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"ABSTRACT
A self-consistent calculation of low-energy mwn-n scattering is
made in which, in addition to the usual P_wa#e resonance, an I = O ,
D-wave resonance is also retained. The only free parameter is the pion mass.
The resulting resonances have masses of 685 MeV and 892 MeV respectively, and
the half-width is about 160 MeV in each case. The procedure consists of
combining the Chew-Mandelstam and generalized Ball-Wong techniques with

self-consistency. An outline is also given of a possible generalization of

such a procedure to an arbitrary S-matrix process.
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INTRODUCTION
A method for making calculations in the low-energy w-m problem wés
given in an earlier pape:r_',:L henceforth referred to as L. The nearby singu-
larities weré tfeatéd'by the convenfional Chew-Mandelstam approach,2 while
the more distant ones were taken into account by a generalization of the
Ball-Wong techniqpe.: These two techniques were then combined with the
requirement of self-consistency. An approximate calculation was made in
which we consistently neglected everything except the P wave. Such a
calculation,‘in which the only free parameter is the pion mass, can give us
a self-sustaining resonance.

- Recently, however, it has been conjectured, on the.basis of the
Regge-pole hypothesis, ~that there is also present an I = O, D-wave resonance
in the n-wx problem, with a mass of about l.BeV;u Such a resonance will be -
shown to arise even if we have only the P-wave resonance of L in the crossed
channel, although the mass is then too small. However, a cgupled'P-D
calculation, in which both the P- and D-wave resonances are consistently
reﬁéined,‘givés.ﬁésses foughly consisteﬁt with the expected valués. These
calculations,tof céurse, afe éll mé&e in the elastic approximation. To
increase the aécﬁracy 5f the caicuiation without adding ﬁhenomenblogical
information Wduld require_éomé‘méthodmfér calculating inelésticrprocésses,
In the fiﬁal section,>a geﬁefalization of thé method giveh in-IL- to such

processes is outlined.
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THE P- AND D-WAVE RESONANCES
In L, the partial-wave amplitude for 6rbital angular momentum £

and isotopic spin I was given by

AtV = NI (1)
with
. Vevy o Y2 R,T(v') W5 (v")
Dy(v) = 1~ —— é dv <FTI> (v - v v =) (2)
and
I
. ve-vy sl ImAg (v D,o(vh)
N, (V) = apylvg) + — { W 30)(v' V)
L
n F 1
+ (v - ) ifl 554%53 » (3)

where v = (s/%) - 1 1if the pion mass = 1, v is some subtraction point,

0

and s 1is the square of the total energy in the barycentric system. The

last term was obtained by making the approximation

L ()
1+ xv . 1+ x.V
i=1 i .
o . N . .
for 0 <x<-v;"", where v >-9 and x, = . The function R, (v)

is the ratio of total partial-wave cross section to elastic partial-wave
cross section, ahd is unity in the elastic approximation, which we shall

. v i
use throughout. We can determine the constants 'A(ﬂ)I(VO) and F(ﬂ)I by
imposing two conditions: (a) that A(Z)I(v) ol vz for small v , and
(v) that Egs. (1), (2), and (3) give the same value and the same first

(n - £) derivatives of A(E)I(V) as given by
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N ok P, ~ < . v+ 1 vt o4l
A = ,(f)dv m (v, 1+2%52 Q1 + YELY (5

at some point Vg in the region vy,

always expand in the crossed channel

<Yy <0 . To find Im KI , we can

2 00
~ v + 1
ImA (v, 1+2——) = & , I (28" +1) ImA,,, \r (v
nE G, 142 ) 10 Prr .e'=o( ) Im A (v
v + 1
x p,(1r2¥2), (6)
where
.
/3 1 5/3
Bryr = 1/3 1/2 -5/6 .
1/3 -1/2 1/6

Equation (5) can also be used to obtain the discontinuity across
the nearby part of the left-hand cut. This leads to Eq. (IV-7) of Chew
and Mandelétam2 or Eq. (5) of L. In particular, if we retain only a zero-
width resonance at YR in the crossed channel, the left-hand cut starts at

-V, - 1 ; we therefore eliminate the integral

v=-v, -1 . By taking vy = R

in Eq. (3).

. To set up such a zero-width approximation, we shall generalize the

procedure followed in L . If we first put Re DEI(v) =~ (v - VR)/KVO - YR)
’ and ~[v/(v + .1)]'-1/2 Im Df(v) = NzI(v) ~ (V/VR)z NzI(vR) , we obtain

: 2
Vzsz) [vzxm_/(v . 1)]1/2

) (7)
(v - vR)2 + (P£I)2 [v2£+l/(v + l)]_

Im A(B)I(V) =
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where

e o) =0, S e

and

v T, = (vg = Vo) N, (vg) - ,‘ | (9}

Taking the zero-width limit, we obtain

L

T . o : L
® T, 3(v - vR) R (10)

Im A(z)I<V) = 7V

In the P-wave approximation in L, a straight-line interpolation was

used in Eq. (4). In other words, we set n = 2, and put
Gl,g(x) = (x - X2,l)/(X132 - X2,l) s | (11)

where x, = 0.16 and X, = 0.02; i.e., o = 6.25 and ®, = 50. Taking

V.= v, = -2, and inserting Egs. (10) and {(6) into Eq. (5) with £' = 1,

we calculated A(l)l(vo) P F(l)ll , and F in the manner described

2
(1)1

above. These, in turn, were used to calculate v, and Fll by means of

R.

Egs. (2), (3), (8), and (9),‘ It was then reqpirgdvthat these calculated

values equal the assumed ones. This gave VR Pl;‘= 2.6: and VR’=v5,h

_(i,e., the mass my = 585 MeV). A plot of the crossrséction

I

o = e e DI 4 1_’)}]"1/2 WA O (12)

has a half-width of 110 MeV. if we use Eq. (7) and 125 MeV if we use Egs. (1),

(2), and (3). The difference is Small'and justifies the use of the simpler
form given by Eq. (7).
In the above calculation we impliéitly assuﬁe‘that the results are

not sensitive to changes in the ®, consistent with the approximation (4).

~



UCRL-10376
5

To test this assumption, we make large changes in ®, and &é , and repeat

= 100, we obtain v_ I 1oz

the calculation. With o, = 6.25 and ® r Ty

1 2
and wvp = 3.5, while with o, =10 and a§2 = 50 we have ”vR-I"l'l = 2.9 and
Vg = b1 (mR = 630 MeV). Thus the resonance parameters, and particularly
the ﬁass, are not very:sensitivéito'chahges in the values of 'ml and @, ,
even if the changes make the épproximation (4) marginal.

‘ To calculate the I = O ; D-wave resdnance, we shall use the specific

approximation made in Sec. 4 of reference 5, hereafter called S; ioeg, we set

n=73 and put

2
. X = %5 4 | X - X / XB - Xz,l
G o(x) = | Tx - 8(xy - %) | 0% X - x )
? 1,2 2,1 2 1,2 51
(13)
and
2

GB(X) = [(x - xg)/(x3 - XQ)] e(x2 - x), (1)

where © 1is the usual step function, X, = 0.17, X, = 0.07, and x5 = 0.012.

That this is a valid approximation is evident from Fig. 1(b) of S if we
replace y by 5x. and 20q2 by ) If we retain only a P-wave resonance
with VR Pll = 2,6 and Vp = 3.4 in the crossed channel, and calculate the
I=0, £=2 state by the above method, we obtain a resonance with
VR2 FQO = 0.8 and vR = 3.5. The corresponding mass is comparable with
the one for the P wave, contrary to expectations. However, the very existence
of such a rescnance shows that this state cannot be neglected in a‘selfm
consistent calculation.

, To increase the accuracy of this result, a coupled P-D calculation

was therefore made, in which both the P- and D-wave resonances were retained

in the zero-width approximation in the crossed channel. With the same X5
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this calculation gave vp Pl = 4.6 and vg = 5.0 (mR = 685 MeV) for the
2,0
P wave, and vp F2 = 4,b and VR,* 9.2 (mR = 892 MeV) for the D wave.
The latter mass is compatible with the expected value of about 1 BeV, while

the former is consistent with the experimental values of 725 to T70 MeV.6’7

A plot of Eq. (12), using Eq. (7), on the other hand, gives a half-width of

about 160 MeV in each case. For the P wave, this is several times the values

50 to 75 MeV deduced fromexperiment.6’7

. by a combination of the crude approximations of our present work, and by the

inadequacy of the simple models normally used for extracting experimental

nt-x cross sections from pion-production experiments.

The discrepancy is probably caused



UCRL-10376
-7~
INELASTIC EFFECTS AND ARBITRARY S-MATRIX PROCESSES

In the preceding caléulatidns, inelastic effects were not included
explicitly. This does“not mean that such effeété afeﬂcompletely neglécted,
since it was shown in L that they are ﬁartly taken into aécdunt'if the
approximation (4) is valid also for negative x . ﬁowever, this presupposés
that inelastic scattering is not yet too important at theenégies of interést,
which is already only a crude assumption in the cése of the D-wave resoﬁance.
To increase the accuracy of the calculation, we must explicitly insert
>inélastic effects. This, in turn, requires a general method for handling(
any S-matrix process.

Consider such a process with an arbitrary number of incoming and
outgoing particles, for which the square of the total energy is s . If we
followrthe Landau-Cutkosky rules;8’9 we mﬁst consider all possible reduced
graphé, which will consist of direct and exchange graphs. Direct gréphs
are those that have s-variable discontinuities which can be directly calculated
by the Cutkosky generalized unitarity'condition,9 The remaining we‘shall call
exchange graphs. If we project out a particular partial-wave amplitude, we
will'then'have a function of s with the usual left- and riéht-haﬁa cuts
arising from the exchange and direct graphs, respectively. These cuts may,
of course, includé complex singularities and be overlapping.

Now, at a fixed value of vs , the total amplitude may be writﬁen:as
a sum of integrals over discontinuities arising from exchange graphs, if the
amplitude is considered as a function of some variable tl which is
independent of .s . This, in turn, gives the full partial-wave amplitude
in the nearbylleft-hand region if we project out a particular wave. In

particular, we can then find the discontinuity across this part of the

left-hand cut.
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To treat the more distant part of the left-hand cut, we first
approximate it in terms of a small number of eff¢¢£i§e-fange-éarameters by .
fqllowing the procedure describéd in L and S. This proéedure-ié partiqularly
simplé if we first replace éll the complex singularities by ah eqﬁivqle#ﬁr
cut on the real axis, with a diécontinuity adjusted to‘éivé the éorréct
amplitude to the right ofvthé cut.lo These parémetefs can, in turn, 5ev.
calculated if we require that.fhe>amplitude and its derivatives be gi&en
correctly at some point (or points) g = Sg in the nearby léft-hand“region.
In such a caléulafién,'pne must, of courée, take into account the right;hgnd
cut, since it, tQQ,.contribﬁteé to the amplifude, The discontinﬁity across .
this:cut is, however,_determined by the Cutkosky‘generalizéd unitarity
conditioﬁ? | | |

In se}ecting Sp oﬁe mﬁsﬁ éhoose as small a &alue'aé possible.

If it is too large, thevmore complicated ¢xchange grafhs become important

‘;n the abqye célculatioﬁ,>.At tﬁe same time, the posiﬁiqn.of Sp shoﬁld:not
be too close to the more distant‘left-hand singularitigs. Otherwvise, a
large numbef of e?fective—range parameters would be needed fo represgﬁt
theselsingl‘llarities° One must also‘avoid points which @ake it peces§ary-to
subtract infinity from_infin;ty iq the course of thg calculation.

The main difficulty gssociafedrwithvthe above procedufe is thét éne
has, in general, anomalous»thrgshélds in.the angle variables, even in the.
physicallregion,ll Thisvprevents the convergence of a partial-ﬁaye expapsipn,
which would Be needed to obtain the totallamplitudé by the above method. We
shall outliné two,ways of o&ercq@iné_this difficulty: (a) We coﬁl& just:v | v
calculéte the lowest waves by the aboye approaéh° Since it is only here
that disfant singularitieg_(éhort-range forcgg) are iméértant,lg the»rest»of

the amplitude will be given by nearby singularities (long-range forces).
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These can be handled by more conventional techniques, for instance, the

multible-impulsive peripheral épproaéh proposed by Cutkosky.l3 In this
approach, the‘iGWer waves are.assumed to bé'given, and the fesﬁ of thé
amplitude is built up from theése waves. (5) We could simply proéeed with
the total amplitude without making a partial-wave expansion. At fixedvvalﬁes
of the other variables (for instance,. the angle variables), we again have
the usual left- and right-hand cuts in the s plane. These may then be treated
essentially as they are in,a partial-wave amplitude,lu

Of the two methods, (a) is probably more feasible in practice, at
least if numerous simplifying assumptions are made. Howevér, there may be
convergence and other difficulties. Method (b), on the other hand, does not
seem to have such difficulties, but is probabl& much more difficult to apply
in practice. Whichever method we use, however, .we could probably solve the
problem only if we explicitly knew all the discontinuities associated with
the exchange graphs--or, equivalently, if we knew the amplitudes associated
with the vertices of such graphs, since these give the discontinuities through
the Cutkosky generalized unitarity condition. In general, we coﬁld not solve
the problem self-consistently because we have not made use of analyticity in
those other variables ti that are also independent of s . One way of
rectifying this sitﬁation would be to repeat the above calculation with the
total amplitude as a function of each of these other variables. Wé could then
impose the additional condition that the effective-range parameters be the
same each time. This should be sufficient to solve the problem.

In the above approach, independent subtractions may have to be made by
projecting out one or more of the lowest waves. The value and derivatives of
the amplitude at s for such waves can, however, always be calculated through

F

crossing and self-consistency.15 Because of the effective-range approximations



UCRL-10376

~]10-

used, one may also get divergences,in'certain_integralsﬂwhich.should be
converg_en‘b. We can remove thgg;e by iméos_ing the additional condition tha'b
the integrands have, at least_approximately,_the coprect asymptotic behayior.
This provides an additional condition for determining the effective-range

parameters.
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Fig. 1.

MU-27561

Plots of UII as given by Egs. (12) and (7) for:

(a) The P-wave resonance with le"ll = 4,6 and
v = 5.,0.
R
(b) The D-wave resonance with VRZ I‘Zo = 4,4 and
VR =9,2. '
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(a) | (b)
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Fig. 2. (a) A typical direct graph.
(b) A typical exchange graph.
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