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On the Stability of Quenched Loops in Face -centered Cubic Metals 

by . 

Georges Victor Saada 

ffiSID* 
185 rue du President Roosevelt 

Saint Germain en Laye 
(SO) France 

Abstract 

The stability of quenched Frank sessile loops with respect to per-

feet prismatic loops is studied on a new model. It is concluded that 

measurement of the si~e of stacking fault rings does not give ~he right 

value for the stacking fault energy. The occurrence of stacking fault 

defects is predicted for metals with relatively high stacking fault energy 
- I 

like aluminum. Experiments to check the theory are proposed •. 

-· 

* On leave from October 1961 to September 1962 at Lawrence Radiation 
Laboratory. Inorganic Materials Research Division. University of 
California. Berkeley. California 
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Observations of thin films of quenched face-centered cubic metals 

' ' (1) 
have revealed seve.ral large defects : perfect prismatic dislocation 

loops~ Frank sessile loops surrounding a stacking fault, tetrahedra. 

Helical dislocations ha~e been observed in alloys (2). 

Although the existence~ the geometrical features and some mecha

nisms by which they can transform into each other have been predicted 

or explained quite accurately(!, 3- 7>., very little is known of the reasons 

for which a given defect is observed rather than another one. 

Therefore., it is the purpose of this paper to study theoretically 

the stability of a Frank sessile loop with respect to a perfect prismatic 

loop by assuming they can transform into each other by a glide mecha

. . (7~ 8) n1sm · • 

The next paragraph of this paper will be devoted to the description 

of our model and of its general consequences. In the third paragraph we 

shall apply the._:results of our calculation to the description of the experi-

mental situation in face-centered metals. We shall show that previous 

determinations of the stacking fault energies in the metals based upon 

the determination of the size of quenched loops are not reliable (g). We 

shall compare our results to those obtained by Czjzek~ Seeger and Mader(lO) 

in a similar work on the transformation of Frank sessile loops into tetra-

hedra and make some remarks on the processes of formation of quenched-

in dislocation loops. 

2. Modei' 

Let us consider a Frank sessile loop (F)~ with Burgers vector 

~F = ~ <111>~. lying in the (111) plane (Q) (Fig. 1).. Kuhlmann Wilsdorf(7) 
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-+ a -
has suggested that a Shockley partial (S) with Burgers vector bs = 6 <112> .. 

able to glide in the plane (P), can be nucleated inside the loop, develop 

under the effect of_ the stacking fault energy, sweep the stacking fault, 

and recombirie· with the Frank sessile dislocation giving a p'erfect pris-
-~-- ' 

matic dislocation (P) t}::lrough the reaction 

\ 
- _, -b 
bF.+ bs\= 

' \ 
'- I 

which can be written \, 

. \ 

~ <111> + ~ ~112> ~ ~- <110> 

~ being the Burge'rs vector of the perfect dislocation and a, the lattice 
I 

parameter. 

We shall examine this process in detail. The Burgers vectors of 

the loops (S) and (F) are perpendicular, which allows us to neglect their 

elastic interaction (ll). Therefore, the loop is subjected to two forces: 

its line tension., which tends to shrink it, and the stacking fault energy 

which tends to-develop it. If vie assume that both stresses are isotropic, 

the equilibrium shape of the Shockley partial will be circular. 

We assume now that the Frank sessile loop is circular. We shall 

show in our appen~ix that this assumption does not restrict the validity 

of our conclusions. Fr?m the preceding remarks it results that the 

· place where the Shockley partial is nucleated is irrelevant!
8

>we shall, 

therefore, place it at the center of. the Frank sessile loop. 

Let us examine at first the energy necessary for the nucleation of 

the Shockiey partial (S), that is the energy necessary to create a Shockley 

partial of radius b .. b being the core radius. Since b < b < 2b (ll) .. 
0 0 . s 0 s 

the creation of such a loop involves the motion of few atoms in the region 
I 

-,----~--- -, ... - ---- ·~ 
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3. 

of the core. Moreover~ the strain energy of such a small loop is very 

low. Therefore~ we can say that the energy for the nucleation of the 

l9op (S) is small. . 

For example~ if we take b = 2b and if we use for the line tension (ll) 
0 s 

the overestimated value of • 5Gb2 
1 we get for the activation energy 5eV. 

Therefore1 it is not unreasonable ~o assume· that the energy necessary 

to nucleate (S) is of the order of one or two electron volts. In all our 

further discussion we shall neglect the nucleation process. 

We shall now study the propagation of the loop (S). For this we 

will make use. of the no~ations of Fig. 1 and calculate the total energy 

of the configuration, taking the zero level of energy when the radius r 

of the Shockley partial is equal to b • The energy will be the algebraic 
' 0 

sum of a line energy and of the surface energy 

where G is the Young modulus1 "Y is the stacking fault ene 'gy~ K is a 

constant lying between 1 - v and 1 and related to the char cter screw 

or edge of the dislocation~ and v is the Poisson ratio. 

Introducing K in formula (1) is indeed contradictor 

assumption that the line tension is ·isotropic. K1 however~ varies for 

FCC metals between • 65 and 1. The validity of our calculation is not 

restricted if we choose for K an average value of the order of 0. 8. 

By setting. 

·...,..-~---- ---- .. C .. -·---.. -~-~-'-c---- .. -----·-----

(1) 

(2) 
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and 

w = 1Tb2."Y, 
0 0 c 

(3) 

we can write (1) as 

, w = w < 2r Log E- - 'Y ~ + 'Y ) • 
o bo bo 'Yc oo 'Yc 

(1') 

In order to know whether or not the loop {S) will expand# we must take 

the derivative dW and study its sign 
ar 

dW 
dr = 2W

0 
(Log ~r- 'Y~ ). 

o "~c o 
{4) 

Before studying this equation mathematically let us remark first that 

.4. ' 

.our analysis applies as well to the transformation of a perfect prismatic 

dislocation loop into a Frank sessile loop by splitting of the perfect dis

location into a Shockley partial and 'a Frank sessile (B). 

(a) If ':Y)"Y. "> dW is never positive. The energy decreases when the 
"/ c dr 

Shockley partial grows. This means that only perfect dislocation loops 

are stable in such metals. If a Frank sessile existed in such a metal, 

its transformation into a perfect loop would need only the small activa-

tioiJ. energy necessary. to nucleate a Shockley partial. 

The numerical value of "Y. cannot be calculated accurately because c 

it depends on b which is· unknown. As said previously 
0 . 

b /b .(2b 
s~ o~ s 

and therefore from formula (2) 

'Yc = { 4. 5 ± 1 .. 5) 10-2Gb 

(5) 

(6) 
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From formulas (2) and (6) one can easily see that 'Yc is of the 

order of magnitude of the stacking fault energy ~ of a metal in which 

dissociated dislocations are one Burgers vector length wide. 
'Y. b 

More precisely 'Yc = b: i. e.~ • 85~'Yc~l. 7~. Therefore, it 

is not likely that metals can have a stacking fault 'energy larger· than 'Y. • . c 

(b) If 'Y < 'YC" g;:v is at first positive .and then negative. Therefore 

as a function ·of r, w increases until r reaches the value r c' and then 

· decreases monotonically until it is equal to 0 when r = R (Fig. 2). The . c 

transformation is only possible tprough an activation energy WM. WM 

is represented in Fig. 3 as a function of the ratio 'Yhc. · 

Byca1culating W 
0 

through equations 2, 3 and 5 one gets 

W = {. 15 ± • 05) Gb3ZleV. 
0 

By looking at Fig. 3 one sees that WM increases smoothly when 'Y de

creases from 'Y. to • 4'Y.c and increases very rapidly when 'Y decreases . c 

from . 4'Yc to 0. 

(7) 

This means that for metals with low stacking fault energy ( 'Y~ 4'Y. ) 
. ~ c 

the activation energy WM is very high, and for metals with intermediate 

st:;~.cking fault energy (. 4'Yc~<Yc> the activation energy is quite low, of 

. the order of leV. 

We can now discuss the stability of the loops with respect to their 

* size R •. For this ·purpose we have represented in Fig. 4 the variation 

of r and R as a function of -y/-y • They divide the plan into three regions c c c 
0 

a, b., and c. We have drawn a line corresponding to R~50A correspond-

ing to the minimum radius of the loops which can actually be observed 

by electron microscopy •. We remark that this line cuts both rc [!]and 
"'~c 

* R determines the maximum value of r. 

5. 
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R [ 'Y ] for values of 'Y smaller than • 4'Y. • c - c 'Y. . ' 
ewe shall consider three cases: 

First case 

Region a 

The stable configuration is still the Frank sessile loop. 

Region b 

The stable configuration is still the Frank s·essile loop. However, 

the transformation of a perfect prismatic loop into a Frank sessile needs 

an activati.on energy which is quite low for metals with intermediate · 

stacking fault energies 

stacking fault energies 

(. 4'Y. ('Y/'Y.) and quite high for metals with ~ow 
c'l.: ~c 

( 'Y~ 4"fc}. 

In fact, loops lying in this region can only be observed in.metals 

with low stacking fault energy ( 'Y(· 4~c). 

Third case 

R > R 
c 

Region c 

The stable configuration is the perfect prismatic loop. However, 

the transformation of a Frank sessile loop into a perfect prismatic loop 

needs an activation energy WM which can be very high for metals with 

low stacking fault energies and reasonable for metals with intermediate 

stacking fault energies. 

3. Comparison with experiment 

The behavior of dislocations in face-centered cubic etals has 

been shown to be closely related to the value of the stacki g fault energy 

'Yin these metals(ll, 12}. Therefore it is of great import nee to know 

accurately the latter quantity. Unfortunately, as a result of the great 
! 

·---·--,--_,--,-;---. -;--------~---------· 

6. 
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difficulty of making direct measurements~ the figures found in the 

literature give widely scattered values ·of 'Y· For pure copper~ for 

example~ we find measured values of 'Y varying from 40 ergs. em - 2 (lS} 

· to 170 ergs. em -2 (9}. 

We shall discuss in this paragraph the accuracy of the method for 

estimation of stacking fault energy which consists of measuring the size 

of quenched loops in fa~e-centered cubic metals. 

We can conclude from the analysis done in paragraph two that 

metals in which Frank sessile l_oops are observed have a stacking fault 

energy 'Y lower thari the critical value 'Y. • This is the case of gold, c . 

silver, copper(l) and aluminum (1 4}. We give in Table 1 the values of 

· 'Yc calculated f_r.om formula 2. 

Table 1 

Values of "~c for usual FCC metals 

Au Ag. Cu. Al Ni Pt 

t ergs. em - 2 · 

360 390 550 350 ~60 \780 within 40% 

These values are indeed much larger than values quoted in the litera-

ture. 

Nothing more precise about the stacking fault energy can be con-

eluded fr_om the measurement of the radius of the Frank sessile loops. 

This results from the fact that metastable loops of both types can be 

observed. Therefore,. previous estimates of 'Y based on this method 

are not accurate. 

Before discussing in detail the situation for each metal, we shall 

make some remarks on the formation of the loops. 

----------------_____,..-

7. 
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In metals with stacking fault energies lower than "Y. # the discs of 
• · I C ., . . 

vacancies lying in (111) planes probably coalesce into Frank sessile 

loops# and grow as Frank sessile loops. When they are large enough 

' \ 
they can transform into perfect prismatic loops needing an activation 

energy WM .. As shown previously WM is small for metals for which 

• 4"Y. ("f/'Y. and large in metals for whiqh 'Y(. 41, • In that case# the Frank 
C\:. '-C " C 

8. 

sessile loops ~11 not transform into perfect prismatic loops~ Therefore# 

such loops can be obtained either by the breaking of a helix or by 

coalescence. of a disc of va.canc~es lying_ in a plane different from (111}. 

In. both cases the loops can rotate toward the (111} plane • 

If we start with such a perfect prismatic loop lying in the (111) 

plane we can say that it is stable when its radius is large enough (R > Rc). 

If we anneal it, it shrinks and, while its radius decreases# it becomes 

at first metastable then transforms spontaneously into a Frank sessile 

loop. 

The measure of the critical radius at which the transformation 

occurs gives a good estimate of the activation energy for perfect loops 

lying in the (111} plane. When 'Y)· 4'Yc' the critical radius is very small 

and, therefore# if observed during annealing in the microscope,· such 

loops will become too small to observe before transformation. If 

'Y<· 4'Yc the transformation will occur for an observable value of the 

radius. Moreover# the activation energy WM is so high that we can 

neglect the transformations occurr-ing in the metastable zone. 

Let· us now consider each case in detail. 

Aluminum For a long time only perfect prismatic loops have been 

observed in this metal (1). More recently Frank sessile loops have 

--,-~~-~----~---·--·- ·-·· -- ··~T--,.:-. ~-,--r----·-··--·--· . ---- -~·--· -~~--·~---~~-----c----· ---------~-· ·-·-.,-- --- --~- .. 
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be.en observed in very pure aluminum (14) •. This suggests (a) that the 

stacking fault energy of aluminum is smaller than 'Y.' (b) that other . c 

factors thi:m the stacking fault energy play a role in 1determining the 

type of loop that is formed (impurity content for example}~ (c) anneal

ing experiments on very pure aluminum should at least show whether 

or not the s~acking fault energy 'Y Al is higher than • 4-yc. Such experi

ments have t;>ee_p performed with less pure alum~pm (15) •. No transfer--: 

mation was observed which suggests that 
r:_ 

140 ergs. cm-2 < iAl < 350 ergs • .cm-2 

Copper Both perfect and imperfect dislocations have been observed in 

this metal(l) .. Annealing experiments should provide some information 

·on the value of the stacking fault energy. 

Silver Perfect and imperfect loops (1) and tetrahedra (lG) have been 

observed in silver. From a study similar to ours done by Czjzek1 

Seeger and Mader(10) we can conc.lude that the stacking fault energy 

9. 

o(a metal1 in which t'etrahedra are observed, is lower than 'Y. ~2 x 10-2Gb. . c 

Since this value is of the order of • 4"1. 1 annealing experiments of c . . 

·the perfect loops lying in the (111) planes must probably allow us to 

, actually observe the transformation of perfect loops into Frank sessile 

loops and therefore to have a good estimate of the stacking fault energy 

of silver. Nothing more can be said· at the moment about the other FCC 

metals. 

·."" 

\ 
\ 
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Appendix \ 

1. Propagation of a Shockley partial which has been nuclrated at \a 

corner of a triangular Frank sessile loop (F). 

The purpose of this first section is to show on a very rough model 

that the orders of magnitude of the quantities calculated in part 2 of our 

paper are not dependent upon the geometry used. 

We therefore suppose that a Shockley partial (S) has been nucleated 

at a corner (A), of an equilateral triangle shaped Frank sessile (F) 
\ - - ' (Fig. 5a). The Burgers vector~ bs and bF ~re perpendicular. There-

fore the equilibrium shape of the loop i~ a portion of circle tangent at 

(N) and (P) to the sides of the triangle and w,e look at its propagation in 

the same way as we did in section 2 of our paper. The main difficulty 

in calculating the total energy \comes from the fact that we now have to 

calculate the energy of the irregularly shaped ANPA dislocation loop. 

We shall therefore make the assumption that the line tension is no dif-

ferent than the line tension of a circular loop which is quite rough but 

must not change the order of magnitude of the result. 

With the same notation as in section 2 of our paper and with the 

same conventions for the zero energy level we calculate the total energy 

(W) 

with 

W' = W~ ( 2r Log ~ 
0 

W' = (3_ + ~) W ~1 17 W 
0 3 7r 0 • 0 

By comparing these equations to equations ( 11) and (3). it is obvious 

. that the. only results which are changed are related to the total energy (W) 
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which is increased by less than 20%. Therefore the main conclusions 

of our paper are not changed in this case. 

2. Propagation of a Shockley partial toward the corners of an equilat-

eral triangle shaped dislocation. 

Suppose that a Shockley partial has been nucleated at the center 0 

of a stacking fault triangle (F) and that it has grown to become tangent 

to the sides of the triangle in MNP (Fig .. Sb). ·Let us assume that a 

further step is represented by the situation P 'P"M 'M''N'N"P '. The 

segments like N'P' are supposed 'to be circular and tangent to the sides 

of the triangle. 

We shall now calculate the energy necessary for the sweeping of 

11. 

the total area by the Shockley partial. To do this we shall use besides 

the assumptions of part 2 of our paper the following assumption: the line 

tension ,. of the loop P 1P"MlM"NI'N"Pr is constant and equal to ·the line· 

tension of the loop PMN. We shall take the zero level for the energy 

·When the Shockley partial is in the position PMN with radius 1 \rg: where 
T 

·1 is the length of the side of the triangle. 

The energy is then 

"' "i'l -yl 2 
W = (3~,)- 7T) [(-yr2 - 2'1'r) + ~3- 12) 

' . 
One sees that in order to reach the corners of the triangle~ the Shockley 

partial must overcome a potential barrier of the order of l:::.W = - W(r )~ 
c 

where r = !.. 
C 'Y I 

Wit~ loops of reasonable size ( 1-::::::lS~A) the potentia{ barrier can 

be shown to be of the order of 5eV for metals with high st eking fault 

energy and can be as· high as 50eV for metals with low st+king fa\lt 

energy. \ 
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' 
Therefore1 it is not likely that''triangular shaped loops can be 

. \ 
transformed into perfect loops by a simple glide process • 

. '·.'· 

.:. 

'. 

. . 
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Figure Captions 

Model used for the calculation of paragraph 2 

Plot of the energy versus the radius of the. Shockley partial 
·.dislocation · 

Plot of the activation energy WM versus the stacking fault 
energy (arbitrary units W 

0 
and 'Yc) . 

Plot of the critical radius r and R versus the stacking 
fault energy (arbitrary unit§> . c · 

Model used for the calculation of appendix 1 

--.._ 

Model used for the calculation of appendix 2 

13. 
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