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ABSTRACT 

The results of electronic machine studies of equilibrium configurations 

of an idealized charged drop are presented. The symmetric family of saddle-

point shapes has been traced as a function of the fissionability parameter x. 

The properties of the s'addle-point shapes have been tabulated in the interval 

x = 0.30 to x = 1.00 in steps of 0.02. The appearance of these shapes changes 

from dumbbell-like for x $ 0.67 to cylinder-like for x :Z 0.67. The transition 

is fairly rapid, but not discontinuous. The properties tabulated include the 

energies, moments of inertia and quadrupole moments of the saddle-point 

shapes. In addition, the elastic constants (stiffnesses) of the symmetric 

saddle-point shapes for different types of symmetric and asymmetric dis-

tortions have been determined. The shapes were found to be stable against 

asymmetry down to x = -0.394 , at which point an asymmetric family of equi-

librium shapes bifurcates. 

A simple formula. is given which reproduces the calculated liquid-

drop thresholds with fair accuracy. 
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and 

Wladyslaw J. Swiatecki 

Lawrence Radiation Laboratory 
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August 30, 1962 

I. INTRODUCTION 

In this part, we present the results of quantitative studies of the prop-

erties of saddle point shapes of a uniformly charged drop possessing a sharp 

surface.
1 

Within the idealization adopted in the present series of papers the 

total potential energy of the drop is made up of two parts, the electrostatic 

and surface energies. The dimensionless parameter x, defined by 

X= 
(cha,rge) 2 

10 (volume) (surface tension) 

specifies the relative magnitudes of the two energies. The qualitative aspects 

of a number of families of equilibrium shapes resulting from the bale3:ncing of 

the electric repulsion and the attractive surface tension were discussed in 

Part IV, to which the present paper serves as a quantitative sequeL 

The principal qualitative result of Part IV was that a distinction was 

drawn between cylinder-like shapes of equilibrium (the Bohr- Wheeler family) 

for X .'2 0. 7' and strongly necked-in shapes of equilibrium (the Frankel-

·.; Metropolis family) for x $ 0.7. A second qualitative result concerned the 

asymmetric shapes of equilibrium (the Businaro-Gallone family) which were 

found to appea-r for x > xBG' with xBG estimated to be in the neighbo:urho.Od 

of 0.4 or 0.5. This family governs the stability against asymmetry of the 
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symmetric sa4dle-point shapes and provides a distinction between fission and 

spallation. 

The discus sian in Part IV indicated that it was not certain whether the 

distinction between the cylinder-like and necked-in families of symmetric 

saddle-point shapes was of a qualitative or quantitative nature, i.e., whether 

the transition from one type to the other was discontinuous in a plot against 

the fissionability parameter x, or continuous but rapid, so that it occurred 

within. a narrow interval of x values. The balance of the evidence presented 

there was taken to indicate the first alternative. The quantitative studies 

described here have clarified this ambiguity and the result is that there is a 

rapid transition from one type of saddle shape to the other, but that the change 

is not discontinuous. 

Concerning the question of the stability of the symmetric saddle -point 

shapes against asymmetry, the qualitative discus sian given in Part IV has 

been confirmed and the critical value xBG' where stability against asymmetry 

is lost and a distinction between fission and spallation disappears, has been 

determined to be xBG = 0.39 4 . 

The other families of equilibrium discussed in Part IV, corresponding 

2 
to shapes with more than one neck, are not considered in the present paper 

. ' • 
lr' 
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II. DESCRIPTION OF THE CALCULATIONS 

The method used to find the shapes of equilibrium of the drop was as 

follows. The configuration of the drop, assumed axially symmetric, was 

parametrized in terms of an expansion of the radius vector R( 8) in Legendre 

polynomials: 

Ro 
R(8) == _A._[l + a. P (cos 8)] , 

n n 

where the set of N coefficients a. specifies the shape. and A. is a param
n 

eter normalizing the volume of the drop to the standard value 4/3 1TR0 
3 

(s'ee 

Parts III and IV. The highest value of N used in the present calculations 

was N == 18.) The surface and electrostatic energies of the drop were then 

calculated by numerical integrations and, for a given value of the fission-

ability parameter x, the total energy was made stationary with respect to 

small changes of all a. is. 
n This was accomplished by a suitable search in 

i 

the N -dime:p.sional space of the a. s • . . .n 

The procedure for tracing out the behavio'l,lrcdftJilte family of symmetric 

equilibrium shapes as function of X WaS usuapy tb start With the known 

members of this family for x == 1 (a sphere) or x == 0 (two spheres in contact) 

and to decrease (or increase) the value of x in small steps, using the known 

shape as a starting point of the search at the new ·x value. (Once several 

~· consecutive solutions had b.een determined, a more refined extrapolation was 

used to predict the next unknown shape.) Each time a symmetric shape of 

equilibrium was determined in this way, its properties were subjected to a 

detailed study. This included the determination of the shape and its energy 

(surface, electrostatic, andtotal), the:m:run.e:ntcsco[inertia about different axes, 

and the quadrupole moment. In addition, the degree of instability of the shape 
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was determined, i.e., the number of degrees of freedom with respect to 

which the shape was unstable (see Part IV). This meant the determination of 

~ 

the number of linearly independent co~binations of the a. s with respect to n . 

which there was instability. At this stage small deformations with and with-

out reflection symmetry were included, ' ' i.e., small changes in all a. s with 
n 

n from 1 to N were considered, so that the degree of instability with respect 
. I 

to symmetric as well as asymmetric displacements could. be ascertained. 

A byproduct of this study was the determination for each shape of equilibrium 

• 
of those linear combinations of the a. · s that make the potential energy in the 

n 

vicinity of the saddle a sum of squares (without cross terms of the type a.na.m). 

The number of negative terms in this sum is the degree of instability of the 

shape in question, the. coefficients in the sum are proportional to the elastic 

' constants of the shape, and the linear cornbinations of a s that make the 
n 

potential energy a sum. of 9quares are the eigenvector displacements asso-

ciated with the elastic constants. The distortions of the drop corresponding 

to the eigenvector displacements are not invariant with respect to a change 

of the expansion parameters a to another set', and their significance is, 
n 

therefore, only relative to the particular choice of the expansion parameters 

(in our case coefficients in an expansion of the radius vector in Legendre 

polynomials). The number of negative elastic constants (and thus the degree 

of instability} is, however, an invariant ( l) and is a fundamental intrinsic 

property of each shape of equilibrium. It follows also that the' critical value 

of x at which an elastic constant changes sign does not depend on the partie-

ular parametrization of the shape in terms of Legendre polynomials but is an 

intrr_insic;: property ofj:he fa~ily of equilibrium shapes. 

A discussion of the reliability and accuracy of the calculations if given 

in the Appendix. The situation is roughly that the results are generally very 

·'I 

1/ 



.. 

-5- UCRL-10450 

accurate in the range of x values 'from 1.0 down to 0. 7, moderately accurate 

from 0. 7 to 0. 5, and of uncertain accuracy, in some respects at least, be-

tween 0.5 and 0.3 C. Difficulties were experienced in obtaining solutions 

below x = 0.28, although in the vicinity of x = 0 itself excellent representa-

tions of the correct saddle shape (a pair of tangent spheres) were obtained. 

III. THE RESULTS 

Table I is a comprehensive summary of the properties of saddle point 

shapes from x = 1. 0 down to small values of x. It consists of a set of sub-

tables, one for each value of x, as listed on the left. Each subtable consists 

of four rows to be read from left to right. The format of: the subtables is 

indicated at the head of Table J. T·he first row gives the· nine even a. v s 
. n 

(from a. 2 to a.
18

) specifying the symmetric saddle shape, followed by the 

normalizing factor }.., The next two rows, apart from the last two entries, 

give sixteen values of the radius vector R(8), for 8 from 0 to 90 deg, in 

steps of 6 deg. The last two entries in row 3 give the relative quadrupole 

moment Q .of the shape and an index of accuracy (labeled "R. M.S. 11
) de-

signed as a guide to the reliability of the solution· in question. If this number 

is small compared to unity the solution is accurate (see Appendix A -1 for 

details). T·he last row gives £, the relative deformation energy in units of 

the surface energy of the sphere, and B and B , the surface and electro-
s c 

static energies in units of their respective values for the spherical configura-

tion (see Part IV). T·hese are followed by the elastic constants c 2 and c 4 

for two principal symmetric distortions and c 1 and c 3 for two principal 

asymmetric distortions. ( T·he coefficients en are related to the 1 eigenvalues 1 

}..n of Part III by en= 2}..n.) The last ,three entries give the relative moments 

of inertia taken about the axis of symmetry and about an axis at right angles, 
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and the reciproc.a~ of the effective moment of inertia, defined by (2): 

-1 0. -1 
- d 

.l 

The unit here is the moment of inertia of the sphere. 

Figure lA shows a number of saddle-point shapes for x = 0, 0.3, 0.4, 

0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. Figure lB compares the necked-in shapes 

for x=0.3, 0.4, 0.5, and 0.6, and Fig. lC the cylinder-like shapes for x=0.7,. 

0.8, 0.9 and l.O. In the first case the overall length of the shapes increases 

with x, in the second case it decreases. The transition from one type of be-

. i . ' 

havioU:t:tn'th:e other is farily rapid, as shown in Fig. 2, where the major and 

minor axes of the shapes are plotted against x. The transition occurs around· 

x::::: 0.6 7 and is marked, in additio·n to the reversal of the trend in the overall 

length of the shapes, by a rapid change in the radius of the neck, which is 

doubled between x= 0.6 and x= 0.72. 

The deformation energy of the above symmetric configurations is shown 

in Fig. 3. As discus sed in Part IV, the portion of the curve between x = xBG 

and x = 1.0 (with xBG = 0.394 -see below) represents threshold energies for 

fission. The part of the curve between x = 0 and x = xBG corresponds to 

saddle shapes with instability in two degrees of freedom (one symmetric and 

one asymmetric) and does not have the significance of a threshold for any 

reaction. We note again the different behavior of the curve in Fig. 2 for x 

below and above about 0.67. In the former case the deformation energy i; 

is almost a straight line (not quite -there is actually a point of inflexion at 

x = 0.54 7 ). In the latter case the threshold energy is closely represented by 

a constant times ( l- x)
3

. The transition from one trend to the other occurs 

within a few hundredths of a unit around x = 0.6 7. A simple formula that 

reproduces approximately the calculated values of £; may be written as 

follows: 

.. 

• II 
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s 0.38 
3 x), for 

1 <X< 2 = ( 4- 3 3 
;.,,1 

s 0.83 ( l 
3 ~> < < l. = - x) ' for 3 , X 

(As a mnemonic we suggest the name 11 T 1hree-Four T-'hreshold Formula" for 

this expression: apart from a single four all the coefficients in the formula 

can be made up from threes-considering, that is, an eight as made up of a 

three and its reflection! Trhe numbers T:hree and Four are themselves sug-

gested by the first few letters of 11 ~shold Formula. 11 Further properties 

of interest to numerologists are that the lower limit of validity of the formula 

may be taken as one-third (or x = 0.33), and that the transition from the first 

to the second expres,sion occurs at l - x = l/3 (or at l - x = 0.33). T 1he value 

of s at x = l - 0.33 is 0.030. Trhe formula is accurate to one unit in the 

third decimal, which means in practice that thresholds calculated will be m 

error by less than three-fourths of a MeV.) 

T 1he approximate distinction between the region for x < 0.67 and x > 0.67 

is reflected also in other properties of the saddle-point shapes. T1he upper 

part of Fig. 4 shows a plot of the moment of inertia c37J_ taken about an axis 

at right angles to the axis of symmetry and th~ lower part shows the moment 

of inertia 8
11 

about the axis of symmetry. Figure 5 shows the reciprocal of 

the "effective moment of inertia" d ef/. Figure 6 shows the behavior of the 

quadrupole moment. 

Figure 7 shows the values of an' specifying the saddle-point shapes, 

as functions of x. We note that down to about x = 0.7, a 2 and a 4 are the 

1 

only coefficients with appreciable magnitudes. Below 0. 7 all the higher a ... s 
n 

come in rat:Qer suddenly,· and soon even ·a 
18 

is not negligible. T~he con

vergence of our calculations as a function of the number of Legendre poly-

nomials retained changes rapidly from excellent for X :Z 0. 7 to poor for. 

x :S 0. 7. T 1his is discus sed more fully in the Appendix. 
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Figures 8A and 8B show the stiffness coefficients ("elastic constants 11
) 

of the saddle shapes against different types of small distortions: Fig. 8A 

. corresponds to the two principal symmetric distortions, and Fig. 8B to the 

two principal asymmetric distortions. For x values close to 1, the calcu-

lated values agree with the elastic constants deduced from expansions in 

powers of (1- x) (see Part III). 

We note the rather complicated behaviouncof:the stiffnessesa>s functions of 

x. Trhe stiffness c 2 is the only negative symmetric one, and is associated 

with a division or fission coordinate. Trhe value of c 2 is zero at x = l 

(wherE:! the potential energy has a point of inflection as function of the division 

coordinate a 2 ) and then becomes negative, reaching a maximum negative 

value around x = 0.83. Trhe stiffness c
2 

then decreases rapidly in absolute 

magnitude until, quite suddenly, it flattens out at" a small negative ·value, the 

flattening-out occurring dose to x = 0.67. (A change in sign of the stiffness 

c would have been associated with a 11 doubling back11 of the Bohr- Wheeler 2 . . 

family of shapes-see Part IV.) 

Trhe next higher symmetric stiffness c 4 , associated at x = 1 with a 

P 4 (cos 17) type of rippling, decreases until about x = 0.67, and then flattens 

out at a small positive value. Trhe lowest asymmetric stiffness c 1 is asso

ciated with a displacement of the shape along the polar axis (at x = 1, when 

the drop is spherical, a l? 1 (cos 8) distortion represents such a displacement). 

Trhe value of c 1, which in an ideal calculation with infinite accuracy would be 

exactly zero, remains small, though finite, for all values of x. The next 

higher asymmetric stiffness c 3 , associated with the first intrinsic asym:r-::. 

metric distortion (of P 3 (cos 17) type at x = 1), decreases.with decreasing x. 

Trhe variation is not smooth, a sudden decrease around x = 0.67 being 

followed by a more gradual one, the sign of c
3 

changing at x = 0.394 . 

;., 

•. 



!)" 

-9- UCRL-10450 

Below this value of x there are thus' two negative stiffnesses, c
2

(symmetric) 

and c 3 (asymmetric). . ·.: .b.~. '. 

Figure 9 illustrates the distortions associated with the lowest symmetric 

stiffness c 2 , a fission coordinate. Figure 10 shows an example of the asym-

metric distortion associated with cl' an almost pure shift of the center of 

mass without intrinsic distortions. The distortion as so cia ted with c
3 

is 

illustrated in Fig.· 11 for the .particularly important case of x = 0 .4, where the 

symmetric saddle point shape (the dashed figure} is about to become unstable 

aga·inst asymmetry. The nature of this asymmetry is indicated by the solid 

~urve in Fig. 11 and may be identified with a "sucking up" of one fragment by 

the other. Asymmetric shapes, of which the one shown in Fig. 11 is an 

example, constitute the Businaro-Gallone family of equilibrium configurations 

discussed in Part IV. 

IV. DISCUSSION 

These results, although not yet exhaustive and of uneven accuracy, 

clarify in; a quantitative way certain aspects of the potential energy of an 

idealized charged drop. In particular, the fate of the conventional family of 

equilibrium shapes, coinciding with the sphere at x = l, has been traced 

down to small values of x. The most fundamental property of this family of 

shapes, its degree of instability, has been found to be 1 from x = 1 down to 

.; x = 0.394 , and 2 below x = 0.394 . This defines the range of x values where 

the conventional family of saddle shapes has the physical significance of a 
, .. 

threshold (see Part IV). The n~ture of the instability that comes in at x= 0.394 

has been determined and found to correspond to an asymmetric degree of 

freedom, suggesting the sucking-up of one fragment by the other. (At x = 0 
. ~ ' ' . 

' the symmetric shape of equilibrium ·of two tangent spheres is known to be . 
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unstable against such ap.asymmetric sucking-up.) Assuming that there are 

no points of bifurcation in the inadequately studied region around x::::: 0.2, the 
( 

only place in the range 0 < x < 1, where the nature of the conventional 

family of equilibrium shapes changes fundamentally, is at the bifurcation 

point xBG = 0.394 . Above this value the symmetric equilibrium shapes are 

stable against asymmetry and define a threshold energy; below this value 

they are unstable against asymmetry and do not define a threshold energy. 

In addition to the qualitative change in the properties of the conven-

tional saddle-point shapes at x = 0.39
4

, we have already noted the quantitative 

changes .that take place in the region around x = 0.6 7, where a rapid transi-. 

tion occurs from necked-in to cylinder-like configurations. Viewed against 

the background of the discussion in Part IV, where a discontinuous transition 

between the necked-in (Frankel-Metropolis) and cylinder-like (Bohr-Wheeler) 

families of shapes was anticipated around x = 0.7, the present results repre- · 

sent a step back in the direction of the conventional picture of fission, with 

a continuous family of saddle--point shapes spanning the necked-in configura-

tions at low x and the cylinder-like shapes at high x. In particular, the Boh\l'-

Wheeler family does not "double up" in a plot against x, and there is no 

second branch of this family with complete stability against all small dis-

tortions. Therefore the more extreme modifications of the conventional 

picture of fission, considered in Part IV, have not been confirmed. 

On the other hand the rapid change in the properties of the saddle-point 

shapes in the neighbourhood of x = 0.67, found in this paper, is in line with 

the semiquantitative estimates of Part IV, Considering the approximate 

nature of those estimates, we may regard them as not inconsistent with the 

present quantitative results. The physical reasons for the occurrence of a 
. ·..; J f':... 

critical region of charge values in the neighbourhood of x::::: 0, 7 were 
~ ; .• I 
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considered in Pa!'t IV and were associated with the transition from an essen-

tially two-body process at low x values, where the necked-in form of the 

saddle shape determines to a large extent the outcome of the division, to a 

more complicated situation at high x, where the cylinder-like (or spheroidal) 

saddle shape does not determine the characteristics of the disintegration. 

The present results have made the nature of the distinction clearer, and 

the following conclusions are suggested. Below about x:;:: 0.67 the fission of ,. 
an idealized drop would be relatively simple, with many general properties 

·• of the division determined to a large extent by the saddle shape, which may 

be approximated by two deformed fragments (for example two spheroids) 

connected by a thin neck. In particular the number of fragmep.ts (two) and 

their most probable relative sizes (equal) may be predicted with some con-

fidence. Moreover, the average kinetic energy of the fragments after divi-

sian, and their average internal excitations, should be closely related to the 

effective separation of the two halves of the saddle shape, and to the distor-

tions. of the fragments. A description of more refined features of the div-

ision, such as the spreads in the kinetic energies and internal excitations 

around their average values, could also be attempted on the basis of an 

analysis of the neighbourhobcLo£ the saddle-point configurations. · T.his seems 

particularly promising since the saddle shapes are in some respects well 

·- represented by simple configurations of two spheroids. Configurations of 

tangent spheroids, whose total energy was minimized with respect to their 
i 

eccentricities, were considered in Part IV. A somewhat better approximation 

is obtained by minimizing the energy for two spheroids whose tips are held 

fixed at a suitable constant separation. The separation that reproduced well 

the exact threshold energies for x :5 0.67 was found to be 

( 0.2) (4rr /3) l/
3 

R
0 

= 0.3224 R
0

, . where R
0 

is the radius of the sphere of equal 
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volume (see Fig. 3). The sill!lilarity of the saddle shapes and the two-sphe

roid configur~tions ;is illustrated in Fig. 12 for x = 0.5 (a) and 0.6 (b). The 

energies and shapes of the two-spheroid configurations were obtained from 

more extensive tables prepared by Milton and Wilber (~) . 

. For X greater than about 0.67' the description of the division of an 

idealized drop would become more complicated, the essential reason for the 

complication being the necessity to give an account of the sta:ge of the process 

between the saddle and the moment of division (scission). This stage becomes 

rapidly more extendedas x increases above about 0.67, and it soon becomes 

impossible to predict with any confidence, on the basis of the properties of 

the saddle shape, the relative sizes or even the number of fragments to be 

expected in the division. 

The discussion of the stage between the saddle and scission presents 

a problem of quite a different nature than the calculation of the static equilib

rium shapes with which the present series of papers is concerned. In partic

ular, the dynamics of the process would be involved, and the physical prop-, 

erties of the drop, such as viscosity, determining the nature of the hydro

dynamics, would have to be considered.. These com.plications, which would 

not play an essential role for low x values on account of the committed form 

of the saddle shapes, would come to the fore at values of x greater than 

about 0.67. 

··The following summary of the situation is suggested. For x less than 

about 0.67 the theoretical description of the fission of a.liquid drop promises 

to be relatively simple and the r~quiremeb.t for further progress is, on the 

theoretical side, the working out of the consequences implied by the necked-

in, two-fragment saddle shapes; The use of the approximation of two spheroids 

provid~s perhaps a suitabl~ technique for handling this problem. T.he real 
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difficulty in this region of x val11EW lies on ~he experimental side, the cross 
.· .· .. 

sections for observing the fils sian reaction being relatively small compared 

with competing processes. 

.. . For x greater than about 0.67 the situation is .reversed. Accurate and 

exhaustive experiments on many aspects of fis sian have been available for a 

long time and further information may be readily obtained owing to the ease 

of observing the fis sian of heavy elements. The real difficulties lie on the 
,II 

theoretical side, where fundamental questions on the nature of the process, 

such as the dynamical characteristics of the division, have to be exp!l.ored__-;_ 

and settled before a theory of the divi:sion can be worked out. In the absence 

of more fundamental theoretical progress in this difficult region of x values, 

perhaps the best prospects for a limited advance in our understanding of 

fission lies in an effort to clarify the situation at the lower x values. This 

could be achieved, on the one hand, by extending the range and comprehen-

siveness of the experiments in this region and, on the other, by a fuller work-

ing out of the details of the theory, which for x below about 0.6 7, would 

appear to be rather clear in its broad features, and amenable to an approx-

imate quantitative treatment . 

•• 
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,·.·:APPENDICES 

. 'A.~. ';Nume.rical Procedures 

The calculation of the energies~ and saddle-point shapes of the axially 

symmetric liquid drop were carried out on an IBM 7090. In this appendix 

we describe the method by which the surface and electrostatic energies of a 

shape parameterized by the a 1 s were calculated. 
4 

We will also explain 
. n 

how the positions of the saddle points in the multidimensional a -space were 

located. 

( 1). Calculation of the Surface and :Electrostatic Energies 

Given a set of the a 1 s which parameterizes the shape of the drop in 
n 

terms of its radius vector R (B) by the expression 

R0 
{ R(B) =-A- 1+ 

the values of R (B) and dR (B)/dB were numerically evaluated for equally 

spaced values of the angle B, where B ranges from 0 to 180 deg. The 

volume of the resultant figure was then obtained by numerical integration and 

used to determine the normalization constant A. The surface area, and hence 

the relative surface energy B of the normalized shape, was then evaluated. 
s 

This part of the calculation was carried out with 199 equally spaced values of 

angle B. All numerical integrations in these ca.lculations were carried out 

using a six-point numerical i,ntegration scheme. 

The calculatioh of the electrostatic energy was a more time-consuming 

operation. It· was therefore performed for a smaller number of grid points, 

usually 41. 
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The value of the electrostatic energy was obtained by first calculating 

the value of the electrostatic potential at each grid point 8. on the surface 
1 

of the shape. This was done by evaluating the following single integral. 

equivalent to that used by Hill and Wheeler (4): 

v(8i) 3 
---:2o;-
41T R 0 

dp l 2 2] dz (z. - z) ~] K(k) -
2
· [(p. + p) + (z

1
. - z) - D(k) 

1 au 1 d8 d6. 
2 2 1 

[(p . + p) + (z. - z) ) z 
1 1 

Here p =R(8) sin8, z = R(8) cos8, p . = R ( 8 . ) sin 9. , 
1 1 1 

z. =R{8.) cosO., 
1 1 1 

and v 0 is the surface potential of the original sphe're. T-he elliptic integrals 

K (k) and D (k) (the latter defined as [K (k) - E (k)] /k
2 

in standard notation) 

have as argument the quantity k given by 

2 4 p .p k = _____ 1 ____ _ 

(p . + p )2 + ( z. - z)2 
1 1 

They were evaluated using the approximate representations of Ref. {5). 

The relative electrostatic energy B was obtained from the expression 
c 

B = _!_ J v(O) [R( 8 ) ]
3 

sinO dO, 
c 2 vo Ro 

derivedfromEq. (9) inRef. (2_) . 

If the calculation described above was being pe:rforroe~d for a 

saddle-point shape, additional results were obtained. The curvature K at 

each grid point was calculated analytically. For a true shape of equilibrium 

the quantity 
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should be constant, and should be equal to 

(See Part III. 

_!_(B - 1)+x(B - 1). 
5 s c 

The quantity K is the total curvature of a sphere.} 
0 

The quantity cp (8) and its deviation from the correct·valuewer.e evaluated 

for each grid point. As an index of accuracy the root-mean- square value of 

this deviation was calculated. T-his is the 'R. M.S. 1 of T-able I. T-his quantity 

should .be close to zero if the saddle point has been correctly described by the 
. i 

set of a. s. 
n 

For the saddle-point shape, the moments of inertia and the quadrupole 

moment were aiso obtained. Note that the 1quadrupole moment 0 Q o£-$.able I 

''is. a dimensionless quantity defined by 

a = - 1
- If J (3z

2 
- x-

2
) d (volume)·. 

R 5 
() 

It is related to the conventional quadrupole moment, defined by 

' . ~-

2 2 
Q t' 1 = f f f (3z - r ) (charge density) d (volume), conven 1ona 

by 

Q = Q(total charge)R0
2

/(41T/3). conventional 

2 ° Location of the Saddle Point 

Locating the saddle points in the multidimensional a.-space was auto-

matically performed by a rather straightforward numerical scheme. An 

approximate location of the saddle point was used to define the starting co-

ordi.nates . a.n. Values of the energy in the neighborhood of this location we1·e 

then computed and a quadratic expression in the coordinates was fitted to these 

' 
values 0 T-he location of the extremum in the energy for this quadratic ex-

pression was determined and the ca:lculation repeated using this location as 

v 



·' 
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a better approximation to the saddle point. When this iterative scheme led 

to changes in-each of the coordinates of less than some prescribed amount, 

the calculation was terminated and the coordinates were assumed to be those 

·of the saddle point. 

In order to fit a quadratic expression in n variables it is necessary to 

have (n
2 + 3n + 2) /2 linearly independent evaluations of the :function. In our 

case these were obtained by incrementing each of the n variables by plus 

and minus a fixed number (2n evaluations), and incrementing the variables 

in pairs, -(n (n- 1) /2 evaluations). T-he value of the unincremented point 

supplied the last term needed. T-he size of the increment in each variable 

could be chosen independently. For the results presented here the increments 

were·as follows: 

.6.a. 2 = ±0.02 

.6.a. 4 = ±0.02 

.6.a. 6 = ±0.01 

.6.a. 8 = ± 0.01 

.6.a.1 0 = ± 0. 0 1 

.6.a.l2 = ± 0.005 

.6.a. 14 = ± 0.005 

.6.a. 16 = ± 0.005 

.6.a. 18 = ± 0.005 

After a saddle point had been located, additional results were obtai.ned 

to determine the behavior of the potential energy surface in the neighborhood 

of the saddle point. T-he eigenvalues and eigendirections for the quadratic 

form that represents locally the energy surface were calculated. In the 

neighborhood of the symmetric saddle points the quadratic form consists of 
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two independent parts without cross terms, one for symmetric and,pne for 

asymmetric distortions. Both parts were brought to principal axe~ and the 

eigendirections ·and .eigenvalues determined. 

B. T-ests of Accuracy 

1. Accurac;:y of the Numerical Procedures 

In 9rder to asc.e.r:tain the accuracy of the numerical results obtained for 

I 
a shape specified by a set of a.n s, several test calculations were performed. 

In each o£ these cases the dependence of the results on the number of grid 

points used in the numerical integrations was studied. In certain of these 
. " .. 1 • • ; ' 

test cases the numerical results could be compared directly with those known 

from exact solutions. 

In the results that follow, the quantity in parentheses refers to the 

number of grid points used in the calculation of that result. 

Of the shapes for which the results are known, the simplest is a sphere. 

T-he results of the calculations for this shape are as follows 

B 
s 

B 
c 

1.000000 ( 99) 

0.9999982 (41) 

1.000000 (199) 1.000000 (Exact) 

0.9999993 (61) 1.0000000 (Exact). 

In this particular case the electrostatic potential on the surface is· 

known. Tohe numerical values for this potential were found to differ from 

the exact result by less than 1 part in 10
6

, when 41 grid points were used. 

·A spheroid is also- a shape for which the results can be calculated 

exactly (see Part III). A spheroid with a ratio of axes of 0. 7 to 1 .. 0 was 

approximated by the first five even terms in the expansion in Legendre 

polynomials. Using the formula of Part Il, ·these were found to be 

··, 

... 
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a 2 = 0.231693, a
4 

= 0.041883, a
6 

= 0.007451, a
8 

= 0.001314, and 

a 1 0 = 0.000232. The results· for this shape were as follows: 

B 
s 

1.0213834 (99) 1.0213833 ( 199) 1.02 13836 (Exact) 

B 0.9886766 (41) 0.9886784(61) 0.9886786 (81) 0.9886789 (Exact) 
c 

~_i 1.198668(41) 1. 19 86 5 1 '( 6)) 1.198649(81) l. 198650 (Exact) 

Jll 0.788372 (41) 0. 7 8 83 7 4 '~ 61) 0.788374,(81) 0. 788374 (Exact) 

Quad. 1.374916 (41) 1.374852 (61) 1.374847 (81) 1.37484~3:-I(Ex:adt) Moin: 

For X= 0.0, the s~ddle-point shape is two spheres in contact. This 

] 
2 . 

shape can be represented exactly as [R(tl) =constant (P 0 + 2 P 2 ). Using 

this expression, the results for the numerical calculation were: 

B 
s 

1.260027 (99) 1.259868 ( 199) 1.25 9921 (Exact) 

B 0 . 8 9 24 3 7 ( 4 1 ) 
c 

0.892442 (61) 0.892443(81) 0. 892444 (Exact) 

~_l_ 2 .2 04 9 ~ (4 ~) 2 . 2 04 8 7 ( 6 1) 2.20486 (81) 2.20486 (Exact) 

\) 
Dll 0.62 995 (41) 0.62996(61) 0.62996(81) 0.62 996 (Exact) 

Quad. 5.27775 (41) 5.27756 (61) 5.27755 (81) 5.27755 (Exact). 
Mom. 

T,his saddle -point shape can also be represented by an expansion of R ( tl) in 

Legendre polynomials, the first nine even terms of which are (see Part IV): 

a 2 = 1.25 

a
8 

= -0.1328125 

a
14 

= 0.0584106 

a
4 

= -0.375 

alo= 0.0957031 

a
16 

= -0.0480042 

a
6 

= 0.203125 

a
12 

= -O.O'Z1242.2 

a
18 

= 0.0403671. 

The results of the numerical calculations for this set of a 
1 
s were 

n 

B 1.259271 (99) 
s 

B 0.892441(41) 
c 

c9j_ 2.20366 (41) 

&II 0.62995 (41) 

Quad. 5.27355(41) 'Mom. 

1.259228 ( 199) 

0.892430 (61) 

2.20483 (61) 

0.62998 (61) 

5.27739(61) 

0.892434 (81) 

2.20486 (81) 

0.62997 (81) 

5.27749(81) 

1.259921 (Exact) 

0.892444 (Exact) 

2.20486 (Exact) 

0.62 996 (Exact) 

5.27755 (Exact) 
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As a further test ·of the numerical integration schemes, typical . 

saddle-point shapes (thos'e for x =·.0 .4, 0.6, and 0.8) were selected ft6m . 

Table 'I, (based on 41 grid point integrations ·for the electrostatic energy), 

and their properties were recalculated using 61 and 81 grid points. T,he 

results were as follows: 

Saddle Shape for x = 0.4 

B 1.2 80248 ( 99) 1.280248 ( 199) 
s 

B 0.815730 (41) 0.815739(61) 0. 8 15 7 44 ( 8 1) 
c . ' 

j 
1 

3.90878(41) 3.90920(61) 3.90924 (81) 

Jll 0.54877 (41) 0.54883(61) 0.54884 (81) 

Quad. ' 

Morn. 
11.2595 (41) 11.2607(61) 11.2608 (81). 

For x = 0.6 

B 1.285576 (99) 1.2855 76 ( 199) 
s 

B c··. 0.809449 (41) 0.8094 76 (6,1') 0.8094 77 (81) 

31 4.17560(41) 4.17357(61) 4. 17 3 44 ( 81) 

~II 0.49089(41) 0.49085 (61) 0.49086 (81) 

Quad. 12.3476 (41) 12.3409 (61) 12.3404 (81). 
Morn. 

w 

. 
• 
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. For x = 0.8 

B 1.080026 (99) 1.080025 (199) 
s 

B 0.95367 (41) 0.95368 (61) 0.95368 (81) 
c 

J_l 1.61846 (41) 1.61840 (61) 1.61840 ( 81) 

ql 0.62401 (41) 0.62402 (61) 0.62402 (81) 

Quad. 
Morn. 3.3324 (41) 3.3322 (61) 3.3322 (81) 

2. Accuracy of the Multidimensional Search Procedure 

T'he determination of the location of a saddle point in the multidimen-

sional a. ·space depends on the assumption that a quadratic expression is an 
n 

adequate local approximation to the potential energy over the range of the 

' scan defined by the set of L:l.a. s. The presence of appreciable cubic and 
n 

higher order terms would show up as a dependence of the results on the scan 

size L:l.a. . In order to test the results of 'table I against inaccuracies arising n 

from this source, the whole calculation was re-run twice, once with all 

. I I 

L:l.a. s doubled, and once with all L:l.a. s halved. As an illustration of the 
n n 

changes produced in the results, we show in Table II the values of B and 
s 

B for the saddle shapes at x = 0.9 through 0.4, as found using the three 
c 

different scan sizes. No important changes in the solutions are apparent. 

The total energy s, being stationary with respect to small deviations from 

the saddle point configuration, is' even less sensitive to small errors in the 

location of the saddle and was found to be independent to six decimal places 

of the scan size L:l.a. . 
n 
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3. 
. f 

Convergence as a Function of the Number _of o.n s 

. The foregoing analysis of the accuracy of the numerical integrations and 

search procedures shows that at:ail x values there is no appreciable uncer-

tainty in the final results arising out of those aspects of the calculations. The 

question of inaccuracies due to the retention of a limited number of terms in 

the expansion of the shape in Legendre polynomials is not as clear-cut. The 

f _ .. _ ... -- --

effect of the neglect of higher P s may be estimated by studying the converg
n 

ence of the solutions as a function of the highest retained polynomial, o.NPN. 

Such solutions were obtained, as function of x, for N = 2, 4, 6, :81, LO, 12., 14, 

16, 18, i.e., . the whole calculation of the symmetric saddle shapes was re-

peated sevexal times, first in one dimension (a. 2 ), then in two dimensions 

(a. 2 , o. 4 ), three dimensions,etc., up to nine dimensions (a. 2 through a. 18 ), and 

various aspects of the results were compared; Figure 13 shows the major 

and minot axes of the saddle point shapes obtained from calculations with . 

varying· numbers of a. 
1 
s, and Fig. 14 shows a more complete comparison of 

n . 

the convergence of the saddle shape at a particular value of x (equal to 0.5). 

Table III illustrates the convergence with· N of the relative energy ;, and 

Table IV .. is a study of the convergence of the moment of. inertia ~J_. The 

following conclusions are suggested. For x values greater than about 0.7 the 

convergence of the results is very satisfactory, the increase in the number 

I 

of even o.n s ·beyond four (a. 2 through a. 8 ),producing very little effect. The 

convergence is not uniform, the transition from one to two dimensions pro-

clueing a large .change, but the transition from two to three only a small 

change. Up to three dimensions (a. 2 through a.
6

) the results exhibit the mul

tiple-valped features discussed in Part IV; the critical region of x being 

around 0.89 for the one -dimensional solution, around 0. 72 in two dimensions, 

.f. 

and 0. 70 in three. The introduction of a. 8 and higher o.n s removes the multiple-

valuedne s s. 
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The convergence of the solutions below about x = 0. 7 is quite different 

' than above 0. 7, additional a. s producing srriall but not rapidly decreasing 
n 

changes. This results in some uncertainty regarding the true appearance of 

the saddle point shapes at low values of x. In particular, small-scale fea-

tures like the size and shape. of the neck are probably represented poorly and 

the trend with x of the neck radius below about x = 0.4 is almost certainly in 

error by an appreciable amount (see Fig. 2). (The inclusion of progressively 

1 

higher a. s continues to improve the appearance of the :neck- see Fig. 14.) n . . 

On the other hand, overall features of the saddle-point ·shapes,. such as the 

moments of inertia and, in particular, the energy, change relatively little 

with increasing N, even for low values of x. We were especially interested 

in satisfying ourselves that the fundamental critical quantity xBG' where the 

loss of stability against asymmetry takes place, does not change much with 

. 1 

the addition of higher a.n s. Figure 15 illustrates the result of determining 

I 

xBG using different numbers of even and odd a.n s. The sequence of esti,-

mates, xBG =. 0.398, 0.389, 0.395, 0.3::89, 0.394, makes it unlikely that the 

accepted value xBG = 0.394 is in error by more than a few units in the third 

decimal place. 

The convergence of the radius vector R(B) at several values of e is 

further illustrated in Fig. 16 for the saddle-point shape at x = 0.5. 
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FOOTNOTES 

··t:he' r~fer'ence's to Parts 1, II, 'rii, .TV ar'e as follows: 'Part I-W.; J. 

Swiatecki, Phys. Rev. 101, 651 (1956); Part II-Phys. Rev. 104, .993 

( 1956 ); Part III.,... Paper No. P /651, Proceedings of the Second United 

Nations International Conference on the Peaceful Uses of Atomic Energy, 

Geneva, 1958 (United Nations,' Geneva, 1958); Part IV -S. Cohen and 

W. J. Swiatecki, Ann. Phys. _!1, 67 ( 1962). 

. . ....., 
We are indebted to V. M, Strutinskii, N' Ya, Lyashchenko and 

N. A. Popov for sending us a preprint of their paper, entitled "Symmetric 

Figures of EquUibrium of a Nucleus with a Sharp Surface," which we 

received after completion of the present calculations. We shall not 

attemp to discuss here the relation of their results to ours. 

The moments of inertia were also calculated independently by Frank 

I 
Plasil (2), using our sets of a. s. We are grateful to him for the op-. n 

portunity of comparing the results of the two methods, which were found 

to be in agreement. 

These calculations could also be carried out for other parameterizat~ons. 

In particular, for the saddle point at x=O.O the expansion of the square 

of R(B) in terms of Legendre polynomials is more suitable, since only 

two terms, P
0 

and P 2 , are then required to represent the exact saddle-

point shape. 
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TABlE I 

Properties of saddle-point shapes as a function of the parameter x. 

o.oooo 

1.0000 

t.oooo 

B s 

o;booo 

1.0000 

1.0000 

o.oooo 

1.0000 

1.0000 

0.00000 1.00000 1.00000 

0.0430 

1.0433 

0.9940 

0,0007 

1.0427 

0.9887 

o.oooo 

1.0405 

0.9844 

0.0000 

1.0000 

1.0000 

0.0000 

o.oooo 

p,OOOOl 1,00074 0.99963 . -0,0148 

o.oooo 0.0001 

1.0770 

0.0000 

1.0000 

1.0000 

1.2593 

0.0001 

1.0320 

·0·9791 

1.2440 

0.0001 

1.0668 

0.0901 

1.0914 

0.9862 

0.0031 

1.0898 

0.9753 0;9599 ·0.9559 

o.oooo4 1.00320 0.99836 -o.o3Q8 

0.1373 

1.1396 

0.9770 

0.1827 

1.1867 

0.9669 

0,0069 -0.0002 

1.1371 

0.9608 

1.1295 

0.9478 

0.'0124 -0.0003 

1.1726 

·o.oooo 

-0.0001 

. 1.1555 

Oi9170 

0.00036 1.01282 0.99323 .-0.0675 

1.2201 

0.0001 

1.1010 

1.1711 

0.0001 

1.1333 

0.9097 

1.1320 

0.2298 

1.2353 

0.9550 

O.Oi97 -0,0007 -0.0003 ' 0.0001 

1.2307 

0.9295 

1.2170 1.1949 

0.8947 

0.00071 1.01993 0.98932 -0.0821 

1.1661 

o.886o 

1.0719 

0,0000 

1.0000 

1.0000 

o.oooo 

0.0001 

1.0266 

0.9784 

0.0063 

0.0001 

1.0547 

0.9546 

0.0054 

0.0001 

1.0820 

0.9305 

o.oo48 

0.0001 

1.1072 

0.9073 

0,0042 

0.0001 

1.1324 

0.8831 

0.0031 

0.0000 

1.0000 

0.6122 

0.0001 

1.0202 

0.0000 

1.0000 

1.0000 

0.0000 

1.0000 

o.oboo 

1.0000 

0;0000 -0.0003 

i.Ol34 1:oo67 

0.2215 

0.6028 '0;9578 

0,0001 

1.0411 

0.0001 

1.0608 

0,0001 

0.5242 

0.0001 

1.0952 

0.4960 

0.0000 -0.0002 

1.0125 

0.4770 

1.0559 

o.oooo -0.0003 

1.0386 

0.8712 

1.0167 

0.7477 

1.0944 

0.0000 -0.0002 

1.1484 1.0191 

1.0224 

1.1377 

0.0000 -0.0002 

1.0570 1.0200 

R.M.S. 

1.0000 

1.0000 

0.0000 

0.0000 

1.0004 

1.0002 

0,0014 

1.0016 

0.0014 

0.1476 

1.0038 

0.9960 

0.0014 

0.2340 

1.0068 

0.9916 

0.0013 

0.3221 

1.0108 

0,0012 

0.4176 
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X 

X= 0.88 

x = ·o.86 

X= 0.84 

x = o.Bo 

X= 0.78 

a2 

R(0°) 

R(6o0
) 

~ 

. a6 

R( l2°) 

R(72°) 
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era 
R(18°f 

R(78°) 

0 10 
R(24°) 

R(84°) 

0 12. a14 
-R(30o). - R(31)o) 

R(9o0
) 

UCRL-10450 

0 16 ':; 0 18 

R( 42°f_ .. -R( 48°)· 

Q R.M.S. 

0.2779 

1.2846 

0.9416 

0.0289 -0.0012 -o.ooo7 o.ooo1 o.oo01 o.ooo1 o.oooo -o.ooo3 1.0158 

1.2345 1.1988 1.2619 

0.8885 0.8717 0.8618 

0.00123 1.02854 0.98448 -0.0946 1.0014 

1.1569 

0.8585 

1.1110 

0.0036 0.4658 

1.0641 1.0190 0.9778 

1.6467 0.0012 

],_.2499 

0.3274 

1.3355 

0.9264 

o.o4o5 -o.ooi8 -0.0012 0~0001 0.0002 0.0001 0.0000 -0.0002 1.0221 

1.3286 

0.8926 

1.3079 

0.8664 

1.2748 

0.8479 

1.2315 

0.8369 

1.1808 .1.1254 

0.8333 

0.00197 1.03867 0.97866 -0.0994 0.9394 0.0030 

0.3799 

1.3887 

0.9089 

0.0548 -0.0026 

1.3804 

0.8713 

1.356o 

0.8426 

-0.0023 0.0000 0.0003 0.0002 

1.3166 1.2047 1.1390 

0.8225 o.8107 o.8o68 

0.00296 1.05059 0.97164 ~0.1039 o.86o1 o.oo31 o.4o9o 

0.4354 

1.4439 

Q.8889 

0.0724 ' -0.0035 

1.4o57 

0.8171 

-0.0039 -0.0001 0.0004 0,0002 

1.2994 1.1513 

1.0161 0.9680 ' 

1.9986 0.0011 

1. 3200 0.6244 

,;, l". 

o.oooo -0.0002 1.0298 

0.9557 1.0730 

0.6894 

1.0109 

2.3921 0.0011 

1.4o32 0.7379 

o.oooo -0.0002 1.0393 

1.0744 

2.8311 (1.0010 

0.00425 1.06428 0.9634o -0.1024 0.7733 0,0031 0.3851 0.6563 '1.5011 0.8575 

0.4953 6'.0944 -0.0044 -0.0063 -0.0004 0.0007 0.0003 o.oooo -0.0002 

1.5025 1.4914 1 •. 4584 1.1620 

0.8657 0.8217 0.7891 

0.00591 1.o8002 0.95368 --0.0981 0.6855 0.0024 0.:31)20 

0.5615 

1.5654 

0.8385 

0.1222 -0.0054 -0.0101 -0.0009 o.oo12 ·o.ooo5 

1.5526 

0.7919 

1.5148 

0.7579 

1.45.37 

0.7348 

1.3}'23 1.2755 

0.7214 ' 0.7171 

1.1708 

1. 0731 0. 9920 

3.3319 

0.6240 

o.oooo -0.0002 

1.0682 

0.5925 

1.0511 

0.9224 

0.0009 

1.0661 

0.8996 

1.1200 

•, 

-• 
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X= 0.72 

X= 0;70 
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~IE I (Continued) 

B c 

6.6360 

1.6334 

0.1579 -0.0061 

1.6189 

0.8061 0.7576 

1.5758 

0.7228 

-0.0159 -0.0020 

1.5058 

0.6993 

0.01056 1.11907 0.92861 -0.0742 

1.4119 

0.6859 

0.4924 

0.0020 

1.2991 

0.6815 

0.0022 

0.0010 

0.3343 

R.M.S. 

0.0000 -0.0003 1.0852 

1.0586 0.9551 0.8711 

4.6083 0.0008 

1.9371 1.2633 

0.7231 0.2055 -0.0061 -0.0252 -0.0041 0.0037 0.0019 -0.0001 -0.0005 1.1108 

1.7088 1.6433 1.4547 1.3227 1.1790 1.0418 0.8346 

0.7666 0.7171 0.6821 0.6587 0.6454 0.6410 

0.9255 

5.4563 

2.1608 

0.0009 

1.4149 0.01373 1.14342 0.91237 -0.0574 0.3926 0.0023 0.3264 

0.8295 

1. 7940 

0.2717 -0.0044 -o.o4o4 -o.oo87 o.oo66 0.0040 -0.0003 -0.0009 

1. 7753 

0.7170 0.6675 

1. 7196 

0.6331 

1.6281 1.5021 

0.6104 0.5975 

0.01762 1.17209 0.89272 -0.0392 0.2910 

0.9662 

1.8906 

0.6528 

0.3685 

1.8695 

0.6049 

0.0010 

1.8063 

0.5725 

-0.0665 -0.0185 

1.7018 1.5550 

0.02236 1.20555 0.86915 -0.0234 0.1908 

1.1391 0.5031 0.0106 

1.9649 1.8946 

-0.1098 -0.0371 

1.7774 

0.4809 

1.6094 

0.4700 

0.02811 1.24006 0.84415 -0.0131 0.1152 

1.3164 0.6429 

2.0562 2.0321 

0.4994 

0.0142 

1.9574 

0.4328 

-0.1640 -0.0574 

1.8325 

0.4153 0.4055 

0.03476 1.26480 0.82572 -0.0112 0.0698 

1.1744 1.0135 0.8832 1.3458 

0.5934 

0.0036 

6.5331 0.0014 

0.3186 2.4547 

0.0123 0.0091 -o.ooo6 -0.0023 

1.3673 

0.5352 

0.0040 

0.9667 0.8215 

7·9330 

0.4820 2.8493 

0.0199 -0.0013 -0.0058 

1.1269 0.8971 o. 7379 

1.5723 

1.2002 

0.7217 

0.0035 

1.7239 

1.2785 

0.6394 

0.0232 

1.3845 

0.4668 9·5991 0.0093 

0.0053 0.2068 0.4688 

0.0465 

1.3974 

0.0344 -0.0039 -0.0113 

1.0942 

0.4029 

0.0083 0.1439 

0.8261 

0.4693 

0.6542 

10.9924 

3·7496 

1.8329 

1.3675 

0.5597 

0.0181 

1.8640 



X 

X= 0.64 

X = 0.62 

x = o.6o 

X = 0.54 
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TABLE I (Continued) 

1;4526 

2.0851 

0.4469 

0.7417 

2.0617 

B c 

0.0033 

1.9864 

-0.2108 -0.0668 

1.8590 

0.3692 

1.6753 

0.3602 

0.04193 1.27670 0.81659 -0.0116 0.0528 

1.5601 0.8115 -0.0162 

2.0959 2.0737 1.9992 

0.4084 0.3722 0.3502 

-0.2494 -0.0674 

1.8715 

0.3354 

0.04937 1.28261 0.81190 -0.0123 0.0419 

1.6478 

2.0977 

0.3785 

0.8612 -0.0413 

2.0770 

0.3440 

-0.2806 -0.0612 

0.05695 1.28558 0.80947 -0.0127 0.0355 

R.M.S. 

0.0603 0.0450 -0.0092 -0.0165 1.4386 

1.4095 

0.3580 

1.0780 

0.0110 0.1143 0.4762 

0.5031 

11.7444 0.0245 

1.8489 

0.0798 

1.4213 

0.3249 

0.0509 -0.0159 -0.0203 

1.0728 0.7515 

0.0131 0.0986 0.4837 

0.5544 0.4615 

12.1415 

4.1069 

0.0276 

1.8237 

0.0979 

1.4326 

0.2993 

0.0524 -0.0231 -0.0225 ) 1.5401 

1.0746 

0.0127 0.0995 0.4909 

0.5242 

12.3410 

4.1736 

0.4291 

0.0279 

1.7977 

1.7272 

2.0958 

0.3526 

0.9002 -0.0700 -0.3068 -0.0501 0.1144 0.0503 -0.0302 -0.0230 

2.0048 

0.2994 

1.8789 

0.2866 

1.7048 

0.2792 

o.o646o 1.28720 o.8o81o -o.0131 0~0352 

1.8010 0.9302 -0.1029 

2.0911 2.0727 1.7086 

1.4431 

0.2771 

0.0139 

0.1289 

1.4530 

0.5003 0.4011 

12.4438 0.0271 

0.4974 4.2109 1.7729 

0.0443 -0.0370 -0.0218 1.6166 

1.0895 

0.3293 0.2980 

2.0029 

0.2782 0.2663 0.2593 0.2571 

0.4813 0.3761 

12.4753 0.0286 

0.07229 1.28795 0.80744 -0.0123 0.0234 

1.8714 

2.o84o 

0.3074 

0.9518 -0.1406 .-0.3451 -0.0124 

2.0665 

0.2779 

1.9986 

0.2584 

1.8762 

0.2474 

0.07999 1.28804 0.80736 -0.0112 

1.7104 

0.2409 

0.0184 

0.0123 o.o886 0.5036 4.2264 1.7492 

0.141i 0.0341 -0.0433 -0.0185 1.6500 

1.4624 

0.2385 

1.1020 0.7237 0.4667 0.3531 

O.Oo85 0.0778 

12.4471 

4.2240 

0.0370 

1.7258 

., 
I 

• 



X 

X = 0.50 

X = 0.48 

X= 0.46 

X= 0.44 

X = 0.42 
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TABlE I (Continued) 

B s 

2.0742 2.0572 

0.2856 0.2582 

B 
c 

1.9912 

0.2388 

-0.3554 

1.8715 

0.2288 

0.0176 

l. 7101 

0.2228 

0.08768 1.28751 0.80786 -0.0123 0.0143 

2.0142 0.9652 -0.2408 

2.0623 2.0452 

0.2633 0.2383 

1.9811 

0.2190 

-0.3584 

1.8650 

0.2098 

0.0555 

1.7078 

0.2044 

0.09535 1.28649 o.8o886 -o.o119 0.0112 

2.0807 0.9531 -0.3001 

2.0480 2.0304 l. 7032 

0.2424 0.2197 0.2005 0.1922 0.1872 

0.10296 1.28499 0.81039 -0.0120 0.0130 

2.0341 2.0156 1.9549 

0.2226 0.2022 0.1834 

-0.3393 0.1428 

1.8475 

0.1756 

1.6981 

0.1712 

0:12 

R(30°) 

R(90°) 

0.1501 0.0177 -0.0485 -0.0123 

1.4716 

0.2201 

1.1196 0-7337 0.4570 

12.3524 

o.oo86 o.o797 0.5157 4.2018 

0.1544 -0.0047 -0.0516 -0.0031 

1.4802 

0.2013 

0.0063 0.0679 

12.2009 

0.5220 4.1629 

0.1519 -0.0321 -0.0517 0.0084 

1.4874 

0.1839 

1.1664 0.7766 0.4544 

11.9892 

0.0076 0.0565 4.1061 

0.1450 -0.0588 -0.0490 0.0198 

1.4930 

0.1678 

1.1901 0.8031 0.4596 

11.7716 

R.M.S. 

1.6815 

0.3310 

0.0551 

1.7013 

l. 7120 

0.0817 

1.6756 

1.7375 

0.2917 

0.1130 

1.6493 

1.7610 

0.2761 

0.1426 

0.11052 1.28349 0.81199 -0.0116 0.0118 0.0481 0.5344 4.0472 1.6242 

2.0218 2.0022 1.9428 

0.2053 0.1867 0.1685 

-0.3252 

1.8396 

0.1865 

1.6933 

0.1354 -0.0820 -0.0446 

1.2100 0.8272 

0.1611 0.1572 0.1537 

0.11801 1.28219 0.81343 -0.0120 0.0111 0.0053 0.0340 

2.2479 -0.3107 0.2136 0.~ -0.1017 -0.0394 

0.0296 

0.4662 

11.5763 

3·9943 

0.0377 

1.7815 

0.2636 

0.1674 

1.6024 

1.8000 

2.0107 1.9903 1.9318 1.8324 

0.1482 

1.6889 1.4997 0.8486 0.4731 0.2533 

0.1897 0.1727 0.1553 0.1447 0.1413 11.4010 

0.12545 1.28107 0.81473 -0.0123 0.0174 0.0052 0.0198 
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TABLE I (Continued) 

X 

B s 
B 

c 

x = o.4o 2.3014 

2.0016 

0.8926 -0.4989 

1.9226 

0.1418 

-0.2984 

1.8266 

0.2429 

1.6855 

X = 0.38 

X = 0.32 

X = 0.30 

0.1737 0.1350 

0.13284 1.28025 0.81574 -0.0098 

2.3482 

1 .• 9932 

0.1598 

0.8806 -0.5372 

1.9711 

0.1452 

1.9141 

0.1300 

-0.2846 

1.8212 

0.1235 

0.14019 1.27951 0.81669 -0.0110 

2.3915 

1.9850 

0.1469 

0.8663 -0.5737 

1.9621 

0.1329 

1.9057 

0.1191 

-0.2685 

1.8156 

0.1128 

0.14750 1.27880 0.81765 -0.0110 

0.1319 

0,0180 

0.2683 

1.6822 

0,1208 

0,0199 

0.1104 

0.0216 

2.4410 0.8548 -0.6105 -0.2524 0.3140 

1.8107 1.9775 

0.1328 

1.9541 

0.1194 0.1071 0.1011 0.0989 

0.15478 1.27822 0.81848 -0.0098 

2.4944 

1.9702 

0.1182 

0.8427· -0.6478 

1.8910 

-0.2336 

1.8060 1.9463 

0.1048 0.0943 . 0.0886 

0.16203 1.27768 0.81930 -0.0106 

0.0173 

0.3348 

1.6732 

0.0868 

0.0179 

2.5464 

1.9624 

0.1044 

0.8243 -0.6843 -0.2087 0.3529 

1.9381 

0.0899 

1.8833 

0,0816 

0.16924 1.27710 0.82023 -0.0116 

1.6700 

0.0746 

0,0119 

a:JII 

0.1145 -0.1185 -0.0339 

1.5019 

0.1286 

0.0089 

1.2403 0.8658 

0.0033 0.5488 

0.0443 

0.4779 

R.M.S. 

1.8216 

0.2426 

11.2607 0.2038 

3.9092 

0.1029 -0.1323 -0.0277 0.0494 1.8401 

1.5034 

0.1177 

1.2520 0.8818 

0.0126 -0.0101 0.5526 

0.0897 -0.1443 -0.0207 

1.5045 

0.1075 

0.0127 -0.0255 0.5562 

0.0757 -0.1547 -0.0132 

1.5053 1.2720 

0.0964 

0.0127 -0.0399 0.5595 

0.4839 

11.1309 

3·8742 

0.2344 

0.2123 

1.5515 

0.0535 1.8568 

0.4913 0.2279 

11.0017 0.2158 

0.0566 

0.4980 

10.8881 

3.8087 

1.5374 

0.2211 

0.2205 

1.5246 

0.0592 -0.1631 -0.0047 0.0584 1.8984 

0.2149 

0.2299 

1.5127 

1.5058 

0.0847 

0.0125 -0.0530 0.5626 

0.0387 -0.1682 

1.5059 

0.0730 

1.2882 

0.0055 

0.9410 

0.0128 -0.0673 0.5657 

10.7785 

3.7791 

0.0582 

0;5169 

10.6585 

3·7463 

0.2119 

0.2344 

1.5009 

·, 

,, 



TABLE II 

Effect of Scan Size on Energies. 

B 
s 

X Half-Scan Standard Scan Double Scan Half-Scan 

0.9 1.019913 1.019930 1.019781 0.989332 

0.8 1.080011 1.080016 1.080242 0.953684 

0.7 1.2052 79 1.205552 1.205398 0.869347 

0.6 1.285595 1.2855 78 1.285522 0.809460 

0.5 1.286564 1.286494 1.286403 0.8087 85 

0.4 1.280248 1.280158 

B 
c 

Standard Scan 

0.989323 

0.953682 

0.869152 

0.809474 

0.808855 

0.815739 

Double Scan 

0.989406 

0.953540 

0.869262 

0.809521 

0.808946 

0.815851 

I 
uv 
uv 
B 

c::: 
() 
:;d 
t"' 
I -0 

*"" Ul. 
0 



TABLE III 

Energy as a Function of the Number .of Dimensions. 

~ 1 2 3 4 5 6 7 

0.4 0.13524 0.[336.1 

0.5 0.09881 0.09813 0.09622 0.09618 

0.6 0.05940 0.05922 0.05774 0.05739 

0.7 0.02676 0.02272 0.022.5 l 0.02243 0.02237 

0.8 0.005961 0. 00_5 95~1 0.0'05907 ' 0 .. 005906 0.005906. 0.005906 ' 

0.9. 0.001103 0.000712 0.000711 0.000711 -0.0007B 0.0001711 0.000711 

,, 

"!''. 

8 9 

0.13332 0. 13284 

0.09535 0.09535 

0.05719 0.05695 

0.02237 0.02237 

0.005906 o. 005 906 
t.· . ) 

0.000711 0.000711 

; 
L.V 
~ 

c:: 
() 

~ 
L' .. 
...... 
0 
~ 
\J1 
0 



TABLE IV 

8, 
l 

as a Function of the Number of Dimensions. 

Dimension 

~ 1 2 3 4 5 6 7 8 9 

0.4 3.8749 3°9116 4o0493 3°9092 

Oo5 4,.4211 4o0875 4o2274 4 01716 4 01506 4o1629 

Oo6 4o3154 4.4699 401789 4.2655 4.1651 4ol736 
I 

Oo7 4o7233 3 o0559 2o9265 208882 2 08516 2 o8515 2o8493 lN 
\.)1 

Oo8 1.'6313 1.6299 106188 1.6187 1.6184 1.6183 1.6183 1.6183 

Oo9 1.3034 1.1897 1.1896 1.1896 1.1894 10 1896 1.1896 1.1895 10 1896 
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X= 0.5 

X= 0.8 X = 0.9 

Fig. lA. Saddle -point shapes for various values of x. 
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0.3 0.4 

Fig. lB. Comparison of necked-in saddle-point shapes for x ~ 0.6. 
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MUB-1319 

Fig. lC. Comparison of cylinder-like saddle-point shapes for x ~0. 7. 
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0.5 

MU-21004 

Fig. 2. The behavior of the major and minor axes of saddle-point 
shapes, as functions of x. The trend in Rmin/Ro at small . 
values of x appears to be appreciably in error, as suggested by 
comparison with the known limiting form for x-0. The value of 
Rmax/Ro at x = 0 is indicated by a circle. The point where the 
Businaro-Gallone family of shapes bifurcates at x = 0.394 has 
been indicated by BG. 
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0.25 

0.20 

-0.05 

o.o 0.5 1.0 

x-
MU.279U 

·Fig. 3. The relative distortion energy ; for saddle..,point shapes, 
as a function of x. The numbers in brackets indicate the degree 
of instability. Threshold energies correspond to the label ( 1). 
The transition from an almost linear dependence pn x to an almost 
cubic dependence on ( 1 - x) occurs close to x = 0.67. The small 
circles connected by a thin line correspond to the energy of two 
equal spheroids whose tips are held at a constant separation. 
The limiting behavior of ; at small x is indicated. 
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0.5 1.0 

MUB-13:21 

Fig. 4. The moments of inertia about axes parallel and at right 
angles to the axis of symmetry of the saddle-po:i:nt shapes are 
shown as functions of x. The unit is ,J 0 • the moment of inertia 
of a sphere. Limiting values at x = 0 are indicated by circles. 
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0 

x-
MU-28000 

f\ 
Fig. 5. The reciprocal of the effective moment of inertia ~' eff' 

as function of x. 
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0 
X 

MU-27996 

Fig. 6. The relative quadrupole moment Q as function of x. To 
obtain the conventional quadrupole moment, Q should be multi
plied by (4rr/3) times the total charge on the drop, times the 
square of R 0 (the radius of the sphere of equal volume). 
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2 

2.5 

2.0 

1.5 

a 1.0 
n ' 

-0.5 

6 

0 0.5 1.0 

X 
MUB·I324 

Fig. 7 .. The values of the expansion coefficients a.n, from a.z 
through a.l8• specifying the saddle -point shapes as fuactions 
of x. 
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-0.10 

0 0.5 1.0 

X-
MU-28001 

Fig. 8A. The stiffnesses c 2 and c4, corresponding to symmetric 
distortions, as functions of x. (Note that c4 is plotte·d on a scale 
reduced by 10.) The slight scatter of the points reflects inaccuracies 
in the numerical procedures which are beginning to show up in the 
second derivatives Cn· 
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1.0 

MU-28002 

Fig. 8B. The stiffnesses c 1 and c3, corresponding to asymmetric 
distortions, as functions of x. Note the complicated behavior of 
c 3 and the critical point XBG• where c 3 changes sign. 
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X i:: 0. 9 X= 0. 8 

X = 0. 7 
X= 0.6 

Fig. 9. Examples of distortions associated with c2 , the principal 
symmetric (fission) coordinate. The saddle shape is shown by 
a dashed line, and the result of making a positive or negative 
distortion along the 'fission coordinate' is indicated by the full 
line. The different cases correspond to x = 0.9, 0.8, 0.7 and 
0.6. 
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!.0 

2.0 

--

X - 0.8 

MU-2799~ . 

· .... 

Fig. 10. TI'ie asymmetric distortion associated with c 1 ·(the center
. of-mass -shift coordinate). 
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x=0.4 

MU-27998 

Fig. 11. The asymmetric distortion associated with c3 -the principal 
intrinsic asymmetry coordinate. The case illustrated refers to 
x = 0.4, where the symmetric saddle shape (dashed line) is about to 
become unstable against an asymmet:~tic distortion (solid line). This 
asymmetric shape is also a member of the Businaro-Gallone family 
of shapes for x just in excess of the critical value XBG = 0,394· 
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(a ) 

(b) 

1'\~. l!. The saddle-point shapes for x = 0.5 and 0.6 are compared 
With configurations of two Apheroids whose tips were held at a 
separation of (0.2) ( 4rr /3) 1; 3 R 0 , and whose energies were lhen 
minimized. The energies of the saddles are 0.0953 and 0.0569, to 
to be compared with 0.0950 and 0.0572 for the spheroids. 
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0.5 
2.5 2.5 

Rmax 

Ro 

2.0 2.0 

1.5 a2- a1a 1.5 
a2- a1s 
a 2 - al4 
a2- al2 

-------------- a2- a1o 
a2- a a 

----- a2- as 
a2- a4 
a2 

0.5 
1.0 1.0 

X 

0.5 0.5 

OL---~--~----L---~--~----~---L--~----~--~0 
0 0.5 1.0 

MUB-1327 

Fig. 13. The convergence of the calculations of saddle-point shapes, 
with the number of an's retained, is illustrated by plots of the 
major and minor axes of the figures in various approximations. 
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x = 0.50 

1.0 

UCRL-10450 

Q) 

> 

(/) 
Q) 

E 

MUB-1328 

Fig. 14. The saddle-point shape for x = 0.5 as calculated with different 
numbers of an's. Note that the representation of the neck region 
improves with the inclusion of higher an's, but that Legendre 
polynomials even beyond P 18 would probably continue to produce 
small changes. 
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Number of 
X BG Even an Odd an 7 

0.394 9 9 
0.389 8 8 

0.395 7 7 
0.05 0.389 6 6 

I 
0.398 5 5 

C3 
0 

0.3 

x-

-0.05 

MU-27995 

E"ig. 15. The determination of xBG from the vanishing of the stiffness 
c3 in a plot against x. 
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2.0 

1.5 

1.0 

0.5 

23456789 

Number of even an's 

MU-28005 

Fig. 16. The convergence of the radius vector at e = 0, 3 0,- 42 and 90 
deg, for x = 0.5. The number of o.n's retained is shown along the 
abscissa. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
mission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




