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ABSTRACT

, A study is made of some aspects of Llnear Stochastlc Motions in

quantum mechanlcs and cla351cal mechanicu. Such motions are characterized '

by the feature that a linear transformation describes the tlme develop—

ment of the den51ty mdtrix representlng the ensemble 1n.guan$um wuchanics, :
or of the den51ty dlatllbubiOn functlon on phase space representing ‘the

ensemble 1n cla331cal mechanics.: Phe-discu391on is mostly llmlted to

'Dlsorderlng Stochastlc Motions, . by whlch are understood stochastic motions,

which preserve the unlform ensemble, ?QCh motions are ehown never to lead

to an 1ncrease in information about the ensemble. As a special case dis;
ordering steenaetic motions which can Ee'inﬁerpreﬁed as corresponding_tb

a diffusion procsss enva'f;nite dimensional iie’group are coneidered; fof“
such processges the close analogy between the description in quantum mechanics .
and the description in classical mechanies is stressed. The equivalence
between various equations_of motion which have been considered in the
literanure is discussed; this discussion is mostly limited to quantum
mechanical systems which can be described on finite dimensional Hilbert gpac:zs,
For disordering stochasﬁic motions of such systems the set of all time
development transformations form a eloeed, bounded, convex set, It is shown
that the set of extreme points of.this set includes transformations which

are neither unitary nor antiunitary,



I. INTRODUCTION

"

A. Stochastic Motions and Diffusion on a Group Manifold
In this section we wish to emphasize a certain unifying viéwpoint
concerning the Lquutlon of motion of phy ical systems.

Let us co:siocr flrst tho motion of a guantum mechanical system

within the framework of Hamiltonian iwzchanics., The system at time -t

L I, ' X ‘ . : IR 7
is relateo Lo the system'at_tlme 2ero by & unltary transformatlon U(t).

If the'uj;oory transformutlons pentrate a flnlt dimensional L;e Eroup, ,

. then th¢ transformation U(t) can-be l“beied by’ the corresponding gloup

eleme s, i.e., by a point on the group manifold. The time duwalopment

of tihic system is then described by a continuous curve on the group manie -
fold, An exactly analogous situsltion prevells in the case of a classlcal
ystem., Here one may consider the time development of points in phase
space. The system at tlm t is related to the original system by a
contact transformation. fgain 1f the contact transformations generate
a finite dimensional Lie group, the state of the system can be labeled
by & point on the group manifcld. The cosence of the moticns is thus in
both cases the curve on the group manifold, A detailed expocition of
this well-established principle, as w¢ll as some of ity practical appli-
. . 1
cations, has been presented in the referonce quoted above.
Ve now consider the extension of thais vicwpoint to the case ol an
owdble of uysttms undergoing random transformaticns. In this case,
instead of describing a continuous curve on the group menifold, the
system will have various probabilities of going in different directions

at each point of its path. 1In cach direction further branching will

1. E. H, Wichmann, J. Math. Fhys., 2, Ho. &, 876 (19061).



'~ occur, The'time develoruent corresponds, tﬁbreiore, to a dlffusLdn pro-
cess on the group manifold. The advantages of such a v1ehp01nt besides

.

serv1ng as a connect»n~ link between quantum mechanics and classical
vmechanlcs, consist in separating out *rom the problem the part which
depends only on tre structure of thke group, and not on its spegifié
realization.cn the lidlbert apace H of'the'stato vectors'df the systemgl
Group theoch ce.l methods may also help to simplify thc 1nueprat;on
problem in some cases.

s

The zeneral description of the evolution of an ensemble of systems,

izvice with the above viewpoint, will then be as fellows., :The

ensexsie after time t is to be considered a mixture of ensembles obtaineq §

frem the. original ensemble at t = 0 by all possible tr@n »atiomv in

the? time interval., We consider in particular the case where. the group'

generated by these trensformations is a finite dlnenulcnal Lie grou ~/

end denote a generel ele ment o? 'fj by g . The amount bV'Wthh th

various transformed enserdles enter the mixture will be determihed by‘a'-
: ! _ B

probability distribution function,'yhich we denote P(git). _it_is of4'i
interest thet to find the dlfxerent1a1 equation S&Liéfied.by' P(g;t)A-Akl
sheit the metion is sufficiently continuous. The derivation of such an:'
equaﬁion, ard the study of its relation to the differential equation

setisfied by the density matrix _~{t) of thé systen, or the defferen-
tizl &g udtion of the phase-space density function of a'qlassicailsyéteﬁ,

will be the subject of section V.

B. Some Physicel Models for Stochastic Motions

We will next consider in rather brcad terms the physicsd bssis fur

A

4



the ways wﬁéfeby'the information about a system may be lost; and we will
analyze two types of processes, which should Have rather general rele-

vance,

(2) The system is subject to random external forces of such a nature

r\

.thet the process becomes Mar kov1an. An exemple of such a process is

providéd’by a gas of particles with magnetic momentﬂ in a container,
over the volume of which the magnetic field fluctuates in ‘space, Fu:—
thermore, it may fluctuete in a random‘way in timc, For uuch proceases
it'is clear that the motién, in>spih space,-is a suberposition of
unitarf transformations. Cne may say tﬂat the sﬁoqhashic natﬁre‘dflthe~‘
motion is a conseQﬁenée of randomly fluctuating (claésical) external
forces, | “ | |

(o) The second case arises as follows: Lét us denote:the elenent 6fﬂﬂ
an ehsemble by S,‘and the enccmble itself by (S). Each' element can
ﬁnde;go thé.follbwing seéuence qf events: at a ccrtain'randomly 
acter.and time it gets into a close interaction; a ”collidionﬁ, Qitn
another quentum mechenical system R, which is an_element’in aﬁother
ensemble (E)., This latter may be considered the r*”erv01r 1f it is

comparatively "largoe® syster, but need nct be so considered in the

generel case. The combined system 3~k thcn undergoes a ulltuLV trips-

formaiion for some fixed small tLU@, i.e., small compared to the average

time spent for a measurement; after winich S and R cease to interact,

In c¢he case where (R) ic 001C1acred a reoervoir, the nunber of systems
ir. {%) is assumed to be so large that the state of the rescrvoir dvﬂu nct

interaction with the systems in (o), for

23 that (R) does not change with time due

stem ot time t" is unicuely deter-
or &1l pairs (t',t'), whenever t'st's

srkevien in the sence thot the sy
nmined by the eystem at tinmc by
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to any other cause either. Suppose now one trieslio describé this si£ﬁa;
tion: At the beginning of a collision event both S and R aré deécribed
by Vectors‘ 8 and, 5{ in the aprropriate Hilbert spaces, which heéd not
be of the same dimensicn: L-tye Tet U be the unitafy tfaﬁéformation
which describes what heppens curing the event; it acts on thé.tensbr.
product of two Hilbert spaces, and mey in some Version‘be assumed té be

a fixed transfors:

The final state vector for the combined ajotﬁm ,

is no longer a product of tuo vectors describing S end R eparately,

fjﬁ * :§1 U | S;.r; ' | ) | ‘I;l)

’.2 ' ’ .
e now form a reduced ensenble” which describes the rosult of

-
i

£
T

. all izcosurcments which are puwforxed o 3 oonly, (R is igacred), thcn the

ercity matrix describing the cystem S after the tra nvformatio& is

[ .

n

D S R U SRUTIE SO St
N Mfud}’ nay ket 5 Tk T u T ‘ :

Jk Y A v

This describes sn individual everi.  Ceornsider now the chonge in the

£y \ . .- .>- . ; - L
enscniole (3) during a time which is so cuori that the samne
(8) never undergoes more than one collisicn, whereas the time is long
comparcd to the collision time. Lot the initial state of (8) be given

: . " : .
by the density matrix A, and the finsl state by ¥ . Let the state
. -

3. For any density matrix & deserdbing the combined gyster, o
7 ma,ny =

easily seen that the matrix /&;q x the oo
of z density matrix, and is czlled th Tor Lh. sube

syston (S).

~‘J



of (R), which is taken to be constant for a rééeryoir, be giveﬁ by the
density matfix LU.. We then have, in accordancé with the result for a

single event,

- -« )Pt S Zu 0 Y. w,, (1-3)
m1 -, 'mn 5ok v A'm%y{n&k? Fik A | |
where the réai conéiant ¢ satiéfies 1.>c:>b and'is'proportional to .
the number of éventé. It is to be noticed that the rebultlng trans—
formatlon on ﬁn 1ndiv1cual state vector descrlblng an element S of

(5) is linear: there is no complex congugatlon.

Cne has a slightly more ﬂcnerul altuation 1f we.alao cazzy out ‘a
randomlzatlon of U in Eq. (I~3) But apart from this. the equation
should have rathcr general va lldlty in descxlblng thc phyalcal bauls
Ifor the possible loss of information about (u ) ER Th¢ total information‘
-gbout the combined Syétcm r@mainé'unchanged by a unitary.trahsfofmgpion;
after the transformation, part of the informetion reSiéeé-in thevéérrela~

‘tion between (3) and (R). This information is thrown away when the
corrglation is not observed. The enscmble (P) is also not obvervbd
either before or after‘the transformation. So if the information whiCﬁ
one can in principle have about (R) is’ 1ncreaued, or remains unchapgcd
by the transformation, the information which one can have bout (S) met
decrease. On the otlier hand, if the 1nform ition whlch one czn have
about (R) decreases through the tranaformat¢on by such an dmount as to
excecd the loss of information in correlation,.then the information
about” (S) may yet increase,

We will show later that if one requires that the uniform ensemble



f9= I/Tr(I) in (5) ve preserved by. the transformation, this puts such
‘a strong requirement on (R) and U that the informatlon about (S) is j-

necessarily non-increasing.

At this pcint we pause to indicate the direction, and to diocdos thé-
motivaticr, of the analysis in the sections to foliow. |

We Lewe scen that there is a natural correspondence betweén some
stochzetic motions and a diffusion prooess on a group manifold. Ve ﬁé&e
alsc ccen examples of two kinds of physical processes of a rathef genonol:

neture wheredy the information about a systen may be lost.' }hilé thei'

o
¥

(U

ol
ot

RS

s described in (a) cledrly falls within the -cope-of‘the diffusion

decseription, the Rrocess of type»(b) as exemplified by‘Eq::(i«B)naoés nott
heve such a direct correspondence., Our analysis will therefore be two-
fold: Ca tne one hand we will analyzo ihe most general‘linbar'motiono'
which transform any dcngloj matrix into another density ma*rlx, and suoh_
that the informetion which one may have ebout the encemble rcpreoonced bJ
the density matrix is dec 'oed or at least unchanged by the trdn s form-
ation (sections III and IV); on the other hand, in view of the thoiou
simplicity of the diffusion QGscription, and the fact that there ere

meny processes which naturally fall under this category, we will algo
give & separate treatnent of the diffusionvequations (cections V and VI).
The rciations between the two frameworks are discussed in the subsoctions-

IV-C ang V-G,



T, ThF uWT oF DEM)I”Y MATRICES. .
Bafore we proceed we wish to review briefly some properties of the set
of density matrices, and to establish some notations.
In order to . avoid complications which it is rnot the purpose of this
- work to‘discuss, we wilk limit ourselVes to'finiteudincnsional Hilbert
spaces, oome remarks about extensions to 7nf1n110«u1mc wLonal Hilbert
spaces will b made later,
- We will sive a list of the notations which will be used the most often:
(a). V is the vactor Space of all NXM metvices, These matrices will be
ienotoed by block cathalo, with the exception of ‘density matrices, which
will.be denoted by P or W,
'XY is the real vector spoce of all hermit Lean DKN matrices,
i . ‘ )
. ) o 3 . - v + o :
(6) Hermitean idempotents in ¥ are denoted-hy F; thus F =F, FF = F,
: N :

Hernitean primitive idemrotents are denoted by By thus E = &,

Tr B = 1, BE = F,

i

o)

Unless ntherwise specified {(as in sections V ard VI), Latin indices run from

(¢) an arbitrarvy orfhowr“ma] hermitesn hd%‘” syatem jn‘x is denotod {

L to H, and Greel indices from 1 to N7, The inner product orn ¥ is defined

. , . ' +
by the trace operationy thus B =B Tr{3 B.) and
J ! 2 ct a? a3

5

- \ = . .- -
I=1% Tr{l X)B for all X ¢ V,
G o ~
(d) &, is the set of all ronnerative—definite matrices in V.,
Ao ~ . o~y
the wet of 211 elements of S, with ondl trece, d,0., 1 s Lo

set of all NN density matrices,

ol
-~

~ . L R
() TV is the vector space of all NTIN™
P d

natrices,  Such matprices @@
denoted by capltal script letters,

It de trivial to verify that ‘:jd is a closed, howvied, conven

ety bthol the boundary of the sel concicls of ol enwnbs



with vanishing determinants, and the extreme points consist . -

by5

of§d

precisely of all prim}tive hermitean idempotents,

. : . : L W
The»setlgd cen be partially ordered. Consider two sets of non-
_ ~ ' - N - e
negative numbers {Xk}, {yl&, with Z‘, X, = 2;_, Yy = 1, Ve .denote o
: k=1 de=1 : o _
{x} < {v} N ¢ S DR
A if the numbers can be so arranged as to satisfy theﬁfollowingb | S
X Px, P e 2205 Y2V, 2 220 S (II-2)
and,
2 N _, gy
o X <L 2,y for p=1,2,...,N , {II-3) . -
e P | -
k= x k=1 K , - o S
. & . C e fod ia a . L s
It can be shown that 'i'%}Q‘L‘f is completely eguivalent to the
existence of a real matrix D such thet x =Dy , and
I é&- N ) C
%ﬂ:Z 05 :E: Dmk =2y Dmk =1 _— (II'4>
: k=1 m=1 : :
Such a matrix is called a doubly stochastic rratria,
. \U.
4. TFor terminologies and basic facts about convex scts, we refer the
rcader to the book by H. G. Epgleston, Convexity, (Cambridge Uni-
versity Press, Cambridge, 1958). A e point 3 of 2 convel s

I}

set ig one such that it is impossible to find two points in the szt
different from x and such that x 1lies on the line seg.ent Join-
ing these two points,

5. See also 7. F, Jordan and B. C. G. Sudarshan, J. Math. Ythys., 2, 772
(1961); and E. C. G. Sudarshan, P. K. Fathews, and J. Rau, Fhys. Rev,,

121, 920 (2.961).

6. G. H. Herdy, J. E. Littlewood, and G, Pélya, Ingoualitics, (C;;_y;.’z:,?idge
University Press, Cambridge, 1959), Znd ed., Chap. 2, p. 49.



We now introduce the following partial ordéring. Let /s’and /0”
be in éd’ and let {rll} and - {;-"'k } be"tlvqeir. eigenvalue‘é, 41}?eépective1}-‘(—.

We denote

N
N
\s

(11:5)

If the possibility of {r};} = {r "k} is elxlcluc‘ied, we w-ri;t"e |
o o L
sl S

For each A inéd,, one can dctefjne‘the entropy cbfrespohding_to the

ensemble which it represents by
g = - Tr(jolnf) ‘ | - (11-8) -

As pointed out by Von .Neumeum'?, if f£(x) is any other continuous strictly

convex functiona, then - Tr £( ) 'has equally acceptable properties as a’

7. J. von Neumann, Mathematical Foundations of Onentum Mochanics, (Frin-
ceten Univcrolty Press, Princeton, 19)5) trandlated by R. T, Beyer,
Chap. V, p. 390.

€. Ve will denote by Fc the set of all continuous strictly convex
functions f(x), defined for x > 0; i.e., for any f(x) ¢ F s end any
© such that 0 < @.<€ 1, one has : ' R
£( 0 + (1-0)x, ) <0 f(x 1) (1-0) £(xy)

5 such th¢t O« X - o Koy

for all X and x
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measure of randomness or lack of information for non-thermodynamical
irreversible considerations. Now a theorem9 in reference 6 states the
following:

Given any two sets of real non-negative numbers {xk} s {yk} s

N _ N .
with >0 X, = > ¥, = 1, in order that for every f(x) in Fc
=1 =1
. N | N ,
S C T 9) .
; ) € 25 1(y) N (I1-9)
k=1 « k=1 . , ) ,

it is necessary and sufficient that {):}$ {y} '
e . .. o ' v
fnis important theorem shows that, if P </ , ‘then the
B ’ a -
ensemble represented by /£ contains generally less information than
. /4
that represented by A7.
- . . Y P 10
From Eq. (II-9) one can obtain Von Neumann's mixing ‘theorem™ "t

. - " ’ . N e e , N o s i
Let 1(x) € Fc; f o and p e'§d, and _let 9 be rezl and such that

oTr £(2) + (1-0) Tr £(P") > Tr £( 0L +(1-0)p" ) (I1-10)

s

the equality holds if and only if P’ = o

Ye will give a proof somewhat diffcrent froin the one hinted in Ven

: e ) s P ,,.. = ~N ” ~J )
Newnzrn's book, Consider the expansion of /a’, /9” , and /9 = 0p ‘(l--uy’) '

9. rneierence 6, Chap. 3, p. 89,

10, Reference 7, Cnap. V., p. 390,
- 5 by 3



into pvimltiv‘e hwm.i‘ocwh idempatenting

¢ ,N | u Hﬂ - . .'
’f " &% ?'k E'k } - P ¥ e k’i ""x m"k 3 ﬁ » g‘_} P B (II-ll).,‘

" Henea

u | | R -
r, %ﬁl [e P TR B 4 (100) v Trlen pp)]_ R

k=l

.
8ince

9 fr(B!, B ) >0 (1-0) @ ENBO '(-.Il;_lﬁ)lji
end }bb [o 1 (B, E) + (1-0) Tr (B En)] -1 (iI-iz;) ,

we immediastely obtain, for f(x) vin_.Fc,

iL' £r ) & zﬂ_, [or(rr )Tr(ENE ) + (i-—@)i‘(r"‘ )Tr{E'; E )J' (il—f5)
e R A n,}?-J“-l SR K T kT K
that is,

g;—'i r(r”) 5 %;i_t:g (1) + (1-0) f(ruk)] - (IIf;é)

which 48 the assertion (1I-10) of the theorem, Since f(x) is strictly
convex the equality sign can obviously obtain only ir f = P,
It follows from Eq, (II-10) thet for any closed convex subset of S

there exist & uniqus £ such that for any other W in the subset ’



‘and for all f(x)eF,

wep) > omop) T amn

In the particular case where the set is cqual to Sd itself,_/g = I/N, nbf..

the uniform ensemble, For the uniform enaemble every atate is equallyﬁﬂ3if‘

<

~probable; it*thus contains the leust information. On the other extremcpff;

one has the primitive hermitean idempotents B which correspond to pure

statcs. It can readily be shown that for any /9 € ,;a, and i(x)e f {?

£(1) + (N-1)£(0) = Tr £(E) _;»,' Trf(f) (1118) 8

where the equality sig holds if and only if /P iskanothervpti@iﬁiyéfi;. 

- hermitean idempotent,



IIX,  LINEAR STONHASTIO MOTIONY .

A, Typoz of xohlonu »

Having Ieviewcd the propertieg of the set_ﬁd, we will now consider
limar mappings of the set §d into it elf | |

Ve denote by Aﬁp the set of all matrices ih ,Z?(-‘which map 54
into Sd, these mappings were named dynamlcal mappings in ref 5. The
set of all matrlces in 447 which preserve the unlform ensemble willrbe‘ﬂ

denoted by <§j9 It is to this 1attcr set of mappings that wea will

I*
devote most_qf'bur»atbentions- with only occauional reference to ¢gf:
Corresponding_to these'mapplngs are motiona; i.e., onermay.consider‘ |
equetions of the typc; P n) = éf{&t",t’) jo(t'), with (X, (tﬁ)ﬁf).é ££? 
or ﬁgf; ‘for all t" > t'. - Ve vill study these together with motions of
other varietieé, thch ﬁe will now enumeraté;  Thé reasong for the inélﬁ~ |
sion of particular types of motions will becbme.clearer through;thej_'(
‘-later-discussioﬁ. ) |

(A~l) Motions such that f01 all ¥ > 1!,
P = R pEY - )

and R (LM, t') € //@_‘_?. Hence, (R (t",‘t) = R (t”,t'):_ﬁa (t!,t) for
gll t" » t!' 3 t, | |
(A~2) Mbtions in (A-1) which are twice differcntiable, They can be

written in the. form:

5 /o(t) = 77 ) ﬁ(t) . , (T33-2)

The set of these 772'3 is denoted c{fj



14
(B-1) Motions such that for all thxt!, =~

]

Lo = R @ne) L) | - (11-3)

end R (t1,t') € .
(B-2) Motions in the set (B~1) which are twice difterentiable. They

cé.ﬁ be written in the form |
? , o
SE L) = 77U L) o (III-4)

The set of these 7 's is denoted 017 .

~ 1

- (C-1) Motions such that for-all t"> t!,

L) = / a(u) [Plustn,t1) U peeru”
' (8Uy) o N | .
£ Qluset,e) U P e ] (111-5)

vhere the integral is the Haar integrai over the unitary uninmcdular
group SUy. The probability distribution functions P(ust",t') and

Quzt",t') satisfy

Plust!,t') > 0 ; Qluztr,tt) =0 (111-6)
S
f dlu) [Pluztm,tr) + QQustr,t') ] = 1 (I11-7)
(s0y) |

They need not be continuous, but may have delta-function type singulari-

ties on SUW.
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_ (C~2) The subclass of motipnsuin_the_Set_(CQl),subh that for all t";-t';

v
. L") = f d(u) Plustm,tt)'U P(E) U - (I111-8)
P\ : L . .
P(ujtt,v!) > 0 ; ';/ﬁ a(u) Plust",t') =1 N (I11-9)"
: - ey o o o :
(C~3) 'The subclass of motions in (C-2) such that for gll"t";=t;,
L) = o/ﬂ a(g) Flgsth,t') U(g) P(t*) U (g) - (I1I-10)
P(g;t",t') 2 0 ; f d(g) P(gstv,tt) =1 (III-11)
22 g .

&) L
where f? is any cbmpact finite dimensional Lie group, and U(g) thej‘
representation of elements of f§"on ,!v by unitary matrices.

. Motions of type {C), especially those in the sets (C=2) and (C-3),
are the ones which can be put into the diffuﬁion interpretation discussed
in thé Introduction. Motions of type (B) include the most general lincar
motions which map -§d into ’§d and wnich preserve the uniform ensemble, -
hence the set (B-1) includes motions of type (c). Motioné of typé (A)
include the most general linear motions which map ;@d into ~§d’ herice

: the set (A-1) includes all the other sets, including all mctions of
‘ type (B) and (C).

Each type of motions will be called sﬁétionary'if the functionsa
P(g;eh,t1), Qlust",t'), Plust™,t'), or 4R (t",t') depend on (L" - t')
only. In this case the motions in (A-2) end (B-2) will have constant
natrices /L . |

If the distribution functions for motions of type (C) are differen—

i
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tiablg, and furthermore satisfy: P(gzt",t') = P(g“l;t",t'), or corres-

1

pondingly P(ujt",t') = P(u™T;t",t1), and Qluzt",t') = Qu rytn,tr),

then these motions are included in the set (B—2) with swmetrio 771'5.
It is casy to see that each of the sets formsa semi-éoup; and each »' 1 ol
of the sets of non-stationary motions is a convex set, The sets g and |
f—@’l can be shown to be convex cones,
Finally,. vie wisﬁ, to mention briefly an alternative ;vay-of writi'ng., .
© the equations for motions of type (A) or (B), which ma& be more natural. B
in some contexts (section V). | ‘_ o
Let {B,} be a fixed orthonormal hermitean basis for U, and let [

be a linear mapping of Z/ onto ZV definéd by

2 ‘ SR
L[ () :]“/3 = 72,5;1. 7T Tr(la(B. BBs) | (I11-12)

P/

for all 7L € ’;{I_’/. It can be shownll that

e ) = 71 | (mrs)

It is thus an involution, and accordingly one-to-one. This transfomatibq
performed on the matrices 77 or A& in the equations (III-1) to (III-4)
will give equivalent equations of a different form. Thus, for example,

if one defines -

054_‘(771) o o (I1I-14)

1L. For the proof of Eq., (III-13) as well ‘as Eq. (II1-15), see Appendix 1,
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" then equation (III-2) or (III-4) will take the form™t

'[;%T‘/o(t)’ P=1 02_‘,' (t) B )O(t.) By -~ (111-15)

" Ve will return to this equation later.

. B. Conditions for 'che Sets ;d”' ﬁ’ J J
We now study’ the condit.ions to be satisfied by an elemmt of 7’}/

~

B in order to belong to any of the '-‘ets. /;f ' JI"’&’ o 1 ..

The conditwn that. th: hermiticity oi‘ density mat.riceq e preqerved,

: ’i e., that Vh

- hermitean baszs,

is to be mapped into itself, gives, in any ozthonormal

-ﬂ - R S o B (III-168) .
This corresponds to

Y/ ARV/{ o .. (1T1-16b)

oz_ﬂ = oZi ' (where o =[ (7)) (I11-16¢)
If the expansion of I into a complete orthonormal hermiteen basie
"is given by‘ |
I = e, B, | | - (I11-17)
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. the condition for the preservation of the trace of matrices in ¥ reads, -

o R

kewise, the condition for

gja and gg?l, is

I
N> %
=P
N>
i sty =
2
N
> B B
cxf%:i_uz;ﬁ “P

The cendition of mapping S,

If E' and E" are any two

tion can be written:

Tr (E' R Ev) >

(e L E0) >
N2
> <

O()F=l

/gTr(E B, L"B ) >

- (III-18a)

°p
0 (11I-18b) .
=0 :'(III;18c)Ff

the preservation of I, needed for the’éets :

o ” , (IT1-19a)

=4
0 (III-19b)
“ 0 (I11-19¢)

into ltself is comewhat more complicated.

primitive hermitean idempotents, the condi-

0 for all B!, En (111~20u)

for all E',E" such that E'E#=0  (I1I-20b)

for all E',E" guch that E'EN=0 .(IIT~QOC)
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" related somewhat, and it can be shown
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It is not difficult to verify thap-£he ébnditiops (I11-16), (IiI—lB),
(III-19) and (III~20) arevﬁoth necessary and sufficient. .The‘conditiéns
(II1-18) and (III-19) are simple linear constraints, ‘The condiﬁion |
(III-20) is, however, unfortunatély not very explicit-in terms of, séy,

the eigenvalues of the matrices 62 , 7L, orof . They are, of course,
' o) . o
12 that ‘for matrices satistying the

conditions ‘(III-16), (III-18) and (III-19):

S

)

{Positive sémidefinitenes%} -[Condition —_

of the matrix azf°

(ﬁegative semidefiuiﬁénes;\

of the real parts of | |

i eigenvalues of 77L b (I11-21) -
or B |

| Absolute magnitudes of

Lgigénvalues of R<1

o
where <Qf is the submatrix of cxf which acts on the subspace of ¥

of traceless matrices,

C. The Disordering Nature of Motions of type (B).
Using the conditions established in the last section, we cen now

prove a theorem which will partially explain the resson for cur giving

12, See Appendix 2.
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the set qgf; special atfeptibn.v '

Theorem: For all motions in the ‘set, (B-1), /°(t") f{i;[) for

all t"2>t!',

As was mentioned in section ITI-A, the set (E~1) 1nc1udes all the
_motions of type (B) and (C). So in other WOTdb the theorem states thata‘
for all mofions which transform dens 1ty'matr1cog to density ratrlces,f~
and for whigh the uniform ensemble is stable, the time dgvelopment can
only lead tc a decrease in informétion. |

The proof is as‘féiléws:

Let the‘expansion of )P(t") into primitive hérmiﬂeén,idempot§ﬁt§”5;"

_ N‘

A/O(It") '= Z rn] E"k . | (III-Z’.Z)

-~
[

. and the expension of )p(t‘)' be

N , : ' SR
L) = 5 B | ' (111-23) -
k=1 ‘ : -
Then
N .
7‘ Tr(E", RE' ) = 534 x | (111-24 )
— Tk " om
m=1 _ =1

It follows from Eq. (III~16) through Eq. (I11~20) that the matrix
¢, s doubly stochastic, hence L) < f(t').v
Clearly the ccnverse statement is also true, thus:

‘ The subset of motions in (A~1) for which, whenever t"z t',

e £( L") < Tr £( £ (")) | (£17.25)



~for .all f(x)e F,, and for every initﬂﬂ;densityvmatrix S(0), is
precisely the set (E-l); | |

. This explains the iméortanée of the motions in thv—:_sct (B~1), and
the corresponding set of mappings ’\jl'

‘One ‘may note that for motions of type (C), if the distribution
functions are znonvanisbing in any <ne“ighborhood of a poiht 01;1 the groﬁp
‘manifold, then one has the stronger result L) < f’.(t'L), as long. '

as P (t1) ';é' I/,

D. Stable Ensembles

The theorem.in the .last section shows the importancé of the stablé '
engembles in determining the nature of the moﬁion. We vwi.s.h‘ to elaborate
SOHle;.'Jl'ia.t on some facts abcut the neature 'of spable ensembles. | i
(.a) Let R ngp and R X=X, Xe Y. Let the expansion of X'into l‘

hermitean idempotents be given by X =Zk x};Fk,_ where Fk correépond

to distinct eigenvalues of X. Then for every k,
R F o= F . i (11I-262)

The prcof will be given in Appendix 3.
s a corollary, let | Tl € a;é_?tl, X =0, Xéjh. Let Fk be
definéd as above, then for 'cj:very‘ k,

TE, = o0 | v (1TI-26b)

. - ' .
(b) Let R é/fgﬁl. Then fe and ¢ have the same stable ensembles.
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This follows from a result. of Riesz-Sz.v-Nag;y, vhich states thit
the invariant elements of a contraction on a Hilbert space coincide
with those of the adjoint con't,rac‘c,ion.13 Thet mappings in ggal are

contractions will be demonstrated in section IV,

[

(¢) Let R eiﬁf, and 4l ¥ =X, Xe¥ . Fxpsnding X into primitive

h
., .n .
hermitean idempotents: X = 2 Xl'El” where x » 0 for 1< k< p,
=1 & O *
and :-:K< 0 for p<kgn. '
Let
P n ' '
P=31xT ; N= >0 xF . (I11-27)
=1 . k=p+1 | |
Then . .
P = P; RN = N . (I11-282)

.The proof will also be given in Appendix 3.

As a corollary, let 7/ € /@ , HX=0, Xe A De composing

>3
)
4]

above, then

NP = TNH = 0 (I11-26b)
(d) For any R € ,—(f , there always cxists a density metrix P ¢ éd"
such that

R L= A ' (I1I-29a)

- . 3 o : ) I . ar :'Q RIS
This follows from the fact that I is & left eigcenvector of U with

13. F. Riesz and B, Sz.-Negy, Acta Sci. ¥eth. Szeged, 10, 202 (15:5 7.

~



23

eigenyaigeiigfso,there mﬁgt‘éxist“a right eigenvecﬁor With‘eigen;aiue
,equal»£o 1Q Sincé thiéleigenﬁélu§'is real, the eigenvector may be
chbsénvﬁdjéé_hefmitéén;' If this-gig;nﬁeétqr is either noﬁ—négative
definit§tqr:£6n—poéit;vc'definifé; we canvnormalizé it:to becoxe a
dcnSity-mai%iX. If iﬁvis not, oﬁé'can uée the-resuit éf the last-
secﬁicn; aﬁduébtain-at leastvtwo stable density'matrices. |

As a‘kprbllary,-if V71 éfeé? s fhere alﬁays exists a density
matrix,“/f; 'sgch'that | - |

3

T p = o | (111-29b)
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Iv., PRCPERTIES OF STOCHASTIC

MOTIONS WHICH PRESERVE I

Ve have seen in the last éection the impofténce of the sét of
motions in (B-=1): they are the set of all linear motions which take
dénsity matrices to density matrices, and which lead to a decrease in
information (or at least not to an increasc in informebion) in general.,
This set includes all the motions of type (B) and (C). oﬁ the other '
nand, motions of typc (C) are»the ores which neturally allow a diffusion
interpretation. It is interesting, therefore, to ask_ﬁhethgr thq'set
of motiéns (C-1) is in fact equal to the set (B-1). We shall showntha£

this 1s not the case, Bul first we wish to esteblish scme properties

s ’
of mappings in the set ,ﬁll, to which motions of type (B) correspond,

and then return to this question of the relation betwsen the sct of”

-

motions (B-1) and the set of moticns (C-1) in the last subcection.

A, Unitary and Antiunitary Transformaticns on V.

~

Since motions in the set (C-1) arise from convex combinations of
unitary and antiunitary trensfornztions on V, we will first study the

7 . .
elements of .421 which correspond to these transformations.
(a) It is easy to see that unitary and antiunitary transformaticns on
ind e S et S e 3 "/;‘/ The set of thesa
'V induce real orthogenal transforamuticns in /7. he set o Hess
. 2 . : P b N EN u(/ R S . e . . ,,:]
trensformeations, which we will denote by A2 ye 18 in general not equal
U S L RN
to the set of all real orthogonal transformetions in /2. Ve will
deriote the real corthogonal transformations in ;ﬁ/’ corresponding to

unitary transformetions on V by < , and thuuo corresponding to anti-

k] - N :f (}""/ ) N (".—'~ K. RS .. N .
unitary transformations by GQ o, where _J is defirzd by:
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= ¥ for ell Xe¥ (W)
s - | | 2 , N . - |
Since 7: 7, T = j(i(_ientity_ inZV) . (IV-Z)

T is orthogonal.

(b) Let R 6,(~f1,va'nd flx)e Fc. If R is éuch that for every

P < 54,

T f(p) = we(Rp) (Tv-3)
then either - e o .
- RX =UXU . for every XeV (TVwsy)
or RX = UXU for every X€Y - (Tv-5)

where U is unitary.

We wﬁ‘.ll sketch the proof, Since x° « ‘Fc,

Tr(RX, RY) = Tr (XY)  for any X,Y <V, . ) (IV—_-())
Together with the fact that &R takes primifive hermitean idempoﬁents

into primitive hermitean idempotents (Eq. (11—18)), and using Wigner's

14
theorem  about transformations in__quanhm mechanics, one has the reuult

14. Let there be piven an invertible transformation T on all rays of a

Hilbert space such that if ¢1 and ¢2 are unit V{,C'bOI'.J contained in’

the arbitrary rays Ry and Ry, respectively, and Qfl and 21 areTunit
vectors contained in the correbpond,},ng ’rranof‘ormed rays R and Rp™,’
respectively, then |(#1,%5)] (d1, . The theorem then asserts .

that the raymtranoiormztlon ’l‘ can be conglde,red as being induced by
either a unitary transionnai,;on or an antiunitary transformation, on all
vectors of the Hilbert space. See E,P.Wigner, Group Theory, (Academic
P:c"ess, New York, 1959) trans lated by JoJ.Griffin, Chap.20 Anpendiy

233,
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(é)_ The necessa%yxénd sﬁfficient'condition thét_any V74 €'42§ iszin

'<£j; is that at 1éa§t; N2 liheafly indéﬁéndeﬁt.érimifive hermifcéﬁf v

idempoéents are t aken iﬁto_primitiQe hermiteén idempotents, . .
:Thié sta£ement'is,reédily verified using Eq. (IV*IS) of ﬁhe next

section.

B. Norms of Vectors in V under Mappings in _;zz.

- Let usAfirst-¢onsider'the mépping-of a sphefe in an n~dimensionai',
reai'Eﬁclidganhébace ﬁgé into itself. Let T be ahy real linear
homogenedus mapping on EP satisfying

(15,10 € (5 %) forallxer (1v-7)
T is a.boﬁﬁféépiOn in'thé termiﬁ@iqu of reference 13,

If 31;_5é;;};}’§h (m< n) ig‘a‘set of m linearly independent
vectors suéh'tﬁét L

(T T5) =(xe x) k=12 (Tv-8)

. K . - . ) 7 3 1 o
then, denoting the subspace §panned‘by Xys Foveees By by ,ym, it is

easily verified that; for all y E_Bn and % e,ym,
sy = Gy | (1v-9)

7

= ; . . A B -
We will now show thal mappings in .421 are contractioncs; i.e., for

]

15, For more necessary and sufficicnt conditions, see rel. O.
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cany R <, and. X< ¥

1 Y,» we have : T
r (RY,Rx) < Tr (XX) | . (1v-10)

This statement triﬁvialiy hblds' for density matfices :;ince x2 € I‘_‘fc. For
arbitrary X ¢ ~vh, one can constrﬁct-a density matrix f = (1-6)I 4+ €X
with suitablé small constents & and € ; then Eq. (VIV-'-‘lO)"follows.

We can néw apply Eq. (IV-9), and obtain the following conclusions:
(a) .if 1oL and E" are primitive hémitean idempoteﬁts satisfying
E'E" = 0, then

(REVYR ) = 0, -_(IV‘-ll')‘

; if

" (b) Let R <., and X ey

e (RY,RY) = Tr (X°) | o (w=12)

‘then‘ for any Y€ ,\Jh,.

Tr (RX, RY) = Tr (XY) | _ (iV~13)

(¢) For a fixed R € the set of ell X €Y for which

~1* ¥

Tr (R X, Rx) = 1r (¥3) | (Tv-14)

form a subspace. We denote this subspace by ,y& . For any Y& jfh

and X € fy}Q

tr (R A, RY) = Tr (XY) (17-15)
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(@) If X €V., sois X" for any positive integer n.
() If XeV,, then X and /C X are unitary or antiunitary equi-
valent, (The unitary or antiunitary transformation in general depends on

X.)

The statement (d) follows trom Tr(X - & R X)2 =0 for X e,yh, and

Eq. (IIL-26); the other statements are easy to verify and will not be

demonstrated.

C. Properties of <§f; as a Convex Set,

-

(a) Poundsry and Interior Points

3

. e . . . . . . 2

It is not difficult to show that the interior points of ALy

s : /ﬁﬁi 3 - - S -
concist of those elements of Lo such that, for ali primitive
hermitean idempotents E' and E", and a fixed b,

Tr B'REY) 35 5 > 0 ﬁ (1V-16)

.

The boundary consists of elements of such that for at least

one pair of primitive hermitean idempotents L' and I,

T (B'REY = 0 - | (17-17)

(b) TFutreme Points

Before we proceed we wish to review some well-knoun rosilis ciond

oonvex sets in connection with their extrome points:
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(1) A closed, bounded, convex set is the convex hull of its extreme
poinfs.; |
(ii5vaery point_of‘a closed, bounded, convex set in ,B? is a convex
combination of not hore than (n+l) extreme points.l7 |
The convex set lﬁgi is cleariy closed and bounded; and these theorems
.‘thus show the importance of knowiné its extreme eleﬁents, _Now'the elements
iﬁ *ng are obviousiy extreme poihts of 4§f 3 1t is equally'obvious that;
although they also are extreme points of the convex set ;gp (see,e.g., |
reference 5), they do_not form all the extreme points of ¢§f. The non-
trivial quesﬁion is whéthor they do>form all the extreme points of ,;2%;.
If this were true, then by thévtheérem (i) above, one would be able to
establish the-eqﬁival¢nce of the set of motions (B-1) énd the set of'motiohs
(c~1). Furthermore; from the theorem (ii) above, one would be able to con-
- clude that every mapping in 4?? can be expressed as a convex combinati&n
of a finite number of unitiry and anﬁiunitary transformations on V.

We will shbw tﬁat for N = 2, the set ﬁﬁf% indeed form all the exttéme
points of <§f;. | |

In this'case, all the réal orthogonal transformations in gf?/, sub-~
ject to the conditions (III-18a) and (IIIlea), belong to the thgéc
dimensional real orthogonal group, which.in turn is the'homomorphic imapre
of the 2-dimensional unitary unimodular group; This ié ﬁostvcasily SGCn

setisfying Bq, (I111-18a) and -

by concidering the form of matrices in
: , .

(I1I-1%a) for a special basis {TB;}', such thet B, = () 1, and o1l

the other Ba's are traceless. These matrices ﬁa will have tho

16. Reference 4, p. 38, Ex. 2.

/ e

" 17, This is an adaptation of Carathdéciory's theorem, refercnce 4, p.25.
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following form in such a basis:

s

OQllzl éz")la' - 6€aq=o (a'=2,3,,..,'N2) (Tv-18)

This holds fér any N. Tor the particular case_of‘ VN = 2, the submatrix
5&3“,5, (6%,8' £ 1) acts on the three dimensional :;:ubspac‘e of V of

traceless matrices; and, from the correspondence to the two dimensional

unitary unimodular group mentioned above, all real orthogonal transforrr;u-;

ticns in ZI/ satisfying conditions (IIT-18a) and (IiI—-lC)a) will be in

A

A

Now for any R € ,,(fl-, we can write, by polar decomposition,
— D : .
R = Q (1v-19)

. a7 . : . .

such that & 1is real orthogonal and /D is real, symmetric, and

e .- . . oy ,{5 . . PR
positive semidefinite, with both Q and Y satisfying (III-184)

T - ; . D - P N

and (III-1%). Since &2 €/JU, P ¢ &7 and hes eigenvalues

(which are reazl) not exceeding unity in magnitude, Clearly f/j is in

the convex hull of /,@7[]; consequently R is also.

One conecludes; therefore thoat the set of m

eauivalent to the set cof moticons (C-1) for ire cpuns N = 2, We wish to

point cut that althouéh the motions (C-2) more naturally £it into the

diffusicn interpretation, the‘ antivnitery port of the transformaticns for
motions in (C-1) cannot be excluded for physical motions on the basiz of
continuity arguments. One may consider , for example, the followins notions:

-

~t 7 o
P (t) =1/2 (1I+ Pyo] * Pydy + Pge g )= e /O(O‘) (Tv-r0)
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‘where ]p | l and the a's’ are the Peuli spin matrices.v ‘This motion
is continuous but doeg not belong in the set (C—?) as can be verified.
So if the antiunltary part is to be excluded at all this can only be done
as a necessary phyoical reouircmcnt as discuosed in section I—B(b) and
'not as a requlrement ar131ng from contlnuity argumonts.

Finally, we w1sh to uhow that 1n ‘spite of the equivalence of the sets.
of ﬁotlons (B~l),and (C~1) for N —,2 whlch we have demongtrated above,

_this equivalence in fact does not hold in general for all N's.

Iet us con51der the manping defined by.
R x=(@1) [ I - X]. forall X € ¥ (IV-21)
ThiSlmapping;cleariy beiongS'in*;aj};-end has the'propefty that
AT IR = Rt _

-Tf (E:ﬂ?&;) =_vo'.-'e, o o :ij' ue : (Iv;éz)

for all primitlve hermltean idempotents. Now suppose that A is a convex
comblnation of unltary and antlunltary transformation then -becanse of

_Eq."(III-2O)_eechlun1tary_transformetiona;n_this comblnation must satisfy:

o oTe(EUEU) = 0 .- forellE o (IV-23)

and each antinuﬁifary;trahsfotmetioniihifhe,cbmbination satisfies:
Tr(BUEU ) = 0 for all E (TV-24)

It is obvious that there dOes not exist any unitary tranoformntion U

which obeys Eq. (IV~23). On the other hand ifa un1t°1j transformation U
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satisfies Eq. (IV-24), then the trace of U with any symmetric matrii in

V is zero, and U 1is skew~-symmetric. There are no skew-symmetric non-

© e~

singular matrices of odd dimensionality, Hence, unitary and antiunitary
transformations on Y cannot form all the extreme points of ¢§fI, at’

least not for odd N > 2,

/
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" V. THEDIFFUSION EQUATIONS.

;*A,’fner vation of the lefuofon, quatloiﬁ

We w1ll now return to rore detaL]cd Sthdj oi tochastic:motions

o~ -

,'whlch corresnond to some d ffu 1 on. procegs on the g;oup manifold of a Lie

groﬁo 1 e., motlong of the tjnb (C—B) ‘ dhcn tnh m0u10ns are muff101ont1y

- -

contﬂruouu, wd cun aerlvé 1n,“ccorduncu Wluh the. phy 1ca1 piCuUTG dis CUuufd

in the Introductlon dif1u51on QQUuthn for Lhe dlgtribution Iunctlon

1c:denu1ty matrLY“<_/9(t) aS'wal_aé

for t‘c nhage coace dcn ity-fﬁnctlon ,D(D,‘,t)‘ of a clav(ical bystem; The

nﬁnature:to emphasiZe“thcrsimplicity

cvcr to kLCp 1hc dluCU bidn ina -

:-wencrul 1r-mbwork wlthout commLment}to peCLfic Croupu or'u 001fic

*’representationSy thuo wo W111 non be dl glng SpClelc klndo of EBrowrian

'~ngotlons for 1nub nce,,but any tjpe of ETOUann motlon \hore thu random

-~j;transformat10nu pynerato a Ljo group uuch as tbo force-free rotstional

18 -
: Brownlun motlon of rigld bOdLC ), w1ll bcloug in thlo frumcworh.

We w111 firut derive thc aiffu lon CQU?Lion for tkp dJutPLLuthH

' functlon P( ) P(g,t O) : Consider the change in dis Lrﬁbation ina
._tlme 1nterval At A p01nt on the gropn manlJold rupr uentwn tho statg

.&:‘01 thc bnsemb]e Wlll dlffuqe in. dlffcrcnt dlrccULon,._ Ii inh rotbicn Ais
oufflcvcntly continuoua, the dlutance mOVpd corrﬂ; und@ng to an infinitesi-
k.ral Ast wlll be small 1 e.,_they w111 correspond o gfoup eloments in the'
‘nelgnborhood of 1dcnt1ty, and hence can bo wmlttcn in the ézponcnti&l form

X : : .
xp( 214 A“ap) where- x“ ‘are real paT@MutCTS, and &, ;Qrm & Lasis

31 See W H Furry, Phyb. Rev., 107 7 (1957), and L D rqv;o Pliy -,

Rcv., 119 53 (1%0)
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of S% , the Lie algcbra associated with the group ﬁ , (p=1,2,. ,
K= dimensionality of Y. The weighting function for the probabilities.

of various increments will be denoted w(x

TEECTRRRTE A1t,t), or simply
- .19, 20 |
w(x; At,‘b). We then have, according to what was said, -
P(g,t+dt fd).l... fdxl\ wic; at,t) P( o ER g; t) - (vA1)

0

The function Q’(x; At,t) is of ceurse real and positive, and satisfies
fdxl...‘fdxn w(x; Atﬂ,t) = 1 (V-:Q)

We further impose the continuity of the rotion as requircments on w(x; Ht,t)

and P(g;t):

K , )
(i) Lim w(x; at,t) = [ ]olx) (v-3)
At-=0 _ p=l, . '
(ii) The moments
3 (t) = Linm J’d,. cee fdx}, wix; at,t) x /at (V-4)
W A0 s
and
“’g (t)= Lim fdxy... fdxg vy at,t) x x /At (V-5)
wy 2 a0 K ’ Py

exist; and higher moments are ncglipllﬂo

M v . Y o o8 . B
19, £4n integral which we write as jd}cl.... Jdxp v (z; at,t)
L ]‘l.‘ L. .
understocd in the sense of ,[L duyea. /o G wix; at,t) £() , devined
for arbitrary fixed, positive L, and At -» O,

20. Repzated indices are understood to be ounmed over. The swaabtion sipn
is often omitted where it is clear thzt the renge of summxtion io ovir
the chcnalolm of the algebras concorne A '
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B

_g(iii) P(exkauau)gr'tf' allows a Taylor expansion in x, around x,=0%

With these assumptions, one immediately obtains ffom‘Eq. (V-1). the .
differential equationZl: '

gt P(s,t) = B, (t [ «--!-LP(cAp(..qu )p,,'t)] 0

2 = | .
+ < (b) [a ER R P(exp(-—\cYaY)g,t):r (-V—~6)

. This ccouation can be applied to classical as well as quantum mechanical
systems., We will first apply it to the time rate of change of the density -

matrix of a quantum mechanical syétém, by use of Eq, (III-10):

”S’{"P(‘b) :f a(e) (“O ©) 5% P(Oxp('xnray)g;'b) +

=8 qo Pl (o) 58)] PPV ()
v S :

: Al
Using the invariance of the group measure under leflt translation, and

denoting the representation of’ aY as skew-hermitean operators in U

by ~1A = one oblalns

| »T-)
-—a~~f>(t) = f a(e) Plese) [j;’ (6)5 + ‘u 62, q ] x
ot ) L7 *h 7 l*l” |

. .}- : : ’
emp@bwLQU@)/O@)U @ﬁmpﬁgﬁY%;mﬁ L (ves)

21, Mn equation similar to Eq. (V-6), which however desls with the op.
3] (559 .

group of three dimenslonal rotation group and which uses o specitic

&3

representation, has been obtained by W. H. Furry, ref. 1£,



s
0-,

S p =480 i pol] = Lt [Aw B :fmn S

The motion‘is thereforé seén to consist.éf separaﬁeiya'unitar}t;=,ﬂ
transformaiioﬁ, represented By the fﬁrst term on the riggt aﬁd aiaiffusi$n=%,.
repregented by the second term., Since we  wish to conccntrate on studying
the dlffu31ve.part of the motion, we will not conulder the flrst tcrm .
assuming either that w("' At, u) = w(-x; At,t), so that ./6’ (t) = 0 or
that the unitary motion is absorbed by transforming to an "1ntcraction ﬁ'p
representation"22.

Ve will next apply the equation (V-6), without the unltary tern, Ito ,
the phése cpace Gensity function of a classical sy?t ‘and will simplify ::

the notation somewhat by writing:'

[gxu P,(&D(.—lY Y)L;; t)] E QH-P(g;t)'.. - (V-lo) .

et us denoto tho phase space density by D(pl,pq,..,p\, ql?“?"'9*ﬂ’t)

or ulMUlV D(p,‘,t) For a Hamiltonian time dovelonmont %ccaupc of the ‘

22, Let us define for conctant bf?Y, :

exp(lJDrIY Cxp(—luJ L)

n

~
Aﬂ(t) Yoy

i

\\/
P )

2 S --g0 [L[he, ol
X
u,

e 0 ==, 4, e F0]]

~ Things are more complicated if Jj (t) are time dcucnnenu but the
same can in principle be achieved {f one knows the o‘utlon to the

unitary part of the motion.

exp(iﬁ’ 2 8) P ) exp (-1 4, 1)
then

ta

But (t) is expressible as a linear oum of the Af s; hence
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invariance of the phase space volume under canonical transformations
p = p(5,3), q = q(p,q), the density at any time is related to the original

density Do(p,q) by
D(,q,t) = D ( p=p(7,q,t), a=q(B,q,%) )} (v-11)

YWe again consider the case where the canonical transformations generato

' , . : 2
a finite dimensional Lie groun 7%/, and denote

©y e

P (5,4) = p'; p (5,a) = p" - (V—12)
wvhere ‘
g', g" e f; ; and g" = exp (-xYaY) gl - (v-13)

ks x -0, one knows from the theory of infinitesimul contact transforma-
Y o
tions that there exist penerating function AY such that

oz opl. e s et (V-14)
P i Py ko gt . '
a?g;
g". = q', A, (Vwi 2
2 e a p li
lence
N (S ! ) ({3 ')

a Dy (p=p (p,a),0=q (p,a)) =

et
7y
v

and the funetions 4 NI

vhere the brackets denote Polsson brack , "

[
643
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on g'o'
We now consider the diffusion of points on the group manifold,"and_ .

write the equation which is analogous to Eq. (III—lO);

o - (g) () | o
D(p,q,t) = /), alg) Plg;t) Dy(e=p (5,9),9=a (p,q)) (v-17)
Y | S |

Applying Eq. (V-6) to this-eqﬁation, and ﬁsing the left-invarigncé'&

of the group measure as before, one obtains

20600 = 4@ rem Gt [5,[5, %] @)

Y

or, since the Poisson braékets,defined with p', q' are the same as

those defined with ﬁ;'ﬁ,
2 gt = E® [5,]%, 06,00 (19)
ot D<p’q’F) - WAL S EPREe _ A

To summarize, therefore, we have now obtained the foliowing diffusion

equations:
TP = - ?gLV(t) J:Au"[%v’lfo(ti]] | (v=20) = -
J _ oy T M e o T
SerEEn = 4 ERETEICLR . o
and ,
—Z—;‘P(g;t) = %,(‘c) Qp Q}, P(gst)
with . |
P(g;0) = o(g) (v-22)

where the delta function on the group manifold is defined cuch that, for
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ahy suitably defined testing function P(g) on the group manifold,-

-1 | |
f;,, d(g) Pe) s(gg' ) = Pl .~ (V-23).
(&) | . | -

B. Normallzation and Integral Identities for P(g,t)

The normallzation for the distribution function is givcn by Eq.(III-ll)

::1‘ ;

Thls normallzatlon is conglstent with the equation of motion (V—22), since

5 Ca | . ) ' .

33 /. dlg) Plgst) = (t) f alg) a a, P(g,‘c) - (V-24)
(y) . , .

v'Fd? thé‘pgrticular case where the weighting function Q(x;z:t,t) in

Eq. (V-1) is independent of t, w(x,4t) clearly mist agres vith

"~ Plexp(x’ aY)”zkt) aside from~a factorQ In fact, since in this case the

-ch01ce of the origln of . t i3 arbltrary, the motlon belng stdtionary,

' one would expect from the phyolcal meanlng of P(g,t) that for all

‘to <t, _1

P(gst) = Ig)d.(go) Plest) Ple gy 5 toto) (v-25)

Ve Wlll show that thls is indeed the cacse.

If one differentiates the right hand’sidé-with respect to t,, it is

not at first obvious that the derivative is zZero., However, the ripght land :

side is clearly a function of g, t, and.to,‘and one can write it as

F(g;t,t ), defined for all tygt. - Since F(g;t,t ) satibflesliq. (V=22)

_1n b, 1nc1ud1ng the initial condition, as well as the norrmalization

condition, one concludes from the uniqueness of the solution to linear



differential equations that _F(g;f,to)"is independent of t,.

F(g;t,to) = Fg;t) = Plg;t) (V=26) N
Furthermore, using the independehce'of F(g;t,to) of' t,, one may
vrite

f -1 S AR : -1 o
,dlg ) p 2o t Pl ; t-T = u//. d - P(g sttt )} P(ge st ) (V=27
(<) ) Plegite) Plene 5 t=t,) ) (go) Ple,st-to)Plag, f o) (1-27)
23 o .

Applying the invers 10*1 invariance of group measure = to Fq. '(V-;:'Z-‘), one

obtains
) - -l . ] . ‘ N '__l ' - .
Jog algd) Plegite) Plgze t=ty) = Calgy) Plegste)Plegy  est-ty) (V-28)
(&) | (9) |

Eq. (V-2 o) can then be used to show that the derivative of the right’hahd"

side of Eq. (V<25) with respect to t, is indeed zero, thus showing the

self-consistency of these rclations. ‘

P

C, Diffusion Eguation and Motions of Tysc (i3).

() UYe now wish to comparc the diffusion equation for the density matrix,

viz., Eg. (V—20), with the most generzl differentiable iotlon which takes .
density matrices to density watrices and which preserves the uniform
enscible, il.e., motions ol type (B-2). YWe have previously shown

23. The Haar measure iz inverse inveriant, ag well as right invevians, it

y &
the modular function ol tha ”rqu is ecual to onc; thig is towe Voo
compact groups, or more generally for semi-sinple proups. LGsit.
L. H, Ioomis, fhstrsct Marwonie anzlvois, (. Van Noctrand, How Your

1953), p. 118.
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(section ITI-A) that the latter motions can be transformed into the form:

*g*_—t'-ﬁ(t) = Q%I o\)faﬁ(t) B, f)(t) BB | (V-29)

If we now use the conditions (III;lSC)vand (III~190),.and denote the

, o ~
symmetric and skew-symnotric parts of azzﬁ(t) by cZfaﬁ(-t,) and ’éaﬁ(t)’
. £ . . .
respectively, ,Eq. (V—29) becorcs,
Ser0e 3580 Bl ] ]+
, L, B= , _
\12 o{,”/\ v : : o
> (t) B, p(t) B (V-30)
a,ﬁii ag’ "’ a /9 B Lo T

Thus motions in (B-2) can Q]uqys be tranufor?ﬂd *nto uhO form of the
diffusion equation (V-20) if"cgfgﬁ(t) is symnetric; which ih;turn_meﬁns;
from Bg. (III-12) and (ITI-14), that 777(£) is symmeiric.

As to the part of the motion die to the skow-symmetric3tefm in
BEq. (V-30), which is not included in the diffusion equation, w¢ can riention

briefly some of its propertiss:

(1) - A skew-symmctric Oézw% would give risec to.an 771 with purely
. o t ~

'

cimaginary eigenvalues, which in turn mcans thet the solution to Eq.(III~4)
will be of en oscillatory nature, in contrast to the exponentlally decaying
nature of Lhe solution cor“L'pondlnp to pure d]fiu;¢0no

s

(11) 1Yotions due to skew-symnetric cﬁ?.g(b) alone will preserve ﬁhw
trace of _/92(t);v"ﬁlso, they take primitiva hermitesn ddempotents into
primitive hernitesn idempotents.

(1ii) Finzlly, it should be mentioned that motions dne to skew-symactric

to q(t) alens in general does not belong in the set B.2) beeause of the
ai .

impossinvility to mect the condition (TII-20), The only possible skev-
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N s .
symmetric'czfaﬁ(t) which by itself (i.e., without an accompanying symmetric
part) can satisfy condition (III-20) are the ones which correspond to uni-
tary motions.

One concludes, therefore, that the part of motion due to skew-symmetric-

2‘6)

aB(t) does not generally lead to a decrease in information. o
(b) We wish to make herc a very brief digression. For the density matrix

. vhich satisfies the diffusion equation (V-QO), as .for all motions of type

(B) and (C), the unifornm ensemble is a stable final ensembls, though not
necessarily the énly one. On the other hand, if one modifies‘Eq. (V-20)
slightly by substituting ( P _/OS ). for | Pt) in Eq. (V-zo)',

‘then cléarly _/Qs'zis a stable final enserble. VFurthermore, the modiflied

eguation can be yritténé
H}O(t') = -"éljj(t) [Au, [A}/, }’(t)}} + |
Ao [ [0 Allpe e

so that it is still a homogeneous equation, Ue will not discuss, hovever,
the relation between Eq. (V-31) and motions in the set (A-2). A4s we have
727

emphasized, our main concern is with mappings in the set ﬂgfl, and

correspondingly with motions of type (B) and (C).
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VI, FURTHER STUDIES RELATZID TO

THE DIFFUSION EQUATIONS

A. Definition of Entropies

Let us define the "entropy" on the group manifold by

sa.»(t). _ ;/é‘)d(g) ?(g;t) 1a P(g3t) - (VIfl)

Differentiating with respect to time,

5y o o z A -
e - "»{g)d@ (1P(gt) +2) B () 5,5, Pest) (V1-2)
OI‘, ) .
6 : o A I ' ’
g s t) =~ & (t)f,, d(g) Plgst) a a (InP(gst t) +1) (VI-3)
. BTy o s o ‘
i.e.,
; , | o
ST st(t) = Zéi;,(t /; d(ﬂ){ l(:;;t JIes t)][’éyf’(g;t)]
A A D . N \ - l VT '
.~ a a, &(g,t)v? (VI 4)

Hence
> a g
g ® éy(t)f )d(r ,g[ P(g; ] 3 s t)] (VI-5)

Thus the entropy s'(t) is a non-dec: regsing function of time if ?57 (i)

i

By
is positive semi-definite.
On the other hand, the entropy of the cnsemdle, es delined by
Eq.(II-8), is
s(t) = ~Tr( Pt) In P(t)) L (VI-6)

[
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And it can eaéily be shown that s(t)v is_also non~aecreasing with time if
A (t) is positive semi-definite. -
p , ‘

The Tgly(t) vhich is obtained from the definition (V-5) is, of
course, automatically positiwve Semi~definit¢. In fact, in this case we
know that s(ﬁ)>.is nondecreasing with time by the theorem (II-10).

One may ask whebther st(t) -is equivalent to s(t)v except for-a
multiplicative constant which depends on the initlal density matrix\JP(O)."-
If is easily seen, however, that this is not the case. What may seem |
paradoxial at this point is the apparent violation of the well-knowA

24 | o
theorem that the definition of centropy is unique o+ A closer examina-
tion of the assumptions required for the unigueness proof shows, however,
that there is no contradiction., To obtain a uniqaé expression for the{
entropy, it is necessary to specify the sct of motions for which the entropyv
is to remain constant., In ngntum mechenics this set includes all unitéfy
motions. On the other hand, tHe'most peneral infqrmation presérviﬁg motionQ
which have here been considered on thé sroup @anifold are those cofr@sp?nd-
ing to continuous inner eutomorphisms, This set is too small to.permit
a unioue determination of the entropy.

Td seé this more clearly one may’consider the Hilbert space of all
square integrable functions on the groﬁp maalfold. The inner automorohi?ms
by no means correspond to the set of all unitary transformaticns on this

5 not

s

Hilbert space. Therefore the "entropy" s'(t) defined by Eq.(VI-1)
necescarily the physicel entropy, but merely a quantity the increase of

which indicates the diffusive nature of ths motions.

24+ See, for example, A. I, Khinchin, iathematical Foundationg of Inform-
tion Theory, (Dover Fublication, New York, 1957).
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B. POSolble Reductlon of the Dxffuglon Lquatlon for P(g,t)

When the solutlon of Eq.(V—2°) for P(g;t) can_be obtained by solving
.equations of lower dimensionalities‘(i e., fewer variables) but of the
same. form, and such that the sun of the dimensionalities of these equationo.
does not excecd that of the orlblnal equatlon we say- that the equation is
reduced or: the 1ntegratlon probWGm is Lvuuced We will give a somewhat
tr;vnalAexamp%f'of such a r;ducb;on when the group iz a direct oroduct of
twovinvdrianf‘s;55duné. | | |

‘ :91/" - S .
Let 1?3 : "?-ta‘ de dGﬂOub the Lle algcbra QouOCiath with

. : . . o/
j? by ~}§7 and;letﬁfg"‘ Iorm a bdolg of J?’ ' = 1,2,...,K'; K :dlmene-
- o B : , :
2sionality of’,S?).x-'The aloeoxa associated with j? - is denoted Vﬁy,_of

wh cb e . form a b is, (p":l,Q,.,.,K”; K":dim. of .ﬁ?”; K1+Kn=K),
In this se one could eXpGCu that th bou ion (V~22)‘can be reduced,

o . ol
since therezls no non—commutivity to couple the two invariant subgoups i?
and =7 . - - Such is, hdwever not the case, at least not in any obvious

way, because the CO@LflClbntu “éf (t)  etill may couple the distributions

R p : , :
on. the respective manifolds of the suboroups. Such couplings are absent

I ' o7 - ‘ : .
only if 211 @ and 7R are gzero. Under 'such an assumptlon,
u"‘y' v n 'IJ"

‘which we will now mzke, ‘it is easy to see that the equatlon indeed separates.

_qu any g &« j?, there is a unique factorization such that g= g'g",

: X 4 o . 124

with g € 5? cend ghe g .

. Lpt us dellPC'

P({’,t)= P:l'(g";tv)v P'z"(g:”.;‘tlj'. o (71~7)

* Since
x'. ." C . 4L —_

exp ( > / a )fs,; ifxn( >_Jh ) gi]ifxp({EZ:x ) gii (i

L lk p . ‘ i VRS
. 1



we have,

ng g}l" Pl(g t‘)P (g )t) r& 1 *l(g ,u)] [a " g'; )] (VI-9)

Differentiating Eq.(VI-7) with respect to t, one gets

0 ‘
TEEEY = T w(t)L L3, P (@n)] Bylenst)
2 . AN \
(8] Pyghit) a e, P2(g";t) (VI-10)

Dividing through by P(g ﬁ),

. 2 AN
Pl (g 7t) ‘LP (g t) - & I7 l(t)au!aylpl(g';t)' :

£a>

A
a

=1 D o
p2 g",r,) { ) " ) ”}/"pf)\zu’b) - _étbpz(gn;t)} (V1-l]T) N

The left hand side depends on g alone, and the right hand side depends

only on g'"; hence

3 . ' A~ /\ ‘\.J. L ...7‘ =\ ":; PR SR ' ']l ,
atPl(g He ) = p.'})'(t) ap’ay'P:'L(g_’U) + (%) ;l<;§',u/ (f‘[-_?vd‘)-
2_p (g";t) = () a & aFo (g"5%) = £(t) P (g"st) (VI-12p) .
3t 2 ’ 1, 1 ~

c u'lp

The function f£(t) can be set to zero by the recuiremcnt of cornservation
of normzlization for P (g';t) and _P (g”;t). The initial coniditions
consistent with Eq.(V-22) must be: P (g;0) = v(gt)y ,j ("0 = 5(g");s
nence Pl(g’;t) and Pz(g";t) satisfy eguations of the same form os

Eq. (V-22), but of lower dimensionalities.
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- VII, IOTIONS OF DYWAMICAL VARTABLES

AND SYIMETRIES OF MOTIONS

A, Tire Developrment of Dynzmizzl Varizbles.
" For sections VII-A and VII-B, we will go beyond motions of type (B)

-end (C), and consider general motions of typg (4):

L opan = R0 pEN

(VII~1)

' ﬁ?_(t",t") € A(f for all t" 3 t!

Let us consider the time rate of change of the ensemble averages of
some dynamicel variable K,

If we defines

(P E) (VIT-2)

I

<K> (&)
ey
then

<K> (47) = ?&'[R(t'l,t")/ﬁ (t'),KJ‘:.Tr [P, .R(.bn,:'ty.)K] .

e may therefore simply consider the action of éfz‘(t",ﬁ’) on K, and

then average over a fixed initial ensemble., _‘In facti'denoting
Kt) = R (,0) K S (VIT-4)

then K(t) satisfies an equation analogous to Eq. (VII-1),

K(t") = 'dff(t",t') K(t!) .
(VI5-5)

R (Bh,tr) € /,(,/ for all t" » t!



48

If the set of K(t) spans a vector space ,yk

is smaller than that of ¥y, then Eq.(VII-5) is actually simpler to deal

whose dimensionality

with than Eq, (VII-1)., Such considerations are of practical importance
since in actual problems one is often interested primarily in the éhangé
with time of the averages of vectors in >EK for some important variable
K, and not so much in the density matrix itself. |

For the case where P (t) satisfies the diffusion equation, one has

‘;’t <K > () —ép(t) Tr{j_o‘(t), [Ap, [A“, K]]} (VII-6)

v
—~~
‘..
~
Il

-F0 <By [h, Ja@ 0 om)

av

So any variable Ay which chmutes with K as well ag with EA“, K] .;”v,;
will drop out of the expression. Differently stated, if the group is-
a product of two normal subgroups, one of which acts like idenfity on K, .
then that subgroup can be left out of consideration,

Finally, we umention a possible way of defining "the amﬁunt of infqrm&~
;éion abouﬁ K possessed for the ense@ple/ﬂ LH Inqp(K).

Let the expansion of K into idempotents be:

K = 57 k.F. (VIi-3)

where the F. are associated with the distinect eigcavalues of K. Leb
J .

fj = Tr (}OFE); they Fepresent the probaubilities that the sysztcew is in
one of the subspaces defined by Fj. We may then use the measurc:
‘ p " ) .
Inf (K) = 1In(p) + > £, In T, (VI-9)
» j=1 J J
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The measure of information so defined has the following properties:
(1) ‘thc smallest value assumed b& Ihfﬁ(K) “is 0, while the largest
value assumed is In(p); (ii) it Y = £(X) is any function of K such
that' £ (k) # £(k;) for =n # 3', then Inf ,(Y) = Ingp(x).
One notes that for a disordering diffusion process, i.e., JXO)
tends towards the uniform ensemble, Inf /,(K) need not Ee.decreasing \Jrith"

timo, This is reasonable since Tr(Fj) need not equal Tr(Fy,).

N

B. Symmetries Possessed by Motions
A motion is said to'possess the unitary symmetry U, if, for all

S E §d:
R (L1 t1), [Uof’(t')uo J:. U PEMTo ‘(VII~10&)‘
end is said to possess the antlunitary symmetry U, if
—~ + ~ + ) v ' ' !
R (w84 [0 U = U, e, (VII-~10b)

That the motion has such a symmetry impliess,and is implied by:
()
. ., |
Unitary symmetry - @, R & = ~ (VII-1la)

. . . . ) P A :
Antiunitary symmetry QITIRTQ = R . . (VII-11b)

where Qa and . 7  are defined in section IV-Afa).
() :
. ‘ o
Unitary symmuetry Q,’ 772 Qo = 7
QL
‘ Q Qa = DZ,’

(VIT-12a)
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Ie

, : - " A
Antiunitary symmetry QT MNT L = N

. l - (VII-12b)
-7
QT LTQ =L |
(c) For motions of type (C-2), for unitary symmeﬁfy, Plust",t') may
be so selected that |
Plyguuy 5t",t!) = Plast",t*) , (VII-13) .

_(It would be false to say that P(u;t",t') ~is invariant, since theée

functions are not unique.) Likewise for motions of type (C-3),
Ulg) - U, u@@ Uy, . o - (VIZ-14)
1s an automorphism, and P(g;t",t')'-may be so selected that it is invariant

under this automorphism.

For an antiunitary symmetry, Plu;t", 1) .may‘be so selected that
Plugu’g st7,61) = Pluztt,t!) - |  (ViL-15)
{Likewise, for mdtions of type (C~3),”
‘ x + , .
U(g) - U, U (g) U, (VIL-16)
is also an autombrphism, and P(g;t",t') may be so selected that it is
inveriant under this automorphism.

It is easy to see that if U, 1is a unitary (antinnitary) symmctry

to a given eigeavalue of = & ((21.7 Y} is stable under the wmotion. For
1% ;
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any vector Xe€V such that

£ x = AX or, QT X = AX) (VII-17)
one has, respectively,

Q(RX) = ARD)  (r, Q.T(RY) = A(RX)) (VII8)

Furthermore, (ono (or & 57/9 ). is stable if L is, If a density.
@atrix ié in the'sﬁbspace belonging to a given eigenvalue of Qa , the
eigenvalue is necessarily unity, which.means'thét.it commutes with 'Ué.
One gets a reduced problem by considéring the motion of all density
matrices which commte with Uy. (Similarly, for an antiunitary symmcﬁry,
one may:consider the motion of all density matrices satisfying UOJFUOfﬁ)?.)
For example, in certain expeﬁiments iﬁvdlving.optiéal pumping, one may have
it so tbat the motion is iﬁvariant upder rotations around the B—éxis,'in
which case a diagonal density matrix in the representation where J3 is

I
diagonal will stey diagonal, and one gets a_reduced problem in situdying

the motion of diagonal density matrices.



W
proper
watend

cchaezii

to lead to a decreasd- d¥rinformation; and we have- alsé:
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VIII. CONCLUDING REM:iRXS

»
'3

¢ nove studied stochastic motions from two viewpoints:: we studied the

tics of generel linear mappings, and the correSponding motions, which

*“1yzed sto-

.

ic motions which cor respond to a diffusion process on a group manifold.

,5;Fhough for simplicity and definiteness we have limited ourselves to the

consider

result

Gimens
ulO"l [0}
dl{e.

cquati
for the
oi' Eq.
Purthe

Tinite

ion of finite dimensional Hilbert spaces, it is clear that many

s have extensions to the infinite dimensional case., The diffusion
ription in particular provides a natural way of making such extensidns,
ivation of Eq,(VfZZ) for P(g;t) has clearly nothing to do with the
iqnality‘of the Hilbert space of the systen, and even in*the deriva~
£ Eq, , (V-20) for the dvn81ty matrix no use has been made of the finite

nality of the Hilbert’space on wvhich  operates, -The diffusion
on for the density matrix ‘will therefore formally be exactly the same
e infinite_dimensionél case; Of course in this case-thé:integfation
(VmZO)Ais_no longer asfsimple a5 in the finite dimeﬁsional case,

5

%more, it goes without saying thML not everything which holds for

dimensional vector spaces will continue to hold. Thus, for instance,

“herdrace operation can be definedsonly with further specification on the

mical

ss, it is worth noting that'the consideration of the motion of a dyne—

25 :
£ operators and the definidion of entropy becomss obscure., Never-

variable may still lead to a finite system of ordinary differential

equations, if a finite dimensional vector space spanned by dynamical variables

Trace-~type operators'" form a proper. subclass of Hilbert-Schmidt opere-
ors., Tor possible extensions of the dezlnitlon of the trace opcration,
ee I. E, Sogal, J. of Math. and lech., 9 623 (1960).

St



is stable under the motion, as was_méhtioned under Eq, (VII-5). It is
advantageous, therefore, to concentfgté on the motion of dynamical

varisbles in such cases.
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Appendix 1
The Inversion Formula Eq.(III*13)

We will first give the following lemma: -

Lemmas Let x:;y£, and { Ba} be a complete set of orthonormal hermitean

basis for V¥, then
i | |
>, B XB = ITr(x) (A1-1)
a=1. ¢ a '

This lemma is most easily proved by first using a special basis. eij

and 0ij of the form: %
‘ ejj = (2) T (li><j| + lj><dl ) for 1 #j
es, = ]i><i.|’
ii
% ‘ '
o5 =17 (l1>q| - 13><i]) (k1-2)

The result is then generalized to other orthonormal bases.by a real ortho-
gonal transformation in zi?: ' .

" By use of this lemra, the Eg.(III-13) and Eq.(III-15) are casily proved.
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i

Appendix 2

Rbal Parts of the Elgenvalues of 770

For conotant 77? it is clcur that the real parts of the cigenvalucs
of '771 cannot be positive, eince chbTWLoe the exponentlal growth of
mqtrlceg. We w111 show that the ame.?estrlctlon is necessary even vhen
772.(t) is- varying with tlmt,. | . | | |

Let y(t) “be an elgenvector of /77(t) co“rééponding £§ somé‘eiyen~.
'value. A . (Ib is. to be noted. that /*» may be a degencrate clyenvalu«,
éna that /77 (t) may not be dlugonall able _whereau 52f7(t) can always

be diégonallzed.)‘ Iet"y(t) bv,normalizcd to unity, ‘then

: oL _ - . o
Re A= > Re (v Mgy ¥g) o (ae-1)
Q‘;B“ ) BT - . .
Re A= 1/2> 1°Z Tr(BaYBQY‘" oz” Tr(BaY pr)}  (h2-2)
‘ - a,ﬁ , -
5 . , . ,
. ,E: '
where .Y = > y.B,, and is not nOCCuo rlly dldﬁonullédble
a=1 '
Denote .
‘ ‘ . . . + ‘ T JRRY
J=1/20+Y") ; K=1/2(Y ~-Y) S (h2--3)
" Re = 7 ~(B JBJ ) + Tr(B KB K {} (L4
| e A %—é Dfa,a{ (8,78,7 ) + Tr (5K,

Both J and K can be expanded into primitive hermitean idemwotents:

i oy
J=> JE k= ST e ' (.
: 2o dgtn 3 T T .

=1 n=l .
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Denoting the symmetric parts of ' > OgZBTr(BuEmBBEn) and
N . (1,[3 v R
%“é ofaﬁ'h'(BaE'mBaE'n) by fp, and £l respectively, we have
b

e .A .
R = + 3 4. 1 : )
e A= 2 (538 ki) | (h2-6)

Using the conditions (III-18), (III-19) and (III-20), we obtain

Re A\ = é’— Z {(jm—jn)(jn—jm)fr'm + (lgn~kn)(kn~kré_)f' m} <0 (A2-7)

Hence for matrices /7 in ;ZV/satisfying Eq. (I1I-18) and (III-19), the
condition (III-20) implies the négétive semidefiniteness éf the real parts
of the eiéenvaiuas of 771(t). - | | |

Frbm Eq.(IV—iO), we see-tha£ tbe conditionv(III—20)~aléo implies that
. the eigenvalues of é? €<g§ ao not ékcéed oné in magnitude,

. . ’ ¢ 7 '
That the positive semideliniteness of the submatrix o{, implies con-

dition (III-20) cen be shown in a similar manner. Finally, that the arrows

do not go to the left in Eq.(III~21) can be demonstrated by counterexamples.

+

”
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Appendix'B |

- Stable Ensenmbles

(a)  Proof of the Eq, (I1I-26).
Ve first give the follewing lemma.
lemma: If R €/@f, end F is a hermitean idempotent such that

Tr (FRF) = Tr(F) = f b (£3-1)

then, RF = F _ - : (£3-2)

. This follows froﬁ,
0 ¢ r(F -RF)” = Tr(RF,®&F) ~f ¢ O - (A3-3) -

and hence 2 )
r (F-RF) = 0 - (A3-4)

Now for X<V . which satis{ies &g)X'z X, let the expensicn of X

”h’
into hermitean idempotents be X = | % I, and such that I are
le=1 ) , i
associated with distinet eipenvalues. Ve order the eipenvalues such
that,
X) <X, <. <X (83-5)
Lat us also define
f =z Te(®) > 0O (£3-6)
k ( k)
Then we have
. D
fx = Tr(FX) = >z T™(F RF - {(83-7)
PP ( P ) %%j k p k) _
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TR Lo r R -l .
= F - - g -
o Xy k—-z..lTr( P Fk) ' k‘_E_ ‘(xp xk)'l’r(Fp@ Fk) (A3-8)
i.e. | p-1
hil = f - -, )Tr(F R - ~
5o o kzzl, (xp xk)_ v ( o F) (43-9)

Since each term in the sum is non-negative, we must have
"hﬂﬁ%)eo for k <p | (A3--10) -

Hence

It
)

@&« (Fpo'{va) _ (43-11) |

b

Also, since each term in the sunm Z‘I‘I‘(Fkﬁz Fp) is non-negative, we
: k=1

have '

TI'(FkO‘ZFp) = 0 . for k<p | : (A3-12)

The argument can then be repeated for 'fD~ % and so forth. Ea,(III-26)

p-1?
then follows from the lemma (43-2). The corollary follows from the defini-

tion of the matrices ~/77.

(b) Proof of Eq.(III-28).
Let 0\36/&/, Xéjh, and K X = X. Let the cxpansion of X into primitive

. N .
. . . S ; o ‘e
hermitean idempotents be such that X = > i %y, where x> O for 1 < kep. g

=1
and =z <0 for p <k gn.
Denote
P“SP_'X“‘ ; | 'N-—'_}r}“'x? (h3-13)
= 2. - 3 = L LR
k:i Kk kigjl ] :
If

RP = P + D C (8321



then , ‘

' 0\7’N = N - D

We have . S S
CMERP) + HE RN = x

Since

~

.Tr(EkoQ . < 0

it means that *
T RE) » x

. On the other hand,
D n_ D
T g . TV I N
> (B AP+ >0 W(ERE) = 3 %
k= : k=n+1 - k=1
and o
>, TERP s 0
k=ptl o K
Hence the equality sign holds in Eg. (43-13) for

that

EKRN = 0 | (G < p)

which in turn means

D = 0 (< o)

Similerly, il can be seen that %f D=0 for o

1 ¢k g o.

L) (AR S ..~
Trhis moons

(A3-15)

(43-16)

(A3-17)

(A3-18)

(43-19)

(43 ~20)

(£3-01)

(h2-72)
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