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“Abstract
The stability of quenched Frank sessile loops with respect to per-
fect prismatic loops is studied on a new model, It is concluded that
measurement. of the size of stacking fault rings does not give the right
value for the stacking fault energy. The occurrence of stacking fault

defects is pi‘edicted for metals with relatively high stacking fault energy

like aluminum. Experiments to check the theory are proposed..

' * On leave from October 1961 to September 1962 at Lawrence Radiation
- Laboratory, Inorganic Materials Research Division, University of
California, Berkeley, California :
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1. Introduction

Observations of thin films of quenched facve-ceritered cubic metals
have revealed seve'rél large defects(l): perfect prismatic dislocati‘on
' loops, Frank sessile loops surrounding a stacking fault, tetrahedra.
Helical disloéations have been observed in alloys(z).
Although the existence, the geometrical features and some mecha-
: ~ nisms by which they can transform into each other have been predicted

or explained quite accurat_ely(l‘ 8-

, very little is known of the reasons
| for which a given defect is observed rather than another one.'
Therefore, it is the purpose of thié paper to study theoretically
the stability of a Frank sessile loop with respect to a Aperfect prismatic
loop by assuming they can transform into each other by a glide mecha-
; nism(7’-8).

‘The next paragra‘ph of this paper will be devoted to the description
of our model and of its general consequences., In the third paragraph we
shall apply the results of our calculation to the description of the experi-
mental situation in face-centered metals. We shall show that previous
determinations of the stacking fault energies in the'metéls based upon
t}'1.e determination of the size of quenched loops are not reliable(g). We
shall comparé our results to those obtair}ed by Czjzei{, Seeger and Mader(lo) ‘
in a similar work on the ‘transformation of Frank sessile loops into tetra-
hedra and make some remarks on the processes of formation of quenched-

in dislocation loops.

2. Model

Let us consider a Frank sessile loop (F'), with Burgers vector

B,

a Pe %— <111‘>,‘ lying in the (111) plane (Q) (Fig. 1), Kuhlmann Wilsdorf(7)
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has suggeéted that a ShOckleSr partial (S) with Burgers vector E’s = %— <112>,
-able to glide in the plane .(P), can be nucleated inside the loop, develop
undér the effect of the stacking fault energy, sweep the stacking fault,

and recombine with the Frank sessile dislocation giving a p'effect pris-

S ‘_
matic dislocation (P) through the reaction

" which can be written Y

- a a = . @&
§ <11>+ £ <112> = 3 <110>

R being the Burgers vector of th,e perfect dislocation and a, the lattice
~parameter.

We shall examine this process in detail. The Burgers vectors of

the loops (S) and (F) are perpendicular, which allows us to neglect their

(11)

| ‘ elastic interaction . Therefore, the loop is subjectéd to two forces:

its line tension, which tends to shrink it, and the stacking fault energy

- which tends to-develop it. ‘If we assume that ‘both stresses are isotropic,
the equilibrium shape of the Shockley partial will be circular.

We assume now that the Frank sessile loop is circular.  We shall
show.in our appendix that this assumption does not restrict the validity
of our conclusions. From the preceding remarks it results _th:;t the

' place where the Shockley partial is nucleated is irrelevant.(B)We shall,

therefore, place it at the center of the Frank sessile loop.

~ Let us examine at first the energy necessary for the nucleation of

the Shockley partial (S), that is the energy necessary to create a Shockley
- "~ partial of radius bo‘ bo being the core radius. Since bS < bO < st(ll)‘

the creation of such a loop involves the motion of few atoms in the region
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of the core. Moreover, the strain energy of such a small loop is very
low. Therefore, we can say that the energy for the nucleation of the
loop (S) is small,

(11)

‘For éxample, if we take bo= 2bs and if we use for the line tension

the overestimated value of .5Gb2, we get for the activation energy 5eV.

Therefore, it is not unreasonable to assume that the energy necessary

to nucleate (S) is of the order of one or two electron volts. In all our
further discussion we shall neglect the nucleation procesé.

We shall now study the propagation of the loop (S). For this we

will make use of the hojcations of Fig. 1 and calculate the total energy

of the cdnfiguration, taking the zero level of energy when the radius r

of the Shockley partial is equal to bo' The energy will be the algebréic

~sum of a line energy and of the surface energy

- Gb? :
W = mg 27r Log-;--vrrz—y+ wbzo'y - (1)
o _

~—

~ where G is the Young modulus, vis the stacking fault enertgy, K is a

constant lying between 1 - v and 1 and related to the character screw

or edge of the diélocation_, and v is the Poisson ratio. i
Introducing K in formula (1) is indeed contradicto.r with thé‘\

assumption that the line tension isisotropic. K, however, varies‘ for

FCC metals between .65 and 1. The validity of our calculation is not

“restricted if we choose for K an average value of the order of 0. 8.

By setting

Gb?
- S
T Zwao ] (2)




location into a Shockley partial and a Frank sessile' .

and

W_ = 7b2y . (3)

we can write (1) as

r2

W = W( Log gr t ) (1)
(o]

O

2 R
_ a2 <2

In order to know whether or not the loop (S) will expand, we must take

the derivative dW and study its sign

dr

dwW _ ) er _ yr
5 = 2W_ (Log o~ ,yb) )

Before studying this equation mathemétically let us remark first that

.our analysis applies as well to the transformation of a perfect prismatic

dislocation loop into a Frank sessile loop by splitting of the perfect dis-

(8)

(@ If :yyyC:\ dW is never positive. The energy decreases when the
2 =N
dr .
Shockley partial grows, This means that only perfect dislocation loops
are stable in such metals. If a Frank sessile existed in such a metal,

its transformation into a perfect loop would need only the small activa-

'- tion energy nécessary. to nucleate a Shockley partial,

The numerical value of gA cannot be calculated accurately because

it depends on b o which is unknown. As said previously

b {b 42b_ - (5)

sT o
and therefore from formula (2)

Y% = (4.5 1.5) 10-2Gb (6)

PR, e ey
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From formulas (2) and (6) one can easily see that Y is - of the

order of magnitude of the stacking fault energy Y of a metal in which

dissociated dislocations are one Burgers vector length wide,

Y b
More precisely v, = E_ i. e., .85%7cg1.7%. Therefore, it

is not likely that metals can have a stacking fault 'energy '1arger‘than Yo

(b) If v< Yoo _(c_ii_V_V is at first positive and then negative, Therefore

as a function of r, W increases unt11 r reaches the value rc, and then

“decreases monotomcally until it is equal to 0 when r = R (Fig. 2) The

transformatlon is only possible through an activation energy WM. WM
is represented in Fig. 3 as a function of the ratio vl

By'caléulating W, through equations 2, 3 and 5 one gets
~ W, = (.15 ,05) Gb3=leV. )

By lookihg at Fig. 3 one sees that WM increases smoothly when v de-

. Creases from Y% to . 47C and increases very rapidly when vy decreases

. from .4'y to O,

This means that for metals with low stackmg fault energy (-y 4-y )

-the activation energy WM is very high, and for metals with mtermedlate

stacking fault energy (. 4'y<y<yc) the actlvatlon energy is quite low, of

~the order of leV.

We can now discuss the stability of the loops with respect to their
%
size R . For this purpose we have represented in Fig. 4 the variation

of r, and Rc as a function of 'y/yc..‘ They divide the plan into three regions

a, b, and ¢. We have drawn a line corr'esponding to R'-‘.:SOA correspond-

~ ing to the minimum radius of the loops which can actually be observed

by electron micrdscopy._ We remark that this line cuts both r [y ]and
‘ RA
c

R determines the maximum value of r.
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R [ ] for values of ¥ smaller than 4'yc.

X
%

®We shall consider three cases:
First case

: - N . R<r, Region a

The stable configuration is still the Frank sessile loop.

¢ . :
Second case

r, <R <R, Region b
The stable configuration is still the Frank sessile loop. However,
| - the transformation of a perfect prismatic loop inte a Frank sessile needs
: ax;x activation energy which is quite low for metals with intermediate -
stackmg fault energies (. 4% ('y<'y) and quite hlgh for metals with low
stacking fault energies (7 47.). &
In fact loops lying in this region can only be observed in-metals
| Wlth low stacking fault energy (¥(. 47 ).
Third case
R > Rc Region ¢
The stebie configﬁration is the perfect prismatic loop. Howe;zer,
the transformatior_x of a Frank sessile loop iﬁto a perfect prismatic loop

needs an activation energy WM which can be very high for metals with

low stacking fault energies and reasonable for metals with intermediate

- stacking fault energies.

3. Comparlson with experiment

The behavior of dlslocatlons in face- centered cublc : etals has

" been shown to be closely related to the value of the stacking fault energy

(11, 12)

v in these metals Therefore it is of great importance to know

accurately the latter quantity. Unfortunately, as a result|of the gic;eat
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difficulty of making direct measurements, the figures found in the

literature give widely scattered values of y. For pure copper, for
-2 (13)

a R .
v

example, we find measured values of v varying from 40 ergs. cm

"to 170 ergs. cm~2? (9).

We shall discuss in this paragraph the accuracy of the method for

estimation of stacking fault energy which consists of measuring the size

of quenched loops in face-centered cubic metals.

We can conclude from the analysis done in paragraph two that
metals in which Frank sessile loops-are observed have a stacking fault

i o energy v lower than the critical value Yo This is the case of gold,

(1) (14)

silver, ‘c'opper and aluminum . We give in Table 1 the values of
\ S | "yc' calculated from formula 2.
P S | Table 1

Values of v, for usual FCC metals

Au Ag ' Cu. Al Ni Pt

Y, ergs. cm=2 _ : -;
within 40% 360 390 550 350 60 \780

1

G i e e A L B i ek = e

These values are indeed much larger than‘ values ciuoted in the litera-
ture. |

Nothing more precise about the stacking fault energy can be con-
cluded from the measurement of the radius of the Frank sessile loops.
This results from the fact that metastable loops of both types can be
e . observed. Therefore, previous estimates of y based on this method
are not accurate.

Before discussing in detail the situation for each metal, we shall

make some remarks on the formation of ti’xe loops.
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In metals with stackmg fault energies lower than Y., the discs of
vacancies lying in ?1114). planes pr<l>k‘>ab1'y coalesce into Frank sessile
~loops, and grow as F;rank sessile ibops. When they are large enough
they can transform into perfect p}is\hqatic loops needing an activation
‘er‘lergy WM As shoWn previously WM is small for metals for which
. 4'yc<~'y<'y¢ and large in metals for which 'y< 47C. In that case, the Frank '
sessile loops will not transform into perfect prismatic loops. Therefore,
such loopé can be obtained either by the breaking of a helix or by
- coalescence of a disc of vacancies lying in a.plane different from (111).
‘In both cases the loops can rotate toward the (111) plane.

If we start with such a perfect prismatic loop'lyi'rlg in the (111)

. plane we can say that it is stable when its radius is large enough (R‘> Rc).
- If we anneal it, it shrinks ahd,- while its rad.ius decreases, it becomes
at first metastable then trahsfornis sbontane_ously into a Frank sessile
loop. |
) 'The measure of the critical radius at which the transformation

occurs gives a good estimate of the activation energy for perfeét loops
"flying in the (111) plane. When > 4'yc, the critical radius is very small

.~ and, therefore, if observed during anngaling in the microscope, such |
loops will become too small to observe béfore transformation. If
| 'Y<.4'yc the transformation will oclcur for an observable value of the
radius;_ Moreover, the activation energy WM is so high that we can
neglect the transform’ationé occurring in the metastable zone.

Let us now consider each case in detail.

Aluminum For a long time only perfect prismatic loops have been

Nev)

, obse_rved in this meta . More recently' Frank sessile loops have
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been observed in very pure aluminum .. This suggests (a) that the
stacking fault energy of aluminum is smaller than 'ycé (b) that other
factors then the stacking fault energy play a role inz‘:determining the
type of loop that is formed (impurity content for example), (¢) anneal- A
ing experlments on very pure aluminum should at least show whether

~ or not the stacking fault energy ¥, is higher than . 4'yc. Such experi-
(15)

ments have been performed w1t‘1 less pure alummum .. No transfor-

mation was observed which suggests that

A -

140 ergs. em=2 < v, < 350 ergs. cm-?
Copper Both perfect and imperfect dislocations have been ebserved in

this meta1<1). Annealing experiments should provide some information

~on the value of the stacking fault energy.

(1) (16

| Silver Perfect and imperfect loops ™’ and tetrahedra ) have been -
~observed in silver. From a study similar to ours done by Czjzek,

| Seeger and Mader(lo) we can conclude that the stacking fault energy

of a metal, in which tetrahedra are observed, is lower than 'yc:\s2 x 10-2Gb,

Since this value is of the order of . 470, annealing experiments of

"the perfect loops lying in the (111) planes must probably allow us to

R ._actually observe the transformation of perfect loops into Frank sessile

- loops_and'therefore to have a good estimate of the stacking fault energy

.

of silver. N‘othing‘ more can be said at the moment about the other FCC

~metals, S~

v\

9.
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Appendix |
1. Propagation of é. S'hockley partial which has been nucl\eated ata

- corner of a triangular Frank sessile loop (F).‘

The purpose of this first section is to show on a very rough model
that the orders of magnitude of the quantiti‘es calculated in part 2 of our
paper are n‘o’c dependent upon fhe geometry used.

We therefore suppose that a Shockley partial (S) has been nucleated
at a corner (A) of an equilateral triangle shaped Frank sessile (F)

(Fig. 5a). "I‘h'e'Burgers vectors 'k;s and EF are perpendicular. There-
fore the equilibrium shape of the loop is a portion of circle tangent at
(N) and (P) to the sides of the triangle and. we look at its propagation in
the same way as we did in section 2 of our paper. The vmain difficulty

in calculating the total energy ‘comes from the fact that we now have to

D calculate the energy of the irregularly shaped ANPA dislocation loop.
| | We shall therefore make the assumption that the line tension is no dif- |
ferent than the line tension of a circular loop which is quite rough but
must not change the order of magnitude of the result. ’.
. ~ With the same notation as in section 2 of our paper and with the

‘same conventions for the zero energy level we calculate the total energy

(W)
W!'= W' (2rLogs - X L. +2X) ~ ;
~© b, % B kA .
with

2 .3 ' ‘
o (3 + 7r) o) 1.17 o}

By éomparing these equations to equations (1) and (3), it is obvious

that the only results which are changed are related to the total energy (W)
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which is increased by less than 20%. Therefore the main conclusions
of our paper are not chariged in this case, |

2. Prop‘agation of a Shockley partial toward the corners of an equilat-
eral triangle shaped dislocation.

. ‘Sﬁppose that a Shockley partial has been hucleated at the center O
of a stacking fault triangle (F) and that it has grown to become tangent
to the sides of the triangle in MNP (Fig. 5b). Let us assume thata
further step is represented by the situation P'P"M'M"N'N"P'. The
| segments lii{e N'P' are supposed to be circular and tangent to the sides
of the triangle. - ‘ | )

We shall now calculate the energy necessary for the sweeping of
the total area by the Shockley partial, To do this we shall use besides
the assumptions of part 2 of our paper the following assumption: the line
tension 7 of the loop P'P"M™M"N'N'"PT is constant and equal to -the line-
tension of the loop PMIN. We shall take the zero level for the energy
-when the Shockley partial is in the,position PMN with' radius }_d__?: where
1 is the length of the side of the triangle. | . °

The energy is then

W= (3]F - ™ [(y? - 2m) + 5 - ]

e

2

12]

|

SV

One sees that in order to reach the corners of the triangle, the Shockley

 partial must overcome a potential barrier of the order of AW = -W(rc),
" wherer = I, -
c 7

With loops of reasonable size (1::15010&) the potential barrier can

be shown to be of the order of 5eV for metals with high stacking fault

\

A

energy and can be as high as 50eV for metals with low sta\cking fault

energy.
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Therefore, it is not likely that\‘\‘;riangular shaped loops can be

transformed into perfect loops by a simple glide process.




Fig. 1

Fig. 2

Fig., 3

Fig, 5a

Fig. 5b
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Figure Captions

Model used for the calculgtion of paragraph 2

Plot of the energy versus the radius of the Shockley partial

- dislocation

~

Plot of the activation energy WM versus the stacking fault
energy (arbitrary units W and 'yc)

Plot of the critical radius r_ and Rc versus the stacking

fault energy (arbitrary units)

Model used for the calculation of appéndix 1

‘Model used for the calculation of appendix 2

~
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