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ABSTRACT 

A self-consistent calculation of low-energy ~-~ scattering is 

made in which, in addition to the usual P-wave resonance, an I = 0 , 

D-wave resonance is also retained. The only free parameter is the pion mass. 

The resulting resonances have masses of 685 MeV and 892 MeV respectively, and 

the half-width is about 160 MeV in each case. The procedure consists of 

combining the Chew-Mandelstam and generalized Ball-Wong techniques with 

self-consistency. An outline is also given of a possible generalization of 

such a procedure to an arbitrary S-matrix process. 
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INTRODUCTION 

A method for making calculations in the low-energy ~-~ problem was 

giyen in an earlier paper, 1 henceforth referred to as L. The nearby singu-

2 larities were treated by the conventional Chew-Mandelstam approach, while 

the more distant ones were taken into account by a generalization of the 

Ball-Wong technique. 3 These two techniques were then combined with the 

requirement of self-consistency. An approximate calculation was made in 

which we consistently neglected everything except the P wave. Such a 

calculation, in which the only free parameter is the pion mass, can give us 

a self-sustaining resonance. 

Recently, however, it has been conjectured, on the basis of the 

Regge...;pole hypothesis, that there is also present an I = 0, D-wave resonance 

in the~-~ problem, with a mass of about 1 Bev. 4 Such a resonance will be· 

shown to arise even if we have only the P-wave resonance of L in the crossed 

channel, although the mass is then too small. However, a coupled P-D 

calculation, in which both the P- and D-wave resonances are .consistently 

retained, gives masses roughly consistent with the expected values. These 

calculations, of course, are all made in the elastic approximation. To 

increase the accuracy of the calculation without adding phenomenological 

information would require some method for calculating inelastic processes. 

In the final section, a generalization of the method given in L to such 

processes is outlined. 
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THE P- AND D-WAVE RESONANCES 

In L , the partial-wave amplitude for orbital angular momentum £ 

and isotopic spin I was given by 

with 

= 1 -

and 

00 . ( . 1 )1/2 
J d v I --:-v"---:-

v' + 1 0 

Im A(£)I(V 1
) D£I(v') 

(v' - v0 )(v' - v) 

( 1) 

(2) 

' 
( 3) 

where v = (s/4) - 1 if the pion mass = 1, v0 is some subtraction point, 

and s is the square of the total energy in the barycentric system. The 

last term was obtained by making the approximation 

1 
1 +XV = 

n 
.E 

i=l 

G. (x) 
]. 

1 + x.v 
]. 

(4) 

-1 
for 0 < x < -v 1 , where v 1 > -9 and 

-1 I . 
The function R£ (v) x. = ill. 

]. ]. 

is the ratio of total partial-wave cross section to elastic partial-wave 

cross section, and is unity in the elastic approximation, which we shall 

i 
use throughout. We can determine the constants A(£)I(v0 ) and F(£)I by \; 

imposing two conditions: (a) that A(£)I(v) oG v£ for small v , and 

(b) that Eqs. (1), (2), and (3) give the same value and the same first 

(n - £) derivatives of A(£)I(v) as given by 
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= f dv' Im AI(v,, 
1!V 0 '\ 

l + 2 V + 1) Q (l + V' + 1) 
v' £ v 

at some point VF in the region VL < V < 0 e To find Im AI , vre can 

always expand in the crossed channel 

2 00 

( 5) 

1 + 2 v + 1) = 
V' . E 13II' 

I'=O 
E (2£' + 1) Im A(£')I'(v') 

£'=0 

( v + 1) X P £' 1 + 2 v' ' (6) 

where 

5/~ / 
1/3 1 

1/3 1/2 ~'II' = -5/6). 
1/3 -1/2 1/6 

Equation (5) can also be used to obtain the discontinuity across 

the nearby part of the left-hand cut. This leads to Eq. (IV-7) of Chew 
. 2 

and Mandelstam or Eq. (5) of L. In particular, if we retain only a zero• 

widthresonance at vR in the crossed channel, the left-hand cut starts at 

v = -VR - l • By taking VL = -vR - 1 , we therefore eliminate the integral 

in Eq. ( 3). 

To set up such a zero-width approximation, we shall generalize the 

procedure followed in L • If we first put Re D£I(v) ~ (v - vR)/(v0 - vR) 

and -[v/(v + l)]-1/ 2 Im D£I(v) = N£I(v) ~ (v/vR)£ N£I(vR) , we obtain 

v£(r£I)2 [v2£+1/(v + 1)]1/2 

)2 ( I 2 2£+1 ( V - VR + r £ ) [ V /( V + 1)] 
(7) 
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where 

(8) 

and 

(9) 

Taking the zero-width limit, we obtain 

( 10) 

In the P-wave approximation in L, a straight-line interpolation was 

used in Eq. (4). In other words, we set n = 2, and put 

( 11) 

where x1 = 0.16 and x2 = 0.02; i.e., illl = 6.25 and m2 = 50. Taking 

v 0 = VF = -2, and inserting Eq_s. ( 10) 

we calculated A(l)l(v0 ) , F(l)ll , 

and (6) into Eq. (5) with £1 = 1, 

2 
and F(l)l in the manner described 

above. These, in turn, were used to calculate vR 1 and r
1 

by means of 

Eqs. ( 2), ( 3), . ( 8), and ( 9). It was then required that these calculated 

values eq_ual the assumed ones. 1 
This gave YR r 1 .. = 2.6 and VR = 3.4 

(i.e., the mass ~ = 585 MeV). A plot of the cross section 

4n( 2£ + 1)[ v( v + 1) J -l/
2 

Im Ace )I( v) . ( 12) 

has a half-width of 110 MeV. if we use Eq. (7) and 125 MeV if we use Eq_s. (1), 

(2), and (3). The differe~ce is small and justifies the use of the simpler 

form given by Eq. (7). 
·. 

In the above calculation we implicitly assume. that the results are 

not sensitive to changes in the m. consistent with the approximation (4). 
l 
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To test this assumption, we make large changes in m1 and 

the calculation. With m1 = 6. 25 and m2 = 100, we obtain 

and v = 3.5, while with ill = 10 R 1 and ill2 = 50 we have 

UCRL-10376 

m2 , and repeat 

1 .. .· 
"R r 1 = 2.2 

. 1 
vR r 1 = 2.9 and 

vR = 4.1 (~ = 630 MeV). Thus the resonance parameters, and particularly 

the mass' are not very 'sensitive to changes in the values o'f . ml 

even if the changes make the approximation (4) marginal. 

and 

To calculate the I = 0 , D-wave resonance, we shall use the specific 

approximation made in Sec. 4 of reference 5, hereafter called S; L e., we set 

n = 3 and put 

and 

= 

- 9(x - x ) 2 1 

( 14) 

where 8 is the usual step function, x1 = 0.17, x2 = 0.07, and x
3 

= 0.012. 

That this is a valid approximation is evident from Fig. l(b) of S if we 

replace 2 
y by 5x. and 20q by " • If we retain only a P-wave resonance 

1 
with "R r 1 = 2.6 and "R = 3.4 in the crossed channel, and calculate the 

I= 0 £ = 2 state by the above method, we obtain a resonance with 

2 0 
"R r 2 = 0.8 and vR = 3.5. The corresponding mass is comparable with 

the one for the P wave, contrary to expectations. However, the very existence 

of such a resonance shows that this state cannot be neglected in a self-

consistent calculation. 

To increase the accuracy of this result, a coupled P-D calculation 

was therefore made, in which both the P- and D-wave resonances were retained 

in the zero-width approximation in the crossed channel. With the same x. , 
~ 
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this calculation gave 1 vR r1 = 4.6 and vR = 5.0 (~ = 685 MeV) for the 

2 0 
P wave, and vR r 2 = 4.4 and vR = 9.2 (~ = 892 MeV) for the D wave. 

The latter mass is compatible with the expected value of about 1 BeV, while 

the former is consistent with the experimental values of 725 to 770 MeV.
6' 7 

A plot of Eq. (12), using Eq. (7), on the other hand, gives a half-width of 

about 160 MeV in each case. For the P wave, this is several times the values 

50 to 75 MeV deduced from experiment.6' 7 The discrepancy is probably caused 

by a combination of the crude approximations of our present work, and by the 

inadequacy of the simple models normally used for extracting experimental 

~-~ cross sections from pion-production experiments. 

I 
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INElASTIC EFFECTS AND ARBITRARY S-l\1ATRIX PROCESSES . 

In the preceding calculations, inelastic effects ~ere not included 

explicitly. This does not mean that such effects are completely neglected, 

since it was shown in L that they are partly taken into account.if the 

approximation (4) is valid also for negative x • However, this presupposes 

that inelastic scattering is not yet too important at the energies of interest, 

which is already only a crude assumption in the case of the D-wave resonance. 

To increase the accuracy of the calculation, we must explicitly insert 

inelastic effects. This, in turn, requires a general method for handling 

any S-matrix process. 

Consider such a process with an arbitrary number of incoming and 

outgoing particles, for which the square of the total energy is s • If we 

follow the Landau-Cutkosky rules, 8'9 we must consider all possible reduced 

graphs, which will consist of direct and exchange graphs. Direct graphs 

are those that have s-variable discontinuities which can be directly calculated 

by the Cutkosky generalized unitarity.condition.9 The remaining we shall call 

exchange graphs. If we project out a particular partial-wave amplitude, we 

will then have a function of s with the usual left- and right-hand cuts 

arising from the exchange and direct graphs, .respectively. These cuts may, 

of course, include complex singularities and be overlapping. 

Now, at a fixed value of s , the total amplitude may be viTitten as 

a sum of integrals over discontinuities arising from exchange graphs, if the 

amplitude is considered as a function of some variable t 1 which is 

independent of s • This, in turn, gives the full partial-wave amplitude 

in the nearby left-hand region if we project out a particular wave. In 

particular, we can then find the discontinuity across this part of the 

left-hand cut. 
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To treat the more distant part of the left-hand cut, we first 

approximate it in terms of a small number of effective-range parameters by 

following the procedure described in L and S. This procedure is particularly 
' j. ·• 

simple if we first replace all the complex singularities by an equivalent 

cut on the real axis, with a discontinuity adjusted to give the correct 

10 amplitude to the right of the cut. These parameters can, in turn, be 

calculated if we require that the ,amplitude and its derivatives be given 

correctly at some point (or points) s = sF in the nearby left-hand region. 

In such a calculation, one must, of course, take into account the right-hand 

cut, since it, too, contributes to the amplitude. The discontinuity across 

this cut is, however, determined by the Cutkosky generalized unitarity 

condition. 

In selecting sF , one must choose as small a value as possible. 

If it is too large, the more complicated exchange graphs become important 

in the above calculation. At the same time, the position of sF should not 

be too close to the more distant left-hand singularities. Otherwise, a 

large number of effective-range parameters would be needed to represent 

these singularities. One must also avoid points which make it necessary to 

subtract infinity from infinity in the course of the calculation. 

The main difficulty associated with the above procedure is that one 

has, in general, anomalous thresholds in the angle variables, even in the 

physical region. 11 This prevents the convergence of a partial-wave expansion, 

which would be needed to obtain the total amplitude by the abov~ method. We 

shall outline two ways of overcoming this difficulty: (a) We could just 

calculate the lowest waves by the above approach. Since it is only here 

that distant singularities (short-range forces) are important, 12 the rest of 

the amplitude will be given by nearby singularities (long-range forces). 

,, 

, 

.. 
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These can be handled by more conventional techniques, for instance, the 

multiple-impulsive peripheral approach proposed by Cutkosky. 13 In thfs 

approach, the lower waves are assumed to be given, and the rest of the 

amplitude is built up from these waves. (b) We could simply proceed with 

the total amplitude without making a partial-wave expansion. At fixed values 

of the other variables {for instance, the angle variables), we again have 

the usual left- and right-hand cuts in the s plane. These may then be treated 

essentially as they are in a partial-wave amplitude. 14 

Of the two methods, (a) is probably more feasible in practice, at 

least if numerous simplifying assumptions are made. However, there may be 

convergence and other difficulties. Method (b), on the other hand, does not 

seem to have such difficulties, but is probably much more difficult to apply 

in practice. Whichever method we use, however, .we could probably solve the 

problem only if we explicitly knew all the discontinuities associated with 

the exchange graphs--or, equivalently, if we knew the amplitudes associated 

with the vertices of such graphs, since these give the discontinuities through 

the Cutkosky generalized unitarity condition. In general, we could not solve 

the problem self-consistently because we have not made use of analyticity in 

those other variables t. that are also independent of s • One way of 
J. 

rectifying this situation would be to repeat the above calculation with the 

total amplitude as a function of each of these other variables. We could then 

impose the additional condition that the effective-range parameters be the 

same each time. This should be sufficient to solve the problem. 

In the above approach, independent subtractions may have to be made by 

projecting out one or more of the lowest waves. The value and derivatives of 

the amplitude at sF for such waves can, however, always be calculated through 

crossing and self-consistency.15 Because of the effective-range approximations 
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used, one may also get divergences in certain integrals which should be 

convergent. He can remove the15e by impos_ing the additional condition that 

the integrands have, at least approximately, the correct asymptotic behavior. 

This provides an additional condition for.determining the effective-range 

parameters. 
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Fig. 1. Plots of a1
1 as given by Eqs. (12) and (7) for: 

(a) The P-wave resonance with vRr 
1

1 
= 4;6 and 

VR = 5.0. 

(b) 
2 0 

The D-wave resonance with vR r 2 = 4.4 and 
VR = 9.2. 
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Fig. 2. (a) A typical direct graph. 
(b) A typical exchange graph. , 
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