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This report describes a Fortran program called T.aEGGE for an IBM-7090 

computer. The program calculates Regge trajectories and S-matrix elements 

for an arbitrary potential. 
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* FORTRAN PROGRAM TREGGE 

Philip G. Burke and Cecil Tate 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

July 24, 1962 

I. INTRODUCTION 

UCRL-10384 

·This report describes a Fortran program called TREGGE, which calculates 

the scattering matrix from a Schroedinger equation in which the angular momentum 

is complex. In particular, the program will find the positions and residues of 

Regge poles as functions of energy, or it will compute S matrix and phase shifts 

at a specified grid of points in the complex-angular-momentum plane for a given 

set of energies. The program as presented treats a single Yukawa potential, 

but it is designed so that it could easily be modified to treat any analytically 

given potential. 

The permissible range of variables comprises all complex values of angular 

momentum except negative half integers and real values of the energy. 

The program has been used on an IBM-7090 to calculate Regge trajectories 

for single Yukawa potentials1' 2 and for a superposition of Yukawas. 3 Program 

decks are.available from the Computer Library of the· Lawrence Radiation Labora-

tory at Berkeley . 

II. METHODS AND EQUATIONS 

We are interested in calculating the scattering matrix for the Schroedinger 

equation 

(2.1) 
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2 in which the angular momentum, £, is complex and the energy k can take positive 

and negative real values. The S-matrix s(£, k) is defined by the asymptotic . 

'I 
solution 

= e -ikr - s(£, k)e-i1!£ eikr ' (2 .2) 
r -+ co 

and the boundary condition at the origin is 

.ttl = r (2 .3) 
r -+ 0 

Our method for calculating S(£,k) is to start with the regular solution 

for some small value of r and to continue this solution by numerical integration, 

so that it can be compared_with the asymptotic form- (2.2). The program is designed 

for potentials that can be written as a power series 

00 

L Cir 
i-1 

= - ' 
i=O 

but the main routine is applicable to any analytically known potential. Given 

the potential (2.4), we then assume a power-series solution of Eq. (2.1): 

~+1 
ro 

u(r) L [an cos(ai £n r) - bn sin(ai £n r)]rn = r (2 .5a) 

'· n=O 

~+1 
ro 

v(r) L [a sin(ai £n,r) + b cos(ai £n r) ]rn , = r n n (2 .5b) 

n=O 

where we have made the following decompositions into real and imaginary parts: 
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u_e(r) = u(r) + iv(r) • 

The real coefficients a and b are obtained by substitution of Eqs. (2.4) 
n n 

and (2 • .5) into Eq. (2-.1). The resulting recurrence relations are 

n-1 

L 
i=O 

c. [ (2a...+ntl)a . 1 + 2a
1
b . l 

l H n-l- n-l-~ 
a n 

and 

= 

(2.6a) 

n-1 

b n = 
- 2at'n-2] k2 + &o ci [(2on+rn-l)bn-i~l - 2CX:fn-i-l] ' 

with a = b = 0 for n < 0 • 
n n 

n [<20R+ntl)
2 

+ 4a1
2
] 

(2. 6b) 

To calculate the S matrix, we must evaluate two linearly independent solutions 

of the equation 

0 . 

Two such solutions are the modified Bessel functions of complex order, 

and 

f_e(r) = k-(.ttl) ~ J.tt-
1

; 2 (kr) 

g_e(r) = k£ ~ J -(.ttl/2 ) (kr) • 

(2. 7) 

(2.8) 
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We multiply by the factors k-(.ttl) and k.e to attain greater numerical 

accuracy for very small k: it will be apparent tbat.the algebraic equations 

which have to be solved to get the S matrix are better conditioned with this 

approach. 

We can then write the asymptotic solution as 

where ~ , ~ , IJ.l , and IJ.2 are real. Now asymptotically we have 

· § J (x) "' cos (x - ~ - 1 n1t) , V 2 n ~ 2 

whence it can be readily shown that if the S matrix is written 

s = C + iD 
A+ iB' 

then the real numbers A, B, C, and D are given by: 

(2.9) 

(2.10) 

(2 .11) 
.continued 
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(2.11) 

As the 
1
energy tends to zero, expressions (2.8) tend t.o the limits 

r(.e. + 3/2) 

and (2 .12) 

( ) v; (~) -.t ' 
g .e r = · r.( -.t + 1/2) c. 

. k-+ 0 . 

and so we use this pair ·Of asymptotic solutions at zero energy. From Eq_s. (2.10) 

and (2.11) it is clear that the S matrix on the real .t axis at zero energy is 

.Our procedure for finding poles for = 

for a;R > -1/2 

for ,aR < -1/2 . 
(2 .13) 

is to look for zeros of 

A + iB. Starting with a value of .e that is not too far from a pole, we 

iterate to the corresponding zero of A + iB by repeated linear extrapolation 

(Newton's method). If .e
0 

is the position of a pole, then for a value of .e 

that is sufficiently close to .e
0 

, we have 
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£ .~. R, _ . A + iB 
0 d~ (A+ iB) 

(2.14) 

Each iteration thus involves the evaluation of A and B at.the two points 

£ and £ + d£ in order to get the derivative d/dt(A + iB), followed by an 

extrapolation to a new point in the £ p~ne by using Eq. (2.14). This process 

is repeated until two successive values for £0 differ by·less than a certain 

number (HCONV; see glossary). Finally, the residue. of the pole is 

(3 = 
S ( R, 0 ) + iD ( R, 0) 

d~(A + iB) I £0 
(~.15) 

. For negative energies a somewhat different approach is necessary. This 

is due to the inaccuracy that accumulates when the bound state solution of 

Eq. (2.1) is integrated outwards. For 2 
k < 0 we have limited the program to 

finding the position of a pole without calculating the S matrix. This is easily 

achieved by integrating inwards starting with the asymptotic bound-state solution. 

Written in terms of modified Bessel functions of imaginaryargument and complex 

order, this solution is 

\rEF£ [ (• ) i:JL(tt-1/2) (• )] V 2 J tt-1/2 J.kr ··- e ·· J-(tt-1/2) J.kr • (2.16) 

The integrated solution is then matched to that given by Eq. (2.5.). In this 

case A and B of Eq. (2.14) are replaced by the real and imaginary parts of 

the discontinuity of the slope of the wave function at the matching point. If 

are the two solutions .to be matched, and U I 

2 
are their 

respective derivations, we put 

(2.17) 

and then perform the same iteration procedure using Eq. (2.14). 
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III. DESCRIPriON OF THE CODE 

A. General.Structure of the .Code 

It was mentioned in the introduction that the program is designed to 

study any analyticallygiven potential. The unmodified Fortran decks that 

will be available treat.only a single Yukawa potential, but we have tried to 

organize the coding in such a way that necessary modification for a different 

potential will be easy. If the potential is expressible in the form of E~. (2.4) 

.one need only change the two small subroutines POTA and POTB. The latter 

effectively generates the coefficients c. 
l 

in E~. (2.4), and the former 

simply evaluates the potential at a given point. For some potentials not 

expressible in the form of E~. (2.4), it may be necessary to rewrite subroutine 

START. An example of such .a potential which has beeh investigated with a 

modified version.of the code is the Yukawa plus repulsive core2 

V(r) 
:-r 

e 

More detailed information on the potential-dependent parts of the program will 

be found in sections III•C and III-D. 

The program is comprised of the main routine, called TREGGE, and the 

seven subroutines START; POTA, POTB, BESSEL, GAMMA, DEQ, and MLR. The three 

routines START, POTA, and POTB are described in sections TII .. C andJIII-D. 

Descriptions of the routines BESSEL4 and GAMMA5 which are used to evaluate 

.,. two independent asymptotic solutions of the Schroedinger e~uation are available 

under the Share code names C3 EO BESL and C3.EO GAMA at the Computer Library, 

Lawrence Radiation Laboratory, Berkeley. The two remaining routines, DEQ6 and 

MLR, 7 were not written by_ the present authors; DEQ carries out the step-by-

step integration of the Schroedinger e~uation according to Gill's variation of 
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the Runge-Kutta methodsj MIR is used to obtain ~ , r-..2, ~-t1, and ~-t2 from the 

set of four simultaneous algebraic e~uations given by the real and imaginary 

parts of E~. (2.9) and its der~vative. 

The Fortran. decks to be made available will consist of decimal (symbolic) 

cards for the routines TREGGE, START, POTA, POTB, BESSEL and GAMMA, and binary 

cards for DEQ and MLR. 

The program has three modes of operation. Two of these involve scanning 

the three-dimensional space (complex angular momentum x real energy) at a 

given array of points. In one mode, S matrix and phase shift.s are produced over 

this array, and in a second mode the space is scanned for Regge poles. In the 

third mode the program follows a Regge trajectory upon being given a sufficiently 

close app:roximation to one point .on the trajectory. 

B. The Main Routine, TREGGE 

The main routine is not described in detail here, because it is not 

expected that users will want to modify it. An outline is given in the accom­

panying flow diagram (Fig. 1). The numbers attached to same blocks are the 

corresponding Fortran statement numbers. 

C. SlilJrblitine START 

The first half of the routine--up to the fifth statement after statement 

12--evaluat.es the starting solution (2.5 and 2.6) and its derivative. It first 

chooses Rl, which is a value of r such .. that the series is convergent. to one 

• part in 105 while the number of terms in the series is between 20 and 25. This 

is done by repeatedly summing the series and changing Rl until the conditions 

are met. The real and imaginary parts of the solution u(Rl) and v(Rl) are 

then st~red in Z(3) and Z(4) and the derivatives du/dr.IRl and dv/drJRl are 

stored in Z(l) and Z(2) in preparation for entrance to the Runge-Kutta 

integration routine. 
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__c!L_l START, which in turn ~all~ 
POTB. If necessary, POTB reads ..---...., 

r--r--."-"==.---.,,.. ~ala for potentiai.(See separate 
.. _ .... _.. descriptions of START and POTB) 

by linear e•trapolation towards 

a zero of (Xl+ iX2) 

Ye_s 

Integrate ou_twa_rds from Rl to R4_; 

compar~ resutis with Be~se-i iUnCtions 
and so .get XI!. X2_, ~~·a~-~ X~, wher~ 

S=(X3+ i X4) /(Xl + i X2). 

Integrate outwards from Rl to R2; 

i_~tegrate the bound..staie solution 

inwards from R4 to R2; compute' 

discontinuityinslopeatR2andstore 

·inXlandX2. 

'Pomt o~ Reggf! 

triljectorY. 

Fig. 1. Flow diagram for the main routine. 
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START next determines R4, which is the outer limit of the integration. 

It does so by first setting R4 = Rl + 1 (statement 16) and then increasing R4 

in steps of 0.5 until the potential V(R4) at three successive points is negli­

gible. A complication is met at this point if k2 is negative. For large 

negative values of k2 it is found to be numerically impossible to obtain an 

-lk!R4 accurate value for- the asympt.otic bound-state solution e simply by using 

the appropriate linear combination of Bessel functions (2.16). We therefore 

decided to use a special asymptotic expansion for lk!R4 > 10, and, if the value 

for R4 given by the above procedure makes lk!R4 lie in the range 2~5 ; lk!R4 ; 10, 

we choose R4 = 10/lkl • The coding for the _evaluation of the asymptotic solution 

is contained in the main routine, but these preliminary decisions are made in 

START so that the integration intervals can be determined. 

At statement 22, therefore, the inner and outer limits of integration 

have been determined. The rest of subroutine START calculates the integration 

intervals. The distance Rl to R4 is divided into thiee ranges in the ratio 

2:2:3, and each of the three is given a separate integration interval. The 

interval, H. , in the ith range is given by the formula 
l -

(3.1) 

for i = 1, 2, 3, where !vii is an .estimate of the maximum absolute value of 

the potential in that range and R. is the lower bound of the ith range. The 
l . -

-. estimates lv.l are obtained by further dividing each of the three ranges into 
l 

four eq_ual parts and taking IV. I as the largest of the five numbers thus 
l 

examined. 
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D. The Potential Subroutines: . POTA and POTB 

Subroutine POTA is extremely simple: it evaluates the potential at a 

given point. Subroutine FQTB generates the first 30 terms, Cl(I), of the 

series 

00 

V(Rl) = -r Cl(I) , 

I=l 

where the Cl(I) are related to expression (2.4) by 

(3.3) 

This routine also reads the data for the potential. Statement 47 of the· main 

routine sets IRA = 0 as a signal that a new set of data is being read. The 

signal is transmitted through START .. to POTB, which then looks for data. After 

these data are read and are written on the output tape, the index IRA is set 

to 1 so that the Read Statement in POTB is not executed again until the next 

time that statement 47 of the main code is reached. In the present code, the 

potential data consist .of just one number: the strength,.A, of the single 

Yukawa Ae-7r. It would be an easy matter, of course, to rewrite the potential 

subroutines to accommodate more complicated potentials of the form (2.4). 

E. Data Cards 

The code requires four data cards, each of which is read with the 

··. format statement FORMAT( 4El5. 7, Fl0.5). When a calculation is finished, a new 

set of four cards is read, if available. In the following table each number 

is represented by the symbol that is used in the Fortran coding (these symbols 

are defined in the glossary): 



... 

-11- UCRL-10384 

Card 1 AKl AK2 ADL 

Card 2 . RLSTRT SLSTRT HCONV .HmT DKm 

Card 3 RL2 SL2 RL3 SL3 DKF]}J' 

Card 4 A 

If a Regge trajectory is to be followed, RL3 must be zero and AKl must not be 

zero. The scanning modes are entered by having RL3 1 0. If the scan is not 

t.o search for poles but simply to calculate S matrix and phse shifts, HmT 

must be zero. 

F • Olit';Plit 

As indicated in Section II and Fig. 1,. the methods of calculation are 

somewhat different for positive and negative energies. For k2 ~ 0, .the 

residue as well as the position of a pole is calculated; but.for k2 < 0, 

only the position is obtained. Consequently, the 9utput formats for the two 

cases are different. In the pole-finding modes, each block of output represents 

a set of iterations to a pole at a particular energy. For k2 < o, each block 

contains five columns: the first gives the energy under the heading KSQU; the 

second and third give the real and imaginary parts·of £ under the headings 

RK :L , and IM L; and the fourth and fifth, headed MATCHmG ERROR, give the 

real and imaginary parts of the discontinuity in the slope of the wave function 

at R2 [expression (2.17)]. The rate at which these two numbers decrease is a 

good indication of whether the code has really found a pole. The last line of 

a block, for 2 k < 0, gives the position of a pole (provided, of course, that 

the iteration is successful) .and the preceding lines show the individual 

iterations. 

2 For k ? o, the pair of numbers called MATCHmG ERROR is replaced by 

two pairs under the headings DENOMmATOR OF S MATRIX and NUMERATOR OF S MATRIX. 
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The other difference is that the next to the last line of a block gives the 

position of a pole and the last line gives the residue, [3, of Eq_. (2 .15) 
-ire£ 

. together with a modified residue which is f3' = f3e 0 , where £0 is the 

position of the pole. 

The output may contain the comment . SERIES SOLUTION DIVERGED. . It is 

clear from Eq_s. (2.6) ,that the power-series solution is divergent when £ is 

eq_ual to a negative half-integer. ·Whenever £ is closer than about 0.0003 to 

a negative half-integer, the calculation fails, and the above comment is printed 

out. 

G. Glossary of Fortran Symbols Used in the Program 

1. Symbols in Read Statements 

AKl 

AK2 

ADL 

In any mode of operation, this is the initial value of the 

energy, k2 (The use of the factor DKIN at the start of the 

trajectory req_uires that AKl be nonzero if a Regge trajectory 

is to be followed.) 

Final value of k2
. In the scanning modes, AK2 should be alge-

braically greater than AKl. It can be zero, but in the trajectory 

mode, AKl and AK2 should have the same sign. 

This q_uantity has two functions, depending on the mode of operation. 

In the scanning modes, it is the interval in k2 between 

successive £-plane scans. Alternatively, if a Regge trajectory 

is to be followed, ADL is the interval in the £ plane at which 

it is desired to follow the trajectory. The energy is usually 

changed in such a way that successive points on the trajectory 

are separated by the constant interval ADL in the £ plane. ·It 

has been observed, however, that when I k2
1 becomes very small, 



RLSTRT 
and 

SLSTRT 

HCONV 

HINT 

DKIN 

RL2 
and 
812 

RL3 
and 
SL3 
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the motion of a pole in the £ plane becomes very nonlinear 

with k2 (especially when the zero-energy pole is at.£= -1/2). 

When this happens, the trajectory is followed down to small 

lk
2

1 by repeatedly multiplying by the factor DKFIN. This 

procedure is adopted whenever the linear extrapolation of k2 

would take it beyond AK2 while IAK21 is less than 10-3 . 

Real and imaginary parts of the initial value of £, respectively. 

A criterion for convergence on a pole. From the point of view 

of the code, a pole is considered to have been found when two 

successive iterations differ by less than HCONV in the £ plane. 

The increment by which RL is changed in order to get the 

derivative d/d£(Xl + iX2) when iterating towards a zero of 

(Xl + iX2).. For HINT~;=. 0 .the. code simply:, caH.ulates S matrix 

and phase shifts without going on to look for poles. 

Energy of the second point on a Regge trajectory is given by 

2 
k = DKIN X AKl •. The trajectory is described in the sense of 

increasing or decreasing lk2
1 according as DKIN is greater 

than or less than one. 

These q_uantities are used only :Ln the scanning modes. They set 

the limits of the area of the £ plane that is to be scanned: 

they are the upper limits of Re £ and Im £, respectively. 

In an £ ~lane scan, these are the intervals in Re £ and Im £ 

respectively. Note that RL3 is the number that is tested to 

determine whether a Regge trajectory is to be followed; RL3 

must be zero in that case. 
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When lk
2

1 gets very small, the variation in the position of a 

pole sometimes becomes very nonlinear (particularly when the 

zero energy pole is at £ = -1/2). The linear extrapolation of 

k2 to step along the trajectory at the interval ADL then 

becomes inappropriate, and so k2 is further reduced by simply 

multiplying by DKFJN. Hence, if a trajectory is to be followed 

down to very small lk2 1, {<.·l0-3), DKFLJ:N should be set at .some 

suitable value .in the range 0 <DKFJN < 1. 

Strength of the single Yukawa potential V(r) = -Ae-r/r . For an 

attractive potential, A is greater than .zero. 

2. Some Important Symbols Which do not Appear in Read Statements 

2 
AK Current value of the energy, k • 

AKS 

Cl(I) 

H 

Hl, H2, 
and H3 

ICONV 

IRA 

ITEST 

Terms of the series V(Rl) = -~ Cl(I) [expression (3.2)]. 
I=l 

Current value of the integration interval. 

Integration intervals used in the three regions, respectively 

[given by Eq. (3.1)]. 

This is set equal to 1 when two successive iterations on the 

position of a pole differ by less than HCONV in the t plane; 

otherwise it is zero. 

The flag that indicates to START and POTB that new data is being 

read (IRA= 0 in that case). 

Poles are f'oundi by looking for zeros of (Xl + iX2) (see the flow 
I 

diagram). Each iteration towards (Xl + iX2) = 0 requires the 

evaluation of (Xl + iX2) at the two points (RL, SL) and 

(RL + HINT, SL). The values ITEST = 1 and 2 are used to label 



... 

ITEST3 

Rl 

R2 

R3 
and 
R4 

RL and 
SL 
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v 
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these two calculations. 

An index that counts the number of iterations at a particular 

value of k2 in looking for a pole. The iteration is stopped 

if ITEST3 reaches 10 while ICONV is zero. 

Starting point. _for numerical integration: the point at which the 

series solution of the Schoedinger e~uation is evaluated. 

Outer limit of the first region of integration. For negative 

k2
, this is the point at which the outward and inward integrations 

are matched. 

Inner and outer limits respectively of the third and final region 

of integration. 

Current values of the real and imaginary parts of £ respectively. 

Current value of r during integration. 

Potential at any point R. 
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