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ABSTRACT 

. UCRI-10431 

A study is made ·of some. aspects of Linear. Stochastic Hotions in 

quantum mechanicS and classical mechanics. Such motions are characterized 

by the feature that a linear transformation )describes the time develop­

ment of the density matrix representing ~he ensemble in,g.uantum qechanics, 

or of the density d.istribution function on phase space representing the 

ensemble .in clas~ical mechanics, The discussion is mostly limited to 

Disordering Stochastic Notions,.by w~:ich are understood stochastic motions, 

which preserve the uniform ensemble; such moticins are shoW11 never to lead 

to an increase in information about the ensemble, As a special case dis-
.. 

ordering stochastic motions which can be interpreted as corresponding to 

a diffusion process on a finite dimensional 'tie group are considered; for 

sucp processes the close analogy between the description in quantum mechanics 

and the description in classical mechanics is stressed. The equivalenc~ 

between various equations of motion which have been considered in the 

literature is discussed; this discussion is mostly limited to quantwn 

mechanical systems which can be described on finite dimensional Hilbert spac:Js, 

For disordering ~1 tochastic motions of such systems the set of all time 

development transformations form a closed, bounded, convex set. It is shown 

that the set of extreme points of this set includes transformations which 

are neither unitary nor antiunitary. 
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L INTRODUCTION 

A., Stochastic Hotions and Diffusion on a Group ~Ianifold 

In this section He wish to emphasize a certain unifying viE:vrpoint 

concerning the equ.6.tion of motion of physical systems. 

Let us co::sidcr first the motion of a quantum mechanical system 

within the L-·:J.l:iC:v:ork of Hamiltonian m':::chanics. The system at time . t 

is relatec, ~:;_~ the system at time zer·o by a unitary ti~ansforr~a.tion. u{t ). · 

If the m:its.ry transformations gene:cate a finite dimensional Lie group, 

then t1.': transformation U( t) can be labeled by the corresponding group 

elerr,(_~·:., i.e., bya point on the groupm~:::.nifold. 'fuc time dc·v;:.1oprnent 

1 

of t~;;:; system is then described by a continuous curve or. the £~~··oup mani-

1 
i'olG..~ An exactly analogous situation prevails in the case of a classical 

system. Here one Jnay conside1· the tine development of point5 in phase-:-

space. The system at time t is related to the original syste.m by a 

co:1tact t:c&.nsformation. /.ga:Ln if the contc.ct transfo:nr.ations generate· 

a finite dimensional Lie group, the state of the syst<:::·;t can be labeled 

by a point on the group manifold. The css(;nce of the; :.-~oticns is thus in 

both cases the curve on the group ma<1:ifold. A de~tailcd e:.:xposieion of 

thL :·rall-established pr=:_nciple, as \:01.1. .:::.:::; some of itc; P~'''.ctical <>ppii~ 

1 cations, has been presented in the re:::f'c:::-:·c:JcE: quoted above. 

Ue now consider the extension of th~s vico:point to the ca;;;c a:· an 

ensc:nhle of- systems undergoing rand"Jm transfor·r:tc:tions. In this ccse, 

instead of describing a continuous curve on the g:coup manifold, the 

system will have various probabilities of going in differcmt direct.ions 

at (<?.ch point of its pc:.th. In each direction fur-ther branching NiJ' 

---------------------------1. E. H. Wichmann, J. i·iath. Fhys., 3_, lJo. 6, 8'/6 (1901). 
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occur. The time develo):.·.;-cnt corresponds, therefore, to a diffusidn pro-

cess on the group mani1'old. The advan'Lages of such a viev1point, besides 
:. 

serving as a connectlr:g link between quaritum n<echanics and classical 

mechanics, consist in separz~ting out L~om the problem the part which 

depends only on t:~c structure of the group, <md not on its sptc;:ific 

re·alization on 't.L<::; Hilbert space H of the state vectors of the aystern., - . 

Group theorc\,icl methods may also help to simplify :the intt:gra.tion 

problem ir: sc:::.e cases. 

The ~"''cr2.l description of the evolution of an ensemble of systems, 

in acco:~c::;,:;:lce "rlth t:r.e above viev1point., 1-.rill then be 'as follm·IS •. The 

ense:::'::;:! . .:o c.ftcr tiJne t is to be considered a mixture of ensembles obtained 

frc; tr.e. original ·ensemble at t = 0 by all. possible transfo:::·i':ations in 

tl-:.:..."~ ticue interval. vJe consider in particular the case where. the gl"'Oup 

··e; .. 
genc:re.ted by these trc.nsformations is a finite dimensional Lie group< ·y , 

d d .... ~, 1 f' -&_ b'r e:.n eno~_.,e a gener~ e .e:r;e:nt o.. ../ " g • The amount by ,.,hich the 

vc.rious: transformed E:nsc;::'Jlcs cnt_er the mixtur0 •·rill be determined by a · 

probability distributi.on function, Hhic:h i;:e denote P(g;t). It is of 

interest thc:1 to find the differential eyuation sLc.isi'ied by P(g;t). 

Hhc:·, the rcotion is sufficic;ntly continuous. The derivation of such an 

equc.tion, .::md the study o-1 its relation to the differential equation 

satisfied by the density matrix ./' (t) of the system, or the d±fferE'n..:. 

·' 

v 

tial .::quation of the phase-'space density function of a classical systom, --J 

vnll be the subject of section V. 

B. Some Physicc.l I{odels for Stochastic Zo·c,ions 

:·Je 1dll next consider in r2ther bread tc-;:.s the ph~'!:.:i u~.l b:;:::i.'.J 



the ways whereby the information about a system may be lost; ar.d we will 

an<:.lyze two types of processes, which should have rather general rele;.. 

vance. 

(a) The syste.'ll is subject to randor:t c:;x.ternal forc0s of such a nature 

thst the process becomes Harkovian~ 2 An example! of such a process is 

provided by a gas of particles with mu.gnetic moments in a container, 

over the voltune of Hhich the m2.gnetic field fluctuates in space. F\.u..; 

the:rmore, it may fluctuate in a random 'lray in time. For such processes 

it is clear .thc.t the motion, in spin space, is a superposition of 

unitary tr&nsformations. One may say that the stochastic na.tu.re of the · 

motion is a consequence of randomly fluctuating (classical) external .· 

forces. 

(b) The second case: arises as follo•·rs: Let us denote the elbmE:nt of 

an ensemble by s, and the ensemble itself by (S). Each eleri,ent can 

undergo the following sequence of evcnt.s: at a certain randc•mly . 

determined time it gets ir..to a cloce interaction, a "collision 11 , \·lith 

another quc:m:t.u .. i1l ;a8chenical system RJ Kh:i.ch is an el<::iTtHJt in Lmother 

ensE:ruble (P)o Ti-~is latter may be con~;id0l'8d the rGservoir if it is .i 

comparatively 11lor::;en systo:;:JL, but need not be so considered in the 

general case. The combined systEm S-E then undere;oes a unitary t:.·:~r~s-

formzction for so;ILe fixed smc:~ll tirr:e, i.e., small compa:t.'t':d to the ttve:cd.r,e 

time ~;pent for a measurw,ent; after v1l1ich S and n cease to interact. 

I.'1 ·;:,}:c case Nhere (R) is considered a reservoir, the number of syotc:rrts 

l:': c~.) is assumed to be 50 large tha.t the state of the rescl~voir docs net 

e;L:_;-• .:_:,; td.th tirr:e because of tt.:; int12raction Hith the sy::;tt::ms in (S); for 

' ( ,. ' t ~ . t' t . . C.l-:8 st,atior::::ry case one a.s::.u.N~8 l..hat 1:.) does no C.J<?cnge Hl. n ·~me cue 

----·--~-------:-----
2. lic:·kovic:.n in the scr::;·;e th:>t the systc:m ett time t 11 is uniquely de:tcr-

minc.:d by the system at ti:::c t' for r:ll pairs ( t' 1 ~ t 1 ), 1::hcncvcr t' 1 ;:.~ t' • 
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to any other c<1use either. Suppose nm-1 one tries to describe this situa-

tion: At the beginning of a colli:Jior: event both S and R ar<:: described 

by vectors and in thE: ap:::.··opdate Hilb<:rt spa.ces, whicry need not 

be of the same dimensior;a1:!..t2t'. L€"\: U t€ ti1e unitary transformation o. 

which describes what happc;;ns curin[~ the ever..t; it acts on the t~nsor 

product of tHo Hilbcr·t ::-;p3ces, and rr:r::y in so;!le version be assumed to be 

a fi.xcd trari.sfon·_.:'.-;:,ic:~. The :final sto.te vector for the combined system 

is no lon[:er a l)~'oduct of tuc- vectors describing S 2.nd R separately, 

but is given by 

J 
\,,J 

' (I-1) 

? 

If ·.rc noN form o. l~educed cnse;,:tlc--' h'11ich describes the :c·:.J8ult of 

der..c::i':.y matrix describing t:·.e systGl S ai'-t:.er the transformatio~-. is 

J 

0 
/ rrh 

This de::::cribes an inC.iviC.ual e·:c:.t. Ccr:sic.cr· no'vl the d:.:mce in the 

t) II 
../' 

systur. (S). 



.... 

' , .. 

5. 

of (R),. \..rhich is taken to be constant for a reservoir, be given by the 

density matrix UVo We then have, in accordance with the result for" a. 

single event, 

= (1- .c).f: . mn (I-3) 

where the real constant c satisfies 1 > c >0, and is proportional to 

the number of events. It is to be noticed that the resulting trans~ 

.formation on an individual state· vector describing an .element S of·· 

(S) is linear: there is no complex conjugation. 

0:-~e has a slightly more genE:Tal situation if v!e also carry out a 

randomization of U in Eq. ( I-3 ). But apart from this the equation 

should have rather general validity in describing the physi9l basis· .. 

for the possible loss of information about (S): The total inform<lti'on 

about the combined system rem<.:.ins unchanged by a unitary transforrn3.~iorn 

after the tra."1sformation, part (;f the infotmcS.tion resides in the correla-

tion behreen (S) and (R). This information is throHn aw<w \\'hen thG 

correlation is not observed. The ensemble (R.) is also not observed 

either before or after the transformation. So if the inforrr,ation which 

one can in principle have about (R) is increased, or remains unchanged, 

by the transformation, the information which one can have about (S) must 

decrease. On the otLer hand, if the information which one c.;m have 

about (R) decreases through the transformation by such an arJount as to 

e:x:cccci the loss of information in correlation, thGn the information 

about(S) may yet increase. 

\·Je vri11 show later that if one requires that the unifo1·m ensro·niblc;; 



P= I/Tr(I) l·n (c;;\ . ..... ue 

. 6'·. 

preserved by the transformation, . .'this P\lt's .. su·ch 

a strong require:::a/c. on (R) and U that the informati~~ about (S) is . . . .. v 

necessarily non-illcreasing. 

At thi:::- pdnt vre pause to indicate the direction,. and to discuss the. 

motivatio~-,:. of the analysis in the sections to follo"'· 

VIe L:.'ic seen that there is a natural correspondence bet\-teen some 

stochc.stic motions and a diffusion process on a group manifold. vle have 

also seen exar:;ples of two kinds of physical processes of a rather general 

n<'-~L>:: -..;hereby the information about a syste:n may be lost. vlhile the 

p~ccess described in (a) Clearly falls. within the scopeof the diffusion 

dosc:::-iption, the process of type (b) as exemplified by Eq.· .· (I-3) does not 

h<::.V<~ such a direct correspondence. Our analysis will thr~refore be two-

fold: C;! the one hand we .\..rill a'1alyze the most general line;.-:::.:~ motions 

Hhich transform any density matrix into another density mat:dx, and such 

tnat the information \•!hich one may· have about the ensemble represented by 

the density r1c..trix is decreased or at le.s.st unchangc:d. by the transform-
. 

atio::1 (sections III and IV); on the other hand, in viev; of the physical 

sh.plicity of the diffusion description, and the fact that th,;re c.re 

m2..ny processes Hhich naturally fall und8r this category, He viill a::. eo 

Give a separate treatrr.ent of the diffusion equatio;-!S (sections V- a.r:d VI). 

The relations between tbe two frameHori<s are disc'L:s::;.;;:d in the subsections 



II. THE ·SET OF Df.l::JITY HATHICES 

Before He procc.>ed vie idsh to revJeiV" bd.r;fly sorne properties o (' the set 

of density matrices, and to establish :><)t!v::: notiltions. 

In order to avoid compJJ.~~;:,tions Hhieh it ls not thf'l purr-ose of this 

work to discuss, \~e yj ll lim:i.t ourselve~; to firri t..~-dirncnsional H:ilbert 
~ 

spA.ces~ So~ne l'<)Jlla:dcs ahout, extensions to in~fin:i.te-c1imon:::~:lon,1l Htlbort 

spaces 1vill lw, rnacio l;=ttor • 

7. 

. l·Te w:.ill eive fl. li:ot of .the notfltions Vl]!ieh will be u~ed thu mo~3t oftnn.: 

(a) V i:;; thto V·~ctor spnce of all NXN m2td.c~c~s. 
,.J 

den0t(:d by block CA.pJtals, vdth the <:xception of c1en:::>:i.ty m;:;tr:lc•~s, \~hi ch 

(b) 

(e) 

') 

+ . 
thus F =F, FF ""F. 

+ thus E ""' E, 

1 to ~, ~nd Greek :indices fr~n 1 to N~. Th~ :inner product on 1 is defined 

1·!2 
•r = 2: 

o·:o~l 

(d) ..• 
.:;;;+ 

c• 
..:;d 

r~ t •. 
l .,, ~LJ (; X) B 

0'. 

if; tho set 

is the c•et 

for <:~ll X G V" 

of all nonn'~ _s.'1 U 

of an elt~r:wnts 

and 

''t>-... defj n:i. t£; r.1:>L rj ce:s :i n V, . 
""'(1 

of 
,. 

..:.}+ VIi f.h r,(: :J~ !. t.J·,:~.(,:(~' 1 . (';. 
' 

j t 



of .§d Hith vanishing determinants, and t.he extreme points corisi.st . 

precisely of all primftive hermitean idempotcnts. 4,5 

The· set ..§d can pe partially ordered. Consider tHo sets of non-
. . · N N 

negative nwnbers { ~J, { y1J, with :E ~ "" E Y1c ·= 1. vle denote 
k=l ·k=l 

(II~l) 

if the nuinbers can be so a:r:ranged as to satisfy the' follO\-;ing: '·' 

(II-2) 

nnd, 

fo1• p 1,'2, ••• ,N (II-3). 

It can be shol'm 
6 

that ·l x}~{ y} is completely equivalent to the 

existence of a real matrix D such tbc::.t x == D y , and ..... -:, 

N 1\J 

Dmt• ~ 0 2.: D = ""' D, = 1 (II-4) ..6 
4·-\.. k'=l 

ml-:: 
m'"l 

f.li{ 

Such a matri:;{ is called a doubly stochastic matrix. 

s· 

4. For tr::nninologies and basic facts about convex sets, He r·E:fer the 
rc:::dc-r to the book by H. G. Egpleston, Cc;nve.xitv, ( C.:.mbr:i.dc;<; Un:~-
versity Press, Cambridge, 1958). An e:ztrc!~l(;-p;'int X of e. COl'l"\!,.:~.: 'io' 

sc:;t is one such that it is i.mpo~sible to find tHo poir1ts in the; 2 :::. 
different from x and such .that x lie . .; on the line sct;..:cnt join-
ing these two points. 

5. See also T. F. Jordan and E. C. G. Sudarshan, J. Hath. Phys., _2, 7?2 
(1961); &nd E. C. G. Sudarshan, P. !'':. i·:.J.thc\rs, a!·ld J. Fbu, Phys. R;:;v., 
] c--, 9?·0 (J 0 or. J) 
~ - .J •• 

6. G. H. E('rdy, J. E. LittlHTood, and G. P6ly::t, }!.!.£c::.';"J1:i.:_tt·:~~;.~ (G,;.r:.b;:-icige 
UniveJ·sity Press, Cambridge, 1959), 2nd ed., Chap. 2} p. 1/.J. 



\:'lc no"' introduce the folloNing partial ordering. 
, 

Let .P and ,t'' 

be in Ai' and let { rk} and. {r"k} be their eigenvalues, respectively. 

i'le denote 

if 

P.' / ./ -::::: 

( r''} .....- · /r"} l . ~ t. 

If the possibility of { rk} = {r 11
1<} is excluded, \o:e write 

/' < jJ"' 

(H-6) 

(II-7). 

For each f in .§,p onc can def:ine the entropy corresponding to the 

ensemble \·;hich it represents by 

(II-8) 

9 

As pointed out by Von Neurnann7, if f(x) is any other continuous strictly 

convex function
8

, then - 'l'r f(,/) ·has equally acceptable properties as a 

7. J. von Neur:1ann, 1·1athsrncrhi-cal Fo,.m1r.,ti2D.r:!.-..2.f._0::!:!£!l~.:.~l~:._chn~~l.:LS!., (P:-in­
ceton University Press, Princeton, 1955), translated by H. T. Ecy;:.;r, 
Chap. V, p. 390. 

8. He will denote by F the set of 
functions. f(x), defined for x > 
G such that 0 < G.< l, one has 

f( Gx1 + (1-G )x
2 

) < 

all continuous strict~y convex 
0; i.e., for any f(xJ G F, and any c 

+ (1-G) f(x?) ... 



measure of randomness or lack of information for non-t.herrnodjnamical 

irreversible considerations. Now a theorern9 in reference 6 states the 

following: 

Given any two sets of real non-ne[.ative numbers { ~} , { yk} , 
N N 

with .2: ~ = 2:: y1 = 1, in order that for every f(x) in F 
k=l k=l .( . c 

N N 

10 

2: f(~) ~ 
k=l 

2.: f(yk) 
. k=l 

( II-9) 

it is necessary and sufficient that { x} ~ { y}. · 

This import2.nt theorem shm·rs that, if j> ~ .f' 11 

ensernble represented by f' contains r;cnerally less information than 

that represented by f 11
• 

From Eo. ( II-9) one can obtain Von Neumann 1 s miY.ing theorem
10

: 

Let Q be rc.::-.l and such that 

0< Q <l; then 

" o T1~ f(f ) + (1-G) Tr rV"') 

0/ , II 
the equality holds if and only if J ""/7 • 

~'le Hill give a proof some1t!1at different froi:i the one hint-:d ir1 Vcn 

' It 

N0u:n2x.n 1 s book. Consider the expansio:1 of/ 1, /-::/' , and /0 ;.:: ()_/' +(l--0 )f 

9. r:e~'crcnce 6, C'nap. 3, p. 89. 

10. 2eference 7, C'nap. V., p. 390. 



(Il-12). 
' '' 

Since 

(II ... l4) 

we :tmrned.iate.ly qbtatn 1 for f'(x) . :l.n · f
0

, 

(II-15) 

t.hat i~; 

N 
~t _[ Q r(r 'k) + (1 ... Q) f(r\)] (II-1~) 

which ~P the ae~ertion (II·lO} of the theo;r·em, Since f(x) is strictly 

convex thQ eq,ua.:U.ty eign can obvioutsly obta,in only if · j>'= ./'
1

• 

It follow~ t'~'om Eq, ( li'!"lO) th~t fQr &ny ol9st;)d convex subsd of~~ 



'l 

' ·\. • ,J• 

'1'1• t(jJ) > Tr r(J:). (I!-17) 

In the particular case where the s~t is ·equal to .§d its.elf~· fo ...,: ,r/N 1 . 

' . ' : .. '" '' .. 'J.·. '.·.·.; ,' .. -! 

the uniform en;;;emble. :For the uniform ensemble every ~tat·e "is equa.l~y:' · ... : · 
'.'• : .; ' . .;; .. ·· 

probable; it\ thus contains the lenet informa,tlori ~ 

one has the primitive henuitea.n idempotents E rthich 

oA_the o,~he:r,ext~~~~~'·· '. 

~orr~sp~~~\~· p~,rc .. o:\·· 
'.• ' 

statep, · It can readily be shown that f<n· any }' e ..§d~ and.!'(~)'~ _1<'01 . -.:_·.· 
', ,, :•. ··'· ,, ' . ·, . 

. ··· •.' 

f(l) + (N-l)f(O) = Tr t(E) ~ Tr' f(J) 

wh~;n•e the equ:~lity sien holds if and only if f 
h~nnitean idempotent. 

:··,· 

'· ,1:· 

is· another pr:t.ffiiti ve ·· 



Ill. · LINEAR U'l'OOHMJTIO ~!lTl:ON~. 

A. Typo~; ·of 1,btions 

Having reviewed the properties of tho ~et ~' we ":filLnow consider 

linear rnappings of the set ..§d into itself~ 

He denote by d the set of {'1.11 matrices in JJ: '\o[hioh map .§d 

into ,§d; the so mappings were named dynamical mapping~ in ~ef' •. 5. The 
. . 

sot of all matrices in ,d \'thfch preserve the uniform ensembi~ will be, 

denoted by dr• It is to this latter pet of mappings that He ~ill 

devote moat of our attentions, \.lith only occasion~l reference to d, 
Corresponding to these mappings arc motions; i.e., one may.consider 

- . ' . . . . ' 

oque. t:tons of the type: _/J(tn) := !R,(t",tl) _,P(t 1), Hith (/?.. (tli t') (J: .J 
.. .) ---

or ,d._ ·for all t 11 .,. t'. --- ·r , v!e \-Till study these together vii th motion:3 of 

other varieties, which He 'Hi11 now enumerate. The reason!3 for the inclu-

sian of particular types of niotions will become. clearer throup;h the. 

later discussion. 

(A-1) Notions such th!l t for nll tn ;:: t ', 

_/) (t") = {/-2 (t 11 ,t 1 ) j'(t 1 ) (III-1) 

and c1( (t",t') e: d. Hence, £R (t", t) = tr(_ (t 11 , t 1 ) 0( (t ', t) for 

all t" ~· t 1 9 t. 

(A-2) Hotions jn (A-1) Hhich are t\dce differentiable. They c::u1 be 

\-.Tit ten ia the. form: 

~ 
-- f(t) at = T/2 Ct) fCt) 

The set of these m•s is denoted 

(I ... ·: ? ) 1..:.-._ 
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(B-l) Hotions such that for all t 11 ;:t t', 

jJ (t") ... (1(. ( t II J t I ) f ( t I ) (III-3) · 

and .a (t';tt') t dr 
(B-2) Hotions in the set (B-1) which are tvrice differentiable. They 

can be Hritte:n in the fonn 

= m (t) .f'Ct) 

The set of these '112 Is is denoted oJ2 r 
( C-1) Motions such that for all tl' ):. t 1 , 

-

1 d(u) [P(u;t 11 ,t 1 ) U.fGt')U+ 
(SUN) · . 

+ Q(u·t" t 1 ) u D(t 1 )u+] ' ' , / 

(III-4) 

. (III-5) 

vthere the integral is the Haar integral over the unitary unir.1odular 

group su11 • The probability distribution functions P(u; t 11 , t 1 ) and 

Q(u;t",t 1 ) satisfy 

P(u·t" t• )' >; 0 
' ' ?' 

Q(u;t",t' )~ 0 

J d(u) [P(u;t 11 ,t 1 ) + Q(u;t",t')] 
(SUN) 

( III-6) 

"" 1 ( III-7) 

They need not be continuous, but may have ?e1ta-furicU.on type sinr;ull.iri-

... 
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( C-2) The subclass of motions in the set (C..JJ. ou.ch that for all t 11~ t' 
1 

jJ(tn) = j d(u) P(u;t",t' )'u f (t') u+ 
(SUN) . . . 

(III-8) 

P(u·t" t')> 0 
' ' ?' 

j d{u) P(u;V',t 1 ) -1 
(SUN) . 

(III-9) ·. 

(C-)) • 
The subcl:1ss of motions in ( C-2) such that for all t" :;::- t 1 , 

j'(t") . I' d(g) P(g;t 11 , t I) U(g) f (t I) u+ (g) 
1~) 

(III-10) 

P(c;t",t')~ o r ctCe) P(g;t 11 ,t') = 1 
i:9) 

( III-11) 

wher~ § is 8ny compact finite dimensionat Lie group, and U(g) the 

representation of elements. of § · on J!. by unitary matricC;s. 

Notions of type "{c), €Sp5cially those in the ~=;ets (C-2) and· (C-3), 

are the ones >·rhich ·can be put into the diffu~~ion intcrpret.ation disCU:ssed 

in the Introduction. l·1otions of type (B) include the most gcn.eral linear 

motions which map ~d into _§d C:illd v:hich pre~0orvo the uniform en:.;emble, 

hence the set (B-1) includes motions of type (C). Jviotions of tJ'PC (A) 

include the most ger,eral linear motions v1hich wap into ::Jd' !H::rice. 
r.; 

the set (A-1) includes all the other sets, inclurliug all lnvti.ons of 

type (B) and (C). 

Each type of motions \·rill be c.s.1le:d stationa.ry if t.hc functions 

P(g;t")t'), Q(u;t",t'), P(u;t",t'), or t/(_ (t",t 1 ) depend on (V'- t') 

only. In this case the motions in (A-;~) c.nd (B-2) Hill havt; con~>L1.nt 

matrices m. 
If the distribution functions for motions of type (C) are diffcrt:n-
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tiable, and furthermore satisfy: P(g;t 11 ,t 1 ) = P(g-1;tu,t•), or corres­

pondingly P(u.;t 11 ;t•) == P(u-\t 11 ,t'), and Q(u;t",t 1 ) = Q(u-1;t 11 ,t 1 ), 

then these motions are included in the set (B-2) with svmnetric . m Is., 
• 

It is easy ·to see that each of the sets forms a semi-group; and each ·<~ 

of the sets of non-stationary motions is a convex set. The sets ol!f and ,...._, 

~I can be shown to be convex cones. 

Finally, we wish. to mention briefly an alternative way· of v.Titing . 

the equations for motions of type (A) or (B), which may be more natural 

in some contexts .(section V).' 

Let { B,.} be a fixed orthonormal hermit ean basis for )l, and let r 
be a linear mapping of JJ! onto '11/ defined by ---

for all n € 111. . ,..._, 
. ll 

It can be sho\om that 

(III-13). 

It is thus an involution, ar~d accordingly one-to-one. This transfo:x"mation 

performed on the matrices m or (/:?, :in the equations ( III-1) to (III-4) 

vlill give equivalent equations of a different form. Thus, for example, 

if one defines 

oG =r (1TL) (III-14) 

lL For the proof of Eq. (III-13) as well·as .Eq. (III-15), see Appendix 1, 



', 

then equation (III-2) or (III-4) will take the form11 

vle will return to this equation later. 

B. Conditions for the Sets d, 'di' ·~ ~ r:ffr 
vlo no1t1 study the conditi~ns to. ~e satisfied by an ele1nent of 

·in order·to belongto any of the f'etsi J, £/I'j;;~r . 

17 

(III-15) 

:. The condition that tho h.ermitidty of density matrices be preserved; 
. . . . . -

i.e., thRt ,.Yh is to be mapped into itself, gives, in any orthonormal 

hermitean basis, 

* . t1?. = 'tJZ (III-16a) 

This ~orresponds to 

(III-16b) 

or, 

(where di ""f' (11l) ) ( III-16c) 

If the expansion of I ipto a complete orthonormal hermitenn basis 

is given by 

(I:LI-1.'1) 
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the condition for the preservation of the trace of matrices in y reads, 

· (III-18a) 

(III-18b) · 

.;,· 

( III~18c) 

LikeHise; the condition for the preservation of I, needed for the sets 

Jf1 and v;!}I' is 

( III-19~) :. 

= 0 (III-19b) 

( III-19c) 

The condition of mapping S into lt::,elf is conwHhat more complicated. ,.......+ 

If E 1 and E11 are any two primitive hermitean idempotcnts, the condi-

tion can be written: 

Tr ( E 1 rfL E 11 ) ~ 0 for all L 1 , E 11 (I . -- rr ) J.l-·.:d;_, 

( J·--- -~- ''Ob) . .L .. -·f-

( III-20c) 
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. . 

It is not difficult to vm·ify that the conditions (III-16), (III-18), 
I 

(III-19) and (III-20) are both necessary and sufficient •. The .conditions 

(III-18) and ( III-19) are simple linear constraints. The condition 

(III-20) is, however, unfortunately not very explicit in terms of, say; 

the eigenvalues of the matrices 6?.. 9 172 , or. :f . They &re, of course, 

12 . 
related somewhat, and. it can be shovm that f'or matrices satisfying the 

conditions '(III-16), (III-1:8) and (III-19): 

Negative semidcfi.nitone~s 

of the real parts of 

eigenvalues of 77l (III-21) 

or 

Absolute 1nagnitudes of 

eigenvalues of J~~ 1 

where ~
0 

is the submatrix of oG vJbich acts on the subspace of}!_, 

of traceless matrices. 

C. The Disordering Nature of Hot ions of t:y-pe (B). 

Using tr.c conditions established in the last sectio:1, vte cen nuH 

prove a theorem which will partially explain the l'cason for our giving 

12. See Appendix 2. 
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the set. dr special attention. 

Theorem: For all motions in the set (B-1), P (t tt) .::5 f ( t 1 ) for 
~ ) 

all t 11 ~ t '· 

As was mentioned in section III-A, the set (B-1) includes all the 

motions of type (B) and (C). So in other words the theorem states that· 

for all motions l·kdch transform density matrices to density matrices~ . · 

and for wr,ich the uniform ensemble is stable, the time:: development can 

only lead to a decrease in inforzra tion. 

The p:.oof is as follovrs: 

Let the expansion of f (t 11 ) into primitive hcrmitean idernpote:nts be 

N 
/'(t") = ~ r 11 E" 

k=l k k 
(III_:22) 

and the expension of I Ct• > be 

tJ 
_f(t') - L: r' E' 

k"'-'1 k k 
( III-23)· 

Then 
N 

r" :.:= ) ; Tr(E1' tf<. E' ) r' 
k m=l k m m 

( -I··r· --,, ) J. . .-.. _., 

It follows from Eq. (III-16) throug.~ Eq. (III-20) that the rn::tt.rix 
. .,.. 

dkm is doubly stochastic, hence _,P (t 11 ) ~ /(t' ). 

Clearly the converse statement is nlso true, thus: 

The subset of rr,otions in (A-1) for vJhich, l·lhcnever t 11 ?; t 1 , 

'l'r f( _? ( t 1 ) ) ( il T_-:-> r·) -·-·- .. ) 



.... 

for all f(x)~ Fe:, and for every initial density matrix j (0), is 

precisely the set (B-1). 

This explains the importance of the motions in tn':.:l set (B-1), and 

the corresponding set of mappings ,.;::[ r 

One may note that for motions of type (C), if the distribution 

·functions are ,nonvanishing in any 'neighborhood of a point on the group 

manifold, then one ha.s the stronger result 

as _j) (t 1 ) -f I/N. 

D. Stable Ensembles 

The theorem in the last section sho.,.m the importance of· the stable 

ensembles in determming the nature of the motion. \ve wish to elaborate 

somet-Jba.t on some facts about the ne.ture of stable ensembles. 

(a) Let tR_ e -tfp and t't?. X = X, X G V, • • Let th~ expansion of X 'into -n 

bermitean idempotents be given by X =L::k ~Fk' where Fk correspond 

to distinct eigenvalues of X. Then for every k, 

rfl.F 
k 

F 
k 

The proof 1-rill be given in Appendix 3. 

( III-26a.) 

As a corollary, let 7ll <:: .::dJ.I' JJl X = 0, X .;__yh. Let Fk be 

defined as above, tb~n for every k, 

(III-26b) 

(b) Then f.l{. and nave the same stable ensembles. 



This follm·rs from a resu1t. of Riesz-Sz.-Nagy, rlhich states th;:t 

the invariant elel7lents of a contraction on a H:i.lbert space coincide 

with those of the adjoint contraction •13 Thc:.t mappings in 

contractions will be denonstrated in section IV. 

(c) Let (/( E-;!d·', and O:l Y·= X,, X<=,..:Yh. :Ex:Panding X into primitive 

hermitean idernpotents: 

and x.K < D !or P< k ~n. · 

Let 

Then 

(}{ p p 

The proof will also be given in Apper.dix 3. 

X as above, then 

1/2 p !TZ N 0 

for l ~ k ~ p, 

(III-27) 

(III-28a) 

(III-2Cb) 

(d) For any !l{ c: ~ , there ah·:ays c:xists a density EIO.trb: /:) ..:: ··~d' ./ ~3 -

such that 

This follm;s from the fact that I is <:-. ldt eit_:(.n1!ect.ol~ 

13. F. Riesz and B. Sz.-NafY, Acta Sci. ~.·:e:.th. Szczcd, 1£, 202 (E•.<;J., 
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eigenvalue 1, ·so .there must ·exist a right eigenvector with eigenvalue 

. equal to 1. Since this eigenvalue: j s real, the eigenvector may be 

chosen to \;le hermitcan. If this eigenvector is either non-negative 
. · ..... 

definit~ o.r non-positive definite, vte can normalize it to becotc.c a 
. ' . 

density matrix~ If it is not, one can use the result of the last-

:>ection, and obtain at least two stable density matrices. 

As a c9rollary, -if 1ll .,;: ·c:f! ~ there ahmys exists a density 

matr:j..x ~ such that 

= 0 (III-29b) 
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IV. PRCPEETIES OF STOCHASTIC 

~!OTIONS ltJHICH PHESERVE I 

He have seen in the last section the importance of the set of 

motions in (B-1): they are the set of all linear motions l<lhi-ch take 

density matrices to density matrices, and which lead to a decrease in 

information (or &t least not to an incrco.~u in informe:t.ion) in general •. 

This set includes all the motions of type (B) and (C). On the other 

hand, motions of type (C) a.r·e the ones \·:hich n2turally allaH a diffusion 

interpretation. It is interestinc, therefore, to ask Hhether the set 

of r:,otions ( C-1) is in fact equal to the set (B-~). vJc shall shovr that 

this is not the case. But first we: wish to est<:..blish some pro).~erties 

r:? 

of m:ipping::; in the set .J) I' to which moticms of type (B) correspond, 

<:.nd then return to this question of the relation br3b:een th~ set of 

motions (B-l) and the set of motions (C-1) in the laf:>t ~mb:::.ection. 

A. Unitary 8Jld Antiunitary Tran::;for:natio~l~> on J. 

Since motions in the ::;et (C-1) arise from conv.t::x c.:,r:;binotions of 

u.nitary .:md antiunitary transfor!Iic. tions on _y, He 111ill f5.r·:/G :.;tudy the 

y 

elements of .J1 I v:hich correspond to these tl'.::lr,sfor·:~:ations. 

(a) It is easy to see tlLlt tmitary c:.nd antiunit.a17 tx·an~>for:r!i".t.lol'1~> on 

~1/y Y. induce real orthogonal transfol'.:,:,U.ons i.n ~ • 

transfor:..c: .. tions., which He will dc:~wte by .d'u, i:-c in t,t::nc:r<;l not (''-Jdal 

·,,: f~/' 
:.-...:...:...- \1 

denote the real orthor:onal t:-:'.rufonr.:.lti-:;n~, :i.n ?'i/ corr,~srx.nd5.ne to 

unitary transformations on v by -
,-) 

(..:_ anri tl1u:~~; ccrr c: s T.)')ndin g to o.ntJ.-

Q 7 
,-··-;~ 

d (~ .f'.i.!' .. ;d ty: uni t;~:cy trarw;format ions by ' 
\~h Cl' C J i~3 
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for all X e V 

. . : .-../ 
(IV-1) 

Since 
2 •· . ' 

7 = J, (identity in 1JI) 
. . .· . -- (IV-2) 

~ is orthogonal. 

(b) . Let · tR_ e dr, and f (x) ~ F
0

• 

It .§d. 

If . tR.. is such that for every 

'l'r f (f) = 'l'r f(tR...J) (IV-3) 

then either 
tR.x 

.+ 
= U XU for every XeV 

,-.J 
(rV-4) 

<R.x 
......- + 

for :;::: U XU every Xr£J_. 

where U is unitary. 

We vTill sketch the proof. Since x?- c:: · F c, 

'l'r (IR X, ~ Y) = 'l'r (XY) (IV-6) 

Together Hith the fact that !It takes primitive hermitean idempotents 

into primitive hermitean idempotents (Eq.(II-18)); and using Higner's 
14 
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theor0m about transformations in quantum mechanics, one has the result. 

14. Lc·tthere be given an invertible transformation T on all rays of a 

Hilbert space such that if ¢1 and ¢2 are unit vectors c on~ained in 

the arbitrary rays R1 and R2, respectively, and ¢1T and ~21 are unit 
vectors contained in the correspondfng :transformed rays R1 and Rz T, · 
respectively, then j(¢1,¢z)l = IC¢1 ,¢2 )!. The theorem then asserts 
that the ray-transformation T. can be considered as being induced by 
either a unitary transform.'ltion or an antiunitary transformation, on all 
vectors of the Hilbert space. See E.P.Wigner, Grouo Theorv, (Academic 
Press~ Nmv York, 1959), translated by J .J .Griffin, Chap.20,Appendix, 

p. 233 0 



(c) The necessary and sufficient condition that any .&1( e &.{ is •. in 

. ...J; is that at least N
2 

linearly independent primitive hermitean 

idempotents are taken into primitive hermitcan idempotents.
15 

This statement is readily verified using Eq. (IV--15) of the next 

se.ction. 

B. Norms of Vectors in .:!., under Happings in d 1• 

Let us first consider the mapping of a sphere in an n-diniensional· 

.·... n 
real Euclid~an space R into itself. Let T be any real linear 

·. . ~ 

homogeneous mapping on Rn satisfying ,...., 

n 
for all !i "' B. 

·, .· .... •. 

T is a contra~tion in the terminolot_!,Y of reference 13. 

If ~l, ~2 , ~ •• , 3m (m ~ n) is a set of. m linearl:;r indeper.dcnt 

vectors such· tha.t 

26 ' 

k- 1,2, ••• ,m (IV-8) 

then, denoting the subspace spanned by 

easily verified that, for all 

== (x, y) 
~ ~ 

.?il' 

and x < V • 
~ ~rn' 

r7 

by V it is 
~m' 

(JV-9) 

We Hill noH shovr that mappings in _ _..cJ1 <:lre cor:tr3cLi(ms; Le.> for 

---·-·---------15.. For more necessary and sufficient conditions, Sf;O 
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any tR. E:: ... .~r and. X t .Yh' He have 

Tr ( cJt X, (/? X) Tr (X X) (IV-10) 

This statement trivially holds for density m.::J.trices since 2 
X c:: F • . c For 

arbitrary · X e _yh' one can construct a density matrix f = (l-8)I ·+ c:: 'X 

with suitable small constants d and E ; then Eq. (IV.:.lo) follovrs. 

\'Je can nm-1 apply Eq. ·(IV-9), and obtain the follm-ring conclusions: 

. 
(a) If E' and E11 are pr:iinitive hermitccm idernpotents satisfyine 

E1E11 == 0, then 

. 2 
Tr ( tJ?. X, cR. X) "' Tr (X ) 

then for any Y E:: ..Yh, 

Tr ( tf( X, (}(. Y) -- · Tr (XY) 

(c) For a fixed tR_ C ~, the sGt of all 

Tr (tf?x,tf?x)· 

X .,_- V 
~h 

form a subspace. We denote this subspace by V .,., • 
--? .... 

and X E V 
--t~ 

Tr ( {J( X, rJ?. Y) .:: Tr (XY) 

(IV-11) 

(IV-12) 

. ( IV-13) 

for Hhich 

( -,, .. I ) 
l' ·-.l • . 

For any 

( ., .. ,r -·l r:) -·. - ) 
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(d) If X E: V . , so is 
-~ 

xn for any positive integer n. 

(e) If X <:: J~ , then X and tf( X are unitary or antiunitary equi­

valent. (The unitary or antiunitary transformation in ge:neral depends on 

X.) 

The statement (d) i'olloHs 1'ro;n 'l'r(X - t/Ztl( X)2 
= 0 1'or X e:" V and 

~h' 

Eq. ( IIl-26); the other statements are easy to verify and Hill not be 

demonstrated. 

C. Properties of ;_p as u Convex Set. &r 

It is not difficult to sbo-,! tl;.::;.t the int.::rior points of 
IJ 

__ J:;I -· 
·-1 

consist of tho::H.~ elements of 

hermi tean iderapotent~> E '· and E11 , and a fixed o 1 

Tr (E I tR E11 ) ~ 0 > 0 

The boundary consists of elemerrts of nu.ch 

one pair of primitive hermitean iderapotents 

Tr (E I tR_ E11 ) 0 

(b) E~-:t:~'.:::me Points 

(IV-16) 

that for at l0nst 

Ti' ll 
jJ ' 

( '~'\T-17) .l_ II • 

Before 'vle proceed \·Je 1-1ish to revin.r :3omo Hell-1-:no·.rn i~·::::·d.:.~s ,:~~ ... _- .. ((; 

<:CGnve:x: sets in connection uit~l their extro1r:e points: 
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(i) .A closed, bounded, convex set is the convex hull of its extreme 

. t 16 po1n s. 

(ii) Every point of. a closed, bounded, convex sot in Jln is a convex 

' 17 
combination of not more than (n+l) extreme points. 

The convex set A~ is clearly closod and bounded; and these theorems ---r 
thus shm.r the importance of kno·Hing its extreme elementG. Now the elements 

in du are obviouslJr extreme points of ,d1; it is equally obvious that, 

although they also are extreme: points of the convex set :!f' (see.,e.g., 

reference 5), they do not form all the extron:e points of ,Jf. 'l'he non-

trivial question is Hhoth•:r they do form all the extreme points of 

If this were true, then by the theorem '(i) above, one '"ould be able to 

entablish the equivalence of the set of motions '(B-1) and the set of motions 

(C-1).. Fur·thcrrnore, from the theorem (ii) above, one would bo able to con­

cludi3 that every r;~·:.tpping in ,fir can be expr~:1ssed as a convex cornbinatJon 

of a finite number of uni t~~ry and antiunitnry transforrnrr tions on y. 

He \-.'ill shm1 that for N = 2, the set 

points of ,d
1

• 

ind&cd form all tho extreme 

I th . 11 th 1 t1 1 t f t . . ~/":f;l/' "''lb-n . 1s case, a e rca or 10gona Tans :orr:n lbr.:J Ht ~ __! ~' 

ject to the conditions (III-18a).and (III-19a), belong to tho thY"ce 

dimensional real orthogonal eroup, \..rhich in turn is the •tomomorphic i?:::Jee 

of the 2-d imcnsionB.l unitary unirr:odular group. Thi~> if; r:;ost ousi1y ;;ucn 

by considering the form of rrn trices in 
I 

(III-J.S'a) for a special basis { BaJ , such thr.d B
1 

= (N)-~ I, end all 

the oth0r B 's are trace1ess. These Inu.trices u'i( vill havo thf; 
a 

16. Roference 4,-p. J8, Ex. 2. 

17. This is an adaptation of Cnrathc!;c,:':ory 1 fj tl:.eoren:, r0fe:ccmce !,., p. y;. 
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follm.fing form in such a basis: 

(}( 11 1 (a 1=2,3, ••• ,N2) (IV-18) 

This holds for any N. For the particular caf3e of N = 2, the submn.tr:ix 

tf:2 a 1 j3 1 (a', j3 1 /1) acts on the three dimensional subspace of :f._ of 

traceless mat-rices; and, from tho corro~>pondence to tho tHo dimensional 

unitary unimodular group m::mtionc-'<1 above, all real orthoeonal transforma­

tions in 1JI satbfyi.rig conditions (III-18a) and (III-19a) Hill be in 
.,.-...--

Nm.r for any (}( c .Jfr, ve can write, by polar decomposition, 

cy) 
such that Q is real orthor;ono.l and J 

posit.ive semidefinite, \.fith both Q and 

and (III-l9a). Since 

(IV-19) 

L:.; real, "~'FiMnotr:i.c:, and 

S ''tJ' ·c•fv-J"nr:r (III-1>~--) u .. 1::> "of . u ....... tl 

and hr~s e:igcnvalueG 

(uhich &re real) not exceeclinc unity in rro.unituc1e. 

the comrG:·: hull of d u; consequently (/;;: is abo. 

point out that although the motions (C-2) more l'J:ik~:t·:.:.Uy fit into the 

diffusion interpretation, the antiuni. tr:::.ry I;;n:t of tho trunr:>J~Ol'r,;;{ t:i_cnn I~ or 

motions in (C-1) cannot be excludecl for physica_l mot:i.ons on tli0 Lo.~d.:: of 

.. 

continuity arguments. One may conside1~, for e:x<lmple, the follc,'..J:irJ.'~-; 2::-'lU.o:n~;: 

.P (t) 
t77l . 

o j)(O') (I H r ,, \ 
. ' ·-,.~'J I 
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where I E I ~ 1' : and the . d 's - are. the Pauli spin rna trio ea. Thif3 motion 

is cbntinuo1,1s, .~t does not belon15 -in the ·set (c:..2), as can be verified. 

So if the antiunitary part is to b.e excluded at all, this can only" be done 

as a necessary physical requirement,. as -discussed in section I-B (b), and 

riot as a requirement arisine from continuity ar~ents. 

Finally, we wish to .ShOH' that in spite of the equivalence of the sets 

of ~otions (B71) _and (C-1) for N =. 2, which we have demonstrated above, 
. . . . ' 

this equivalence i_n fact does not hold in general for all N1s • 

. Let us consider-the mapping defined by: 

-1 
. .tfG X = (N-1) [ Tr (X) I - X] . for all X e V ......,. (IV-21) 

Th:i,.'s .mapping. clearly belongs in d_.t, and. has the property that 

Tr (E 02 E) = 0 (IV-22) 

for all prilUitive hermitean idempotents. Ncn.f suppose that ~ is a convex 

combination of unitary and antiunitary transformations; then because of 

.Eq •. (III-20), each Unitary transfo~tion in this combination must satisfy: 

+ 
Tr (EUEU ) = 0 ·. fqr all E (IV-23) 

and each ant:Lnunitarytro.nsfor:mation.in the.combination satisfies: 

;.. + 
Tr(EUEU ) = 0 for all E (IV-24) 

It is obvious that there does not exist any unitary transforwJ.tion U 

which obeys Eq. (:tv.:..23}. .On the other hand, if- a unitary transformrJ. tion U 
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satisfies Eq. (IV-24), then the trace of U with any symmetric matrix in 

! is zero, and U is skew-symmetric. There are no skew-symmetric non-

singular matrices of odd dimensionality. Hence, unitary and antiunitary 

transformations on ~ cannot form all the extreme points. of ~I, at~ 

least not for odd N > 2. 
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V. · TliE :PIFFUSION F;QUATIONS 

,.· 

A. ·;Perivatfon of the Diffusi~~·1J-~uati011~ '· 

- VIe will nO\.J return to a .. r.,dre detailed study of .stochastic notions 
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. Yhich. co'rres~Jond to some diffu~ion pr:ocen~ on the group manifold of 11 Lie 
•, 'I 

t1hei1 tho motions are sufficiently 
•'.,' 

cont1.n.udU::!J' Hd' .can .derive, in;acc~:rdance vfith tho phy~ical picture discu:::;~;E;d 

in th<). Introduction, diffusion equations for the distribution. function 
' :: . ; . .;· : . ,· . ' . ," . ''.· ' '· ... · 

.' :.:. ,. 

for the phase'sp~ce.density function>.n(i5,-q,t) ··of a classical ::;ystem. 
J. ', .• _.:. •:'·;·· •• •. • 

P (g;t'r~t ':), ah<;L ~orl'ercpondi~[;}y .;fo1~ 'tl;9 .density :·matr:tx 
' .. ·,, ''·! . : . . .: ' . ·. ' .·· .· '•., •. ••, . . .· . . .',• 

)> (t),; as· He.11 .D.:·J 

The 

d~riv2tion \;,r.ill be sonic,,hat •t:.eu:r.·istic in natm·e .to emphasiZe the sill.plicity 
. . . . . . ~. ··. :~· .. ,: . . ' ': . .·· . . \,'' . . . 

. . ,·"· 
of tho uncl~;i~ly_j.n::;,.j,de;n .. ' 'He t-rish',. }~oHc:vqr, <to keep ~.he ditcusr;;lon j~n a 

r;t-:mc;rid 1-)·::qnowotk .Hithout commitment·. ·to spe~·:tfic groups or· specific . : •' .. • . ~ . ". ' . . . .. ' .. " . . . . . 

representations-;·,tbus He will not.~be di~::~ucsine specific kinds.of BrO\ddan 

. motions, for. in.st;rlCe.~· .but any type of Brm·ini3n motion vhoro the random 

. transfon13tions generate 0. Lie g~~oup;' rmch as: the for6e-freo rotD.tional 

. . . : lg 
BrovJ?lian motion of rig.id bodles , will . belong in this frmneuorL. 

He vril1 first derive the diffur;ion equation for the distribution 
. . .. . . . 

function P(g;t) :=: P(g;t,O). Consider tho cho.nee in di}:;tribution in <.!. 

tinie interval A t. A point on tho group mo.nifold, rcp1·escntin,•; tho st1:t to 

of the. ensemble, will diffuse in difforerrt direction::;. ·If tho r:,ot:ic<J .i:o; 

suf.t:'iciontly continuous~ the dbtancer:J mov.:::d corl'e:·q.:c.nd:Lnr; to r,n Jnf'ii1it0d-

1. •t .11 b 11 . '11 ' ' . '1 • • '·} .. rt.'l. ·.t::,· Wl.. e sma , 1.e., they \.Jl _ corrosponu ·c9 group C- mncnt,s 1n ·G ;c; 

identity, and hence can be \r .. dttcn in u·.e c:r:ponontic.l form neighborhood of 
. K 

· C'·::P. :1 )~: x· ·a·· ) ·'·lh.er·e · x . · are· r·eal ·r···r,cJ.r,,-,..,.·~c· r·",,, ""nc'l .,.11 form a Lc .• u :i.~; . ·'· . \ ·.. •. I.L . I.L '· v " I.L. ~ ~ u ' ..... u. 

. f.l=1 ' 

18.· See H. H. Furry, Phyp~ Rev'.;lQJ; 7. (1957); and L. D. '" l'Ei .. "'lPO, 1-'l i)' ..• 

Rev., 119, 53 ·(1960)o 
.~ ... ; 
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of fi , the Lie algebra associated 1·1ith the gr. ouo. ·.8 ( 1 "'~ K J ' ll= '.:.' ••• ' , 

K= dimensionality of Jl7 )'. The weighting function for the probabilities-

of various increments uill be denoted w(x1 ,x
2

, ••• ,xK; L::. t, t), or simply 

19, 20 
w(x;.6t,t). He then have, accordinG to what vras said, 

P(g'·t+.tl t) (d rd ( t t) P( e-Xp.Ufl g,· ·~<) =yx1 ... jt,XK HX;.A, v (V-1) 

The function \-r(x; ~t, t) is of course real and positive, and satisfies 

(V-2) 

\-le furtl-:.er impose the continuity of -the JT,otion as requirements on -vr(x; 6t, t) 

and P(g;t): 

(i) Lim 1-l(x; .6:t, t) 
.D.t->0 

(ii) Tho moments 

.,a ~(t) 

and 

K 
= rl o(x,) 

ll=l 

exist; and higher moments are neGligible. 

19. • J'· ('," (-• • ·t t' f• (,.I Jm interrral 1-.rhich He 1-rr1t0 as dx1 ... JCLK H _._, ~'l , J .:. \"··' 

(V~J) 

(V -/,-) 

(V-·5) 

[L (' L 
understood in the senr;e of L~L d:zl •• ·./-L dxK u(x; .:::.. t, t) f (J:) 

for arbitl~ary fixed, positive L, and .6 t -> 0 .. 

20. lbpc:ated indices are under·stood to be ;:;nr:;~r,c.J over. T!H') :::tn::1 n.t5.(j1J :;ir;n 
is often omit ted Hhere it is cle,l' tll;::t tho r~\n,r:,o of sw:ittt-". t:Lc•n :i;_, c,v·:;I' 
the d i.~cnsions of the algebras cone r::rnc;3 • 

.. 



.. (iii) P(exp(xflall):gT tJ allo11s a Taylor expansion in xf:L a:r.oood; x
11
,=0:o .. 

\~ith these assumptions, one imrn.ediately obtains from Eq. (V-1) the 

differential cqua tion 
21

: 

2 . 
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-:.J [d J + "\b (t) C) P(exp (-X.P. )g;t) . .r. (V-6) 
flll X X Y '(' :A """'V fl v y . 

. This equation can be applied to classical a;:; \Joll as quantt.un mechanical 

systGms. He "rill first apply it to tho time rate of change of' the donf.lity 

matrix of a quantum mechanical system, by use of Eq. (III-10): 

.E_ f(t) =1 d(g) ~~Jt) !x P(oxp(-x_,.ay)g;t.) + 
ot (§) l~ I · fl I 

/? a2 ~ + '-0 · (t)-··--- .. -·-. P(excp(-Y a )rr·t) U(,-.')j::>(o)u (cr) 
fJ. ll i) X: :< . "y . Y c:. '·. X -:l() '"' '"' 

fJ. p - y 

Using the invariance of the group mea sure under left tl,fmslti tio:n, and 

denoting the represonto. tion ·of· ay as skmi-herm.itoo.n opera torE; :i.n ;{h 

by -:i.A , one obtains 
y 

d 
--- O(t) 
.;>t / X 

(V-'7) 

--·--------------21. An equation similal' to Eq. (V-6)~ uhich hm-r,.svor dcn.lc H:i.th tLc :· 1.J::i.f:i.e 
group of three dimensional rotation o·oup u::'ld Hhich u~2c~; c. 2!><>:~.1.!. :1<:; 
representation, hus boon obtained by H. H. F'urry, rc;f. 1C. 
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' ;'36':::' .· 
or, 

a . . 
at .fCt) = -il>~ (t). ~1-L' .fJ (t)J 

The motion is therefore seen to co:r..siiJt of separately a unitary_., 

transformation, represented by the first term on the righ~, and a diffusion· 

represented by the second term. Since we wish to concentrate on studying. 

the diffusive .part of the motion, we vrill not consider the first term, .· 

assuming eitr.er that w (x; At, t) = vr(-x; At, t), so that $1! (t)= p/or. · 

that the unitary' motion is absorbed by transforming to an 11 intere,ction · 
22 

representation" • 

He \.rill nex~ apply the equation (V-6), ,_rithout the unitary term, to , . ·. ··. 
. ' . '. .'. 

the phase cpaco density func,tion of a classical system, and wlll simpi{.fy'. · · 

the notation somevhat by uriting: 

;(V,..lO) •. 

or simply D (p,q, t). For a Hamiltonian time developmoi1t, because of the 

22. L3t us defino, for co:n~t,;_~"lt J3
1

, 

VA ( ) ( rp • t) A ( • 'A' l t) 
11 

t ::: exp i.;u·("y p. exp -~ .... .OYLY · 

\ 

f ( t) := e~ ('L'lJ A t) j> ( t) exp ( -i .fJ A t) 
YY YY· 

then 
~t Jet)= -~~~t) [~~Ct), [X"<t), J(t)]J 

v 
But A (t) is expressible as a linear su1n of the A · 's; h(;nce 

1-L y 

~ t, j(t) = -~;)~) [\L' [ Ay, t(t)J J 
Thjngs are more complicated if JJ (t) o.re time depcncten:t,, but th..:: 
saJne can in principle be achieved lf one lmous tho !30J.ution to tho 
unitary part of the motion. 
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invarianco of tho phase space Yolu.r:J.o under c:.monical tran3formu. tions 

p = p(p,q), q = q(p,"q), the density at any time is related to the original 

density D (p,q) by 
0 

D (·-· -- t) p,q, 

He acniri. con:Jido:c the case Hhere the canonical tro.n:;formcltions cenera t; 
.oJ 

a finite dir.:m:.s:Lorcl Lie grou;) --::; , and dc:note 

(c') 
p (~,~) = p~ ; 

Hherc 

(G") 
r (ri,-q) = P 11 

and C11 - e:x:p (-x a ) g 1 

yy 

(V-12) 

As x -;{), ono knous from tho. theory of J.nf.inttesh:Ltl conb.et transforl:-::.1-
y 

tions thD. t there exist ccno';:J. tinr; function A 
y 

Hence 

p". 
~ 

q". 
:L 

::: pt. 
~ 

0 t . i 

li :; 1) 
Y"-1 •·- 0 

) ( ---- -J(.. ____ j 

i:=l 0 C1 I . i 

nuch tk.t 

.. 1\ 
i'· ------

:;p 1 
j_ 

~orhere tho brackets denote Poisson brn.cke;ts, o.ncl tho i\l!1C-:tion~; 1. 
!l 

( " 'l , .. \ 
V·- ... )) 

(
'I '] / I 
'! --·. ! ) ) 



. ,~·, . 

on g 1 • 

\.,Te now consider the diffusion of poillts on the group manifold, and 

't-.rri te the equation 'l-Thich is analogous to Eq. (III-10), 

. r . . (g) . (g) 
D(p,q,t) = J,.A d(g) P(g;t) D0 (p=:p (p,-q),q=q (p,q)) 

. . (:t) . 
(V-17) 

Applying Eq. (V-6) to this equation, and using the lef't-invarif:!.nce 

of the group measure as before, one obtains 

(V-18) 

or, since the Poisson brackets. defined vith p 1, q 1 are the same as 

those defined 1vi th ·p-, q, 

(V-19) 

38 . 
... 

To sui11111a):"izo, therefore, He have nou obtained. the foJ.lm.,ring diffusion 

equations: 

and 

with 

0 
·- D(t) = 
2it 1 

a 
dtD(p,q,t) = 

0 
atP(g;t) · = 

P(g;O) = c (g) 

(V-20). 

~ (t) [!i, [7: , D (p,q, t)l J 
fl~ . ll Jl J 

(V-21) 

(V-2.2) 

where the delta function on the group manifold is defined :::nch tltat, for 
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any suitably defined testing function P(g} on the group manifold, 

j . d(g) 
(-§) 

-1 
P(g) b(g gr ) = P(g') 

B. Normalization and Integro.l Identities for P(g;t). . 

(V-23) 

•. l. 

The. norrnti.lization for the· distribution function is glven by Eq. (III-11) ~ 
•' . ', 

This norrnalizo.tion is consistent with the equation of motion (V-22), since 

"~·~ . ~~ d (g) P(g;t) 
)(9) 

= . -:->A (t) ( d (g) ~· ~ P(g;t) = 0 
f.LF )(y) 11 )J , 

(V-24) 

For the particular case where the 'Yieir,hting function w(x; At, t) in 

Eq. (V;,;.l) is independent of t, "YT(x, At)· clearly must o.gree:i "Yrith 

P(exp(x'a ),·At) aside froni.a factor •. In fact, since in this case the· . yy 

choice of the origin of t , is arbitral'Y,. the motion being stationary, 

one "Yrould expect from the physical meaning of· P (g; t) tho. t for all 

(V-25) 

He will sho"YI that this is indeed the case~ 

If' one differentiates the right hand side Hith respect to t 0 , it is 

not at first obvious that the derivative is zero. HoHever, the rir:;ht L~md 

side is clearly a function of g, t, and t
0

, and one can \l!'ite it as 

F(g;t,t ), defined for all t0~. 0 . 
F(g;t, t ) satisfies Eq. (V-?.;~) 

0 . 
Since 

in t, including the initial condition, as well as the norr:;alization 

condition, on;:; concludes from the uniqueness of the solution to lhw11r 



differential equations that F(g;t,t
0

) is independent of t 0 • 

1'' (g; t, t ) 
0 

F(g;t) P(g;t) 

furthermore, using the independence of F(g;t,t
0

) 

write 

oi' t , ono may 
() 

(V-26) 

23 
Applying the inversion invariance of group measure to Eq. (V-27), one 

obtains 

= 

Eq. (lf-23) can then be used to shO\.J thr:ct the derivative of the right hand .~ 

side of Eq; (V-25) \·lith respect to t
0 

is indeed zero, thus shoHing the 

self-consistency of these r8lations. 

Co Diffu:3ion Equation and L·:;tlon:> of Type (JJ). 

viz., Eq. (V-20), ~,Jitb tho rn(Jst gcner.c:.l differentiable 1wtion • .. Jhich te:kc::; 

density matrices to donsi:ty l!:Clt:r.·icos <:tnd uhich preser:vc;:> the nnH'on: 

ensc;mble, i.e .. , motions of.' typ0 (B-2). 

Tbo Ib;:tr mc:asn:ce i:> ilHrcJ:;c:: inv:J:::·ir~nt as Hol1 ns r:ir;ht :i.m':n·i rm·:; ,_ LL' , -
the macular func:tion of -:Jl(; :::rvup i.3 cc;uul to Oil(;; thi:-::: i::; L:t:'l,\8 _i_'c,_. 

coirl}Xlct {r,roups~ or morr:: rcnerally for- ::wrd-:;i::1pl0 r:roupi>. ~>;::,:;,(;.i'·, 
L H. I..oomi~>, Ah~;LE:;::ct D~u-·Jr.oni9__}!_l~~},~~:d :2, (D. Van Noc:tr::.:.nd ,_ ik~' . .J Yc;) 1 

1953), p. 11£3. 
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(section III-A) that the latter motions can be transformed into the form: 

= (V-29) 

If we nou use the conditions (III-18c) and (III-19c), and denote the 
v ~ 

Of• ""'~Pal!)· (t) by 'faA.(·t) and ""aA (t), symmetric· and skew-symmetric ports -~ :) o<.,... ,, oo<.,. 1:' 

I 

. respectively, ,Eq. (V-29) becomGc, 

0 
. "Yt j>(t) -'-

') 
N~ "'----, 

L ...... J 

a B=l '. 

,A. 

ot ap(t) Da f(t). B~ (V-30) 

Thus motions j_n (B-2). cnn cJ_,.;:::Lys be transformed into the form of the 

diffusion equation (V-20) if '/ 
0\..- a~ (t) is symmetric; which hl turn means, 

f . E1' (IJT ] r)) d {.IIJ • I\ 4;1,._ ·h rom qo . --.~ an \ ~J~,, ~~~~ 1JZ Ct) is syrrHnotrie. 

As to the purt of the motion di.w to the skevr-syn~netric' term in 

Eq. (V-30), '\-rhich is not ineJ.uded in the diiTusion equ:1U.on, He can rr:ontion · 

briefly somo of its proper·ti·~JD ~ 

~(i) 
CCI 

A skew--sym~notric ;(, aj3 Hould cZivc rl::;c; to Gtn /12 -..r:i.th pu1·ely 

imaginary eigenvalues, Hhich in tu1·n moe.w; t.rw.t the solutio::1 to rjq. (IJI-.4) 

will bo of E~n oscillatory natur·e, in contra;:;t to tho cxnonent:i.ally (i,::occ:,ying 

nature of the solution cor::t'enponding to pure di:ffu~>iom>. 

(ii) Hot ions due to ske'i·T-:>;>rrmnetr ic c:t ('C) 
af3 

aJ.one Hill preG(~rvc t,::·:,,.: 

2 
trace of .? (t). Also, they take primitive hermite~n idompotant~ 

(iii) Finally, it should be me;ntionod that mot:i.on~3 dna to d~c\·! .. ~r>j'1:w:c tr:i.e 
A 

o.(. (t) alon.:; in ccmeral doe~; not be1onc in tho f3c:t (:3-::?) bo,~a·,.l~Je or i,l1c 
a0 

impo:~si'oil:Uy to moet the eondition (III-20). 'I'lJ,; onl;{ po~~:>:i.blo ::;kmr-



" symmetric· ~aj3 (t) which by itself (i.e., 'vTithout an accompanying symmetric 

part) can satisfy condition (III-20) are the ones which correspond to uni-

tary motions. 

One concludes, therefore, that the part of motion due to skew-symmetri~ 
A 

~ (t) does not generally lead to a decrease in information. 
a~ 

(b) \-le wish to malce hero a very brief digression. For the density matrh: 

'''which satisfie's the diffusion equat,ion (V-20), as .for all motions· of type 

(B) and (C), the uniform ensemble is a stable final ensemble, thoug.hnot 

necessarily the only one. On the other hand, if one modifies Eq. (V-20) 

slightly by substituting ( f (t) .:.. ?s ) for _? (t) in Eq. (V-20), 
. . 

then clearly _p s · is a stable finaj_ onse:nble. FurtherJno:ce, the modified 

equation can be ~Titten: 

d 
d t p (t) + 

(V-31) • 

. 
so th~lt it is still a homogeneous equation. He will not discuss, hmmvcr, 

the relation bet11men Eq. (V-.31) and rtlotions in tho sot (A-2). f'..s l!JC have 
/~) 

emphasized, our main concern is \-lith rrD.ppings in the set ~Jfi' and 

correcpondingly with motions of type (B) and (G). 
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VI. FURTHER STUDIES REL.o\TZD TO 

THE DI5'FUSION EQUATIONS 

A. Definition of Entropies 

Let us define the 11entropy11 on the group manifold by 

s I (t) =· -1~· d (g) P(g;t) l:'l :?(g;t) 
. (y) . 

(VI-1) 

Differentia tbg v!i th renpect to time, 

~ s.' (t) = ~;· d (r>") ( 1nP(g;t) + 1) -6 (t) ~ 11 ~JI P(g;t) (VI-2) 
d t ( y) •:> I!Y r-

or, 
() 
-s 1 (t) 
,)t 

Le., 

;j 

d t S I (t) 

Hence 

. ;:;? f . "' 1\ b (t) ., d (g) P(g;t) a a ( 1nP(g;t) · + 1) 
f!}l (9) f.L Jl 

(VI-3) 

= It (t) ~ d (g){p-l (g;t) ~~ P(g;,t)l c~ P(g;t~ 
llt' lc!i) Lll ~ .v ~ 

;\ A ) 

a a P (" • t.) J · 
1-1 y "'' 

(VI-5) 

43 

Thus the entropy s 1 (t) is a non-Oecreasing function of time if '-G Ct) 
iJ)I .. 

is positive semi-definite. 

On the other hand, the entropy of the ensem~)le, as defined i'Y 

Eq.(II-8), is 

s (t) = - 1'r ( _jl(t) ln _/J(t) ) . (VI-G) 

/ 
l 
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And it can easily be shO\m that s (t) is also non-decreasing vTith time if 

~ (t) is positive semi-definite. 
J.LP 

The --if (t) \vhich is obtained from the definition (V-5) is, of 
!lV 

com·se, automatically positive semi-definite. In fact, in this case we 

knov that s (t) is nondecreasine with tim8 by the theorem (II-10). 

One rnay ask Hhother s 1 ( t) is oqui valent to s {t) except for· a 

multiplicative constant 1.Jhich depends on the itlitial density matrix ·.J>(O). 

It is easily seen, ho\wver, that this is not the case. Hhat rr.ay seem 

paradoxial at this point is the apparent violation of the Holl-J..:.nmm 
24 

theorem that the definition of entropy is unique • A closer examinil-

tion of the assumptions required for the uniqueness proof shoHs, hm.rever, 

that there is no contradiction. To obtain a unique expression for the 

entropy, it is nece;Jsary to ::1pecify the set of motions for 1-rhich tho entropy. 

is to remain constant. In qu.antu.m mcch<~nics this set include~3 all uniUi.ry 

motions. On the other hand, the most r~cneral informntion prc;.;c~rving rr.otion:J 

Hhich have here been considered on the group manifold are those corre:opond-.. 
ing to coYltinuous i:1ner automorph:Lsms. This set is too small to permit 

a unique determination oi' the entropy. 

To see this more clearly one m.ay co:·J:~ider the Hil::;crt space of all 

square integrable functions on the rToup '[!iO.nifold. Tho innsr automor:lhismD 

by no mGans correspond to the ;~ct oi' al1 un:i. tury tran:>i'orr::ations on thi~> 

Hilbert space. Therefore the "entropy" s 1 (t) defined by Eq. (VI-1) i.:; not, 

neces::;arily the physical entro::;y, but merely a quantity the inc:ce:lS!) of 

Hhich indicu tes the diffusive nc.1 tu!'e of th2: motions. 

Se~ for e:xamDle A. I. Khj_:'1chin ;::Jtl1 r~r,'ltica1 Foundn.tinn!:: oC lnf:>i:::,·J-· ' - '· ) --··--·-.. -·--------··--·-·--·-·----·-·-·---·----·---- --· 
tion _Theory, (Dover Publication, 1'\;\.J York, 1957). 

.. 
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B. Possible Reduction of\ the Diffusion Equation for P(g;t). 

vfuen the' solution of Eq. (V-22) ·for P(g;t) can be obtained by solving 

. equations of lm.,rer dimensionalities (i.e., fe'\>ter variables) but of the 

> :';: 

same.form~ and such that the sum of the dimensionalities of these equations 

does not exc.eed that of the orir;inal equation, we .say that the equation is 

reduced;. or the· integration pFoblem is reduced. We \.Jill give a somewhat 

trivial e:Xa!Ilple of such a reduction -when the group is a direct product of 

t1.,ro i:wariant subg()ups. 

Let 
··A ··· ... A, a" 
-y . ~·: ·~· ·.· (Y. '9· ~ .... He .denote the J:,ie algebra associO.ted with 

, '§I by y[l : ~d · let' a , 
. ·Ill 

. :-. .' ' . . . , , .. , I . , . I 

fo~·in a basis ()f J1·, (1-L' .= 1,2, ••• ,K 1 ; K1=dimen-· 

sionality of'..;{). 'The alg~b1·a associated 'Ylith !}''.is denoted ._Y,:?': of 

'.lhich :>. for""· a 'b., ·~l-·"' ( u-1 ? K11 • l{tt-'d~"" o·f "'(1" • K '+K 11=lC) .• 
...... J.t.! . ~ ;':) ....:> ' Jl - ' ....... '· •.•• ' ' ... -:-- ...L...: u ·• ..,/" ' 
ll" 

In this case one could expect th•!t the equation (v-22)· can be reduced, 
' / 

since there is no non-comnutivity to couple the tuo bvariant subgoups 9 
tJ, ,, 

and -:::::1 • Such is, hoHev2r, not the case, a1:. least not in any obvious 

way, because the coefficients. ·~ (t) 
!J.l! 

still rr.n.y couple the diGtributions 

on. the respective ~n.D.nifolds of the snb~~l'o,Jps. Such couplings are absent 

only if all y$ and 
11 fl;J I 

~,.;:? u ' . b are zero. ndcr fmc,h an assump-c.lon, 
J..LIJ..III 

·-which .uo vill noH make, ·it is eu[3Y to see that tho equation indeed separate::>. 

For a,ny . g ,;;;.· :§ , there is a unique fe,ctoriza tion such that ff-= ['; 1 g 11 , 

~Tith gi·~ §', and gn c §'~ 

Let us. define: 

(VI--?) 

· Since 

J<.: 

CXD (- '5',x .·a) g·· .. 
' ·~ . . ll 11 ·. 

. . ll:::J. . . . 



(VI-9) 

Differentia tine Eq. (VI~?) \-lith respect to t, one gets 

d 
TI P(g;t) = 

+ (VI-10) · 

Dividi~G t0xough by P(g;t), 

.~ A /'. } 
z? 1 I (t)u 1a I P

1 
(g t ;t) . 

~}I ~ }J 
= 

-1 . . { c..fl . 1\ A · 2J } 
p2 (g";'C) ((? (t.)a a p (,.,.n·t) - -·_.-)--tP2(gu,·t) 

. i-L 11)i1 
. 1-L'' .V 11 2 ''-' ' (7 

(VI-11) 

The left hand side deper,ds on g 1 alone, and the richt h~.:.nd s:'Lde depends 

only on g 11 ; .hence 

~p (g';t) 
C) t 1 

~-P (g" ;t) 
c)t 2 

Jl j\ /' 

b 
1 1 

(t) a 1tl ,P., (g 1 ;t) + 
1-L J) 1-L y ..L -

c.P' /'- j\ 
= 0 (t) a a. P (g";t) - f(t) P~,(g 11 ;t) 

1-L"Y" J.lrr J.l" 2 r... 

(Vl-12a) 

(VI-l2b) 

The function f(t) can be set to zero by t::-:e require:~cnt of con;.;orvu.tj_on 

of norr:£-lization for ?
1 

(g 1;t) and P
2

(g 11 ;t). The ini.t:L~;.l co:::litj_o~1;; 

consistent Hith .Eq.(V-22) must be: P
1 

(g';O) = o(g')',' .. P2·(c";0) = :i(c"); 

hence p (0' I • -L) -.., s , ... 
..L 

and p (r.:"·t) 2 _, ' 

Eq. (V-22), but of lovrer dimensionalities. 



.. VII. l-:OTIOW3 OF D''fNAHICAL W.RIADlliS 

AND SYJ.l:·£Ti-l.IES OF LOTIONS 

For sections VII-A and VII-B, \.;e will go beyond motions of type (B) 

and (C) , and consider general r;;otions of ty-pe (A) : 

oz (t",t 1) .f(t 1 ) 

(VII-1) 

tJ?.. (t 11 , t'•) E g for all t" ~ t 1 

Let us consider the time rate of c!->.ange of the ensemble .wc:ragc:3 of 

some dynamical variable K. 

then 

If 'v!G define: 

< K > (t) 
av 

Tr( _?(t) K ) 

< K > < t" > == ~ [ tZ c t", t , ) .r c t I ) , K l= Tr [P c t I ) , tf{ ct ,, , t I ) I~ 
av 

_ _, 

(VII-2) 

.(VII-3) 

t·le !nay therefore simply consider the action of tJZ (t 11 , t 1 ) on K, · r:md 

then average over a fixed initial ensemble. In fact, denotbg 

,..__, 

K(t) - (/?_ (t,O) K 

then K (t) satisfies an equation analogous to Eq. (VIl-1) ~ 

~ 

K ( t" ) = ·0( (t" 't ' ) K ( t I ) 

( .!I~- ,. ) 
I .J ... '"') 

(t",t') € for all t" ?- t t 
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If the set of K (t) spans a vector space ;yK vrhose dimensionality 

is smaller thun that of .Yh, then Eq. (VII-5) is actun.lly simpler to deal 

i..rith than Eq. (VII-1). Such considerations are of practical importance 

since in actual problems one is often interested prb.arily in the chanee 
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with tiJne of the averap;es of vectors in · V for some i'11portant variable 
...-K 

K, and not so much in the.density matrix itself. 

For the ce.se where _p (t) satisfies the diffusion equation, one has 

(VII-6) 

or, 

~ < K > (t) 
c)t av 

= - tf (t) 
\lP 

(VII-7) 

So any variable A Y 
r- l 

iJhich cornr:mtes ,.d.th K as 'vTe1l o.s Hith ~A , K 
L ll .J 

will drop out of the express:ton. Differently stated, if the grotlp is · 

a product of ti-ro normal subgroups, one of which acts like identity on K, 

then that subgrou!) can be left out of conc3idoration. 

Finally, He :nention a possible vw.y of defininG 11 th'o a1nour·:~ of inion·a-

tion a'oout K possessed for the em:;emble _,P ": 

Let the expansion of K in'.:.o idempotents be: 

v.rhere the F 
j 

p 
K = )~ k.F. 

j=l J J 

are associated Hith tho distinct cirenw.clues of K. 

( HT '(_'.' )' v -- .. ) 

f.= Tr (_f'F.); they r-epresent the probnbilitio::> tr1e::.t the systc,,i l.c in 
J J 

one of the subsnaces defined by F .• 
J 

He rr.ay then use tho mcacur·e: 

D 

= ln(p) + 2~ f. ln f 
j=l J ,j 

(VII-·9) 
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The mea. sure of information so defined has the follovring properties: 

(i) the smallest value assumed by Inf.,...o(K) · is o, while the largest 

vo.lue assumed is ln(p); (ii) if Y == f(K) is any function of K such 

that f(k11 ) f. f(kj) for n f. j , then Infp(Y) = Inf_p(K). 

One notes that for a disordering diffusion process, i.e., .? (t) 

tends towards the uniform ensemble, Inf_p(K) need not be . decreasing ,{i th 
' 

tin:e. This is ~easonable since Tr(Fj) need not equal Tr(Fn)• 

B'u Sym'lletries Possessed by Hotions 

A motion is said to possess the unitary, symrnetry U0 if, for all 

a."li'i. i:3 said to possess the antiunitary symmetry U0 if 

That the motion has such a symmetr-y implies~and is implied by: 

(a) 

Unitary symmetry 
-I 

Q tJ?. Q = tR. 
0 "' . 

(VII-lla) 

Antiunitary symmetry (VII-llb). 

where Q and Q J are dofi:wd in section IV-A{a). 
0 " 

(b) 

Unitary symruetry 
-I 

Q~ llZ ao = ;rn 

QoLQ:'= ol 
(VII-12a). 
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Antiuni tary symmetry 
-I a .. :rm:ro.. = z;z 

(VII-i2b) 

(c) For motions of type (C-2), for unitary symmetry, P(u;t",t') may 

be so selected that 

(VII-13) 

(It would be false to say that P(u;t", t 1 ) is invariant, since these 

functions· are not nnique.) LD<ew:i.se for motions of type (C-3), 

(VII-14) 

is an automorphism, and P(g;t",t') may be so selected trw.t it io in7a.r:i.ant 

under this automorphism. 

For an antiunitary SYJY!.rnotry, P(u;t",t') may. be so selected thc.t 

(VII-15) 

~Likewise, for motions of type (C-3), · 

(VII-16) 

is also an automorphism, and :fl(g;t",t') may be so selected that it is 

invariant under this automorphism. 

It is easy to see that if U
0 

is a unitary (antiunitary) sy::ornct17 

possessed by any rwtion of type (A), then the :;ub::::pacc of ry_ bolonr;Jnr: 

to a given eige;nvalue of Q ( Qo :;- ) is sta.blc unrlor tho 1.:otion. li'o1.' 
0 

.. 
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any vector X E:!,. such that 

Q X = A.X 
0 

(or, Q YX = 
0 

A. X ) (VII-17) 

one has, respectively, 

Q (~X) 
" . 

- A. (VQ X) A(d(X)) (VII-18) 

furthermore, Q 
0 
f (or 0., 7"" j' ) is stable if _/) is. If a density 

matrix is in the· subspace beloneing to a given eigenyalue of Qo , the 

eigenvalue is necessarily unity, vlhich means that it commutes -vdth · U
0

• 

One gets a reduced problem by considering the motion of all density 

matrices \.J'hich colr.r.rute \.J'ith U0 • (Similarly, for an antiunitary symmetry, 

+ 
one may consider tho motion of all density n:.2.tl~ices satisfyinr, U0 JU0 =f..) 

. . '. 
For example, in certain exper.i:ncnts involvinG .optical pumping, one m!ly have 

it so that the motion is in'mriant u:'ldor rotr;.tions around the 3-J.xis, in 

v1hich case a dhgonal density matrix in the r(wre~3ents.tion where is 
I 

diagonal i·rill sky diagonal, and one e-sts a reduced nroblcm in :;tudying 

the motion of diagonal density matrices. 
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VIII. CONCLUDING REJ.1AR:KS 

~Jc r~>ro studied stochastic motions i'".ro:n two viehrpoints: - \ve studied the 

propartic8 of gene1•c-cl linear rc.~qpings, and the correspondL"lg n;otions, which 

•..• tend 'L::J lead to a decr:e&sJ-4.-rl·::infoi"m,'ltion; and "'e have~:al~cF·a::Jk'lyz~d< ·st·o-

ch,_,-;-::.io motions '\·:hich correspond to a diffu~ion process on a. group manifold. 

Although f~r si.'nplicity and defin~teness we have limited ourselves to tr.e 
; ' .. 

consideration of finite di:11ensional Hilbert spaces, it is clear that many 

results have extensions to the infinite di.'Uensional case. The diffusion 

description in p~rticular provides a natural v:ay of making such extensions. 

Th8 derivation of Eq. (V-22) fo:..~ P(g;-t:.) has clearly nothing to do with the 

d~nensionality of the Hilbert space of the s7stem, and even in' the deriva-

tion of Eq ._ (V-20) for the d-;;::nsi ty matrix no use has been made of the finite 

di'llensionality of the Hilbert space on ~o1hich __? operates. ·-The diffusion 

equation for the density matr:b:: Hill therefore forJP.ally -be exactly the same 
' ' 

for the infinite dimensional case. Of course in this case the integration 

o.f Eq. (V-20) is no longer as simple as in the finite dimensional case. 
:t.t. 

Furthermore, it goes 1vithout saying thq_.t not everything uhich holds for 

fL"'lite dimensio:r..al vector sp.ccs '\Ifill continue to hold. Thus, for instance, 

-:::t:l:-,e-L;:tr.ace operation c~m be defin6d?~onJ.y uith further specification on the 
25 

t;;.rpe of operators , and the dcf:inition of entropy becomes obscure. Never..; 

theless, it is 1-ro.:-th noting that~-'the consideration of the motion of a dyna- .£ 

mical variable may still lead to a finite system of ordinar·y differential 

equations, if a finite dimensional vector space spanned by dynamical variables 

25" 11 Tx·o.ce-type op.c:rators 11 fo::.'m a proper. subclass of Hilbert-Schmidt opera­
tors. For possible e:den.sior:cs of the definition of the trace operation, 
see I. E. Segal, J. of Hath. :md l·1ech., ... _2, 623 (1960). 



is stable under the motion, as ~~s mentioned under Eq.(VII-5). It is 

advantageous, therefore, to concentrate on the motion of dynamical 

variables in such cases. 
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· Appendix 1. 

The Inversion Formula Eq.(III-13) 

We will first give the following lemma: 

Lemma: Let X~ .Yh' and { Ba} be a complete set of' orthonormal hermitean 

basis for X, then 

This lermna 

and 0·. 
1J 

of the 

B X B 
a a 

= I Tr(X) 

is most easily proved by first using a special 

form: -~--2 
eij (2) (li><jj + l j><i I ) for ~ 

e .. = I i><i I 
11 

0 
0 .• = i (2)-

2 
( i i> <j i - I j><i I ) 

l.J 

(Al-l) 

basis eij 

i t- j 

(Al-:::) 

The result is then generalized to other orthonormal bo.ses by a real ortho~ 

gonai transformation in ~ 

·By use of this lemma, the Eq.(III-13) and Eq.(III-15) are easily proved. 
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Appendix 2_.· 

Real P.<1rts of the Eigen~lues of m 

·For constant m, it is clear that the real parts of the eigenvalues 

of /7L cannot be positive, sine~ otherwise the exponential grO\.Jth of 

the sblution will take so;ne dens~ty.~trix out of the set of density 

matrices. He ,\-rill show that the same. restriction is necessary even \Then 

m (t) is 'Vdrying \vith time. . 

Let y (t) be an eigenvector of 1J2 (t) corresponding to some eigen- . 

value )\. • (It is to be n()ted that A may be a degenerate eigenvalue, 

and that 112 (t) may not be diD.golliifizable, whereas .;c (t) can alway3 

be diagonalizcd.) Let y(t) be .. normalized to unity, then 

Re A= Jll.~~ y p ) 

or, 

? 
IF 

1-rhere . Y = ~ YaBa, and is not,' necessarily diugonalizo:ble. 
a=l 

Denote 

He have 

J = l/2 (Y + Y+) 
' + 

K = 1/2(Y- Y ) 

(A2-l). 

(A2-2) _ 

Both J and K can be exp<1ndod into primitive hermite,m idcr.11io·l~on·c,~;: 

where 

I'! 
J "'C-. . E = r.( ___ J Jm 'm 

r:Fl 

J. and 
m 

\- are reo.l. J.n 

N 
·I(=)' ik E 1 
· · "' .J n n 

n==l 



Denoting the syrnnetric parts 

2~ L Tr (B E I B E I ) 
'fi a~ a m ~ n 

by fmn 
a,~' 

N 
Re }'.. = 2--,, 

m,n=l 
(j j f + k lc f f ) 

mnflh'1 mn mn 
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and 

we have 

(A2-6) 

Using the conditions (III-18), (III-19) and (III-20), \vo obtain 

Re A (A2-7) 

Hence for matrices 772 in ~~ satisfyin~ Eq. (III-18) and· (III-19), the 

conditio~ (III-20) implies the negative semidefinitcness of the real po.l~ts 

of the eigenvaluDs of 7/l(t). 

Fl·om Eq. (Dl-10), we see thn.t the condition (III-20) also irr1plies that 

the eigenvalues of fR. .::dr do not ~xce.::;d one in magnitude, 
,oo . 

Th0. t the pos:lti\ra semidofinitoness of the subw.n. trix o[ implies con-

dition (III-20) ce..n be shm..rn in a similar J"!J.:mno:r·. Finally, that the arrm.,rs 

do not go to the left in Eq. (III-21) can be demonstrated by countorexamplo:J •. 
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Appendix 3 

Stable Ensembles 

(a). Proof of the Eq. (III-26). 

\·i~ first give the follO\.rine; lemma. 

Lemma: If tJ?... £ ~' end F is a hermitean idempotent such that 

Tr (FtRF) = Tr (F) _ f (A3-l) 

then, tR,_ F = F Ct-3-2) 

This follovrs from, 

·2 
0 :$. Tr (F -tXF) = Tr U?.F, cRF) - f ~ 0 (AJ-3) 

and hence 
Tr (F - CR. F) 

2 
= 0 

No•,.; for Xc:~Vh' \-rhich satisfies 
p 

{/2 X = X, let the czpo.n~;ic.n of X 

into hermi tean idempotents be X = Y' x F and , _____ J k k' 
k:.:l 

associated \-lith distinct eigenvalues. He order the eieenvaluec such 

that, 

X <:X:< ••• <):: 
1 2 p 

(AJ-5) 

L~t us also deflne 

f - Tr (F' ) > 0 
k k 

Then •,re have 
p 

f X = Tr(F X) = >-=x Tr (F on~ ) 
p p p k=l k p k 
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or, 
(A3-8) 

i.e. p-1 
f x = f x - >---: (x -xk) Tr (F pt Fk) 

p p p p k=l p . p . 
(A3-9) 

Since each term in the sum is non-negative, 1-10 must have 

. 
Tr (F 0( F

1
) 0 = p c for k < p (A3-·10) · 

Hence 
Tr (FltF p) = f 

p (A3-ll) 

Also, since each term in the su~ is non-negative, we 

have 

for k < p 

The arL~ment can then be repeated for f 1x 
1

, and so forth. Eq. ( IIJ-26) 
p-~ p-

then follows from the lemma (A3-2). The corollary follows from the dcfini-

tion of the matrices ~. 

(b) Proof of Eq.(III-28). 

Lot rJ? €.£, X e .Yh, and {/( X = X. let the cxpo.ncion of X into primi t:Lvc 

, .. 

hermi teem idempoterits be such tln t for l ~ l::~p . . c 

and x < 0 for p < k ~ n. 

Denote 

P ~X E - L __ j k 1<: 
k=l 

n 
N · '\--. xE 

·- l .f---l+l k f: 
t._=D 

If 
(R_p = p + D 
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then 
O(N=N-D (AJ-15) 

He have 
(A3-16) 

Since 
~ 0 (AJ-1?) 

it means that 
Tr (I).~ t1?. P) (AJ-18) 

.. 
. On the other hc.nd, 

n 
+ z=: 'l'r (1 tR P) 

1c=n~ 1 ( 
(AJ-19) 

and n >-, 
,<.___J 

k=p+1 
Tr (E, {f( P) ~ 0 

. •< 

Hence the equdity sign hold;_; in Eq. (/d-ld) for 1 <- 1: .::;: ;J. Th:i.s !::cD.ns 

that 

(1: ~ p) ( r ., ,.,-, ) 
&a) ---'~•; 

,.,.hich. in turn means 

\ D = 0 
) 

Similarly, it cc.n be seen that 1c D = 0 f.' or p < k ~ n al:w. 

Hence, 

D - 0 ( ,· ") ',·' ) .... ..~ .... ' . ) 
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