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ABSTRACT

The nucleon-nucleon problem is discussed from the standpoint

of analyticity in angular momentum. A unique continuation of the

‘partial-wave helicity amplitudes is given. The high-energy nucleon-

nucleon problem is then considered from the point of view of the
various Regge poles that have the same quantum numbers as the nucleon=-
antinucleon channel. 1In particular, the contribution of these Regge
trajectories to nucleon-antinucleon scattering and, hence, their
contribution by crossing to nucleon-nucleon scattering is given.

The resulting formulae should be adequate to describe the tqtal
cross--section and angular distribution for energies greater than

approximately 3 BeV in the laboratory system.
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1. INTRODUCTION
The nonrelativistic Schroedinger equation provides a frame-
work for discussion of the continuation of the partial-wave scattering
amplitude into complex angular momentum, £. In particular, it.has

1,

been shown by Regge 2 that the partial-wave amplitude continued as
a function of complex 4, on the basis of the Schroedinger eqpation,
is analytic in the right-half . £ plane. Poles in the right—half
£ plane correspond to the resonances and bound states of an attractive
potential and are called Regge poles. Recently, several aufhoréa’u
have realized the importance of Regge poles in strong interactioms
that are intrinsically relativistic in nature. These poles are
important for an understanding. of the analytically continued S matrix
in energy and momentum transfer and for the formulation of the
principles of particle equivalence and maximal strength of strong
interactions. It is the high-energy behavior of scattering ampli-
tudes (in particular the nucleon-nucleon elastic_amplitude) that is
our primary concern in .this paper. If the Regge pole conjecture is
accepted, then scattering cross sections atvhigh_energies are con-
trolled in a very simple way by poles in "crossed.channels."

For a relativistic scattering amplitude,”Froissartvand

Gribov have proposed, on the basis of the Mandelstam representation,

a particular continuvation of the partial-wave amplitude from
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physical values of'angular momehtuﬁ-(poéiﬁive7integeré) into complex

5

angular mementum, Squires and Prosperi ’give conditions for the
uniqueness of this cdnﬁinuation[

A1l these»gonsiderations (ﬁith the possible exception of
Gell-Mann et al.) have been made for spinless particles. This paper
has a twofold‘objective;,naheiy, to verify that.the above resulis
have an analogue in the two-nucleon problem when. spin is taken into
accbunt, and to obtain results applicable -to the high-energy nucléon-
nuéleén problem.

>:ASéctioﬁ 2 is‘a-briefidiécussionvof.kinematiéal»preliminaries.
A complete discussion .of the kinematics for the Mandelstam represen-
tation is ziven by Goldberger, Grisarw, S. W. MacDowell, and Wong -
:KGGMW)7;.hoWeVéf;‘thiéksectibn is self-contained, and the réader is
not .'exﬁeéé,ea'féo be familiar with'all the results-of oM

" In Section 3, a unique continuation-of the:partial-wave -
helicity ampliﬁudeé corresponding to fransitions of definite parity |
" is derived from the Mandelstam representation. Tt i€ in. this section
that an alterhate set of amplitudes can be defined ‘that simplifies’
the ‘discussion’ of analyticity'in angular momentum for the: partial-.
wﬁ&é'heliéity'amplitudes.' The Sommerfeld-Watson representatibﬁl’gi
for the nucleon-nucleon émplitudé is given.  The results of thig™ "
‘éection are'épplicable to Boﬁh nucleon-nucleon scattéring and nucleon
antinucleon scattering. |

In both nucleon-nucleon . (MN), and nucleon-antinué¢leon. (NN)- -
scattéfing there are five independent amplitudes,’ because of the
spin. In Section 4, the question is settled as‘to which linear

combinations of the five independent partial-wave NN helicity -

A
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amplitudes are associated witb the various Regge poles having the
quantum numbers of the Nﬁ system. The results of this section are
presented in Table IV. | |

In Sectiqn 5 a discussion similar to that in Sectionrh for
Regge poles with the NN quantum numbers. Sections h_and‘5, although
qualitative in nature, are included because the reéults are important
for practical calculations. _

Section 6 is devoted to the study of high-energy (NN) scaﬁter-
ing. PFormulae for the high-energy total cross section and angular

distribution are deri?ed in terms of the Regge poles in the NN

channels (crossed channels). The trajectory of a Regge pole deter-

mines the high-momentum. transfer behavior of the nucleon-antinucleon
amplitude and hence, (by crossing) the high-energy behavior of the
nucleon-nucleon amplitude is also determined. The contribution to
backward np scattering of‘the n and the p trajectories, in

particular, is discussed in some detail.
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2. KINEMATICS
A dompiéte discussion 6f'thétkiﬁéméficéi-preiimihériés,"3

crossing, and the choice of amplitudes suitable foér the Mandelstam

répresentation:has been gi&éﬁ bvaGMW:7"waeVer; questions

relevant to.ohr-purpdses'are discussed in this sectioh.’
"’ There are three physical processes related by analytic

R -

continuatien of the momentum variables,

'1\1l + N, - Nl', +"N’2,', (1)

W, A W N

FR R , and (II) O (2-1)

%

o N‘l#,ﬁl, >, + Ny, , (III)
where the bars indicate antinucleons. The four. momerita of the
particles 1, 2, 1', and 2' are denoted Py pé;-bi;,'ahd pé[ﬂ -
respectively, and all momenta are taken to-be into the scattering
diagram Fig. 1. Each of the momenta has the property (pi)2 = me.;
where m is the nucleon mass. The metric chosen here is such that

Xy = thh - Xy , where x and y are four-vectors.

The customary scalar invariants are defined:

2 2
s = (pl + p2) = (plt + p21) 2
2 2
t=(p, +p,)" = (p, + Byy)” , and (2-2)
- 2 2
u =:(p;+ Dy, )" = (P + By)° 5

-t



with the constraint,
, 2
s+ t+ u=km", J -~ (2-3)
and conservation of four-momenta reads
“Pp+ Pyt Pyt By =0 . (2-1)

In nucleon-nucleon scattering, particles N and N,, are

1 2
outgoing and their momenta are described by =Py and =Py the
variables s, t, and u are related to center-of-mass quantities for

nucleon-nucleon scattering by

0]
U

WP = (% + o) ,

2Pl - z), and (2-5)

ct
W

-2p2(1 +2),

o
1]

where p 1is the absolute value of the three-momentauof.either'barticle
and E 1is the energy of either particle in the-center-of-mass
system (c.m.). The quantity 'z = cos 6 is the cosine of the c.m.

scattering angle. The physicél region for the invariant variables is

s > bm® , t < of, and u< O.. (2-6)
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This range of variables is designated as the nucleon-nucleon:: -
channel or the "s channel." ~J

For the nucleon-anﬁinucleon process GGMW is followed and we

: 4
choose Py to be the momentum of the incoming nucleon, Py the
momentum of the incoming antinucleon)‘:hpl,- the momentum- of: the ..
outgoing nucleon, and Py the momentum of the outgoing antinucleon.
In terms of c.m. quahtities,the invariant variables take the form

8 _.-2pu- (1:+ zu)_,u
";n SRR, REEE 2] o) ? (z-=z).,and . s (2-7)
u - u’ y Sl
2
u = 4(p +m2)=llE‘2.
u
The physical region of these variables is
: 2
s <0, t <0, and u > km" . (2-8)
This domain of variables is referred to as the "u channel."
- Thereis another muc¢leon-antinvcleon: channel,. the "t channel."
In terms ‘of-c.fi quantities. thé:invariant:variables take the form .
smEr (rag),
v
t = l;(pt2 + m?) = hEtE , and (2-9)
.2
u = -gp.t (l - Z.t) B4



where s<0, t > hma'; and u < 0 is the physical region.

In all the following, charge independence is assumed to be
velid and the formalism of isotopic spin is used. Space-reflection
invariance and time-reversal invariance are assumed to be valid
throughout. These symmetries, together with Pauli symmetry, limit
the number of amﬁlitudes in nucleon-nucleon scattering to five for
each value of total isotopic spin (0,1). Similarly, the above
symmetries, together with G périty, iimit the number of amplitudes
to five for nucleon-antinucleon scattering.

The S matrix for nucleonfnucleon.scattering is written

' T 2 : : T
(et (s - 1) Ih pspd = -i(en)'e[%) ") (o, + 2, = 2y, - 2y

(2-10)

where A'u' and N, p are the helicities bf the fiﬁal and initial
particles respectively; (13', li') and (12LE) are the final and
initial c.m. momenta. Since conservation of isotopic spin is assumed,
the S matrix depends_upon the total isptopic»spin T, and not the
components of T, -The normalization of the amplitude,j T; called the
Feynmann amplitude, is such that the differential cross section per
unit solid angle (c.m.) is

do . - "2' -
am = B el (2-11)

where ¢'[J.',)\.H.(»£)~"p) =.TT[E_ . } : (2-12)
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It follows directly from rotational invariance that the .. .

amplitude..¢g§can;beudevelppedwin,terms of -the partial-wave-

8
helicity amplitudes by the expansion-. = - TR
. oo -
- i ad .
. = 5 B (ere e iy . (9) Twu . ()
= J=0
(2-13)
The beam is incident from’tﬁe‘ z vdiréctioh and ié”scatteféd {nto B
the Eulervanglesv(o,vg; 0). The quantity Ti,“,'x'g' is the partial-
wave hellclty amplltude and 1s proportlonal to the S matrix in the
'angular momentum representatlon e
J 1 J
= = - _ 2.1k
T}\!“(, )\'“'(W) 2i (S}\lu|’ )\.}J. 6}\.!}\ Sulu) J ( )
where W = 2E, ‘and’
(3, M)s At et s (3,M)5 M3 p) = JJ.SMM, &(p*=p) S}\ o, Mx '-
(2 15)

The functions dan(O) are reduced-rotation matriceé;'andwhéﬁe

simple orthogonality propertie59 Which lead to

1
Tk'u') }\-u f >\ u K' (g)¢>\.lu(’ )\'H(W’Z) . (2-]—6)
-1 . S - :

%



Time-reversal invariance, conservation of total spin (which
follows from charge independence and Pauli symmetry),-and space-
reflection invariance lead to the following symmetries for the

partiel-wave helicity amplitudes respectively:

J
)\u, }\'u!(w) - T)\'lul, }\u(w) J
J J
Tu')\.', W\(W) = Twu,’ m(w) , and (2-17)
J
T, _)\_“(w) B T}I\'u', ML(W)

The indices A, p, etc., are two-valued (+ 1/2), and if one counts
properly there are 16 configﬁrations-of héliéities-of-the initial and
final nucleons. However, the symmetries (2-17) reduce this number

to five indepeﬁdent helicity amplitudes for éach isotopic spin, and,
following GGMW, the independent amplitudes are, for each Yalue of

the isotopic spin T =0, 1l:-

W) - Ti’g 1/2, 1/2 1)+

TeJ’T(W) = T?/gl/e, /e caje (W)

T5J’T(-W) = Ti’/g /e, 1/e 1MW) (2-29)
7 W) = Ti/g )2, 2/ ;/2'.(w) , and

,T ,T
T5J W) = Ti/e 1/, 1/2 -1/e (™)
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and . likewise for-the,set'p¢xﬁu,, YT
The partial-wave helicity amplitudes. (2-18) can be:combined N

to give the~amplitudes,for)definiteftotalvspin;én(x/;=‘0,l)«:and

definite parity (-l)L y. where L. is the relative .orbital-angular .-

momentum of the two nucleons. - The appropriate combinations are

Singlet (J-

0 P = 1 %0 - 15

W) = T'BJ’T._(W), - T)_LJ’T(W) , and

Triplet (3 = L) £975(

£ 2% - 7,5+ %W (2-19)

/

Triplet ‘:{(J;“f:.':i.Llft;l‘f),zﬁ'fig.’T-('W) = 2T 2T (w)

o fég’T(W) .:i-TﬁJ{T(W)¥+3TnJ{$(W)f;M o
Because the Regge poles that correspond -to definite parity -are to-be
considered, the set (2-19) is appropriate for continuation into
complex.angulaf»momentum,,.

Also of importance for the next section is a choice of
amplitudes éuitablg‘ﬁor the Maﬁdelstam réﬁfesentation; this problem
has been dealt with in detail by GGMW. By use of four-component W

o hHelicity .spinors for the initial and fingl fermions and expressing

<

T . . . . .
3 as an operator in the Dirac spinor space, a set of invariant

amplitudes -Gf(s, u,t) is found which satisfy the Mandelstam

representation. This set .is related to the ,¢'s by
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2E¢l = zm.e.G2 + Eeqi + m2G5 + mzthf- P2G5 ’
| 2 2 2 2
. 2E¢2 = :-EEGl + z(p~ + Ea)(}2 -m G,5 + m th P G5 3

2By = (1+ 2)(-B g+ G+ BO), - (2-20)
2 2 ‘

2E¢h = (1 -2z)(p G5 + m G2 +'E2Gh) , and

om@. = -m2(l - 22)1/2'(G + @)

5 2 Lo

The Pauli principle, which requires that the S matrix be odd under
interchange of the quantum numbers of the two nucleons in either the

initial or final state, assumes the form
6, (s,m,t) = (-1 e (s,t,0) (2-21)

The fixed-s dispersiqn relation takes the usual form

» 00 T o . @ ~ T
T 1 D3 (s,8) 1 Dy (s5u')
Gi (s,ut) = s S + = 5 ,
o o et 2p - (1-z) o '+ 2p (1 + -z)
e 1

(2-22)

where tD and uD are the absorptive parts in the t and u
channels respectively, and m is the pion mass. The lower limits
of integration follow from physical considerations of the least

massive intermediate states with the quantum numbers of the nucleon-

antinucleon pair. The one-meson exchange contribution is not displayed.



The discussion in this. section could: have been carried out
for nucleon-antinucleon scattering with a slight modification; namely, )

that G parity replaces Pauli symmetry. There is an analogous set

.of amplitudes ‘éiT(u,s,t) for the u channel, related to the set ¥
,'GiT(s,u,t) by the crossing matrix (GGMW): .
1t . mt N
G.T'(s,u,t) = D A 3T g T (uysyt) , (2-23)
i apr 1 J X,
e o
where B = = ‘(isotopic-spih crossing matrix), and (2-24)
1 1 ' :
[ 6 n T
= R EEOEE e
A = i—; 1 0o 2 > a1 (2-2h)!
-1 0 2 2 1
There is also a setsof ampiitﬁdéé P forvthé u chahﬁéi;'the
amplitudéS’are related to the ”G's by an equation of the form
(2*20)_if-p,~E; and 'z are replaced‘by,pﬁ,,Eu,gand zu
)
¥



o

‘that the absorptive parts -

-13-

- 5. ANALYTIC CONTINUATION INTO COMPLEX J
. In this section it is shown that, given the set. of .ampli-.
tudes (2-19) defined at the physical values of J by Eq. (2-16),
the fixed-energy. dispersion relation (2-é2), and the assumption .

t

and u as (t,u) > oo, it is possible to define a set of functions

D and UD behave like powers of ¢t
£(J,W) with the following properties:
(1) . £(3,W) .= £7(W) for § = 0, 1, 2, --+(physical J)(Eq. 2-19)

(i1) £(J;W) is holomorphic for Re J > N(s) in the complex

J plane, and

(ii1) |£(3,W)| < exp -1 Re J, T > O, wniformly for J

sufficiently large.

The indices on the partial-wave aﬁplitudes fJ(W) ‘have been omitted
here. A function of complex J with the properties (i), (ii), and
(iii) is unique; the proof of the uniqueness is given by G. M. R
Prosperi.

Furthermore, it is assumed,.following the work of Chew and

Frautschi,? that it is possible to move the boundary N(Re J > N)

~to the left in the complex J plane and that only poles will appear.

This assumption puts the relativistic problem on the same footing
as the nonrelativistic problem for superpositions of Yukawa
potentials, where Reggel’2 has given a continuation with properties

(i) and (iii) but (ii) is replaced by meromorphy for Re J > -1/2 .
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In attempting to find a sét -of ‘functions with properties
(1), (ii), and (iii), it is found that even and odd J have -to be
treated separately; this leads tJ"the concept of -J parity which "
has been.introaucéd for Sﬁinless particles by seVeral.authOrs;'?éﬁ‘
For a set of functions' with property (iii), it is possible
to construct -the Sommerfeld-Watson representation for the -ampli- -
tudes @ or -G, and this section concludes with a didcussion of
the Sommerfeld-Watson representation.
To remove certain trivial nonanalytic factors, we consider,

instead, the set of functions defined by

n = %fOJ ,
hllJ - '% fllJ ’
hezJ = %feeJ" (3-1)
hiJ = %-fiJ , and
h.lzJ = % fleJ
By use of Egs: (3-1), (2-18) and (2-16), the set is felated to the v

set f by
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1
hdJ_(s) =%— j dz[E.~¢l(W,z) - E ¢2(W,z)] dooJ.(O) s
-1 , :
1
b 06) =1 [ anlm g ne) + B b1 4, (0)
-1

&
o
[
P
0n
(VT
(_‘N—J

az[E B, (W, 2) dllJ(Q),+ E @), (W,z) d_llJ(o)] )
1

(3-2)
1

n’(s) = L [ watz gm0 a0 - 2w, @1,

and 1

hleJ(s) - % j az m ¢, (W, 2) dle(,O) .
-1 _

The h's are even functions of W and E and, hence, functions only of

s = W because E ¢1(W,z), l(i)’-t; and m¢5(w,z) are related to the

set G through relations of the type (2-20), and thé G's are functions

of s, t, and u. Next we use Eq. (2-20) and notice that the angle-

dependent factors are

1
-2 =doo (Q) s

51+ 2) =ay,70) =y M)
51 -2) =4, M) =a_ (), ana (3-3)
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2,1/2 1 | 1 : 1 L1
(- A= B o) = 4B ey He) Nz a_ i M(e) A2 gt (e) -

When Eq. (2-20) is substituted into Eq. (3-2), 'a product of a’
functions is encountered because of the.effect of Eq. (3-3), and,

to get rid-of the dJ- functions entirely, we use the identity

- k=J+1

_dan(@) d_ . l :g ; c(J, L, k; m,-m 0)C(J,1,k; n,-n,O)P (cos 8) .
| (3-4)
The foregoing identity follows directly from Eq. (h-25),of.Rose9 and

‘the fact, that dOO (9) P, (cost) . The quantities C(J,1,k;m, -m, O)

are Clebsch»Gordan coefflclents and their phases are fixed by the

9

conventions of Rose. The following set. of equations results:

Jfl: ( ) + (J+l) J+1,T
o |8 g {CDN IS
v ) - Eggl;fT(s)-pg - T + mes (s);
) ]
g 9L T J+1,T
HTa) - i Jg, T (s) + (F+1)gy T T (s)
oL | 27 + 1 )
' 2 Ji LLJ LT (s) i (J+l)g d+1,T (s)| 2 -J,T .
o+ om | BT T | -p &s (s) ;.
3T > 3,7 - (J+l) 2J 1, T T(s) + J J+1, T(—l
h22 (s) = -p g5 (s) + m v 5T J (5 5)
T 4 : |
o -(J+l)gh;'l’T(S) + Jghq+l’T(s)‘ ¢
R T ’
i v
1 - P 27 + 1

+ m2g2 ( Egg (s -, and
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2
n 0 T(s) - BB PTG T T (3-5)
. J+1, T J=1,T |
Jt -
| N O R <s>J ,
where 1
g " =5 [ Be) 6, M(sut) az . (3-6)
o1

The fixed-energy dispersion relation. (2-22) for GiT(s,u,t)

is substituted into Eq. (3-6), and we obtain

0 1
k, T, 1 T 1 dz Py (z)
g. (S) = - ‘D.. (S,t') -~
i T £°1 5 5
hmn2 t' + 2p°(1-2)
(3-7)
(o0} 1
1 T, L.,y 1 dz P (2)
+ o= i (s,t") 5 __-—_t ; 2(1 ) .
'+2p (1+z
umnz -1

.The order of integration has been interchanged (which is certainly

permissible if the integréls in Eq. (2-22) exist wniformly in z).

The dispersion relation was written down without subtractions and, to

be completelyvrigorous, the subtractions should be‘included; however,

the explicit display of the subtractions only complicates the algebra.
Using the Neumann representation for the Legendre function

of the second kind (Whittaker and Watson),lo

» k =.O: 1L, 2, *°°, (3-8)

Y lz) =
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we have

00 _— ' { 7
g, (s) - 25 ( 0, (251D, (s,8") + ()% D, (s,6")] at’
Tt C : (3-9

If we use Eq. (3-9) in Eq. (3-5) and analytically continue in J,
the resulting set of functions h(J,s) will certainly satisfy
condition (i) since all the steps in arriving at Eq. (3-9 were true
for integral J.
Next we use the -assumption that ,Di(s,t) behaves like a
power of t as t approaches infinity,

D (s,8) g V), | (3-10)

where N(s) is, in general, some complex-valued function .of s.
With this assumption and with knoWledge of the asymptotic béhavior
of Qk(z) for large z(i.e., Qk(z) ~ l/ik+l), we see that the
integral (3-9) converges and. defines a holomorphic function. of k

>

in the region
~ Re k > N(s) . , o (3-11)

The only remaining problem is to establish property {(iii);
the function Qk(z) has the integral representationll
00

qQ, (z) = { : g'k'l(l-zgzarge)"l/e dt, Re k> -1 .
V 7+ (22_1)1/2 . (3'12)
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o ' L . : 2
Changing the variable of integration in (3-9) to z = 1+ t/2p° ,

using (3-12), and interchanging the order of integration, we have

. X 0’ (S,E) + ("l) 2% (s:g)
g; (ks) = 3 ag & 1 > (3-13)
zo+(zO -l)l/2 o
whére l,,..1
(5, ) §(§+-§_) £ 02 (s,2)dz _
o,(s, &) = 2 and.
u i ’ f (1-2§Z+g2)l/2
20
e(mﬂ)2
2y = 1+ 5
b

If it is assumed that D(s,z) behaves like a power of z at infinity,
then it follows that o(s, &) behaves like the same power as &

approaches infinity, and we write, for o(s,t),

o(s, ) € £ as E-> @ . (3-15)
o (s8)  [,o(s8)
Thus, the integrals E—tﬂ;%——' and E—EEE:I— are
bounded.:
oo 00
o, (S; £) :

t,u i N, -k-1
_L__E:i——— ag | < g’ - B g T dE

z +(z -l)l/2 ZO+(ZO 1/2
' 4 k=N

= 2 [ " ] —— exp(N-k) log z +(z -l)l/gj s

1
k-N i~ 2 \1/2| Tk
L?d+(zo -1)“[2l Ll N (3-16)
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since -.log [zo+(z02-l)l/21 >0 for 132'> 0. However, the factor .
(-l)k_ spoils .the desired expgpential behaviorffor“;arge‘kg»because

of this, two different sets of functions are defined,

m.

T 1 g T T,
g, (i)(k,s) _ s\ Q (1+=5)[,D. " (s,8) + D" (s,t')]at" ,
SRR O R (3-17)
i 3=17
with the properties
g, " " gs) = g9%(s), where k=0, 2 b v,
and | (3-18)
g, " g s) - g, 7 (s) , where k=1, 3 5

The functions giT(t)(k,é) each have the desirédxéxPonéntial decrease

for ”large' k; - We caﬁuhoﬁ.find tﬁé even and oddij;pérify'ampiiéudés
h(i) by evaluating the.CiebschéGordaﬁ éoeffiéienté and’Seﬁaratihg"
even and odd J .in Eg. (3-5). (The physical significance of J
v?arity is discussed in Séction 4,) We obtain a set of eguations
identical to Eq. (3-5), except for the replaceménts

hiJ’T(s), for J=0,2,L, +-- »"/hi‘(+")’T(jJ,, §) where 1=0,11,1,22,12 ;

0,7 (o) for 3-1,3,5, ++- = 0, (5, o) wmere 1-0,11,1,22,12 5

and . o (3-19)

K s .
gy ’T(s) for k=0,2, 4, - gi(+)T(k,s);where i=l,2,3,h,§,

. k T Lo ,: . K B N . . N . _ "-"* . .,4v ‘.;4-.-.-" .,u“‘ e v- . - : X
gi ? (S) for k=1, 3,5, - gi(‘ )(k; S) WheI_'.e i=152,3, )'")5 .
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Equation (3-5), with the above replaceménts, satisfies properties (i),
(i1), and (iii). The coefficients in front of the g's which dgpénd
upon dJ do nbt-change the asymptotiC'behaviorhin J so that
.condition (iii) is satisfied and the set is unique.

If one expects an extension to the left half-plane with
Egs. (3-19) and (3-17), the factor of 2J + 1 in the denominator
of certain terms in Eq. (3-19) is disturbing, but does not lead to

a fixed pole in J. A typical such term is

(J+l)g2(;)T._(J-l,s) + Jge(-;)T(Ju,s)

27 + 1

a
1 1 t!
== 55T (Y ~[(J+1)QJ_1(1+ 2)
2np o ep
i
Tt

t'
Rl
iy

+ J‘QJ+1(1+

D2T,(s,t') + DT(s,t’)]dt' ; (3-20)
. 2 u

by use of the proberfy;of the @Q - functions for n = half integer
'Qn(i) = Q_n_l(é), the numeratof-in Eq. (3-20) goes té zero when
2J + 1 goes to ze;o. Thus; the factors of (25'+ 1) do,noﬁvcause
singularities in J; Thevoniy other disturbing factor is o

(J(T + 1)]1/2 in h of Eg. (3-19); but, instead of continuing

hlz(t)T(J,s), we may consider
)T
vh12(t)(q’s) R (3-21)
[(7(g + 1) ]’l/ 2

this»quantity,Beinglreiated.to the . scattering amplitude through

>

the Sommerfeld-Watson transfbrmation.
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Following the work of Chew and F;autschi,5

vit(is“asspmed‘
that. one can move to the’left of the bQundery g(;-llz_and»on;yfRegge .
poles will appear..:The.stition s Qf a particular Regge po}e ,.

depends upon the energy s. . In the nonreletivietic preblem%fqr
superpositions.of Yukawa potentials, it_has been_shown _b_y;_Regg’el’2
that the only.limitation on therregiontofvmeromopphy.is the line .

"Re J = % . ; Also, it has been shown byAFroieseptngvRegge{lg

and Mandtels’caml5 that the boundary of meromorphy can be moved .-

| arbitrarily_far“to_the left (left-hand J plane) for:the non-
relativistic problem. In the;reiativisfie;pfobieﬁ;'Froissartihas
shewn that the boundary of holomorphy can be extended to Re J>1
for negative ’s.ll AiSo, several authors have shown that it is
possible to prove meromorphy,for Re JJ>_1 inlfhe relativistic

_ ]par'oblem.ll\L

A. SOMMERFELD-WATSON‘TRANSFORMATION

, Us1ng the partlal-wave expans1on (2 15) and the relations
between the partlal-wave he11c1ty amplltudes and the set h( )

(2 19) and (5 l), we obtaln the follOW1ng set of expan51ons

'E[¢1<w,z> RPN VI ,O(”J( ) Pz ><2J+1>

J even

v = a6 pie) )

cy
]
&
o
6

Blg (h2) + f,(Wz)1 =  Z m (f)J(S)'Eﬁ(Z)(2J+l)

(3-22)
+ = h“(:)J(s)'PJ(Z)(2J+1)J3»(continued)
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J . even

E.¢y (W, 2) =-% z’:[hl(*)J(s)v+ h22(+)J(s)] dllJ(O)(2J+l)

(3-22)

| (- )J ( )J | J! .,
Z [h (s a,.“(e)(23+1) ,
5 )+ byt (s)] dyy +

E ¢u,(w,z)v=% £ a0 - 1 FM0e)) 4 M) e

0P - P e, me

m. ¢ W, z) Z h (+)J(s)dioJ(O)(2J+l)
¢z ony, 6) o o))

We-can now use the assumption that the set.of functions h(t)T(J,s)
contains only Regge poles, and we can perform the Sommerfeld-watspn
transformation and obtain the set of scattering amplitudes ¢(W,z)
in terms of the Regge poles. »The dJ functions do not cause any
difficulties When‘we perform-the-Sommerfeld-Watsoﬁ transformation;:
however, the details are dis&ussed?only for the first of the
expansions in Eq. (3-22). The expansions in Eq. (B-Eé) can be
formallygwritten as contpur integrals where the contour C

encloses all the positive integers in the J -plane (Fig. 2):



BLg, (4,20, (4, 2)] = f-ﬂ— (+)<J,s>[1> (20 +- o+ )

sin nJ O
C.
(3-23)

, [where the symbol (+ —--) indicates that another term is to be added
in which h<-+)(J,é) is repiéced by h(-)(J,s) and'-‘PJ(z‘) is
replaced by -P;(z), and similarly for s(t) 1 (3-24)]

. We distert the contour to run along a line Re J =N
parailéi :to-v‘th-e- imagii’iary axis‘ in the J plarie and 'vvclos>e ¢t by a
-large semicircle R (‘half .plane),_ where this new. contour -encloses

the poles of h(Jd,s). 'I’he quantity JE[¢1’ - ¢2] then takes the form:

Elg, (W, z)-g, (W, z) h_fsm — o(+)(J,s)[P (-2} Py (z)](2J+l)

Wi oo :
+_LLl—i %} ho'(Jrl)(J,S).[PJ(-z) + P3(2)1(25+1) (3-24)
N-i oo

:E: 51 (+)(S)'
[2a(n) + 1] '%%ﬁ‘;aKET y(-2) + By @)+ oo o)

Re a(n) >N Fa(n

ST

where B_O' (¢ )( ) is the residue of the gth pole of 'hé)(t)(J,s)
. P 2 , . T -

at J = d(n, ), in general,

B’i(i)T(s)" = lim  [J - a(n,s)] k. (+)T(J, ) where (3-25)
J-= a(n, S . t

i=0 1, 11, 22, 12, and T = 0, 1.

15

- Using the folldwihg formulé.e for the asymptotic behavior of

PJ(J_r_ z) in J
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P (-2)
sin g (exp --Re~9.|1m J|) exp (Re J |Im o})
(3-26)
e P
—~55 ~ lexp - (s - Re ©) | F}] exp (Re J [Im 6]),

and the exponential decrease of ho(t)(J,s) for large J .derived
previously Eqs. (3-16) and (3-19), one sees that the integral

over the large circle tends to zero if

o

Im © < log (zO r 2.2 - 1) (3-27)

0
Condition (3-27) is the Lehmann ellipse,'l"e which is nothing other
than the region in 6 for which the partial-wave expansion (3-22)

converges. Both the integrals along the line-Re J =N converge if
O<Re.® <1 . (3-28)

J.Tﬁe Regge-polelferms dominate aeymptotically;everithe
contribution from the integration parallel to the imaginary axis.
We assume that the J plane is free from singularities, except
for poles, and that the integration along the llne ‘Re J = is
always to the left of the-Regge-pole terms. The extension .to fhe
left half J plane has been con51dered by Mandelstam.15

In a s1m11ar way we can perform the Sommerfeld-watson trans-

formation over the partial-wave helicity amplltudes and obtain the

G's directly: By use of the inverse of relat1on (2-20),
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- | |
. ~~
N i
o
o —
'_l
ro N
=H s
.
oM
»
L~
AN
1]
no
O
S

1. 28

p (1

: : 24,
_ B 3 2 m 5 ‘ of
G5 = 3 T T %}+ S , agd by use o

5 ,

Eq. (3-22), and the relation of the d° functions to Legendre
functions,
Jigy . _l+z | R
1,0 = FFrD [‘(l 2) PJ(?)+,PJKZﬂ.

dl;lJ(Q) ='”31%ff‘%y l (1 *Lé) fg(é)'f ?&Si?}”: ij:;;'lz ;(3-30)
2)1/2

l -z .
- ( . 1/2 PJ(Z) )

ﬁI(J + 1)

8) =
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we have the following set .of expansions for the invariant amplitudes:

.GlT[: -E:-Le- Z (27 + l)(ho(+ )J’T-(s): PJ(z)I a

. J even

(+)J,T
’ (S) 2 1
| hzicn 1) {m—e Fyle)+ Z[P&(Z)]}
b

(+)3,T
h) (s) e ; ' "
Fos I (gt R e )

(+)3,T
h. .~ 7977 (s) : \
+ 222 = 75 2%y (Z)) + ( E ) )

m [J(T+ 1))

odd
‘ (+)J, T (+)3,T
T 1 by (s) 20 AT '
G2 = ;2— Z (2J ‘+ l) _ETJ_—';—IY- PJ(Z) - 7T+ 1) Nz PJ(Z')]
. J even , .
| (+)3,T, |
2 h 7= (s) A
o [J(T+ 1)17° T |

Fo3 ) SR OO g

J even

- h1(+)’J’T(S) ,[‘Z ZP&. (Z)]'. + ( Z ) ’

J odd
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(+)J,T
h ’ (S) 1
_ 'GMT = ;%3 . % : 22 .[z:P} (z)]

J(g+ 1)

hl(+ )‘J; T(_S) o hl2(+)J,T(S) ) " . ' .
" IE T D Py (z) - — 175 'P&(Z) + ', and
[3(5+1)] , e

G5T - --1-)15 z (27 + 1) h11(+)J’:T(S) Pj(z5

The So@erfeld-Watson transformation can be performed with the,vexpansion
(3-51); the presence of derivatives of Iegendre functions does not
alter the convergence .éf l‘gthe integration along v"che line parallel to

the imaginary axis and does not alter the vaﬁishing’cﬁf the integration
around the large semicircle R. We obtain a set of equations similar

o Eq. (3-24), except that hi(t.)Tv(J,s)? in Eq. (3-31) is replaced by

T

2 Bi(";)T(s), [z P{}_(Z).],' and is.replaced by

[z By(2)) § [z B (2],
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" : 1", "y
and PJ(Z) ~is replaced by . Pa(z)..-_y_ ,Pa( z) .

Asymptotically in 2z, the quantities "Pa(z) and P&(z) go

into:

: . ' o, ».a a : : ' .
(o)~ DloMRLEE | | - (3-32)
Mo+ 1) T1/2

P'(z) o1 a-l‘ '
o ~ I‘(Oﬁ'ﬂe)e for Re O > - %, and

ola + 1)
Ma +2 ) T2/2) (20 + 1)

17

keeping only the leading terms in z, we obtain

1 1

e 1
Gl -52 n sin ;rtaZns E2

oo} 8 e - By, n‘“‘)T(s)a(n) . 252 izl )

[+ exp - inoc(n),] + (+ "’"',) p)

l:—Bg'g,n(+')T(s) a(n) + Qm—E; Bip o s )} )1

(continued

{l - exp - iﬂ[a(n)-l]} + (+-=) , (3~ 533
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%T"‘% ~ Tin ) ia - i% MT( ) 2L petala(n)-1]
)

T _ x ) 1 1 (+)T
Gy ~ 2 % o @) 2 B22 (s) a(n) + 2612

1) sote)-3

1 - exp -inla(n) - 11) + (+ - )

G T =« 1 1
5 2 h sin na(n) .2

1i,n

) Leat)en) + 8y 6) ata) - —EEMB' 2

lX 'Za(nz)[l + exp - i:roc(n).] + (+ = =) .

The foregoing analysis could have been carried -out for the NN

channel. The quantities G, z, p, and E would be replaced by

G, zp Py and Eu
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L, REGGE POLES IN THE NUCLEON-ANTINUCLEON CHANNEL

In this section ﬁhe Regge poles with the gquantum numbers of
the nucleon-antinucleon channel are studied. As stated in the
previous section, the position of a Regge pole moves with energy
and is said to have a definite trajectory in energy which is con-
trolled by dynamics. Chew and Frautschi have proposed that stable
and metastable particlés (resonances)are\pointé'on Regge'trajectories.5
Each Regge trajectory,has a.definite set .of guantum numbers: isotopic
spin, baryon number, stranéeness, G parity (if applicable), -etc.

A particular Regge pole will'appéar in all S-matrix elements with
the quantum numbers - in question, regardless of the number and
configuration of external particles.

The position of a Regge pole a(u) where wu is the square
of the center-of-mass energy of the channel in question is conjectured
to be an analytic function of wuj; its imaginary part vanishes for
(real) u below the threshold of this channel. The physical points
of the Regge trajectory are those points such that Re afu) is
an integer, and fheSe points correspond. to resonances if u is
above threshold, and to bound states if u is below threshold.

Also, for u above threshold the imaginary part of au) at
resonance energy is related to the half width of the unstable

configuration by

. Im o

- |
2T TR o/ S

124

Re real part of a(u) is assumed to be a monotonically increasing
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function of u for uw below threshold and in the region in which
resonances occur. . Also,. Im-a(u) is-assumed to be small for sharp
resonances. The value-of u for which a(u) turns around and
acquires a negative slope is purely a question of dynamics.
~- . Also, each Regge trajectory is assumed to have a definite

J vparity,'(-l)J,'and the physical points of the Regge tgajectory
. occur for either.even or odd -J, .but not both simultaneou;ly.ﬁ.;nud

The foregoing has been elaborated in detail_by_CheW and
Frautschi,B- From here on, the number of Regge trajectories;apcegsible
to the nucleoﬁ—antinucleon channel is. studied; in particular,vthe
important question concerning which Regge trajectaries are contained
in the various amplitudes in Eq. (2-19) is.answered., |

The guantum numbers of the nucleon-antinucleon system are

as.:follows:

(a): baryon number = strangeness =. O

(b) dsotopic spin = T = 0, 1

(¢c) total spin = J, =.0, 1

(d4) parity = P = v(-ljpfl .
(e) .6 parity = G = (-l)P+A:fT= 5.

where :L:: 1s the relative: orbital angular momentum of the nuclegan
antinﬁcleon system. TFach Regge trajectory is assumed. to have
definite baryon number, strangeness, isotopic spin, parity, G

- parity, and J parity. The nucleénJQntinucleon system that is
coupled to a given Regge trajéctory'hés the éame guantum numbers

as this trajectory; thus, (a), (b), (d), and (e) are specified.
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‘The total spin is not independent but is specified by

4

(-1) = -P(Ll)TG , and - [‘ (4-3)

the right-hand side of Eq. (L4~3) is specified by the Regge trajectory.
since " (-1) -is given by Bq. (4-3) andf is either O or 1 for two
spin-l/é particles, A! is determined. Therefore, if the quantum
numbers of a ‘given Regge trajectory that is. coupled to the nucleon-
antinucleon channel are specified, then this trajectory is contained
in either the singlet or triplet partial-wave amplitudes (2-19),
but not both. |

There are two important classes of trajegtories to be

considered separately for the nucleon-antinucleon channel; they are

(a) P(;l)TG = and

I

v

[}
\..

(4-1)

1
Lol

®) P(-1)7¢

. It is easily seen from Eq. (4-5) that =4 is O for class (a) and 1
for class (b).

‘The J parity of a given trajectory is determined by the even
‘or odd nature of (-l)J; _For trajectories of class (a) where 4 is
0, then J is equal to L by the usuval rules of addition of angular
momenta. In this situation (. = 0), J parity is redundant to

the parity of the nucleon-antinucleon.system, since

(-1)7 = ¥ = P2 . (b-la)
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The Regge traJjectory in question is thus associated with

hOQt)T(J,u), only, and (-1)T =GP .

-‘For trajectories of class (b)vwherexf is 1, then J .is
- either L+ l:ior. L by the usual rules of addition of angular
momenta; this :statement also holds for all points on the. Regge
trajectory coupled.to the nucleon-antinucleon .channel. - .In this
situation, J parity is not specified by ordinary parity (the .
parity of the nucleon-antinucleon system), since .
(1Y 2 (-1 = P for 7 = 1L, and
(4-lip)
(-1)°- )

-(=1 =P forr J = L+ 1 .-

However, Eq. (L-4b) leads to the important result that the value of
(-l)JP determines ‘whether a particular Regge trajectory is asso-
ciated with J = L triplet or J = L+ 1 triplet partial-wave

amplitudes for class (b) trajectories. In particular, for

(él)qP = -1, the trajectory is associated with .hl(t)T(J,u);
for - - g o . B , : (4-5)
(-l)qP' =. .1, ‘the trajectory- is associated with hll(i)T(J,u),
. +)T + )T
. hlé(—), (F,u), and hgg(f).-(J,u) .

It is worthy of note that in all the foregoing the quantities

L and,xf are specific to the nucleon-antinﬁcleon system, and



constraints are imposed on these quantities when ‘the nucleon- -
antinucleon channel is to have the same guantum numbers as some
given Regge trajectory.

‘To summarize the results of this section, all the '"good"
quantum numbers- of the nucleon-antinucleon channel including J
parity, are given in Table IV. Also and.(-l)qP are given
s0 that the amplitudes containing the Regge trajectories can
be easily identified. Some particles whose gquantum numbers have

been indicated experimentally are entered at. the far right.

-Table IV. The independent quantum numbers of the NN channel.

G T P g-lf >/ » (-1‘)JP

(+) 0 (+) (+) 1 (+) VAC, ABC
(+) 1 (+) (=) 0 (<)

(£). 0 (=) (+) 0 (=) X1
() 1 (=) () 1 (-)
() 1 (=) (-) 1 +) P
(<) o0 G R € 0 (-)

(=) 1 (+) (+) 1 (+)

(-) 1 ) (=) 1 (<)

(-) 0 (=) )1 (=)

(-) 0 (=) (=) 1 +) @ 1
(<) 1 (=) (+) 0 (=) n

(+) 0 (+) (=) 1 (-)
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From the table it is seen .that. there are twelve independent.sets -
of quantum numbers. In those cases in which.x! is -0-(class'a),. J.~
parity and parity are not independent; this fact reduces the; number
from 16 to 12.. ‘There would be 16 independent 'sets-of J -parity

and parity .were always- independent.
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5. REGGE POLES IN THE NUCLEON-NUCLEON CHANNEL -

This brief section is devoted to the study of Regge
trajectofiés with the quantum numbers of the nucleon-ﬁucléon
channel. Such a study is important because the deuteron and the
enhancement of the singlet np scattering18 cross section at-
-threshold can be considered as points on- Regge trajectories.

The quantum numbers of the nucleon-nucleon system are

(a) baryon number = B = 2

(b) strangeness = O

(c) isotopic spin = T = 0, 1 (5-1)
(a) total spin 4 - 0, 1 and |

(e) parity = P = (-l)Ll,

where L 1is the relative orbital-angular-momentﬁm of the‘nucleon-
nucleon system. Not all. the above quantum numbers are independent,
however. For the scattering of two identical fermions, - Pauli |
symmetry imposes the following constraint for the nucleon;nucleon

system:

+ 4+ o
(-1)* T oo, (5-2)
Once the parity and isotopic spin of the Regge trajectory
_ with the same quantum numbers as the nucleon-nucleon system are
specified; the tétal spin-is noslonger. independent but is determined by

(-1)*! = -p(-1)T . , : (5-3)
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And, as in the nucleon-antinucleon .channel, there are two:classes of

il

trajectories.tq be considered separately. .They are (a)gP(fl)T -1

]

and (b),P(—l)$;= -1. vIn,class.(a)x4g = 0, and in class (b):%/-

1.
The ‘results of Section L are-immediately -applicable.for, the nucleon-

nucleon channel. If
P(-1)F = -1, A -0, and J=1,

then the trajectory is associated with
If

thens there #re two possibilitiess. - v
(1) =,

where the .trajectory is associated with S FE

where the trajectory is associated with

W,5), 1, W03,0) ana 1, B0

11

Table V.shows the indepéndent.qpantum numbers of the nucleon~
»nucleon;system;together'with“%f,andv.P(-l)J._-Ionnejcounts properly
there -are: six independent.trajectories. with the -quantum numbers of
the -nucleon-nucleon channel. This is Qply;half,thelnumbe;>for,Nﬁ
channel because G parity is not well defined for states with

. baryon number = 2.



Table V. The indepéndent guantum numbers of the NN channel.

T p () (-1)7p

o ) ) 1 +)

1 (+) (+) .0 (+) *
0 (+) (9 1 (<) deuteron
R (5 B ) 1 )

1 () ) 2 (-)

o () () o ()

The deuteron has been entered at the appropriate place and
the asterisk indicates the enhancement of the singlet np system
at threshold. Experimentally, these are the only two trajectories
that reach the right-half J plane. As explained by Barut,l8 the
virtual singlet S state of the NN system corresponds to a

trajectory that turns around just before reaching J = O.
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6. HIGH-ENERGY NUCLEON-NUCLEON SCATTERING

In this section wé-treat the exchange.of systems with the
gquantum numbers of the nucleon-antinucleon. channel as Regge
trajectories of classes (a) and (b) mentioned -in Section 4. 1In
particular, the pion and  p-meson trajectories are considered, the
Pdmeranchuk,trajectory already having bheen discussed'by a number  of
authors.u The ® and X trajectories are not considered, since
they are isotopic spin. 0 and.do not have the quantum numbers of the
u channel for np scattering that is of primary. interest for back=-

ward scattering. .

A. The Pion Trajectory
The - quantum numbers of the pion are such. that. the trajectory
is associated with the partial-wave amplitude hb(+)l(J,u)¢(S¢ction h).
From Eq. (5r50)3thercontribution of the pion trajectory to the invariant

scattering amplitude in the u channel is, from Eq. (3-33),

a1, ey Flwreatn +1 |
¢ (ws,t) = - QE 5 —— =T - {1+ exp ima(x)]
u ' pu
- (6-1)
= 0 -1 =0 = 0 =1 =0 - 1 = 0
Gl = G2 = G2 = G5 = Gu = Gu = G5 = G5 =0,

where «(n) is the position.of the Regge pole for the pion. Following

the work. of Chew and Frautschi5 we assume that Re 0 has a positive
slope = L 5 as shown in Fig. 3. Note that 2z = -1 = =
u 2
50m._ 2p,

in Eq. (3-33).



. Iy

The amplitude éll(u, s,t) satisfies the Mandelstam repre..
sentation and has only the singularities required by unitarity;
(+)1 2 2
1 -
Bo,n (u) has a zero of order E- at E, =0 so

2v=»O.V
u

" hence,
that Eq. (6-1) be finite at E
Using the crossing matrix (2-24)' , the contribution of the

single-pion exchange to nucleon-nucleon scattering is

G (’O’.l) (S;'u) t)

1 . - % Gll(u) S;‘t)'%(iv 1),

6, O (st) = EE (ust) 26,1)

Gs(o’l)(s,u,t) - 38 wst) 3351) | (6-2)
Gh»(.o’l,)(s,u,t) = -)]j'éll(u,s,t)‘%-(j,l) , and
G5"(O’l_)(s,u,;t) = -%Gil(u,s,t)%@,l) .

From Eq. (2:20) the contribution to the "physical amplitudes"

of nucleon-nucleon scattering is

' ( )l ,a( )
Bg (O,l)(w'z) o Bo, x " (?)[Qa(ﬂ)v+ }1 . n
2 S sin na () 2p_2
Yu
X"[l-+.ekp i ﬁ a(ﬂ)]'% (3,1) b ‘ . (6-3)

continued
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e e+ )
E?g‘?’?)(wiz) = i.%, é?,ﬂ (u) ga(ﬂ).f 1] _

csinwole). 2p;2v'

- (6-3)

X [1+ expi ﬁ?a(n)]f% (3,1) , and

g, = B = vﬁg- = 0.

Note sthat this amplitude will venish as. u .aﬁproach S zero

)

because of the residue Bé . The vanishing of the amplitude
at u =20 (babkward direction for.nucléoh-nucleon scattéring) will
be true for all the class (a) trajectories of the nucleon-antinucleon
u.channel. |

Similarly, using Pauli symmetry (2-21) and the crossing
matrix, (2-24)' , we-can calculate the contribution of the. single~

pion. exchange in the +t channel to nucleon-nucleon scattering;

the result is

pr @)1 a(x)

o, (w)fealn) + 1)y
sin mo(xt) ‘gptE

g, D)~

X [1+ exp i waln)] 3 (3-1) , and

(6-4)

C_(0,1) x -%,ﬁ(”l?tf),[go‘(’?? + 11 @)
"F¢Hl '(WQZ)'NVE T sin ﬂaiﬁj - 2p 2
t

X.[1+ exp i n a(x)) %,(5,-1) O

where ,¢¢i = ¢3 = .¢5 = 0.
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Note that the single pion of the nucleon-sntinticleon ” t- channel
will give zero contribution to the nucleon-nucleon amplitude :in

the forward direction.

B. The p-Meson Trajectory
The quantum numbers of the p meson are such that the tra- -
-)1
(-1 (z,0),

(J,u) (Sec. 4). The contribution of the

jectory is associated with the amplitudes h11

1122(-)1 (-1

p meson to the invariant amplitudes G asymptotically in Z, is:

(J,u), and h,

2
2Eu 1 ' (')l(u)

1 1 (')l(u),q(p) + =% Pip,p

-z B!
2 sin na(p) E 2 22, p
N _

- 1
Gl (u) S:t) ~

X zuo‘(p) [1 - exp =i n alp)],

2
2E
=1 : 1 1 ' -1 [t (’)l
Slmet) - - sty Pho, o W) ale) + =gy (W)
. |

X ZU?(Q)-l:[l" exp.-i 1t a(p)]
=1
G3 (w,s,t) ~ 0 . - (6-5)

continued



b=

Ghl(u’ S‘_’t)' ~ g- ‘sin ioz(p) ':2': B22 p( )l(u) a(p)+26 (-)l(u)

Gr(ws,t) v s F e 2 (625)

; 2(E 2 2)
walp) + —‘im—g-— Bl o W)

( )1(

622 P

x {81 M teate)l -

X 220 - exp -1 x al)]

The quantity a(p) determines the trajectory of the p meson; the
' real ﬁaff of g(p),~Ré'd(p), is equal to .1 at u = 29 @ﬂg_,’and
iis illustrated in Fig. L. | From Egs. (2-24)' and (2-20), the
contribution of the p meson to the 'physical amplitudes"” of

nucleon-nucleon scattering . is:

H56,1)

2E¢l(o’l)(w,z) = mg(G l-c';5l) (p2+E2) GLL - hug (621+'éul+é5
p

28, (w, ) - -e(p2+E2{)éél;Z§2-[m 6, G (P8 ] 11}%(3,1),

(6-6)

continued



(0,1) u [of |=1=1 21 u=s1l1

2E¢3 ’ (W,z) = |- -2?- 5 G2 +G,+ + 5 G5 + I Gl 5(3: 1) ’
(p2+E2)G o2 . .

2E¢h(°’l_)(w,z) = - tg { 5 4 + ‘—“2— Ggl G51) ;}(3,1), and

2p .
‘ (6-6)
1 | |
.2 2
omg (O V) - - m———-—i;? (521 G 551) 5(3,1) .

Keeping only the leading terms in s = -Ei)ue(l + zu) and

:—.-2—2,..-(;2p.2;.‘,= mT_ > :100 mﬂ_e, where T

1, is the lab system kinetic energy,
2p : -

L

T, 2 3 BeV), we have

1

.2E¢l(o’li)(W,'z) = -2E¢u(o’l)(w, z) ~ = % m

L . (=) U 1 (-1
X |- [Ea(p)+l]Bll’p (u) + - Bipo o (u)
0 ale) B
x (;—5) - emina@BG1), (61
Pu

2E¢2(°’1)(w,.z).= 2E¢3(O’l)(w,z)

~ -211 sin iaipi [’Bég,p'('-)l(u)a(pﬁgz?Biz,p (-)l(uﬂ

2

2p

s \a(e) 1
X ( ) {1 -expinx a(p)]§(5,l),, and
u

continued
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in /2 L
2Eg (O’,l)(w z) g (uutg:’“ i ia(p) :
X (Cleateha) oy ( PHw- 24,0 (- )1(uqfea12,p
s \ale) -
x 5 [1 -expinx a(p)] = (3,1) . (6-7)
2pu

Similarly, using Pauli symmetry (2-21) and the crossing
matrix (2-24)', we find the contribution of the Regge trajectories
in the t channel with'the:quaﬁtUm;humbers“of class (b) (8ec. 4) to
the nucleon;nucieon cﬁannél to beb |

L T Z (-1)@3@53‘

T _ T T
2mp “(,z) = 284, "(W,2) ~ - 5 i S

:(";)T'(,t) _t ' ’(‘f_’)T'(t)

X |- (2a+1)(3311 +—5 Bls
2m
© X ) (exp'imads+ 1), - (6-8)
, ep, _

T
2E¢2'T(w,z) -=>_-2E¢MIIVI(W,ZY) ~ 3 Z NEk:i

T' . sinmna

P

. '(t)T' L '('L)T'
X L’ﬁzg (t) a+ =5 By
2@ .
. a il
D& '521- (exp i m a-#-1) 5, and
5 B

continued

)



- ‘and

- S \1/2 .
2Bf, " (W,2) ~ & “;p‘g) ZT (1)

-~

: l(+)T' v '(+)T' . ’(+)T'
X [T(ea-+ 1)y, By — O+ 2B,
a .
X 62 ) (expima+ 1), o (6-8)
2pt
. -1 3
M i ;
where (-l)TBTT is the isotopic spin crossing matrix %
1A

The total cross section is given by the optical theofem

0 = %? Inm [Tr U @ (W, O)] | - (6-9)

in matrix notation, where U is the density matrix for the incident
beam. ' For unpolarized incident beam,

8, ., Sl .

b

Q
]

p m e OOt Bt a0
- (6-11)

2 ) e C V
T I |4,040)+ 450)|

b
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For example, from (6-8), the contribution of the P meson

to the np and pp total cross sections is -,

2 : a(p, 0)
o ) (-)1 = ’
Upp = 2_p-E-3 :[20,’_(9, O) + '71] 6ll,p (O) ~2m2 . » b and
(6-12)
' a(p; 0)
Op =~ é%ﬁ [2a(p, 0) + ;] 1§11’p (')%(Q)‘ ;;—

The difference betwwen the above cross sections contains the quantum
numbers of fhe p and w mesons in the t channel; however, the
7 meson does not contribute to the forward amplitude in Eq. (6-11),

and

2 a(,p, O)

i
o g = =
bp np PE

\on?

[20(p, 0) + 1],511,9‘(-)1(0) s

(6-13)

The differential cross section per unit center-of-mass solid
angle is given by
v2 1l 1412 e | 2 2 2
=2 18,7+ 18P+ 15+ 1,17 + 2lgy

aQ Lk x!xu'ul¢k'“'K“

(6-14)

for an unpolarized.incident beam. -The differential cross section per
unit momentum transfer, A? = -u, is related to the differential cross

section per unit center-of-mass'solid angle by’
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o o - _
o - %5 . (6-15)
an =

Thus, the contribution of the p meson to the np differential
cross section near the backward direction is from Eqs. (6-7) and

(6-14). (keeping only the leading terms in s)

3 a(p)| 2
s~ T s
dA2 ‘ l6p2]£}2 2pﬁ2
- (=), 2 s (1, 2, |?
X [2a(p) + 1] B o (=A7) + ;—5 Bio . (-A7)
. . 3 _ - p) -
(=)1 8 £ ()1, 2y |° 1
+ B T(-A)alp) + =5 B (-47) )
22,0 ° - 2m2 12,0 [cos o (p) ]2
. 2
(6-16)

where a(p) = a(p,u) = alp, -Ag-) . For KX <<omt ,. we have

R o) + DIP

oos 2402 r’

iL,p

do ~ s a2 B
af  165°F | \ep,”

(6-17)

2

‘The combination of residues B_ O+ A B
22 2m? 12

drops out for small

A2 since this combination has a zero of order A2 at A2 = 0 from

Eq. (6-5). Equation (6-17) will be useful.for the analysis of the
energy dependence of the backward peak in np scattering; from a

study of the energy dependence of % for small fixed
dAa
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2

,A? (A? < < 2m°), a(p,ﬁ?) can be determined in the region of £

equal to zero. Equation (6-163 will 5e uéefﬁl for a study of the
dependence of the combination of residues in the curly bracket
upon A? as A@ is incrgased. The pion trajéétofy héé ﬁot beeﬁ
incluﬁed in Eq. (6-16), since the pion trajectory lies beiéw thé'
p trajectory and dominates the high-energy,difféfénfiai cross —
section to a lefser degree.

The quanfity _EiEl_ is real for ﬁ;%'d;lg'fhé_ratio bf

N (pue)a

the real parts of the amplitudes in (6-7) to the imaginary parts

has the definite value of tan %Z . The imaginary'partfof&:¢l and

‘¢h for np scattering for u = A? =0 is

O‘( P O)

% ﬁ:L]_"(_)l(o) :[205([3,0) + l] e_s'é' %) ' (6'18)
m

which is given by the optical theorem in the difference of the pp

and np total cross sections, Eq. (6-13). Also by use of Egs.
(6-17) and (6-13), this'difference of total cross sections is related

to the np differential cross section by

do
2 nafp, 0) np
2’ 2 . (6-19)

-0 = |6x cos

A?:O
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VII. CONCLUSIONS

The high-energy nucleon-nucleon problem has been considered
from the point of view.of the Regge_trajectories with the quantum
numbers of the nucleon-antinucleon channel. In particular, the
analyticity of the partial-wave amplitude in total angular momentum
was discussed, and a unique continuation was found. In the last
section, the contribution .of the p- and ﬁ-méson trajectories to NN
scattering was found, and the resulting formulae (6-16), (6-17), and
(6-19) should be useful for an analysis of the np differential
cross section near the backward direction for‘energies greater

than X 3 BeV.
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Scattering Didgrdm for the Nucleon Nucleon Problem
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Contour C in the J Plane
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Fig. 2
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The 7 - Meson Trajectory

Fig. 3
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The p - Meson Trajectory

Fig. 4
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