~because E ¢1 (W,z), l(i)4, and m¢
5

(w,z) are related to the 

set G through relations of the type (2-20), and the G's are functions 

of s, t, and u. Next we use Eq. (2-20) and notice that the angle-

dependent factors are 

1 1 1 2(1 + z) = d11 (9) = d_1_1 (9) , 

1( 1 1 2 1 - z) = d1 _1 (9) = d_11 {9) , and (3-3) 



-16-. 

When Eq. (2-20) is substituted into Eq. (3-2 ), ·a product of dJ 

functions is encountered because of the effect of Eq. (3-3 ), and, 

. J 
to get rid of the d functions entirely, we use th~ identity 

. k,;J+l 
J 1 ~ d .(g) d (g),= 

mn -m-n 
k-· -

C(J, 1, k; m, -m, O)C(J, 1, k;n, -n, O)Pk(cos _g) • 

(3-4) 

.. The foregoing identity follows directly from Eq. ( 4-25) of Rose 9 and 

k 
the fact that d 00 (g)= Pk(cos g) • The quantities C(J,l,k;m,-m,O) 

are Clebsch-Gordan coefficients and their phases are fixed by the 

conventions of Rose .9 The :following set of equations results: 

2 J, T( ) m g
5 

s , 

' 2 J,T 
- p g5 (s) ' 

(3-5) 

2 J T _2 J T. 
+ m g2 ' ( s ) + ~ g 4 ' ( s ) , and 
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h
12

J,T(s) 
2 

&(J+l) [ ~J+l, T(s) _ J-l,T( ) m (3-5) =- g2 s 2 2J+l 

l 

+ g4 s . - g4 s J+l,T( ) J-l,T( ) J 
' 

where 1 
k,T 1 [ Pk(z) GiT(s,u,t) dz • (3-6) gi - 2 

(2-22) for T The fixed-energy dispersion relation G. (s,u,t) 
)_ 

is substituted into Eq. (3-6), and we obtain 

00 1 
dz Pk(z) kT 1 J2 tDi T(s, t') 

1 r gi ' (s) =- 2 1( 2 t' + 2p (1-z) 
-1 

1( 

(3-7) 
()) 1 

dz Pk(z) 1 J2 D.T(s,t') 1 ~ + - 2 2 1( u )_ t '+2p (l+z) 
-1 

1( 

.The order of integration has been interchanged (which is certainly 

permissible if the integrals in Eq. (2-22) exist uniformly in z). 

The dispersion relation was written down without subtractions and, to 

be completely rigorous, the subtractions should be included; however, 

the explicit display of the subtractions only complicates the algebra. 

Using the Neumann representation for the Legendre function 

of the second kind (Whittaker and Watson), 10 

1 

{ Pk(x) dx 
' k = o, 1, 2' . . • ' 

Z - X 
(3-8) 

-1 



we have 

k, T( ) l gi s = --2 
2:rrp 

(3-9) 

If we use Eq. (3-9) in Eq. (3-5) and analytically continue in J, 

the resulting set of functions h(J,s) will certainly. satisfy 

condition (i) since all the steps in arriving at Eq. (3-9 were true 

for integral J. 

Next we Use the assumption that D.(s;t) 
l 

behaves like a 

power of t as t approaches infinity, 

D.(s,t) 
l 

(3-10) 

where N(s) is, in general, some complex-valued function of s. 

With this assumption and with knowledge of the asymptotic behavior 

for·large 
. k+l . 

z(i.e., ~(z)"' 1/z ), we see that the 

integral (3-9) converges and defines a holomorphic funct.ion. of k 

in the Tegion5 

Re k > N(s) . (3-ll) 

The only remaining problem is· to establ;i.sh property {1.11); 

th f t . . Q ( ) ha t. h .. t l t t . ll e unc 10n K z s e 1n egra represen a 10n . 

00 

~(z) " r ,-k-l(l-2SzH2 )-l/2 as, Re k > -1 

z+ (z2--;tl/2 (3-12) 
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Changing the variable of integration in· (3-9) to z = 1 + t/2p
2 

, 

using (3-12), ~nd interchanging the order of integration, we have 

co 

= ; s(zo2-l)l/2 

t
O'. (s, ;) + (-l)k cr. (s, ;) ds 1 u l 

;k+l ' 
(3-13) 

where 

t 
0'. (s, ;·) 

'u l 
and 

If it is assumed that D(s,z) behaves like a power of z at infinity, 

then it follows that cr(s,;) behaves like the same power as s 
approaches infinity, and we write, for cr(s, ;), 

(3-15) 

. J t 0'. ( s, s ) 
Thus, the integrals ;k+l · J 0'. (s, ;) 

u l are 

bounded: 

t cr.(s,;) 
'u l < 

= 1 
k-N ex~(N-k} log ;·z 0+ (z

0 
~-1) 1(2 J , 

~ (3-16) 



2 l/2 2 since -.log [z
0
+ (z

0 
-1) · ) > 0 for_ E > 0, However, the f~ctor 

spoils the desired exponential behavior .for large k; because 
' . - .. · '· .. .. : ,. . - . '. . · .. ·-''· 

of this, two different sets of functions are defined, 

ro· _,: 

= 
l 

2 
2:Jt'p 

. s .. ~(l+ t'2)[tDiT(s,t) "±:_ uDiT(s,t'))dt' ' 

4(m:Jt')2 2p (3-17) 

with the properties 

and 

g. T(+) (k, s) = g. k, T (s) , where k = 0, 2, 4, · · • , 
~ ~ 

•k T 
g. ' ( s) , where k = 1, 3, 5, · • • . 
~ 

(3-18) 

The functions g~T(-t_)(k,s) each have the desired-exponential decrease 

for ·large k. We can.now find the even and odd J-parity amplitudes 

h (-t_) by. evaluating the Clebsch-Gordan ~oefficients and separating· 

even and odd J ,in E~. (3-5). (The physical significance of J 

parity is discussed in Section 4~) . We obtain a set of equations 

identical to_E~·- (3:..5), except for the replacements 

and 

-J T • 
h' ' (s )-for J=l, 3, 5, 
~ 

.... hi (- )T(J, s) whe:re i=O, 11, 1, 22, l2., 

g.k'T(s) for k=0,2,4, .... g.(+)T(k,s):where i=l,2,3,4,5, 
~ ~ . . : 

..... -· ..... , ......... .-

gi k, T ( s) for k=i, 3, 5, .... gi (-) (k, s) where' i~l, 2, 3, 4, 5 . 

(3-19) 

'•' 
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Equation (3-5), with the above replacements, satisfies properties (i), 

(ii), and (iii). The coefficients in front of the g's which d~pend 
'• 

upon J do not change the asymptotic behavior in J so that 

condition (iii) is satisfied and the set is unique. 

If one expects an extension to the left.half-plane with 

Eqs. (3-19) and (3-17), the factor of 2J + 1 in the denominator 

of certain terms in Eq. (3-19) is disturbing, but does not lead to 

a fixed pole in J. A typical such term is 

(J+l)g
2 

(+)T(J-1, s) + Jg
2 

(+)T(J+l, s) 

2J + 1 

1 1 
==-2 2J+l 2rcp 

t' 
[ (J+l)QJ-1 (1+2) 

2p 

by use of the property of the Q functions for n == half integer 

Q (z) == Q 1 (z ), the numerator in Eq. (3-20) goes to zero when 
n -n-

2J + 1 goes to zero. Thus, the factors of (2J + 1) do not cause 

singularities in J. The only other disturbing factor is 

[J(J + 1) ]1/2 

hl2 (±)T(J, s ), 

in h12 
of Eq. (3-19); but, instead of continuing 

we may consider 

h
12 

(!:)T (J, s) 

[J(J + 1) Jl/2 ' 

(3-20) 

(3-21) 

this quantity being related t.o the ¢
5 

scattering amplitude through 

the Sommerfeld-Watson transformation. 



-22-

Following the work of. Chew and ~autschi, 3 it .is.assumed 

tba t . one can move to the~ left of the boundary 1')" (3 -11) and only Be_gge 

poles will app:ar ... The .position . a of a particular Regge pole 

depends upon the energy s. In the !fOnrelativistic problem, for 

superpositions. of Yukawa potentials, it has b~en shown by Hegge
1

' 
2 

that the only;limitation on the region.of meromo:r:phy .is the line 

1 
· Re J = -

·2 
• :; Also, it has .been shown by. Froissart,_

12 
Hegge, 

12 

and Mandelstam13 that the boundary of merotnorphy can be moved 

arbitrarily far to the left (left-hand J plane) for the non-

relativistic problem. In the· rela·tivistic ·problem; Froissart has 

shown that the boundary of holomorphy can be extended to Re J > 1 

for negative 
11 .. 

s. Also, several authors have shown that it is 

possible t.o prove meromorphy for Re J • > 1 in the relativistic 

14 
problem. 

A. SOMMERFELD-WATSON TRANSFORMATION 

Using the partial-wave expansion (2-13) and the relations 

between the partial-wave helicity amplitudes and the set h(s), 

Eq_s. (2-19) and (3-1), we obtain the following set .of expansions: 

I: 
J even 

+ I: h (- )J (s) PJ(z)(2J+l), 
J··odd ... 0 " 

E[¢1 (w,z)+ .¢
2

(w,.z)] = I: hll ( + )J ( s) . p j ( z) (2J+ 1) 
·J even 

hii(-:)J (s)· PJ(Z)(2J+l) , 
(3-22) 

+ I: ·{continued) 
J odd 

... 
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(3-22) 

E ¢
4

(w,z) = 
2
.! ~ [h:_ (+)J(s) - h (+)J(s)) d J(Q)(2J+l) 

·.J -'"22 1 -11 even· 

•:. 

+ ~ J ~d [~2 (-)J(s) - h1 (-)J(s)] d_11J(Q)(2J+l) , and 

We can now use the assumption that the set of functions h(~)T(J,s) 

contains only Regge poles, and we can perform the Sommerfeld-Watson 

transformation and obtain the set of scattering amplitudes ¢(W,z) 

in terms of the Regge poles. The J d functions do not cause any 

difficulties when we perform the Sommerfeld-Watson transformat.ion;: 

however, the details are discussed only for the first of the 

expansions in Eq. (3-22). The expansions in Eq. (3-22) can be 

formallywritten as contour integrals where the contour C 

encloses all the positive integers in the J plane (Fig. 2): 



(3-23) 

, [where the symbol (+ -+ -) indicates that another term is to be added 

in which h (+) (J, s) is replaced by h{.;;) (J, s) and· PJ(z) is 

replaced by -PJ(z ), and similarly for t3(+) in (3-24)]. 

We distort the contour to run along a line Re J = N 

parallel to the imaginary axis in the j plane and close it by a 

·large semicircle R (half plane), where this new contour encloses 

the poles of h(J, s). · The quantity E[ ¢1 - ¢
2

] then takes the form: 

E[¢
1

(w, z).,.¢2 (w, z)] = tr 1 si~JrcJ h
0 

(+ )(J, s)[PJ(-z)+PJ(z)J(2J+l) 

R 
Nt-ico 

+~ J 
N-i co 

dJ 
sin rcJ 

(3-24) 

\ t3, (+) (s) 

. - ~ L [2a:(n) + l] ~j_~ rca:(n) . [Pa:(ri) ( -z) + Pa:(n) (z)] + (+ -+ -) , 
Re o:(n) > N 

where t3 . (~)(s) 
o,n is the residue of the nth pol~ of · h

0 
(~) (J, s) . 

at· J ~ a:(n, s); in general, 

f). (~)T(s) 
l . 

lim [J - a:(n, s}] hi (~)IJ:I(J, s) where 
J .=. a:(n, .s) 

(3-_25) 

i = 0, 1, 11, 22, 12, and T = 0, 1. 

Using the following formulae15 for·the asymptotic behS.vior of 
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p J( -z) 
"' ( exp - Re Q · I Im J I ) exp (Re J. I Im Q I ) sin 1tJ 

PJ(z) 
sin 1tJ . ..._ [exp- (1t- Re Q) I·Im J·l] exp (Re J lrm.QI)., 

(3-26) 

and the exponential decrease of h0(~)(J,s) for large J .derived 

previously Eq,s. (3-16) and (3-19), one sees that the integral 

over the large circle tends to zero if 

1 
2 2 Im Q < log ( z 0 + z 0 - 1) • (3-27) 

Condition (3-27) is the Lehmann ellipse, l, 2 which is nothing other 

than the region in .Q for which the partial-wave expansion (3-22) 

converges. Both the integrals along the line Re J = N converge if 

0. < Re Q < 1t • 

The Regge-pole terms dominate asymptotically_over the 

contribution from the integration parallel to the imaginary axis. 

We assume that the J plane is free from singularities, except 

for poles, and that the integration along the line Re J = N is 

always to the left of the Regge-pole terms. The extension to the 

left half J plane has been considered by Mandelstam.13 

(3-28) 

In a similar way we can perform the Sommerfeld-Watson trans-

formation over the partial-wave helicity amplitudes and obtain the 

G's directly: By use of the inverse of relation (2-20), 
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( 

¢3 .. ·. ¢4 ) 
- z + ~-1+z 1-z 

2z E ¢5] ' (3-29) 
(1 _ z2')1/2 

-m 

E ¢4 '2E I ¢3 .·· ¢ .. J 
G2 

. 5 
== ---

l1 + 
+ +-

(1 _ z2)1/2 2 z 1 - z m p 

G3 = -:2 [/~ - ¢4 J z . 1 - z 

E [ ¢ ¢4 J m 
. 2¢ 

G4 
3. 5 = 2 + +-

(1 ._ z2)1/2 ' 1 + z 1.- z p2 p 

G5 
E [ ¢3 ¢4 J m 

2¢5 
and by use of = + +-

(1 _ z2)1/2 ' 2 1 + z 1.- z. p2 p 

Eq_. (3-22), and the relation of the dJ functions t.o Legendre 

functions, 

~ J(~: ~) [- (1 - z) PJ(z)+PJ(zl. 

~ J(~ ; ~) [ (1 +z) P_J(z) + PJ(z{ . 

_ _ (l _ z2)l/2 
- J 1~2 P'J(z), 
. . [J(J + l)J l 

(3-30) 
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we have the following 'set of expansions for the invariant amplitudes: 

~ (+)J,T{s) r 2 I} 
- ~(J + 1 ) l :2 Pj'(z) + z[PJ(zl) 

h (+)J,T(s) { 2 1 } 

+ 
1
J(J + l) : 2 [z P.J.Cz)] + z Pj(z) 

2Ft +-2 
m 

h (+)J,T(s) 
12 

[J(J + 1) ll/2 
+ L~J· 

\ hl(+)J,T(s) h22(+)J,T(s) I 

L (2J + 1) J(J + l) Pj(z) - J(J + l) [z PJ(z)] 
J even 

J even 

p .r ( z ) .+ ( I ) , 
J,odd 

(2J + 1) J h~ (+ )J,T( ) 
J ( J + 1) l-"22 s 

P" (z) 
J 

- ~ ( + ),J' T ( s ) [ z p J ( z ) ] I ( I ) 
+ Jodd' 

(3-31) 



G T = . 4 
1 
2 

p 
J even 

hl ( + ) J' T (s ) 

- J(J + 1) 

G T 
5 

+ 

J even 

h22 ( + )J' T ( s ) 

J(J + 1) 
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{ 

h22 (+ )J,T(s) 

J(J + 1) . 
' [z P' (z)] 

J 

h (+ ),J,T(s) 
P" (z)- 12 P'{z) 
J [J(J + 1) ]1/2 J 

z [ Z- PJ-(z)] ' 

·: __ ( L) , and 

.+ J odd 

:hlc;··)J~~T(s) ~ 2 
( ) 2(K'+m ) 

. z PJ" z - --'---:-:::---..._ 
J(J+ 1) 2 

m 
z PJ-(z) + ( I ) · 

J odd. 

The Sommerfeld-Watson transformation can be performed with the expansion 

(3-31); the presence of derivatives of Legendre functions does not 

alter the convergence of ,the integration alopg the line parallel to 

the imaginary axis and does not alter the vanishing of the integration 

around the large semicircle R. We obtain a set of equations similar 

to Eq. (3-24), except that h. (±_)T(J, s) .. in -~q_. (3-31) is replaced by 
l . 

rc (+)T ' 
2 ~i- (s), [z PJ-(z)] and is.replaced by 

' [z P~(z)] -+ [-z P' (-z)], 
a; 

..:· 



and P"(z) 
J 

is replaced by 
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P"(z) + P"(-z) . a -·a . 

Asymptotically in z, the quantities ·pa(z) and Pa(z) go 

into: 

P' (z) 
·a 

a(a + 1) 

, 
r(a + 1) r 1/2 

r(a+ 3/?.) ~/~t-1 za-1 

r(a +2 ) rfJ:./2) (2a + 1) 

for 

k . 1 th 1 d . t . ibt . 17 eep1ng on y e ea 1ng erms 1n z, we o a1n 

1 

:if 

(3-32) 

1 Rea>- 2 , and 

{[2a(n }t 1) 13' (+)T(s) 
o,n 

, (+ )T .. 2Ef , · . 'a{n) . ' 1 
- ~22, n (s)a(n} + m2" ~12, n(s) z 

[l + exp - irta(n)] + (+ -+ -) , 

GT,_,_2I. L 1 1 
2 2 n sin rta (n) 2 

p 

t~~b,n (+)T(s) a(n) + 2$ ~k)+ )T(s)] 

t -exp - in[a(n)-1)} + (+ ~ -) , 

z 
a(n)-1 

(3-33) 
(continued) 



GT,...,~ 
3 2 

L l 
n sin rra(n) 

:J.. (+ ).TC .. ) · o{n)-a.·{ · : [ ·c ) ·- Jl~ l ~i,n · s z ·1-exp-i>i an -1

1 
+ (+ ~ -) 

I 
n 

l 1 [-13' (+)T(s) a(n) .+ 213' (+)T(s~· za(h)-l 
2 22, n . . . 12, n 
p . - .... ... . 

sin 1LO!(n) 

{1- exp -in[a(n).- 1)} + (+ ~ -) 

l ..!.. 
sin 1LO!(n) . 2 

p 

X za(nhl + exp - i:JLO:(n)] + (+ ~ -) · 

The foregoing analysis could have been carried out for the NN 

channel. The q_uantities G,. z, p, and E would be replaced by 

a:, z,p ,and E u u u 

1 
' J ' 
, __ - i' 
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4. RIDGE POLES IN THE NUCLEON -ANTINUCLEON CHANNEL 

In this section the Regge poles with the quantum numbers of 

the nucleori-antinucleon channel are studied. As stated in the 

previous section, the position of a Regge pole moves with energy 

and is said to have a definite trajectory in energy which is con-

trolled by dynamics. Chew and Frautschi have proposed that stable 

and metastable particles (resonances)are·points on Regge trajectories. 3 

Each Regge trajectory has a definite set .of quantum numbers: isotopic 

spin, baryon number, strangeness, G parity (if applicable), etc. 

A particular Regge pole will appear in all S-matrix elements with 

the quantum numbers in question, regardless of the number and 

configuration of external particles. 

The position of a Regge pole a(u) where u is the square 

of the center-of-mass energy of the channel in question is conjectured 

to be an analytic function of u; its imaginary part vanishes for 

(real) u below the threshold of this channel. The physical points 

of the Regge trajectory are those points such that Re a(u) is 

an integer, and these points correspond.to resonances if u is 

above threshold, and to bound states if u is below threshold. 

Also, for u above threshold the imaginary part of a(u) at 

resonance energy is related to the half width of the unstable 

configuration by 

1 r"' .. Im a 
2 =; aRe a/du (4-1) 

Re real part of a(u) is assumed to be a monotonically increasing 
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function of u for u below threshold and in the region in which 

resonances occur. Also,. Im a(u) .is assumed to be sma:)._l for sharp 

resonances. The value"of u for which a(u) turns around and 

acq_uires a. 'negative slope _is purely a q_uestic~m of dynamics. 

· Also, each Regge trajectory is assumed t.o have a definite 

J ·parity, (-l)J, and the physical points of the Regge trajectory 

occur for either .. even or odd J, 'but n9t both simultaneously. 

The foregoing bas. been elaborated in detail by, Chew and 

Frautschi. 3 From here on, the number of Regge trajectories accessible 

t.o the nucleon~antinucleon channel is studied; in part.icular, the 

important q_uestion concerning which .Regge trajectocies are contained 

in the various .. amplitudes in Eq_. (2-19) is answered .. 

The q_uantum numbers of the nucleon-antinucleon system ar~ 

as follows: 

(a) ·baryon number = strangeness - 0 

(b) ·isotopic spin = T = o, 1 

(c) total spin = J .. - o, 1 

(d) parity = p = ( -l)Lt-1 

(e) G parity G (-l)Lt-.J+T, 

' 

where ·L is the relative-orbital angular momentum of the nucleon-. 

antinucleon system. Each Regge trajectory is assumed to have 

definite baryon number, strangeness, isotopic spin, parity, G 

· parity, and J parity. The nucleon-antinucle.on system that is 

coupled to a given Regge trajectory bas the same q_uantum numbers 

as this .trajectory; .thus, . (aJ:, (b),_ (d), and (e}_are specified. 
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The total spin is not independent but is specified by 

.J 
(-1) == (4-3) 

the right-hand side of E~. (4-3) is specified by the Regge trajectory . 
.J 

Since · ( -1) -is given by E~. ( 4-3) and _,J is either 0 or 1 for two 

spin-1/2 :r:articles, A ·is determined. Therefore, if the ~uantum 

numbers of a given Regge trajectory that is. coupled to the nucleon-

antinucleon channel are specified, then this trajectory is contained 

in either the singlet or triplet partial-wave amplitudes (2-19), 

but not both. 

There are two important classes of trajectories to b.e 

considered separately for the nucleon-antinucleon channel; they are 

(a) P(-l)TG = -1, and 

(4-4) 

. It is easily seen from E~. ( 4-3) that .J is 0 for class (a) and 1 

for class (b). 

The J parity of a given trajectory is determined by the even 

or odd nature of ( -1l •. For trajectories of class (a) where .J is 

0, then J is e~ual to L by the usual rules of addition of angular 

momenta. In this situation · ( J = 0), J parity is redundant to 

the :r:arity of the nucleon-antinucleon system, since 

Irl-1 --(-1) . = -P . ( 4-4a) 
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The Regge trajectory in ~uestion is thus associated with 

h
0 

C:t)T{J, u) , only, and ( -l}T = GP . 

For trajectories of class (b) where J is 1, then .J . is 

either L + 1 ; or L by the usual rules of addition of angular 

momenta; this :Btatement also holds for all points on the Regge. 

trajectory coupled. to the nucleon-antinucleon c~rmel. In this 

situation, J parity is not specified by ordinary parity (the 

parityof the nucleon-antinucleon system), since 

However, .. E~. (4-4b) leads to the important.result that the value of 

(-l)<lp determines whether a particular Regge trajectory is asso-

ciated with J L triplet or J = L + 1 triplet partial-wave 

amplitudes for class (b).trajectories. In particular, for 

( ..:.1)JP = -1, the trajectory is associated with h
1

(:!:_)T (J, u); 

for· (4-5) 

( -l)~P - .. 1, the trajectory is associated with h
1

.
1 

(±_)T (J, u), 

: h (±_)T(J. u) and 
12 ' ' ' ' 

(+ )T( 
~2 -:- J, u) 

It is worthy of note that in all the foregoing the ~uantities 

L and ..J are specific to the nucleon-antimicleon system, and 

.. 
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constraints are imposed on these·q_uantities·when the nucleon-

antinucleon channel is to have the same quantum numbers as some 

given Regge trajectory~ 

·To summarize the results ·of.this section, all the "good" 

quantum numbers of the nucleon-antinucleon channel including J 

parity, are given in Table IV. Also~ and (-l)JP are given 

so that the amplitudes containing the Regge trajectories can 

be easily identified. Some particles whose quantum numbers have 

been indicated experimentally are entered at the far right. 

Table IV. The independent quantum numbers of the NN channel. 

G T p ~-l2J 4 J 
(-12 p 

(+) 0 (+) (+) 1 (+) VAC, ABC 

.(+) 1 (+) (-) 0 (-) 

(-f) 0 (-) (+) 0 (-) x, 1) 

. (+) 1 (-) . (+) 1 (-) 

(+) 1 (-) (-) 1 (+) p 

(-) .0 (+) (-) 0 (-) 

(-) 1 (+) . (+) 1 (+) 

(-) 1 (+) .(-) 1 (-) 

(-) .0 (-) (+) 1 (-) 

(-) 0 (-) . (-) 1 (+) m, 1) 

(-) 1 (-) (+) 0 {-) 1f 

(+) 0 (+) (-) .1 (-) 



From the table it is seen .·that t.here are twelve independent sets · 

of q_uantum numbers. In those cases in which .J is 0 (class a), J ·· 

parity and parity are not independent; this fact reduces the:nurnber 

from 16 to 12. There would be 16 independent sets of. J parity 

and parity .were always· independent· .. 
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5. RIDGE POLES IN THE NUCLEON -NUCLEON CHANNEL . 

This brief section is devoted to the study of Regge 

trajectories with the q_uantum numbers of the nucleon-nucleon 

crw:nnel. Such a study is important because the deuteron and the 

. 18 enhancement of the singlet np scatterlng cross section at 

. threshold can be :considered as points on Regge trajectories. 

The q_uantum numbers of the nucleon-nucleon system are 

(a) baryon number == B == 2 

(b) strangeness == 0 

(c) isotopic spin == T == o, 1 

(d) .total spin == ."' == o, 1 and 

, (e) parity == p == ( -l)L ' 

(5-l) 

where L is the relative orbital-angular momentum of the nucleon-

nucleon system. Not all the. above· q_uantum numbers· are independent, 

however. For the scattering of two identical fermions, Pauli 

symmetry imposes the following constraint for the nucleon-nucleon 

system: 

(-l)L + J + T -1 • (5-2) 

Once the parity and isotopic spin of the Regge trajectory 

with the same q_uantum numbers as the nucleon-nucleon system are 

specified, the t6tai spin. is no<~longer independent but is determined by 

(5-3) 



And, as in the nucleon:-antinucleon channel, there are two.· classes of 

trajectories,tq.be considered separately .. They. are (a)·P(~l)T = -1 

and (b)~P(-l)T .=: -1. In. class (a),J = 01 and .in class (b), J- 1. 

The results of Section 4 are. immediately applicable. for, the nucleon-

nucleon channel. -If 

T A= P(-1) = -1, 0, .and J - L, 

then the trajectory is associated with 

h (:t_)T(J ) • 0 J s . 

If 

P( -l)T = 1, A = 1, J ·= L, .or L ±. 1, 

thenc·. there- are two pos si b:ilit:te.s :,. . 

P( -l)J = 1, 

where the .trajectory is associated with 

-(+ )T ,_ ) . ( .· J . - . 
h1 - (J, s and P -1) = -1, 

where the trajectory is associated with 

h (-:t;)T·(T ) h._ (-:t;)T(J . ) 
11 · u•, s · ' -"22 · ~s 

(+)T( ·) . and h12 - ... J, s . 

Table V-shows the independent quarttwn numbers of the nucleon

nucleon•sys.:tem:together with~ .and _ P(-;L)J._- I-f--one ·counts properly 

there are_ six inQ,ependent. :trajectories, -with the quantum_ numbers of 

the nucleon-nucleon c_hannel. _ This is only. half the numbe:r for NN 

channel because G parity is not well defined for states with 

baryon number·= 2. 
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Table V. The independent ~uantum numbers of the NN channel. 

T ·p . (-ll .(~l)JP 

0 (+) (+) 1 (+) 

1 (+) (+) .o (+) * 
0 (+) (-) 1 (-) deuteron 

1 (-) (-) 1 (+) 

1 (-) (+) 1 (-) 

0 (-) (-) 0 (+) 

The deuteron has been entered at the appropriate place and 

the asterisk indicates the enhancement of the singlet np system 

at threshold. Experimentally, these are the only .two trajectories 

. . ~t that reach the right-half J plane. As explained by Barut, he 

virtual ·singlet S state of the NN system corresponds to a 

trajectory that turns around just before reaching J = 0. 
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6. HIGH-ENERGY NUCLEON-NUCLEON S.CATI'ERING 

In this section we treat .the exqhange of _systems with the 

q_uantum numbers of the nucleon-antinucleon. channel as Regge 

trajectories of classes (a). and (b) mentioned in Section 4. In 

particular, the pion and p-meson trajectories are considered, the 

Pomeranchuktrajectory already having been discussed by a number of 

4 
authors. The m and X trajectories are not considered, since 

they are isotopic spin 0 and do not have the q_uantum numbers of the 

u channel for np scattering that is of primary. interest for back-

ward scattering. 

A. The Pion Trajectory . 

. The q_uantum numbers of the pion are such that the tra.jectory 

is associated with the partial-wave amplitude h
0 

(+ )l(J, u) ;(Sectton 4). 

From Eq_. (3-30) ,the contribution of the pion traj,ectory to the invariant 

scattering amplitude in the u channel is, from Eq_. (3-33 ), 

:rr 

2E 
2 

u 

~O,:rr (+)l(u)[2a(:rr) +] ( s )a(:rr) 
......;..~_s_i_n_:rr_a..,.(:rr--.-) --- --2 I 1 + 

2pu 

= o.' 

(6-1) 

where a(:rr) is the position of the Regge pole for the pion. Following 

the work of Chew and Frautschi3 we assume that · Re a has a .positive 

slope = 1 

50m2 
:rr 

in Eq_. (3-33). 

as shown in Fig. 3. Note that . z = -1 ;... s 
u 2 2 

pu 
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The amplitude a1
1 (u,s,t) satisfies the Mandelstam repre•. 

sentation and has .only the singularities required by unitarity; 

hence, t3o, 1! (+ )l(u) .has a zero of order Eu2 at Eu
2 = 0 so 

that Eq. (6-1) be finite at E 2 = 0. 
u 

Using the crossing matrix (2-24)' , the contribution of the 

single-pion exchange to nucleon-nucleon scattering is 

(o, 1) 
G1 . (s,.u, t) = - ftG1

1
(u,s,t) ~(3,1), 

G ( o, 1) ( t) 1 - 1 1 
2 s, u, = 4 Gl (u, S; t) 2(3, 1) ' 

G ( O, 1) ( t) 1 - 1( 1 (6-2) 3 s, u, = 4 G1 u, s, t) 2(3, 1) ' 

(0, 1) 1 - 1( ) 1( ) and G4 . . (s, u, t) = - 4 G1 u, s, t 2 3, 1 , 

( o, 1) ) G
5 

(s, u,t = 1 - 1( ) 1( ) - 4 G1 u,s,t 2 3,1 . 

From Eq. (2.:20) the contribution t.o the "physical amplitudes" 

of nucleon-nucleon scattering is 

t3
0
' .,. (+ )l(u)[2a(1f) + 1] 

En<2 ( o, 1) (w, z ) = ¥.-. , " . . 
'fJ, '+ sin 1ra(1r) 

. a(1!) 

(2:}) 
X [1 + exp i 1! a(1r)] ·~ (3, 1) . (6-3) 

continued 



-4~-

.. ._",:. . 

E¢ ( O, l) (W z) 
3 . . '-

- :rr 13b}'i (+).l(uH2o:(:ir) +l] 

= . 4 . . sin ~o; (:rr) 

(6-3) 

)( · [l + exp i :rr~o:(:rr)] ·•~ (3, l) :and 

Noteithat this amplitude will vanish as. u .approach s zero 

because of the residue 130 (+ )l(u) . The vanishing of the amplitude 

at u = 0 (backward direction for nucleon-'nucleon scattering) will 

be true for all the class (a) trajectories of the nucleon-antinucleon 

u channel. 

Similarly, using Pauli symmetry (2""'21) and the crossing 

matrix, (2-24) 1 
, we can calcuJate the contribution of the single-

pion exchange in the t channel to nucleon-nucleon scattering; 

the result is 

13 I ( + ) l ( t )[ 20: ( 1! ) + 1 ] 
. E:¢ ( o, l) (w z ) . "' :rr o, :rr . . . . . 

2 · ' 4 . sin :rro:{rt) 

X [l + exp i ~: ~(:rr}] ~ (3, -1) , and 

.(6-4) 

13 I . (+ )l( t.)[20:(:r!) + l] 
E¢ (o, l)(w ) ,:rr o, n . . . . . 
; 4 · 'z ·"' 4 · · sin :rro:(:rr) 

x. [l + i:rro:(:rr)] l (3, -1) exp 
2 

., 

where ¢11 = ¢3 = ¢5 = 0 • 



Note that the single pion of the micieon·.:.:a:n.tl.nucleon ·· t · ·channel 

will give zero contribution to the nucleon-nucleon amplitude in 

the forward direction. 

B. The p-Meson Trajectory 

The quantum numbers of the p meson are such that the tra-

jectory is associated with the amplitudes (-)1( ) 
~1 J,u' 

(-)1( ) (-)1( ) ~2 J, u , and h12 _ J, u (Sec. 4). The contribution of the 

p meson t_o the invariant amplitudes 

Gll(u,s,t) ~-~sin !a(p) El2 
u 

G asymptotically in zu is: 

-t3' (-)l(u) a(p) ,+ ~ t3' (-)l(u) 
[ 

/ 2E 
2 J 

22,p . m2 12,p 

X z a(p) [1 - exp -i ~ a(p)] , 
u 

[ 

2E 
2 j -t3' (-)l(u) a(p) + ~ t3' (-)l(u) 

22, p 2 12, p 
m 

X z a(p)-l [1 - exp -i ~ a(p)] 
u 

-.1( ) G
3 

u, s, t ~ 0 (6-5) 
continued 

.-. 
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X z a(p)-l[l - exp -i rr a(p)] 
u 

- l( ) rr l 
G5 u, s, t .. "', ~ 2' sin 1la(p) (6-5) 

2(Eu2+m2) ,·. (-)1 t 
2 (312, p ( u) 

m 
.. 

The q_uantity a(p) determines the trajectory of the p meson; the 

real part of (X(p), ·Re d(p), i_s eq_~l to l at u = 2 9 m 
2 

, 'anP. . . .rr . 

is illustrated in Fig. 4. From Eq_s. (2-24)' and (2-20), the 

contribution of the p meson to the "physical amplitudes" of 

nucleon-nucleon scatte~ing,is: 

( 0 l) [ 2 l l 2 2 - l u (- l - l - l)~ l( ) 2E¢1 ' (W, z) = m (62 -6
5 

)-(p +E ) G4 -
4

p2 G2 +G4 +G
5 

J 2' 3, l , 

•• j ' •• 

2¢2 (o, l) (w, z) I ( 2 _2·)- l' u [ 2-·l- 2- l.c ·2 __2)- ll u _ J,l( ) 
= l2 P + EC'. G2 - 4p2 m G4 + EC'G5 + P + EC' G2 - 4 G l I 2 3, l ' 

(6-6) 
continued 
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and 

(6-6) 

(
- 1 - 1 - 1 ) 1 ( ) G2 + G4 + G5 2 3, 1 

Keeping only the leading terms in s = -2p 
2

(1 + z ) and 
u u 

112 ,:(2P~-= mTL ;>:100 m 2, where TL is the lab system kinetic energy, 
" "' :rr 2p . . 

TL ~ 3 BeV), we have 

J 2E¢1( o, 1·.) (w, z) = -2E¢4( o, 1) (w, z) "' - 2!!. 1 . 
sin :rta(p) 

· ( s a(p) . 1 · 
X 2ri~2 ) , [1 - exp i ~ a(p) 12(3, 1) , ( 6-7) 

1 [-f3' (- )1( u)a( P )+~ f3, (- )1( u~ 
sin :rra(p) 22,p 2m2 12,p J :rt 

"' -2 

X 
(2p

su2)a( P) [1 - exp i :rt a(p) ]~(3, 1) , and 

continued 
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(o 1) · · rr (u t)J-/:2 · .. _ 1 -·· 
. 2E¢5 ' (W, z) "' - 2n .. · 2~c .. sin rra(p) 

4p 

X t[2a(p)+l] f3 I.· _(.-)l(u)-[3 I (-)l(u)+2f3.' (-)l(u) 
. i . . ll, p . ' 22, p -,. 12, p 

~ . ' -· ' - ·' .. . . . ' . ' ' .. . . . .' :" .. 

)1. ( 

2
;u2 ) a(p\1 - exp i " a(p) ]~ (3, 1) (6-7) 

Similarly, using Pauli symmetry (2-21) and the crossing 

matrix (2-24) 1 , we find the contribution of the Regge trajectories 

in the t. channel with. the quantum ''numbers ·of class (b) (sec. 4) to 

. the nucleon-nucleon channel to be 

. . . . 

X [-(2ar1J>i11 • (;:)T' (t)+ ~2 ~~ (;:)T' (t)] 

X ~ ·· (exp 'i rr a-~ 1.) ,. . ( )a . 
2pt 

1! 
"' - L 

2 T' 

X l-f3 I (~)T I ( t) a + t 
22 2m2 

'· 

(-l)TBTT
1 

sin rra 

I(+ )TI] 
[312 -

X· -_-2 . _(exp ~i rr a-£·1}·, and , ( s _)a 
2p . 

' t 
.·'. 

(6-8) 

continued 



-47-

T (u t)1/ 2 
2E¢

5 
(w, .z) "' -

2
1( 

4p2 
I 

Tl 

... 
. X t-(2<> + l)~ll' (:!:.)T, 

1
(+)T 1 1

(+)TJ 
-~22 - a + 2~12 -

X ( ~ ) a ( exp i 1C a ±.. l) , 
2pt 

(6-8) 

where ( -l)TBTT 
1 

is the isotopic spin crossing matrix ~ ( -l 
3

) .. 
-1 -1 

The t.otal cross section is given by the optical theorem 

cr = 41( Im [ Tr U ¢ (W, 0) ] 
p 

(6-9) 

in matrix notation, where U is the density matrix for the incident 

beam. · For unpolarized incident beam, 

··and 

u = 

cr = !E. Im L 1 
p 1-LI-L 

21( 
p 

' 
(6-10) 

(6-ll) 
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For example, frqn .(6-8), the contribution of the p meson 

to the np and pp total cross sections is 

(J 
pp 

(J == np 

2 
1! 

2pE 

2 
1! 

2pE 

'(-)1 ( s )c:x(p,O) 
[2c:x(p, o) + 1] 'f3ir (o) 2 , 

·· 'p 2m 
and 

( 6-12) 

[2c:x(p,O) + 1] '(-)1. .( s )c:x(p,O) 
(311, p ( 0) 2rri2 

The difference betwwen the above cross sections contains the quantum 

numbers of the p and 1! mesons in the t channel; however, the 

1! meson does not contribute to the forward amplitude in Eq. (6-11), 

and 

(J ·...; (J 
pp np 

. , ( _) 1 ( s ) a (p, o) 
[2c:x(p, 0) + 1] (311 (0) -. 2 • 

'p . 2m 

(6-13) 

The differential cross section per unit .center-of-mass solid 

angle is given by 

(6-14) 

for an unpolarized incident beam. .The differential cross section per 

unit momentum transfer, 2 
~ == -u, is related to the differential cross 

section per unit center-of-mass solid angle by 
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Thus, the contribution of the p meson to the np differential 

cross section near the backward direction is from Eqs. (6-7) and 

(6-14) (keeping only the leading terms in s) 

where 

+ 

2 a(p) = a(p, u) = a(p, -1:5. ) • 

d a "" rc3 
_,...., 

d.62 16p2~ 

2 

2 < < 2m , we ha:ve · 

l~ll,p'(-)1(-.62)(2a(p) + 1)12 

[cos ~a~p) ) 
2 

(6-15) 

(6-16) 

(6-17) 

.62 
The combination of residues ~22a + 

2
m2 ~12 drops out for small 

since this combination has a zero of order 
2 2 . 

LS. at LS. = 0 from 

Eq •. (6-5). Equation (6-17) will be useful for the analysis of the 

energy dependence of the backward peak in np scattering; from a 

study.of the energy dependence of for small fixed 
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2 2 2 2 2 
, !i (!i < < 2m ), a(p, 1:5. ) can be determined in the region of 1:5. 

equal to zero. Equation (6-16) will be useful for a study of the 

dependence of the combination of residues in the curly bracket 

2 upon !i as is increased. The pion trajectory has not been 

included in Eq. (6-16), since the pion trajectory lies below the 

p trajectory and dominates the high-energy differential cross 

section to a lesser degree. 

The quantity is real for u < d; 19. t~~ ratio of 

the real parts .of the.atnplitudes in (6-7) to the imaginary parts 

has the definite value of 
1!CX The imaginary part .. of .·. ¢1 and tan- . 2 

¢4 for scattering for 2 
0 np u=/:5. = is 

1! '(-)1 . . . ( s )a(p,O) 
4E ~11 (0) .[2a(p, 0) + 1] 2m2 (6-18) 

which is given by the optical theorem in the difference of the pp 

and np total cross sections, Eq. ( 6-1.3). Also by use of Eqs. 

( 6-17) .and ( 6-13 ), this difference of total cross sections is related 

to the np differential cross section by 

= 16..,. 2 rca(p, o) 
JL cos 2 (6-19) 
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VII. CONCLUSIONS 

The high-energy nucleon-nucleon problem has been considered 

from the point of view of the Regge trajectories with the quantum 

numbers of the nucleon~antinucleon channel. In particular, the 

analyticity of the partial-wave amplitude in total angular momentum 

was discussed, and a unique continuation was found. In the last 

section, the contribution of the p- and :rr-meson trajectories t.o NN 

scattering was found, and the resulting formulae (6-16), (6-17), and 

(6-19) should be useful for an analysis of the np differential 

cross section near the backward direction for energies greater 

-'/ than -v- 3 BeV. 
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Scattering Diagram for the Nucleon Nucleon Problem 
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Contour C in the J Plane 
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The 1T.:.. Meson Trdjectory 
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The p- Meson Trajectory 
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